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Foreword

More than a generation of German-speaking students around the world have worked
their way to an understanding and appreciation of the power and beauty of modern the-
oretical physics—with mathematics, the most fundamental of sciences—using Walter
Greiner’s textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of sci-
ence in a series of closely related textbooks is not a new one. Many older physicians
remember with real pleasure their sense of adventure and discovery as they worked
their ways through the classic series by Sommerfeld, by Planck, and by Landau and
Lifshitz. From the students’ viewpoint, there are a great many obvious advantages to
be gained through the use of consistent notation, logical ordering of topics, and co-
herence of presentation; beyond this, the complete coverage of the science provides a
unique opportunity for the author to convey his personal enthusiasm and love for his
subject.

These volumes on classical physics, finally available in English, complement
Greiner’s texts on quantum physics, most of which have been available to English-
speaking audiences for some time. The complete set of books will thus provide a
coherent view of physics that includes, in classical physics, thermodynamics and sta-
tistical mechanics, classical dynamics, electromagnetism, and general relativity; and
in quantum physics, quantum mechanics, symmetries, relativistic quantum mechanics,
quantum electro- and chromodynamics, and the gauge theory of weak interactions.

What makes Greiner’s volumes of particular value to the student and professor alike
is their completeness. Greiner avoids the all too common “it follows that...,” which
conceals several pages of mathematical manipulation and confounds the student. He
does not hesitate to include experimental data to illuminate or illustrate a theoretical
point, and these data, like the theoretical content, have been kept up to date and top-
ical through frequent revision and expansion of the lecture notes upon which these
volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including
something like one hundred completely worked examples in each volume. Nothing is
of greater importance to the student than seeing, in detail, how the theoretical concepts
and tools under study are applied to actual problems of interest to working physicists.
And, finally, Greiner adds brief biographical sketches to each chapter covering the
people responsible for the development of the theoretical ideas and/or the experimen-
tal data presented. It was Auguste Comte (1789-1857) in his Positive Philosophy who
noted, “To understand a science it is necessary to know its history.” This is all too
often forgotten in modern physics teaching, and the bridges that Greiner builds to the
pioneering figures of our science upon whose work we build are welcome ones.

Greiner’s lectures, which underlie these volumes, are internationally noted for their
clarity, for their completeness, and for the effort that he has devoted to making physics
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an integral whole. His enthusiasm for his sciences is contagious and shines through
almost every page.

These volumes represent only a part of a unique and Herculean effort to make all
of theoretical physics accessible to the interested student. Beyond that, they are of
enormous value to the professional physicist and to all others working with quantum
phenomena. Again and again, the reader will find that, after dipping into a particular
volume to review a specific topic, he or she will end up browsing, caught up by often
fascinating new insights and developments with which he or she had not previously
been familiar.

Having used a number of Greiner’s volumes in their original German in my teach-
ing and research at Yale, I welcome these new and revised English translations and
would recommend them enthusiastically to anyone searching for a coherent overview
of physics.

Yale University D. Allan Bromley
New Haven, Connecticut, USA Henry Ford II Professor of Physics



Preface to the Second Edition

I am pleased to note that our text Classical Mechanics: Systems of Particles and
Hamiltonian Dynamics has found many friends among physics students and re-
searchers, and that a second edition has become necessary. We have taken this op-
portunity to make several amendments and improvements to the text. A number of
misprints and minor errors have been corrected and explanatory remarks have been
supplied at various places.

New examples have been added in Chap. 19 on canonical transformations, dis-
cussing the harmonic oscillator (19.3), the damped harmonic oscillator (19.4), infini-
tesimal time steps as canonical transformations (19.5), the general form of Liouville’s
theorem (19.6), the canonical invariance of the Poisson brackets (19.7), Poisson’s the-
orem (19.8), and the invariants of the plane Kepler system (19.9).

It may come as a surprise that even for a time-honored subject such as Clas-
sical Mechanics in the formulation of Lagrange and Hamilton, new aspects may
emerge. But this has indeed been the case, resulting in new chapters on the “Extended
Hamilton—Lagrange formalism” (Chap. 21) and the “Extended Hamilton—Jacobi equa-
tion” (Chap. 22). These topics are discussed here for the first time in a textbook, and
we hope that they will help to convince students that even Classical Mechanics can
still be an active area of ongoing research.

I would especially like to thank Dr. Jiirgen Struckmeier for his help in constructing
the new chapters on the Extended Hamilton-Lagrange—Jacobi formalism, and Dr. Ste-
fan Scherer for his help in the preparation of this new edition. Finally, I appreciate the
agreeable collaboration with the team at Springer-Verlag, Heidelberg.

Frankfurt am Main Walter Greiner
September 2009
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Preface to the First Edition

Theoretical physics has become a many faceted science. For the young student, it
is difficult enough to cope with the overwhelming amount of new material that has
to be learned, let alone obtain an overview of the entire field, which ranges from
mechanics through electrodynamics, quantum mechanics, field theory, nuclear and
heavy-ion science, statistical mechanics, thermodynamics, and solid-state theory to
elementary-particle physics; and this knowledge should be acquired in just eight to ten
semesters, during which, in addition, a diploma or master’s thesis has to be worked on
or examinations prepared for. All this can be achieved only if the university teachers
help to introduce the student to the new disciplines as early on as possible, in order to
create interest and excitement that in turn set free essential new energy.

At the Johann Wolfgang Goethe University in Frankfurt am Main, we therefore
confront the student with theoretical physics immediately, in the first semester. The-
oretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I—An Intro-
duction are the courses during the first two years. These lectures are supplemented
with many mathematical explanations and much support material. After the fourth
semester of studies, graduate work begins, and Quantum Mechanics [I—Symmetries,
Statistical Mechanics and Thermodynamics, Relativistic Quantum Mechanics, Quan-
tum Electrodynamics, Gauge Theory of Weak Interactions, and Quantum Chromo-
dynamics are obligatory. Apart from these, a number of supplementary courses on
special topics are offered, such as Hydrodynamics, Classical Field Theory, Special
and General Relativity, Many-Body Theories, Nuclear Models, Models of Elementary
Particles, and Solid-State Theory.

This volume of lectures, Classical Mechanics: Systems of Particles and Hamil-
tonian Dynamics, deals with the second and more advanced part of the important field
of classical mechanics. We have tried to present the subject in a manner that is both
interesting to the student and easily accessible. The main text is therefore accompa-
nied by many exercises and examples that have been worked out in great detail. This
should make the book useful also for students wishing to study the subject on their
own.

Beginning the education in theoretical physics at the first university semester, and
not as dictated by tradition after the first one and a half years in the third or fourth
semester, has brought along quite a few changes as compared to the traditional courses
in that discipline. Especially necessary is a greater amalgamation between the ac-
tual physical problems and the necessary mathematics. Therefore, we treat in the first
semester vector algebra and analysis, the solution of ordinary, linear differential equa-
tions, Newton’s mechanics of a mass point, and the mathematically simple mechanics
of special relativity.

Many explicitly worked-out examples and exercises illustrate the new concepts
and methods and deepen the interrelationship between physics and mathematics. As a
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matter of fact, the first-semester course in theoretical mechanics is a precursor to the-
oretical physics. This changes significantly the content of the lectures of the second
semester addressed here. Theoretical mechanics is extended to systems of mass points,
vibrating strings and membranes, rigid bodies, the spinning top, and the discussion of
formal (analytical) aspects of mechanics, that is, Lagrange’s, Hamilton’s formalism,
and Hamilton—Jacobi formulation of mechanics. Considered from the mathematical
point of view, the new features are partial differential equations, Fourier expansion,
and eigenvalue problems. These new tools are explained and exercised in many physi-
cal examples. In the lecturing praxis, the deepening of the exhibited material is carried
out in a three-hour-per-week theoretica, that is, group exercises where eight to ten stu-
dents solve the given exercises under the guidance of a tutor.

We have added some chapters on modern developments of nonlinear mechanics
(dynamical systems, stability of time-dependent orbits, bifurcations, Lyapunov expo-
nents and chaos, systems with chaotic dynamics), being well aware that all this mate-
rial cannot be taught in a one-semester course. It is meant to stimulate interest in that
field and to encourage the students’ further (private) studies.

The last chapter is devoted to the history of mechanics. It also contains remarks on
the lives and work of outstanding philosophers and scientists who contributed impor-
tantly to the development of science in general and mechanics in particular.

Biographical and historical footnotes anchor the scientific development within the
general context of scientific progress and evolution. In this context, I thank the pub-
lishers Harri Deutsch and F.A. Brockhaus (Brockhaus Enzyklopddie, F.A. Brockhaus,
Wiesbaden—marked by [BR]) for giving permission to extract the biographical data
of physicists and mathematicians from their publications.

We should also mention that in preparing some early sections and exercises of our
lectures we relied on the book Theory and Problems of Theoretical Mechanics, by
Murray R. Spiegel, McGraw-Hill, New York, 1967.

Over the years, we enjoyed the help of several former students and collabo-
rators, in particular, H. Angermiiller, P. Bergmann, H. Betz, W. Betz, G. Binnig,
J. Briechle, M. Bundschuh, W. Caspar, C. v. Charewski, J. v. Czarnecki, R. Fick-
ler, R. Fiedler, B. Fricke, C. Greiner, M. Greiner, W. Grosch, R. Heuer, E. Hoff-
mann, L. Kohaupt, N. Krug, P. Kurowski, H. Leber, H.J. Lustig, A. Mahn, B. Moreth,
R. Morschel, B. Miiller, H. Miiller, H. Peitz, G. Plunien, J. Rafelski, J. Reinhardt,
M. Rufa, H. Schaller, D. Schebesta, H.J. Scheefer, H. Schwerin, M. Seiwert, G. Soff,
M. Soffel, E. Stein, K.E. Stiebing, E. Stimmler, H. Stock, J. Wagner, and R. Zim-
mermann. They all made their way in science and society, and meanwhile work as
professors at universities, as leaders in industry, and in other places. We particularly
acknowledge the recent help of Dr. Sven Soff during the preparation of the English
manuscript. The figures were drawn by Mrs. A. Steidl.

The English manuscript was copy-edited by Heather Jones, and the production of
the book was supervised by Francine McNeill of Springer-Verlag New York, Inc.

Johann Wolfgang Goethe-Universitit Walter Greiner
Frankfurt am Main, Germany



PartI Newtonian Mechanics in Moving Coordinate Systems

1

Newton’s Equations in a Rotating Coordinate System . . . .. ... .. 3
1.1 Introduction of the Operator Do 6
1.2 Formulation of Newton’s Equation in the Rotating Coordinate System 7
1.3 Newton’s Equations in Systems with Arbitrary Relative Motion . . . 7
9
1

Free Fall on the RotatingEarth . . . . . . . ... ... ..........

2.1 Perturbation Calculation . . . . ... ... ... ... ....... 1

2.2 Method of Successive Approximation . . . . .. ... ... .... 12
2.3 ExactSolution . . . . . . . . . . . ... 14
Foucault’s Pendulum . . . . ... . ... ... ... . ... ....... 23
3.1 Solution of the Differential Equations . . . . ... ... ... ... 26
3.2 Discussion of the Solution . . . . . ... ... ... ........ 28

Part I Mechanics of Particle Systems

4

Degrees of Freedom . . . . . ... ... .. ... ... .......... 41
4.1 Degrees of Freedomof aRigidBody . . . . . ... ... ... ... 41
Centerof Gravity . . . ... ... ... ... ... .. .......... 43
Mechanical Fundamental Quantities of Systems of Mass Points . . . . . 65
6.1 Linear Momentum of the Many-Body System . . . . ... ... .. 65
6.2  Angular Momentum of the Many-Body System . . . .. ... ... 65
6.3  Energy Law of the Many-Body System . . . . . . ... ... .... 68
6.4 Transformation to Center-of-Mass Coordinates . . . . . ... ... 70
6.5  Transformation of the Kinetic Energy . . . . ... ... ... ... 72

Part III Vibrating Systems

7

Vibrations of Coupled Mass Points . . . . . . ... ............ 81
7.1 The Vibrating Chain. . . . . . ... ... ... ........... 88
The Vibrating String . . . . . . ... ... ... ... . o, 101
8.1 Solution of the Wave Equation . . . .. ... ... ......... 103
8.2 Normal Vibrations . . . . . . . ... ... ... ... 105
Fourier Series . . . . . . ... ... 121

Xi



Xii Contents

10 The Vibrating Membrane . . . . . . . . ... ... ... ......... 133
10.1  Derivation of the Differential Equation . . . . . . . ... ... ... 133
10.2  Solution of the Differential Equation . . . . . . .. ... ... ... 135
10.3  Inclusion of the Boundary Conditions . . . . . .. ... ... ... 136
10.4 Eigenfrequencies . . . . . . .. ... ... ... ... 137
10.5 Degeneracy . . . . . . . oo 137
106 NodalLines . . . . . . . . . ... .. 138
10.7  General Solution . . . . ... ... ... o 138
10.8  Superposition of Node Line Figures . . . . . ... ... ... ... 140
10.9 The Circular Membrane . . . . . . . ... ... ... ........ 141
10.10 Solution of Bessel’s Differential Equation . . . . . . ... ... .. 144

Part IV Mechanics of Rigid Bodies

11 Rotation Abouta Fixed Axis . . . ... ... ... ............ 161
11.1  MomentoflInertia . . . . . ... .. ... ........ ...... 162
11.2  The Physical Pendulum . . . . . .. ... ... .. ... ...... 166

12 Rotation AboutaPoint . . . . . . . ... ..o 185
12.1 TensoroflInertia . . . . . . . . ... ... ... ... ... ... 185
12.2  Kinetic Energy of a Rotating RigidBody . . . . . .. ... ... .. 187
12.3  The Principal Axesof Inertia . . . . . . ... ... ... ...... 188
12.4  Existence and Orthogonality of the Principal Axes . . . . . . .. .. 189
12.5 Transformation of the Tensor of Inertia . . . . . . ... ... .... 193
12.6  Tensor of Inertia in the System of Principal Axes . . ... ... .. 195
127 Ellipsoid of Inertia . . . . . . ... .. ... ... .. ... ... . 196

13 TheoryoftheTop . . . .. .. ... . . ... ... . ... ... ... 209
13.1 TheFreeTop . ... ... . . ... . . ... 209
13.2  Geometrical Theoryofthe Top . . . . . . .. ... ... ... ... 210
13.3  Analytical Theory of the Free Top . . . . . . ... ... ... ... 213
13.4 The Heavy Symmetric Top: Elementary Considerations . . . . . . . 224
13.5 Further Applicationsofthe Top . . . . . . . ... .. .. ... ... 228
13.6  TheEuler Angles . . . . . . ... ... .. ... . . ... ... 238
13.7 Motion of the Heavy Symmetric Top . . . . . ... ... ... ... 241

Part V Lagrange Equations

14 Generalized Coordinates . . . . . . . ... ... ... .......... 259
14.1  Quantities of Mechanics in Generalized Coordinates . . . . . . . . . 264
15 D’Alembert Principle and Derivation of the Lagrange Equations . . . . 267
15.1 Virtual Displacements . . . . . . . ... .. ... ... ... 267
16 Lagrange Equation for Nonholonomic Constraints . . . . . . . . .. .. 301
17 Special Problems . . . . . . . .. ... ... 311
17.1  Velocity-Dependent Potentials . . . . . . ... ... ... ..... 311

17.2  Nonconservative Forces and Dissipation Function (Friction Function) 315
17.3  Nonholonomic Systems and Lagrange Multipliers . . . . . ... .. 317



Contents

xiii

Part VI Hamiltonian Theory

18 Hamilton’s Equations . . . . . . ... ... ... ... .......... 327
18.1 The Hamilton Principle . . . . . ... ... ... ... ....... 337
18.2  General Discussion of Variational Principles . . . . . ... ... .. 340
18.3  Phase Space and Liouville’s Theorem . . . . ... ... ... ... 350
18.4  The Principle of Stochastic Cooling . . . . ... ... ... .... 355

19 Canonical Transformations . . . . . . . ... ... ... .. ... ... 365

20 Hamilton-Jacobi Theory . . .. ... ... .. ... ... ........ 383
20.1  Visual Interpretation of the Action Function S . . . . ... ... .. 397
20.2  Transition to Quantum Mechanics . . . . ... ... ... ..... 407

21 Extended Hamilton-Lagrange Formalism . . . . . . ... ... ... .. 415
21.1 Extended Set of Euler-Lagrange Equations . . . . . ... .. ... 415
21.2  Extended Set of Canonical Equations . . . . . . ... ... ..... 419
21.3 Extended Canonical Transformations . . . . . . . ... ... .... 428

22 Extended Hamilton-Jacobi Equation . . .. ... ... ......... 455

Part VII Nonlinear Dynamics

23 Dynamical Systems . . . . ... ... ... ... ... 463
23.1 Dissipative Systems: Contraction of the Phase-Space Volume . . . . 465
232 AMractors . . . . . . it e e e e e e 467
23.3 Equilibrium Solutions . . . . . ... ... oL 469
234 LimitCycles. . . . . . . . . e 475

24 Stability of Time-Dependent Paths . . . . . . ... ... ... ...... 485
24.1 Periodic Solutions . . . . . . . ... ... 486
24.2  Discretization and Poincaré Cuts . . . . . . .. ... ... ..... 487

25 Bifurcations . . . .. ... L o 495
25.1 StaticBifurcations . . . . . .. ... o oo 495
25.2 Bifurcations of Time-Dependent Solutions . . . . . ... ... ... 499

26 Lyapunov Exponentsand Chaos . . . . . .. ... ... ... ...... 503
26.1 One-Dimensional Systems . . . .. ... ... ........... 503
26.2 Multidimensional Systems . . . . . ... ... ... ... .. 505
26.3  Stretching and Folding in Phase Space . . . . . .. ... ... ... 508
26.4 Fractal Geometry . . . . . . . . ... ... 509

27 Systems with Chaotic Dynamics . . . . . ... ... ... ........ 517
27.1 Dynamics of Discrete Systems . . . . . .. ... .. ........ 517
27.2 One-Dimensional Mappings . . . .. ... ... .. ........ 518

Part VIII On the History of Mechanics

28 Emergence of Occidental Physics in the Seventeenth Century . . . . . . 555
Notes . . . . . e 561
Recommendations for Further Reading on Theoretical Mechanics . 573



Contents of Examples and Exercises

1.1
1.2

2.1
2.2
23
24

3.1
3.2
33
34

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59

6.1

6.2

6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2

Angular Velocity Vectorw . . . . . . . .. ... ... .
Position Vectorr . . . . . . . . . . ...

Eastward Deflection of a FallingBody . . . ... ... .........
Eastward Deflection of a ThrownBody . . . . . . ... ... ... ...
SuperelevationofaRiver Bank . . . . . . ... ... ...
Difference of Sea Depth at the Pole and Equator . . . . . . ... .. ..

Chain Fixed toa RotatingBar . . . . . .. ... ... .........
Pendulum ina Moving Train . . . . . ... ... ... .........
Formation of Cyclones . . . . . ... ... ... ... ........
Movable Mass in a Rotating Tube . . . . . ... ... ... ......

Center of Gravity for a System of Three Mass Points . . . . . ... ..
Center of Gravity of a Pyramid . . . . . ... ... ... ........
Center of Gravity of a Semicircle . . . . .. ... ... ... ......
Center of Gravity ofaCircularCone . . . . . . ... ... .......
Momentary Center and Pole Path . . . . . ... ... ... ... ... ..
Scattering ina Central Field . . . .. ... ... ... .........
Rutherford Scattering Cross Section . . . . . . . .. ... ... ....
Scattering of a Particle by a Spherical Square Well Potential . . . . . .
Scattering of Two Atoms . . . . . . . . ... ...

Conservation of the Total Angular Momentum of a Many-Body
System: Flatteningof aGalaxy . . . .. ... ... ... ... .....
Conservation of Angular Momentum of a Many-Body Problem:

The Pirouette . . . . . ... ... ... ...
ReducedMass . . . . . . . .. .
Movement of Two Bodies Under the Action of Mutual Gravitation . . .
Atwoods Fall Machine . . . .. ... ... ... ........ ...
Our Solar System in the Milky Way . . . ... ... ... .......

Two Equal Masses Coupled by Two Equal Springs . . . . ... .. ..
Coupled Pendulums . . . . . .. ... ... ..
Eigenfrequencies of the Vibrating Chain . . . . . ... ... .. ....
Vibration of Two Coupled Mass Points, Two Dimensional . . . . . . . .
Three Massesona String . . . . . . ... .. ... ... ... ...
Eigenvibrations of a Three-Atom Molecule . . . ... ... .. ....

Kinetic and Potential Energy of a Vibrating String . . . . . .. ... ..
Three Different Masses Equidistantly Fixedona String . . . . . . . ..

Xv



XVi

Contents of Examples and Exercises

8.3
8.4

9.1

9.2
9.3
9.4
9.5

10.1
10.2

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12

12.1
12.2
12.3
12.4
12.5
12.6
12.7

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12

14.1
14.2
14.3
14.4
14.5

Complicated Coupled Vibrational System . . . . . . ... ... ... ..
The Cardano Formula . . . . . ... ... ... .............

Inclusion of the Initial Conditions for the Vibrating String by Means

of the Fourier Expansion . . . . . ... ... ... ... ........
Fourier Series of the Sawtooth Function . . . . ... ... ... ... ..
Vibrating String with a Given Velocity Distribution . . . . . .. .. ..
Fourier Series for a Step Function . . . . . ... ... ... ... ...
On the Unambiguousness of the Tautochrone Problem . . . . . . . . ..

The Longitudinal Chain: Poincaré Recurrence Time . . . . . . . .. ..
Orthogonality of the Eigenmodes . . . . . . .. ... ... ... ....

Moment of Inertia of a Homogeneous Circular Cylinder . . . . . . . ..
Moment of Inertia of a Thin RectangularDisk . . . . . . ... ... ..
Moment of Inertiaof a Sphere . . . . . .. ... ...
Moment of InertiaofaCube . . . . .. ... ... ... ... .. ...
Vibrations of a Suspended Cube . . . . . ... ... ... .......
Roll off of a Cylinder: Rolling Pendulum . . . . . ... ... .. ....
Moments of Inertia of Several Rigid Bodies About Selected Axes . . . .
Cube Tilts over the EdgeofaTable . . . . . . . ... ... ... ....
Hockey Puck HitsaBar . . . . . . ... ... ... ... .......
Cue Pushes a Billiard Ball . . . ... ... ...............
Motion with Constraints . . . . . . ... ... ... ... ... ...
Bar Vibrateson Springs . . . . . . ... ...

Tensor of Inertia of a Square Covered withMass . . . . . ... .. ...
Transformation of the Tensor of Inertia of a Square Covered with Mass .
Rolling Circular Top . . . . . . . . . ... . i
Ellipsoid of Inertia of a QuadraticDisk . . . . . . ... ... .. ....
Symmetry Axis as a Principal Axis . . . . . .. ... ... L.
Tensor of Inertia and Ellipsoid of Inertia of a System of Three Masses

Friction Forces and AccelerationofaCar . . . . .. ... ... ....

Nutationofthe Earth . . . . ... ... ... ... ... ... ....
Ellipsoid of Inertia of a Regular Polyhedron . . . . . ... ... .. ..
Rotating Ellipsoid . . . . . . ... ... ... ..
Torque of a Rotating Plate . . . . . ... ... ... ..........
Rotation of a Vibrating Neutron Star . . . . . .. ... ... .. ....
Pivot Forces of a Rotating Circular Disk . . . . . ... .. ... ....
Torque on an EllipticDisk . . . . . .. ... ... . ... . ....
GYIOCOMPASS .+« ¢ v v v e e e e e e e e e e e e e e
Tidal Forces, and Lunar and Solar Eclipses: The Saros Cycle . . . . . .
The SleepingTop . . . . . . .. .. .. ... ... ... ...
The Heavy Symmetric Top . . . . . . . .. ... ... .. ......
Stable and Unstable Rotations of the Asymmetric Top . . . . . ... ..

Small Sphere Rolls on a Large Sphere . . . . . ... ... .......
Body Glides on an Inclined Plane . . . . . . ... ... .........
WheelRollsonaPlane . . .. ... ... ................
Generalized Coordinates . . . . . . ... .. .. ... .........
Cylinder Rolls on an Inclined Plane . . . . .. ... ... .......



Contents of Examples and Exercises

Xvii

14.6

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16

16.1
16.2
16.3

17.1
17.2
17.3
17.4

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

20.1
20.2
20.3

Classification of Constraints . . . . . . . . . ... ... ... ..... 263
Two Masses on Concentric Rollers . . . . . .. ... ... ... .... 270
Two Masses Connected by a Rope on an Inclined Plane . . . . . . . .. 271
Equilibrium Condition of a Bascule Bridge . . .. ... ... ..... 271
Two Blocks ConnectedbyaBar . . . ... ... ... ......... 276
Ignorable Coordinate . . . . . . . . ... ... ... .. ... ... 277
Sphere in a Rotating Tube . . . . . . ... ... ... ... ....... 279
Upright Pendulum . . . . . . .. ... ... ... .. 281
Stable Equilibrium Position of an Upright Pendulum . . . . . ... .. 282
Vibration Frequencies of a Three-Atom Symmetric Molecule . . . . . . 284
Normal Frequencies of a Triangular Molecule . . . . . ... ... ... 286
Normal Frequencies of an Asymmetric Linear Molecule . . . . . . . .. 289
Double Pendulum . . . . . ... .. . oo 289
Mass Point on a Cycloid Trajectory . . . . . . . . . ... ... ..... 292
String Pendulum . . . . . . ... oL o 294
Coupled Mass PointsonaCircle . . . ... ... ............ 295
Lagrangian of the AsymmetricTop . . . . . ... ... ... .. .... 297
Cylinder Rolls down an Inclined Plane . . . . . . ... ... ... ... 303
Particle Moves in a Paraboloid . . . . ... ... ... ......... 305
Three Masses Coupled by Rods Glide in a Circular Tire . . . . . . . .. 308
Charged Particle in an Electromagnetic Field . . . . . . . ... ... .. 314
Motion of a Projectilein Air . . . . . . ... ... ... ... 317
Circular Disk RollsonaPlane . . . ... ... ... ... ....... 320
Centrifugal Force Governor . . . . . . . . .. ... ... ........ 322
Central Motion . . . . . . . ... L 331
The Pendulum in the Newtonian, Lagrangian, and Hamiltonian Theories 332
Hamiltonian and Canonical Equations of Motion . . . . ... ... .. 334
A Variational Problem . . . . . . . ... ... oL 338
Catenary . . . . . . ... 342
Brachistochrone: Construction of an Emergency Chute . . . . ... .. 344
Derivation of the Hamiltonian Equations . . . . . ... ... ... ... 349
Phase Diagram of a Plane Pendulum . . . . .. .. ... ... ..... 351
Phase-Space Density for Particles in the Gravitational Field . . . . . . . 354
Cooling of a Particle Beam . . . . .. ... ... ... ......... 359
Example of a Canonical Transformation . . . . ... ... ... .... 370
Point Transformations . . . . . . . . . ... ... L 370
Harmonic Oscillator . . . . . .. .. .. ... ... ... .. ..., 370
Damped Harmonic Oscillator . . . . . . .. ... ... ... .. .... 373
Infinitesimal Time Step . . . . . . .. ... ... ... ... ... ... 375
General Form of Liouville’s Theorem . . . . . ... ... ... ... .. 376
Canonical Invariance of the Poisson Brackets . . . . . ... ... ... 377
Poisson’s Theorem . . . . ... ... ... ... .. ... . ..., 379
Invariants of the Plane Kepler System . . . . . . ... .. ... .... 380
The Hamilton—Jacobi Differential Equation . . . . .. .. ... .... 385
Angle Variable . . . .. ... .. o 389

Solution of the Kepler Problem by the Hamilton—Jacobi Method . . . . 389



Xviii

Contents of Examples and Exercises

20.4

20.5
20.6

20.7
20.8
20.9
20.10
20.11

21.1
21.2

21.3
214
21.5
21.6
21.7

21.8

21.9

21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21

22.1

23.1
232
233
234

24.1
242

26.1

27.1
27.2
273
27.4
27.5

Formulation of the Hamilton—Jacobi Differential Equation for Particle
Motion in a Potential with Azimuthal Symmetry . . . . . . ... .. .. 392
Solution of the Hamilton—Jacobi Differential Equation of Exercise 20.4 393
Formulation of the Hamilton—Jacobi Differential Equation for the Slant

Throw . . . . . . . 395
Illustration of the Action Waves . . . . ... ... ... ........ 398
Periodic and Multiply Periodic Motions . . . . . . .. ... ... ... 400
The Bohr-Sommerfeld Hydrogen Atom . . . . .. ... ........ 408
On Poisson Brackets . . . . . ... ... ... ... .......... 410
Total Time Derivative of an Arbitrary Function Depending on ¢, p, and ¢ 412
Extended Lagrangian for a Relativistic Free Particle . . . . . . ... .. 417
Extended Lagrangian for a Relativistic Particle in an External
ElectromagneticField . . . . . . ... ... ... .. ... . ..., 418
Trivial Extended Hamiltonian . . . . . . . ... ... ... ....... 421
Hamiltonian of a Free Relativistic Particle . . . . . .. ... ... ... 422
Hamiltonian of a Relativistic Particle in a Potential V(g,?) . . ... .. 423
Relativistic “Harmonic Oscillator” . . . . . ... ... ... ...... 425
Extended Hamiltonian for a Relativistic Particle in an External
ElectromagneticField . . . . . . . ... ... ... ....... ... 426
Identical Canonical Transformation . . . . . . . .. .. ... ...... 432
Identical Time Transformation, Conventional Canonical Transformations 432
Extended Point Transformations . . . . . . ... ... .. ....... 433
Time-Energy Transformations . . . . . ... ... ... ........ 433
Liouville’s Theorem in the Extended Hamilton Description . . . . . . . 434
Extended Poisson Brackets . . . . .. ... ............... 434
Canonical Quantization in the Extended Hamilton Formalism . . . . . . 435
Regularization of the Kepler System . . . . . ... ... ... ..... 437
Time-Dependent Damped Harmonic Oscillator . . . . . ... ... .. 440
Galilei Transformation . . . . . ... .. .. ... ... ........ 444
Lorentz Transformation . . . . . . . .. ... ... ... ........ 445
Infinitesimal Canonical Transformations, Generalized Noether Theorem 447
Infinitesimal Point Transformations, Conventional Noether Theorem . . 450
Runge-Lenz Vector of the Plane Kepler System as a Generalized

Noether Invariant . . . . . . .. .. .. ... ... ........... 451
Time Dependent Harmonic Oscillator . . . . . . ... ... ... ... 456
Linear Stability in Two Dimensions . . . . . . . ... ... .. .... 471
The Nonlinear Oscillator with Friction . . . . . . ... ... ... ... 473
The van der Pol Oscillator with Weak Nonlinearity . . . ... ... .. 480
Relaxation Vibrations . . . . . . .. .. .. .. ... .. ........ 482
Floquet’s Theory of Stability . . . . .. ... .. ............ 489
Stability of aLimitCycle . . . . . . .. .. ... ... ... ...... 492
The Baker Transformation . . . . . .. ... ... ........... 515
The Logistic Mapping . . . . . . . . . . . . i 519
Logistic Mapping and the Bernoulli Shift . . . . ... ... ... ... 527
The Periodically Kicked Rotator . . . . . .. ... ... ........ 530
The Periodically Driven Pendulum . . . . .. ... ... ... ..... 537

Chaos in Celestial Mechanics: The Staggering of Hyperion . . . . . . . 544



Part

Newtonian Mechanics in Moving

Coordinate Systems




Newton’s Equations in a Rotating
Coordinate System

In classical mechanics, Newton’s laws hold in all systems moving uniformly relative
to each other (i.e., inertial systems) if they hold in one system. However, this is no
longer valid if a system undergoes accelerations. The new relations are obtained by
establishing the equations of motion in a fixed system and transforming them into the
accelerated system.

We first consider the rotation of a coordinate system (x’, y’, z’) about the origin
of the inertial system (x, y, z) where the two coordinate origins coincide. The inertial
system is denoted by L (“laboratory system”) and the rotating system by M (“moving
system”).

In the primed system the vector A(r) = A\e] + Ae, + A’e} changes with time.
For an observer resting in this system this can be represented as follows:

dA
dt |y

Ay AR
Sa et et

The index M means that the derivative is being calculated from the moving system.
In the inertial system (x, y, z) A is also time dependent. Because of the rotation of the
primed system the unit vectors e}, €, €} also vary with time; i.e., when differentiating
the vector A from the inertial system, the unit vectors must be differentiated too:

dA| _dA}, dA, +dA’ SN AL A
—| =—==e —3¢ ¢ (4
dr |, = dr Va2 a8 272 T
d
ZZ +A1e1+A e2+A3e3
M
Generally the following holds: (d/dt)(e), -€,) =€), - &, +¢& -€, = (d/dt)(1) =0

Hence, €, - &’

» -€, = 0. The derivative of a unit vector €, is always orthogonal to the vector
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the coordinate systems x, y, z
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itself. Therefore the derivative of a unit vector can be written as a linear combination
of the two other unit vectors:

./ / /
e =ae, +aze;,
-/ / /

02 = (1361 + 61463,
é/3 = a5e’1 + a6e’2.

Only 3 of these 6 coefficients are independent. To show this, we first differentiate

¢| - ¢, =0, and obtain

—_

-/ / ./ /
el ‘e2=—e2 ‘el.

Multiplying &) = a1€), + aze} by €, and correspondingly €, = aze| 4 a4€} by e},
one obtains

e,-€ =a; and €| & =ua3,

and hence az = —a;. Analogously one finds ag = —a4 and as = —ax.
The derivative of the vector A in the inertial system can now be written as follows:

dA o dA ’ / / ’ / ’ ’ ’ /
—| =—| +Aj(a1&;+are;) + As(—ai€| + asez) + Az(—aze] — ase,)
dt |, dt|y
_ dA ’ / ’ / ’ ’ ’ ’ /
r +e(—a1A; — a2 A3) + €,(a1A] — asAz) +e3(a2 A + a4 Ay).
M

From the evaluation rule for the vector product,

e ¢ e
CxA=|(C; C C3
Ay Ay Ay

= e/1 (C2A/3 — C3A’2) — e/z(ClA/3 — C3A/1) + e’3(C1A’2 — CgA’l),
it follows by setting C = (a4, —az, a;) that

dA
dt

_dA

= C x A.
Ldt+x

M

We still have to show the physical meaning of the vector C. For this purpose we con-
sider the special case dA/dt|y = 0; i.e., the derivative of the vector A in the moving
system vanishes. A moves (rotates) with the moving system; it is tightly “mounted”
in the system. Let ¢ be the angle between the axis of rotation (in our special case the
z-axis) and A. The component parallel to the angular velocity @ is not changed by the
rotation.

The change of A in the laboratory system is then given by

. dA .
dA=wdt Asing or —| =wAsing.
dt |

This can also be written as
dA

= A.
ar |, ® X
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> o dt

A

o

w '
o dt Yy

The orientation of (@ x A)dt also coincides with dA (see Fig. 1.2). Since the
(fixed) vector A can be chosen arbitrarily, the vector C must be identical with the
angular velocity @ of the rotating system M. By insertion we obtain

dA
dt

_dA

= A. 1.1
=] e (1.1)

M

This can also be seen as follows (see Fig. 1.3): If the rotational axis of the primed
system coincides during a time interval dt with one of the coordinate axes of the
nonprimed system, e.g., ® = ¢e3, then

¢, =¢e, and €&, =—¢e|,

ie.,

ail=¢, ay=as=0, andhence C=g¢e;=w.

In the general case @ = wje; + wrey + wses, one decomposes w = Y w; with
®; = w;e;, and by the preceding consideration one finds

C =w;; 1ie., C:ZCi =Zw,~ = .

Fig. 1.2. Change of an arbi-
trary vector A tightly fixed to
a rotating system

Fig.1.3. |de|| =|de)| =
¢ -dt
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1.1 Introduction of the Operator D

To shorten the expression d F(x, ...,t)/dt = d F/dt, we introduce the operator D=
a/0t. The inertial system and the accelerated system will be distinguished by the in-
dices L and M, so that

~ ~ il

D =— d Dy=—| .

L=%, M T,
The equation

dA dA

—| =—| +wxA

dt |, dt |y

then simplifies to
DiA=DyA+wxA.
If the vector A is omitted, the equation is called an operator equation
5L = 5M + X,

which can operate on arbitrary vectors.

EXAMPLE |

1.1 Angular Velocity Vector

do dw
—_— = — + o X .
dt |, dt|y

Since @ x @ = 0, it follows that

dw _dw
dt|, dt|y

These two derivatives are evidently identical for all vectors that are parallel to the
rotational plane, since then the vector product vanishes.

EXAMPLE |

1.2 Position Vector r

dr| dr
dt|, dt

in operator notation this becomes

+wXxr,
M

Dir=Dyr+o xr,



1.2 Formulation of Newton’s Equation in the Rotating Coordinate System

where (dr/dt)| ) is called the virtual velocity and (dr/dt)|y + @ X r the true velocity.
The term @ X r is called the rotational velocity.

1.2 Formulation of Newton’s Equation in the Rotating Coordinate
System

Newton’s law m¥ = F holds only in the inertial system. In accelerated systems, there
appear additional terms. First we consider again a pure rotation.
For the acceleration we have

i = %(f)L = Dp(Drr) = (Dy + ©x)(Dyr + @ x 1)
= 5%,1r+5M(w XT)+® X 5Mr+w X (@ X 1)
= /D\%,Ir—l-(/D\Ma)) XTI+ 20 X 5Mr+w X (w X T).
We replace the operator by the differential quotient:

_ d*r
, di?

d*r

dw
ar T

M dl‘M

d
xr+2wx—r‘ 4+ o X (w XT1). (1.2)
dt |y

The expression (dw/dt)|p x r is called the linear acceleration, 2w x (dr/dt)|m
the Coriolis acceleration, and @ X (@ X r) the centripetal acceleration.
Multiplication by the mass m yields the force F:

d*r n dw
m—s m—
dt?

M dt ’M

d
X T+ 2me X _r‘ +mew X (w xr)=F.
dt |y

The basic equation of mechanics in the rotating coordinate system therefore reads
(with the index M being omitted):
d’r —C 5 @x1) (L.3)
m—s =F—m— Xr—2mow xv—mw x (& Xr). .
dr? dt
The additional terms on the right-hand side of (1.3) are virtual forces of a dynamical
nature, but actually they are due to the acceleration term. For experiments on the earth

the additional terms can often be neglected, since the angular velocity of the earth
w=2m1/T (T =24h)isonly 7.27-107 s~ L.

1.3 Newton’s Equations in Systems with Arbitrary Relative Motion

We now drop the condition that the origins of the two coordinate systems coincide.
The general motion of a coordinate system is composed of a rotation of the system
and a translation of the origin. If R points to the origin of the primed system, then the
position vector in the nonprimed system is r = R +r’.

Example 1.2
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Fig. 1.4. Relative position of
the coordinate systems x, y, z
and x',y', 7

For the velocity we have 1 = R + ¥, and in the inertial system we have as before

d*r
me_—
dt?

=F.
L

L
By inserting r and differentiating, we obtain

d*R
m dr?

d2 /
m—r =F.
dt?

L

L

The transition to the accelerated system is performed as above (see (1.3)), but here
we still have the additional term mR:

d*r

m —

dr?

d*R
J— m_
dt?

dw , ,
—m—| Xr —2mwXxvy—mwXx (exr). (1.4)
L dr |y

M



Free Fall on the Rotating Earth

On the earth, the previously derived form of the basic equation of mechanics holds if
we neglect the rotation about the sun and therefore consider a coordinate system at the
earth center as an inertial system.

mi' |y =F —mR|, —mé x Y|y —2me x ¥|y — mw x (@ X r). (2.1

The rotational velocity @ of the earth about its axis can be considered constant in time;
therefore, m@w x r' = 0.

The motion of the point R, i.e., the motion of the coordinate origin of the system
(x',y’, ), still has to be recalculated in the moving system. According to (2.1), we
have

R, =Rly + &y x R+20 x Rly + @ x (@ x R).

Since R as seen from the moving system is a time-independent quantity and since
® is constant, this equation finally reads

ﬁ|L=wx(wa).

This is the centripetal acceleration due to the earth’s rotation that acts on a body
moving on the earth’s surface. For the force equation (2.1) one gets

mi’ =F —mw x (0 x R) —2me x I —meo x (o xr).

Hence, in free fall on the earth—contrary to the inertial system—there appear vir-
tual forces that deflect the body in the x’- and y’-directions.

If only gravity acts, the force F in the inertial system is F = —y Mmr/r>. By inser-
tion we obtain

s Mm . ,
my = —y—— r—mwx (@xR)—2mw xr —mw x (& x1).
r

We now introduce the experimentally determined value for the gravitational accel-
eration g:

M
g=—yFR—wx(wa).

Here we have inserted in the gravitational acceleration —y Mr/r3 the radius
r = R + r’ and kept the approximation r ~ R, which is reasonable near the earth’s
surface. The second term is the centripetal acceleration due to the earth’s rotation,

W. Greiner, Classical Mechanics, 9
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2 Free Fall on the Rotating Earth

Fig. 2.1. Octant of the globe:
Position of the various coordi-
nate systems

which leads to a decrease of the gravitational acceleration (as a function of the geo-
graphical latitude). The reduction is included in the experimental value for g. We thus
obtain

m¥ =mg —2mw X' —mw x (0 xr).

In the vicinity of the earth’s surface (r’ < R) the last term can be neglected, since
w? enters and |w| is small compared to 1/s. Thus the equation simplifies to

F=g—-2(wx¥) or ¥=-ge;—2(wxF). (2.2)

The vector equation is solved by decomposing it into its components. First one suit-
ably evaluates the vector product. From Fig. 2.1 one obtains, with ey, e, e3 the unit
vectors of the inertial system and e’1 , e’z, e’3 the unit vectors of the moving system, the
following relation:

e3 = (e3-€))e] + (e3-€))e, + (e3 - €3)e;
= (—sini)e] +0€), + (cos A)e;.
Because @ = we3, one gets the component representation of @ in the moving system:
® = —wsin1e| + wcos 1ej.
Then for the vector product we get
w x I’ = (—wy cosL)e| + (Z'wsink + F'wcos1)e) — (Y sin)e;.

The vector equation (2.2) can now be decomposed into the following three compo-
nent equations:

X' =2y wcosA,
¥ = —2w(z sink + x’ cos ), (2.3)
7= —g+ 2wy sinA.

This is a system of three coupled differential equations with @ as the coupling parame-
ter. For w = 0, we get the free fall in an inertial system. The solution of such a system
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can also be obtained in an analytical way. It is, however, useful to learn various ap-
proximation methods from this example. We will first outline these methods and then
work out the exact analytical solution and compare it with the approximations.

In the present case, the perturbation calculation and the method of successive ap-
proximation offer themselves as approximations. Both of these methods will be pre-
sented here. The primes on the coordinates will be omitted below.

2.1 Perturbation Calculation

Here one starts from a system that is mathematically more tractable, and then one
accounts for the forces due to the perturbation which are small compared to the re-
maining forces of the system.

We first integrate (2.3):

X =2wycosA+cy,
y=—2w(xcost+ zsinl) + ¢y, 2.4)
7= —gt+2wysinl + c3.

In free fall on the earth the body is released from the height 4 at time ¢ = 0; i.e., for
our problem, the initial conditions are

20)=h,  #0)=0,
y(0) =0, y(0) =0,
x(0)=0,  %(0)=0.

From this we get the integration constants
c;1 =0, c) =2whsin, c3=0,
and obtain

X = 2wy cosA,
y=—=2w(xcosA+ (z — h)sin}), 2.5)
7= —gt+2wysinA.

The terms proportional to w are small compared to the term gf. They represent the
perturbation. The deviation y from the origin of the moving system is a function of
w and t; i.e., in the first approximation the term y;(w, t) ~ w appears. Inserting this
into the first differential equation, we find an expression involving w?. Because of the
consistency in w we can neglect all terms with w?, i.e., we obtain to first order in w

x(t) =0, (1) = —gt,
and after integration with the initial conditions we get

x(t)=0,  z(t)= —%ﬁ +h.
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Because x(¢) = 0, in this approximation the term 2wx cos A drops out from the
second differential equation (2.5); there remains

y=—2w(z— h)sinA.

Inserting z leads to

. I, .

y=-2w h—zgt —h ) sinA
= wgt*sinA.

Integration with the initial condition yields
wg sin A
y=282207 3 .

The solutions of the system of differential equations in the approximation @" =0
with n > 2 (i.e., consistent up to linear terms in w) thus read

x() =0,
wg sin A 3

3 )

8 2
z2(t)y=h—Zt".
Q) >

y(@) =

The fall time T is obtained from z(t =T) = 0:
_2h
.

T2

From this one finds the eastward deflection (€, points east) as a function of the fall
height:

wgsin\2h [2h

y(t=T)=y(h)=37 —

g g
_ 2whsinA [2h
= 3 .

2.2 Method of Successive Approximation

If one starts from the known system (2.5) of coupled differential equations, these equa-

tions can be transformed by integration to integral equations:
1

x(1) =2wcosk/y(u)du—|—c1,

0
t t

y(t) =2whtsink—2wcoskfx(u)du—2wsink/z(u)du+cz,

0 0
t

1
(1) = —Egt2 +2wsink/y(u)du + c3.
0
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Taking into account the initial conditions

x(0)=0,  %(0)=0,
y(0) =0, v(0) =0,
20 =h,  20)=0,

the integration constants are
c1 =0, c2=0, c3=h.

The iteration method is based on replacing the functions x(u), y(u), z(«) under
the integral sign by appropriate initial functions. In the first approximation, one de-
termines the functions x(¢), y(¢), z(¢) and then inserts them as x (), y(«), z(«) on the
right-hand side to get the second approximation. In general there results a successive
approximation to the exact solution if w -t =2mwt/T (T = 24 hours) is sufficiently
small.

By setting x (u), y(u), z(u#) to zero in the above example in the zero-order approxi-
mation, one obtains in the first approximation

xD) =0,
y(l)(t) = 2wht sin A,

Oy =h— 2
() >

To check the consistency of these solutions up to terms linear in w, we have to check
only the second approximation. If there is consistency, there must not appear terms
that involve w linearly:

t t
x@ @) =2wcoskfy(1)(u)du=2wcosk/2wh(sink)udu
0 0

= 4w’h cosxsin,\f = f(@*)~0
= 5= .

Like xV(#), z(V(¢) is consistent to first order in w:

t
1
Pt)=h- Egtz +2a)sink/y(1)(u)du
0

t
—h— %zz +2wsinA / 2wh(sin M du
0

—h— %ﬁ i)
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On the contrary, y(I)(¢) is not consistent in w, since
t t
y(z)(t) = 2wht sin A — ZwCOSA/x(l)(u) du —2wsin A / z(l)(u) du
0 0

3
t
=2whsinA -t —2whsink -t + ga)(sin)»)g

t3
= ga)(sin)»)g # 2wh(sin M) + k(w?).

We see that in this second step the terms linear in @ once again changed greatly. The
term 2wht sin A obtained in the first iteration step cancels completely and is finally
replaced by gw(sin 213 /3. A check of y®)(¢) shows that y (¢) is consistent up to
first order in w.

Just as in the perturbation method discussed above, we get up to first order in w the
solution

x(t) =0,
Vo) = gwsinkt3’
3
8.2
H=h—=t°.
z(1) >

We have of course noted long ago that the method of successive approximation (itera-
tion) is equivalent to the perturbation calculation and basically represents its concep-
tually clean formulation.

2.3 Exact Solution

The equations of motion (2.3) can also be solved exactly. For that purpose, we start
again from

X =2wcos\y, (2.3a)
¥ = —2w(sinAZ + cos Ax), (2.3b)
7=—g+2wsinAiy. (2.30)

By integrating (2.3a) to (2.3c) with the above initial conditions, one gets

X =2wcos )y, (2.5a)
y = —2w(sinAz + cos Ax) + 2w sin Ak, (2.5b)
z=—gt+2wsinAy. (2.5¢)

Insertion of (2.5a) and (2.5¢) into (2.3b) yields
¥+ 4w’y = 2wg sinit = ct. (2.6)
The general solution of (2.6) is the general solution of the homogeneous equation and

one particular solution of the inhomogeneous equation, i.e.,

y= th + Asin2wt + B cos2wt.
4w
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The initial conditions at the time t =0 arex =y =0,z=h,and x =y =z=0.1It
follows that B =0 and 2wA = —c/4a)2, e, A= —c/8co3 and therefore

c c . c sin 2wt
y=—5t— —=sin2wt = t— ,

4o 8w? 4w? 2w
ie.,
gsini sin 2wt
= t— . 2.7
YT 0 ( 20 ) @D

Insertion of (2.7) into (2.5a) yields

. . sin 2wt
X =gsinAcosA|t — .

2w
From the initial conditions, it follows that

2 1—cos2wt

=gsinAcosA| —— ——— ). 2.8
X = gsinAcos <2 107 ) (2.8)

Equation (2.7) inserted into (2.5¢) yields

. . gsin sin 2wt
7= —gt+2wsinA t— ,
2w 2w

sin 2wt
j:—gt+gsin2k<t— e >
2w

and integration with the initial conditions yields

2
g5 2.t 1 — cos 2wt
=—=t M———— h. 2.9
z 51" +gsin < 5 o) + (2.9)
Summarizing, one finally has
i s 21— cos2wt
=gsinAcosA| — — ——— ),
r=8 2 40?
gsin sin 2wt
y= t— , (2.10)
2w 2w

2
g 5 2. (1 1 — cos2wt
=h—2=t AM=————).
z R Tesn ( 2 402
Since wt = 2xfall time/1 day, i.e., very small (wt < 1), one can expand (2.10):

2
t
X = % sinkcosk(wt)z,

2
t
y= % sin (1), 2.11)

2 2
t A
z=h—g—<1— sin a)t2).
2 3
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Fig.2.2. Cut through the earth
in the equatorial plane viewed
from the North Pole: M is the
earth center, and w the angular
velocity

If one considers only terms of first order in wt, then (wt)?>~ 0, and (2.11) becomes

x(t) =0,
gwt3sin
y(@) = — (2.12)
)
ty=h—=t".
z(t) >

This is identical with the results obtained by means of perturbation theory. However,
(2.10) is exact!

The eastward deflection of a falling mass seems at first paradoxical, since the earth
rotates toward the east too. However, it becomes transparent if one considers that the
mass in the height 4 at the time ¢ = O in the inertial system has a larger velocity
component toward the east (due to the earth rotation) than an observer on the earth’s
surface. It is just this “excessive” velocity toward the east which for an observer on the
earth lets the stone fall toward the east, but not .. downward. For the throw upward
the situation is the opposite (see Exercise 2.2).

v,= O(R+h)

tower of height &

projection of the meridians

EXAMPLE

2.1 Eastward Deflection of a Falling Body

As an example, we calculate the eastward deflection of a body that falls at the equator
from a height of 400 m.
The eastward deflection of a body falling from the height /4 is given by

2wsinAh [2h
O
8

The height 7 = 400 m, the angular velocity of the earth w = 7.27 - 10> rads ™!,
and the gravitational acceleration is known.
Inserting the values in y (k) yields

2.7.27-400radm [2-400 s?
y(h): 5 P
3.10°s 9.81
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where rad is a dimensionless quantity. The result is
y(h) =17.6cm.

Thus, the body will be deflected toward the east by 17.6 cm.

EXERCISE |
2.2 Eastward Deflection of a Thrown Body

Problem. An object will be thrown upward with the initial velocity vg. Find the
eastward deflection.

Solution. If we put the coordinate system at the starting point of the motion, the
initial conditions read

z(t=0) =0, z(t =0) = vy,
ye=0)=0, yr=0)=0,
x(t=0)=0, Xt =0)=0.
The deflection to the east is given by y, the deflection to the south by x; z # 0 denotes

the height 4 above the earth’s surface.
For the motion in y-direction we have, as has been shown (see (2.4)),

d
d_i = —2w(xcosA + zsin) + Ca.

The motion of the body in x-direction can be neglected; x ~ 0. If one further ne-
glects the influence of the eastward deflection on z, one immediately arrives at the
equation

82
z=——=t"+vot,
) 0

which is already known from the treatment of the free fall without accounting for the
earth’s rotation. Insertion into the above differential equation yields

d
o 2a)<§t2 — vm) sin A,

dt 2
y(t) = 2a)<§t3 — %t2> sinA.

At the turning point (after the time of ascent T = vy /g), the deflection is

) 2 . )\'US
y(T)=—=wsinA—.
3 g2

It points toward the west, as expected.

Example 2.1
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EXERCISE |
2.3 Superelevation of a River Bank
Problem. A river of width D flows on the northern hemisphere at the geographical
latitude ¢ toward the north with a flow velocity vg. By which amount is the right bank
higher than the left one?

Evaluate the numerical example D = 2km, vp = Skm/h, and ¢ = 45°.
Solution. For the earth, we have

d21' ’ . . ’ /

mog = Tmge; - 2me x v with ® = —wsinlie; + wcosie;.
The flow velocity is v = —voe/1 , and hence,

® X V= —wy)singe).
Then the force is

mi =F = —mge + 2mowvg sin pe, = F3€} + F1e).

F must be perpendicular to the water surface (see Fig. 2.3). With the magnitude of
the force

F= \/4’"2“’2“(% sin” ¢ 4+ m?2g?2
one can, from Fig 2.3, determine H = Dsina and sina = F,/F. For the desired
height H one obtains

H—D 2wy sin ¢ ~ 2Dwug sin @ .

\/40)21)3 sin” ¢ + g2 &
Fig. 2.3.

For the numerical example one gets a bank superelevation of H &~ 2.9 cm.

EXERCISE

2.4 Difference of Sea Depth at the Pole and Equator

Problem. Let a uniform spherical earth be covered by water. The sea surface takes
the shape of an oblate spheroid if the earth rotates with the angular velocity w.
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Find an expression that approximately describes the difference of the sea depth at
the pole and equator, respectively. Assume that the sea surface is a surface of con-
stant potential energy. Neglect the corrections to the gravitational potential due to the
deformation.

Solution. r

Fig. 2.4.

’rsindey, r'=r-sind,

ymM
Fer(r) = — e +mow

n
Vg = —/Feff(r) -dr
r
rn

M
= —/<—%er +ma’r sinz?ex>dr-er

r1

ymM|?  me*r?sin® 9 |
oy 2 -
‘We therefore define
ymM — mo?r? 5
Vetr(r) = — — ———sin“ 9. (2.13)
r
Let

r=R+Ar(®); Ar(®)<R.
The potential at the surface of the rotating sphere is constant by definition:
vin=-"""+v
r)=-— .
R 0
According to the formulation of the problem, the earth’s surface is an equipoten-

tial surface. From this it follows that the attractive force acts normal to this surface.
Because of the constancy of the potential along the surface, no tangential force can

arise.
M{ A A
vy =222 (1 220 S 2R (14220 ) sin? e
R R) 2 R
1 ymM
=" i w.
R 0

From this it follows that

ymM
Vo= 72

m . .
Ar — Ea)sz sin® 9 — mw? RAr sin® 9.
As can be seen by inserting the given values, the last term can be neglected:

ymM
R2

> ma? R sin® 9.
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Exercise 2.4

From this it follows that

ymM
R2

Ar =V + %szz sin? 9,

or explicitly for the difference Ar (),

2

R
Ar(9) =
14

Vo+ 2w R2sin? 0 ). (2.14)
mM 2

The second requirement for the evaluation of the deformation is the volume conserva-
tion. Since one can assume Ar < R, we can write this requirement as a simple surface
integral

/2 27

/ / da - Ar(0) =0, (2.15)

9=0¢=0
and hence, because of the rotational symmetry in ¢,

/2
maw? R? sin? © .
Vo+f 27 R - Rsin®dd =0,

from which follows

7/2
/ (Vo sin + M)dﬂ =0.
J 2
With
/2 /2
/sinﬁdﬁ:l and / sin’ ﬂdﬁ:%,
0 0

one gets

Vo + ngRQ =0,

Vo=—w?R2.
3

By inserting this result into (2.14), one obtains

R* o? [ 5 2
Ar(%) = ——/[sin“0 — = |.
yM 2 3

In the last step y M /R? is to be replaced by g; thus we have found an approximate
expression for the difference of the sea depth:

w?R? 2
Ar(®) = —(sin2 B — —). (2.16)
2g 3
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By inserting the given values

m 21 51
R=6370km, g=981—=, w=—=72722-10"" —,
s2 T s

we get
T
d= Ar<§> — Ar(0) ~ 10.94 km.

If one wants to include the influence of the deformation on the gravitational po-
tential, one needs the so-called spherical surface harmonics. They will be outlined in
detail in the lectures on classical electrodynamics.'

! See W. Greiner: Classical Electrodynamics, 1st ed., Springer, Berlin (1998).

Exercise 2.4



Foucault’s Pendulum

In 1851, Foucault! found a simple and convincing proof of the earth rotation: A pen-
dulum tends to maintain its plane of motion, independent of any rotation of the sus-
pension point. If such a rotation is nevertheless observed in a laboratory, one can only
conclude that the laboratory (i.e., the earth) rotates.

Figure 3.1 shows the arrangement of the pendulum and fixes the axes of the coor-
dinate system.

mg

east

L}
So\)e“ ' s \ZJ y
X i

We first derive the equation of motion of the Foucault pendulum. For the mass point
we have

F=T+mg, 3.1)

where T is a still unknown tension force along the pendulum string. In the basic equa-
tion that holds for moving reference frames,

mi‘:F—md—(;xr—2mwxv—mwx(wxr), (3.2)

L' Jean Bernard Léon Foucault [fuk’o], French physicist, b. Sept. 18, 1819 Paris—d. Feb. 11, 1868.
In 1851, Foucault performed his famous pendulum experiment in the Panthéon in Paris as a proof of
the earth’s rotation. In the same year he proved by means of a rotating mirror that light propagates
in water more slowly than in air, which was important for confirming the wave theory of light. He
investigated the eddy currents in metals detected by D.F. Arago (Foucault-currents), and also studied
light and heat radiation together with A.H.L. Fizeau.

W. Greiner, Classical Mechanics, 23
DOI 10.1007/978-3-642-03434-3_3, © Springer-Verlag Berlin Heidelberg 2010

Fig. 3.1. Principle of the Fou-
cault pendulum


http://dx.doi.org/10.1007/978-3-642-03434-3_3
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the linear forces and the centripetal forces can be neglected, because for the earth’s ro-
tation dw/dt =0 and ¢ - |w| < 1, t2w? ~ 0 (¢ ~ pendulum period). By inserting (3.1)
into the simplified equation (3.2), we get

mi=T+mg—2mw X V. (3.3)

As is obvious from this equation, the earth’s rotation is expressed for the moving
observer by the appearance of a virtual force, the Coriolis force. The Coriolis force
causes a rotation of the vibrational plane of the pendulum. The string tension 7 can
be determined from (3.3) by noting that

T
T=(T-€)e|+ (T-€))e;+ (T-e3)es, =T—

T
_ (_-xa_yvl_z)
Va2 y2+(1—2)?
. —v. ] —
%TUI# (3.4)

In the last step, we presupposed a very large pendulum length /, so that x/I < 1,
v/l <K 1,and z/1 < 1. Evaluation of the scalar product therefore yields

X z—1
T= T(—Te’l - %eg + Te’3). (3.5)

Before inserting (3.5) into (3.3), it is practical to decompose (3.3) into individual com-
ponents. For this purpose one has to evaluate the vector product @ x v:

e ¢ €
@ XvVv=|—wsinA 0 wcosi
X y Z
= —wcosrye] + w(cosAx + sinAz)e) — wsinAye;. (3.6)

By inserting (3.5) and (3.6) into (3.3) with mg = —mgeg, we obtain a coupled
system of differential equations:

X
mx = —7T + 2mwcos Ay,

my = —%T — 2mw(cos Ak + sinA3), 3.7)

] —
mz = TZT —mg +2mwsiniy.

To eliminate the unknown string tension 7' from the system (3.7), we adopt the already
mentioned approximations:
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The pendulum string shall be very long, but the pendulum shall oscillate with small
amplitudes only. From this it follows that x /I < 1, y/l <« 1, and z/] < 1, since the
mass point moves almost in the x, y-plane. Hence, for calculating the string tension
we use the approximation

— =1, mZ =0, (3.8)
and obtain from the third equation (3.7)
T =mg —2mwsinAy. 3.9

Insertion of (3.9) and (3.7) after division by the mass m yields

2wsin A

By

l l
g 2wsin A
7)’

X=- xy +2wcos Ay,

(3.10)

y=— ; Yy — 2w cos AX.
Equation (3.10) represents a system of nonlinear, coupled differential equations; non-
linear since the mixed terms xy and yy appear. Since the products of the small num-
bers w, x, and y (or w, y, and y) are negligible compared to the other terms, (3.10)

can be considered equivalent to
. 8 . . 8 .
x:—7x+2wcosky, y:—jy—Za)cos)»x. 3.11)

These two linear (but coupled) differential equations describe the vibrations of a pen-
dulum under the influence of the Coriolis force to a good approximation. In the fol-
lowing we will describe a method of solving (3.11).

Fig. 3.2. Projection of the
string tension T onto the
axes e
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3.1 Solution of the Differential Equations

For solving (3.11), we introduce the abbreviations g/ = k* and w cos A = «, multiply
¥ by the imaginary unit i = 4/—1, and obtain

¥ = —k%x = 2ai’y

iV = —k%iy — 2aix (3.12)

X410y = —k>(x +iy) — 2ai (% +iy)
The abbreviation u = x + iy is obvious:

ii = —k*u —2ainn or 0=ii+2eiii +ku. (3.13)
Equation (3.13) is solved by the ansatz useful for all vibration processes,

u=C-e", (3.14)
where y is to be determined by inserting the derivatives into (3.13):

Cy2e’ +2aiCye’ +k*Ce”" =0 or y?>+2iay +k>=0. (3.15)
The two solutions of (3.15) are

)/1/2=—i0l:|:ik,/1+0l2/k2. (3.16)

Since a? = w? cos” A because w?/k> is small compared to 1 (w?/k*> = szend/ Tezarth

<& 1, where Tpepq is the pendulum period and Teqn = 1 day), it further follows that
vi2 = —ia Lik. (3.17)

The most general solution of the differential equation (3.13) is the linear combination
of the linearly independent solutions

u=A-e"'+B.e", (3.18)

where A and B must be fixed by the initial conditions and are of course complex, i.e.,
can be decomposed into a real and an imaginary part:

U= (A1 +iAr)e @O L (B) +iBy)e I @TH! (3.19)
The Euler relation e /% = cos ¢ — i sin¢ allows one to split (3.19) into u = x + iy:

x+iy= (A +iA)[cos(a — k)t —isin(x — k)t]
+ (B1 +iBa)[cos(a + k)t —i sin(a + k)t], (3.20)

from which it follows after separating the real and the imaginary parts

x = Ajcos(a — k)t + Ay sin(a — k)t + By cos(a + k)t + By sin(a + k)t,
3.21)
y = —Ajsin(a — k)t + Ay cos(a — k)t — By sin(a + k)t + By cos(a + k)t.
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Let the initial conditions be

i.e., the pendulum is displaced by the distance L toward the east and released at the
time ¢ = 0 without initial velocity. Inserting xo = 0 in (3.21), one gets

By =—-A,.

Differentiating (3.21) and setting x¢ = 0 yields

By — A k—a
T Y

As already noted in (3.16), @ < k and thus By & A;. From (3.21) one now obtains

x = Ajcos(a — k)t + Apsin(a — k)t — Ay cos(a + k)t + Ap sin(a + k)t,
(3.22)
y=—Ajsin(a — k)t + Ay cos(a — k)t + Aqsin(a + k)t + Ap cos(a + k).

We still have to include the initial conditions for yy and yg. From yg = 0 and (3.22)
we get

—Ai(la—k)+A1(a+k)=0 = A;=0.

From yg = L and (3.22) we get

L
2Ab=L = Az:E

By inserting these values one obtains
L . L .
x = ) sin(a — k)t + ) sin(o + k)t,
L L
y= ) cos(a — k)t + ) cos(a + k)t.
Using the trigonometric formulae
sin(o £ k) = sinw cosk + cos « sink, cos(o = k) =cosa cosk F sina sink,
it follows that
x = Lsinat coskt, y = Lcosarcoskt.
The two equations can be combined into a vector equation:

r = L coskt[sin(at)e; + cos(at)er]. (3.23)
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Fig. 3.3. The unit vector n(t)
rotates in the x, y-plane

Fig. 3.4. Rosette paths of the
Foucault pendulum

z A

3.2 Discussion of the Solution

The first factor in (3.23) describes the motion of a pendulum that vibrates with the am-
plitude L and the frequency k = /g/!. The second term is a unit vector n that rotates
with the frequency @ = w cos A and describes the rotation of the vibration plane:

r = Lcosktn(t),

n(t) =sinat e; + cosate).

Equation (3.23) also tells us in what direction the vibrational plane rotates. For the
northern hemisphere cos A > 0, and after a short time sinot > 0 and cosat > 0, i.e.,
the vibrational plane rotates clockwise. An observer in the southern hemisphere will
see his pendulum rotate counter-clockwise, since cos A < 0.

At the equator the experiment fails, since cos A = 0. Although the component w, =
—wsin A takes its maximum value there, it cannot be demonstrated by means of the
Foucault pendulum.

Following the path of the mass point of a Foucault pendulum, one finds rosette
trajectories. Note that the shape of the trajectories essentially depends on the initial
conditions (see Fig. 3.4). The left side shows a rosette path for a pendulum released at
the maximum displacement; the pendulum shown on the right side was pushed out of
the rest position.

Because of the assumption o < k in (3.16), (3.23) does not describe either of the
two rosettes exactly. According to (3.23), the pendulum always passes the rest posi-
tion, although the initial conditions were adopted as in the left figure.
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EXERCISE |

3.1 Chain Fixed to a Rotating Bar

Problem. A vertical bar AB rotates with constant angular velocity w. A light non-
stretchable chain of length / is fixed at one end to the point O of the bar, while the
mass m is fixed at its other end. Find the chain tension and the angle between chain
and bar in the state of equilibrium.

Solution. Three forces act on the body, viz.

(1) the gravitation (weight): F, = —mges;
(2) the centrifugal force: F, = —mw x (@ X r);
(3) the chain tension force: T = —T singpe| + T cos pes.

- [ "

Since the angular velocity has only one component in the e3-direction, @ = we3, and
r=I[(singe; + (1 —cosgp)es),
we find for the centrifugal force
F,=—-m(®w x (w X1))
the expression
F,= +ma?l singej.
If the body is in equilibrium, the sum of the three forces equals zero:
0=—mgesz + maw?l sin pe; — T singe; + T cos pes.
When ordering by components, we obtain

0= (ma)zl sing — T sinp)e; + (T cosgp —mg)es.

Fig.3.5. e, e;, e3 are the unit
vectors of a rectangular co-
ordinate system rotating with
the bar; T is the chain tension
force; Fy is the weight of the
mass m; F; is the centrifugal
force
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Exercise 3.1

Since a vector vanishes only if every component equals zero, we can set up the fol-
lowing component equations:

maw*lsing — T sing = 0, (3.24)
T cosp —mg =0. (3.25)

One solution of (3.24) is sing = 0. It represents a state of unstable equilibrium that
happens if the body rotates on the axis AB. In this case the centrifugal force compo-

nent vanishes. A second solution of the system is found by assuming sing # 0. We
can then divide (3.24) by sin¢ and get the tension force 7':

T = ma?l (3.26)

and after elimination of 7 from (3.25) we get the angle ¢ between the chain and the
bar:

Cosp = —=>—.
=0

Since the chain O P with the mass m in P moves on the surface of a cone, this arrange-
ment is called the cone pendulum.

EXERCISE |
3.2 Pendulum in a Moving Train

Problem. The period of a pendulum of length [ is given by 7. How will the period
change if the pendulum is suspended at the ceiling of a train that moves with the
velocity v along a curve with radius R?

(a) Neglect the Coriolis force. Why can you do that?
(b) Solve the equations of motion (with Coriolis force!) nearly exactly (analogous to
Foucault’s pendulum).

Solution. (a) The backdriving force is

. mv?
Fr=—mgsing + N coSs @.

One has v(x) = w(R + x) = w(R +Ising) and R’ = R + x. Hence, it follows that
Fr=—mgsing + ma?(R +1 sin @) cos ¢.
The differential equation for the motion therefore reads

m§ = —mgsing + ma)2(R + [sin @) cos ¢.
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oo(F R
X
¢
T
X r
R| FZ
7 e
S Fy r
mg
z
Since s = lp, § =1¢, it follows that [ = —g sing + w>(R + [ sing) cos ¢, or
R
{é+§sin(p—a)2(7+sin<p) cosg =0. (3.27)
For small amplitudes, cosg &~ 1 and sinp = ¢, i.e.,
. R
¢+§¢—w2(7 —|—g0) =0
or
R
it (§ —a)2>(p—w27 —o. (3.28)

Here, the Coriolis force was neglected, since the angular velocity ¢ and hence x is
small compared to the rotational velocity v = w(R + x), i.e., ® X X = 0. The solution
of the homogeneous differential equation is

gohzsin< /%—w%).

The particular solution of the inhomogeneous differential equation is

X (R/D)
g/ — o

The general solution of (3.27) is therefore

2
(g L\, PR
=y P = - — t _ .
O=¢n+¢e sm(l 10} >+(g/l)—a)2

i

Hence, the vibration period is
2

V@D —o?

For w = /g/! the period becomes infinite, since the centrifugal force exceeds the
gravitational force. This interpretation gets to the core of the matter, although the
formula (3.28) holds only for small angular velocities: For large angular velocities the

Fig. 3.6.
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Exercise 3.2

approximation of small vibration amplitudes x in (3.27) is no longer allowed, because
the pendulum mass is being pressed outward due to the centrifugal force, i.e., to large

values of x.
(b) The equations of motion read

mi‘:F—m—w XT—2mwXxXVv—me X (@ x (r+R)).

dt
With
w=—we;,, R=Re,, —2mwxv=2mw(-y,x,0),
and

—mw x (@ X (r+R)) =maw*(R+x, y,0),
one finds
mx = =Ty — 2mwy + mw*(R + x) = —)l—CT —2mwy + mw*(R + x),

my = —Ty + 2mwx +ma’y = —%T + 2mwx + ma?y,

. Z
mz = —TZ—}—mg:—?T +mg.

(3.29)

In the following, we will assume that the pendulum length is large, i.e., for small

amplitudes z &~ [ (z = Z = 0). The string tension is then given by 7 = mg:
._ [ 2 & . 2
X=|w -7 x —2wy+ o R,
y = <a)2 — %)y 4+ 2wx.

With the substitution u = x + iy, it follows further that

ii(a)z - ?)u +2iwi + w’R.

(3.30)

For the homogeneous solution of the differential equation (3.30) one gets with the

ansatz uhom = c e”’ the characteristic polynomial

y2 — <w2 — ?) —2iwy =0.
The homogeneous solution then takes the form

thom = c1exp(i(w ++/g/1)1) +caexp(i(w—v/g/1)1).
The particular solution is simply obtained as

@*R

= e — a2
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From this it follows that

U = Uhom + Upart

2
=crexp(i(w++/g/1)t )+czexp(i(w—,/g/l)t)+(g/6;)—fcﬁ. (3.31)

With the initial condition x(0) = x¢ and y(0) = x(0) = y(0) = 0, it follows for c|
and ¢;

g/l—a) n w’R
c] = X ,
! 2.8/ 0 w?—g/l

_Jz_Jin” w—ZR/l)'

(3.32)

By decomposing the solution (3.31) into real and imaginary parts, the solutions for
x(t) and y(¢) can be found.

+ /8 )+ _fE) iR
x =cicos|w cp cos = —
! I 2 / ¢/l —w?
l( ) f
= [—{xo+ tcosa)t—i—a)sm/ tsma)t
Ve —g/l Vi !

®*R

+g/l—a)2

+ 'R & t + L & sinwr + R
= | X — COS,/ —ICOSw w_ [ —SIn,/ —1IS1n w. E——
0T W g/l Vi g Vi g/l —?

(3.33)
. g
y:clsm<w+\/7>t+czsm< 7>t
<x0+ /J{smwtcos[t— \/js1n[tcoswt} (3.34)

Because w < /g/1, wy/l/g < 1. From this it follows that

8

X = X0 COS 7tcoswt,
g .

y = XxoCcos 7tsmwt.

This describes a rotation of the pendulum plane with the frequency w (as for Foucault’s
pendulum).

Exercise 3.2
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The pendulum period 7 can now be obtained from the following consideration: For
t = 0, the brace in (3.33) equals 1. For t = (/2)/I/g + t', where t' < (w/2)/1]g,
the brace vanishes for the first time, which corresponds to a quarter of 7. By expanding
the brace, for +' we find

3/2
[/Zz i /0)2
2\g ’
T [l 7w/l 3/22
T=4—= |-+ = - w
2Veg 2\g

2 l(1+w2>
=2 |- — .
g g/l

On the other hand, in part (a) we found

21 l 1 o?
T = =27 [—(1+ = ,

Ve/l —? 8 2g/1

which suggests the conclusion that the Coriolis force should not be neglected from the
outset in this consideration.

EXERCISE

3.3 Formation of Cyclones

Problem. Explain to which directions the winds from north, east, south, and west
will be deflected in the northern hemisphere. Explain the formation of cyclones.

Solution. We derive the equation of motion for a parcel of air P that moves near the
earth’s surface. The X, Y, Z system is considered as an inertial system; i.e., we shall
not take the rotation of the earth about the sun into account. Moreover, we assume the
air mass is moving at constant height; i.e., there is no velocity component along the
z-direction (z = 0). The centrifugal acceleration shall also be neglected.

With the assumptions mentioned above, the equation of motion of the particle is
defined by the differential equation

F=g—2(wxr)=g—2(w| xF)—2(w) xXI),

where @ X I = (w1 + ) x I. Let @ be the component of @ within the tangential
plane at the point Q of the earth’s surface (see Fig 3.7); it points to the negative
e -direction. @ points to the e3-direction.

We consider the dominant term —2w, X I: An air parcel moving in x-direction
(south) is accelerated toward the negative y-axis, and a motion along the y-direction
causes an acceleration in x-direction. The deflection proceeds from the direction of
motion toward the right side. The wind from the west is deflected toward the south,
the north wind toward the west, the east wind toward the north, and the south wind
toward the east.
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anticyclone in the northern hemisphere cyclone

The force —2mw) x ¥ for the north and south winds exactly equals zero. For the
west or east winds the force points along e3 or the opposite direction. Accordingly
the air masses are pushed away from or toward the ground. This force component is
however very small compared to the gravitational force mg, which also points toward
the negative e3-direction.

If we consider an air parcel moving in the southern hemisphere, then A > /2 and
cos A is negative. Thus, a west wind is here deflected to the north, a north wind toward
the east, and a south wind toward the west.

EXERCISE |

3.4 Movable Mass in a Rotating Tube

Problem. A tube rotates with constant angular velocity o (relative motion) and is
inclined from the rotational axis by the angle «. A mass m inside of the tube is pulled
inward with constant velocity ¢ by a string.

(a) What forces act on the mass?

(b) What work is performed by these forces while the mass moves from x; to x,?
(Calculate the energy balance!) Numerical values: m = 5kg, o = 45°, x; = 1m,
xo=5m w=2s"!,c=5m/s, g =9.81m/s>.

Solution. (a) The mass m within the tube performs a relative motion with constant
velocity ¢ = c¢(—1, 0, 0), and thus the resulting acceleration is composed of the guid-

Fig. 3.7. Definition of the
coordinates: O =origin of
the inertial systems X, Y, Z;
Q =origin of the moving
system x,y,z; P =a point
with mass m; p = position
vector in the system X, Y, Z;
and r = position vector in the
X,y,z-system

Fig. 3.8. If air flows in the
northern hemisphere from a
high-pressure region to a low-
pressure region, a left-rotating
cyclone arises in the low-
pressure region, and a right-
rotating anticyclone is formed
in the high-pressure region
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Fig. 3.9.

ing acceleration a in the tube, the relative acceleration a,, and the Coriolis accelera-
tion a.:

a=ay+a,+a..

The guiding acceleration consists in general of a translational acceleration by of the
vehicle, and of the accelerations a; (tangential acceleration) and a,, (normal accelera-
tion) due to a rotational motion.

In the present problem, we are dealing with a rotation about a fixed axis e, =
(cosa, 0, siner) with a constant angular velocity w, so that ag = a; = 0, and the guid-
ing acceleration is therefore

af=ag+a,+a,=a,=x sinaw2(— sina, 0, cosa),

i.e., the guiding acceleration obviously consists of the centripetal acceleration b,, only.
The relative acceleration a, = 0, since the relative velocity is constant. The Coriolis
acceleration a., defined by

a. =2we, X ¢,
is therefore
a, = —2wcsina(0, 1, 0).

Therefore, for the total acceleration a we have

2 2 2

a=ay+a,=(—xw sin“a, —2wcsina, xw” sina cosa). (3.35)
a is the result of the following forces acting on the mass m (see Fig. 3.9):

S=S5(-1,0,0), G =mg(—cosa, 0 —sina),
N; = N1(0,0, 1), N> = N, (0, —1, 0).

The resulting total force is therefore
F=(—S —mgcosa,—Ny, N| —mgsinw). (3.36)
With Newton’s equation

F=m-a, (3.37)
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one can determine the unknown quantities S, N; and N;: From (3.35), (3.36)
and (3.37) it follows that

(=S —mgcosa, —Ny, Ny —mgsina)

2 o, —2wcsina, xw? sina cos o)

:m(—xwzsin
_ 2.2
= S=m(xwsin“a — gcosw)
Ni =m(xa)2 sina cosa + g sinw)

Ny =2wmcsina.

S becomes negative if x < (gcos ()t)/(a)2 sina); i.e., the mass m would have to be
decelerated additionally within the tube if a constant velocity is to be maintained.

(b) During the motion, work is performed by the string force S, by the gravitational
force G, and by the Coriolis force N»; N is the normal force. The work performed by
the string force is

X2 X2
sz/dWsz—/S(x)dx
X1 X1
= %wz sinzoz()cl2 — x%) —mgcosa(x; — x2). (3.38)

The work performed by the weight force is

X2
Wa :/ dWg =mgcosa(x; — x2). (3.39)

X1

The work performed by the Coriolis force, taking into account dx /dt = —c, is

WszdeN2 =—/N2ds=—/N2xsinad<p

x2
do dt

:—ngxsina—W—dx
dt dx

x|

= —ma?sin® a(x] — x3). (3.40)

Insertion of the numerical values given in the formulation of the problem yields

Ws = (3.75 — 17.34) Nm = —13.59 Nm,
Wg =17.34Nm, Wy, =7.5Nm.

To check the results, one uses the fact that the sum of the work performed by the
external forces must be equal to the difference of the kinetic energies (energy balance)

AE=Ws+ Wy, + Wg,

Exercise 3.4
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where

AE = %(c2 + x3 sin® aw?) — %(c2 + x7 sin” aw?)

m .
= _sz sin? oz(xl2 — x22),

and according to (3.38), (3.39), and (3.40)

_Mm a2 2 2 _
Ws+ W + Wy, = 2a) sin“ a(xy — x5) —mgcosa(x; — x2)

— maw? sin? a(x12 — x%) + mgcosa(x; — x2)

m .
= sz smza(xf — x%).



Part I I

Mechanics of Particle Systems

So far we have considered only the mechanics of a mass point. We now proceed to
describe systems of mass points. A particle system is called a continuum if it consists
of so great a number of mass points that a description of the individual mass points is
not feasible. On the other hand, a particle system is called discrete if it consists of a
manageable number of mass points.

An idealization of a body (continuum) is the rigid body. The notion of a rigid body
implies that the distances between the individual points of the body are fixed, so that
these points cannot move relative to each other. If one considers the relative motion of
the points of a body, one speaks of a deformable medium.



Degrees of Freedom

The number of degrees of freedom f of a system represents the number of coordinates
that are necessary to describe the motion of the particles of the system. A mass point
that can freely move in space has 3 translational degrees of freedom: (x, y, z). If there
are n mass points freely movable in space, this system has 3n degrees of freedom:

(xi, yi,zi)y i=1,...,n.

4.1 Degrees of Freedom of a Rigid Body

We look for the number of degrees of freedom of a rigid body that can freely move.
To describe a rigid body in space, one must know 3 noncollinear points of it. Hence,
one has 9 coordinates:

r; = (x1, ¥1,21), ry = (x2, y2,22), r3 = (x3, ¥3, 23),

which, however, are mutually dependent. Since by definition we are dealing with a
rigid body, the distances between any two points are constant. One obtains

(x1 —x2)% + (y1 — y2)> + (21 — 22)* = C} = constant,
(x1 —x3)% + (y1 — y3)> + (21 — 23)* = C7 = constant,

(x2 — x3)* + (v2 — ¥3)> + (22 — 23)* = C3 = constant.

Three coordinates can be eliminated by means of these 3 equations. The remaining 6
coordinates represent the 6 degrees of freedom. These are the 3 degrees of freedom of
translation and the 3 degrees of freedom of rotation. The motion of a rigid body can
always be understood as a translation of any of its points relative to an inertial system
and a rotation of the body about this point (Chasles’! theorem). This is illustrated by
Fig. 4.1: AABC — AA”"B"C”, namely, by translation in AA’B’C’ and by rotation
about the point E/ in AA”B"C”.

1 Michael Chasles, French mathematician, b. in Epernon Nov. 15, 1793—d. Dec. 18, 1880, Paris.
Banker in Chartres; from 1841 to 1851 professor at the Ecole Polytechnique; after 1846 professor
at the Sorbonne in Paris. Chasles is independently of J. Steiner one of the founders of the synthetic
geometry. His Apercu historique by far surpassed the older representations of the development of
geometry and stimulated new geometrical research in his age.
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4 Degrees of Freedom

Fig. 4.1. Chasles’ theorem:
The translation vector de-
pends on the rotation, and vice
versa

\%%

Fig. 4.2. Example of the para-
metric form: A caterpillar creeps
on a blade of grass

An

=

A

We now consider the rigid body with one point fixed in space. The motion is com-
pletely described if we know the coordinates of two points

ry =(x1,y1,z1) and 1= (x2,y2,22)

and adopt the fixed point as the origin of the coordinate system. Since the body is
rigid, we have

x% + y12 + z% = constant, x% + y% + z% = constant,

(x1 —x2)> + (y1 — y2)> + (21 — z2)* = constant.

From these 3 equations one can eliminate 3 coordinates, so that the remaining 3 coor-
dinates describe the 3 degrees of freedom of rotation.

If a particle moves along a given curve in space, the number of degrees of freedom
is f = 1. The curve can be written in the parametric form

x =x(s), y = y(s), z=2z(s),

i.e., for a given curve the position of the particle is fully determined by specifying one
parameter value s.

A deformable medium or a fluid has an infinite number of degrees of freedom (e.g.,
a vibrating string, a flexible bar, a drop of fluid).



Center of Gravity

Definition Let a system consist of n particles with the position vectors r, and the
masses m,, for v = (1, ..., n). The center of gravity of this system is defined as point S
with the position vector ry:

— miry +mory + - +mply Zzzl myry
s — - ’
my+my+---+my > =1 My

1
Iy = M varv,
v=1

where M =Y""_, m, is the total mass of the system, and

n
Mrg = E myry,
v=1

is the mass moment. For systems with uniform mass distribution over a volume V
with the volume density o, the sum Zi m;r; becomes an integral, and one obtains

o [y ro()dv

§ [y edVv
The individual components are
Zu nyXxy Zv nyyy Zv myZy
x3=77 S=7’ ZS=7’
M M M
and for a continuous mass distribution
[yoxdv Jyoydv [y 0zdV
-xs:ia Szii Z$:47
M M M
Fig.5.1. Definition of the cen-
ter of gravity
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where the total mass is given by
M:va or M:/QdV.
%
%

We consider three systems of masses with the centers of gravity r, r», r3 and the total
masses M1, My, M3. The system 1 consists of the mass M| = (m1;+mia+miz+---)

with the position vectors ry1, 12, 13, ...; the systems 2 and 3 are analogous. Then by
definition the centers of gravity are
myry
system 1: 1y = L,
2 mi
;M2 T2
system2: ry = L
> imai
- M3;I3;
system 3: 13 = L
> m3i

For the center of gravity of the total system we have the same relation:

Dm0 myivy + ) mairs
doamyp Yy my+ Y m3;

Iy

_ Mixs) + Morsy + Msrgs
M+ My + M3

Hence, for composite systems we can determine the centers of gravity and masses of
the partial systems, and from them calculate the center of gravity of the total system.
The calculation can thereby be much simplified. This fact is often referred to as the
cluster property of the center of gravity.

The linear momentum of a particle system is the sum of the momenta of the indi-
vidual particles:

n n
P= va = valﬂ,.
v=1 v=1

If we introduce the center of gravity by Mr; = ), m;r;, we see that P = My, i..,
the total momentum of a particle system equals the product of the total mass M united
in the center of gravity and its velocity ry. This means that the translation of a body
can be described by the motion of the center of gravity.

EXERCISE |

5.1 Center of Gravity for a System of Three Mass Points

Problem. Find the coordinates of the center of gravity for a system of 3 mass points.

my=1g, my=3g, m3=10 g,
ri =(1,5,7) cm, rn=(—1,2,3) cm, r;=(0,4,5) cm.
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Solution. For the center of gravity, one finds
1
rxzﬁ(l —3,543:-24+10-4, 7+3-3+10-5)cm
or, recalculated,

1
| ﬁ(—Z, 51, 66) cm.

EXERCISE |
5.2 Center of Gravity of a Pyramid

Problem. Find the center of gravity of a pyramid with edge length a and a homoge-
neous mass distribution.

Solution. Because of the homogeneous mass distribution, the mass density p(r) =
po = constant. The base of the pyramid is represented by the equation

x+y+z=a.
The coordinate axes are the edges, and the origin is the top. Then

[y pordV [, rdV
Iy = = )
Jypodv [, dv

dV =dxdyd:z.

The integration limits are evident from Fig. 5.2. The integration runs over z along
the column from z =0 to z =a — x — y; over y along the prism from y =0 to
y =a — x; and over x along the pyramid from x =0 to x = a:

_— JyrdvV Jico 320 [iZo 7 rdzdydx
s — = — —
Jy dv ff:ofya:(;( Jio5 ™ dzdydx

)

Fig. 5.2.

Exercise 5.1



46 5 Center of Gravity
Exercise 5.2 with
a a—x
1 ) =a—x—y
= = [rav= [ [ (w0n52) dydsx,
|4 x=0y=0 =0
a a—x 1
/rdV :f f (x(a —x—y),y@a—x-—y), E(a —Xx — y)2>dydx.
v 0 0
The corresponding integration over y and x yields
4 3
/rdV:a—(l,l,l), /dV:V:a—.
24 6
4 v
Thus, the center of gravity is at
rdVv
rS:fV =2a,1,1).
[ydv 4
EXERCISE
5.3 Center of Gravity of a Semicircle
Problem. Find the center of gravity of a semicircular disk of radius a. The surface
density is constant.
Fig.5.3.

Solution. The surface density o = constant. (The surface density is defined by
o(r) =limaga_0Am(x,y,z)/AA.) x; and y, represent the coordinates of the center
of gravity. We use polar coordinates for calculating the center of gravity. The equation
of the semicircle then reads

r=a, 0<gp<m.
Because of symmetry, x; = 0, and for y,, we have

B [yoydA B f;zofrio(rsingo)rdrdgo

W odA A
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The evaluation of the integral yields

2a%/3  4a

Y= a2 3m

’

i.e., the center of gravity lies at ry = (0, 4a/(3m)).

EXERCISE |
5.4 Center of Gravity of a Circular Cone
Problem. Determine the center of gravity of

(a) ahomogeneous circular cone with base radius a and height %; and
(b) acircular cone as in (a), with a hemisphere of radius a set onto its base.

Solution. (a) Because of symmetry, the center of gravity is on the z-axis, i.e., x; =
vs = 0. For the z-component, we have

_ Jyzdv o fzdV
STV T 3math

We adopt cylindrical coordinates for evaluating the integral:

27 a h(l—p/a)

foon [ ][ s

k p=00=0 z=0

i [ (o2

hz[l 2 ZQ +Q_4:|a an?

2 T3 T2, T T

Fig. 5.4.

Exercise 5.3
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z Thus, the center of gravity of a circular cone is independent of the radius of the base.
h (b) See Fig. 5.5. One then has

1 2.2
fcone zdV + fhemisphere zdV ﬁ”h a”+ fhemisphere zdV

s = = s

z 1 Veone + Vhemisphere (/3)(h + 2(1)(12
N
k) x
2 0
Fig. 5.5. Because of symme- zdV = f ozdpdodz
try the center of gravity is again hemisphere 9=00=0__ x/‘er

on the z-axis

0=0
Q4 azgz a
=T| — —
4 2 ]y
_ na4
T4

Hence, the center of gravity is given by

12,2 1_ 4 2 2
12Jmh 77Ta _lh —3a

‘ﬂT”(h—i—Za) 4 h+2a’

s =

ys =0, xs =0.

EXERCISE |

5.5 Momentary Center and Pole Path

Problem.

(a) Show that any positional variation of a rigid disk in the plane can be represented
by a pure rotation about a point at a finite distance or at infinity. (Hint: The position
of the disk is already fixed by specifying two points A and B.)

(b) Show by “differential” variation of position: The planar motion of a rigid disk
can be described at any moment by a pure rotation about a point varying with the
motion, the so-called momentary center. The geometric locus of these momentary
centers is called the pole path or the fixed pole curve.

(c) Calculate the fixed pole curve r(¢) for a ladder sliding on two perpendicular walls.

(d) Calculate the fixed pole curve r(¢) for a bar of length / that can move in the guide
shown in Fig 5.6.
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Q)
a ¢

Solution. (a) For describing the motion of the disk we take the (arbitrary) straight line
AB; it turns into the straight line A; B;. The intersection M of the mid-perpendiculars
onto AA| and B B; is the desired center of rotation.

Argument: The triangles ABM and A| B M are congruent. Hence the motion can
be considered as a rotation of the triangle A BM (involving the straight line A B) about
M by the angle ¢.

(b) For an infinitely small rotation by d¢ the same considerations hold. But now
the individual turning points vary. These are the so-called momentary centers. In a
differential rotation about a momentary center M, for any point the path element dr
and the velocity vector v point along the same direction and are perpendicular to the
connecting lines to M (see Fig. 5.8). The geometric locus of the momentary centers is
called the pole curve.

(c) According to (b), one gets Fig. 5.9. The straight line / = AB forms a diagonal
of the square O BM A. Since the diagonals of a square are equal, M must move along
a circle of radius /.

Fig. 5.6.

Fig.5.7.

Fig. 5.8.
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Fig. 5.9.
y
A
x=1
0 B .
(d) According to (b), one can construct Fig. 5.10. Evidently,
. a . a? .
sina = 7(1 —sine) and cosa=,/1— 1—2(1 —sing)?,
AC =lcosa —acosg,
o3 AC _jcosa zl\/l _ (a2/12)(21 —sing)®
cos cos ¢ cos? ¢
Thus, in polar coordinates the equation of the fixed pole curve r(¢) reads
S 1 — (a?/12)(1 — singp)?
r=r(¢)=0M=—a+l\/ @/ )(2 0
cos? ¢
Fig.5.10.

EXAMPLE |

5.6 Scattering in a Central Field

(1) The problem
The two-body problem appeared for the first time in recent physics in investigations
of planetary motion. However, the classical formulation of the two-body problem pro-
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vides information both on the bound state as well as on the unbound state (scattering
state) of a system.

The study of the unbound states of a system became of great importance in modern
physics. One learns about the mutual interaction of two objects by scattering them
off each other and observing the path of the scattered particles as a function of the
incident energy and of other path parameters. The objects studied in this way are usu-
ally molecules, atoms, atomic nuclei, and elementary particles. Scattering processes
in these microscopic regions must be described by quantum mechanics. However, one
can obtain information on scattering processes by means of classical mechanics which
is confirmed by a quantum mechanical calculation. Moreover, one may learn the meth-
ods for describing scattering phenomena by studying the classical case.

The schematic arrangement of a scattering experiment is shown in Fig. 5.11. We
consider a homogeneous beam of incoming particles (projectiles) of the same mass
and energy. The force acting on a particle is assumed to drop to zero at large distances
from the scattering center. This guarantees that the interaction is somehow localized.
Let the initial velocity vg of each projectile relative to the force center be so large that
the system is in the unbound state, i.e., for t — oo the distance between the two scat-
tering particles shall become arbitrarily large. For a repulsive potential this happens
for any value of vg; this does not hold for an attractive potential.

detector

T

S (scattering angle)

particle beam transport target with
source system scattering centers

The interaction of a projectile with the target particle manifests itself by the fact
that the flight direction after the collision differs from that before the collision (the
usage of the words “before” and “after” in this context presupposes a more or less
finite range of the interaction potential).

(2) Definition of the cross section

Measured quantities are count rates (number of particles/s in the detector, which is
assumed to be small). These count rates depend first on the physical data as kind of
projectile and target, incidence energy, and scattering direction, and second on the
specific experimental conditions such as detector size, distance between target and
detector, number of scattering centers, or incident intensity. In order to have a quantity
that is independent of the latter features, one defines the differential cross section

do 9. 0) = (number of particles scattered to d€2)/s
ae YT A2 -n-1 '

5.1

Here, n is the number of scattering centers and / is the beam intensity, which is given
by (number of projectiles)/(s-m?). The scattering direction is represented here by
and ¢. ¥ is the angle between the asymptotic scattering direction and the incidence
direction; it is called the scattering angle. ¢ is the azimuth angle. d<2 denotes the solid-
angle element covered by the detector. Since we assumed the detector to be small, we

Example 5.6

Fig. 5.11. Schematic setup of
a scattering experiment
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Example 5.6 have
dQ =sind dv de, 5.2)

Fig. 5.12. Definition of the
Cross section

where d¥¢ and d¢ specify the detector size. Note that (do/d2) (¥, ¢) is defined
by (5.1) and is not a derivative of a quantity o with respect to 2. Obviously
do/dS2) (¥, ¢) has the dimension of an area. The standard unit is

1b=1Barn=100 (fm)?> = 10~2 m?. (5.3)

Often the differential cross section will be independent of the azimuth angle ¢ (we
shall restrict ourselves to this case), and one can define

d d
£ =2 sinﬁé(ﬂ, 0): (5.4)
see Fig. 5.12.

ring zone = solid angle dR
for scattering between

¥ and O + d0

dR =21 sin ¥ dO

do (number of particles scattered to d€2)/s
— ) = . 5.5
dd @ dy-n-1 (53)
Finally, we introduce the total cross section, defined by
2 b4 b4
/dea(ﬁ ) /d dv sinp 22 /dz?da(z?) (5.6)
= — = ing— = — (). .
ot ae L AT v
0 0 0
It depends only on the kinds of particles, and possibly on the incidence energy:
(number of scattered particles)/s
Otot = . (5.7)

n-l

Like do/d<2 it has the dimension of an area. It equals the size of the (fictive) area of
a scattering center which must be traversed perpendicularly by the projectiles in order
to be deflected at all.

(3) Introduction of the collision parameter, its relation to the scattering angle,
and the formula for the differential cross section

It is clear that the scattering angle ¥ at fixed energy can depend only on the collision
parameter b, since the initial position and the initial velocity of the particle are then
specified. The collision parameter is defined as the vertical distance of the asymptotic
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incidence direction of the projectile from the initial position of the scatterer. Hence,
for E = constant the scattering angle is

O =0 (b). (5.8)

Since the movements in classical mechanics are determined, this connection is unam-
biguous. (This statement is no longer valid in quantum mechanics.) Thus,

b=>b(v), (5.9

which means that, by observing an arbitrary particle at a definite scattering angle ¥,
one can determine in a straightforward manner the value of the scattering parameter b
of the incident particle. This fact allows the following consideration. The number d N
of projectiles per second that move with values &’ of the collision parameter

b<b <b+db

toward a scattering center is

dN =1 -2nbdb or dN=1-2nb %

.

The sign of absolute value stands since the number d N by definition cannot become
negative. Just this number of particles are scattered into the solid angle element

dR =2msin® d?.

By inserting this into (5.5), we get

do db

— () =2nb|—|, 5.10

as ) =270 s (5.10)
and for the differential cross section

do (9 = b(®)|db 5.11)

dQ " sind|dv| '

This is just the desired relation. The function b(?}) is determined by the force law that
governs the particular case. One realizes that the knowledge of the differential cross
section allows one to determine the interaction potential between the projectile and
the target particle.

In general, the scattering angle will depend not only on the collision parameter but
also on the incident energy. As a consequence, the differential cross section also be-
comes energy dependent. Hence, one can measure the differential cross section as a
function of the projectile energy by observing the scattered particles at a fixed scatter-
ing angle.

(4) Transition to the center-of-mass system, and transformation of the differential
cross section from the center-of-mass system to the laboratory system

The considerations of the last section are to some extent independent of the reference
system. If we move from the laboratory system S to another system S’ that moves
with constant velocity V parallel to the beam axis, the scattering angle and the dif-
ferential cross section (5.5) will change, but the derivation in the last section remains
unchanged, so that the relation (5.11) remains valid.

Example 5.6
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Fig. 5.13. Scattering in the
laboratory system (S) and
in the center-of-mass system

(5"

beam axis

This has a practical meaning inasmuch as cross sections are always measured in
the laboratory system S where the target is at rest, but the calculation of b(¥') often
simplifies in the center-of mass system S’. We therefore derive a relation between
these two cross sections. In the following the primed and nonprimed quantities shall
always refer to these two systems.

First, we investigate the relation between the scattering angles ¢ and ¢’. Let V‘lf
and V/lf be the asymptotic final velocity (f = final) of the projectile of mass m in the
system S and S’, respectively. V is the relative velocity of the two systems.

From Fig. 5.14, one immediately sees that

! . .
vlf sin®’ sin ¥’

v;f cost’ +V " cos®’ + V/v;f,

tanv =

where V stands for the magnitude of V, and analogously for vif . Furthermore,

miv| = (my +my)V,

where v’i is the initial velocity of the projectile in the laboratory system (i = initial),
and

i _ 2
vy =V -+

f

No_ 7i rf_ f : : i _ plf ri_
Because mv] =mpvy andmv;’ =mov, for elastic scattering (Eyin = Egin)- v =

v;f , and therefore,

1% _my
vif my
Hence,
ino
an® = — 0V (5.12)

cos® +mi/my’

This relation defines the function ©'(¢); we will not give it explicitly. If a projec-
tile in S is scattered into the ring d R with the “radius” ¥ and the width dv (see
Fig. 5.12), it will in S” be scattered into a ring d R’ with the “radius” ¢'(¥) and the
width d©' = (d¥’/d®)d. The number of particles scattered to dR in S and to d R’
in S’ is therefore identical, and with (5.5), we get

do’ do’ do’

¥ - do = v’
dﬁ/( ) dﬁ/( )dl‘}

99 9. a9 = v
dv a ’
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thus,
do 9) = da/(ﬂ,)dﬁ’ (5.13)
dy - dy " T dy’ '

or
do do’  _, sin®’ do’
— (@)= (") — - (5.14)
dQ2 dsy sin} dv

This is the desired connection.
The difference between the scattering angles and the cross sections, respectively, is
obviously determined by the mass ratio of projectile and target particle (see (5.12)).

EXERCISE |

5.7 Rutherford Scattering Cross Section

Problem. A particle of mass m moves from infinity with the collision parameter b
toward a force center. The central force is inversely proportional to the square of the
distance:

F=kr 2.

(a) Calculate the scattering angle as a function of b and of the initial velocity of the
particle.
(b) What are the differential and the total cross sections?

Solution. (a) From the discussion of the Kepler problem, we know that the underly-
ing force law has the form

k

F=——. 5.15
> (5.15)

The minus sign means that the force is attractive. The path equation reads'

1 mk 2EI12 ,
S=T 14+.,/14+ — cos(@ —0) (5.16)

(E = initial energy, [ = angular momentum, m = mass of the particle, 6’ = integration
constant). With the standard abbreviation

e 14 2EE (5.17)
o mk2’ '

one can write for (5.16)

1 mk ,
;:l—z(l—f-scos(G—O)). (5.18)

1 See W. Greiner: Classical Mechanics: Point Particles and Relativity, 1st ed., Springer, Berlin
(2004).
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Exercise 5.7

cos ©
3%(1)41

Fig. 5.15. Region of 6 for re-
pulsive Coulomb scattering

The path is characterized by ¢:

e>1, E>0: hyperbola,
e=1,E=0: parabola,
e<l1, E<O: ellipse, (5.19)
k2
e=0,E= _m : circle.
212

In the given problem the force law is

F=—. (5.20)
r
The force is repulsive. For illustration, we consider the scattering of charged particles
by a Coulomb field (e.g., atomic nuclei by atomic nuclei, protons by nuclei, or elec-
trons by electrons, etc.). The scattering force center is created by a fixed charge —Ze
and acts on the particle with the charge —Z’e. The force is then

zz7'é?
F=—. (5.21)
r

If we set k = —Z Z'e?, we can directly take over the equations for an attractive poten-
tial. The path equation (5.18) now reads

1 mZZ'e?

- =—T(1+800s9). (5.22)

r

The coordinates were rotated so that 8’ = 0. For ¢ (see (5.17)) it follows that

_ 1 2EI> ] 2Eb \? s
R +<(ZZ/e2)2>' (5:23)

Here, we used the relation

1
| = mbvss = bv2mE, E= Emvgo (5.24)

between angular momentum (/) and collision parameter (b).
Since ¢ > 1, (5.22) represents a hyperbola (see (5.19)). Because of the minus sign,
the values of 6 for the path are restricted to values for which

1
cosf < —— (5.25)
&

(see Fig. 5.15). Note that the force center for repulsive forces is in the outer focal point
(see Fig. 5.16).

The change of 6 that occurs if the particle comes from infinity, and is then scattered
and moves to infinity again, equals the angle ¢ between the asymptotes, which is the
supplement to the scattering angle 6 (see Fig. 5.16).
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From Fig. 5.15 and (5.25), it follows that

T 0\ . [(0) ¢\ 1 5.6
cos<5—5>_sm<§)_cos<§)_g. (5.26)

The relation cos(¢/2) = 1 /¢ can be proved as follows: The two limiting angles 61 and
0, satisfy the condition

1
cosf = ——,
(5.27)
cosfy = ——.
£

From this it follows that (see Fig. 5.17):

sinf; = —sin6;,

(3)=-=(3)
cos{ — | = —cos| = ).
2 2

The first of these equations can be rewritten as

0 0 1% 0
2cos i sin L sinf; = —sinfy = —2cos 2 sin 22 , (5.29)
2 2 2 2

and therefore,

sin<0—1> :sin<9—2>. (5.30)
2 2

Fig. 5.16. Illustration of the
hyperbolic path of a particle
that is pushed off by a force
center. The force center lies in
the outer focal point

Fig. 5.17. The limiting angles
01 and 0, have the same co-
sine
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Exercise 5.7 We look for cos(¢p/2) =cos(6» —601)/2), ¢ =6, — 61:
o] 6 0 ) 0, . (6 . (61
cos — =cos| — — — | =cos| = Jcos| — | +sin| = | sin{ —
2 2 2 2 2 2 2
0 0
= —cos2<3l) +sin2<31). (5.31)

From cos 67 = —1/¢, it follows that
1 0 0
—— =cosb; = cos’ L sin’ i (5.32)
e 2 2
0 0 1
= sin? L cos? i + —. (5.33)
2 2 £
Insertion into (5.31) yields
0 0 1 1
cos% = —c0s2(31> + COSZ(E]) + z = o (5.34)

From there we find

1 _1+< 2Eb )2
sin2(0/2) 77 e?
1 1 —sin?(6/2) 2(9) ( 2Eb )2
— =" =cot| = | =| ——
sin®(6/2) sin?(6/2) 2 Z7'e?

0 2Eb \?
= 5 = arccot m . (535)

(b) From (5.24) and (5.26) it follows that

77 e* 0
b= cot| =
2F 2

db 77 > 1

- -z - 5.36
de 4E  sin*(0/2) (-30)
The differential cross section as a function of 9 is given by
do b db
— = (5.37)
a2 sin@ d6
Thus, one obtains
do  (ZZ'e*)? 1 (°
_— = . cO —_
dQ  2Esin02E  sin?(9/2) 2
1/ZZ'e¥\*  cot(8/2
—-( e) .CO.(Z/) : (5.38)
2\ 2F sin 6 sin“(6/2)

and with the identity

0 0
sin0:2sin<—> cos(—) (5.39)
2 2
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it follows that

do I<ZZ/62>2 1 .
dQ 4\ 2E ) sin*)2)’ '

This is the well-known Rutherford scattering formula. The total cross section is cal-
culated according to

—/dG(Q)dQ—Z /d(’(e) in6 do (5.41)
Ototal = 19 =27 9 sin . .

By inserting do/d<2(6) from (5.40), one quickly realizes that the expression diverges
because of the strong singularity at & = 0. This is due to the long-range nature of the
Coulomb force. If one uses potentials which decrease faster than 1/r, this singularity
disappears.

EXERCISE |
5.8 Scattering of a Particle by a Spherical Square Well Potential

Problem. A particle is scattered by a spherical square well potential with radius a
and depth Uy:

U=0 (r > a),
U=-Uy (r=<a).

Calculate the differential and the total cross section.

Hint: Use the refraction law for particles at sharp surfaces which results from the
following consideration: Let the velocity of the particle before scattering by a sharp
potential well be v; = v and after scattering v;. Due to momentum conservation
perpendicular to the incident normal (“transverse momentum conservation’) one has

Voo SINQ = v 8in B (5.42)
sino _ v (5.43)
sinf Veo '

From the energy conservation law it follows that

1 1
E=T+U= EmvgoJrUl = 5mv§+U2. (5.44)

Solving for vy yields

2 2
vzz\/ugojta(ul —Uz):\/vgo+ n—1Uo. (5.45)
Insertion into (5.43) finally yields

i V& 4 2/m)Uy 20,
n:s?naz V5 + (2/m) °O_ 14 3. (5.46)
sin 8 Voo mvus,

Exercise 5.7



60 5 Center of Gravity

Exercise 5.8 Solution. The straight path of the particle is broken when entering and leaving the
field. We have the relation

sino
— =n (5.47)
sin 8
where according to (5.46)
2U,
n=_[1+ 3 .
mvs,
The deflection angle is (see Fig. 5.18)
x=2a—p)
sino _ sin(a — x/2)
sinf sino
__sinacos(x /2) — cosasin(x/2)
N sina
X (X 1
=cos| = ) —cotasin| = )| = —. 5.48
(5) -emesn(3) =, 049
Fig. 5.18. In the inner and
outer region of the spheri-
cal potential well the parti-
cle moves along straight lines.
When passing the surface it
will be refracted
From Fig. 5.18, we have
asino = Q. 5.49)
Because sin? a + cos? o = 1, it follows that
0 2
cosa=,/1— <—> . (5.50)
a
Now we can eliminate « from (5.49):
cos(x/2)—1/n cos®  acos
(/2= 1/n __ _cosa _acosa 551)

- =cota = —
sin(x /2) sino 0
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and with (5.50), we get

_ Y- (o/a)*sin(x /2)
(cos(x/2)—1/n) ~
o a’sin®(x/2) — 0% sin’(x /2)
© (cos(x/2) —1/n)?
B a%sin®(x /2) B a?sin®(x /2)
(cos(x/2) — 1/m)2 +sin*(x/2) 1= (2/m)cos(x/2) +1/n?
5 2 n?sin®(x /2)

= . 5.52
= =4 n? —2ncos(x/2) +1 (5-52)

To get the cross section, we differentiate

_ nsin(y /2)
Q_a(nz—chos(X/2)+ /2 (5.53)

with respect to x.

do rcos(x/2) 1 ansin(x/2) -nsin(x/2)
dy (2 —2ncos(x/2)+ 12 2 @m2—2ncos(x/2) + 1)3/2
_ Gcos L(n*+1—-2ncos%) — %an2 sin” £
(n?+ 1 —2ncos %)3/2
4n3cos & + % cos{ —an’cos? £ — Lan?sin® £
(2 +1—2ncos £)*?
B %nzcos%—kcos% —n—ncos* £
2 (n?+ 1 —2ncos %)3/2
_an (ncos{ —1)(n—cos%) 5.54)
2 (r12+1—2ncos%)3/2 -
do
- |d
= o= —Q‘
siny |dx
_a®n?sin(x/2) |(ncos(x/2) — 1)(n — cos(x /2))|
2 sing (n24+1—2ncos(x/2))?
_aln® 1 |(neos(x/2) — 1)(n —cos(x/2))| (5.55)
4 cos(x/2) (n24+1—2ncos(x/2))? ) '
Here, we utilized
. X . X
=2 = =. 5.56
sin x cos > sin > ( )

The angle x takes the values from zero (for o = 0) up to the value xmax (for o = a)
which is determined by the equation

Xmax 1

=—. 5.57
cos = - (5.57)

Exercise 5.8
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Exercise 5.8 The total cross section obtained by integration of (do/d€2)(x) over all angles within
the cone x < xmax Of course equals the geometrical cross section wa’.
We still want to show that the total cross section for scattering by the spherical
square well potential equals the geometrical cross section a2. This is obvious since
forr > a wehave U =0, i.e., there is no scattering.

We start from (5.55)

(5.58)

0 ’d_@ _a*n®> 1 [ncos(x/2) — 1[n —cos(x/2)]
dy|

do
E(X) = 4 cos(x/2)  [n24+1—2ncos(x/2)?

sin x
and integrate over all angles y from 0 to xmax(d2 =27 sin x dx):

Xmax Xmax

_ [ do o o xlncos(x/2) = 1[n —cos(x/2)]
Tt = / aqde=ma /” S T R+ 1 —2ncos 2P X

0

Xmax

2 n’
=ma
(1412 —2ncos(x/2))?

0

X {(n2+ 1)cos§sin§—ncos2gsiné—nsiné}dx. (5.59)
——
I I 1

Part I1I can be integrated at once; I and II are transformed by integrating by parts:

-1
Otot = |:7m2 (n2 +1—2ncos %) n2:|
0

cos(x/2) }
(1 4n2—2ncos(x/2))

Xmax

Xmax

— T[lel’l(l’lz + l)H:
0

Xmax
L (1/2) sin(x /2)
ma‘n(n®+1) 0/ (1_|_n2—2nCOS(X/2))

+n2na2[ cos?(x/2) ]
(1 +n2 —2ncos(x/2)

Xmax

0

- T cos(x/2) sin(x/2)

—man (5.60)
(1412 —2ncos(x/2))

In the last integral, we substitute

dy = ——sin%d)( 5.61)
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and obtain

) {n2(1 +cos?(x/2)) — n(n*+ 1) cos(x /2) }Xmax
Gt =74 (1 +n® — 2ncos(x/2)

0

dx

41 X/ sin(x /2)
2 (1412 —=2ncos(x/2))
0

€08 (Xmax/2)

—2n? Y

— d
(1 +n2 —2ny) y}
1

5 {n2(1 +cos?(x/2)) — n(n® + 1) cos(x /2) }
“ (1+n% — 2ncos(x/2)

241
_{(n + )ln<1+n2—2ncosl)}
2 2
241
+ {ny—l— <n ;_ )ln(l +n2—2ny)}

and finally, with ymax = 2arccos (1/n),

Xmax

0

Xmax

0
COS(Xmax/z):|

0

2{;12(1 +1/n2) —n@®+D(A/n) n2A+1) —nm2+1)-1 }
Otot = TTA — +1—n

(14n2-2) (14n2—2n)
=0
) 2 3_.3 2 2 _ 2_2 1
=na2{n n-+n n(’;l—_nl)2 n+n n—+ }:naz, (5.62)

EXERCISE |
5.9 Scattering of Two Atoms

Problem. A hydrogen atom moves along the x-axis with a velocity vy = 1.78 -
10> m - s~!. It reacts with a chlorine atom that moves perpendicular to the x-axis with
ver =3.2- 10" m - s~1. Calculate the angle and the velocity of the HCl-molecule. The
atomic weights are H = 1.00797 and Cl = 35.453.

Fig. 5.19.

Exercise 5.8
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Exercise 5.9

Solution. We utilize momentum conservation. The initial momenta are

P =mjviey, m;=A;-1amu,
(5.63)
P, = mavoey, my = Aj -1 amu.

Here, Aj, A, mean the atomic weights, and lamu (“atomic mass unit”)
=1/12m('2C). We require

P=P= (myvy, mpavy)  with P = (my + mz)V/, (5.64)

from which we get

1 mim v v vy v
V'=7(m1v1,m2v2)=#<—1,—2)=M(—l,—2). (5.65)
mi; +my mip+mp \my my my mq

Here, 1 is the reduced mass. It is calculated as

mimy

Thus, one obtains
v = (4.9208,31.1154) m-s~ ",
= v =31502m-s" L. (5.67)

The angle ¢ is found from tan6 = v, /v; to be 6 = 81.013°.
_________________________________________________________________|



Mechanical Fundamental Quantities 6
of Systems of Mass Points

6.1 Linear Momentum of the Many-Body System

If we consider a system of mass points, for the total force acting on the vth particle
we have

Fv+2kazpv- (61)
A

The force £, is the force of the particle A on the particle v; F, is the force acting on
the particle v from the outside of the system; ) _, f,, is the resulting internal force of
all other particles on the particle v.

The resulting force acting on the system is obtained by summing over the individual
forces:

va ZZFv+ZvaA ZP-
v v vooA

Since force equals (—) counter force (here Newton’s third law becomes operative), it
follows that f,; + f;, = 0, so that the terms of the above double sum cancel pairwise.
One thus obtains for the total force acting on the system

P:F:ZFU.
v

If no external force acts on the system, one has
F=P= 0, 1i.e., P=constant.

The total momentum P = )" p, of the particle system is thus conserved if the sum of
the external forces acting on the system vanishes.

6.2 Angular Momentum of the Many-Body System

The situation is similar for the angular momentum if the internal forces are assumed
to be central forces.
The angular momentum of the vth particle with respect to the coordinate origin is

L, =r, xp,.

W. Greiner, Classical Mechanics, 65
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The angular momentum of a single particle is defined with respect to the origin. The
same holds for the total angular momentum. The angular momentum of the system
then equals the sum over all individual angular momenta,

L=Zl,,.
v

Analogously, the torque acting on the vth particle is
d,=r, xF,,

and the total torque is given by
D=) d,.
v

The internal forces f,, do not perform a torque, since we assumed them to be central
forces. This can be seen as follows: For the force acting on the vth particle, according
to (6.1) we have

d
Fv + vak = —Pv-
T dt

By vectorial multiplication of the equation from the left by r,, we obtain

d d .
ry XFv‘l‘er xfp =1, X —p, :E(rv xpy) =l

dt
A

The differentiation can be moved to the left, because 1, x p, = 0. Summation over v
yields

er xFU—I—Zer xfmzL,
v A v

D 0
D=L=>"i,.

Here, Zv ZA r, X f,, =0, since the terms of the double sum cancel pairwise, e.g.,

r, x £y, +1) xf, =@, —1)) x £,

Since for central forces (r, — r;) is parallel to f,, the vector product vanishes.
The total torque on a system is given by the sum of the external torques

D=L.

For D = 0, it follows that L. = constant. If no external torques act on a system, the
total angular momentum is conserved.
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EXAMPLE |

6.1 Conservation of the Total Angular Momentum of a Many-Body System: Flat-
tening of a Galaxy

\ A
L gravitational force L T L

N o
7N //{\\

«— J —>

(a) (b) (c)

Fig.6.2. Formation of a galaxy from a cloud of gas with angular momentum L: (a) The gas con-
tracts due to the mutual gravitational attraction between its constituents. (b) The gas contracts
faster along the direction of the angular momentum L than in the plane perpendicular to L, since
the angular momentum must be conserved. In this way a flattening appears. (¢) The galaxy in
equilibrium: In the plane perpendicular to L, the gravitational force balances the centrifugal
force due to the rotational motion

rotation axis Fig. 6.3. Demonstration of
angular momentum conserva-
tion in the absence of external
torques. A person stands on a
platform that rotates about a
vertical axis

EXAMPLE

6.2 Conservation of Angular Momentum of a Many-Body Problem: The Pirou-
ette

(a) The person holds two weights and is set into uniform circular motion with angular
velocity w. The arms are stretched out, so that the angular momentum is large.
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Example 6.2

(b) If the person pulls the arms towards the body, the moment of inertia (see Chap. 11)
decreases. Since angular momentum is conserved, the angular velocity w signifi-
cantly increases. Skaters exploit this effect when performing a pirouette.

6.3 Energy Law of the Many-Body System

Let f,,, be the force of the Ath particle on the vth particle. According to (6.1), we have
F, + vak = (murv)

Scalar multiplication of the equation by r,,, with

b Lomty = L (Lmi2
Vi T g\ 2™ )

leads to
1 )
v rv+vaA rv— E vl'v .

1/ 2)m,,1"‘2, is however the kinetic energy 7, of the vth particle. By summation over v,
we obtain

. . d
SRh Y Y=Y o (gmi) =X A= G5
% A % 1% 1%
> T, is the time derivative of the total kinetic energy of the system. By integration
from #; to tp, with
I, dt =dr,,
we get

T =T =3 / F,-dr,+)) / i drs. (62)

VA fn

Aq Aj

T is the total kinetic energy, A, is the work performed by external forces, and A; is
the work performed by internal forces over the time interval , — f1.

If we assume that the forces can be derived from a potential, we can express the
performed internal and external work by potential differences.
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For the external work, we have

5]
Aa=Z/Fv-drv=—Z/VvV”~drv=—2/dvf
v Vv v 1

==Y [V - V).
Ay =Vt — V).

V& is the potential of the particle v in an external field. By summing over all particles,
one obtains the total external potential V¢ =" V.

The force acting between two particles v and A is assumed to be a central force.
For the “internal” potential, we set

Vi () = Vi, (raw) = Vi, (r2)-

The mutual potential depends only on the absolute value of the distance:

P = Iy = 1] = (0 — 1202+ (0 — )2 + (@0 — 202

Thus, the principle of action and reaction is satisfied, since from this it follows auto-
matically that the force f,, is equal and opposite to the counterforce f;,,:

f=—V, Vi, =4V, Vl, = —fy,.

The index v on the gradient indicates that the gradient is to be calculated with respect
to the components of the position vector r,, of the particle v. Hence,

V_{aaa} _{aaa}
T oxy " Ay 8z [ o ox T 9y 9z

Hence, for the internal work we can write

1
A; ZZ/fVA'drvzE(Z/ka‘drv‘i‘Z/.fkv‘drk)
V,A VA AV
1
=5 Z/fm(drv —dr;).
V,A

We now replace the difference of the position vectors by the vector r,, =r, —r; and
introduce the operator V,,, which forms the gradient with respect to this difference.
We get

1 . .
A; :—5 VX);/ UAVA drvx———Z/dVl —= z ( ,f)h(l‘Z)_ VJA(tl)),

A

where

{ 0 0 0 }
VVA = B B .
A(xy —x3) (yw —ya) 9(zv —2zn)
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Fig. 6.4.

Hence, the internal work is the difference of the internal potential energy. This quantity
is significant for deformable media (deformation energy).

For rigid bodies where the differences (distances) |r, — r; | are invariant, the inter-
nal work vanishes. Changes dr,; can occur only perpendicular to r, — r; and hence
perpendicular to the direction of force, i.e., the scalar products f,, - dr,; vanish.

If we set for the total potential energy

v:XV:VV“JF%;v;A,
for (6.2) we find
T(n)-Tk)=V(1n)—-V(n)
or

V() +T () =V()+Tt); (6.3)

the sum of potential and kinetic energy for the total system remains conserved. Since
energy can be transferred by the interaction of the particles (e.g., collisions between
gas molecules), energy conservation must not hold for the individual particle but must
hold for all particles together, i.e., for the entire system.

6.4 Transformation to Center-of-Mass Coordinates

When investigating the motion of particle systems, one often disregards the common
translation of the system in space, since only the motions of particles relative to the
center of gravity of the system are of interest. One therefore transforms the quantities
characterizing the particles to a system whose origin is the center of gravity.

According to Fig. 6.4, the origin of the primed coordinate system is the center
of gravity; the position, velocity, and mass R, V, and M of the center of gravity are
denoted by capital letters. One has

r,=R+r, F=V+V, =R+¥,.

According to the definition of the center of gravity, we have

M-R= varv =Zmu(R+rL)’
D v

M-R=M R+ r,
Vv

where M =) m, is the total mass of the system.
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From the last equation, it follows that

> myr, =0. (6.4)

Thus, the sum of the mass moments relative to the center of gravity vanishes. If there
acts a constant external force, as for example the gravity F,, = m, g, then it also follows
that

D=Zr{, xF, = (Zmﬂ@) x g=0.
v v

A body in the earth’s field is therefore in equilibrium if it is supported in the center of
gravity.
Differentiation of (6.4) with respect to time yields

> myv, =0, (6.5)
v

i.e., in the center-of-mass system the sum of the momenta vanishes. In relativistic
physics this statement is often used as definition of the “center-of-momentum” sys-
tem; there it is not possible to introduce the notion of the center of mass,—as defined
above—in a consistent way. Only the “center-of-momentum” system can be formu-
lated in a relativistically consistent way.

The equivalent transformation of the angular momentum leads to

L=Y m@r xv,)=Y m(R+r,) x (V+V,),
v v
L=va(R+V)+ZmU(Rxvﬁ,)—i—va(r’v xV)—i—va(r; X V).

By appropriate grouping, one obtains

L=M®RxV)+Rx (Zmuv;> + (Zmurg) x V + va(r; x V)
v v v

and sees that the two middle terms disappear, because of the definition (6.4) of the
center-of-mass coordinates. Hence,

L=M®RxV)+> my, xv,) =L+ Y I, (6.6)
v v

Thus, the angular momentum L can be decomposed into the angular momentum of
the center of gravity Ly = MR x V with the total mass M, and the sum of angular
momenta of the individual particles about the center of gravity.

For the torque as the derivative of the angular momentum, the same decomposition
holds:

D=D,+) d,. (6.7)
v
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Fig.6.5. Center of gravity and
relative coordinates of two
masses

6.5 Transformation of the Kinetic Energy

We have
T2 =2 VAV Y, + 2 Y )
2 v ’ 2 v v ’ 2 v ’

Because Y _m,V, = 0, the middle term again vanishes, and we find

1, 1 )
T=§MV +52v:mvv’v =T, +T. (6.8)

The total kinetic energy T is thus composed of the kinetic energy of a virtual particle
of mass M with the position vector R(#) (the center of gravity), and the kinetic energy
of the individual particles relative to the center of gravity. Mixed terms, e.g. of the
form V - vﬁ)z, do not appear! This is the remarkable property of the center-of-mass
coordinates, the foundation of their meaning.

EXERCISE ]
6.3 Reduced Mass

Problem.  Show that the kinetic energy of two particles with the masses m1, m;
splits into the energy of the center of gravity and the kinetic energy of relative motion.

Solution. The total kinetic energy is

1 1
T= Emlv% + Emzvg. (6.9)

The center of gravity is defined by

miry +marp
R:i
mi+my

and its velocity is

R=

= ———(mv] +myv2). (6.10)
mip +ma

The velocity of relative motion is denoted by v. We have

V=V] — V). (6.11)
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We now express the particle velocity by the center of gravity and relative velocity,
respectively.
By inserting v, from (6.11) into (6.10), we have

(mi +mo)R=m vy +movi — myv.

From this, it follows that
. m2
vi=R+ —"—v.
mi+my
Analogously, we get
vi=R- —"1 .y
mi +my

Inserting the two particle velocities into (6.9), we obtain

2 2
1 . my 1 . mj
T=-m (Rt —2v) +-mR- "1
2 mi +my 2 mi +my

or
2.2 242
T:lMRZ l mym;v , l momiyv .
2 2 (my+my)= 2 (my+mp)
1

. 1
T = -MR?> + - .
2 e
The mixed terms cancel. The mass related to the center-of-mass motion is the total
mass M = mj + my; the mass related to the relative motion is the reduced mass

mima

Comy+my
The reduced mass is often written in the form

1 1 1

wo omy omy

It is remarkable that the kinetic energy for two bodies decomposes into the kinetic
energies of the motion of the center of gravity and of the relative motion. There are no
mixed terms, e.g., of the form R - v, which considerably simplifies the solution of the
two-body problem (see the next problem).

EXERCISE ]
6.4 Movement of Two Bodies Under the Action of Mutual Gravitation

Problem. Two bodies of masses m and m, move under the action of their mutual
gravitation. Let r; and r, be the position vectors in a space-fixed coordinate system,
and r = r; — ry. Find the equations of motion for ry, r», and r in the center-of-gravity
system. How do the trajectories in the space-fixed system and in the center-of-mass
system look like?

Exercise 6.3

Fig. 6.6. Laboratory system
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Fig. 6.7.

path of m | relative to § path of m, relative to S

path of m, relative to m, path of m, relative to m,

Solution. Newton’s gravitational law immediately yields

Gmyr . Gmr
9 r2 =

i) =—

r3 r

With the relative coordinate r = r; — ry, it follows that

_Gma(r; — 1) Gm(r| —r)

'I:] = and i:2 =

3 73
In the center-of-mass system, we have mr; = —mor>
.  —G(m;+mo)r .  —G(mp+mo)ry
=> fH=—F35"— and h=—" —.
r r
Subtraction yields
v e . G(my +m)r
F=F -fHh=—"—735—".
2
Since
mj mj
rn=———mr and rp=——r,
mip + moy miy +may
it follows that
. ~Gmir . —Gmir,
Fjl=—2  and th= !

o+ my)?r; (my +m2)?r3

Hence, Newton’s gravitational law holds with respect to the center of gravity, but
with modified mass factors. This means that the trajectories are conic sections as be-
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fore (relative path with respect to §). Because of the superimposed translation of the
center of gravity, the trajectories become spirals in space.

EXERCISE |

6.5 Atwoods Fall Machine

Problem. Two masses (m; = 2kg and my = 4kg) are connected by a massless rope
(without sliding) via a frictionless disk of mass M = 2kg and radius R = 0.4 m (At-
woods machine). Find the acceleration of the mass my = 4kg if the system moves
under the influence of gravitation.

N,
m, =4kg I::| mg

Solution. For the given masses m| = 2kg, my = 4kg and the tension forces at the
rope ends N1 and N>, it follows that

miay =Ni —mg, maaz =mag — Na, (6.12)
and for the torques acting on the disk, we get
D1+ Dy =—NiR+ N2R = R(N2 — N1) = wbs, (6.13)

since the disk is accelerated. 0, is the moment of inertia of the disk. From this, it
follows that N, # Ni; otherwise, there is no motion at all. For the accelerations, we
have

a=a) =a)=wR, (6.14)

since the rope is tight and does not slide, i.e., it adheres to the disk.
Inserting the moment of inertia of the disk 6, = M R? /2 (see Example 11.7)
into (6.13) and using (6.14) yields for the acceleration

Ny N> . R?

R=——5—(N2—N)). 6.15
mp 8T&T o=@ MR2/2(2 1) (6.15)

Fig. 6.8.

Exercise 6.4



76

6 Mechanical Fundamental Quantities of Systems of Mass Points

Fig. 6.9.

Inserting (6.12) and performing the algebraic steps yields

2 g(my —my) —moay —myay
a=—(N,— Ny =
M M)2

and, because a =a; = ap,

aM /2 — g(my —my) +a(my +my)

O:
M/2
_a(mi+my+ M/2) — g(my —my)
B M/2
o 4 g(my —my) .
my+my+ M/2

The Atwoods machine serves as a transparent and easily controllable demonstration
of the laws of free fall. By varying the difference of the masses (my — m1), the accel-
eration a can be varied.

EXERCISE |
6.6 Our Solar System in the Milky Way

Problem. Our solar system is about ro & 5 - 10> m away from the center of the Milky
Way, and its orbital velocity relative to the galactic center vg is ~ 3 - 10° m/s. This is
schematically shown in Fig 6.9.

(a) Determine the mass M of our galaxy.

(b) Discuss the hypothesis that the motion of our solar system is a consequence of the
contraction of our Milky Way (see Fig. 6.9), and then verify, ro = GM/ v%. Here
G =6.7-100" m3s2kg~! is the gravitational constant.

Solution. (a) If a mass point moves on a circular path, then according to Newton
the force per unit mass equals the acceleration. Since our sun (mass m) is at the pe-
riphery of our Milky Way, the attractive force toward the center can approximately be
represented by

mM

F=G—, (6.16)

To
where m is the solar mass and M is the mass of the Milky Way. The acceleration
points toward the center,

a=-"2="_ 6.17)

N_CE o o=t (6.18)
ro 7'0 UO
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Using the numbers given in the formulation of the problem, one gets from equation
(6.18) the mass of our Milky Way:

2 20 10
5-102.9.10
M= 2 Y e 67104 ke,
G 6.7-1011

This means that the mass of the Milky Way is
M=~3-10"m,

where m is the solar mass.

(b) If r, v are the initial values for the distance and velocity of our sun, for the
available energies we have

GMm |
Vpot =——— and Tjpp= Emv s (6.19)
r

where M is the mass of the Milky Way, and G is the gravitational constant. If the
sun moves with decreasing radius about the center of the Milky Way, the angular
momentum about the center remains constant; however, the orbital velocity increases.
Hence, the kinetic energy Ty, can be given as a function of the radius

1 72 121

T:—m—:—— .
2 m?2r2  2mr?

(6.20)

where we used [ = (mr2)w = mvr = constant.

The assumption is now that at the present distance r the increase in the kinetic
energy ATiin is balanced by the decrease in the potential energy if r is reduced by Ar.
Differentiation of (6.19) and (6.20) with respect to r yields:

dTi 1?1

ATkin=< dl;‘“)m=—zr—3m, AT >0, if Ar <O,
dv, GM

Avpotz( ’F:°‘)Ar=r—2mm, AVpot <0, if Ar <O.

In the equilibrium, however, ATiin + A Vpor = 0. Replacing I by [ = mugrg yields

mzv(%rg Mm 2
3 = G—2 or rovg=MG. (6.21)
mry s

Equation (6.21) again corresponds exactly to the result of problem (a).

Exercise 6.6
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Vibrating Systems




Vibrations of Coupled Mass Points

As the first and most simple system of vibrating mass points, we consider the free
vibration of two mass points, fixed to two walls by springs of equal spring constant,

as is shown in the Fig. 7.1.
Fig. 7.1. Mass points coupled
MMW@—WH by springs

—x, — Xy —
—kx, k(x,—x,)

The two mass points shall have equal masses. The displacements from the rest
positions are denoted by x| and x, respectively. We consider only vibrations along
the line connecting the mass points.

When displacing the mass 1 from the rest position, there acts the force —kx; by the
spring fixed to the wall, and the force 4+k(x — x1) by the spring connecting the two
mass points. Thus, the mass point 1 obeys the equation of motion

mi = —kxi +k(x2 — x1). (7.1a)
Analogously, for the mass point 2 we have
miy = —kxz — k(x2 — x1). (7.1b)

We first determine the possible frequencies of common vibration of the two particles.
The frequencies that are equal for all particles are called eigenfrequencies. The re-
lated vibrational states are called eigen- or normal vibrations. These definitions are
correspondingly generalized for a N-particle system. We use the ansarz

X1 = Ajcoswt, Xy = Ay coswt, (7.2)

i.e., both particles shall vibrate with the same frequency w. The specific type of the
ansatz, be it a sine or cosine function or a superposition of both, is not essential.
We would always get the same condition for the frequency, as can be seen from the
following calculation.

W. Greiner, Classical Mechanics, 81
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Fig.7.2.

Insertion of the ansatz into the equations of motion yields two linear homogeneous
equations for the amplitudes:

Al(—ma?® + 2k) — Ark = 0,
(7.3)
— Ak 4+ Ay (—mw® + 2k) = 0.

The system of equations has nontrivial solutions for the amplitudes only if the deter-
minant of coefficients D vanishes:

—mw? + 2k —k

—k —ma? +2k| (—ma)2 + 2k)2 — I =0.

D=

We thus obtain an equation for determining the frequencies:

2

k
o' —4—0’ +3— =0.
m m

The positive solutions of the equation are the frequencies

3k k
W] =4/ — and W) =,/ —.
m m
These frequencies are called eigenfrequencies of the system; the corresponding vibra-
tions are called eigenvibrations or normal vibrations. To get an idea about the type
of the normal vibrations, we insert the eigenfrequency into the system (7.3). For the
amplitudes, we find

3k
Al=—A; for w1 =, —
m

and

k
A] =A2 for w) =,/ —.
m
The two mass points vibrate in-phase with the lower frequency w», and with
the higher frequency w; against each other. The two vibration modes are illustrated

by Fig. 7.2.

w4: opposite-phase vibration wo: in-phase vibration wq > wp.

The number of normal vibrations equals the number of coordinates (degrees of
freedom) which are necessary for a complete description of the system. This is a con-
sequence of the fact that for N degrees of freedom there appear N equations of the
kind (7.2) and N equations of motion of the kind (7.1a), (7.1b). This leads to a de-
terminant of rank N for w?, and therefore in general to N normal frequencies. Since
we have restricted ourselves in the example to the vibrations along the x-axis, the two
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coordinates x; and x, are sufficient to describe the system, and we obtain the two
eigenvibrations with the frequencies w1, ws.

In our example, the normal vibrations mean in-phase or opposite-phase (= in-phase
with different sign of the amplitudes) oscillations of the mass points. The amplitudes
of equal size are related to the equality of masses (m; = my). The general motion
of the mass points corresponds to a superposition of the normal modes with different
phase and amplitude.

The differential equations (7.1a), (7.1b) are linear. The general form of the vibration
is therefore the superposition of the normal modes. It reads

x1(t) = Cycos(wit + ¢1) + Ca cos(wat + ¢2),
(7.4)
X2(t) = —Cjcos(wit + ¢1) + Cocos(wz + ¢2).

Here, we already utilized the result that x; and x» have opposite-equal ampli-
tudes for a pure wj-vibration, and equal amplitudes for pure w;-vibrations. This en-
sures that the special cases of the pure normal vibrations with C; =0, C1 # 0 and
C1 =0, Cy # 0 are included in the ansatz (7.4). Equation (7.4) is the most general
ansatz since it involves 4 free constants. Thus one can incorporate any initial values
for x1(0), x2(0), x1(0), x2(0).

For example, the initial conditions are

x1(0) =0, x2(0) =a, Xx1(0) =x2(0) =0.

To determine the 4 free constants Cy, Ca, ¢1, @2, we insert the initial conditions
into the equations (7.4) and their derivatives:

x1(0) = Cicos¢gp + Carcosgr =0, (7.5)
x2(0) = —Cjicosg; + Crcosgy =a, (7.6)
X1(0) = —=Ciw; sing; — Crwy singy =0, 7.7)
X2(0) = Crwq singy — Corwr singy = 0. (7.8)

Addition of (7.7) and (7.8) yields
Cosingy =0.

Subtraction of (7.7) and (7.8) yields
Cising; =0.

From addition and subtraction of (7.5) and (7.6), it follows that
2Cycospy=a and 2Cicosg; = —a.

Thus, one obtains

p1=¢2=0, Ci=-
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Fig.7.3.

The overall solution therefore reads

. - . +
x1(t) = %(—coswlt + coswyt) =asm<w1 5 w2>tsm<w1 > wZ)t,

xo(t) = %(cosa)lt + coswyt) :acos(wl ;wz)u:os(wl -;—a)z)t.

For t =0: x1(0) =0, x2(0) = a, as required. The second mass plucks at the first one
and causes it to vibrate. These are beat vibrations (see Exercise 7.2).

EXERCISE |

7.1 Two Equal Masses Coupled by Two Equal Springs

Problem. Two equal masses move without friction on a plate. They are connected
to each other and to the wall by two springs, as is indicated by Fig. 7.3. The two
spring constants are equal, and the motion shall be restricted to a straight line (one-
dimensional motion). Two equal masses coupled by two equal springs.

Find

(a) the equations of motion,
(b) the normal frequencies, and
(c) the amplitude ratios of the normal vibrations and the general solution.

Solution. (a) Let x| and x, be the displacements from the rest positions. The equa-
tions of motion then read

mx; = —kx1 + k(xy — x1), (7.9)
miy = —k(x2 — x1). (7.10)

(b) For determining the normal frequencies, we use the ansatz
X1 = Ajcoswt, xp = Ap cos wt
and thereby get from (7.9) and (7.10) the equations

2k —maw?) A — kA, =0,
(7.11)
—kA1 + (k —mw*) Ay =0.

From the requirement for nontrivial solutions of the system of equations, it follows
that the determinant of coefficients vanishes:

|2k — mw? —k

D —k k—mw
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From this follows the determining equation for the eigenfrequencies,

k k2
a)4—3—a)2+—2=0,
m m

with the positive solutions

V5+1 [k V5-1 [k
w] = — and wy = —, W] >w).
2 m 2 m

(c) By inserting the eigenfrequencies in (7.11) one sees that the higher frequency
w1 corresponds to the opposite-phase mode, and the lower frequency w» to the equal-
phase normal vibration:

1 k 5—-1
with = 5(3 + \/5)—, it follows from (7.11) that A, = —\/_2 Ay,
m
1 k 541
with w3 = 5(3 - \/5)—, it follows from (7.11) that A, = \/_;— Aj.
m

Since the two mass points are fixed in different ways, we find amplitudes of different
magnitudes.

The general solution is obtained as a superposition of the normal vibrations, using
the calculated amplitude ratios:

x1(t) = Cycos(wit + @1) + Ca cos(wat + ¢2),

V51 V5+1
7 Cicos(wit + ¢1) +

x(t) = — Cs cos(wat + ¢2).

The 4 free constants are determined from the initial conditions of the specific case.

EXERCISE |

7.2 Coupled Pendulums

Problem. Two pendulums of equal mass and length are connected by a spiral spring.
They vibrate in a plane. The coupling is weak (i.e., the two eigenmodes are not very
different). Find the motion with small amplitudes.

|
1
1
1
1
I
1
1
1
1
|
—

X Xo

Solution. The initial conditions are

x1(0) =0, x(0)=A4, X1(0) =%2(0) =0.

Fig. 7.4.

Exercise 7.1
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Fig. 7.5.

We start from the vibrational equation of the simple pendulum:
mld = —mgsina.

For small amplitudes, we set sino = o« = x /[ and obtain

For the coupled pendulums, the force Fk(x; — x) caused by the spring still enters,
which leads to the equations

.. g k
X1 =75 = —(x] — x2),
n (7.12)
.. g k
Xo=—=x24+ —(x1 — x2).
l m

This coupled set of differential equations can be decoupled by introducing the coordi-
nates

uy=x1—x and up =x1+ xp.

Subtraction and addition of the equations (7.12) yield
k k
i =3 25w =2 422 Juy,
/ m l m

iy = _§u2
T

These two equations can be solved immediately:

up = Ajcoswit + Bysinwit,
(7.13)
Uy = Arcoswat + By sinwsyt,

where w1 = +/g/l +2(k/m), wp = \/g/! are the eigenfrequencies of the two vibra-
tions. The coordinates u1, up are called normal coordinates. Normal coordinates are

often introduced to decouple a coupled system of differential equations. The coor-
dinate u1 = x1 — x» describes the opposite-phase and uy = x| + x the equal-phase
normal vibration. The equal-phase normal mode proceeds as if the coupling were ab-
sent.

For sake of simplicity, we incorporate the initial conditions in (7.13). For the nor-
mal coordinates we then have

ur(0) =—A, u2(0) = A4, 11(0) =u2(0) =0.
Insertion into (7.13) yields
Al =—-A, Ay =A, B; =By =0,

and thus,

u; =—Acoswit, upy = Acoswyt.



7 Vibrations of Coupled Mass Points

87

Returning to the coordinates x; and x»:
1 A
X = E(ul +up) = 5(— coswit + coswnt),

1 A
Xy = 5z —u1) = S (coswit +coswnt).

After transforming the angular functions, one has

x1 = Asin wl_wzt sin w1+w2t ,
2 2
w] — w) wl + wy
xo = Acos t ) cos t).
2 2

‘We have presupposed the coupling of the two pendulums to be weak, i.e.,

/8 /
= — R = 2 S
w2 ] w] l-l—

hence, the frequency w; — w; is small. The vibrations x;(¢) and x»(¢#) can then be
interpreted as follows: The amplitude factor of the pendulum vibrating with the fre-
quency | + w; is slowly modulated by the frequency w; — w,. This process is called
beat vibration. Figure 7.6 illustrates the process. The two pendulums exchange their
energy with the amplitude modulation frequency w; — w. If one pendulum reaches
its maximum amplitude (energy), the other pendulum comes to rest. This complete
energy transfer occurs only for identical pendulums. If the pendulums differ in mass
or length, the energy transfer becomes incomplete; the pendulums vary in amplitudes
but without coming to rest.

|og
3| =

pendulum 2

Fig.7.6.
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Fig.7.7.

7.1 The Vibrating Chain'

‘We consider another vibrating mass system: the vibrating chain. The “chain” is a mass-
less thread set with N mass points. All mass points have the mass m and are fixed to
the thread at equal distances a. The points 0 and N + 1 at the ends of the thread are
tightly fixed and do not participate in the vibration. The displacement from the rest po-
sition in y-direction is assumed to be relatively small, so that the minor displacement
in x-direction is negligible. The total string tension 7 is only due to the clamping of
the end points and is constant over the entire thread.

If one picks out the vth particle, the forces acting on this particle are due to the dis-
placements of the particles (v — 1) and (v + 1). According to Fig. 7.7 the backdriving
forces are given by

F,_1 = —(T -sina)e,,

F,11 = —(T -sinB)e;.

N

el \\N+1

0 e a (v=Da va (v+Da X

Since the displacement in y-direction is small by definition, & and 8 are small
angles, and hence, one has, to a good approximation,

sine =tan and sinB =tan}p.
From Fig. 7.7, one sees that

a a

Hence, the forces are given by

F, | = _T<YV — Yv—1 )ez’
a

Fopi = _T<yv—a¢)e2

! It is recommended that the reader go through Chap. 8 (“The Vibrating String”) before studying
this section. The concepts presented here will be more easily understood, and the mathematical ap-
proaches will be more transparent in their physical motivation.
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The total backdriving force is the sum F,_; + F, 41, i.e., the equation of motion for
the particle reads

d? _
m )’vez__T Yv — Yv-1 e—T Yv = Yv+1
dt? a a
or
d?y, T
5= — =1 = 230 + Yot1). (7.14)
dt ma

Since the index v runs from v =1 to v = N, one obtains a system of N coupled dif-
ferential equations. Considering that the endpoints are fixed, by setting for the indices
v=0andv=N+1

y=0 and yy41=0 (boundary condition),

one obtains from the differential equation (7.14) with the indices v =1 and v = N the
differential equation for the first and last particle that can participate in the vibration:

d2y1 T
mﬁ = —(=2y1 + y2),
a (7.15)
d*yn T( 2)
m——s—=—(yn-1— .
dr2 4 YN-1 YN

We now look for the eigenfrequencies of the particle system, i.e., the frequencies
of vibration common to all particles. To get a determining equation for the eigenfre-
quency w,, we introduce in (7.14) the ansatz

yy = A, coswt. (7.16)
We obtain
2 T
—mw” - A, -coswt = —(Ay_1 —2A, + Ay41) coswt,
a
and after rewriting,

maa)2

—AU]+<2— )AV—AH]:O, v=2...,N—1 (7.17a)

By insertion of (7.16) into (7.15), we get the equations for the first and the last vibrat-
ing particle:

2
(2— mae )Al — Ay =0,
T

5 (7.17b)
maaw
—AN]—|-<2— )AN =0.
T
With the abbreviation
2T — maw?
- —q, (7.18)

T
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(7.17a) and (7.17b) can be rewritten as follows:

cAl — Ap =0
—A1+cAy — Az =

— Ay+cA3— Ay =0

—Any_1+cAn=0.

This is a system of homogeneous linear equations for the coefficients A, . For any
nontrivial solution of the equation system (not all A, = 0) the determinant of coeffi-
cients must vanish. This determinant has the form

c -1 0 0 0 .. 0 0 0
1 ¢ -1 0 0 ... 0 0 0
0 -1 ¢ —-10 ... 0 0 0
Dy =
0 0 0 0 0 ... -1 ¢ -1
00 0 0 0 ... 0 -1 ¢

It has N rows and N columns. The eigenfrequencies are obtained as solution of the
equation

Dy =0.

Expanding Dy with respect to the first row, we get

c -1 0 0 0 0
-1 ¢ -1 0 0 0
-1 ¢ 0 0 0
0 -1 0 0 0
Dy=c-| : : :
0 0 0 -1 0
0 0 0 c -1
0 0 0 -1 ¢ -1
0 0 0 0 -1 ¢
-1 -1 0 0 0 0
0 c -1 0 0 0
0 -1 —c -1 0 0
0 0 -1 ¢ 0 O
+ .
0 o o0 .. -1 0
0 0 0o o0 ... ¢ -1
0 0 0O o0 ... -1 ¢

The left-hand determinant has exactly the same form as Dy, but is lower by one
order (N — 1 rows, N — 1 columns). It would be the determinant of coefficients for
a similar system with one mass point less, i.e., Dy_1. The right-hand determinant is
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now expanded with respect to the first column, which leads to

c -1 0 0 0

-1 c -1 0 0

0 -1 ¢ 0 0
Dy=cDy_1+(-1)- : :

0 0 0 -1 0

0 0 0 c -1

0 0 0 -1 ¢

The last determinant is just Dy_». Hence we get the determinant recursion equa-
tion

Dy =cDy_1— Dy_p, if N>2. (7.19)
Moreover,
C -1 2
Di=|c|=c and D;= 1 e =c"—1. (7.20)

By setting N =2 in (7.19), we recognize that (7.19) combined with (7.20) is satisfied
only if we formally set

Do =1. (7.21)
Our problem is now to solve the determinant equation (7.19). We use the ansatz
Dy =p",

where the constant p must be determined. Insertion into (7.19) yields

N = epN =1 pN=2,
and after division by p™¥ 2,
ctc?—4
p>—cp+1=0 or pzf.

The mathematical possibility p¥ ~2 = 0 that leads to p = 0 does not obey the bound-
ary condition Do = 1 and is therefore inapplicable. Substituting ¢ = 2 cos ®, we obtain
for p

p:cos@:l:mzcosGD:tisin@:eim.
The solutions of (7.19) are then

Dy =p" = @)V =N® = cos NO +isinNO
and

Dy = (e_i(“))N =e VO —cos NO —isinN®.
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Since the equation system (7.19) is homogeneous and linear, the general solution is a
linear combination of cos N® and sin N©®:

Dy =GcosN® + HsinNG®. (7.22)
Since Dp =1 and D; = ¢ =2cos ® (see above), G and H are determined as
G=1, H=cot®,

so that
sin N® cos ©® _ sin(N + 1)®

sin ® sin®
because sin® cos NO + sin NO cos © = sin(N + 1)0.

For any nontrivial solution of the equation system we must have Dy =0, i.e., Dy
must vanish for all N; it follows that

Dy =cosN® +

sin((N + 1)®) =0,

or
ni

®=®n=—,
N+1

n=1,...,N. (7.23)
n = 0 drops out since it leads to the solution ®) = 0, and hence to Dy = N + 1
# 0, and thus does not lead to a solution of the equation Dy = 0. For ¢ we then get
according to (7.18):

2
c=2-— wrma =2cos n ,
N+1
and w is calculated from
Pt = (1 cos T (7.242)
UM T na N +1 ’
as
2T
Wy = ] — /1 — cos —— . (7.24b)
ma N+1

These are the eigenfrequencies of the system; the fundamental frequency is obtained
for n =1 as the lowest eigenfrequency. There are exactly N eigenfrequencies, as is
seen from (7.23): Forn > N + 1, wesetn = (N + 1) + t and find

® + b
=TT _—.
" N+1

If one inserts the above expression into (7.17a) and (7.17b) for w and c, respectively,
one obtains for the amplitudes of the normal vibration

nm
—A" 424" cos N1 - A" =0

41 v+l —
ni
24 cos ——— = AW, 7.25
1 N+1 2 (7.25)
2A§\',1) COS —— = A;’;)_l

N+1
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where the A, depend on n (A, = A™). The system of equations (1.25) for the A,
is the same as that for the determinants Dy (equation (7.19)), with the same coeffi-
cient c =2cosnm /(N + 1) =2cos ®,. Only the boundary conditions (7.25) do not
correspond to those for the Dy (see (7.20) and (7.21)). The general solution for the
coefficients A, is therefore obtained from (7.22) with at first arbitrary coefficients
E®:.

A‘(j") = Ei") cosv®, + E;n) sinv®,,

or, in detail,

nmv

(n) (n) . NIV
AW = E\" cos N1 + EyV sin ——. (7.26)

N+1
Since the points v =0 and v = N + 1 are tightly clamped, for all eigenmodes n we

have yp = yny+1 =0, or

A(()") = Ag\r,’ll =0 (boundary condition).

Then one obtains for v =0 in (7.26):

TV
Egn) = 0, i.e., A‘()n) = E;n) sin ]:Il+ 1 .
After insertion into (7.16), one gets
niv
yS") = Eén) sin COSW(n)t. (7.27)

N+1

If one inserts y, = B, sinwt instead of (7.16) into (7.14), one determines B, by the
same method as A, and obtains

nmwv
N +1

B = E{" sin (EY” =0);

hence, the solutions for the y, read

nmwy
N +1

yS") = Eé") sin COS W(n)t (7.28a)

and

_ n) _. nmwv
y® = E, " sin Nt

Csinwg. (7.28b)

The sum of these individual solutions yields the general solution, which therefore
reads

N

N MY )

W=y 1s1n NI (E}" sinopyt + E5" coswpyt)
n=

—isin nry (a, sinwyt + by, cos w)t) (7.29)
= 1 N+ 1 n (n) n (n)t), .
n=

where the constants E;") and Ein) were renamed b,, and a,,, respectively. They are
determined from the initial conditions.
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The equation of the vibrating chord must follow from the limit for N — oo and
a — 0 (continuous mass distribution):

. nmv . nmav .
sin = sin (xy = av takes only discrete values)
N+1 (N + Da
=sin zn(@v) (I = Na is the length of the chord)
l+a
. . mnx . Tnx )

lim (sm ) =sin — (x continuous).

N—>o(<)3 + a l

a—

a)(zn) becomes (expansion of the cosine in (7.24a) in a Taylor series):

, 2T 1/ nt \* T (nr)?
Dy = 1-1+3 R 242
ma 2\ N+1 (m/a)(N + 1)“a

and with o0 = m/a = mass density of the chord,

( T (nm)? >_T(nn)2

N—oc\ 0 (N + 1)2a? ol
a—0
ie.,
T nm
W) =+ ——.
(n) o |

Hence, one has as a limit

ya(x) = sin<@> |:an sin (\/f ﬂt) + b, cos <\/Tﬂt):| (7.30)
[ o 1 o

This is the equation for the nth eigenmode of the vibrating chord (/ is the chord length).
It will be derived once again in the next chapter in a different way and will then be
discussed in more detail.

EXERCISE

7.3 Eigenfrequencies of the Vibrating Chain

Problem. When solving the determinant equation (7.19), we have made a mathemat-
ical restriction for ¢ by setting ¢ =2cos ®.
Show that for the cases

@ |c|=2,
() c<—2

the eigenvalue equation Dy = 0 cannot be satisfied. Clarify that thereby the special
choice of the constant c is justified.

Solution. (a)

D, =cD,_1 — D,,_3, Dy =c=%2, Do=1. (7.31)
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We assert and prove by induction
|Dy| > [Dp—1l. (7.32)

Induction start: n =2, |Dg| =1, |D{| =2, |Dy| =3.
Induction conclusion fromn — 1, n — 2 to n:

|Dy|? = 4|Dy—1> £ 4|Dy—1||Dy—a| + | Dy_al?
> 4|Dy_1> + | Dy—2|* — 4| Dy—1||Dp—2]
= [Dpl* = |Dp-11* = 3|Dy1* + |Du—2|* — 4| Dy_1||Dy—2|.

According to the induction condition,
|Dy—1| =|Dp—2|+€ with €>0.
From this, it follows that

| Dy = |Dy—11* = 4| Dy—2f® + 6€| Dy—2| +3€> — de| Dy—2| — 4| Dyl
> 2€|Dy ]
>0
= |Dn| = [Dp-1l. (7.33)
Since | D,,| monotonically increases in n, and |D1| =2 > 0, we have |Dy| > 0. There-
fore Dy = 0 cannot be satisfied. w =0 and w = /2T /ma are not eigenfrequencies
of the vibrating chain.
(b) By inserting the ansatz D, = Ap", p # 0, we also find the solution of the
recursion formula D,, =c¢D,,_1 — D,_2, D =c¢, Dg=1:
pr=13(c+ (P -H"?) <0

0> p1 > po. (7.34)
pzz%(c—(c2—4)1/2) <0

The general solution for incorporating the boundary conditions Dy = 1, Dj = ¢ reads
Dy = A1p} + Azpj. (7.35)
With Dy =1, D| = c, it follows that
A1+ Ay =1,
e+ @-9")+ 2@ -9 = ¢,

e (@B —ct (-4

A= (.
T e ayin 2@ w739

One then has

I R Gt R W (o L

T @—air Ty @ gy P2
1

1 1
T (242 (P =Py, (7.37)

Exercise 7.3
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To determine the physically possible vibration modes, we had required that Dy = O:
N+1
Dy=0 = (ﬂ> —1. (7.38)
D1
But now 0 > p; > p», hence (pz/p1)N+1 > 1. Thus, for the case ¢ < —2 eigenfre-
quencies do not exist too.
These supplementary investigations can be summarized as follows: The possible
eigenfrequencies of the vibrating chain lie between 0 and /2T /ma:
2T
0<|wl <, —. (7.39)
ma
EXERCISE
7.4 Vibration of Two Coupled Mass Points, Two Dimensional
Problem. Two mass points (equal mass m) lie on a frictionless horizontal plane and
are fixed to each other and to two fixed points A and B by means of springs (spring
tension 7', length /).
(a) Establish the equation of motion.
(b) Find the normal vibrations and frequencies and describe the motions.
Fig.7.8.
X
Fig.7.9.

=3k %)

- N

Solution. (a) For the vibrating chain with n mass points, which are equally spaced
by the distance /, the equations of motion

—dzyN——( —2yN + ) (N=1 )
= _ =1,...,n
dr2 l)’N 1 YN T YN+1

were established. For the first and second mass point, we have

1 =k(yo —2y1 + y2) =k(y2 — 2y1),
) (7.40)
V2 =k(y1 —2y2 +y3) = k(y1 — 2y2)
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with k = T'/ml; the chain is clamped at the points A and B, i.e., yo = y3 =0.
(b) Solution ansatz: y; = Ajcoswt, y, = Apcoswt (w = eigenfrequency). Inser-
tion into (7.40) yields

2k — w?)A| —kAr =0,

(7.41)
2k — w?) Ay — kA = 0.

To get the nontrivial solution, the determinant of coefficients must vanish, i.e.,

|2k—e? —k

D —k 2k—a?| "

0;
ie., w* + 3k? — 4kw? = 0, from which it follows that } = 3k, w3 = k.

Insertion in (7.41) yields A; = A, for wy and A} = —A, for w. This is an
opposite-phase and an equal-phase vibration, respectively. We note that the vibration
with the higher frequency has opposite phases and a “node,” while the vibration with
lower frequency has equal phases and a “vibration antinode.”

EXERCISE |
7.5 Three Masses on a String

Problem. Three mass points are fixed equidistantly on a string that is fixed at its
endpoints.

(a) Determine the eigenfrequencies of this system if the string tension 7' can be con-
sidered constant (this holds for small amplitudes).

(b) Discuss the eigenvibrations of the system. Hint: Note Exercises 8.1 and 8.2 in
Chap. 8.

I m m m I
P S S S
Solution. (a) For the equations of motion of the system, one finds straightaway
. 2T T
mx; + A X; — T xp =0,
2T T T
Y - — | — — | — = O’ 7.42
sz+<L>Xz (L)xz <L>X1 (7.42)
G4 2T T —0
mx3 7 )% 7 )2 =0

Assuming periodic oscillations, i.e., solutions of the form

x1 = Asin(wt + V), X = —w’A sin(wt + V),
xp = Bsin(wt + V), ¥ = —’ Bsin(wt + V),
x3=Csin(wt +v),  i3=—-w>Csin(wf + V),

Fig.7.10.
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Exercise 7.5 we get after insertion into (7.42)
2T T
<— — a)zm)A — (—)B =0,
L L
Vast 2T wtm)B—(E)c=o (7.43)
L L " L)- =" '
T 2T 2
——=)B+|— —wm)C=0.
L L

As in Exercise 8.2, one gets the equation for the frequencies of the system from the
expansion of the determinant of coefficients:

T
or
Lm\’ 3 Lm\?> 5 10Lm
— )| Q-6 — ) QL+ ———QL—-—4=0 (7.44)
T T T

with Q= w?. This cubic equation with the coefficients

Lm\> Lm\?> 10Lm
a=(—), b=—-6—), c=——, d=—4
T T T

can be solved by Cardano’s method.
With the substitutions

3y 1b2+c_ , I by 20 L d
P= B 1=297a3 342" a

b
=Q+ — —=—+- —, =0
Y 342 a L2m?

3a’
we get g> 4 p> < 0, i.e., there are three real solutions which by using the auxiliary
quantities

T
cosQ = — a =0, Y1 =—2«/—pcos<§—%>=_\/§l‘—,
—p m

V2 = —2«/—pcos<§ + %) =0,

T
V3 :2./—pcos£ =v2—
3 Lm

can be calculated as

T 2T T
w] =4/0.6—, w) =4 —, w3 =,/3.4—.
Lm Lm Lm

(b) From the first and third equation of (7.43), one finds for the amplitude ratios

B B mLaw?
ZZEZZ_ — (7.45)
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Discussion of the modes:

(1) @ =w; = (0.6T/Lm)"/? inserted into (7.45) = B;/A1 = B1/Ci = 1.4 or B| =
1.4A, =1.4C;.

All three masses are deflected in the same direction, where the first and third

mass have equal amplitudes, and the second mass has a larger amplitude.

(2) @ = wy = (2T /Lm)"'/? inserted into (7.45) = By/A> = By/C> =0 and A; =
—C, from the second equation of (7.43). The central mass is at rest, while the first
and third mass are vibrating in opposite directions but with equal amplitude.

Ay

A,

(3) @ = w3 = (3.4T/Lm)"/? inserted into (7.45) = B3/A3z = B3/C3 = —14, ie.,
A3 = C3 = —1.4B3. The first and the last mass are deflected in the same direction,
while the central mass vibrates with different amplitude in the opposite direction.

The system discussed here has three vibration modes with 0, 1, and 2 nodes, re-
spectively. For a system with n mass points, both the number of modes as well as
the number of possible nodes (n — 1) increases. A system with n — oo is called a
“vibrating string.”

A comparison of the figures clearly shows the approximation of the vibrating string
by the system of three mass points.

(a)
1 X
()
node
\/1 x
(©)
node
N
l X

EXERCISE

7.6 Eigenvibrations of a Three-Atom Molecule

Problem. Discuss the eigenvibrations of a three-atom molecule. In the equilibrium
state of the molecule, the two atoms of mass m are in the same distance from the
atom of mass M. For simplicity one should consider only vibrations along the mole-
cule axis connecting the three atoms, where the complicated interatomic potential is
approximated by two strings (with spring constant k).

Fig.7.12.

\ i 1.44,

Fig. 7.13.

Fig.7.14.
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Exercise 7.6 (a) Establish the equation of motion.
(b) Calculate the eigenfrequencies and discuss the eigenvibrations of the system.
Solution. (a) Let x{, x2, x3 be the displacements of the atoms from the equilibrium
” positions at time ¢. From Newton’s equations and Hooke’s law then it follows that
m m
*— T —(O—TO00—@
Fig.7.15. miy = —k(x| — x2).
MXy = —k(x — x3) — k(x3 — x1) = k(x3 + x1 — 2x2), (7.46)
mx3 = —k(x3 — x2).
mn M (b) By inserting the ansatz x1 = ajcoswt, xo = apcoswt, and x3 = a3z coswt
©-00000—(O—~ 00000 . .
vk ! © 2 into (7.46), one obtains
X
! 2 E (mw? — ka; + kay =0,
Fig.7.16. kay + (Mo?* —2k)as + kaz =0, (7.47)

kar + (mw? —k)az = 0.

The eigenfrequencies of this system are obtained by setting the determinant of
coefficients equal to zero:

mw? —k k 0
k Ma? — 2k k =0. (7.48)
0 k mw? —k

From this, it follows that
(mw® — k)[w*mM — o> (kM + 2km)] =0 (7.49)
or
2 2 2 _
o (mw” —k)[w* mM — k(M +2m)] =0.

By factorization of (7.49) with respect to w, one obtains for the eigenvibrations of the
system:

k k 2m
(1)1:0, w) = Z7 w3 = Z 1+ﬁ .

Discussion of the vibration modes:

(1) Insertion of w = w; = 0 into (7.47) yields a; = a» = a3. The eigenfrequency
w1 = 0 does not correspond to a vibrational motion, but represents only a uni-
form translation of the entire molecule: e— o— e—.

(2) Inserting w = wy = (k/m)'/? into (7.47) yields a; = —as, a» = 0; i.e., the central
atom is at rest, while the outer atoms vibrate against each other: <—e o e—.

(3) Inserting w = w3 = {k/m(1 4+ 2m/M)}'/? into (7.47) yields a; = a3, a; =
—(2m/M)ay, i.e., the two outer atoms vibrate in phase, while the central atom
vibrates with opposite phase and with another amplitude: e— <o e—.



The Vibrating String

A string of length [ is fixed at both ends. Thereby appear forces T that are constant
in time and independent of the position. The string tension acts as a backdriving force
when the string is displaced out of the rest position. A string element As at the position
x experiences the force

Fy(x) =—=Tsin®(x)
in y-direction. At the position x + Ax there acts in y-direction the force
Fy(x + Ax) =T sin®(x + Ax).
In y-direction, the string element As experiences the total force
Fy=Tsin®(x + Ax) — T'sin®(x). 8.1)
Accordingly, along the x-direction the string element As is pulled by the force
Fy=Tcos®x + Ax) — T cos®O(x).

In a first approximation we assume that the displacement in x-direction shall be zero.
A displacement of the string in y-direction causes only a very small motion in the
x-direction. This displacement is negligible compared to the displacement in
y-direction, i.e.,

F, =0.

Since we neglect the displacement in x-direction, the only acceleration component of
the string element is given by 8%y/dt%. The mass of the element is m = o As, where
o represents the line density. From that and by means of (8.1) we obtain the equation
of motion:

2

0
Fy=aAsa—t§=Tsin@(x+Ax)—Tsin®(x). (8.2)
y A
T
o( !
_ ! O(x + Ax)

T !
)Ic X + Ax x=
W. Greiner, Classical Mechanics, 101

DOI 10.1007/978-3-642-03434-3_8, © Springer-Verlag Berlin Heidelberg 2010

Fig.8.1. The string tension T
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Both sides are divided by Ax:

oAsd’y  Tsin®(x 4+ Ax) — TsinO(x)

= 8.3
Axdt? Ax 8-3)
Inserting for As in the left-hand side of (8.3)
As =/ AxZ 4+ Ay?,
one has
o/ Ax2 + Ay2 3%y 1+ Ay\? a2y
i et A M A A =) 2
Ax 012 Ax ) 012
_ Tsin®x+Ax)—T sin@(x). 8.4)
Ax
By forming the limit for Ax, Ay — 0 on both sides of (8.4), we obtain
ay\2 a2y 3
1 — ) — =T —(sin®). 8.5
’ +<8x> o2 =15 n®) ®5)

For sin® we have sin® = tan ©® /+/1 + tan? ©. Since tan ® = dy/dx (inclination of
the curve), we write

ay/ox

J1+ @y/ax)?

By means of relation (8.6) the equation (8.5) can be transformed as follows:

Sin® = (8.6)

ay\*9? d 3y /9
- 1+<_y> _ng_<L>, 87)
dx ) ot 9x \ /14 (3y/9x)?
In order to simplify the equation, we again consider only small displacements of the

string in y-direction. Then dy/dx < 1, and (3y/dx)? can be neglected too.
Thus, we obtain

9%y d (dy
LT (=2 8.8
T2 T ox (8x) 8:8)
or
82y 32y
12, 8.9
o2 T ax2 89)

We set ¢2 = T'/o (c has the dimension of a velocity). The desired differential equation
(also called the wave equation) then reads

3%y 9%y 2 1 92 .5 =0 8.10)
—5 =C¢"—5 or 5 T A as X, 1) =U. :
a2 = ax2 a2 2oz)
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8.1 Solution of the Wave Equation

The wave equation (8.10) is solved with given definite boundary conditions and initial
conditions. The boundary conditions state that the string is tightly clamped at both
endsx =0and x =/, i.e.,

v(0,t) =0, y(,t) =0 (boundary conditions).

The initial conditions specify the state of the string at the time # = O (initial excitation).
The excitation is performed by a displacement of the form f(x),

y(x,0) = f(x) (first initial condition),

and the velocity of the string is zero,

3 y(x,1) =0 (second initial condition).

ot =0
For solving the partial differential equation (PDE), we use the product ansatz y(x, t) =
X (x) - T(t). Such an approach is obvious, since we are looking for eigenvibrations.
These are defined so that all mass points (i.e., any string element at any position x)
vibrate with the same frequency. By the ansatz y(x, t) = X (x)- T (¢), the time behavior
is decoupled from the spatial one. Thus we try to split the partial differential equation
into a function of the position X (x) and a function of the time 7'(¢). Inserting y(x, t) =
X (x) - T(¢) into the differential equation (8.10) yields

X)T () =X ()T @),
where 327 /91> = T and 92X /9x% = X”. The above equation can be rewritten as

o _ X
T — X&)

Since one side depends only on x and the other side depends on ¢, while x and ¢ are
independent of each other, there is only one possible solution: Both sides are constant.

The constant will be denoted by —w?.

P, L

7=—a) or T+owT=0, 8.11)
or

X" a)2 w2

The solutions of the differential equations (continuous harmonic vibrations) have the
form

T(t) = Asinwt + B coswt,

. w
X(x) =Csin—x + Dcos —x.
c c

The general solution then reads

y(x,t) = (Asinwt + B coswt) - (C sin gx + D cos g)c). (8.13)
c c
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The constants A, B, C, and D are determined from the boundary and initial condi-
tions.
From the boundary conditions, it follows for (8.11) that

¥(0,¢t) =0= D(Asinwt + Bcoswt).

Since the expression in brackets differs from zero, we must have D = 0. Then (8.13)
simplifies to

y(x,t) =Csin 2x(A sinwt + B coswt).
c
With the second boundary condition, we get
. @ .
y(,t) =0=Csin —I(Asinwt + Bcoswt)
c
= 0=Csin2L.
C
This equation will be satisfied if either of the following holds:
(a) C=0, which means that the entire string is not
displaced,

or
(b) sin(wl/c) =0. The sine equals zero if (w/c)l = nm, ie.,

if o =w, =nnc/l, where n =1,2,3,...
(n = 0 would lead to case (a)).

From the boundary conditions, we thus obtain the eigenfrequencies w, = nmc/l
of the string. Since the string is a continuous system, there are infinitely many eigen-
frequencies. The solution for an eigenfrequency, the normal vibration, was marked by
the index n. Equation (8.11) becomes

. nmw . nmc nwc
Yu(x,t) = C -sin Tx (An sin Tt + B, cos Tt),
. nmw . nmc nmwc
Yn(x,t) = sin Tx <an sin Tt + b, cos Tt),

where we set C - A, =a, and C - B,, = b,,.
From the initial conditions, we have

d nwc . nmw nmwc . nmc
—yu(x,t) =0=——sin—x| a,cos —t — b, sin —t¢ .
ot =0 [ l l l =0
Then
nwc . nmw
ay - T 'SIDTXZO

is satisfied for all x only if a,, = 0. Thus, the solution of the differential equation is

. nmw niwc
Yn(x,t) =b, - sin Tx cos Tt. (8.14)

The parameter n describes the excitation states of a system, in this case those of the



8.2 Normal Vibrations

105

vibrating string. In quantum physics such a discrete parameter n is called a quantum
number.

Interjection: If we had selected a negative separation constant in (8.11), i.e., +w?
instead of —w?, we would have arrived at the solution

@ 9}
y(x,1) = (Ae” + Be‘“”)<ce?x + De_?x).

The boundary conditions y(0, ) = y(I, r) = 0 would have led to the conditions

2]

@] _
ec +De ¢ =0

C+D=0; C
with the solutions C = D = 0. The string would have remained at rest. But this is not
the desired solution.

Since the one-dimensional wave equation is a linear differential equation, one can
obtain the most general solution, according to the superposition principle, by the su-
perposition (addition) of the particular solutions:

o o
. nmx nmwc .
y(x,t) = an sin - cos Tt = an sin k, x cos wyt.

n=1 n=1

The coefficients b,, can be calculated from the given initial curve by using the consid-
erations on the Fourier series (see the next chapter):

> . nmx
y(xso) =f(-x) :rgbn SIHT.

The calculation of the Fourier coefficients b, will be shown in the next chapter. One
then gets the following general solution of the differential equation:

1
(x.1) i 2ff( i nrrx’d )\ . nmx nrct (8.15)
)= - sin sin —— cos ) )
nUELAT Y Y ] I
- 0

8.2 Normal Vibrations

Normal vibrations are described by the following equation:
yn(x,t) = Cy sin(k, x) cos(w,t). (8.16)

For a fixed time ¢, the spatial variation (positional dependence) of the normal vibra-
tion depends on the expression sin(nwx/[) (for n > 1, sin(nwx/[) has exactly n — 1
nodes). All mass points (position x) vibrate with the same frequency w;,.

At a definite position x, the time dependence of the normal vibration is represented
by the expression cos(nmc/[)t. The wave number k, is defined as

w, nmw 27
ky=—=—=—, 8.17
n= ; . (8.17)

where A, = 2[/n is the wavelength.
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The angular frequency is defined as follows:

wn5$=2mn. (8.18)

Solving (8.18) for v,, we obtain for the frequency

nc
=—, 8.19
vn = (8.19)

i.e., the frequencies increase with increasing index n. By definition,

CcC =

T
—; (8.20)
o

¢ can be interpreted as “sound” velocity in the string, as we shall see below. T is the
tension in the string, o is the mass density. From (8.19) and (8.20) we find

n |T

n= e

(8.21)
i.e., the longer and thicker a string is, the smaller the frequency. The frequency in-
creases with the string tension 7'. This agrees with our experience that long, thick
strings sound deeper than short, thin ones. With increasing string tension the frequency
increases. This property is utilized when tuning up a violin.

Multiplication of the wavelength by the frequency yields a constant ¢ which has
the dimension of a velocity:

21
= E—c (dispersion law). (8.22)

A = — —
"=

c is the velocity (phase velocity) by which the wave propagates in a medium. This can
be seen as follows: If an initial perturbation y(x,0) = f(x) is given as in Fig. 8.2,
f(x — ct) is also a solution of the wave equation (8.10), because with z =x — ct we
have

af  of dz af 3 f 3fdz  ,df
—:——:—C—, — = —C——— = —,
9t 9z ot 0z at2 0z2 ot 972
and
af _af f 0 f
ax oz’ ax2 92’
Hence,
1 92 £ 5 2o2f  *f P f(x—ecr)
_—— X —C ==
c2 912 2 972 972 dx2

f(x — ct) thus satisfies the wave equation (8.10).

0 )‘Co 21 X

Fig. 8.2. Propagation of a perturbation f(x) along a long string: After the time ¢, the perturba-
tion has moved away by ct; it is then described by f(x — ct)
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Let the maximum of the perturbation f(x) be at xg. After the time ¢, it lies at
X —ct = Xxo.

It thus propagates with the velocity

dx
Z—c
dt

along the string, namely to the right (positive x-direction). One can say that the per-
turbation f(x) moves along the string with the velocity

dx_

dx _ 8.23
ar ¢ (8.23)

The propagation velocity of small perturbations is called the sound velocity. One
easily realizes as above that f(x + ct) is also a solution of the wave equation and
represents a perturbation that moves to the left (negative x-direction). We are deal-
ing here with running waves, while for the tightly clamped string we have standing
waves.

If a string is excited with an arbitrary normal frequency, there are points on the
string that remain at rest at any time (nodes).

The wavelength, the number of nodes, and the shape of normal vibrations can be
represented as a function of the index n (see Fig. 8.3).

(a)

I X

. . . X C
fundamental vibration: sin ~* cos n—lt

1
(b) (c)
node I/\node
VRN
' VAR

Ist harmonic: sin 2mx cos Zmet 2nd harmonic: sin 3mx cos 3met
[
n  Wavelength Number of nodes  Figure
1 21 0 (a)
2 [ 1 (b)
3 2l 2 (c)
= c
3
n -1 n—1

Fig. 8.3. The lowest normal
vibrations of a string
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Fig. 8.4. Displacement and
deformation (elongation com-
pression) of the string ele-
ment Ax

EXERCISE |
8.1 Kinetic and Potential Energy of a Vibrating String

Problem. Consider a string of density o that is stretched between two points and is
excited with small amplitudes.

(a) Calculate in general the kinetic and potential energy of the string.
(b) Calculate the kinetic and potential energy for waves of the form

w(x — ct))

y=Ccos(
c

with Tp =500 N, C =0.01 m, and A =0.1 m.

Solution. (a) The part PQ of the string has the mass o Ax and the velocity dy/dt.
Its kinetic energy is then

2
AT = —an(—) . (8.24)

The total kinetic energy of the string between x = a and b is

L ()2
T:—af 2V ax. (8.25)
2 ot
a

The work which is needed to elongate the string from Ax to Al is

Al
dP =Ty(Al — Ax), — ~1. (8.26)
Ax
7a'
Al S
,’: y £ y+Ay
A V4 a B

— X —re—— AX——

For small displacements, we have

ay\2]"? 1/ay\?
Al= A2+ A2 = ax| 14 (2 ~ax|14+=(2) ] ©27
0x 2\ ox

The potential energy for the region x = a to x = b is then

b 2
P_lT/ AANPN (8.28)
270 \ax ) T '
a
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For a wave y = F(x — ct) propagating in a direction, we have

b
1 T
T=pP= 5TO/[F’(X —enPdx, =2 (8.29)
o
a

Hence, the kinetic and potential energy are equal. If a, b are fixed points, then 7" and P
vary with time. But if we admit that a and b can propagate with the sound velocity c,
so that

a=A+ct and b=B+ct, (8.30)
then P and T are constant:
B
1
T=pP=:T /(F/(x))2dx. (8.31)
A
(b)
dy . <a) )
— =Csin| —x —ot |o
Jat c
9\ 2
= <—y> —c? sin2<9x _ wt>w2. (8.32)
Jat c
Insertion into (8.25) yields (a =0,b = 1)
A
1T, 1T,
T =-22022 / sin?( Lx — ot Jdx = = -2C%w? - 1. (8.33)
22 c 2 ¢2
0

With the substitution z = (w/c)x — wt for the integral I, we find

(w/c)r—wt (w/c)r 2
I = < / sinzdz = < / sin? zdz = < / sin® zdz (8.34)
w w w
—wt 0 0
cl1 1 . 22) .
=—|-z— -sin =—7

w 2Z 4 ‘ 0 w

1 T 2C?T
= T=-2002287, =00 5 _0n (8.35)

2 ¢? ) A 1)

One gets the same expression for the potential energy. Insertion of the numerical val-
ues yields

s 500N ,
T=P=(0.01)"-7"——m"~5Nm.
0.1 m

EXERCISE |
8.2 Three Different Masses Equidistantly Fixed on a String

Problem. Calculate the eigenfrequencies of the system of three different masses that
are fixed equidistantly on a stretched string, as is shown in Fig. 8.5.
Hint: For small amplitudes, the string tension 7" does not change!



110 8 The Vibrating String

Fig. 8.5. m m Im
) O M)
L T L T L T L—
Solution. From Fig. 8.6, we extract for the equations of motion
omiy = | 2T x|
L L
mity = | 22X | p[ 2 1) ) (8.36)
L L
3miy = 7| L2 B
L L
Fig. 8.6.

We look for the eigenvibrations. All mass points must then vibrate with the same
frequency. We therefore start with

x1 = Asin(wt +¥), ¥ = —w’Asin(ot + V),
X2 = Bsin(wt + V), Xy =—w?Bsin(wt + ),
x3 = Csin(wr + V), ¥3 = —’Csin(wr + ¥).

Hence, after insertion into equation (8.36) one gets
2T T
<— — 2ma)2)A — (—)B =0,
L L
as (2L Ng-(D)e=o (8.37)
L L " L) =" '
T 2T 5
— = )B+|—— —3mo” |C=0.
L L

For evaluating the eigenfrequencies of the system, i.e., for solving equation (8.37), the
determinant of coefficients must vanish:

2 T
2— —2mw —— 0
L
T T oy T
—— 2— —mw —— =0
L L L
T T 2
0 —— 2— —3mw
L L

Expansion of the determinant leads to

2 2 3
0= 6mief — 22Tm o n 19T“m ol — 4i
L L2 L3
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or

—22Tm? 197%m —4713
303 R Yoy
0=6m>Q +( i )sz +< B >Q+( % >

where we substituted €2 = w?. This leads to the cubic equation

aP +bQ*+cQ+d =0,
where

_ —22Tm? _19T?m _ 41}

3
a=6m", b 2 , c_—L2 , =3

(8.38)

It can be transformed to the representation (reduction of the cubic equation)

y3+3py+2q=0,

where

a4 b _Q 11T

y= 3a 9 Lm
and

3 1b2+c 42 20 1be d

= —_——— _ a = — - — — —=

p 342  a 1= 34274
Insertion leads to

3, LT 653 T3
P="542m2 1= 1458 L3m3

From this, it follows that
q>+p’ <0,

i.e., there exist 3 real solutions of the cubic equation (8.39).

(8.39)

For the case q2 + p3 < 0, the solutions yi, y2, y3 can be calculated using tabulated
auxiliary quantities (see Mathematical Supplement 8.4). Direct application of Car-
dano’s formula would lead to complex expressions for the real roots, hence the above

method is convenient.
After insertion one obtains for the auxiliary quantities

cosp = —q3’ y1=2«/—pcos§,
-D

)

y3 = —2J—_pcos<§ - —>

T
y2 = —2@cos<§ +3
b4

3 s

and finally, for the eigenfrequencies of the system

[T [T T
w; =0.563,/ —, wy =0.916,/ —, w3 =1.585,/ —.
Lm Lm Lm

Exercise 8.2
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Fig. 8.7. Vibrating coupled
masses

EXERCISE |

8.3 Complicated Coupled Vibrational System

Problem. Determine the eigenfrequencies of the system of three equal masses sus-
pended between springs with the spring constant &, as is shown in Fig 8.7.

Hint: Consider the solution method of the preceding Exercise 8.2 and Mathematical
Supplement 8.4.

Solution. From Fig. 8.7, we extract for the equations of motion

miy = —kxy —k(x; —x2) — k(x1 — x3),
mxy = —kxy —k(xy — x1) — k(xy — x3), (8.40)
mi3 = —kx3 — k(x3 — x1) — k(x3 — x2),
or
mx1 + 3kxy —kxy —kx3 =0,
mxy + 3kxy —kx3 —kx; =0, (8.41)

mx3 + 3kx3 —kx; — kxp, = 0.

We look for the eigenvibrations. All mass points must vibrate with the same fre-
quency. Thus, we adopt the ansatz

x1 = Acos(wt + V), X1 = —w?Acos(wt + ),
xp = B cos(wt + ), X2 = —w’Bcos(wt + V),
x3 = C cos(wt + ), ¥3 = —w?C cos(wt + V),

and after insertion into (8.41), we get
(3k — mw*)A —kB — kC = 0,
—kA+ 3k —mw*)B —kC =0, (8.42)
—kA — kB + (3k — maw*)C = 0.
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To get a nontrivial solution of (8.42), the determinant of coefficients must vanish:

Bk — mw?) —k —k
—k 3k — mw?) —k =0.
—k —k 3k — mw?)

Expansion of the determinant leads to

ok 24> 16k3
0=0® - Z0*+ 0 — —
m m?2 m3
or
s 9% ., 24k 16k°
0=Q° - —Q°+ ——Q— —,
m m?2 m3

where we substituted Q = w? (see Exercise 8.2). The general cubic equation aQ> +
bQ* +¢Q+d =0 (inour case a = 1,b = —9k/m, ¢ = 24k*/m?,d = —16k>/m?)
can according to Mathematical Supplement 8.4 be reduced to

y3+3py+2q=0,

where

b 102 ¢ 20 1bc d
=Q+ —, 3p=——+—, 2g=—— ——— 4=,
y=8ta P=—3a2%, 1= 32274
Insertion leads to

k2 3
3p=-3—. 29=2— = ¢ +p =0

m m

i.e., there exist 3 solutions (the real roots); 2 of them coincide. Hence, the vibrating
system being treated here is degenerate. As in Exercise 8.2, the solutions can be cal-
culated using tabulated auxiliary quantities. For these, we obtain

CosS@p = _qS’ y1:2‘/—pc()s§’
-p
o 7
Y2 = —2«/—pc0s<§ + 5),
b4
y3 = —2~/—pcos<§ - §>,

and, after insertion, for the eigenfrequencies of the system

k [ k
w3 =] —, w1 =wy =2,/ —.
m m

MATHEMATICAL SUPPLEMENT

8.4 The Cardano Formula'

In theoretical physics, one often meets the problem of solving a cubic equation, just
as in the Exercises 8.2 and 8.3. We now will clarify this problem.

1 We follow the exposition of E. v. Hanxleben and R. Hentze, Lehrbuch der Mathematik, Friedrich
Vieweg & Sohn 1952, Braunschweig—Berlin—Stuttgart.
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Mathematical Supplement 8.4 Reduction of the general cubic equation: If the general cubic equation

Y 4ax’+bx+c=0 (8.43)

with nonvanishing coefficients a, b, and c is to be solved, one must first eliminate the
quadratic term of the equation, i.e., reduce the equation. If the unknown x is replaced
by y + A, where y and A are new, unknown quantities, (8.43) turns into

O} 4320 3922 +13) + (ay* + 2ayr +ar?) + (by + br) + ¢ =0,
Y4+ GBr+a)y? +Br24+2ar+b)y+ A3 +ar’ +br4+c)=0.  (8.44)

Since we have replaced one unknown quantity x by two unknown ones, y and A, we
can freely dispose of one of the two unknown quantities. This freedom is exploited so
as to let the quadratic term of the equation disappear. This is achieved by setting the
coefficient of y2, that is, 3\ + a, equal to zero, i.e., A = —a/3. By inserting this value
(8.44) changes to

2 2a3  ab
y3+<_“_+b>y+(i_“_+c)=0. (8.45)

If we set the expressions determined by the known coefficients a, b, and ¢ of the cubic
equation,

2 3
a 2a° ab
——+b= d ——— =gq, 8.46
3 + p an 77 3 +c=q ( )

the cubic equation takes the form

y3 + py+¢g =0 (reduced cubic equation). (8.47)

Result: To reduce the cubic equation given in the normal form, one sets x =y —a/3.
Then (8.47) follows from (8.43).

Example: x3 —9x% +33x —65=0.
(1) Solution: Setx =y — (=3) =y +3.
(43 =9y +3)* +33(y +3) —65=0,
O 4+9y2 +27y +27) —9(y* + 6y +9) +33(y +3) — 65 =0,
¥ +6y—20=0.
(2) Solution: Insert the values calculated from (8.46) into (8.47).

Special case: If in the general cubic equation, the linear term is missing (b = 0),
i.e., the cubic equation is given in the form

B tax’+ec=0, (8.48)
the reduction can also be performed by inserting

(8.49)

c
xX=—.
y
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From (8.48) and (8.49), we obtain the reduced equation Mathematical Supplement 8.4
3 c?
3 2
—3+a—2+c=0 or y’+acy+c =0. (8.50)
¥ y

Solution of the reduced cubic equation: If one sets in the reduced cubic equation

y3+py+q=0,

(8.51)
y=u-+v,
one obtains
u3+3u2v+3uv2+v3+p(u+v)+q =0,
(Lt3 +0° +q)+3uvu+v)+ pu+v)=0,
4+ 13+ ¢)+ Guv+ p)u +v) =0. (8.52)

Since one can freely dispose of one of the unknown quantities u or v (justifica-
tion?), these are suitably chosen so that the coefficient of (« 4 v) vanishes. We there-

fore set
. p
B3uv+p=0, ie., uv:—g. (8.53)
Equation (8.52) simplifies to
W+l 4+g=0 or w+1P=—¢. (8.54)

u and v are determined by (8.53) and (8.54). The quantities # and v can no longer be
arbitrarily chosen. By raising (8.54) to the second power and (8.53) to the third power,
one obtains

u6+2u3v3+v6=q2’

3
4t = —4(2) .
3

Subtraction of the two equations yields

3
W~ v*)? =q2+4(§) ,

3
B — 0¥ =+ /g2 +4(§> . (8.55)

By addition and subtraction of equations (8.54) and (8.55), one obtains

1 p 3 1 p 3
3_2| _ 2 L 3_ 2| = 2 z
u _2|: q*./q +4(3> :| and v 2|: q9F/4 +4<3) ,
q q : p ’ q 2 p .
= 4| —= = = d = ;4| — = =1 . (.
U= ; 2+ <2> +<3) an V=3 F (2) +<3> (8.56)

IR
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Mathematical Supplement 8.4

If one sets
q a\>  (r\ a\> (P
5 (5) +(5) = me 5 (5) +(5) =
one gets
uy=m, Uy =mey, U3z =mes,
v =n, V) = ney, V3 = nes.

Here, the ¢; are the unit roots of the cubic equation x3 =1 which, as is evident, read

€1 =1, e=——-+i— €e=—-—Ii—.

Since now y = u + v, one can actually form 9 values for y (why?). But since the
quantities # and v must satisfy the determining equation (8.53), the number of possible
connections between u and v is restricted to 3, namely,

y1=uy+v, Y2 =up + 3, Y3 =u3 + v2;

hence,

yr=m+n= ; -1

2

m+n m—n,
Yo = meér +nez = — > + 3 l«/g, (8.57)
YS=m€3+n62=—m;_n—m2_ni«/§.

The real root of the cubic equation, i.e., the root

2
- | 1 4 14
R T

is known as the “Cardano formula.” It was named in honor of the Italian Hieronimo
Cardano” to whom the discovery of the formula was falsely ascribed. Actually, the

2 Hieronimo Cardano, Italian physicist, mathematician, and astrologer, b. Sept. 24, 1501, Pavia—
d. Sept. 20, 1576, Rome. Cardano was the illegitimate son of Fazio (Bonifacius) Cardano, a friend
of Leonardo da Vinci. He studied at the universities of Pavia and Padua, and in 1526 he graduated in
medicine. In 1532, he went to Milan, where he lived in deep poverty, until he got a position teaching
in mathematics. In 1539, he worked at a high school of physics, where he soon became the director.
In 1543, he accepted a professorship for medicine in Pavia.

As a mathematician, Cardano was the most prominent personality of his age. In 1539, he published
two books on arithmetic methods. At this time, the discovery of a solution method for the cubic
equation became known. Nicolo Tartaglia, a Venetian mathematician, was the owner. Cardano tried in
vain to get permission to publish it. Tartaglia left the method to him under the condition that he keeps
it secret. In 1545, Cardano’s book Artis magnae sive de regulis algebraicis, one of the cornerstones of
the history of algebra, was published. The book contained, besides many other new facts, the method
of solving cubic equations. The publication caused a serious controversy with Tartaglia.
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formula is due to the Bolognesian professor of mathematics Scipione del Ferro,* who
found this ingenious algorithm.

Example: y3 — 15y — 126 =0. Here,
= —157 = _126,

win <
SIESE

By inserting into the Cardano formula, one obtains

V1 =V63+ 632 =53+ /63 — /632 — 5
=63 ++/3844  + /63— /3844c
= J/63+62 + Y63 -62

= J125 +¥1 (=m+n)
=06,
541 5-1
yz=—%+ > i3 =—3+2i/3,
541 5-1
y3=—%— 5 i3 =—3—2i/3.

Check the validity of the roots by insertion!

Discussion of Cardano’s formula: The square root appearing in the Cardano for-
mula only yields a real value if the radicand (¢/2)% + (p/3)3 > 0. If the radicand
is negative, the three values for y yield complex numbers. We consider the possible
cases:

2 3
4 + P Form of the roots
2 3
(@))] p>0 Real A real value, two complex con-
jugate values
2) p <0, namely,
p 3 q 2
(a) (§> < (E) Real Asin (1).
p 3 q 2
(b) (7> = (7) =0 Three real values, among them
3 2
a double root
p 3 q 2
(c) <§> > (5) Imaginary All three roots by the form
imaginary

The case (2¢) was of particular interest to the mathematicians of the Middle Ages.
Since any cubic equation has at least one real root, but they could not find it by means
of Cardano’s formula, the case was called the casus irreducibilis.* The first to solve

3 Scipione del Ferro, b. 1465(?)—d. 1526 (?). About his life we know only that he lectured from 1496
to 1526 at the university of Bologna. By 1500, he discovered the method of solving the cubic equation
but did not publish it. Tartaglia rediscovered the method in 1535.

4 Casus irreducibilis (Lat.) = “the nonreducible case”.

Mathematical Supplement 8.4
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this case was the French politician and mathematician Vieta.> He proved by using
trigonometry that this case was solvable too, and that in this case the equation has
three real roots.

Trigonometric solution of the irreducible case: Since p is negative in this case,
one starts from the reduced cubic equation

¥ —py+q=0, (8.58)

where p must now be kept fixed as absolute numerical value. According to the trigono-
metric formulae we have

cos3a = cos(2a + a) = cos 2a cosa — sin 2« sin«

= (coszoc — sinzoe) cosa — 2sin® o cosa

3 .2 22

=cos a — sin“acosa — 2sin“ @ cosa

3 2 2

=cos’a — (1 —cos“a)cosa — 2(1 — cos“ ) cos &

3 3

=cos’a — cosa + cos® @ — 2cosa + 2 cos’ a

—4cos’ o — 3cosa,
thus,

3 1
cos’ o — 7 cosa — 7 cos3a =0. (8.59)

If one considers cosa to be unknown, (8.59) coincides with the form of (8.58). But
since the value of the cosine varies only between the limits —1 and +1, while y, ac-
cording to the values of p and ¢, can take any values, one cannot simply set cosa = y.
By multiplying (8.59) by a still uncertain positive factor o>, one obtains

0° cos?

3 1
o — —Q2 -ocosa — —93 cos3a =0. (8.60)
4 4
By setting o - cosa =y, p = (3/4)0?, and g = —(1/4)0> cos 3, (8.60) turns into
(8.58). From this, we find

—5. [P
Q_z/; (8.61)

and

4 —4 2
cos3a = — 4 = el a/ (8.62)

o3 B-(p/AVPB . Jp3)

Equation (8.62) is ambiguous, since the cosine is a periodic function. One has

3a=¢+k-360°, where k=0,1,2,3,.... (8.63)

5 Frangois Vieta, French mathematician, b. 1540, Fontenay-le-Comte—d. Dec. 13, 1603, Paris. Ad-
vocate and adviser of Parliament in the Bretagne. His greatest achievements were in the theory of
equations and algebra, where he introduced and systematically used letter notations. He established
the rules for the rectangular spherical triangle which are often ascribed to Neper. In his Canon math-
ematicus, a table of angular functions (1571), he emphasized the advantages of decimal notation.
[BR]
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From this, we find for o Mathematical Supplement 8.4
% @ o 4 o
06125, 052=§+120, a3=§+240

Compare this consideration with the problem of cyclotomy! Which values are ob-
tained forx if k = 3,4, ...7
For y, one obtains

V1 =2\/§cos§, y2=2\/§cos<§ + 1200),
y3= 2\/§cos(§ + 240°>.

Now

cos £+120° = —Cos 6O°—g
3 3

and
q) (o} o (p
— +240° ) =— 60 =1,
cos( 3 + ) COS< + 3)

so that the roots of the cubic equations are

p @
=2 /=cos—,
=25 39%3

P 4
=-2 /= 60° — = |, 8.64
=2 Te(or ) 5o

[P o, ¢
=-2 /= 60° + — .
y3 3cos( +3>

Comment: The formulas of the casus irreducibilis can also be derived by means of
the Moivre’s theorem.

Example: Calculate the roots of the equation

y> — 981y — 11340 = 0.
Solution: Since p <0 and

® (2)

2 2
(%) — 56702, log(%) —2.10g 5670 = 7.5072,

=3273,  log = 3-log327 =7.5436,
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Mathematical Supplement 8.4 by comparing the logarithms it follows that |(p/3)?| > (¢/2)?. Thus, the condition of
the casus irreducibilis is fulfilled. According to (8.62)

5670

V3273
log cos 3a = 3.7536 — 3.7718 = 9.9818 — 10,

cos3a = +

0 =3a ~16°30/, hence, g —a=5°30.

From (8.64), we obtain y; = 36, y» = —21, y3 = —15. Check the root values by in-
sertion!



Fourier Series

When setting the initial conditions for the problem of the vibrating string, a trigono-
metric series was set equal to a given function f(x). The expansion coefficients of
the series had to be determined. To solve the problem, the function f(x) should also
be represented by a trigonometric series. These trigonometric series are called Fourier
series.! The conditions that allow an expansion of a function into a Fourier series are
summarized as follows:

(1) f(x) is defined in the interval a < x < a + 2I,

(2) f(x) and f’(x) are piecewise continuous on a <x < a + 2,

(3) f(x) has a finite number of discontinuities which are finite jump discontinuities,
and

(4) f(x) has the period 2/, i.e., f(x +2I) = f(x).

These conditions (Dirichlet conditions) are sufficient to represent f(x) by a Fourier
series:

fx)= ?O Xz:(an cos — +b sin g) ©.D

L Jean Baptiste Joseph Fourier, b. March 21, 1768, Auxerre, son of a tailor—d. May 16, 1830, Paris.
Fourier attended the home Ecole Militaire. Because of his origin he was excluded from an officer’s
career. Fourier decided to join the clergy, but did not take a vow because of the outbreak of the rev-
olution of 1789. Fourier first took a teaching position in Auxerre. Soon he turned to politics and
was arrested several times. In 1795, he was sent to Paris to study at the Ecole Normale. He soon
became member of the teaching staff of the newly founded Ecole Polytechnique. In 1798, he be-
came director of the Institut d’Egypte in Cairo. Only in 1801 did he return to Paris, where he was
appointed by Napoleon as a prefect of the departement Isere. During his term of office from 1802
to 1815, he arranged the drainage of the malaria-infested marshes of Bourgoin. After the downfall
of Napoleon, Fourier was dismissed from all posts by the Bourbons. However, in 1817 the king had
to agree to Fourier’s election to the Academy of Sciences, where he became permanent secretary
in 1822. Fourier’s most important mathematical achievement was his treatment of the notion of the
function. The problem of the vibrating string that had been treated already by D’ Alembert, Euler, and
Lagrange, and had been solved in 1755 by D. Bernoulli by a trigonometric series. The subsequent
question of whether an “arbitrary” function can be represented by such a series was answered 1807/12
by Fourier in the affirmative. The question about the conditions for such a representation could be
answered only by his friend Dirichlet. Fourier became known mainly by his Théorie analytique de la
chaleur (1822) which deals mainly with the discussion of the equation of heat propagation in terms of
Fourier-series. This work represents the starting point for treating partial differential equations with
boundary conditions by means of trigonometric series. Fourier also made import contributions to the
theory of solving equations and to the probability calculus.
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The Fourier coefficients a,,, b,,, and aq are determined as follows:

a+21
1 nmwx
a, = 7 / f(x)cosde,
a
a+21
1 . nmx
b, = 7 / f(x)sin de, 9.2)

a

a+21

1
ap = 7 / f(x)dx.

To prove these formulas, one needs the so-called orthogonality relations of the trigono-
metric functions:

21

0
21

. MTX . mMuX
f51n751n ] dx =16um, 9.3)
0
21

. nmx mix
/sm—cos dx =0.

l l

0

The first relation can be proven by means of the theorem

cosAcosB = (cos(A + B) + cos(A — B)),

| =

21

21
1 _
/cosﬂcosmnxdx:—/ cosw—i—cosm dx =0,
l 2 l l
0

[
0

if n % m. The integral of the cosine function over a full period vanishes. For n = m
we have

21 2
1 2
/cosm—xcosmnxdxz—/ 1 + cos nrx dx =1.
I l 2 I
0 0

The other relations can be proved in an analogous way.

Formula (9.2) for calculating the Fourier coefficients can be proved by means of
the orthogonality relations.

To determine the a,, one multiplies the equation

o0 o0
aop nwx . nmwx
f(x)=7+ ElancosT—i— ElbnsmT
n= n=
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by cos(mmc /1) and then integrates over the interval O to 2/:

2 2
/ fx) cos 20 co l dx + Zan / cos % cos mjlrx dx
0 n=l 9
21
mmx
by — d
—i—; /sm Cos ; X

and therefore,

21
1 mmx
=7 f(x)cos dx
0

as is given by (9.2).
The analogous relation for the b, can be confirmed by multiplication of (9.1) by
sin(mmx /1) and integration from 0 to 2/; the same holds for the calculation of ag.
Functions that satisfy

9.4

fx) = f(=x)
are called even functions; functions with the property
fx)=—f(=x)

are called odd functions. For instance, f(x) = cosx evidently is an even function and
f(x) =sinx an odd function. The part of (9.1)

is obviously even, while
oo
. nmx
b, sin -

n=1

represents the odd part of the series expansion (9.1). Therefore, for even functions all
b, =0, for odd functions a¢ and all a, are equal to zero.

Any function f(x) can be decomposed into an even and an odd part. Thus, (f(x)+
f(—x))/2 is the even part and (f(x) — f(—x))/2 the odd part of f(x) =[(f(x) +
F(=x))/2+ (f(x) = f(=x))/2].

EXAMPLE |

9.1 Inclusion of the Initial Conditions for the Vibrating String by Means of the
Fourier Expansion

A string is fixed at both ends. The center is displaced from the equilibrium position by
the distance H and then released. From Fig. 9.1 we see that the initial displacement is
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Fig. 9.1. y [
H
-1 12 IS ox
given by
Hx l
2T, OSXSE,
,O = =
y(x,0) = fx) CH(—x) 1
—_— ., —<x<l
l 2

If we assume f(x) is an odd function (dashed line), we then obtain

[
2
by = Y/f(x)sin?dx

0
/2 I
2 2Hx . nmx 2H . nmX
=- sin—dx+ [ —({ —x)sin——dx |,
l [ l [ [
0 12
12
/ 2Hx . nmx d 2H ) nmwx n 12 . nmwx 12
——sin——dx=—| —x—cos sin
l l l nw l n2m? I

2IH . nm HI nmw
= ——58ih— — —Cos —
nmw n

l
2H
/—(1 —x)sin@dx

l
1/2
nH I I
= /lsin@dx—/xsin@dx
l l l
12 12
2H 12 nwx xl nwx 1?2 nmx !
= ——C0S —— + —cos — sin
l nm l nm l l’l27T2 l 1/2

2IH . nw [H nmw
= ——5 SIN — + —COS —~
nemw nm

b, = %<21—Hsinﬂ 2l—Hsian>
1\ n?n2 2 n?xn? 2
8H . nm
=17 sin -
By inserting the solution for the Fourier coefficient b, into the general solution of
the differential equation (8.15), we get the equation that describes the vibrations of
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a string: Example 9.1
o0
8H . nm\ . nmx nmct
1) = ——— sin — | sin —— cos
v 1) nZ:l<n2n2 2) " l
8H (1 . nx wct 1 . 3nx 3wt
= —|[ — sin— cos — — — sin —— cos
72\ 12 [ l 32 l l
+ 1 . S5mx Smct
— sin —— coSs - ).
52 l [

Thus, by plucking the string in the center one essentially excites the fundamental
mode (lowest eigenvibration) sin(wx/I) cos(mwct /). Several overtones are admixed
with small amplitude. The initial displacement obviously corresponds to the funda-
mental vibration. If one wants to excite pure overtones, the initial displacement must
be selected according to the desired higher harmonic vibration (compare Fig. 8.3).

EXERCISE ]
9.2 Fourier Series of the Sawtooth Function
Problem. Find the Fourier series of the function

fx)=4x, 0<x<10, withperiod 2/=10, [=5.

Solution. The Fourier coefficients are

10
= 40,

10
1 2,
apg=— | dxdx =—-x
0
1

0 10 10
1 nwx 4x niwx 4 . nmwx
a, =— [ 4xcos—dx =—cos——| — — | sin——dx
5 5 nmw 5 0o nmw 5
0
20 nx |'°
=0+ ——-cos—| =0,
+ n2r? 5 1o
10 10 10
4 . NTX 4x nwx 4 nwx
b,=- [ xsin—dx=——cos——| + — | cos—dx
5 5 niw 5 |y nmw 5
0
40 20 . onmx 10 40
=+ —=—=sin—| =——.
nw  nlm? 5 1o nw
Hence, the Fourier series reads
40 X 1 nwx
=20— — —sin —.
£ — ) sin—

n=1
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Fig. 9.2. 1)

404
3 s,

2(5\i ‘\Q)//Sz

t

-
5 10 X

The first partial sums S, of this series are drawn in Fig. 9.2. A comparison of this
series with the starting curve f(x) illustrates the convergence of this Fourier series.

EXERCISE |
9.3 Vibrating String with a Given Velocity Distribution

Problem. Find the transverse displacement of a vibrating string of length / with
fixed endpoints if the string is initially in its rest position and has a velocity distribu-
tion g(x).

Solution. We look for the solution of the boundary value problem

f;% 262%, 9.5)
where y = y(x, t), with

y(0,1) =0, y(,1)=0,

¥(x,0) =0, %y(x’t)'t:o = g(). ©.6)

We use the separation ansatz y = X (x) - T (¢). By inserting it into (9.5), one obtains

"

X -T=c*X"T or —(x)—i(t) 9.7)
- X et ’

Since the left-hand side of (9.7) depends only on x, the right side only on ¢, and x and
¢t are independent of each other, the equation is satisfied only then if both sides are
constant. The constant is denoted by —A2.

X// _ 5 T _ 5
—=—A" and —— =-—A",
X 2T

or, transformed,
X" 422X =0 and T +42122T =0. (9.8)
The two equations have the solutions

X =A|cosix + BysinAx, T = Ay cosAct + By sinct.
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Since y = X - T', we have Exercise 9.3
y(x,t) = (A1 cosAx + By sinAx)(Ajpcos et + By sinict). 9.9)

From the condition y(0, t) = 0, it follows that A(A;cosict + B sinict) = 0. This
condition is satisfied by A; = 0. Then

y(x,t) = By sinAx(Aj cos Act + By sinict).
We now set
B1Ar =a, B1By =0,
and it follows that
y(x,t) =sinAx(acosAct + bsinAct). (9.10)

From the condition y(/, ) = 0, it follows that sin Al = 0. This happens if

niw
M=nm or A:T. 9.11)
Here, n = 1,2, 3,.... The value n = 0 which seems possible at first sight leads to

y(x,1) =0 and must be excluded. The relation (9.11) is inserted into (9.10). The
normal vibration will be labeled by the index n:

. nITX nimct . nmct
yn(x,t):smT<an COST-i—bn sin 7 ) 9.12)

Because y(x,0) =0, all @, =0, we have

nmwx . nmuct

ya(x,t) =by, sinTsm ; (9.13)
By differentiation of (9.13), we get
0 t
n :bnn_yrc sinnn—xcos nre 9.14)
ot [ [ l

For linear differential equations, the superposition principle holds, so that the entire
solution looks as follows:

o0

0 b t
8_)1‘] = Z nnlc " sin n7ltx cos nygc ) 9.15)
n=1
Because
0 (x,1) (x)
—y(x, =g(x),
aty t=0 §
it follows that
ad nmweh, . nmx
g)=Y_ sin ——. (9.16)

l [

n=1
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Exercise 9.3

Fig.9.3.

The Fourier coefficients then follow by

1

nmwcehb, 2 . nmXx
=— [ g(x)sin—dx 9.17)
l [ [
0
or
5 l
by = — [ g(x)sin 22X dx. 9.18)
nmc l
0

By inserting (9.18) into (9.13), we obtain the final solution for y(x, ¢):

00 1

2 ! t
Y1) = Z<— / g(x')sin ”’;x dx’) sin —’”l” sin 7. 9.19)
nic

l
n=1 0

EXERCISE |

9.4 Fourier Series for a Step Function

Problem. Given the function

£0) 0, for —5<x<0, i0d 27 = 10
= €I10 = .
* 3, for 0<x<5 pert
(a) Sketch the function.
(b) Determine its Fourier series.
Solution. (a)
0, for —5<x<0, . _
fx)= {3’ for 0<x<5 period 2/ = 10.
S(x)
— 3 A
© 15 10 -5 5 10 15 x
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(b) For period 2/ = 10 and [ =5, we choose the interval a to a + 2/ to be —5 to 5,
ie,a=-5:

a+2l 5
1 nwx 1 nwx
ap = — / f(x)cos—dxz—/f(x)cos—dx
l l 5 l
-5

a

0 5 5
1 nwx nmwx 3 nwx
= - (0)cos——dx+ [ 3cos——dx ¢ == | cos—dx
5 5 5 5 5
-5 0 0
3(5 . nnx))
=—y—sin——-| =0 for n#0
S5\nm 5 1o

For n = 0, one has a, = ap = (3/5) ;) cos(0wx/5)dx = (3/5) [ dx =3.
Furthermore,

1a+21 ! 5
b, = - / f(x)sin@dx:—/f(x)sin@dx
[ l 5 l
-5

a

0 5 5

1 3
== /(O)sin@dx+/3sin@dx Z—/Sin@dx
5 5 5 5 5
3 5 nrx\ |
=z| — 7 C0s—(—— = —(1 —cosnm).
S5\ nm 5 o nm
Thus,
3 o 3
f(x)=§+’§E(l—cosnn)sin(me),
ie.,

£00) 3+6 ,nx+1,371x+1,571x+
X)=—+—|sin— +-sin— +=-sin— +--- |.
2 5 3 5 5 5

EXERCISE |
9.5 On the Unambiguousness of the Tautochrone Problem
Problem. Which trajectory of the mass of a mathematical pendulum yields a pen-

dulum period that is independent of the amplitude?

Solution. We consider Fig. 9.4. From energy conservation, we have

m,
Esz(y) + gmy =mgh (9.20)

Exercise 9.4
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Exercise 9.5

or

s(y)=+2g(h—y). (9.21)

From this, one can calculate the period by separation of the variables:

| T/4 s(h) h (ds/dy)d
s/ay)ay
Tro / di = / / (9.22)
4 J v2g(h oS V20— »
Using the variable u = y/ h, (9.22) changes to
1
T (ds/d d
T / s/dy)Vh “. (9.23)
4 V2g(1 —u)
0
We now require that 7 be independent of the maximum height /:
47 0 forall h (9.24)
— = or all A. .
dh

Thus, we get from (9.23) (s' =ds/dy)

1
d / s’/ hdu
0

1
ds’
—p~ 12 «/E—):O for all h. (9.25
dh ] gd—n /«/72 T-n <2 SN orall h. (9:25)
0

With the condition that we keep the dimensionless variable u = y/h constant, we can

rewrite the derivative with respect to & as a derivative with respect to y,
ds’  uds' ds’ y 9.26)
— =——=u—=us", .
dh  d(uh) dy

and thus, we can transform (9.25) into

1
1
s +2ys"y—==0 forallh. 9.27
0/ 8g(1_u)( )7 927)

Any periodic function f (u) satisfying fol f () du = 0 can generally be expanded into
a Fourier series:

f)="Y" [y sin@mmu) + by cos2mmu)] . (9.28)

m=1

Therefore, from (9.27) it follows that

1 VBeh(T—u) —
5t s = YO0 SN () in@rmu) + by cos@rmu)
2y 2y

—_

m=

\/W Z( sin(an%) +bm cos(an%)). 9:29)
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This holds for all values of /. The left-hand side of (9.29) does not contain /; therefore,
the right-hand side must be independent of % too. This holds only for a,, = b,, =0

(for all m), as we shall prove now.
To have the right-hand side of (9.29) independent of /2, we must have

i[a sin<2,,mz> +b cos<2nmz)] __constant - (y/h)h'/?
! n)o N D)

m=1

or
o0 . u R\
mgl[am sin(2rwmu) + by, cosQRamu)] = ﬁ EC.

By integrating (9.31) from O to 1, we obtain

BE O f 4112

O: C dM:__C,
/8¢ , V1 —u 3./8¢g

(9.30)

9.31)

(9.32)

thus, C = 0. (This reflects the fact that u/+/1 — u cannot be expanded into a Fourier

series a la (9.31).)

Inserting this result C = 0 again into (9.30), we have a,, = b;,, = 0Vm, and thus,

from (9.29)

S/

i
— =0.
s +2y

From this, one finds by integrating once

s// 1 / dS :ée_(l/z)lny —

J— —_— s = —

g
glo

so that we have to solve

ds_\/7 1
dy V2.

This is the differential equation of a cycloid.?

(9.33)

(9.34)

(9.35)

(9.36)

2 See W. Greiner: Classical Mechanics: Point Particles and Relativity, 1st ed., Springer, Berlin

(2004), Problem 24.4.

Exercise 9.5



The Vibrating Membrane

We consider a two-dimensional system: the vibrating membrane. We shall see that the
methods applied for the treatment of a vibrating string can be simply transferred in
many respects.

The membrane is a skin without an elasticity of its own. The stretching of the
membrane along the edge leads to a tension force that acts as a backdriving force on a
deformed membrane.

Let the tangential tension in the membrane be spatially constant and time indepen-
dent. We consider only vibrations with amplitudes so small that displacements within
the membrane plane can be neglected.

10.1 Derivation of the Differential Equation

We introduce the following notations: o is the surface density of the membrane, and
the membrane tension is 7 (force per unit length). Let the coordinate system be ori-
ented so that the membrane lies in the x, y-plane. The displacements perpendicular to
this plane are denoted by u = u(x, y, ).

To set up the equation of motion, we imagine a cut of length Ax through the mem-
brane parallel to the x-axis, and a cut Ay parallel to the y-axis. The force acting on
the membrane element Ax Ay in the x-direction is the product of the tension and the
length of the cut: Fy = T Ay. Analogously for the y-component we have F, =T Ax.

The surface element Ax Ay is pulled by the sum of the two forces. If the membrane
is displaced, the u-component of this sum acts on it.

From Fig. 10.1, we see

F, =T Ax(sing(y + Ay) —sing(y)) + TAy(sin? (x + Ax) —sin®(x)). (10.1)

Since we restrict ourselves to small amplitudes and angles, the sine can be replaced
by the tangent. For the tangent we then insert the differential quotient, e.g.,

ou
tanp(x,y + Ay) = 5(}6, Y+ Ay),

i.e., the partial derivative with respect to y at the point y + Ay.
Equation (10.1) then takes the form

ou au au ou
Fy=TAx| —(,y+Ay)— —x,y) | +TAy| —(x + Ax) — —(x,y) ).
ay ay ox ax
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Fig.10.1. The vibrating mem- (a)

brane seen in perspective (a), u(x,y)
various cuts through the mem-

brane (b), and from the top (c)

(by) (b,)
A A

' TAx sin @(y+Ay)

' TAy sin 9(x+Ax)

TAx sin @(y) VTAy sin ¥(x)

y y+Ay y x x+Ax X
(c)
\
Y TAx
+AY b A
Y+Ay = y
— AX —
y oo TAy- I TAy
. TA:x
X X+Ax x'

Moving the product T Ax Ay to the left side, one has

a a
ﬁ@J+Aw—ﬁ@Jy+%u+Amw—%uyv

F,=TAxA
u * y( Ay Ax

We replace the area AxAy of the membrane element by Am /o, where Am is its
mass, and o0 = Am/AxAy is the mass density per unit surface. Turning now to the
differentials, Ax, Ay — 0, we find

x4+ Ax,y) — S (x,y) 9%

li —
Pesiivy Ax 9x2 (x. )
or
P TAm 9%u n 9%u
Y0 e \ax2 9y )

With this force, we arrive at the equation of motion

A 9%u TAm 9%u n 9%u
m—=T—\|—+— .
012 o \0x%2  93y?

With the abbreviation 7' /o = ¢* and the Laplace operator, one obtains

1 9%u



10.2  Solution of the Differential Equation

This form of the wave equation is independent of the dimension of the vibrating
medium. If we insert the three-dimensional Laplace operator and set u = u(x, y, z, t),
(10.2) also holds for sound vibrations (u then represents the density variation of the
air). c¢ is the propagation velocity of small perturbations (velocity of sound)—similar
to the case of the vibrating string.

10.2 Solution of the Differential Equation: Rectangular Membrane

We will now solve the two-dimensional wave equation (10.2) for the example of the
rectangular membrane.

We have the boundary conditions which mean that the membrane cannot vibrate at
the boundary: u(0, y,t) = u(a,y,t) =u(x,0,t) = u(x, b,t) = 0. To solve the equa-
tion, we again use the product ansatz

u(x, yvt) = V(x’ y) : Z(t),

by means of which we first of all separate the space variables from the time variables.
Normal vibrations are of this type. All points x, y (mass points) then have the same
time behavior. This is typical for eigenvibrations. By insertion into the wave equation,
we obtain

Z() _ 1AV
zZ@  Vy)

Here, one has a function of only the position equal to a function that depends only on
the time. Thus, this identity is only valid if both functions are constants, i.e., unchang-
ing with respect to space and time. The constant that equals these functions is denoted
by —w?, the quotient w?/c? by k2.

One then has

3
E = —a)z, (103)

AV (x,y) ) R

SYY ke k=Y 10.4

V(x,y) c? (10H

We can at once write down the general solution of (10.3):
Z(t) = Asin(wt + §).

If we had selected a positive separation constant, i.e., +w? in (10.3), the solution
would have been Z(r) = e*®. This means that the solution would either explode
with the time (eT*") or fade away (e~'). The negative separation constant in (10.3)
obviously guarantees harmonic solutions.

In order to separate the two space variables, we use a further separation ansatz:

Vix,y)=Xx)-Y(y).
Insertion into (10.4) yields

Y82X +X82Y + kXY =0
ax2 9y?2 -

135
y
b
membrane
/
0 a X

Fig.10.2. A rectangular mem-
brane
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From this, it follows after division by X (x)Y (y) that

1 32X (x) 1 3%Y(y) 2_o k2—“’2
X(x) 9x2 Y(y) 9y? o T

Here again, a function of x equals a function of y only if both are constants.
We split the constant k2 into

2 2 2
K=k + ky
and thus obtain

1a°x 12y o,

Xoz - e yar R

Therefore, one has

3°X

ooz TKIX =0, solution: X (x) = A sin(kex +81),
X

P’y 5 , _ .

9y2 +kyY =0, solution: Y (y) = Azsin(kyy +82).

By multiplying the partial solutions and combining the constants, one obtains the com-
plete solution of the two-dimensional wave equation:

u(x,y,t) = Bsin(kyx + 81) sin(kyy + 82) sin(wt + §).

10.3 Inclusion of the Boundary Conditions

With the given boundary conditions for u, we obtain

u(0,y,t) = Bsind; sin(kyy + 82) sin(wt + 6) =0,
u(x,0,t) = Bsin(kyx + §1) sin§; sin(wt + §) = 0.

Both equations are only satisfied for all values of the variables x, y, ¢ if
sind; = sindp = 0,

which is for example correct for §; = d, = 0.
From this, we obtain the other boundary conditions:

u(a,y,t) = Bsin(kya) sin(kyy) sin(wt + §) =0,
u(x, b, t) = Bsin(k,x) sin(kyb) sin(wt + 8) = 0.

From considerations similar to those above, we find
sin(kya) = sin(kyb) =0,

! One of the two separation constants kf or k§ could in principle be chosen to be negative, so that

e.g., kf - k% = k2. In this case we would get ¥ = AekrY + Be %", and the boundary conditions
u(x,0,t) =u(x, b, t) =0 could be satisfied only by A = B =0.
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from which we get
kya=nym, kyb=nym, with ny,n,=12,....

The values n, =ny, = 0 must be excluded, since they lead to u(x, y, ) = 0—as for
the vibrating string.
Now we have

2 2
2 2 2 2 T 2 T
R OF

and because w =k - ¢, we find for the eigenfrequency
2 2
nx ny
w, C=cCTy = + =
Mxity V a2 b2

10.4 Eigenfrequencies

Thus, the eigenfrequencies of the rectangular membrane are

2 2
_ ny n)’
Wpyn, = CTT 2 + B2

where the lowest frequency is the fundamental harmonic:

/1 + 1
W11 =CTT4| —= -

For the string, we have w, = nwi, i.e., the higher harmonics are integer multiples
of the fundamental frequency. This is no longer valid in the two-dimensional case.
Contrary to the harmonic frequency spectrum (w, = nwi ) of the string, the membrane
has an anharmonic spectrum (wy, ., 7 nwi).

10.5 Degeneracy

If in the special case of a square membrane, the edges have equal length, a = b, then
it follows that

V ni +nj ct2

w, ;= w11 wi] = .
Nyny ﬁ ’ a

The table of the ratios wy,n, /w11 for several values of the “quantum numbers”
ny,ny of a square membrane shows (see Table 10.1) that for different pairs of “quan-
tum numbers” there exist the same eigenvalues, i.e., there are different possible eigen-
vibrations with the same frequency. Such states are called degenerate. For a square
membrane which is symmetric with respect to the meaning of the x- and y-coordinate,
all states nyny arranged symmetrically with respect to the main diagonal of the table
are degenerate.
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Table 10.1. The ratio wp,n, /w11 as a function of ny and ny

ny\ ny 1 2 3 4
1 1.00 1.58 2.24 2.92
2 1.58 2.00 2.55 3.16
3 2.24 2.55 3.00 3.54
4 2.92 3.16 3.54 4.00

The degeneracy is removed at once if a # b. Generally degeneracies appear only
in systems with definite symmetries.

We further recognize that the square membrane contains a fraction of harmonic
overtones (diagonal elements of the table).

10.6 Nodal Lines

At the points where the position-dependent part of the wave motion vanishes, the
string has a node, and the membrane correspondingly has a nodal line.

The position-dependent part reads
NyTX . NyTTy

sin .
a b

sin
Then for ny =2 and ny, = 1 we have

. 2nx |, wy
sin — sin — =0
a b
as the condition for a nodal line.
Away from the edges this condition is still satisfied for the straight line x = a/2,
which represents a nodal line for (n,,ny) = (2, 1). In general all straight lines of the

form

xX=— y=— m=12,...,m<ny; n=12,..., n<ny)

are nodal lines.

10.7 General Solution (Inclusion of the Initial Conditions)

The general solution of the wave equation for the rectangular membrane, since it is a
linear differential equation, is obtained as a sum of the particular solutions (superpo-
sition principle):

o o0

. NxTX | NyTTy |

u(x,y,t):é chx,,ysm p sin 3 31n(conx,,yt+<pnxnb‘,).
ny=lny=1

We now can evaluate the ¢, ny and the ¢, ny from the initial conditions
ulx,y,t =0)=ug(x,y),
u(x,y, t =0)=vo(x,y).
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n.=1 2 4
a
a 4
ny a 2 3a
b b b
a
a 4 4
3a
2 2 T
b b b
2 2 2
a
a 4
a 2 3a
4 T
b b 3 b b 3 b b 3
4 2 4 4 2 4 4 2 4
For ¢ = 0, the general solution and its time derivative read as follows:
> NyTTX nymwy
uo(x,y) = Z Cnyn, Sinwnxny - sin xa -sin }b )
ny,ny=1
> NyTTX nywy
_ . X . y
vo(x,y) = Z OnonyCnyny COSPp,p, - SIN - sin o
ny,ny=1
We redefine the constants:
Anxny = Cnyn, Sin@nxnya (10.5)
ann)- = WnynyCnyny, COSPnyn, - (10.6)
The above equations then change to
> NyTTX nymwy
_ . X . y
up(x,y) = Z Apyn, sin P sin , (10.7)
ny,ny=1
> NyTX nymwy
vo(x,y) =Y By, sin——— sin = (10.8)

a
ny,ny=1

The coefficients Anx,l)_ and By, n, can be determined by means of the orthogonality

relations. These read

Fig. 10.3. Nodal lines of sev-
eral eigenvibrations
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L NxTX . NyTTX
sin sin dx =abj n,,

a a

‘“b (10.9)
. NyTy . nymwy

/s1n b sin b dy:bz?;,y,,y.

~b

We assume (10.7) to be continued across the borders as an odd function, multiply
(10.7) by sin(n,mx/a), and integrate over x from —a to a. Next we multiply by
sin(nymwy/b) and integrate over y from —b to b:

//uo(x y)sm
nymy
= /fuo(x y)sm Y sin b dxdy

dxd

00 a _ b _
YTTX . NyTTX . AyTy | nymwy
Z neny /sm sin — dx[sm Y=~ gin -2 dy
a a b b
—a -b

o
= > Ann,8i,n,a8iyn,b = abAi,i,.

ny,ny

Likewise, we treat (10.8) to evaluate the coefficients B, , . One then obtains

nxn) = //uo(x y)sm

nymy
nxnv: //vo(x y)sm sm 3 dxdy.

(10.10)

With the knowledge of the A,,Xny and B, , ,» One now can calculate the Creny and @nony
from (10.5) and (10.6).

10.8 Superposition of Node Line Figures

In the case of degenerate vibrations of the membrane, there can also appear node lines
that arise by superposition of the node line figures of the degenerate normal vibrations.

As an example we consider the position dependence of the degenerate normal vi-
brations of the quadratic membrane

. mTx . 2wy |, . 2mx . wmy |
U1y =sin — sin —=sinwiot and wup] = sin —— sin —— sinw»f. (10.11)
a a a a
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For the superposition of the two normal vibrations, we write
u=ui2+ Cuyy.

The constant C specifies the particular kind of superposition. The equation of the
nodal line is obtained from u = 0. The common numerical factor sin w2t = sinwo;t
obviously factors out. For the special case C = £1, we find

.mx . 2wy . 2wx . my
sin — sin —= £ sin ——sin — =0
a a a a

or, rewritten,

L Tx . Ty Ty TX
sin — sin — | cos — Fcos — | =0. (10.12)
a a a a

By setting the bracket equal to zero, we get the equations for the two nodal lines:
y=x for C=—-1 and y=a—x for C=+I.

Fig. 10.4 illustrates the nodal lines.

Y U, y Uy, y "

a a a 127 Uy

a

2 Uy + Uy,
a X a/2 a X a X

We recognize that new vibrations with new kinds of nodal lines can be constructed
by superposing appropriate normal vibrations. One can excite such specific superpo-
sitions of normal vibrations by stretching wires along the nodal lines (right figure) so
that the membrane remains at rest along these lines.

10.9 The Circular Membrane

In the case of the circular membrane, it is convenient to change from the Cartesian
coordinates to polar coordinates, i.e., from u = f(x, y,t) tou =¥ (r, o, t).
For this recalculation, we have

X =rcose, y:rsin(p’
tan(pzz, r=+x2+y2 (10.13)
by
For the transformation of the Laplace operator, we need the derivatives

d a
—r:£:COS(p, —r:X=sin(p. (10.14)
ox r dy r

By differentiating the tangent, we get

ot at d 1 0
ang _ otang o¢ %__2. (10.15)
dx dp 0x cos?g dx x2

Fig. 10.4. Nodal lines for de-
generate eigenvibrations

~0

S

PO
=

Fig. 10.5. Circular membrane
(drum)
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By inserting the polar representations for x and y, one gets d¢/dx = —(sing)/r. The
corresponding differentiation of tan ¢ with respect to y yields d¢/dy = (cos¢)/r. To
get the two-dimensional vibration equation in polar coordinates, we first transform the
Laplace operator A(x, y) to polar coordinates A(r, ¢). The differential quotients are
interpreted as operators.

We demonstrate the calculation for the x-component; the recalculation of the
y-component then runs likewise. According to the chain rule, we have

d a or 9 d¢

—_—=— 10.16
dx  Or dx * e ap ax ( )

After insertion of the above results, we obtain

ad d sing 9
— =cosp— — —.
ax ar r ag

(10.17)

We square this result, taking into account that the terms act on each other as operators.
(The square of an operator means double application.)

92 9 19 9 19 (10.18)
—= = | COSQ— —SInNnY — — COSp— —SIme—— 1. .
9x2 Yor "~ g Cor - Ao

By multiplying out, one first gets the four terms
92 9 9 sing 8 sing 9
— =|(cosp—-cosp— | + —_——
932 or or r de r 0¢

a si ad i d d
— | cosp— - e 7)o (Mne 2 -cosp— ). (10.19)
or r 0@ r ¢ I

We now treat the individual terms according to the product rule:

< d d > , 97
CoOsS@| — -cosp— | =cos” p—
d ar

or?’

sing [ 0 smgo 8 sm<pcosg0 0 +sin2<p 92
dp 1 g r2 9¢?’

ar r 2 e r or dgp’
sm 0 singcosg 0 0
90 2, pcosg 3 3

<8 sing 8) _cosgsing 9 cosgsing 9 9
cosp| — - _
sing [ 0
—~cos<p .
r dp or

From this, one obtains

92 2 92 +sin2<p d . 92 +2sin<pcos<p d d 9
— =Cos" 9— r—+— — = —r—=).
9x2 Yor r2 or  0¢? r2 dp 0@ or

Analogously, one gets for the y-component

92 .9 92 cosle( 9 n 92 2singcosg [ 9 a 0
— = r—t — | -———r——).
or = 9¢? r2

r
o ¢ or
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By adding both expressions, we obtain the Laplace operator in polar coordinates:

2 9?2 2 19d 1 9d°
- A= 10.20
0x2 + 9y? or? + ror + r2 9¢? ( )

The vibration equation then takes the following form:

Pur,o.t)  1ou(r, e, t) 1 3%u(r, e, l‘) 1 9%u(r, @, 1)
— — — . 10.21
ar? + r ar + r2 dgp? c? ot? ( )

The equation of motion is solved again by separation of the variables. We use a product
ansatz for separating the position and time functions:

u(r,o, 1) =V(r, @) - Z(1). (10.22)

By insertion into the wave equation, we obtain

v 19V 1 9%V 1 8%z
Z(t - |==Vv—=. 10.23
()( +r or +r2 8g02> 2 3r? ( )

We divide both sides by V (r, ¢) - Z(¢):

19V 1 8%V .
2 +rer Tt 252 1 Z(t)

ror T a2 (10.24)
V() 2 Z(0)
As a separation constant, we choose
sz 2 (10.25)
c-T
and introduce the angular frequency w by
w = ck. (10.26)
From this, we get
Z4+0*Z=0 (10.27)
with the solution
Z(t) = Csin(wt + 8). (10.28)

By insertion of the constant —k?, the equation of motion takes the form

82V+18V+ 1 5%V +k*V =0 (10.29)
arz rar  r?op? o '
We separate the radial and angular functions by a second product ansatz:

V(r,¢) =R(r)-¢(¢). (10.30)

Hence, we obtain
d*R + LdR
ar? rdr

kK =0. 10.31
R() +¢(<o>+ (1031
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We separate the variables by multiplying by r:
2042 2 2 2
d°R/d dR/d d<¢/d
PR LrARJAD 2,2 L0040 (10.32)
R(r) ¢ (p)

Here again, the equation is valid only then if both functions are constants. Hence, we
choose

Ld¢ (10.33)
——— =—o0, .
¢ dg?
from which one obtains as a solution for ¢ (¢)
¢ (@) = Ae!V7? 4 Be V¥
= Csin(mp +68) with m=4o, m=0,1,2,3,.... (10.34)

m must take only integer values to get the periodicity of the solution. At the angle
21 + ¢, the solution must be identical with that for the angle ¢. This fact is often
described by the phrase periodic boundary conditions.

Now we can admit—without restricting the problem—only positive m, since with
negative m only the sense of rotation angle is inverted.

Thus, the equation of motion for the radial function R looks as follows:

,d*R  dR

2.2 _
rﬁ—krw—l-krR—UR—O
or
d*R 1dR m?
— +— 4 (K== )R=0. 10.35
dr2+rdr+( r2) ( )

We substitute z = kr, dr =dz/k. Then we get

,d*R  k*dR ,  mk?
=+ —— + [k - R=0,

dz2 ' 7 dz 2
d*R  1dR m?
d—z2+2d_z+<1‘z_2)R=°' (10.36)

In this form, the equation is called Bessel’s differential equation. This differential
equation and its solutions appear in many problems of mathematical physics.

10.10 Solution of Bessel’s Differential Equation”

The solution of our differential equation

2 2
(@)  1dg@) . (1_M_>g(z):0 (10.37)

dz? z dz 72

2 Friedrich Wilhelm Bessel, b. July 22, 1784, Minden—d. March 17, 1846, Konigsberg (Kaliningrad).
Bessel was first a trade apprentice in Bremen, then until 1809 an assistant at the observatory in
Lilienthal, and then professor of astronomy in Konigsberg and director of the observatory there. In
1838 he succeeded in measuring the annual parallax of the star 61 Cygni, thus becoming the first to
determine the distance to a fixed star. As a mathematician Bessel was best known for his investigations
on differential equations and on Bessel functions.
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cannot be found by integration. Approaches using elementary functions also fail. We
therefore try with the most general power series expansion:

g =" (Zanz"‘>. (10.38)

n=0

The separation of a power factor is not necessary, but will prove to be very convenient.
Since in the center of our membrane the vibration remains always finite, g(z) must
not have a singularity at z = 0. But since for z — 0 we have

g(2) ~ apz", (10.39)

for these physical reasons we must have > 0. To get a more general statement, we
consider the asymptotic behavior of Bessel’s differential equation for z — 0 for at first
arbitrary w.

We then can set as above

8(2) ~apz" (10.40)
and obtain by inserting:

wlp — D2 4zt =2 4 2t —m?h 7 = (e =D+ pn+ i mz)z“_2

~ (u2 —mHzF 2 =0, (10.41)

since for z — 0 we also have z> — 0. We thus have the condition
w>—m?=0. (10.42)
For the above-mentioned reasons, which are of a purely physical nature, it follows that
uw=m, méeNp. (10.43)

The constant m is itself an integer. To see this, we remind ourselves of the angular
dependence of the total solution, namely,

f (@) =sin(me + 5). (10.44)

Since after a full revolution we return again to the same point of the membrane, the
solution function must have the period 2. But this holds only then if m is an integer!
We now try to determine the coefficients of our ansarz

gm(@) =7"(ao+a1z+az>..), m=0,1,2,.... (10.45)
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For this purpose, we insert the ansatz in the Bessel equation. The individual terms of
this equation then have the following form:

d2
d—z§ = zm’z(aom(m — 1) +ay(m + Dmz +ay(m +2)(m + 1)z?
+az(m+3)(m+2)° +--),
ldg 5 2 3
gd—z—z (a0m+a1(m+1)z+a2(m+2)z +az(m + 3)z +)
g@) =2"(ao* + a1z’ + ),
2

m —
——g8@)=7" 2(—apm® — aym®z — aym*z® —azm*z> — - --).
z

The sum of the coefficients for each power of z must vanish, i.e., ap(m(m — 1) +
m —m?) = 0. Since the bracket vanishes, ag can be arbitrary.
For a;, we get

ai(m@m + 1)+ (m + 1) —m?*) =0,
aCm+1)=0, ie, a;=0. (10.46)

From the coefficient of z, it follows that

ar((m+2)(m + 1)+ (m +2) —m?) +ag =0
or

ar(dm +4) = —ay. (10.47)
Furthermore, we get

a3((m+3)(m+2)+(m+3) —mz) +a; =0,
a3(bm +9) = —a;, ie. a3=0. (10.48)

Generally, we find the condition equation
apia((m+p+2)m+p+1)+@m+p+2)—m?)+a,=0,

ap+2((m +p+ 2)? — mz) =—ap,

N —dp . —dp
S m+p+22—-m?2 (p+2Cm+p+2)’

api2 (10.49)

This recursion formula allows one to determine the coefficient a4, from the preced-

ing a,. Because a; = 0, it follows that all az,—1 vanish, i.e., in the series expansion
of the solution function there appear only even exponents. For these one obtains with

ag #0:

_ —azp—-2 _ —awm-2
2n(2m +2n)  2n2(m+n)’

aom (10.50)
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In the next step, we replace az,—» by az,—4 and obtain

e — +ax—4
2 (20 —2)(2m + 2n)(2m + 2n — 2)
= Gon—4 . (10.51)
22n(n — D22(m +n)(m +n—1)
By continuing this way, we can relate ap, back to ag. We obtain
(=1D"ao
a =
T =1 12" m ) m+n—1) - (m+ 1)
—1)"
I el (10.52)
221\ (m 4 n)!/m!
Thereby, we obtain the following solution functions:
() =a mvzﬁzh (10.53)
8miz 02 n'(m+n)'22" :

With the special choice ag - m! = 27", we obtain the Bessel functions:

= (2) L (2)
mi&) =13 L nim +m)!\2

o) n 2n+m
Z =D <Z> . (10.54)
= nl(m +n)!

The graph of the first Bessel functions is given in Fig. 10.6. We see that for large
arguments the Bessel functions vary like the trigonometric functions sine or cosine.
Now we can immediately write down the solutions of our differential equation:

Vin (r, @) = i Iy (k1) sin(me + 8m). (10.55)

-1/2

Fig. 10.6. Graphical represen-
tation of the lowest Bessel
functions
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The membrane cannot vibrate at the border r = a, i.e., the boundary condition reads
V(a,9)=0 forall ¢.

From this, we obtain the condition
Ik -a)=0,

from which the eigenfrequencies can be determined. For this purpose we must find the
zeros of the Bessel function:

2 4

Z Z
@) =1= 4 =0,
(10.56)
3 5
ho =245 120, et
2 16 384 ’

These zeros—except for the trivial ones for z = 0—can in general not be determined
exactly; they must be calculated by numerical methods. If we denote the nth node of
the function J,,(z) by z,(f"), we obtain the following table for the values of the first

Zm.

Table 10.2. Zeros of the Bessel functions.

m
n 0 1 2 3 4 5
1 241 3.83 5.14 6.38 7.59 8.77
2 5.52 7.02 8.42 9.76 11.06 12.34
3 8.65 10.17 11.62 13.02 14.37 15.70
4 11.79 13.32 14.80 16.22 17.62 18.98
5 14.93 16.47 17.96 19.41 20.83 22.22
6 18.07 19.62 21.12 22.51 24.02 25.43
7 21.21 22.76 24.27 25.75 27.20 28.63
8 24.35 25.90 27.42 28.91 30.37 31.81
9 27.49 29.05 30.57 32.07 33.51 34.99

Useful approximate solutions may also be obtained by considering the asymptotes
of the Bessel functions for z — oo. Then

I (@) — ,/mizcos(z - % - %) (10.57)

We give this without proof. A look to the graphical variation of the Bessel functions
shows the close analogy with the cosine function for large arguments.
From this one can determine zeros:

mx
cos(Zr(,’") -— = —) =0

2 4
_ mi b b/
= W gEmey
~(m) 4T antam— 1 (10.58)
=nr+———=0@ln+2m—-1)—. .
“n 2 4 4

A comparison of these values with the exact ones from Table 10.2 shows that particu-
larly for n large compared to m one obtains good approximate values:
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Table 10.3. Comparison of the exact zeros of the Bessel functions with those obtained from the
asymptotic approximation

0 -(0 5 -(5
D -
n=1 2.41 2.36 8.77 10.21
n=2 5.52 5.49 12.34 13.35
n=9 27.49 27.49 34.99 35.34

With the exact solutions z,(lm), the boundary condition is

1
klgm) ca= Z’(1m), k’(1m) — - .Zﬁlm).

For the eigenfrequencies, we get

c
oM™ =k . c= - Zi" = wy - 2. (10.59)

Thus, Table 10.2 also shows the values for the ratio a),(lm) /wo. By drawing all these
eigenfrequencies along an axis, one arrives at Fig. 10.7. The distances between the
individual eigenfrequencies are fully chaotic. Thus, we are dealing with extremely
anharmonic overtones. This is the reason why drums are badly suited as melodic in-
struments!

The general solution of the vibration equation is the superposition of the normal
vibrations. It now reads

u(r, ¢, 1) = Zc,gmn,,, (k™ r) - sin(me + &) - sin(w™r 4 8. (10.60)

m,n

In analogy to the Fourier analysis, the cf,’") can be found so that u(r, ¢,t) can be

adjusted to any given initial condition u(r, ¢, 0) or u(r, ¢, 0).
Finally, we want to get a survey of the nodal lines of the vibrating membrane. On
these lines we must have

. (ry @) = ™ T, (K™r) - sin(me + 8,,) = 0. (10.61)
Then we get nodal lines if either
I (k™) = 0; (10.62)

this is realized for

r=21_  i=1,2,....n—1; (10.63)

Fig. 10.7. Linear representa-
tion of the eigenfrequencies of
the circular membrane
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Fig. 10.8. Nodal lines of the
circular membrane

Fig. 10.9.

or if
sin(mg 4+ 6,,) =0, (10.64)
i.e., for angles

VT — &y,
p=——, v=1,2,...,m. (10.65)
m

For the first nodal lines, we get Fig. 10.8 (with 6, = 0).

Joycye
-0 O @
-© © ©

10.1 The Longitudinal Chain: Poincaré Recurrence Time

The equations of motion for a system with n vibrating mass points which are con-
nected by n + 1 springs of equal spring constant k read

mxX, =—kxi+k(xy —xy)

mx, = —k(x2 —x1)+ k(x3 — x2)

mis = —k(x3 —x2)+ k(x4 — x3)

: : (10.66)

miy,_1= —k(xp—1 —xp—2)+k(xp — x4—1)

mip —k(x, — xp_1)— kxy.

With
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this can be written succinctly as

mi = Ckr, (10.67)
where
-2 1
1 -2 1 x1
. 1 -2 1 X
C= o and r=| . |. (10.68)
1 -2 1 Xn
1 -2

With the ansatz
a
a
r=acoswt, a=| . |,
dap

we look for the normal modes:

(ké + ma)zﬁn) acoswt =0,
[

= f)n
@ (10.69)
mw? — 2k k
D, (w) = k mw? =2k k
Here,
1 0 0
. 0 1 0
En = .
0 0 1

represents the unit matrix.

For nontrivial solutions for a, the determinant D, (w) of the matrix f)n (w) van-
ishes. Furthermore, we use for the coefficients a an ansatz with phase é and y to be
determined.

a:=(aj=sin(jy —48), j=12,...,n). (10.70)
The evaluation of the line j yields
kaj_i + (mw* —2k)a; + ka1 =0,
ksin((j — 1)y —6) + (ma)2 —2k)sin(jy — &) +ksin((j + 1)y —48) =0,

= kcosy + (mw?> —2k) +kcosy =0,

2 k _ k .y
& w =2—(1—cosy), w=2,/—sin—. (10.71)
m m 2

Example 10.1
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Example 10.1

We know that the characteristic polynomial has n zeros:

k .
wi=2,/—sin%, i=1,2,....n. (10.72)
m

The boundary conditions ag = a,+1 = 0 must be satisfied. The first one requires that
sind =0, hence §=Im, [ €Z, and thereforewl.o.g./=0. (10.73)

From the second boundary condition, it further follows that
. in .
sinf(n+ 1y;))=0 = y = POEE forall ie{l,...,n}. (10.74)
n

We summarize the result for the ith eigenmodes:

ri (1) = (sin(ji> -coswjt, j = 1,2,...,n> (10.75)
n+1
with
2 /K i T (10.76)
w; = — S1n . .
! m 2n+2

The general solution of (10.66) is a superposition of the various eigenmodes, i.e.,
a vector r(¢) with the components x; (¢):

i
n+1

n
xj(t)= Z(Ci -cosw;t+b; 'sinw,-t)-sin<j-

), for j=1,2,...,n. (10.77)
i=1

The coefficients sin(jiz/(n 4 1)) are, according to (10.70), (10.73) and (10.76), the
components of the eigenvector to the ith mode, and since D, (w) is symmetric, the
latter ones represent an orthogonal basis in R”.

Xn: inl1 i . i n+18 (10.78)
sin sinf j—— ) = il .
n+1 jn—i—l 2 it

j=1

We explicitly check this relation in the following Exercise 10.2. We define the ortho-
normal eigenmodes a;:

a= 2 Ln(i 7Y =12 (10.79)
| = n+1 1 ']n—|-1 , J=1L4,...,n¢, .

or in detail

a; =

2 { i . 2mi nni}
s .

in ,sin L ...,sin
n+1 n—+1 n+1 n+1

The general solution can then be written as follows:

n
r(t) = Z(Ci cosw;t + b; sinw;t)a;. (10.80)
i=1
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The following interesting question arises: Let the system of n mass points (degrees
of freedom) at the time fy be at r(fp) = ro with the velocity 1(fp) = rp. The system
moves away from this configuration, but after a certain time 7 it can closely approach
the initial configuration and possibly return exactly into the initial configuration. We
call this time t the Poincaré recurrence time.> One looks for the difference between
the actual time-dependent state vector in the phase space (r(z),r(¢)) and the start
vector (rg, I|;=0):

&(r) =: \/Ilr(l) — 10l + [[£() — =0l (10.81)

The index €2 at the second scalar product for the velocities indicates a diagonal weight
matrix 2 which is suitably included into this normalization:

1
2
w7

Q
Il
M8N| =

; (10.82)

1

2
wy

w; are the eigenfrequencies. In this way the factors w; obtained by differentiation of r
in (10.80) cancel out. So it is guaranteed that both terms under the root in (10.81) have
the same dimension. We formulate with (10.80) the following initial value problem:

n
r(0) =rp= Zciai,

i=1

n
i-(O):l‘():O:Zbiaiwi = b; =0 forall i.

i=1

For this choice, the distance ¢(¢) in phase space, given by (10.81), is

e(t) = \/ro -To — 2rp - Zci cosw;ta; + chz cos? wit + chz sin? w;t . (10.83)
i i i

1

Because ro = ) ; ¢;a;, this turns into

n
e(t) = Zc?(l — 2cos it + cos® w; + sin® w;1)
i=1
=1

(10.84)

It is easily seen that this expression after t = 0 vanishes again only if the eigenfrequen-
cies w; are related by rational fractions. In the general case () is only conditionally

3 Jules-Henri Poincaré. See also footnote on page 461.

Example 10.1
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Example 10.1

periodic. This notion will be explained more precisely as follows: We first consider the
purely periodic case. The period is then determined by the lowest of the frequencies
that are related by rational fractions:

- .
wi =2, = sin 7. (10.85)
m 2n+2

We denote itby o =¢q - w1 (g € Z4),

5= 2. X sin—" z,/k il (10.86)
= — Sin =~ — . .
@ 1 m 2n+2 g m?2n—+2

The last approximation holds for n > 1 (many mass points). To this frequency corre-
sponds the time

2 % 1
_ AT _, |kl (10.87)
qo m q

T

This is the Poincaré recurrence time, since after this time e(¢) vanishes again, i.e.,
the initial configuration in the phase space is reached again after the time 7. For very
many mass points (n — 00), this time tends to infinity

T—>00, for n— oo. (10.88)

This is an important and physically plausible result: After preparation of an initial
configuration, the system develops with time away from this configuration. At some
time, just after the Poincaré recurrence time, the state of motion of the system returns
to the initial state (or in the general case very close to it). However, in the case of a
great many degrees of freedom, the system “escapes” and the recurrence time becomes
oo. For example, if one of the n masses coupled by strings—say, the first one—is being
pushed (this corresponds to setting of rg and 1), the energy of this motion will spread
more and more over the other masses. After the Poincaré time t the first mass will
have regained the entire energy. Only in the case of infinitely many coupled masses
will this no longer happen, since T — oo. This is of great importance for the statistical
behavior of systems of particles.

Addendum: Periodic systems with several degrees of freedom: Conditionally pe-
riodic systems. Let us define a periodic system with several degrees of freedom as a
system for which according to (10.83) the orthogonal coordinates used in the descrip-
tion are periodic functions:

Ir; = a; cosw;t. (10.89)

The quantities 7; = 27 /w; are the periods belonging to the coordinates x;. In analogy
to (10.77) and (10.80), we expand the general configuration vector r(z) in a Fourier
series

r(t) = Z(c,- cosw;t + b; sinw;t)a;. (10.90)

1
The Fourier series (10.90) is in general no longer a periodic function with respect

to the time ¢, although every individual term is periodic. The periodicity is assured
only for such degrees of freedom whose frequencies w1, wz, ... are related by rational
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fractions. Therefore systems with several degrees of freedom are called conditionally
periodic systems.

The number of frequencies which are related by rational fractions determines the
degree of degeneracy of the system. If there are no relations of this kind, the system
is non-degenerate. If all frequencies are rationally related to each other, the system is
called fully degenerate. In this case we observe a periodic time function.

The Kepler problem treated earlier is an example for a system with two degrees
of freedom (r, ¢) which is degenerate and thus has only one frequency. By inventing
a perturbation, say a quadrupole-like potential with the typical variation 1/r3, the
degeneracy can be removed, which causes a rosette-like motion.

As an example of a conditionally periodic motion, we note the anisotropic linear
harmonic oscillator, which is a mass point with different spring constants in the vari-
ous Cartesian directions. The trajectory of the mass point is a Lissajous figure which
never turns into itself and in the course of time tightly covers the area given by the
amplitudes. Only in the case of degeneracy there are periodicities in the motion.

In the discussion of the Poincaré recurrence time, we assumed a periodic motion.
In the case of a conditionally periodic motion, the situation is—as was expected—
completely analogous. In this case, after the Poincaré recurrence time t the configu-
ration vectors r(t), r(z) come very close to the initial configuration rg, ro. The initial
configuration will not be reached again, but will be reached “nearly” again after the
time t. For further discussion, we refer to the literature.

EXERCISE |
10.2 Orthogonality of the Eigenmodes

Problem. Prove the orthogonality relation for the eigenmodes

n
i I n+1
in( j in{ j = 8il, 10.91
S 1 s ) = (4 aas

1

which is explicitly used in (10.78) of the last example.

Solution. Proof of orthogonality of the eigenvectors:

n
. T . T,
dij = Zsm(zn n 1]) s1n(ln—+1]>

j=1
l o (k=D k+ D
—zg{mﬁf—mﬁ}-

Before continuing the exposition, we evaluate the sum of the following series:

1. (10.92)

Xn:cosk sin(xn/2)cosx(n +1)/2 _ cos(xn/2)sinx(n +1)/2
X = — B
k=1 sinx /2 sinx /2

This result is easily obtained by writing the cosine in terms of exponential functions
and then evaluating the sum as a geometrical series.

Example 10.1
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The case k = yields

1 e 2%k 1 cosk"—”lsinkrr 1
dix==|n—=" cos il==(n+1—-—2H ) =—m+1), (1093
e = 5 ; —)=3 in I S+ 1), (10.93)

since sinkmr = 0 for all k.

In the case k # [, we calculate the sums in both alternatives given in (10.92):

k—Dnn . (k=Dm k+Drn . (k+D7
g 1| cos ((n+i)2 sin % cos ﬁ sin % 1094
k=75 sin k=D - sin UtD (10.94)
2(n+1) 2(n+1)
. (k—=Dmn k—1)m . (k+Dmn k+0)
s o bpr ot oy ypr o
k=% sin U=D - sin UEDT (10.95)
2(n+1) 2(n+1)

The vanishing of dj;(k # ) is immediately seen from (10.94) for even k — [ and k + 1,
and from (10.95) forodd k — [/ and k + 1.

Supplement: Everything Happened Already—A Physical Theorem?

Near the end of the nineteenth century, many physicists discussed the hypothesis
that the course of the world repeats in eternal cycles. This interest was stimulated
mainly by the works of Henri Poincaré (1854—-1912). Also a philosopher like Friedrich
Nietzsche (1844-1900) was tempted by this theorem to a short guest performance in
physics. The first speculations along these lines originated from almost nonscientific
attempts to explain the phenomenon of heat. The Lord of Verulam (1561-1626), Fran-
cis Bacon, had already identified heat as a form of motion but had failed to construct
a quantitative theory. For lack of systematic investigations he had included the de-
velopment of heat in dung hills in his considerations. The topic attracted more and
more actors from physics, metaphysics, philosophy, politics and theology. We repro-
duce here two quotations from Poincaré’s works from this era. Henri Poincaré in 1893
wrote in “Review of metaphysics and morality”:

Everybody knows the mechanistic world view that tempted so many good people, and the vari-
ous forms in which it comes up. Some people imagine the material world as being composed of
atoms which move along straight lines because of their inertia, and change their velocity only
if two atoms collide. Other people assume that the atoms perform an attraction or repulsion
on each other, which depends on their distance. The following considerations will meet both
points of view.

It would possibly be appropriate to dispute here the metaphysical difficulties that are related
to these opinions, but I don’t have the necessary expert knowledge. Therefore I will deal here
only with the difficulties the mechanists met when they tried to reconcile their system with the
experimental facts, and with the efforts they made to overcome or to elude these difficulties.

According to the mechanistic hypothesis all phenomena must be reversible; the stars for
example could move along their orbits also in the opposite sense, without conflicting with
Newton’s laws. Reversibility is a consequence of all mechanistic hypotheses.

A theorem that can easily be proved tells us that a restricted world, which is governed only
by the laws of mechanics, will pass again and again a state that is very close to its initial state.
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On the other hand, according to the assumed experimental laws the universe tends towards a
certain final state which it never will leave. In this final state which represents some kind of
death, all bodies will be at rest at the same temperature.

The doubts provoked this way, accompanying the developing theory of heat based
upon an irreversible motion of atomic particles, have not yet been clearly removed.

A classical illustrative example of Poincaré’s “recurrence objection” is the parti-
tioned box, one half filled with gas which uniformly distributes over the entire box
after removal of the membrane. Experience tells us what happens, and an inversion of
this “irreversible process” is never observed in practice. But Poincaré did not think at
all of an inversion, but rather of the chance that brought the particles into the ini-
tially empty half. This chance—after some “appropriate time”—should also bring
them back again to the initial half.

In 1955, Enrico Fermi,* John Pasta,’ and Stanislaw Ulam® considered a problem
which corresponds to our Example 10.1, except for the additional inclusion of a non-
linear coupling term. Their interest focused on finding, by means of the first com-
puters, recurring processes such as we looked for in our purely linear problem. Sur-
prisingly, they found an almost perfect recurrence of the initial conditions after large
numbers of oscillations. The investigations and reflections of such properties of non-
linear wave equations continue to this day and have been introduced into the theory of
elementary particles (solitons).

4 Enrico Fermi, Italian physicist, b. September 29, 1901, Rome—d. November 28, 1954, Chicago.
Following studies in Pisa and research stays in Gottingen, Leiden and Rome, Fermi became a profes-
sor of physics in Rome in 1925. He built up a research group which achieved leading experimental
and theoretical results in nuclear physics. In 1938, Fermi was awarded the Nobel Prize in physics for
his work on radioactive elements created by neutron bombardment and nuclear reactions triggered
by slow neutrons. In the same year he left Italy, worked at Columbia University in New York and
finally became professor in Chicago. During the war, Fermi was involved in the Manhattan Project to
produce the nuclear bomb, and was the driving force in the development of the first nuclear reactor in
1943. Fermi did seminal work in both experimental and theoretical physics, contributing to statistical
mechanics, the general theory of relativity, and the theory of weak interactions.

5 John Pasta, American physicist and computer scientist, b. 1918, New York—d. 1984, Chicago.
Following different employments with police and the military, Pasta obtained a Ph.D. in theoretical
physics and joined the Los Alamos National Laboratory, where he worked in the group of Nicholas
Metropolis, constructing the MANIAC I computer. Later he became expert for computing with the
Atomic Energy Commission, and in 1964 professor for computer science at the University of Illinois
in Urbana-Champaign.

6 Stanislaw Marcin Ulam, Polish mathematician, b. April 13, 1909, Lemberg (today Lviv, Ukraine)—
d. May 13, 1984, in Santa Fé, New Mexico. Ulam was a student of mathematics with Stefan Banach
and contributed to measure theory, topology, and ergodic theory. In 1938 he came to the US as a Har-
vard Junior Fellow, and later joined the Manhattan project, on the intervention of John von Neumann.
Together with von Neumann, he developed the Monte Carlo method to solve numerical problems
using random numbers. Ulam suggested the functional principle of the first hydrogen bomb.



Part IV

Mechanics of Rigid Bodies




Rotation About a Fixed Axis

As we have seen in Chap 4, a rigid body has 6 degrees of freedom, 3 of translation
and 3 of rotation. The most general motion of a rigid body can be separated into the
translation of a body point and the rotation about an axis through this point (Chasles’
theorem). In the general case the rotation axis will change its orientation too. The
meaning of the 6 degrees of freedom becomes clear once again: The 3 translational
degrees of freedom give the coordinates of the particular body point, 2 of the rotational
degrees of freedom determine the orientation of the rotation axis, and the third one
fixes the rotation angle about this axis.

If a point of the rigid body is kept fixed, then any displacement corresponds to a
rotation of the body about an axis through this fixed point (Euler’s theorem). Hence,
there exists an axis (through the fixed point) such that the result of several consecutive
rotations can be replaced by a single rotation about this axis.

For an extended body the vanishing of the sum of all acting forces is no longer
sufficient as an equilibrium condition.

Two oppositely oriented equal forces —F and F that act at two points of a body
separated by the distance vector 1 are called a couple. A couple causes, independent
of the reference point, the torque

D=I1xF.

While the torque on a mass point is always related to a fixed point, the torque of a
couple is completely free and can be shifted in space.

The forces acting on a rigid body can always be replaced by a total force acting on
an arbitrary point, and a couple. This can easily be shown by the following example:
At the point Py, the force F; acts. Nothing is changed if we let the forces —F; and
F| act at O’. The force F acting on P; and the force —F acting on O’ represent a
couple, and there remains the force F| acting on O’.

If there are several forces acting, we combine them into the resultant force F =
>_; Fi. The torque is then givenby D=3, r} x F;.

An extended body is in equilibrium if both the total force and the total torque
vanish:

ZF,:O

i
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Fig. 11.1. A couple causes a
torque
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Fig. 11.2. The forces acting
on a rigid body are equivalent
to a total force and a couple

Fig. 11.3. Rotation about the
fixed z-axis with the angular
velocity @

and
Zl‘; XF,’ =0
i

(equilibrium condition at the point O").

For the calculation of the equilibrium condition, the origin of the vectors r; (refer-
ence point of the moments) is arbitrary. Actually, for the point O it follows that (see
Fig. 11.2)

>R=0
i
and

Zri xF,~=Z(a+r;)xFl~=axZF,~+Zr§ xF; =0,
i i i i

i.e., the condition that the sum of all forces and the sum of all torques must van-
ish.

11.1 Moment of Inertia (Elementary Consideration)

A rigid body rotates about a rotation axis z fixed in space. By substituting the angular
velocity v; = w - r; for the velocity in the kinetic energy, one obtains

1 215 1o o
T = Xl: Emiv[ = Ea) lZm,-r,- = 5@0) .
Analogously, for the angular momentum in z-direction we have
L,= Zmirivi = a)Zmiri2 =0BOw.
i i

Here, r; is the distance of the ith mass element from the z-axis.
The sum appearing in both relations is called the moment of inertia with respect to
the rotation axis. One has

®= Zmiriz.
i

To calculate the moments of inertia of extended continuous systems, we change from
the sum to the integral, i.e.,

@:/rzdm:/rzng,

body body

with o representing the density.
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For a spatially extended, not axially symmetric rigid body which rotates about the
z-axis, there can also appear components of the angular momentum perpendicular to
the z-axis:

L= varv XV, = varv X (w X 1y)
% v
= vaw(xv: Vv, Zv) X (=Yv, Xy, 0)
v
=Y (—XuZy, —WuZu, Xy + YD)y
v

Since the body is supported in such a way that the rotation axis is constantly fixed, in
the bearings appear torques (bearing moments) D = L. They can be compensated by
“balancing,” i.e., by attaching additional masses so that the deviation moments

- vazvmv and — Z YvZphiy
v v

vanish.

EXAMPLE |

11.1 Moment of Inertia of a Homogeneous Circular Cylinder

We determine the moment of inertia of a homogeneous circular cylinder with density o
about its symmetry axis. Adapted to the problem, we use cylindrical coordinates. The
volume element then reads dV =rdrdedz, and dm = 0 dV. The moment of inertia
about the z-axis is then given by

2

h R
0= / rzdngfdwfdz/rSdr;
0 0 0

cylinder

integration over the angle and the z-coordinate yields
R
® =2mho / rdr.
0

Integration over the radius yields

®= %hQR4 — o R*h = = ~MRZ.

R 1
2 72

Fig.11.4. A homogeneous cylin-
der rotates about its axis
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Steiner’s Theorem'
If the moment of inertia ®; with respect to an axis through the center of gravity S of
arigid body is known, the moment of inertia ® for an arbitrary parallel axis with the
distance b from the center of gravity is given by the relation
© =0, + Mb*.
If AB is the axis through the center of gravity and A’ B’ the parallel one with the unit
vector e along the axis, this can be shown as follows:
Oap = Zmu(l‘u x €)7, Opp = Zmu(r:; x €)7.
Vv v
B B The relation between r,, and r/, is given by Fig. 11.5. Obviously r}, = —b +r,, and
therefore,
Oap =Y my((-b+r,) xe)
v
=Y myl(-bx )+ (r, x &)’
v
A A

Fig. 11.5. On Steiner’s theo-
rem

- va(—b x €)2 +2va(—b xe)-(r, x e)+ Zmu(rv x €)>

= Mb2+@AB.

The middle term vanishes because
2(=b x e) - (var‘,) x e=0,
v

since S is the center of gravity and hence ), m,r, =0.
If for a planar mass distribution the moments of inertia ®,, ®,, in the x,y-plane
are known, for the moment of inertia ®,, with respect to the z-axis we have

O = Oxx + ®yy-

If r, = /x2 + y2 is the distance of the mass element from the z-axis, we have

2 2 2
O = mury =) muxy + ) muyy,
v v v

U Jacob Steiner, b. March 18, 1796, Utzenstorf—d. April 1, 1863, Bern. Steiner was son of a peasant
and grew up without education. He received his first education from Pestalozzi in Yverdon. Subse-
quently Steiner studied in Heidelberg, and then he served as a teacher of mathematics in Berlin; in
1834, he became an associate professor at the university there. Steiner is considered the founder of
synthetic geometry, which was systematically developed by him. He worked on geometric construc-
tions and isoperimetric problems. A peculiar feature of his work is that he almost completely avoided
analytic and algebraic methods in geometric investigations.
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ie.,

Oz, = Oy + Oy

EXAMPLE |

11.2 Moment of Inertia of a Thin Rectangular Disk

We consider the moment of inertia of a thin rectangular disk of density p. For the
calculation of the moment of inertia about the x-axis, we take as the mass element
dm = pady. We then obtain

b
2 b3 1 2
Oy = [ yaody =a0— = =Mb".
3 3
0

The moment about the y-axis follows likewise:
1
Oy, = = Ma>.
yy 3
From O, = O, + 0,,, we then get

1
0,, = 5M(a2 +b?).

X

The moment of inertia about a perpendicular axis through the center of grav-
ity is found, according to Steiner’s theorem, from the moment of inertia about the
Z-axis:

2 2\ 2 2, 32
a b a‘+b
O,=0 M — — =0 M ,
2z s + ( <2) +<2)> s+ 1

M 11
O =0 — Z(az'i‘bz)=M(a2—i—bz)(§ — Z)’

M
O, = E(a2 +b3).

Fig. 11.6. A rectangular pla-
nar mass distribution
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Mg

Fig. 11.7. A body of mass M
is suspended at the point P

11.2 The Physical Pendulum

An arbitrary rigid body with the center of gravity S is suspended revolving on an
axis through the point P. The distance vector F_’TS’ isr. Let ®¢ be the moment of inertia
of the body about a horizontal axis through P, and let M be the total mass. If the body
in the gravitation field is now displaced from its rest position, it performs pendulum
motions.

If the body is displaced, there is a torque

D:Zru X mug=Zmul‘u X g=Mr x g=—aMgsin ¢k,
v %

where K is a unit vector pointing out of the page in Fig. 11.7, and |r| = a. The angular
velocity is then

do
=+k—.
0=+ i

From the relation D = L, = ®pw, we then obtain

d*g d*¢ aMg
— Oor — +
dt? dt? ®p

—aMgsing = Qg sing = 0.

For small amplitudes, we replace sing by ¢. With the abbreviation Q2 =
JaMg/®g, we obtain the differential equation

d*¢
— + Q% =0,
azr Y

with the solution
@ = Asin(Q2t 4 §).
So one also obtains the period of the physical pendulum:

2 @0
T=—=2m .
Q Mag

Since for the thread pendulum (mathematical pendulum) we have T = 27./l/g,
it follows that both periods coincide if the thread pendulum has the length / =
®o/Ma.

If we replace the moment of inertia ®( by the moment of inertia ®; about the
center of gravity, then according to Steiner’s theorem we have

O, + Ma> ©
T=T(a)=27'r\/ s + Ma =2n\/ s 14

Mag Mag g

From this, it follows that the period becomes a minimum if the vibration axis is a
distance a = \/®;/M from the center of gravity. From this relation one can experi-
mentally determine the moment of inertia ®;.
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EXERCISE |
11.3 Moment of Inertia of a Sphere

Problem. Find the moment of inertia of a sphere about an axis through its center.
The radius of the sphere is a, and the homogeneous density is .

Solution. We use cylindrical coordinates (r, ¢, z). The z-axis is the rotation axis. For
the corresponding moment of inertia, we have

®=p / r2dv.
sphere

The center of the sphere is at z = 0. The equation for the spherical surface then reads

x2—|—y2+z2=a2 or r2+22=612.

We write out the integration limits:

27 a a?—z2
®=Q/dgo/dz f r3dr
0 —a 0
or
a /(12—22 a
_ 14 _T 2232
® =210 r dz=—po | (a” —z°)"dz.
4 ] 2
— —a
Integration over z yields
8 4 2
® = 5,9 —_ 3 2.
wa le 3na Qsa

Since the total mass of the sphere is given by M = (4/3)ma’, it follows that

EXERCISE ]
11.4 Moment of Inertia of a Cube

Problem. Calculate the moment of inertia of a homogeneous massive cube about one
of its edges.

Solution. Let o be the density and s the edge length of the cube. A mass element is
then given by

dm=90dV =pdxdydz.
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The moment of inertia about AB (see Fig. 11.8) is evaluated as
b4
S A A ) )
2 2 2 5 2 2
R ®ap=o0 (x +y)dxdydz:§gs :ng .
: y 000
~x SI[B

Fig. 11.8. Calculation of the
moment of inertia of a cube

Fig. 11.9. Rotation axes of the
suspended cube

EXERCISE |
11.5 Vibrations of a Suspended Cube

Problem. A cube of edge length s and mass M hangs vertically down from one of its
edges. Find the period for small vibrations about the equilibrium position. How long
is the equivalent thread pendulum?

gni:

Solution. The moment of inertia of the cube about AB is (see Exercise 11.4)

C) —2M2
AB—3 s

The center of gravity is in the center of the cube, i.e., for the distance a of the center
of gravity S from the axis AB we have

1
=_sv2.
a=gzs
The equation of motion of the physical pendulum for small angle amplitudes was
. Mga
¢+ =0
OaB

with the angular frequency

Mga

w =
Oas
and the period

2 ® 2Ms? .2 2
T:—”=27r AB _on L:zni‘/i —s.
w 3Mgsy/2 3g
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The length of the equivalent thread pendulum is calculated as Exercise 11.5

l
T=T =2n_[—,
8

which just defines the equivalence of the pendulums. By insertion of 7' one obtains

2
272 —£=2n i,
3g g

or resolved,
2
l = g\/ES ;

This equivalent length of the thread pendulum is also called the reduced pendulum Fig.11.10. Physical pendulum
length. and reduced pendulum length

EXAMPLE |

11.6 Roll off of a Cylinder: Rolling Pendulum

We consider a cylinder with a horizontal axis that can roll down an inclined plane.
The system has one degree of freedom; hence an energy consideration is sufficient.
The velocity of each point of the cylinder may be thought as being composed of the
velocity v; due to the translational motion and of the velocity v;, due to the rotation.
The energy of motion is then given by

Z%Vf:%V%va—i—Z VZU-I—Vl vavzv (11.1)

For a symmetric mass distribution, the last term drops out, and we have

® )
=, (11.2)

T = 24
—_V
)

2

i.e., the energy of motion is additive in translational and rotation energy. For the cylin-
der (with symmetric mass distribution) on the inclined plane we have

M, ©, .
?s +E¢) — Mgssina =FE (11.3)

(s measures the distance along the inclined plane). “Rolling off” without gliding
means that the axis always moves just as much as corresponds to the rotation of the
cylinder surface:

$=Rg,
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Example 11.6

Fig. 11.11. Rolling cylinder
on an inclined plane

where R is the cylinder radius. We thus obtain the equation

L+ 2)2 - mgssi E
= — — sina =
2 R2 N gssino ,
| (11.4)
§ = ———gsina.
‘T ilre/mrzM
The acceleration of the cylinder rolling off is smaller than that of a gliding mass point.
If the total mass of the cylinder is (approximately) concentrated on the axis, then

— =0, §=gsina,

and the acceleration is the same as for a gliding mass point. For a homogeneous cylin-
der, we have

2

C) .. .
= § = —gsina.
38

1
MR2 2’

For a hollow cylinder with all mass on the surface, we have

W:l, E:%gsina;
the acceleration is only half of that for a gliding mass point. If we fix a circular disk
concentric onto the cylinder, which extends beyond the base (like a wheel rim over the
rail), then ® /M R? > 1, i.e., the acceleration can be even lower.

An investigation of the force balance lets us elucidate this problem once again from
another point of view. At the point S, gravity acts and performs a torque with respect
to the point A (see Fig. 11.11)

Dj =Dyl =R Mgsina, (11.5)

while the constraints do not create a torque. The angular acceleration at the point A is
therefore

G Dy RMgsina 2g

_Da_ © 28 G 11.6
0, G/2MR: 3R (11.6)

F,= Mg cosa Mg
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The moment of inertia ® 4 of a homogeneous cylinder is easily found by means of
Steiner’s theorem. Since the moment of inertia with respect to the center of gravity is
©®y = MR?/2, it follows immediately that

3
Op=0, + MR> = EMR?.

If the cylinder rolls without gliding, for the linear acceleration of the center of
gravity, we find

|as|=|cb><rA|=d)R=§gsincx. 11.7)
The cylinder gets only 2/3 of the acceleration which it would get when gliding. Equa-
tion (11.8) is found from simple considerations: Since the instantaneous velocity of
the contact point A equals zero, one can consider A as instantaneously at rest. But this
means that the rigid body instantaneously performs a rotation about the contact point
A, with an angular velocity w. The velocity of an arbitrary point of the body is then
given by (see Fig. 11.11)

V=@ X Ty4.

Besides the gravitation force there acts the reaction force N (to balance the normal
component of Mg)

IN| =[Mgcosal, (11.8)

and the friction force Fy. The latter one is calculated from the balance

Mgsina + Fy = Ma (11.9)
and with (11.7),
: 2 . 1 :
—Ff:Mgsma—gMgsmoznggsma. (11.10)

Thus, the friction force acts opposite to the direction of motion. The condition for a
rolling motion of the cylinder is

|Ff| < uN, (11.11)

where w is the friction coefficient.
Since

1
N =Mgcosa and |Ff|=§Mgsina,
we have
1 .
|F¢l <puMgcosa or gMgsmozfuMgcosoz. (11.12)

That means that a rolling motion exists only for tano < 3pu.

Example 11.6
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b x

Fig. 11.12. Rolling pendulum

A cylinder with asymmetrical mass distribution, which under the influence of grav-
itation can vibrate by rolling on a horizontal base, is called a rolling pendulum. It
represents a system with one degree of freedom; the position of the rolling pendu-
lum can be specified by the rotation angle ¢ or by the coordinate x of the cylin-
der axis (measured perpendicularly to the axis, see Fig. 11.12). “Rolling off” means
that

X =Rg. (11.13)

Since there is only one degree of freedom, the energy law is sufficient for the de-
scription. The motion is composed of a translational and a rotational motion. When
applying (11.1), we have to account for the asymmetrical mass distribution. The ex-
pression Y _m,Vy,, as a momentum due to the rotational motion, can be calculated
by assuming that the total mass M is concentrated at the center of gravity, which is
located off the axis by the distance s: |s¢| is then the velocity |vy,| of this mass on
rotation, and m — ¢ is the angle between v and vj,. According to (11.1), we then
have

M., ©., . .
T:Tx +E<p —X-Msgcosg,

where © is the moment of inertia about the cylinder axis. With the condition (11.13)
for rolling follows

1
T:E(MR2+®—2MRSCOS¢))¢2. (11.14)

This expression can be interpreted also in a different way: If ®; is the moment of
inertia about an axis through the center of gravity which is parallel to the cylinder
axis, then according to Steiner’s theorem we have

© = O, + Ms?.
Equation (11.14) thus turns into
1 2,2 )
T = E[M(R + 5% —2Rscos @) + Ogle
or
1 2 )
T = E(Mr + @y)ﬁ() s

where r is the distance of the center of gravity from the contact line of the cylinder
with the base. According to Steiner’s theorem,

O, = Mr’> + 0,
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is the moment of inertia about the contact line which changes with time, and (11.14)
takes the form
®u )

2 ¥

T =
If we now abbreviate (11.14) by
T = %(B —2MRs cos <p)(,b2
and add the potential energy
U=Mgs(l —cosy),
we then get the energy law
1 .2
E(B—2MRscos<p)<p + Mgs(1 —cosp)=E. (11.15)

The equation differs from that for the physical pendulum (compare the section on
the physical pendulum). For small angles ¢, we obtain

Oug® + Mgse* = Mgsa®, (11.16)

where we replaced the arbitrary constant E by the arbitrary constant «. Equation
(11.16) is solved by

¢ =acos(wt +6), (11.17)
with
M M
=28 & (11.18)

©. MR21O_2MRs

In the limit of a symmetrical mass distribution (s = 0), one has w = 0. If the center of
gravity moves to the cylinder surface (s — R), then

»  MgR
o= .
Oy

If the mass is limited to a more restricted region, w becomes very large. If we imagine
that a part of the mass is shifted by an appropriate device to the outside of the rolling
cylinder (see Fig. 11.13) and that s is large compared to R, then the vibration turns
into the vibration of a physical pendulum.

T

Fig.11.13. Transition from the
rolling pendulum to the phys-
ical pendulum
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Fig. 11.14.

EXAMPLE |

11.7 Moments of Inertia of Several Rigid Bodies About Selected Axes
Figure 11.14 shows the moments of inertia of (a) a disk, (b) a cylinder, (c) a rec-

tangular plate, (d) a spherical shell, (e) a solid sphere, and (f) a cube about different
selected axes.

A { (a) Disk

0= MR
2 (b) Cylinder
%
MR’
— A
© 2
A (c) Rectangular plate
b b
a a ———
2 2 A
0= M[a—-’-b ] O=M _a’
12 12
(d) Spherical shell (e) Sphere A
A <>
YR

0=2MR’ 0=2 MR’

3 5

t/a/v (f) Cube
a
A
a ~— A
M : 2 2
a —_———

0= . 0= 3 Ma
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EXERCISE |

11.8 Cube Tilts over the Edge of a Table

Problem. A cube with the edge length 2a and mass M glides with constant velocity
vo on a frictionless plate. At the end of the plate, it bumps against an obstacle and tilts
over the edge (see Fig. 11.15). Find the minimum velocity vg for which the cube still
falls from the plate!

()

Solution. We look for the velocity vg for which the cube can tilt over its edge, as is
represented in (c). If it bumps into the obstacle at the edge of the plate, it is set into
rotation about the axis A. At the time of collision all external forces act along this
axis, and the angular momentum of the cube is conserved. Before hitting the obstacle,
the cube has—due to the translational motion—the angular momentum

L=|rxp|=p-a=Muvpa. (11.19)

Immediately after the collision, the angular momentum appears as rotational motion
of the cube

L =000 = Muvya,

or

_Mv()a
= o,

wo (11.20)
If the cube begins to lift off, the gravitational force causes a torque about the axis A
that counteracts the lifting process.

For the kinetic energy of the cube immediately after the collision, one has, for given
wo,

To= 002 = - . (11.21)

The potential energy difference between position a and position c is
AV =M(hy —h))g =M 2a —a)g = Mag(¥/2 — 1), (11.22)
and from the energy conservation law, immediately it follows that

1 M%v2a?
Mag(N2 —1)=-—0
ag( ) 2 e,

(11.23)

Fig. 11.15. Cube tilting over
an edge
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Exercise 11.8

Fig. 11.16. A hockey puck
hits a bar on a frictionless
plate

The moment of inertia of the cube ® 4 is easy to calculate:

2a 2a 2a

8
@A=Q/r2dV=Q/f/(x2+y2)dxdydz=gMaz. (11.24)
14 000

From (11.23), it follows that

2
1 Ma 5

ag(\/i— 1) = EWU(),

and from this, we find

voz‘/ag?(\/z—l). (11.25)

This is the correct result. We emphasize this because one could easily come to another
result by a false consideration: The kinetic energy is (1/2) M v(2), and from the energy
conservation combined with (11.22) it follows that

1
EMU(% = Mag(«/i— 1).

This leads to

vo =+/2ag(v/2 — 1), (11.26)

i.e., a value that is smaller than the correct result (11.25) by the factor 4/3/8. The
result (11.26) is wrong since the cube loses part of its kinetic energy in the collision
because of its inelasticity. The correct result (11.25) is based upon the conservation of
angular momentum, which acts “more strongly” than the conservation of energy.

EXERCISE

11.9 Hockey Puck Hits a Bar

Problem. A thin bar of length / and mass M lies on a frictionless plate (the x, y-plane
in Fig. 11.16). A hockey puck of mass m and velocity v knocks the bar elastically
under 90° at the distance d from the center of gravity. After the collision the puck is
at rest.

(a) Determine the motion of the bar.
(b) Calculate the ratio m /M, accounting for the fact that the puck is at rest.

y

A\
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Solution. (a) Since the collision is elastic, momentum and energy conservation hold,
where momentum conservation refers both to linear and angular momentum. The bar
acquires both a translational and a rotational motion from the collision with the puck.
Conservation of the linear momentum immediately leads to

Py = My, = mv, (11.27)

and the velocity of the center of gravity is

muv
b= (11.28)

Likewise, from the conservation of angular momentum it follows that
Ly =0O;0 =mvd =D, (11.29)

and for the angular velocity of the bar relative to the center of gravity,

d
wz#ﬂz, (11.30)
where
12
1
O, = 24V = —MI>.
A / ortav =
0

Thus, the center of gravity of the bar moves uniformly with v along the y-axis, while
the bar rotates with the angular velocity w about the center of gravity. Figure 11.17
illustrates several stages of the motion.

(b) The kinetic energy of the bar can be determined by means of the energy con-
servation law. Before the collision, the kinetic energy of the puck is

1
T = —mv?, (11.31)
2

while the kinetic energy after the collision consists of two components:

1 . .
T, = EM vs2 “translation energy of the center of gravity”

and
1 5 . P
T, = §®sa) “rotation energy about the center of gravity.
Since the potential energy remains unchanged, it immediately follows that
Lo _1 2.9 .2
T = 2mv =T, +T = 2(va + Ozw”)

or

2

Ml
mv? = Mv? + 70)2. (11.32)

Exercise 11.9

®
©)

D 1 |

Fig. 11.17. The motion of the
bar
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Exercise 11.9

Fig. 11.18. A cue pushes a
billiard ball

Insertion of (11.28) and (11.30) into (11.32) finally yields

,  mP? m*vid?(12)* M2

M=t T 1
=
M M2’
or
m 1

M~ 1+ 12(d/1)?

for the mass ratio. If the puck kicks the bar at the center of gravity, d = 0, no rotation
appears. In order to make the collision elastic, m = M must be satisfied.

If the puck kicks the bar at the point d = [/2, the collision is elastic only if M = 4m.
In this case the rotation velocity is w = 6mv/MI = 6vg/1.

EXERCISE ]
11.10 Cue Pushes a Billiard Ball

Problem. A billiard ball of mass M and radius R is pushed by a cue so that the center
of gravity of the ball gets the velocity vg. The momentum direction passes through the
center of gravity. The friction coefficient between table and ball is . How far does
the ball move before the initial gliding motion changes to a pure rolling motion?

Solution. Since the momentum direction passes through the center of gravity, the
angular momentum with respect to the center of gravity at the time # = 0 equals zero.
The friction force f points opposite to the direction of motion (see Fig. 11.18) and
causes a torque about the center of gravity

Ds=f-R=uMgR. (11.33)
The result is an angular acceleration of the ball, so that

P uMgR — uMgR  5pug

= =—— (11.34)
Oy (2/5)MR>2 2 R
Moreover, the friction force causes a deceleration of the center of gravity, i.e.,
f ngM
MCl_g:—f or asz—Mz—T. (1135)

as is the acceleration of the center of gravity.
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For the rotation velocity of the ball, one gets from (11.34)—after performing the

integration—
[ 5
w:/cbdt: JHs, (11.36)
2 R
0

The linear velocity of the center of gravity follows from (11.35)—again after
integration—as

vy = /as dt =vg — pgt. (11.37)

The billiard ball begins rolling when vy = wR, or

> 84R ‘ (11.38)
— 1 — = vy — .
ZMR 0— 8K
or when
7 2
vo=—pgr and r==22 (11.39)
2 T ng

The distance passed before rolling starts is obtained—by integrating (11.37)—as

t
2
t
s:/vsdtzvot—% (11.40)
0

and with ¢ from (11.39) finally as
2 2 2 2 2 12 2
s=2% _ Y% <_> =% (1141)
Trg 2ug\7 49 g

If the ball is kicked at a distance /& above the center of gravity, besides the linear
motion there appears a rotational motion with the angular velocity

Muvoh 5 voh
w= =——.
C) 2 R?

(11.42)

If h = (2/5)R, the rolling motion of the ball starts immediately. For 7 < (2/5)R, one
has w < vg/R, and for & > (2/5) R correspondingly w > vg/R; in the second case the
friction force points forward.

Figure 11.19 shows the change of vy and wR as a function of time for 7 = 0. If
vy = wR, the rolling motion begins, the friction vanishes, and then v; and w remain
constant.

Exercise 11.10
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Fig. 11.19. y
vs(wR) h=0
Vo _
5 |
=V
70 | vg=oR
5 1
OR = 5 l-lgt
0 . 2 Vo t
7 Ug

Fig. 11.20. The bar rotates
about the point A

EXERCISE |

11.11 Motion with Constraints

Problem. A bar of length 2/ and mass M is fixed at point A, so that it can rotate only
in the vertical plane (see Fig. 11.20). The external force F acts on the center of gravity.
Calculate the reaction force F, at the point A!

21

b
N
K
| o v_

95}
\_/

J

e

Solution. In order to determine F,, one calculates the torque D4 with respect to the
center of gravity of the bar, caused by F,.
The torque with respect to the fixed point A is

Dy=—-Fl=0,0, (11.43)
since the constraints do not contribute to D 4. The angular acceleration of the bar »
then follows from (11.43):

D Fl
oDa__FL (11.44)
Oy Oy

where © 4 is the moment of inertia of the bar with respect to A. Since the moment of
inertia ®; with respect to the center of gravity S is easily calculated as

l
1
o} :/gr2dv = ngz, (11.45)
-1
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one immediately gets for ® 4 by means of Steiner’s theorem
_ L. 2_ 40 0
O =0;+ Ml _3Ml + MI _3Ml . (11.46)

Equation (11.46) inserted into (11.44) leads to

Fl 3 F
—_— (11.47)
Oy 4 Ml

d):

Since (11.47) must be correct, independent of the point from which the torque is being
calculated, from the knowledge of the torque with respect to the center of gravity S,

Dy = —F,l, (11.48)

and hence of the angular acceleration

D, 3Fl  3F
s _ _2Fe 3% (11.49)
e, M2 Ml

one can calculate the reaction force F;., by comparing (11.47) and (11.49):

3 F 3F,

aMl - Ml

1
Fr:ZF

EXERCISE |
11.12 Bar Vibrates on Springs

Problem.

(a) Find the moment of inertia of a thin homogeneous bar of length L with respect to
an axis perpendicular to the bar.

(b) A homogeneous bar of length L and mass m is supported at the ends by identical
springs (spring constant k). The bar is moved at one end by a small displacement
a and then released.

Solve the equation of motion and determine the normal frequencies and normal
vibrations. Sketch the normal vibrations.

m, L

0

Solution. (a) If the bar is divided into small segments of length dx with the cross
section f, we have elementary volumes dV = f dx. Let o be the constant density of
the bar; then we have

Fig. 11.21. A bar is supported
by two identical springs
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Fig. 11.22. y
‘ f dx
4@ ~0 ) ——
I X
L L
2 2 1 3
Oa= [ ox“(fdx)=of [ x dnggfL .
0 0
Since m = g f L is the total mass of the bar, it follows that
1
Op=-mL>.
A 3 m
According to Steiner’s theorem, the moment of inertia about an axis through the
center of gravity is
Os=0, +m( L 2 S Oy= tmL?
= ml| — = —m .
AT 2 T 12
(b) Let b be the length of the spring before the motion (b is not the natural length
of the spring, because of the existence of the gravitation field), and x1, xo, x be the
lengths of the first and second spring, and the height of the center of gravity of the bar
at the time 7. Since the bar is rigid, we have x1 + x2 = 2x. Newton’s second law leads
to
mX = —k(x; —b) —k(xy — b)
or
mxX = —k(x| + x2) + 2kb.
The constraint condition leads to
" . 2k
mi =—-2kx+2kb = i=——(x-D>). (11.50)
m
We assume that there are only small displacements, so that sin ¢ &~ . Then
+ L s L s
Xy=x+ =10, xp=x—=0.
2 2 : 2
For the torque, we get
" k I 5 .
eY = _EL(XZ —x)) = _EkL ¥, since xp —x; =LV
Fig. 11.23.
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From (a) ® = (1/12)mL2, we conclude

. 6k
Y =——0. (11.51)
m
The solutions of (11.50) and (11.51) are
x=Acos(wit+ B)+b
and
¥ = C cos(wat + D)
with
12k 6k
wi=,— and wy=,—.
m m
The initial conditions at the time ¢t = 0 are
a a . .
x=b——, 0 =—, x=0, 9 =0.
2 L
Thus follows
b— a = Acos(B) + b,
B=D=0, 2
__a 0= —Aw; sin(B),
a ? 4 _ Ccos(D
c=2 7 = e
0= —Cw>sin(D),
and, hence,
a 12k a 6k
x=b— —cos,/ —t, ¥ = —cos,/ —t.
2 m L m
The normal modes are
2k
X1 =x1+x2=2b—acos,/ —t,
m
6k
X2 =X1 —Xp=—acos,/ —t.
m
S oy S | Be—

Fig. 11.24. The normal vibra-
tions



Rotation About a Point

The general motion of a rigid body can be described as a translation and a rotation
about a point of the body. This is just the content of Chasles’ theorem, discussed at the
begin of Chap. 4. If the origin of the body-fixed coordinate system is set at the center
of gravity of the body, one can separate the center-of-mass motion and the rotation
in all practical cases (compare Chap. 6, equations (6.4)—(6.8)). For this reason, the
rotation of a rigid body about a fixed point is of particular significance.

12.1 Tensor of Inertia

We first consider the angular momentum of a rigid body that rotates with angular  m, = pdr, ®
velocity @ about the fixed point O (see Fig. 12.1):

L= va(rv X Vy)

= va(rv X (@ X1,))
v Fig. 12.1. A rigid body rotates
with @ about the fixed point O

= va(wrf —ry(r, - ®));

the latter relation holds according to the expansion rule. We decompose r, and @ into
components and insert

L= Zmu((xs + )’5 + Z%)(wx, wy, w;) — (xywy + Yoy + Zvw7) (Xy, Yv, Zv))-

v

Ordering by components leads to
L= va(((x\% + )’5 + Z%)wx - xga)x — XpYrWy — xvszz)ex
v

+ ((xs + }’5 + Z%)wy - y\%wy — XpYyWx — Zv)’vwz)ey

+ ((XS + y\% + Z%)wz - Z%wz — Xy — YVvay)ez)-

W. Greiner, Classical Mechanics, 185
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Fig.12.2. The angular momen-
tum is in general not parallel
to the angular velocity @

Fig. 12.3. Possible rotation
points and coordinate systems
of the rigid body

For the components of the angular momentum one thus obtains

Ly= (Zmu()’g + Z%)>wx + <— vaxv)’V>wy + <_ vaxvzv>wm
=< vaxv)’v)wx <va(x +yv )C‘)y ( va)’vzv>wz,
( vaxvzu>wx (_vayuzv)wy+ <va(x5+y3))wz

The individual sums are abbreviated by

Ly =0, ,wy + Oxywy + Oy 0,
Ly =0y,0 +0y0,+ 0,0,

L, =00, + Oyhwy + 0,0,

or
L;L = E ®/wwv7
v

or, written in terms of vectors (matrix notation),
L=0 w.

The quantities ©,,, are the elements of the tensor of inertia O that can be written as a
3 x 3-matrix:

. Oxx ®xy Oy,
o=[e,, 6, o,
Oy ®zy O

The elements in the main diagonal are called moments of inertia, the remaining
ones are called deviation moments. The matrix is symmetric, i.e., ©,, = O,,. Thus
the tensor of inertia has 6 independent components. If the mass is continuously distrib-
uted, one changes from summation to integration for calculating the matrix elements.
For example,

Opy = —/Q(r)xde,
v

O = / oMy +z%)av,
\%4

where o(r) is the space-dependent density.

At each point Og, 01, 02, ... the tensor of inertia ® ,,, is different. At a fixed point 0
©®,, also depends on the coordinate system.

As follows from their definition, the ©,,, are constants if one selects a body-fixed
coordinate system. The tensor of inertia is however dependent on the position of the
coordinate system relative to the body and will change if the origin is shifted or the
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orientation of the axes is changed. The tensor of inertia is usually understood as the
tensor in a coordinate system with the origin in the center of gravity (center-of-mass
system). The corresponding principal moments of inertia (see Fig. 12.3) are corre-
spondingly the moments of inertia.

12.2 Kinetic Energy of a Rotating Rigid Body

Quite generally the kinetic energy of a system of mass points is

1 2
T = EXU:WLVUV.

We decompose the motion of the rigid body into the translation of a point and the
rotation about this point, so that v, =V 4+ @ x r,, and we obtain

1
T = Egmv(V—l-aoxrv)2

1 1
= EMV2+V~ (co X Xv:mvrv> + EXV:mv(w X r.,)z.

The first and the last term correspond to pure translational and rotational energy, re-
spectively. The mixed term can be made to vanish in two different ways.

If one point is fixed, and if we put it at the origin of the body-fixed coordinate
system, then V = 0. Otherwise the origin is put at the center of gravity, so that

Zml,rv =0.
%

The rotation point is in this case the center of gravity. We now consider the pure
rotation energy

T:%Xv:mv(wxrv)~(wxrv)=%Xv:mvar(rv X (@ X T))

1 1 1
= Ew ;mv(rv X Vv): Ew';r” X pv = Ew ;lv

Hence,
1
T=-w-L.
2

We can substitute the angular momentum L, = ZU Oy (1, v=1,2,3):

1 1 1
TzE“"LzEZM:“’“ZV:@“““’“ZEMZ;@“””“””' (12.1a)

Because ©,, = ©,,, the sum reads

1
T = E((f)xxa))% + (H)yya)i + (H)Zza)g + 20 ywywy + 20 0w, + 20, 0y0;).
(12.1b)
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Using tensor notation, the rotation energy reads
I+ =~
T=§a) -0 w. (12.1¢)

The vector @ on the right-hand side of the tensor © must be given as a column vector,
and on the left-hand side as a row vector:

1 Wx
Tzi(a)x,wy,wz)e) oy |. (12.1d)
w7

12.3 The Principal Axes of Inertia

The elements of the tensor of inertia depend on the position of the origin and on the
orientation of the (body-fixed) coordinate system. It is now possible for a fixed origin
to orient the coordinate system in such a way that the deviation moments vanish. Such
a special coordinate system is called a system of principal axes. The tensor of inertia
then has diagonal form with respect to this system of axes:

® 0 O
=10 ©, 0 or O, =0,5,. (12.2)
0 0 O3

For angular momenta and rotation energy in the system of principal axes, we have
the especially simple relations (w, are the components of the angular velocity @ with
respect to the principal axes)

Ly=Y 0p0,=) 0,8,0,=0,0, (12.3)
v v

1 1 1 s
T:Ew.Lzz;wﬂLM=§§®ﬂww (12.4a)

or written out,
1
T = 5(@)lwf + 0203 + O303). (12.4b)

Because of the tensorial relation L = Ow, the angular momentum and the angular
velocity have different orientations.

If the body rotates about one of the principal axes of inertia, e.g. about the p-axis,
® = we, then (because in this example @ = we,) according to (12.3) the angular
momentum L and the angular velocity  have the same orientation. The vector @ then
has only one component, @ = (0, w2, 0), if the rotation is about the second principal
axis. The same holds also for the angular momentum: L = (0, L3, 0). This property
of parallelism between the angular momentum and the angular velocity allows one to
determine the principal axes. The question is namely how to choose @ = {w1, w2, w3}
(about which axis must the body rotate), in order to get the angular momentum
L = Ow and the angular velocity parallel to each other, i.e., L = O, with ® a scalar.
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From the combination of the relations L = Ow (@ isatensor) and L = Ow (O is a
scalar), we obtain the equation

L=@-w=®w, (12.5)

which is an eigenvalue equation. In this equation, the scalar ® and the related compo-
nents wy, wy, wz, i.€., the rotation axis, are unknown. The equation physically states
that the angular momentum L and the rotation velocity @ are parallel to each other.
This is fulfilled for certain directions w that—as stated above—must be determined.
All values © that satisfy (12.5) are called eigenvalues of the tensor ©; the correspond-
ing vectors @ # 0 are eigenvectors.

Equation (12.5) is a shortened notation for the system of equations

Oy + Oxywy + Oy 0, = Ow,,

Oy wx + Oy 0y + Oy 0, = Owy, (12.6)
Oy + Ozywy + O 0, = Ouy,
or
(Oxx — O)y + Oxywy + Oy 0, =0,
Oyxwy + (Oyy — Owy + Oy w, =0, (12.7)

Oy + Oy + (O — O)w, =0.

This system of homogeneous linear equations has nontrivial solutions if its determi-
nant of coefficients vanishes:

Oun—-0 0 O
On 0,-60 0, =0 (12.8)
®zx ®zy ®zz -0

The expansion of the determinant leads to an equation of third order in ®, the char-
acteristic equation. Its three roots are the desired principal moments of inertia (eigen-
values) ®1, ®;, and ®3. By inserting ®; into the system of (12.5), one can calculate
the ratio o\ : @\ : @{" of the components of the vector ). Thereby the orientation
of the ith principal axis is determined.

Since one can find a tensor of inertia for any possible position of the body-fixed
coordinate system, there exists also a system of principal axes at each point of the

body. The orientations of these axes will however not coincide in general.

12.4 Existence and Orthogonality of the Principal Axes

In principle, it would be possible for the cubic equation (12.8) to have two complex
solutions. We therefore have to prove that a system of real orthogonal principal axes
generally exists.

In order to apply a shortened summation notation, we number the coordinates
(x =1, y =2, z =3) and denote them by Latin letters. Greek letters are indices for

the three different eigenvalues. We multiply the eigenvalue equation (12.5) for ®;, by
()

the complex conjugated of ;" and sum over i.

wm

Fig. 12.4. Special case: If w
is parallel to a principal axis,
then L is parallel to @

Fig. 12.5. General case: The
angular momentum L is not
parallel to the rotation veloc-
ity @
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The equation for the component i reads

Y Onw) =L = 0,0 (12.9)
This leads to
Y onw o =6, Zwm Y% — @00 . @)%, (12.10)

In the same way, we form the complex conjugated of the equation corresponding to
(12.9) for ®,,, multiply by w,(f), and sum over k:

Y ono =0,m, Z Of 0" = 0%, (12.11)

Now we utilize the property of the tensor of inertia to be real and symmetric. We have
O = O = @zi, and the left-hand sides of (12.10) and (12.12) are equal to each
other. We subtract (12.12) from (12.10):

(@5 — 0o - 0* =0. (12.13)

This equation allows two conclusions:

(1) Setting A = u, then for the eigenvalues of
(0 — 0HeW . eM* =0 (12.14)

follows the relation ®; = ©7, since the scalar product of two complex conjugated
quantities is positively definite.

We thus proved that ®, is real. Hence, any body always has three real principal
moments of inertia and therefore also three real principal axes . This is of
course physically clear from the outset, since the principal moments of inertia are
nothing else but the moments of inertia about the principal axes, and therefore
they are always real.

(2) We now consider the case A % w: Since all ®,, and therefore also all w, are real,
(12.13) reads

(05 — 0" 0™ =0. (12.15)

(a) If ®) # ©,, then o™ . 0™ =0, and therefore, ©* and 0™ are orthogonal.

(b) If, e.g., ®] = ©2 = O, i.e., if two of the three eigenvalues are equal, then
besides @) and @® all linear combinations of these two vectors are eigen-
vectors, too:

0 -0l = Owl, 0 - 0? =0p?
= 0 (V) +0?) = 0@V + pu?).
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Thus, we can arbitrarily select two orthogonal vectors from the plane spanned
this way and consider them as directions of principal axes. The third principal
axis is by (12.15) fixed orthogonally to the two other axes. If two principal
moments of inertia with respect to the center of gravity as rotation point are
equal, the body is called a symmetric top.

(c) If all three moments of inertia are equal (®; = ®; = ©3), then any arbitrary
orthogonal set of axes is a system of principal axes. If this holds with respect
to the center of gravity, the body is called a spherical top.

If a body has rotational symmetry about one axis, then we are dealing with case (b),
and the rotation axis is a principal axis. For other kinds of symmetries the symmetry
axis also coincides with the principal axis.

EXAMPLE |

12.1 Tensor of Inertia of a Square Covered with Mass

We calculate the tensor of inertia and the principal axes of inertia of a square covered y
with mass for a corner of the square. We put the square in the x, y-plane of the coor-
dinate system, as is shown in Fig. 12.6. The components of the tensor of inertia are M=ca®
obtained with z = 0 by integration over the area:

/ a X

ror ) 1 ) Fig. 12.6. The angular veloc-
O =0 / / yodxdy = gMa s ity @ is arbitrary; however, it
Z0x=0 passes through the coordinate

origin

a a

2 1 2

Oy =0 X dxdynga ,
y=0x=0

a a
2
@Zzzcr/ f(x2+y2)dxdy=§Ma2.

y=0x=0
Likewise,
a a 1
Oy =0y =—0 f / xydxdy = —ZMaZ.
y=0x=0

The remaining deviation moments contain the factor z in the integrand and therefore
vanish:

Thus, in the selected coordinate system the plate has the following tensor of inertia:
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1 1
Example 12.1 SMd® —Ma? 0
3 4
~ 1
O=| —-Mda*> -Md® 0
2
0 0 “Ma’®
3 a

We now calculate the orientations of the principal axes.
In accordance with the described approach, we first determine the eigenvalues of
the tensor of inertia. We introduce the abbreviation ©® = Ma?. Then we have the

determinant
1 1
g@()—@ —Z®() O
1 1
2
0 0 —By— 0
3
or
(@2 - g@06 + l®2> (%(90 - @) =0.
3 144 °)\3

The roots of this characteristic equation

1 7 2
O =§®0, @2:56)0, @3:56)0
are the principal moments of inertia with respect to the origin.
For the principal moment of inertia ®,, the orientation of the axis @) results from
the eigenvalue equation O™ =0,0™.
Written out for v =1,

1 1

0 ——09

3 4 RO RO
1 1 & 1 )

——@0 —@0 0 a)y = E@Q w
PR (D
2 Z Z
0 .ye)

0 3 0

By multiplying out, we get a vector equation; after splitting into the three compo-
nents, we obtain the three equations

1 1 1 1 1 1
@()a)( ) @0(1); ) = @()a)(Z ),

1 1 1 1 1 1
——@()a)( ) + —@()w; ) = —@()a);. ),

2 1 1 1

From this, it follows that

1 1 1
a);):a)() wg):O,

X 0
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and thus, the orientation of the first principal axis is

w 1 !
= —= — 1
0Dl =2\,

/
€}

LN #H

Analogously, we obtain for the two other directions

w? 1 (7! PRE)

0
ef=—— =—— 1 and e&,=——=10
27 10?) V2 0 37 03] )

Evidently, the principal axes are orthogonal to each other, as is demanded by the gen-
eral theory. For a rotation about the point O around one of the principal axes, the
angular momentum L is parallel to w, but in general the center of gravity then also
moves. Such a motion can be forced only by the action of a force. Thus it is no free
motion. Force-free rotations (shortly: free rotation) take place only about the center of
gravity. The principal axes moments or principal moments of inertia about the center
of gravity are the principal moments of inertia or principal axes of the body. In our
example the orientations of the principal axes coincide with those at the point 0.

12.5 Transformation of the Tensor of Inertia

We investigate how the elements of the tensor © behave under a rotation of the coor-
dinate system. The transformation of a vector under rotation of the coordinate system
is described by'

x = Ax

or
x;=zaijxj, (12.16)
J
or for the basis vectors

e =leijej, (12.17)
J

1 See W. Greiner: Classical Mechanics: Point Particles and Relativity, 1st ed., Springer, Berlin
(2004), Chapter 6.

Example 12.1

Fig. 12.7. The principal axes
for rotations about the point 0
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where the components a;; of the rotation matrix A are the direction cosines between
the rotated and the old axes. The inverse of this transformation reads

-~

x=A"'X or x=) ajx] (12.18)
j

The inverse rotation matrix (a~!) ij = (aj;) is found by exchanging rows and columns
(transposition), since the rotation is an orthogonal transformation which satisfies

Y aijaj =8k or Y aijai =5k (12.19)
j i
We require for the tensor of inertia that a vector equation of the form
Ly=)_ Ouo (12.20)
I
exists also in the rotated system:

L= 0} (12.21)
i

Thus, we can determine the transformation behavior of the tensor from the behavior
of the vectors. The vectors L and @ obey the transformation equation (12.18). If we
replace Ly and w; in (12.20) by the primed quantities, we obtain

Z O (Zaﬂw;) = ZajkL/j.
! J J

Multiplication by a;; and summation over k yields

Z(Z a,-kaﬂ@k,)w; = Z(Zajka,-k>L’j =Y &L =L;. (12.22)
J k.l j k i

For the components of ® follows by comparison with (12.21)

O = aixajiO. (12.23)
k,l

This transformation relation is the reason for denoting © as a “tensor” A fensor of
rank m is generally defined as any quantity which under orthogonal transformations
behaves according to the logical extension of (12.23) (summation over m indices),
e.g., a tensor of third rank

/!
ijk= Z aii/ajj/akk/Ai/j/k/, (1224)
i/,j/,k/

® is a tensor of second rank; a vector can because of (12.16) be considered as tensor
of first rank, a scalar accordingly as tensor of rank 0. One can easily memorize the
transformation law of a tensor: Each component of the tensor transforms as a vector
(see (12.16)).
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For the tensor of inertia, (12.23) can be more clearly represented in matrix nota-
tion:

@ =A04" (12.25)

This is a similarity transformation.

The matrices A (X —1) reduce to row vectors (column vectors) if we want to deter-
mine only the moment of inertia ®’; about a given axis €] from the tensor of inertia
Oy in the coordinate system e;. According to (12.23), the desired moment of inertia
0, is

/
®ii = Zaijailé')jl.
Jil

Now, according to (12.17), e; ={a1, aj2, a;3} is the vector e; in the basis e;. Hence,
the moment of inertia about the rotation axis e; =n = (n1, n,n3) can obviously be
written as follows:

T
On = Zaij®jlail = Zaij®jl(a i = an@)jlﬂl
il il Jil

n
= (n1,n2,13)0 [ ny | =n” - -n
n3
= Z@ijninj. (1226)
ij

This relation will be derived more clearly in the context of the subsequent equation
(12.33). It allows one to calculate the moment of inertia about an arbitrary rotation
axis n rather quickly.

12.6 Tensor of Inertia in the System of Principal Axes

If the three orientations of the principal axes €] = ') are selected as coordinate axes,
then

e, =we +0er + 0 e; = Z‘”j‘i)ej'
J

A comparison with (12.17) shows that in this case

)

aijj =a)j .

Hence, according to (12.23) the tensor of inertia in the system of principal axes reads

0, =Y ainajOu=> ool oy=>" o (Z @klwlm)' (1227)
k,l k.l k 1
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Fig. 12.8. n characterizes the
rotation axis

Since @ is an eigenvector of the matrix © with the eigenvalue ©;, according to
(12.5), we have

O =00 (12.28)

or, explicitly,
Z Ouw’ =00,
!
Therefore, (12.27) turns into
e = Zwl(ci)@jwl((j) =0, Zwl((i)wl((j) =000 . o)
k k

—0,8,. (12.29)

We thus used the orthonormality (12.16) of the principal axes vectors @®. The &
were assumed to be normalized, which is possible because of the linearity of the eigen-
value equation (12.28) with respect to . Equation (12.29) expresses the interesting
and important fact that the tensor of inertia in its eigenrepresentation (i.e., in the coor-
dinate system with the principal axes @) as coordinate axes) is diagonal and exactly
of the form (12.2). This was to be expected, but it is satisfactory to see how everything
fits together consistently.

12.7 Ellipsoid of Inertia

We define a rotation axis by the unit vector n with the direction cosines n =
(cosa, cos B, cos y). According to (12.26), the moment of inertia ® about this axis
is

Oxc Oy Oy cosa
© =0y =(cosa,cosB,cosy) | Ory Oy Oy cos B
Oy, By, O cosy

Multiplying out, we obtain

Op = Oy cos” o + Oy cos? B+0,, cos? y
+ 20,y cosacos f + 20, cosa cosy + 20, cos B cos y. (12.30)

By defining a vector g,, = n/+/®y, we can rewrite the equation as
®xe)2c + ®ny§ + ®ZZQ§ + 2®nyny +20y;0x0; + 2®yzQsz =1 (12.31)

This equation represents an ellipsoid in the coordinates (ox, @y, 0;), the so-called el-
lipsoid of inertia.

The distance o from the center of rotation 0 along the direction n to the ellipsoid of
inertiais o =1/ +/©. This allows us to write down at once the moment of inertia if the
ellipsoid of inertia is known. Each ellipsoid can now be brought to its normal form by
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a rotation of the coordinate system, i.e., the mixed terms can be made to vanish. We
then obtain the form of the ellipsoid of inertia

®107 + ©203 + @305 = 1. (12.32)

This transformation of the ellipsoid of inertia obviously corresponds to the transforma-
tion of the tensor of inertia to principal axes. This becomes clear by comparing (12.31)
and (12.32) with (12.1b) and (12.4a). The principal moments of inertia are given by
the squares of the reciprocal axis lengths of the ellipsoid. For two equal principal mo-
ments of inertia, the ellipsoid of inertia is a rotation ellipsoid, for three equal moments
a sphere.

There is also a physical approach to the ellipsoid of inertia which will be presented
now. Let n = {cos «, cos B, cos ¥y} be a unit vector pointing along the direction of the
angular velocity w, so that

® = wn = w{cosw, cos B, cosy} = wl{ni, ny, n3} ={wr, w2, ws}.

For the kinetic rotation energy, we then obtain according to (12.1a)

1
Trot = 5 Z Ojrw;wi
ik
1
= sz((ﬂn cos®a + 2 cos’ B+ O33 cos> y
+2012cosacos f+2013cosxcosy + 2023 cos fcosy)

1
= §®nw2.

®, denotes the moment of inertia about the axis n. Hence, the moment of inertia about
an axis with the orientation n is given by

On =01 cos®a + (OF%) cos? B+ BOs33 cos? y
+ 20 2cosacos B+ 2013cosacosy + 2023 cos fcosy.

This agrees with the already known result (12.30). With the coordinates ¢ =
n/+/®n = (01, 02, 03), we thus obtain the ellipsoid of inertia

O110} + 02203 + ©3305 + 20120102 + 20130103 + 20230203 = 1. (12.33)

The radius of the ellipsoid in the direction n is g = 1/4/®y.

Fig. 12.9. The ellipsoid of in-
ertia
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Fig. 12.10. The rigid body ro-
tates about the axis n: d, is the
distance of the mass m, from
the rotation axis

z

Finally, there is still a third approach to the ellipsoid of inertia: According to

Fig. 12.10, the moment of inertia about the axis n is given by

®Onp= vadf = vam X n|2.
v v

We check

€] €2 €3
ry Xn=| x, v ey
cosa cosfi cosy

= (ypcosy —z,cos B)e; + (z, cosa — x,, COSy)e)

+ (xycos B — y, cosa)es
and

dv2 =|r, x n|?

(12.34)

= (yyCcosy — z, COS /3)2 ~+ (zycosa — x,, cos )/)2 4+ (xycos B —yy cosa)?

= (yf + z%) cos® o + (xS + Z,z,)cos2 B+ (x,% + yf) cos® y

— 2Xx, Yy COS® COS B — 2x,,2), COSCL COS Y — 2,2y COS B COS ).

Inserting this into (12.34) immediately yields

@n = E @ijl/lil’lj,

iJ

i.e., again the known ellipsoid of inertia.

(12.35)

(12.36)

One should realize at this point that the ellipsoid of inertia for a given tensor of
inertia ®;; can immediately be written down and drawn according to (12.31). We
use this method of evaluating moments of inertia in an arbitrary direction in Exer-

cise 12.4.
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EXAMPLE |

12.2 Transformation of the Tensor of Inertia of a Square Covered with Mass

The tensor of inertia of the square covered with mass in the x, y-plane was given by
(compare Example 12.1)

1
-0 ——0 0
0 700
~ 1
=] —-0) =06 0
0 0 2@
390

The rotation of the coordinate system by ¢ = /4 about the z-axis must bring O to
diagonal form, because the angle bisectors of the x, y-plane, as was shown (compare
Exercise 12.1), are principal axes. The corresponding rotation matrix reads

V2 V2 0
cosgp sing 0 2 2
A=| —sing cosgp 0 |= V2 2
o o 1) [Tz 7 °
0 0 1
Obviously,
A-1=AT,

Performing the matrix multiplication yields in accordance with the former result

1
— 0O 0 0

12
S — a1 7
0 =A0A" = 0 EGO 0
2
0 0 §®0

EXERCISE |

12.3 Rolling Circular Top

Problem. Find the kinetic energy of a homogeneous circular top (density o, mass m,
height A, vertex angle 2«),

(a) rolling on a plane, and
(b) whose base circle rolls on a plane while its longitudinal axis is parallel to the plane
and the vertex is fixed at a point.

Solution. For the calculation of the tensor of inertia, we choose the coordinate system
so that the longitudinal axis coincides with the z-axis.
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Fig. 12.11. From the figure it
is seen that m = (1/3)7'th2Q,
R=nhtano, s = R/sinw

Fig. 12.12. Rolling cone

Obviously,

Orx =Q/(y2+z2)dV=Q///(rzsin2¢+z2)rdzdrd¢
14

2 R h
=Q/d<pfrdr f (r’sin® ¢ + %) dz
0 0 h(r/R)
T
= 0—hR*(R? +4h?),
2% (R™+4h7)

3
Oy = %mhz(tanza +4). (12.37)

For reasons of symmetry, we have

Oy = Oyy.
Likewise,
®zzZQ/(x2+y2)dV=Q///r3dzdrd<p
14
2 R h
3 T 4
=Q/d<ﬂ/r dr / dZ=EQhR ,
0 0 h(r/R)
3 2.2
O, = Emh tan” . (12.38)

Since the integrals over ¢ of xy = r?cos@sing, xz = rzcosg, yz = rzsing with

the limits O and 27 vanish, follows ©,, = ®,, = ©,, = 0. The adopted system is a
system of principal axes. We therefore set @] = 0, = 0y, O3 = O,.
(a) The kinetic energy in the representation of principal axes reads

T—l(~) 2 l@ 2 l@ 2 12.39
=3 1w1+2 2w2+2 303, (12.39)

Since we already know the principal axes of inertia and moments of inertia, it remains
only to express the motion of the cone by the corresponding angular velocities. The
momentary rotation of the cone happens with the angular velocity @ about a line of
support. We can express @ by ¢ by considering the velocity of the point B. On the one
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hand vp = ¢h cosa, and on the other hand vg = w - R cos «. From this, we find

h
=¢—. 12.40
»=¢5 ( )
¢ is the polar angle of the figure axis (or, equivalently, the tangential line) in the x’,y’-
plane; ¢ is the corresponding angular velocity.
A decomposition of @ in the system of principal axes, where w lies in the x,z-plane,
leads to wp =0 and

w3 =wcosa and | =sinca. (12.41)

For the kinetic energy, we thus obtain from (12.39)

1 2 1 2 1 2

13 13
=3 Z—Ornhz(tan2 o+ 4)a)% + 3 Emh2 tan” o

3 3

= Emhzw2 sin? oc(tan2 o+4)+ %mhch sin® o
3 in*

= 22?2 E L 6sin?a ). (12.42)
40 cos?a

If we replace w by (12.40) and employ R/h = tano = sin«/ cos «, then

=2 h2'2h2 R? + 6cos? R? 5 h%¢%(1 4+ 5cos’a). (12.43)
=—m — | —sin“« cos“a— | =-—m cos” ). .
20" Y R\ 2 n2) a0’
(b) The momentary rotation axis @ is again the connecting line between the fixed
vertex and the point of support. The relation between w and ¢ is likewise obtained by
considering the velocity of point A.

We have v4 = h - ¢ = wR cosa, from which it follows that v = ¢/ sin«. The pro-
jection of @ onto the principal axes yields

w] = wsina = @,
wy =0, (12.44)

w3 =wcosa = P—.
R

Exercise 12.3

Fig.12.13. x’, y’, 7’ labels the
laboratory system, x, y, z the
system of principal axes
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Fig. 12.14. Cone rolling on
the edge of its base

Hence, for the kinetic energy, it follows from (12.39) that

13 13
E%mhz(tan o —|—4)w1 + Eﬁmhz tanzaa)g
3 ,.,(R R n? 3 5., R?

mh*¢*( — +4+2— = —mh*¢*( 6+ — 12.45
=0 <h2+ TR ) T\t ) (12.45)

EXERCISE |
12.4 Ellipsoid of Inertia of a Quadratic Disk

Problem. Determine the ellipsoid of inertia for the rotation of a quadratic disk about
the origin, as described in Example 12.1. Find the moments of inertia of the disk for
rotation about (a) the x-axis, (b) the y-axis, (c) the z-axis, (d) the three principal axes,
and (e) the axis {cos45°, cos45°, cos45°}.

Solution. The ellipsoid of inertia reads

®0 @0 ®O 2@0
S0 00y T30+ el =1 (12.46)

(a) For rotation about the x-axis n = {1, 0, 0}, and thus ¢ = {1/4/®,, 0, 0}. Inser-
tion into (12.46) yields

Qy 1 O
A Oy =—,
3 0, = =7

as expected.
(b) Here, n = {0, 1, 0}, and following the procedure in (a), we find

(O
3
(c) Here, n = {0, 0, 1}, and following the procedure in (a), we find

0, =

2
®Z == g@()

(d) The third principal axis is identical with the z-axis, which corresponds to (c).
The first two principal axes are given by
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respectively. Therefore,

n 1 1
= = ) ’0
Q=8 T | Ve, V2o, }

and
0 n) 1 1 0}
2= = { — s s .
WACLH V205 /20,
Insertion into (12.46) yields
@0 1 @0 1 @0 1 ®0
- 240 40=1 O =—,
320, 220, 320, " RARCRET
and
Oy 1 Oy 1 Oy 1 7
0 0 L0=1 0, = — @y.
320, 220, 320, = D=

These are the principal moments of inertia, as was expected.
(e) In this case, n is proportional to {cos45°, cos45°, cos45°}. Thus,

53]

and therefore,

n 1 1 1
Q‘ﬁ‘{mx/@’ m}
Insertion into (12.46) yields
Oy 1 Oy 1 Oy 1 2 1
0 0ol S 1 29

330 230 330 3930
from which we find
®=—0.
36 "

This problem demonstrates the simple handling and the usefulness of the ellipsoid of
inertia.

EXERCISE |
12.5 Symmetry Axis as a Principal Axis

Problem. Demonstrate that an n-fold rotational symmetry axis is a principal axis of
inertia, and that in the case n > 3, the two other principal axes can be freely chosen in
the plane perpendicular to the first axis.

Solution. If a body has an n-fold symmetry axis, then the tensor of inertia must be
equal in two coordinate systems rotated from each other by ¢ =27 /n:

o~

0=0'=404a""

Exercise 12.4
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Exercise 12.5

If we select the z-axis as a rotation axis, the rotation matrix reads

cosgp sing O
A=| —sing cosp 0
0 0 1

Multiplying the matrices out, one obtains the components ©’ ; of the new tensor of
inertia which shall coincide with ©;;.

0], =011 =0y cos? ¢ 4 @2y sin® @ + 2012 sing cos @,

O) =Op =0y sin® @ + O2) cos® ¢ — 201, sing cos @,

O, =012 =—0 cosgsing + Oxncospsing + O2(1 — 2sin” @),
O3 = 013 =+0 3c08¢ + O235sing,

©); = B3 = —By35in¢ + O3 cos¢.

The determinant of the system of the last two equations,

cosgp — 1 sing | B
—sing  cosp —1 =2(1—cosg),
vanishes only for ¢ = 0,2m,.... If there is symmetry (n > 2), then we must have

®13 = 023 =0, i.e., the z-axis must be a principal axis.
Two of the remaining three equations are identical, and there remains the system
of equations

(2 —BO11) sin® ¢+ 2012 sinpcose =0,

(@2 — O11)cosgsing — 202 sin’ ¢ = 0.
The determinant of coefficients has the value

D = —2sin* ¢ — 2sin? g cos? ¢ = —2sin’ ¢.

There holds D =0 for ¢ =0, 7, 2m,.... Hence, ®11 = 02 and O =0, ifn > 2. If
the axis of rotational symmetry z is at least 3-fold, the tensor of inertia is diagonal for
each orthogonal pair of axes in the x, y-plane.

EXERCISE |
12.6 Tensor of Inertia and Ellipsoid of Inertia of a System of Three Masses

Problem. A rigid body consists of three mass points that are connected to the z-axis
by rigid massless bars (see Fig. 12.15).

(a) Find the elements of the tensor of inertia relative to the x, y, z-system.
(b) Calculate the ellipsoid of inertia with respect to the origin 0, and the moment of
inertia of the entire body with respect to the axis Oa.
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m, = 200g
x,=-10
m; = 150g v, =38
x3=-1lcm z,=15
y3 = —l4cm
z3=12cm

/ y,=12cm
X

Solution. (a) The elements of the tensor of inertia relative to the x,y,z-system are
Oy = X:mi(yi2 + le)
i

=mi(y} +21) +ma(y3 +23) + m3(y3 +23),
and after inserting the numerical values from Fig. 12.15, one has

O,y = 100(144 + 25) 4 200(64 + 225) 4 150(144 + 196) (gcm?)
=125.7 (kgcm?).

Likewise, one obtains
®yy =117.5 (kgem?) and O, = 104.75 (kgcm?).

For the deviation moments of the tensor of inertia, it follows that
Oy =—Y_mi(xiy)
i
=100(12 - 10) — 200(10 - 8) 4+ 150(11 - 14) (gecm?) = 19.1 (kgcm?),
and likewise,
Oy, = —44.8 (kgem?) and @, = 4.800 (kgem?).

(b) From (a) one now immediately obtains for the ellipsoid of inertia with respect
to the origin O (see (12.30))

O = Oy, cos’a + Oyy cosz,B + O, cos’ 1%
+ 20,y cosacos B+ 20, cosacosy + 20y, cosfcosy. (12.47)

Fig. 12.15. Rigid body con-
sisting of three mass points
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Exercise 12.6

Fig. 12.16. Wheel, accelera-
tion ag, and friction force f

To calculate the moment of inertia ®q,, we evaluate the direction cosines with the
coordinates given in Fig. 12.15,

—6
cosqg = —— = —(.268,
V6?2 + 82 + 207
8
cos fp= ——— =0.358,
V6?2 +82 4202
and
20
cosy = ——— =10.895.
V62 + 82 + 202

By inserting into (12.47) for the moment of inertia, we obtain

O = (0.268)% - 125.7 4 (0.358)% - 117.25 + (0.895)% - 104.75
—2(0.268)(0.358) - 19.1 +2(0.268)(0.895) - 44.8
—2(0.358)(0.895) - 4.800 (kgcm?)

=128.87 (kgem?).

EXERCISE ]
12.7 Friction Forces and Acceleration of a Car

Problem. A car of mass M is driven by a motor that performs the torque 2D on the
wheel axis. The radius of the wheels is R, and their moment of inertia is ® = m R?2
(m is the reduced mass of the wheels).

(a) Determine the friction force f which acts on each wheel and causes the accelera-
tion of the car. The street is assumed to be planar.

(b) Calculate the acceleration of the car if the torque 2D = 100), M=2-10° kg,
R =05mand m =125 kg.

Solution. (a) Fig. 12.16 shows one of the wheels and the force f acting on it. Since
the linear acceleration of the wheel center is the same as that of the center of gravity
of the car a,, one has

Ma; =2f—F. (12.48)

The factor 2 accounts for the fact that a car in general is driven by two wheels. F
is a possible external force which impedes the motion (air resistance), and a; is the
acceleration of the car. For the torque relative to the axis, one obtains

400 =2(D — fR), (12.49)
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where © is the moment of inertia of each of the four wheels, D is the accelerating
torque, and — f R is the torque performed by the friction force on each wheel. The
moment of inertia is ® = m R2. If the car does not glide, one has

®R = a, (12.50)

and with (12.49) and (12.48), it immediately follows that

. 1 /DR — fR? 2f —F
oR=a;= - = . (12.51)
2 mR2 M
Equation (12.51) finally yields for the friction force
1 2D/R)M +4mF
_1@D/R)M + 4m (12.52)
2 M +4m
and by neglecting the backdriving force F' (F = 0), we have
f= D/R (12.53)
T 14+ @dm/M)’ '

(b) By replacing f in (12.49) by (12.53) and solving for a; (F = 0), one finds the
acceleration of the car

2D/R 103/0.5 103

m
= = - %1 .
M+4m  2-103+4-124 1025 s2

dg
With the numerical values from (b), the friction force f is given by

F~2 000N
~= _

Exercise 12.7



Theory of the Top

13.1 The Free Top

A rigid, rotating body is called a top. A top is called symmetric if two of its principal
moments of inertia are equal. If ®1 = ®,, we further distinguish

(a) ®3 > O oblate top or flattened top, e.g., a disk;
(b) ®3 < O prolate top or cigar top, e.g., an (extended) cylinder; and
(c) ®3 =0 spherical top, e.g., a cube.

The third principal axis of inertia which is related to ®3 is called the figure axis. It
specifies the spatial orientation of the top. For rotationally symmetric bodies it co-
incides with their symmetry axis. Hence, the center of gravity of a rotational body
always lies on the figure axis. Moreover, we must distinguish between the free top and
the heavy top. For the free top one assumes that no external forces act on the body,
so that the torque with respect to the fixed point vanishes. On the heavy top forces
act, for example gravity. One can however imagine other forces (centrifugal forces,
friction forces, etc.). For an experimental realization of a free top we only have to
support an arbitrary body at the center of gravity. The body is then in an indifferent
equilibrium, and there is no torque acting on it.

3 Fig. 13.1. (i) Possible real
form of the top. (ii) Ellipsoid
(a) ©,> 0, oblate top or of inertia
flattened top, e.g., 1
a disk
1

[\

(b) ©;< O, prolate top or

cigar top, e.g., 1
a (long) cylinder 2
3
.
(c) ©;=0, spherical top, e.g.,

a cube 1
T 2
O (ii)
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Fig. 13.2. Model of a free
top supported at the center of
gravity S: The construction is
so that S is also the supporting
point

For a theoretical description of the top, we start from the basic equations

L = O - w = constant (conservation of angular momentum), (13.1)

1
T = Ew -L =constant (conservation of kinetic energy). (13.2)
The angular momentum L and the kinetic energy T of the free top are constant in

time. This is the content of the last two equations.

13.2 Geometrical Theory of the Top

We first will derive the laws governing the free top from geometrical considerations.
The geometrical theory of the top is based on Poinsot’s' ellipsoid (also called the
energy ellipsoid):

@xxcu?c + ®yya)§ + @Zzwf + 20 ywywy + 200 0, + 20wy,
= 2T = constant. (13.3)

This ellipsoid in the w-space is immediately obtained from (13.2). It is similar to the
ordinary ellipsoid of inertia and has the same body-fixed axes.

In the subsequent considerations, we shall utilize the property of (13.3) that the
endpoint of the vector  lies just on the surface of the ellipsoid.

Now follows Poinsot’s construction of the motion of the free top. The angular mo-
mentum vector is constant and defines an orientation in space. The straight line de-
termined by L is therefore called the invariable straight line. Moreover, the kinetic
energy is constant, hence 27 = @ - L = constant; from the definition of the scalar
product immediately it follows that

w - cos(w, L) = constant. (13.4)

In other words, the projection of @ onto L is constant. If one now considers @ as the
position vector for points in space, the parameter representation @(¢) fixes a plane
which is called an invariable plane. The invariable straight line is then perpendicular
to the invariable plane.

Now one can describe the motion of the top by the rolling of the Poinsot ellipsoid
on the invariable plane. This is allowed since the endpoint of w, as is evident from (13.4),

U Louis Poinsot, French mathematician and physicist, b. Jan. 3, 1777, Paris—d. Dec. 5, 1859, Paris.
Professor in Paris, introduced in his Eléments de statique (Paris, 1804) the concept of the couple to
mechanics and used it to represent the motion of the top. Poinsot-motion means the motion of a free
top.



13.2  Geometrical Theory of the Top

211

invariable straight line
herpolhodie /

(trace trajectory)
invariable plane

o(r )\l/w(t)

lies on the surface of the ellipsoid and moves in the invariable plane. The invariable
plane is also a tangent plane of Poinsot’s ellipsoid, since there is only one common
vector @, and hence the ellipsoid and the plane have a common point. To prove this,
we show that at the point @ the gradient of the ellipsoid is parallel to L. From vector
analysis we know that the gradient of a surface is perpendicular to this plane. The
surface of the ellipsoid F' is described by (13.3).

Because?

dF O0F OF
vwF=(— — —>,

b b
dwy dwy Jw;
we obtain

1 Oy + ®xy0)y + Oy, .
vaF = | Oy +0y0,+ 0,0, | =0w=L,
Ox;0x + Oyz0y + Oz 0;

i.e., grad, F is parallel to L or F' L L; therefore, the tangent plane of F at the point @
is parallel to the invariable plane.

Since the center of the ellipsoid is a constant distance from the invariable plane
(see (13.4)), the motion of the top can be described as follows: The body-fixed Poinsot
ellipsoid rolls without gliding on the invariable plane, where the center of the ellipsoid
is fixed. The instantaneous value of the angular velocity is then given by the distance
from the center to the contact point of the ellipsoid.

The ellipsoid rolls but does not glide. This follows from the fact that all points along
the w-axis are momentarily at rest; hence the contact point is also momentarily at rest.
Rolling without gliding means that the changes of the rotation vector @ measured from
the laboratory system and from the body-fixed system are equal. Actually,

dw
dt

_dw
L drlg

dw
dt

dw

+wXw, Iie., = —
L drlg

Concerning the difference between gliding and rolling, if a wheel rolls on a plane,
the velocities of change of the contact point P in the body-fixed and in the laboratory
system are equal. If the wheel glides, the contact point in the body-fixed system is
fixed; in the laboratory system its position changes permanently.

2 Since the surface (13.3) is defined in the w-space, we mean by gradient the @-gradient, i.e., V,, =
{0/0wy, /0wy, 3/0w,}.

Fig. 13.3. Invariable straight
line and invariable plane

P

Fig. 13.4. On the condition of
rolling
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Fig. 13.5. The Poinsot ellip-
soid rolls on the invariable
plane

The trajectory of @ on the invariable plane is called the herpolhodie or trace trajec-
tory, the corresponding curve on the ellipsoid is called the polhodie or pole trajectory.
See Fig. 13.5.

polhodie

herpolhodie

The polhodie and the herpolhodie are in general complicated, not closed curves.
For the special case of a symmetric top, the Poinsot ellipsoid turns into a rotation
ellipsoid, and by rolling of the rotation ellipsoid there arise circles. @ has constant
magnitude but permanently changes the direction, i.e., @ rotates on a cone about the
angular momentum axis. This cone is called the herpolhodie- or trace cone. For a
symmetric cone it is efficient to use the symmetry axis (figure axis) as third axis for
describing the motion. The figure axis that is tightly fixed to the ellipsoid rotates just
like @ rotates about L. The cone resulting this way is called the nutation cone. The
motion of the figure axis of the top in space is called nutation. (The term precession
used in the American literature makes little sense, since the term means a motion of
the heavy top that is of a completely different origin.)

An observer who is in the system of the top and considers the figure axis as fixed
will find that @ and L rotate about this axis. For the cone arising by the rotation of
® the term polhodie- or pole cone is introduced. The precise orientation of the axes
and cones depends essentially on the shape of the rotation ellipsoid. This is shown
by the following two diagrams on the orientation of the axes. Note that a large prin-
cipal momentum of inertia ®3 corresponds to a small radius of the Poinsot ellipsoid,
namely, /27 /©3. The other axes of the Poinsot ellipsoid accordingly have the lengths
J/2T/©| and /2T / ®,, respectively.

This is immediately seen from the form of (13.3) in terms of the principal axes:

2 2 2
] ) w3

e, 16, T1/e;

= 2T = constant.

Figure 13.6(a) shows the ellipsoid of a flattened (oblate) top; Fig. 13.6(b) represents
a prolate top. In the first case, the axes have the sequence @—L—figure axis; in the
second case, the sequence is L—w—figure axis.

Likewise is the sequence of the cones introduced above. Figure 13.6(c) shows the
case of an oblate top, and Fig. 13.6(d) that of a prolate top. We note that the three axes
lie in a plane.



13.3  Analytical Theory of the Free Top 213

Fig. 13.6. (a) Oblate symmet-
ric top. (b) Prolate symmet-
ric top. (c) Oblate symmetric
top: The pole cone rolls inside
of the trace cone. (d) Prolate
symmetric top: The pole cone
rolls outside of the trace cone

gl
trace cone =y

'
‘F
< /

pole cone

©) (d)

13.3 Analytical Theory of the Free Top

We consider the motion of the angular momentum and angular velocity vectors from
a coordinate system that is tightly fixed to the top and moves with it. For the angular
velocity, we have

® = wie| + wre) + wzes,

where e, ep, and e3 are body-fixed principal axes of the top. We now investigate the
angular momentum of the top no longer in the moving coordinate system, i.e., in the
system of the top that rotates with @ in the laboratory system, but transformed into
the laboratory system, using our knowledge of moving coordinate systems. We then
obtain

L = L|top +o x L.
Because L|top = O, for the component in the laboratory system we have

€] €2 €3
Ljjab = O101€1 + Oraner + Ozwzes + | o ) w3
BOlw; Orw; Ozw;
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Solved for the components e, e>, and ez and combined, this reads

Ll = (0101 + O30003 — Or0003)e
+ (@202 + O1w103 — O30 w3)e2
+ (O303 + Or01w2 — Orwiwy)es.
Since the laboratory system is an inertial frame of reference, we have the relation
L=D.
The torque is again expressed by the body-fixed coordinates, and we obtain
Ll = Diej + Daes + Dses.
Thus, we find the Euler equations:
Dy = 0101 + (03 — O2)wrw3,
Dy = G2 + (0] — O3)wjws, (13.5)
D3 = O3w3 + (02 — Opwiw;.

These three coupled differential equations for w(¢), w2 (¢), and w3(¢) are not linear.
This suggests that in general the solutions w; (¢) are rather complicated functions of
time. Only in the case of free motion (D = 0) can one obtain a transparent solution
which will be discussed now. Later we shall deal with the heavy top for which D # 0.

We choose the body-fixed coordinate system so that the e3-axis corresponds to the
figure axis. Since we will restrict the analytical consideration of the theory of the top
to a free symmetric top that shall be symmetric about the figure axis, the following
conditions hold:

Liaw=D=0, ie, Di=Dy=D3=0, and ©O;=0;,.

We show that for a symmetric top e3, ®, and L lie in a plane. For this we have to
calculate the scalar triple product of the three vectors which must vanish:

€] € €3
e3-(w><L)=e3~ w1 w) w3
Oiw; Grwy Ozw;

= (02 — Opwiw; =0,

because ©] = ©>.
With the conditions for the free symmetric top, the Euler equations read

®3w3=0 = w3 = constant,
O1w) + (03 — Owrw3 =0,
Oy + (O] — O3)wiws =0.

Thus, the component of  along the figure axis is constant. To show this in the subse-
quent calculation, we set

w3 =1u.
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To solve the two differential equations, we differentiate the second equation with re-
spect to time:

101 + (03 — Opuwy =0, Oy + (O] — O3)uw; =0.
By solving the last equation for w; and inserting into the first one, we obtain

. (©3-01)7 ,
— U

w1 + @% w1 =0.

This form of the differential equation is already known: setting

|©3 — O]
—Uu

=k,
()

we see that & + k2w1 = 0 is exactly the differential equation of the harmonic oscilla-
tor, which is solved by

w] = Bsinkt + C coskt.

Considering the initial condition w; (t = 0) = 0, it follows that w; = B sink¢, or from
the second equation, wy = — B coskt.

The result means that @ moves on a circle about the figure axis, as seen from the
system of the top:

® = B(sinkt e; — coskt er) + ues.

The rotational frequency is thereby given by k; for & > O the rotation proceeds in
the mathematically positive sense. The cone arising in the rotation is again called the
pole cone. The angular momentum, which is given by L = © - w, also changes with
time:

L=0©Bsinkte; — ®Bcoskter + Ozues,

i.e., the L-axis rotates with the same frequency & but with a different amplitude about
the figure axis (nutation). This is no contradiction to the statement |L|y, = constant,
since we measure the angular momentum from the system of the top.

Finally, we determine the angles between the three axes. We set

J(e3, L) =q, J(e3, ) =B,

and scalar multiply e3 and L; this yields

e;-L=_Lcosa=+(0,B)2+ (Osu)?cosa
or
es-L=e3 - (Oiwie] + Orwrer + Ozwzes) = Ozw3z = O3zu.

Equating both equations leads to

Osu _ 1
V(©1B)2+(03u)2  /(©1B/Osu)? +1

coso =

(1)

] e
©,(0) kt

Fig. 13.7. Motion of @(¢) in
the e, e>-plane
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Fig. 13.8.

or

18 2+1 1
Coso = 1.
Osu

Comparison of the coefficients with the trigonometric formula

cosxvtan?x +1=1

yields tanoe = ©®1 B/ ®3u = constant.
Performing the same calculation for e3 - @, for 8 we find

B
tan § = — = constant.
u
The comparison of the last two results shows the dependence of the orientation of
the axes on ®1 and ®3: One has

tana/tan B = O/ O3,

from which it follows that

(1) ®; > O3 (prolate top) = « > B for o, B < 7 /2; sequence of axes: e3 — @ — L;

(2) ®] < O3 (oblate top) = « < B for «, B < 7/2; sequence of axes: e3 — L — ;

(3) ®; = O3 (spherical top) = o = § for «, B < 7; w lies on the L-axis. Since the
e3-axis of a spherical top can be chosen arbitrarily, there is no loss of generality if
weseta =B =0.

For (3) we note that, for the spherical top, k = u(®3 — ©®1)/®1 = 0 because ®| = O3.
For the spherical top, as was discussed above, we can set the figure axis (i.e., the
es-axis) arbitrarily, e.g., also along the L- or w-axis. The result « = 8 would follow
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also from
®; 0 0
WXL=wx®w=0 because O©=| 0 ©; O
0 0 O

EXAMPLE |

13.1 Nutation of the Earth

The earth is not a spherical top but a flattened rotation ellipsoid. The half-axes are
a =b=06378 km (equator) and ¢ =6357 km.

If the angular momentum axis and the figure axis do not coincide, the figure axis
performs nutations about the angular momentum axis. The angular velocity of the
nutations is

B3 — 0
=—ow
)1

k ;.

The third axis is the principal axis of inertia (pole axis). If we consider the earth as
a homogeneous ellipsoid of mass M, we obtain the two moments of inertia:

M M
0=0,= ;(b2 +c,  O;= ng + ).

From this, we obtain

a2—6‘2

=Py a
Since the half-axes differ only a little, we set a = b =~ ¢, and thus,

_ (a—c)(a+c)w a—c
T b2 42 3 a

w3.

The rotation velocity of the earth is w3 = 27 /day. Thus, we obtain for the period of
nutation

2
T = - = 304 days.

The figure axis of the earth (geometrical north pole) and the rotation axis @ of
the earth (kinematical north pole) rotate about each other. The measured period (the
so-called Chandler period)’ is 433 days. The deviation is essentially caused by the
fact that the earth is not rigid. The amplitude of this nutation is about +0.2”. The

3 Seth Carlo Chandler, b. Sept. 17, 1846, Boston, Mass.—d. Dec. 31, 1913, Wellesley Hills, Mass.
American astronomer, detected the Chandler period of 14 months in the pole height fluctuations. He
observed variable stars, and for a long time he edited the Astronomical Journal.
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Example 13.1

Fig. 13.9. Regular tetrahedron:
g and h are straight lines (axes)
that are perpendicular to the
planes opposite C and D

Fig. 13.10. Homogeneous
three-axial ellipsoid: (a) side
view, and (b) top view

kinematical north pole moves along a spiral trajectory within a circle of 10 m radius
in the sense of the earth’s rotation.

EXAMPLE |

13.2 Ellipsoid of Inertia of a Regular Polyhedron

The ellipsoid of inertia of any regular polyhedron is a sphere, which will be shown
by the example of the tetrahedron; the reasoning for the octahedron, dodecahedron,
and icosahedron is analogous. Suppose there were a principal axis of inertia with a
moment which differs from those of the two other principal axes of inertia. In a rota-
tion by 120° about the axis g (perpendicular from point C on the opposite plane; see
Fig. 13.9), this axis of inertia must turn into itself, since the tetrahedron is transferred
into itself. It is easily seen that only the axis g has this property and therefore must
be the distinguished axis of inertia. But since % is a symmetry axis too, a rotation by
120° about & must also transfer the axis of inertia g into itself, which however is not
true. Assuming the existence of a distinct axis of inertia leads to a contradiction, and
hence the ellipsoid of inertia of a tetrahedron must be a sphere.

EXERCISE |
13.3 Rotating Ellipsoid

Problem. A homogeneous three-axial ellipsoid with the moments of inertia @1,
®7, O3 rotates with the angular velocity ¢ about the principal axis of inertia 3. The
axis 3 rotates with 9% about the axis AB. The axis AB passes through the center of
gravity and is perpendicular to 3. Find the kinetic energy.

Y A

/t)\f*“’ o\ / r?®
\A/

(a)
Solution. We decompose the angular velocity @ into its components along the prin-
cipal axes of inertia:

w= (w1, wy,w3), where w;= ¥ cos ¢, wy= - sing, w3 =¢.

The kinetic energy is then

1 1 o1
T=> Xi:(aiwf =5(® cos® ¢ + O, sin® @) ¥ + 5(,32.
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The ellipsoid shall now be symmetric, ® = ©;; the axis AB is tilted from the
third axis by the angle «. For the total angular velocity, we have

= ges +desp.

ﬁB

(4 ¢
ABg A
WLB

We decompose the unit vector e4 p along the axis A B with respect to the principal
axes

esp =e€3-cosa + (cospe; — singey) sina.
Thus, the components of @ along the directions of the principal axes are
w] = sinw cos <pz9,
w) = —sina singaf?,
w3 = @ + cosad).

Hence, the kinetic energy reads
1 Lo a1 .. ’
T = 591 sin“ a1 + 5@3((,0 + 9 cosa)”.

For o = 90°, we obtain for the first case a rotation ellipsoid.

EXERCISE
13.4 Torque of a Rotating Plate

Problem. Find the torque that is needed to rotate a rectangular plate (edges a and b)
with constant angular velocity w about a diagonal.

®
\}[e},
» €

0

X a

Solution. The principal moments of inertia of the rectangle are already known from
Example 11.7:

I = iMa2, L= isz, L= iM(a2 + b?). (13.6)
12 12 12

Exercise 13.3

Fig. 13.11. The axis AB tilted
from the third axis by «: Posi-
tions of the axes are shown in
perspective

Fig. 13.12. The rectangular
plate rotates about the diago-
nal axis



220

13 Theory of the Top

Exercise 13.4

The angular velocity is

w = ((0 : ex)ex + ((0 . ey)ey7

ie.,
_ wb e+ wa e
N A e
—wb
= @ Y (13.7)

a)l = 77 a)z - 9
va?+b? Va?+b?
Inserting (13.6) and (13.7) into the Euler equations yields
Loy + (I3 — h)ww; = Dy,
han + (I — )wsw; = Da,
Loz + (I — I))wawy = D3,
and furthermore, D1 =0, D, =0, and

—M(b? — a®)abw?
Ds3 =
12(a? + b?)

Hence, the torque is

=M@ - az)abwze
T 12(a?2 +b?) “

For a = b (square), D = 0!

EXERCISE |
13.5 Rotation of a Vibrating Neutron Star

Problem. The surface of a neutron star (sphere) vibrates slowly, so that the principal
moments of inertia are harmonic functions of time:

2 5
I, = gmr (14 éecoswt),

2, cos wt
Ixleyyzgmr 1—¢ > , ekl

The star simultaneously rotates with the angular velocity €2 (7).

(a) Show that the z-component of 2 remains nearly constant!
(b) Show that 2 (¢) nutates about the z-axis and determine the nutation frequency for
Q. > w.
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Solution. (a) If the total angular momentum is given in an inertial system, then

(dL ) —o
dt inertial .

The principal moments of inertia are, however, given in a body-fixed system that ro-
tates itself with the angular velocity €2 with respect to the inertial system. Then

dL dL
(—) =<—> +QxL=0.
dt inertial dt k

One therefore gets in the body-fixed system (Euler equations)

d

E(IZZQZ) =0, (13.3)
d 3
T (120 + S 10y Qze cos ot =0, (13.9)
d 3
17y 2y) = S 109 Qze cos et =0, (13.10)

where Iy = (2/5)mr2 is the moment of inertia of the sphere. (13.8) has the solution

Q
QZ=¢’
1+ ecoswt

where ¢, follows from the initial conditions; this means that €2, is only very weakly
time dependent.
(b) We suppose that w < 2., i.e.,

dlxx
dt

dl,
~0 d 2 ~o.
an 7

From this, we find

. 3 3
Ixex—i—EIoQZscosthyzo, 1,2y — Eloﬁzscosa)tﬂxzo. (13.11)

Differentiating again and inserting (13.8), (13.9), and (13.10) yield

.13 2
LixQy + — | =10R2;ecoswt | 2, =0,
Iy, \2

(13.12)

W1 (3 ?
IyyQy + —| z1o2ecoswt ) 2y =0.
) Ixx 2 )

If Ix = Iy =~ Iy, then

. (3 2 . (3 2
Q.+ <§SQZ cosa)t) Q, =0, Qy + (EEQZ cosa)t) Q,=0.

Since o K €2, (we further assume that v < £€2;), we find

3 .
Wy = EEQZ coswt (nutation frequency),

i.e., ©, and 2, perform a nutation motion with w,.

Exercise 13.5
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2 /e

Fig. 13.13. Geometry and piv-
oting of the rotating circular
disk

EXERCISE |

13.6 Pivot Forces of a Rotating Circular Disk

Problem. A homogeneous circular disk (mass M, radius R) rotates with constant
angular velocity w about a body-fixed axis passing through the center. The axis is
inclined by the angle « from the surface normal and is pivoted at both sides of the disk
center with spacing d. Determine the forces acting on the pivots.

Solution. The Euler equations read

Loy — wws(ly — I3) = Dy, (13.13)
hay — wyw3(l3 — 1) = Dy, (13.14)
Loz — wywy (1) — 1) = D3, (13.15)

where D = { D, D>, D3} represents the torque in the body-fixed system. We choose
the body-fixed coordinate system in such a way that n = e3 and e; lies in the plane
spanned by n, w. For the principal momentum of inertia I, we have

2r R 2r R ! 2
I =0//y2rdrd =U/fr3sin2¢drd¢=ZUR4/sin2(pd(p
00 00 0
1 1/ M 1
=-oR'r=-— |R*7r=-MR?, (13.16)
4 4\ 7 R? 4

since the surface density o is given by ¢ = M/F = M/m R*. And likewise for I
and I3

(U D

L=h=-hL=-MR". 13.17
1=h=5h=7 ( )
The components of the angular velocity vector are given by
={w) = wsina, wy; =0, w3 = wcosa}. (13.18)
Because @ = 0, inserting (13.17) and (13.18) into (13.13) to (13.15) yields
1
Di=D3=0 and D;=—w’ sinacosaZMRz. (13.19)

Because D =r x F, in the pivots act equal but oppositely directed forces of magnitude

D2|
T 2d
(see Fig. 13.13).

sin 2«
R20?

| =
16d

2.2 1 l : _
= MR ( sin2e | =M (13.20)
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EXERCISE |

13.7 Torque on an Elliptic Disk

Problem. What torque is needed to rotate an elliptic disk with the half-axes a and
b about the rotation axis 0A with constant angular velocity wo? The rotation axis is
tilted from the large half-axis a by the angle «.

Solution. We choose the e;-axis orthogonal to the plane of the drawing, e; along the
small half-axis b, and e3 along the large half-axis. The principal moments of inertia
are then (M =omwab, dM =odF)

+a ¢(2) 5
122(7/ / 22dzdy with ¢(z)=b l—Z—2
\ a

—a—¢(2)

from the ellipse equation z2/a® + y?/b* = 1.

e ba/1-22/a? s 72
Izzo/zzy dz=2ab/z2 1——2dz
—by/1-72/a® a

—a —a

b 4 +a
=20— E(2z2 —a®)Wa -2+ 2 arcsin —
als8 8 |al

—a
1 3 1 2
= Zoba T = ZMa ; (13.21)

accordingly,

+b 9(y) 5
13=a/ / yrdydz with E(y)za‘/l—z—z

—b—2()
1 2
= L= ZMb . (13.22)
We can immediately write down [; (because /1 = I + I3 for thin plates):
1 2 2
11=ZM(a + b%). (13.23)
For w, we obtain

w=0-e —wpsinw - ey + wycos - e3.

Fig. 13.14.
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Exercise 13.7

Fig. 13.15. A heavy top: The
center of gravity S and the bear-
ing point O are sketched in

We insert into the Euler equations of the top:

Dy = Lo+ (I3 — h)mws
1

= ——M(b2 - a2) sina cos« - a)%,
4
i (13.24)
Dy = hws + (I — )wiw3 =0,
D3 = Iz + (I, — I))wiwz =0.
Thus, we obtain for the desired torque D
» M 5 24 o
D=—a)0-§(b —a°)sin2ua - eq. (13.25)
It is obvious that
(1) fora =0,7m/2,m, ..., the torque vanishes, since the rotation is performed about

a principal axis of inertia; and
(2) for b* =a?, i.e., the case of a circular disk, the torque vanishes for all angles o.

We will consider once again the last conclusions: Given an elliptic disk with half-axes
a and b, for o« = 0°, 180°, or for & = 90°, 270°, the rotation axis coincides with one of
the principal axes of inertia along the half-axes. In this case the orientation of the angu-
lar momentum is identical with the momentary rotation axis. Because wy = constant,
we also have L = constant, and therefore the resulting torque vanishes. This also re-
sults by insertion into the Euler equations of the top: @ = (0,0, 0), w = (0,0, wp) or
w = (0, wg, 0)

= Di=ho+ 53— h)wws =0,
Dy =hay+ (11 — B)wiws =0, (13.26)
D3 = Liws + (I, — 1)) wywy =0.

13.4 The Heavy Symmetric Top: Elementary Considerations

We now consider the motion of the top under the action of gravity. If the bearing point
O of the top does not coincide with the center of gravity S, gravity performs a torque.
To distinguish the top from the freely moving top, it is called the heavy fop. First we
restrict ourselves to the symmetric top which rotates with the angular velocity @ about
its figure axis. The origin of the space-fixed coordinate system is set into the Ez)aring

point O, the negative z-axis points along the gravity force. Let the distance OS =1;
gravity acts on the top of mass m with the torque D =1 x mg. Hence, the angular
momentum vector is not constant in time:

L=D or dL=D-dt.

This differential form of the equation of motion expresses that the torque causes a
change dL of the angular momentum which is parallel to the torque D.
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Sommerfeld* and Klein® in their book Theory of the Top called this phenomenon—
philosophizing— “Die Tendenz zum gleichsinnigen Parallelismus.” The z-component
of the angular momentum is however conserved. This results from the following con-
sideration: Because g = —ge,, we have D = mge, x 1, i.e., the torque has no com-
ponent along the z-direction, and hence L is constant. Hence the torque D causes a
motion of the angular momentum vector L on a cone about the z-axis; this motion
of the heavy top is called precession. The precession frequency of the top is thereby
constant by reason of symmetry; the relative orientation of the torque and angular
momentum vectors is also constant.

We now calculate the precession frequency. For this purpose we start from the
radial component L, of the angular momentum:

L, = Lsin?9.

The angle covered by L, in the time dt is

_dL, dL  Ddt

do = —.
L, L, L sinv

For the precession frequency w, = da/dt, we thus have

D mgl

@p= Lsin?® - L

or in vector notation

wp, xL=D.

4 Arnold Sommerfeld, b. Dec. 5, 1868, Konigsberg—d. April 26, 1951, Munich, physicist. From 1897,
professor in Clausthal-Zellerfeld and from 1900 in Aachen, successfully tried for a mathematical
backup of technique. In 1906, Sommerfeld became professor for theoretical physics in Munich,
where he was an excellent academic teacher for generations of physicists (among others P. Debye,
PP. Ewald, W. Heisenberg, W. Pauli, and H.A. Bethe). He extended Bohr’s ideas in 1915 to the
“Bohr—Sommerfeld theory of atom” and discovered many of the laws for the number, wavelength,
and intensity of spectral lines. His work Atomic Structure and Spectral Lines (Vol. 1, 1919; Vol. 2,
1929) was accepted for decades as a standard work of atomic physics. Further works: Lectures on
Theoretical Physics, six volumes (1942-1962).

5 Felix Klein, b. April 25, 1849, Diisseldorf—d. June 22, 1925, Géttingen. Klein studied from 1865 to
1870 in Bonn. During a stay in 1870 in Paris, he became familiar with the rapidly developing group
theory. From 1871, Klein was a private lecturer in Gottingen, from 1872, professor in Erlangen, from
1875, in Munich, from 1880, in Leipzig and from 1886, in Gottingen. He contributed fundamental
papers on function theory, geometry, and algebra. In particular, group theory and its applications
attracted his interest. In 1872, he published the Program of Erlangen. In later life Klein became
interested in pedagogical and historical problems.

Fig. 13.16. Position of the
heavy top in the coordinate
system

Fig. 13.17. On the calculation
of the precession frequency wp



226

13 Theory of the Top

2A0

Fig. 13.18. In general, a nu-
tation is superimposed on the
precession

Hence, the precession frequency is independent of the inclination ¥ of the top if
U # 0 is presupposed. In the general case nutation motions are superimposed on the
precession, so that the tip of the figure axis F' no longer moves on a circle but on a
much more complicated trajectory about the z-axis. The angle ¢ varies between two
extreme values

vo — AV <9 <do+ AV

(see Fig. 13.18). If D = 0, there is only the nutation of the figure axis F about the then-
invariable straight line L. For D s 0, the precession of L about the z-axis dominates.
The nutation is superimposed on this precession.

Since in the special case considered here the vectors of angular momentum and
angular velocity coincide with the figure axis of the top, we can write for the angular
momentum

L =030,

where ©3 is the moment of inertia about the figure axis. For the torque we then have
the relation

D =030, X ®.

The inverse of this moment D’ = —D = O3 x ), is called the top moment. It is
that torque the top performs on its bearing if it is turned with the angular velocity @,.
This top moment—sometimes also called the deviation resistance—can reach very
large values for a quickly rotating top and a sudden turn of its rotation axis. We feel it
for example if we suddenly turn the axis of a quickly rotating flywheel held in the hand
(e.g., wheel of a bicycle). The top moment observed from a reference system rotating
with the angular velocity @, is identical with the moment of the Coriolis forces, which
can be proved.

The earth also precesses under the action of the gravitational attraction of the sun
and moon. The earth is a top with a fully free rotation axis, but it is not free of forces.
As aresult of its flattening and of the tilted ecliptic, the attraction of the sun and moon
generates a torque. We imagine the earth as an ideal sphere with a bulge upon it, which
is largest at the equator, and we first consider only the action of the sun. In the center
of earth (center of gravity), the attraction exactly balances the centrifugal forces due
to the orbit of the earth about the sun. We divide the bulge into the halves pointing to
the sun and away from it, respectively. The attraction of the sun on the former half is
larger than at the earth’s center, because of the smaller distance. The centrifugal force,
however, is by the same reason smaller. At the center of gravity S of the half-bulge
results a force K pointing toward the sun.

On the side away from the sun, the situation is reversed. Here the centrifugal force
dominates over the attraction by the sun, and at the center of gravity S, of the half-
bulge there is a force —K pointing away from the sun, which—because of the inclina-
tion of the ecliptic—forms a couple with the former force. The couple tries to turn the
earth axis and the axis which is perpendicular to the earth orbit radius and lies in the
orbital plane. From this follows the precession motion about the axis perpendicular to
the earth orbit. The moon acts in the same sense, but even more strongly than the sun,
because of its small distance. The earth axis rotates in 25800 years (‘“Platonic year”)
once on a conical surface with the vertex angle of twice the inclination of the ecliptic,
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ecliptic O

i.e., 47°; it therefore changes its orientation over the millennia. This precession motion
must be distinguished from the nutations of earth (Chandler’s nutations) discussed in
Example 13.1. The latter are superimposed on the precession motion.

Possibly the most important practical application of the top is the gyrocompass. The
idea goes back to Foucault (1852). The gyrocompass consists in principle of a quickly
rotating, semi-cardanic suspended top, with the rotation axis kept in the horizontal
plane by the suspension.

The earth is not an inertial system; it rotates with the angular velocity @g. Since the
top wants to preserve the orientation of its angular momentum, it is forced to precess
with wg . Hence, there is a top moment D’:

D' = ®Oswx X ®F,
where we set
®WF = wE singe; + wg cospey = WE, + WEy,

with ¢ as the geographic latitude. ey is a unit vector pointing along the meridian. By
splitting @ one obtains

D = O3(wg X WE, + WK X wEN).
The first term is compensated by the bearing of the top. This part of the top moment

tends to turn the A B-axis (see Fig. 13.20(b)) The second term causes a rotation of the
top about the z-axis. The splitting of wg leads to the acting torque

6 See W. Greiner: Classical Mechanics: Point Particles and Relativity, 1st ed., Springer, Berlin
(2004), Chapter 28.

Fig. 13.19. Mass ring caused
by the orbiting sun as seen
from the earth®

Fig. 13.20. (a) Decomposition
of the angular frequency wpg
into a vertical and a hori-
zontal component. (b) Semi-
cardanic suspension: This top
can freely rotate about the
A B-axis
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Fig. 13.21. Decomposition of
the angular velocity of the
earth (wg) and of the top
(wg)

Fig. 13.22. Principle of the
gyroscope

D’ = O3wg sinawg cos ge;.

Hence, a torque arises which always tends to turn the top along the meridian (« = 0).

If the suspension of the top is damped, the top adjusts along the north—south direc-
tion provided that it is not just at one of the two poles (¢ £90°). Otherwise, it performs
damped pendulum vibrations about the north—south direction. One can therefore use
the top as a direction indicator if one is not close to a pole.

Foucault’s experiments with a “gyroscope” led only to indications of the described
effect. Anschiitz-Kaempfe succeeded in constructing the first useful gyrocompass
(1908). To reduce the friction, the gyroscope body—a three-phase current motor—
hangs at a float that floats in a basin of mercury. The top axis is kept horizontal by
placing the center of gravity of the top lower than the buoyancy center (corresponding
to the suspension point). In this setup the gyroscope axis vibrates under the influ-
ence of the moment not only in the horizontal, but also in the vertical plane about the
north—south direction.

0

gyroscope axis

By an appropriate damping of the latter of these coupled vibrations, one can also
reach a damping of the vibrations in the horizontal plane, which is needed for the
adjustment. The deviations arising from ship vibrations and from other effects could
be removed in more recent construction (multiple gyrocompass), or accounted for by
calculation.

13.5 Further Applications of the Top

In order to stabilize free motions of bodies, e.g., of a disk or a projectile, these are
set into rapid eigenrotation (spin). A disk thereby maintains its tilted position almost
unchanged, and therefore gets a buoyancy similarly to the wing of a plane and thus
reaches a much larger range of flight than without rotation. A prolate projectile rotat-
ing about its longitudinal axis experiences a torque from the air resistance which tends
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to turn the projectile about a center-of-gravity axis perpendicular to the flight direc-
tion. The projectile responds with a kind of precession motion which is very intricate
because of the variable air resistance. The vibrations of the projectile tip remain close
to the tangent of the trajectory, but for a projectile with “right-hand spin” drift off to
the right of the shot plane. The projectile therefore hits the target with the tip ahead,
but on firing one has to account for a right-hand deviation.

The gyroscope torques acting on guided tops tend to turn up the axes of the wheels
of a car passing a bend, which causes an additional pressure on the outer wheels and a
relief of the inner ones. The same gyroscope effect provides an increase of the milling
pressure in grinding mills and finds further application in the turn and bank indicator
of airplanes. If the plane performs a turn, the gyroscope actions on the propeller must
be taken into account.

The top can also serve to stabilize systems (cars) which by their nature are unstable,
as in the one-rail track, or to reduce the vibrations of an internally stable system,
as in Schlick’s ship gyroscope. In the latter device a heavy top with a vertical axis,
driven by a motor, is set into a frame that can rotate about the transverse horizontal
axis. During ship vibrations about the longitudinal axis—these “rolling vibrations”
shall be damped—the top performs vibrations because of the precession about the axis
lying across the ship; ship vibrations and top vibrations represent coupled vibrations.
The top vibrations are appropriately damped by a brake. By the coupling the released
energy is pulled out of the ship vibrations; as a result these are considerably reduced.
As is seen from the above example, for stabilization by a top it is generally essential
that its rotation axis is not fixed relative to the body, but that all degrees of freedom
are available. For this reason a bicycle with a tightly mounted front wheel would not
be stable. Moreover, riding a bicycle without support is also partly based on the laws
of top motion.

An indirect stabilization is used by the devices which control the straight motion of
torpedoes. On deviation from the shot direction, the top activates a relay which causes
the adjustment of the corresponding rudder.

An important problem is to stabilize a horizontal plane so that it remains horizontal
on a moving ship or airplane. This so-called artificial horizon (gyroscope horizon,
flight horizon) could, according to Schuler, be realized by a gravitation pendulum
with a period of 84 minutes (pendulum length = earth radius), since such a pendulum,
even when the suspension point is moved, points to the earth’s center. Useful artificial
horizons could be realized by tops with cardanic suspension (“top pendulum,” center
of gravity below the rotation point).

We finally note that an ordinary play top that moves with a rounded tip on a hori-
zontal plane, and thus has five degrees of freedom, does not fit the definition of a top,
since in general no point remains fixed during its motion; i.e., translation and rotation
motion cannot be dynamically separated. The fact that a play top with an initially tilted
axis straightens up under sufficiently fast rotation—which also happens, for example,
with a cooked egg—can be explained by a torque created by the friction.

EXERCISE |

13.8 Gyrocompass

Problem. A simple gyrocompass consists of a gyroscope that rotates about its axis
with the angular velocity w. Let the moment of inertia about this axis be C and the
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Exercise 13.8

X

Fig. 13.23. Q is the angular
velocity of the earth, @ that of
the gyroscope

moment of inertia about a perpendicular axis be A. The suspension of the gyroscope
floats on mercury, hence the only acting torque forces the gyroscope axis to stay in the
horizontal plane. The gyroscope is brought to the equator. Let the angular velocity of
the earth be 2. What is the response of the gyroscope?

Solution. Since the earth rotates with angular velocity €2, the angular momentum in
the earth system satisfies

dL

—=D-QxL,

dt
where D is the total torque. At the equator €2 points along the y-axis, and the z-axis is
perpendicular to it.

The components of the angular momentum are

L, =Cwsing,
Ly =Cwcosg, g<< 1,
L,=Ag.

We suppose that ¢ is small. Then
L, = Cwep,
Ly=C Y«
=(_Cw, oy .
Y Q
L, =—Agp.

12

Since there are no forces acting in the x,y-plane, D, = 0. Hence, the equation for L,
is

Ap = —CwQp
or

c C
{15~|—Za)52(p=0; ie, ¢+wlp=0, wf:ZwQ.

¢ oscillates with the frequency

c 1/2
W, = <—a)§2>
A

in the north—south direction!

EXERCISE |

13.9 Tidal Forces, and Lunar and Solar Eclipses: The Saros Cycle’

Problem. Theancient Chinese court astronomers were able to predict lunar and solar
eclipses with great reliability. The fact that such eclipses arise only occasionally—

7 The name goes back to the Chaldeans, a Babylonian tribe. Thales presumably used Babylonian ta-
bles for predicting the solar eclipse in 585 B.C. The knowledge of natural science of the Babylonians
was highly developed. They had tables for square roots and powers, approximated the number 7 by
31/8, and could solve quadratic equations. The subdivision of the celestial circle into 12 zodiacal
symbols and the 360° division of the circle are modern examples of Babylonian nomenclature.
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moon

while otherwise we have a full moon or a new moon—is caused by the inclination of
the orbital plane of the earth-moon system from the ecliptic, i.e., the orbital plane of
the motion of the common center of gravity about the sun. This inclination is about
5.15°. It is not fixed in space but precesses because of the tidal forces exerted by
the sun. This leads to the so-called Saros cycle, which is of great importance for the
prediction of eclipses.

Consider the earth—-moon system as a dumbbell-shaped top which rotates about
its center of gravity §); the center of gravity orbits about the sun on a circular path.
The gravitation force between the earth and moon just balances the centrifugal force
resulting from the eigenrotation of the system and thus fixes the almost rigid dumbbell
length rg. The gravitation of the sun and the centrifugal force due to orbiting about the
sun don’t compensate for each body independently but lead to resulting tidal forces.
These forces create a torque My on the top. Calculate My for the sketched position
where it just takes its maximum value. Realize that M( on the (monthly and annual)
average has a quarter of this value. Calculate from this the precession period 7,. Can
you find arguments for why the actual Saros cycle of 18.3 years is notably longer?

Hint: The only data you need for the calculation are the distances rg, the length of
year, and the length of the sidereal month.

Solution. Ry is defined as the vector pointing from the center of gravity of the sun to
the center of gravity of the earth-moon system. The coordinate origin of the system is
in the center of gravity of the sun.

Let R be given in cylindrical coordinates:

R=Rp+ AR
= Roe, + AR,e, + ARye, + AR e,
with
|AR| < [Ro.

‘We then have

2AR,)1/2

IR|~ Ro(l +
0

moon

Fig. 13.24.

Fig. 13.25. The adopted unit
vectors
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Exercise 13.9 Hence, we can write for the gravitational force
ymM
Fg:(R) = —-———-+R
ymM 3AR,
N—— 1— (Roe; + AR,e, + ARye, + AR:e;)
Ry Ro

ymM ymM
%er - 3 (RO—ZARr) +e¢ _—3AR¢
RO RO
ymM
+e | —— AR; ). (13.27)
R
0

The two masses m and M don’t yet have a special meaning. We now consider the
motion of the earth—-moon system as a two-body problem with an external force:

mgRg +mpy - Ry

Rem:=Rp = (CM means center of mass),
mg +mpy
mepVeg+myVy
Ve = ————,
mg +mpy
meBg +myBy
Boy=—"—""——
mg +my
Fes+Fem +Fue +Fuys

= (S means sun).
mg+mpy

According to (13.27),

ARE =TE,
ARy =rpy,
MEYE = —mpTp;

further from (13.27) we have

B — 1 (_ (mg +my)Ms )
M,
=— L4 RSM -e = —w%MRo - ¢, (circular acceleration). (13.28)

The last equality follows from the equilibrium condition for the center of gravity. The
magnitude of the gravitational acceleration must be equal to the magnitude of the
circular acceleration. From this, it follows that the center of mass CM rotates with the
frequency wcy about the sun at the distance Ry.

We further know the following values:

2
Tem = —— —365days;  Ro= 149.6 - 10° km. (13.29)
WCM
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We are mainly interested in the motion of the earth-moon system. To this end we
consider the relative distance r.; between the earth and moon.

rrel = Reg — Ry, Trel| = ro,
. meg-mpy
Pei=u(VE—-Vy) with py=——,
mg +my
dPp 1 FES FEM FME FMS
re ZM(BE_BM)=M<—+ _ _ .
dt meg meg muy mpy
megmpy
FEM =V —3rrel = —ma)ﬁ,lrrel.
T,
0

The last equality holds because of the equilibrium condition, as for the center-of-mass
acceleration.

The relative distance also performs a circle with the sidereal period of the moon at
the distance rp. One has

2
Ty = — =27 days + 8 hours,

“m (13.30)
ro=rg +ry =0.384 - 10° km.

We thus obtain the following combined motion:

mpy

Reg =Rp+ mrrel

MmE E epicycle motion. (13.31)

Ry =Ro— ———r
my +meg

The angular momentum with respect to the center of mass CM is given by
Lo=rg xmg(Vg —Vem) +ty X my (Ve — Vem)
mpy muy
——— T X | ——— |v
EmE T+ my rel mg +my rel

mg mg
+mM—rrcl X - Vrel
mg +my mg +my

memm
= ———TI're] X Vrel
mg +mpy
= M - Tre] X Vre]
mgegmpy
o -1g - 1ew, (13.32)

mg+mpy

where 1g ) represents a normal vector to the orbital plane of the earth—-moon system.
The relation (13.32) does not hold exactly, since the motion of the earth—-moon system
is not perfectly circular, but can be well approximated by a circle.

Exercise 13.9
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Exercise 13.9

The coordinate system at the center of gravity is oriented just as at the origin. The
total angular momentum with respect to the sun is evaluated as

Liot =mgRg x Vg +my - Ry xVy
m m
=mg (RO + M rE) X (VCM + — Vrel>
mpy +mg mpy +mg
mg mg
+mpy <R0 - 71'“31) X (VCM - 7Vrel>
my +mg my +mg
=(mg +mpy)Ro x Vom + - Trel X Vel
= (mg +mywem - RS -1s—cm + Lo
=LcMm + Lo. (13.33)

Similar as in (13.32), here it also holds that ls_cy is a vector normal to the orbital
plane defined by the sun and the center of gravity.

d Lot )
I = (Rg xFes + Ry x Fyrs + (R — Ryy) x Fp) =0;
this means
Loy = —Lo. (13.34)

‘We now consider the resulting torque Mg with respect to the center of mass CM:

Mo =rg x Fgs+Fey —megBem) +1ry x Fys +Fyrp —myBem)

=rg XFgs+ry xFys.

The second terms in each bracket drop because the force and position vector have the
same orientation. The third two terms cancel because

Yemgeg = —Iymy.

By inserting ry], it follows that

mpy mg
My = rel X Fps —

=— rrel X Fus.
mg +my mg +mpy

Using (13.27) for the two force vectors Fgs and Fyss, one obtains by simplifying
M) with respect to cylindrical coordinates:
3 mEM
Mo = = (AR (ke x 7). (13.35)
0

Here, AR, g and AR, g were set to zero, according to the definition of the problem. In
order not to complicate the problem unnecessarily, we put the coordinate system at the
center of gravity and thereby also that at the origin just so that the angular momentum
on the average lies in the x, z-plane. This approach is justified since the precession
frequency to be calculated is notably less than wcy. During one revolution about the
sun the angular momentum has changed only insignificantly (by about 20°), so that
the ecliptic of the earth—-moon system has turned only slightly.
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O

(b)
Ansatz:
cos
r=ro| sinf |, where B~wpyt.
0

In the nonprimed system the vector has the components

cose 0 —sina cosa cos B
el = 0 1 0 , T =10 sin B
sin 0 cosa sin¢ sin 8
Ansatz:
cos(y + ¢o)
e, = | sin(y +¢o) |, where y ~wcwm?.
0

Using the relation

my
AR f=———(Tpl - €),
mg+mpy

one obtains, by using the two approaches, the following new formulation of (13.35):

3ympgM myy
My = 3 rg
RO

mg +mpy

— sina cosa cos? Bsin(y + ¢g) cos(y + ¢o) — sine cos B sin B sin®(y + @)

sina cos o cos? B cos?(y + ¢o) + sina cos B sin Bsin(y + @o) cos(y + ¢o)

cos? a cos? B - sin(y + ¢o) cos(y + ¢o) — sin B cos B cos cosz(y + ¢o)

+ cosa cos B - sin Bsin’(y + @g) — sin® Bsin(y + @g) cos(y + ¢o)

V=

This clumsy expression can be significantly simplified, assuming again that wp >
wcMm- This means that the angular momentum Lg changes only slightly during one
revolution about the sun.

We first consider 8. The revolution period of the moon about the earth is about
28 days. The moment My changes its orientation with varying §; for the “inert” angu-
lar momentum, however, only the average momentum (IMy) 8 counts; this is obtained

Fig. 13.26. (a) The center-of-
mass motion about the sun is
parametrized by the angle y.
(b) The ecliptic plane is tilted
by « from the plane spanned
by the center-of-mass motion
about the sun
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Exercise 13.9

Fig. 13.27. Meaning of the
angles o, B, ¥y at one glance:
B describes the rotation of the
earth—-moon axis in the primed
coordinate system

by averaging over a full period of 8. The moment impact (analogous to the force
impact) of My and of (M) g has the same value, because of the linearity f = wyt.

3yMu 5
(Mp)B = R 0
. 1.
—sina cosai sin(y + o) cos(y + ¢o)
. [
X smacosaE cos“(y + ¢o)

1 1
coszoti Sin(y + ¢0) cos(y + go) — 7 sin(y + ¢o) cos(y + o)

The same consideration can be made for the “rotating” angle y ~ wcmt, since we
assume that , > wcwm. We therefore average over (Mp) 8:

0
3yM L.
(Mp)B)y = 14 3MV§ 3 Sinacose
RO
0
3yM 1
= yR3lLr§-é—Lsinou:osoz-ey = (Mp). (13.36)
0

Not very much is left over from the extended expression; the resulting acting moment
(My) is exactly perpendicular to Lg (see Fig. 13.27) and points along the y-direction.
If the angular momentum moved (slowly), we imagine the shifted angular momentum
as being embedded in a fixed coordinate system and thus get, according to (13.36),
the same result. (M) is constant and always perpendicular to L. It therefore causes
a precession.

But first we will illustrate (13.36) that has been obtained in a rather mathematical
way: In this situation, we get a maximum moment. The moment M() now points in
the y’-direction for all possible 8. For 8 =90° or 8 = 270°, the vector M vanishes.
On the average, we thus obtain

(M(B)) =2(My).
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Fig. 13.28. Orientation of e,
as a function of y + ¢p:
The averaged moment (M)g
always points along the y'-
direction

The diagram shows that there are also two “maximum” orientations with respect to
(y + ¢o). Between these positions (M(8)) must vanish. One thus obtains altogether

(M(B.y))B)y = (Mo).

Thus, the result (13.36) is also clearly understood.
With (13.32) in our defined coordinate system, we have

—sina
2
Lo=p-wpm -1y 0

coso

The angular momentum L now precesses:

o — Ms (M)
P7 L. sina Lo -sina
3 yMsurlsinacosae 3 yM, 1
27 i“o 5 =Y 3Scosa~—. (13.37)
4 Ryjpwyrysina 4 R oM

It has been shown at the beginning (13.28) that
2
yMs 5 yMs o _ (27
a =wcmBo = " =oom =\ 7, )

and with

2

M =
Tvu’

one gets
3 472\ T 3 T,
wp=—cosoz< il )-—Mz—cosaT—M, (13.38)

and for T),
Tpy=—=z— —. (13.39)

With Tem ~ 365.25 days, Ty ~ 27.3 days, and o =~ 5.5°, one obtains
T, ~17.9 years. (13.40)
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Exercise 13.9

Fig. 13.29. Demonstration of
the noncommutativity of finite
rotations

The fact that the actual Saros cycle is larger by about 2% is partly due to the ap-
proximation when averaging y (the angular momentum actually moves slightly), but
possibly due to the elliptic path of the moon about the earth. In any case, the result is
relatively accurate, considering the approximations made.

From (13.34), it further follows that

I'JCM = _LO7

i.e., the “large” angular momentum vector Ly runs through an opposite precession
cone.

13.6 The Euler Angles

The motion of the heavy top suspended at a point can be described by specifying
the orientation of a body-fixed coordinate system (x’, y’, ) relative to a space-fixed
system (x, y, z). The two coordinate systems have a common origin at the suspension
point of the top. To establish the relation between the two coordinate systems, one
usually adopts the Euler angles.®

The coordinate system (x’, y’,z’) is obtained from the system (x, y, z) by three
subsequent rotations about defined axes. The corresponding rotation angles are called
Euler angles. The sequence of the rotations is important, since rotations by finite an-
gles are not commutative. In Fig. 13.29 we see at once that a permutation of the se-
quence of two rotations about different axes leads to a different result.

1 cl Z

90° 90°
| y' about ’7 about y
pd x Ve ‘ y
x \ X X
z z z
L 90°
about 90°
| ¥ y y about y
/ X
X \ X by

A rotation by 90° about the x-axis, followed by a 90°-rotation about the y-axis
(upper figure) leads to a different result than rotating first about the y-axis and then
about the x-axis (lower figure) (noncommutativity of finite rotations).

The Euler angles are defined as follows: The first rotation is performed about the
z-axis by the angle «. The x- and y-axis turn into the X- and Y-axis. The Z-axis

8 Leonhard Euler, Swiss Mathematician, b. April 15, 1707, Basel, Switzerland—d. September 18,
1783, Saint Petersburg, Russia. Son of a clergyman, Euler studied mathematics in Basel with Johann
Bernoulli, and in 1727 was appointed professor of physics and mathematics at the university of Saint
Petersburg. With an extended break from 1741 to 1766 as a member of the Berlin Academy of Sci-
ences, he spent the rest of his life in Saint Petersburg. Euler authored more than 800 scientific papers
on nearly all subjects in mathematics, especially on calculus, calculus of variations, and the theory
of complex functions. He contributed eminently also to the theory of numbers, and his solution to
the problem of the Seven Bridges of Konigsberg laid the foundation of graph theory and topology. In
physics, Euler worked mainly in hydrodynamics, the theory of elasticity, and the theory of the top.
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coincides with the z-axis. The so defined X, Y, Z system is a first intermediate system
which is only used to keep the calculation transparent. For the unit vectors, we have
z | Z
i=0-DI+3G-DJ+ G- K)K=cosal —sinal,
Y
i=G-DI+G-DI+ (- K)K=sinal +cosal, (13.41a) ,
o
k=& -DI+ k- -HJ+ (k- K)K=K. x X

The second rotation is performed about the (new) X-axis by the angle B; the Y-
and Z-axis turn into the Y’- and the Z’-axis. The X’-axis coincides with the X-axis.
The X', Y’, Z' system fixed in this way is a second intermediate system. It serves for
mathematical clarity and transparency, just as the first intermediate system did. An
analogous calculation yields for the unit vectors

I=T,

J =cospBJ —sin BK/, (13.41b)

K = sin8J + cos BK'.

The third rotation is performed about the Z'-axis by the angle y; the X’- and Y'-
axis then turn into the x’- and y’-axis, respectively. The z’-axis is identical with the
Z'-axis. The x', y’, 7’ system constructed this way is the desired body-fixed coordinate
system. For the unit vectors, one obtains

I' =cosyi —sinyj,
J =sinyi +cosyj, (13.41c)
K =K

Using the relations between the unit vectors, we now determine the unit vectors
i, j, k as functions of ', j', K. For this purpose, we insert

i=cosal —sinaJ
= cosal — sina cos BJ + sina sin BK’
=cosacosyi —cosasinyj —sinacosBsinyi
—sinacos Bcosy j + sinasin Bk’
. . o/
= (cosa cosy — sina cos B sin y)i

+ (—cosasiny — sina cos B cosy)j + sina sin BK'. (13.41d)

Fig. 13.30. The first Euler an-
gle

Fig. 13.31. The first two Euler
angles

Fig. 13.32. All three Euler an-
gles
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An analogous calculation yields

j= (sinacosy + cosacos Bsiny)i’
+ (—sinasiny + cosa cos Bcosy)j — cosasin K/, (13.41e)
k =sinBsinyi +sinBcosy j + cos K.

The rotations can also be expressed by the corresponding rotation matrices. For the
first rotation, we have

r= AR,
where
cosa —sina 0 X
A= sine cosa O and R=1]Y
0 0 1 Z

The matrices for the rotations by the angles 8 and y accordingly read

1 0 0
B=|0 cosp —sing |,
0 sinB cosp

cosy —siny 0
C=|siny cosy O
0 0 1

The matrix of the entire rotation D is the product of the three matrices D=ABC.
Hence,

r=Dr or =D 'r=Dr.

Since the rotation matrices are orthogonal, the inverse matrix equals the transposed
one. By calculating the matrix product, one can easily show that the matrix D agrees
with the relations derived for the unit vectors. (This agrees with the general consid-
erations from Chap. 30 of Classical Mechanics: Point Particles and Relativity of the
Lectures on Theoretical Physics.)

We first calculate the angular velocity @ of the top as a function of the Euler angles.
If (i, j, k) define the laboratory system and (i’, j’, k') a body-fixed system of principal
axes, for the angular velocity we have

(o:a)ak—l—a)lgl—i-a)yK/=O'lk+/3.l+)}K/,

where we presuppose that k, I, and K’ are not coplanar. We utilize the derived relations
between the unit vectors and obtain

w=asinBsinyi +dasinBcosyj +dacosfk + Bcosyi — Bsinyj + yk’
= (&sinBsiny 4+ Bcosy)i’ + (@sinBcosy — Bsiny)j + (@ cos B+ p)K.
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Setting @ = w,i’ + wy/j’ + w k', we get the components of the angular velocity rela-
tive to the body-fixed coordinate system:

wy =w; =d&sinBsiny + Bcosy,
wy = wy =asinfcosy —Bsiny, (13.42)

wy =w3=dacosf+y.

The kinetic energy T of the top is then
1
T = E(e)lw% + 020} + O303)
1 C o s .0
= 5(91(01 sinBsiny + Bsiny)
1 . ST
+ 562(0[ sinfcosy — Bsiny)
1 . .2
+§®3(ozcos,3+y) : (13.43)
If ®1 = 03, i.e., the top is symmetric, the above expression simplifies to

_l 22 2 52 l . N2
T—2®1(a sin“ 8+ B )+2®3(otcos,3+y) . (13.44)

13.7 Motion of the Heavy Symmetric Top

For the special case of the heavy symmetric top, we will determine the explicit equa-
tions of motion and the constants of motion, starting from the Euler equations. For
simplification, we note that for the symmetric top the two orientations of the princi-
pal axes €,/, e,/ can be arbitrarily chosen in a plane perpendicular to e,. We therefore
choose a coordinate system where the angle y always vanishes. This system is then
no longer body-fixed (it does not rotate with the top about the e, -axis). The axes
€., €, e, are then coplanar, as are ey, €,/, ey. This is illustrated in Fig. 13.33.

Fig. 13.33. Heavy top in vari-
ous coordinate systems
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Fig. 13.34. Precession and nu-
tation of the angular momen-
tum: The figure axis points
along L/

Analytically, this follows from the fact that

e, =I'=I=cosai+sinaj=cosae, +sinae,,
e =J =cosBJ+sin K =cosB(—sinai+ cosaj) + sin K

= —sinacospe, +cosacos fe, +sinfe;, (13.45)
e, =K' = (—sinf)J + cos BK = —sin f(—sina i+ cosa j) + cos BK

=sinasinBe, —cosasinfe, +cosfe;.
We thereby have inverted the relations (13.41a) and (13.41b). By means of the expres-

sions for €}, €/, €, one can now easily check the triple scalar products €} - (e; x €})
and e, - (¢} x e)), e.g.,

1 0 0
e - (€, xey) =det| cosa sina 0| =0.
0 1 0

Similarly, one shows the vanishing of the other triple scalar product and thus confirms
that the corresponding vectors are coplanar.

The coordinate system thus follows the precession (with ¢&) and the nutation
(with ,B ) of the top, but not its eigenrotation. To realize that ,B describes the nutation,
we note that a nutation motion of the figure axis is superimposed onto the precession
(compare the discussion in the section “Elementary considerations on the heavy top”).
This manifests itself for 8 in an up-and-down motion (vibration) about a fixed value
Bo (see Fig. 13.34).

For the angular velocities (13.42) of the e/, e,/, e, system (which is only partly
body-fixed) relative to the laboratory system ey, €y, €; in this system (y = 0) we have

w] = a)x/ = Ba

Wy = wy =asinf, (13.46a)

w3 = w, =acos P,
or

w=fey +dsinfey +dcosfe,. (13.46b)
The angular velocity of the top, on the other hand, is

@WK = wyey + wyey + (wy + wo)ey

= Be, +asin B e, + (acos B + wp)e, . (13.47)

Here, wy is the additional angular velocity of the top relative to the e,/, e,/, €,/ system.
The angular velocity wq(¢) in general depends on the time. We must take care also
when calculating the angular momentum, because in this particular e,’, e,/, €, system
the rigid body still rotates with the angular velocity wge,. We can call this additional
rotation spin. It is due to the particular choice of our (not exactly body-fixed) system
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€/, €y, €. The angular momentum is then
L= @wk = O1w1€y + Orwey + O3(w3 + wo)ey
= 018e, + Orasin ey + O3(acos B+ wp)ey
={Ly, Ly, Ly}, (13.48)
and the Euler equations read
L|ap =Lle + @ x L=D. (13.49)

Note that the spin rotation wg appears in L but not in !
The torque about the origin of the space-fixed system is

D= (l-e,;) x (—mge;) =mglsinpBe,,

because e/ x e, = —sin e/, as is easily seen from (13.45). By inserting this into the
Euler equations (13.5) and (13.49) and noting that ®; = ®;, we obtain

mglsin =01 + (03 — O1)a’ sin B cos 8 + ®3wpa sin S,
0= 0 (@sinB 4+ apcos B) + (O] — O3)&p cos B — Ozwof, (13.50)
0= O3(@ cos B — &fsin B + o).

From the above system of equations, «(z), 8(t), and wg(¢) can be determined. From
the third equation, we have, because ®3 # 0,

. d
&cosﬁ—dﬂsinﬂ+d)0=E(dcosﬂ+w0)=o (13.51a)
or
acos B+ wy = A = constant, (13.51b)

i.e., the angular momentum component L, = ®3A (see (13.48)!) about the figure axis
is constant.

We therefore set & cos 8 + wo = A, calculate wq from this and insert it into the first
two equations. We then obtain two coupled differential equations for precession ()
and nutation (), respectively:

mglsinf =05 — 016> sinfBcos B+ O3Asing - «, (13.51¢)
0 =0 (@sinB + 2B cosp) — O3AB. (13.51d)

We first investigate this system for the case that the top performs no nutation. Then

f=p5=0,and B > 0. By insertion, we obtain
mgl = —©1&> cos B + O3Ad, & =0. (13.52)

The second equation means that the precession is stationary.
From the first equation, we determine the precession velocity a:

©34 4mgl®
G234 [ _dmglOicosp ) (13.53)
20 cos B ©3A2
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For a top rotating quickly about the e,/ -axis, A becomes very large, and the fraction
in the radicand becomes very small. We terminate the expansion of the root after the
second term and get as solutions to first order for dgmay:

. mgl
Qsmall = @; (13.54a)
to zeroth order for djyrge, We have
®
G=—2 A, (13.54b)
®1cosp

A stationary precession without nutation (regular precession) occurs only if the heavy
symmetric top gets a certain precession velocity (&small OF Qlarge) by an impact. In the
general case the precession is always coupled with a nutation. The heavy top will al-
ways begin its motion with an deviation toward the direction of the gravitational force,
i.e., with a nutation. We still note that ¢mqa) agrees with the precession frequency

mgl mgl mgl
wy, = —— = ~ —
P L Oszwyg ©O3A

obtained in the section “The heavy symmetric top: Elementary considerations.”

Before we continue the discussion on the general motion of the top, we determine
additional constants of motion. We have already seen that from the last equation of the
system (13.50) we have

acos B+ wy = A = constant, (13.51b)

hence, the corresponding part of the kinetic energy is

1 1
T3 = 5@3(6{ cos B+ wp)* = E(~)3Az = constant. (13.55)

Multiplying the first of the Euler equations (13.50) by A and the second one by & sin 8,
after addition one gets the total differential

mglsinB - = 0O BB + O (&asin® B + &*B sin B cos B)

or
d( I cos B) d 1®BZ+1® v? sin’ B (13.56)
—(— COS = —| - — Sin . .
dre 8 di\2 P Ty

This means that the energy (more precisely, the sum of the kinetic parts 77 + 73 plus
the potential energy)

1.
E = 5@l(ﬂ2 + &2 sin® B) + mgl cos B (13.57)

is also a constant of motion. This must be so, of course, since the total energy of the

top must be constant.
The total energy of the top is then

E=E+T;

1. 1
= E@1(,32 +&%sin? B) + 5@)3((51 cos B + wg)* + mgl cos B. (13.58)
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The last term obviously describes the potential energy of the top in the gravitational
field. The energy law (13.58) must of course hold in general. We could have written
it down immediately and skipped the derivation (13.56) from the Euler equations.
Nevertheless, it is of interest to see how the equations of motion succeed too.

In the second Euler equation (13.51d), we insert

L, = ®3A = constant (13.59)
and multiply by sin . This yields

O (& sin® B +2&pfsinBcosB) — Ly sinB - =0. (13.60)
Since L, is constant, this is a total differential, and then it follows that

O (asin® B) 4+ L./ cos B = constant. (13.61)

This constant is the z-component of the angular momentum in the space-fixed system.
This is seen immediately if we multiply the angular momentum

L=0(wyey +wyey) +Lyey (13.62)
by e,. From (13.45) or from Fig. 13.33, we see that

ey -e;, =0, ey e, =sinf, e, -e; =cospf. (13.63)
By noting that w,» = & sin 8, we see that

L-e,=L,=0 & sin2,3+LZ/ cos 8 = constant. (13.64)

The two angular components L, and L are constant, because the moment of the grav-
itational force acts only in e,/-direction, i.e., perpendicular both to the z- as well as to
the z’-axis. The conditions L, = constant and L,» = constant’ can be realized by a pre-
cession of L about the z-axis, and an additional rotation of the z’-axis about the L-axis.
The latter motion is the nutation. This obviously means that the angular momentum L
precesses about the laboratory axis e;, and the figure axis e, simultaneously performs
a nutation about the angular momentum L.

With the constants of motion we will now further discuss the motion of the top.
From the equation of the angular momentum component L in the laboratory system,

Oésin’ B+ Lycosf =L, (13.65)

we determine ¢&:

P Lz/;"sﬂ, (13.66)
®psin” g

and insert this into (13.58):

Lo+
) 1

L,— Ly 2
w—kﬂ—kmglcosﬁ:E.
201 sin” B

Since L., L./, T3, and E are constants of motion, this is a differential equation for the
nutation (7). We now substitute

u =cospf, (13.67)
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Fig. 13.35. Qualitative trend
of the function f(u)

then it = —sin 8 - B and sin?> 8 = 1 — 2. From this, we get

1@1 2 (L, — L.u)?
2 1—u? 2011 —u?)

+mglu=FE —T; (13.68)

or

L,—Low? 2mglu(l1—u? 2(1—u?
Iftz—i—(z zu)+mgu( u-) ( u-)

& o = o (E-T (13.69)
With the abbreviations
e=2E(;lT3, =2gfl, y=é—zl, 5=IC:)—ZI’, (13.70)
this equation can be written as follows:
2= (e — Eu)(1 —u?) — (y — du)’. (13.71)

It cannot be solved by elementary methods. We therefore give the graphical rep-
resentation of the functional dependence. In the following we use the abbreviation
1> = f(u). For large u the leading term is u°, i.e., the curve approaches f(u) = £u>.
For f(1) and f(—1), we have

f()=—(y —8?2<0, f(=D)=—(y+8?2<0. (13.72)

From this, we obtain Fig. 13.35.

fu)
region of physical

interest: 122=f(u) >0

In general, the function f(u) has three zeros. Because of its asymptotic behavior
for large, positive u# and because f (1) < 0, for one zero we have u3 > 1.

For the motion of the top, we must have 1% > 0. Since 0 < B <m/2, we have 0 <
u < 1. To ensure that the top moves at all in the physically relevant region 0 <u < 1,
in a certain interval of this region we must have i? = f(u) > 0. Hence, for physical
reasons two physically interesting zeros uy, up must exist between zero and unity.
Therefore in the general case there are two corresponding angles 81 and 8, with

cosfi=u; and cospfr=u;. (13.73)

In special cases, we can have (1) u; = up and (2) u; = up = 1. We first consider these
special cases:

(1) u1 = us # 1: The tip of the figure axis orbits on a circle (this is called stationary
precession); no nutation occurs (the angle S has a fixed value). According to (13.66)
the precession velocity reads
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. y —éu
o =
1 —u?

(13.74)

and is constant.

(2) u; = upy = 1: In this case, the figure axis points vertically upward. The top
performs neither nutation nor precession motion (sleeping top). This is obviously a
special case of the stationary precession (compare Exercise 13.8).

In the general case (11 # u>), a nutation of the top is superimposed on the preces-
sion between the angles 81 and 8,. According to the angular momentum law (13.65),
(13.66) for the precession velocity, we have

. L;,—Lycosp y—du
a= — = 5
O sin® B l—u

(13.75)

The zeros of this equation, i.e., the solution of & (u) = 0, specify those angles 8 at
which the precession velocity ¢ momentarily vanishes. In order to illustrate the gyro-
scope motion, we give the curve described by the intersection point of the figure axis
on a sphere centered about the bearing point.

There are three different types of motion, as illustrated in Figs. 13.36, 13.37,
and 13.38.

(1) y /8 =ujy: The precession velocity just vanishes at 8; hence, the peaks appear.

(2) u; <y /8 <uy: The upper peaks at 5, extended to loops. The precession velocity
vanishes between > and f;.

(3) v/6 > uy: The precession velocity would vanish beyond B> (as indicated in
Fig. 13.38). A peak cannot arise.

EXAMPLE |

13.10 The Sleeping Top

In the case of the so-called “sleeping top,” the figure axis points up vertically, so that
neither nutation nor precession occurs. For this special case, we must have g =0 and

g=0.

From energy conservation, we obtain

l@ (52+d2sin2ﬂ)+1® A’ +mglcosB=E (13.76)

2! 2° & ’ '
and because

=0,  p=0,
it follows that

O3A% =2(E — mgl). (13.77)
Constancy of the z-component of the angular momentum yields

1asin” B + ®3A cos B = constant = K, .
O1d sin’ B + O3 A K (13.78)

Fig.13.38. y/8 > uy
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Example 13.10

Fig. 13.39.

from which follows (A = w3 + wy = constant)
03A =K. (13.79)

For the quantities ¢, &, y, and § in the differential equation for the nutation motion in
u = cos 3, we have

. 2(E — (1/2)03A%)  2mgl

Cf 0
2mgl
=15
1
K B3A
=—= ) 13.80
v (O) (O ( )
5= 4
CJ|
= ¢e=§& and y=04.
Inserting this into the differential equation (13.71) for u, one obtains
i = f) =e(l =1 =) (1 +u) —y*(1 —w)? (13.81)
= f@=0-wlel+u) -y (13.82)

Equation (13.82) has a twofold zero, which will be denoted by uo» =u3 =1 or u; =
uy = 1 (compare Fig. 13.39). The third zero is at
y2 . O3A7

=

P T @12mgl

(13.83)

Accordingly, f(u) has one of the two courses (see Fig. 13.39).

A

faw)] fw)

u;=u,=1

(a) (b)

For Fig. 13.39(a), B actually vanishes since f(u) has a zero. Thus, we can have
B = constant # 0, i.e., the case of stationary precession. But since we also require
B = 0 for the “sleeping top,” only Fig. 13.39(b) is left over where 8 # 0 does not exist
as a solution (11 > 1).

Hence, from (13.83) we obtain as condition equations for the “sleeping top”:

o1 :
-1>1 & A°>——
©12mgl ®%

(13.84)

Equation (13.84) will be satisfied only in the initial phase of the gyroscope motion.
Because of friction, A2 = (w3 + a)o)2 decreases, so that
4mgl®
A% < mg2 !
03
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and therefore one observes precession with overlaid nutation. Further energy loss in-
evitably causes the top to tilt down.

EXAMPLE |
13.11 The Heavy Symmetric Top

(a) Write the total energy of the top as a function of the Euler angles.

(b) Determine the constants of motion, and use them to eliminate the Euler angles
o and y from the energy law. Propose approaches for solving the resulting one-
dimensional differential equation:

1 .
E= 5@1,30)2 + Verr(B). (13.85)

(c) Discuss the effective potential Veg(B), and solve the differential equation of the
heavy top for infinitesimal displacements from the stable position in the minimum
of the potential:

B(t) = Bo +n(t).

/cm \ .
B //,

Mg

We consider the symmetric top bound to a fixed point in the gravitation field. The
energy law reads

E=T+V, (13.86)
where
1
TZEZG)iwiZ and V=M-g-h. (13.87)
1

M is the mass of the top, and 7 = cos § is the distance between the center of gravity
and the bearing plane.

In order to express the angular velocity @ = (w,/, ,, ;) by the Euler angles and
their time derivatives, we note that &, 8, y are rotation velocities by themselves. The
rotation velocity of the body is obtained as the vector sum

=0y + g+, =de, + feg + Ve, (13.88)

Fig. 13.40.

Example 13.10
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Example 13.11 The vectors e, ey, eg follow from the definition of the Euler angles:

y: Rotation about the new (body-fixed) z’-axis:

e, =ey=(0,0,1). (13.89)
«: Rotation about the space-fixed z-axis:

ey, =e; = (sinBsiny, sin B cosy, cos f). (13.90)
B: Rotation about the nodal line, x-axis:

eg =e, = (cosy, —siny, 0). (13.91)

One thus obtains the components of the rotation velocity in the body-fixed coordinate
system

wy =w; =dasinBsiny + Bcosy,
wy =wy =asinfcosy — Bsiny, (13.92)
wy =w3=acosf+y.

By inserting this into (13.87) and using ®; = ®;, we obtain for the kinetic energy

_l ) ) l . 2
T—2®1(a sin“ 8 + B )+2®3(acos,3+y) . (13.93)

Since the gravitational force acts only along the z-direction, the torque acts only along
the nodal line eg.

D=rxF=—-Mgle, xe,
= —Mglsin Beg.

Thus, the angular momentum components in the e,, e, -plane remain unchanged.
L, and L are constants of motion:

L, = ®3w3 = O3(&cos B + y) = constant,

L, =L-e, =constant. (13.94)
We evaluate the scalar product in the body-fixed coordinates:
L,=L-e,
= @ (asinfBsiny + fcosy)(siny sin B)
4+ O1(asinBcosy — ,3 siny)(cos y sin f)
+ ©3(acos B+ y)(cos B)
=@1(o'zsin2/3)+®3cos,8(dcos,8—i—))). (13.95)
Here, we utilized (13.92). Equations (13.94) and (13.95) can be inverted, i.e., solved
for y and .
P L.z’zcosﬁ_, (13.96)
®qsin” B
) — LZ/<®L3 n C‘gf) - é—i;zszi (13.97)
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We insert the relations (13.96) and (13.97) obtained this way into the expression for
the kinetic energy (13.93) and obtain

® — L, 2
E= 20 1(75‘”’3) sin® B
2 O sin~ B

1
+ 5@3(0220052,3 + 72 +2ay cos B) + Mgl cos B

1. 1 (L, —L/cosﬁ)z
= -08%+ — T 4+ = 4+ Mgl
5 18+ 2®1 sinl B + 2@ + glcos B

1 .
= 5®1ﬂ2 + Verr(B). (13.98)

We used the constancy of L, and L, to eliminate the two Euler angles « and y.
This simplified the problem greatly. From the energy law (13.98) we can in principle
determine B(¢) and then obtain «(¢) and y (¢) via (13.96) and (13.97).

To proceed further, various possibilities offer themselves:

(a) We can establish the equation of motion for 8(¢):

d—E=O=®],3'/§+aVeﬁ('3)

T Y. B. (13.99)

Hence, energy conservation leads to the equation of motion:

0
018 = _ﬁveff(ﬁ)

L.
——(L —L/cos,B)ZCS'B 2

5111 ﬂ (C2 smﬂ

(L; —LycosB)+ Mglsin

=SSP 12 op pcosp L) — :
Orsin’ B ° o 77 ©;sinp

+ Mglsing.  (13.100)

This is a one-dimensional differential equation for 8, although highly nonlinear. For a
given solution B(t), a(t), and y (¢) can be found by integration of (13.96) and (13.97).

(b) Another principal approach is to solve the differential equation (13.98) by sep-
aration of variables and integration.

ab_ |2
dr — \ ©
B

E — Ver(B)),
(13.101)

1
t—ty= [ dp .
’ ﬁ/ P o E Va8

Thus, the time dependence of 8 can be determined by integration.
Since (a) and (b) are likewise complicated, we restrict ourselves to a discussion of
the effective potential, in order to understand the essentials of gyroscopic motion.

Example 13.11
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Fig. 13.41. The effective po-
tential is composed of three
terms

Discussion of the effective potential

1 (L,—LycosB)?® 1Ly
Veff=——( - 12 £) + ~—= + Mgl cosB.
sin“ 8

13.102
> 05 ( )

The effective potential is composed of three terms which we will discuss separately.

E A
g " (L\,—Lz,cos[_’))2

j —
"/ 20,sin’B

T Ve (B)

e

arccos(L /L) N

\\\
Mgl cosB/ RN

-~ -

Spin term

1L,
203

(13.103)

The second term is constant and is due to the energy of the eigenrotation of the top
about its figure axis. It shifts the zero point of the energy scale and is independent
of B.

Angular momentum barrier

1 (Lo mLocospy? (13.104)

20 sin B
The first term is understood by analogy to the />/2mr? angular momentum term,
which appeared in the effective potential when treating the central force prob-
lem. It is positive and vanishes for L /L, = cospB. Then B is only a physi-
cally meaningful angle if L, < L. This is in general fulfilled for a top with
fast eigenrotation. For 8 = 0, 8 = m, the first term diverges because of the fac-
tor sin2,3 in the denominator. As a consequence, the term then has a minimum
which lies at 8 = arccos(L;/L,) < w/2. For B — 0 and § — =& the potential rises
steeply.

Gravitation term

MglcosB. (13.105)
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The last contribution is caused by the gravitational potential. It is antisymmetric
about the center 77 /2 and shifts the minimum of the effective potential to the right side
of arccos(L /L) without changing its qualitative form.

For a given energy E (> L;/203), the motion is restricted to the region
E > Veg(B) with reversal points 4 ; these points are defined by E = Vegr(B+).

For a more precise analysis of the motion, we determine the stationary solution for
which = By = constant. It is located exactly in the minimum of the effective poten-
tial, so that the reversal points B4 coincide, and E = Veg(Bp). Bo is then determined
from the minimum property:

E1%
(_eff> =0. (13.106)
p B=Bo

Hence, (13.100) leads to

L, L, sin? By ©1Mglsin By

L*—2L.L,cosBy+ L% =
N e Po z cos Bo cos Bo

(13.107)

This equation fixes By for given values of L, and L.

Equations (13.96), (13.97) imply for & and y constant values &g and yp. Hence,
in dynamic equilibrium the top performs a constant rotation about its own axis
y (1) = ypt at fixed angle By, as well as a precession motion « () = &gt with constant
precession frequency .

Small oscillations about the dynamic equilibrium position
In order to investigate the motion in the vicinity of By, we consider small displace-
ments from the equilibrium. Instead of explicitly solving (13.100), we write

B(t) = Po+n(t) (13.108)

with an infinitesimal displacement 1 (¢). We expand the potential into a Taylor series

A Vet 1 02 Vegt
Veit(B) = Veit(Bo) + n<a—‘°‘> + 5"2(3—§> o (13.109)
B/ p=po 1 ) p=py

The linear term vanishes by construction, and the quadratic term follows by differen-
tiation of the negative right side of (13.100):

3% Ver 3L.Ly
;tf = —Mglcosp — ——= 1 c205ﬂ
0p ® sin” B
3 —2sin’ B
+ (L2 —2L Lycosf+ L) ————". 13.110
(L2 o P 2 O sin* B ( )
By inserting (13.107) for the last term, one obtains
3%V, L.Ly —©Mgl(4 — 3sin
eff _ Lzlg 1Mgl( sin ﬂO) (13.111)

B2 B=Fo B ©1 cos By

Example 13.11
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For the total energy, one then obtains likewise

L5 1 8%V
E=—®1T] + =7 ( 8,32

+ Vett(Bo).- (13.112)
2 2 ) ‘[5:/30

Differentiation with respect to the time finally leads to the differential equation of the
harmonic oscillator:

ii+Qn=0 (13.113)
with
QZZL(%> :LZLZr—®1Mgl(4—3sin2,30). (13.114)
O\ 9p2 B=Fo ©7 cos fo
The corresponding motion
B(t) = Bo + no cos(2t + o) (13.115)

is stable if Q2 > 0. Obviously the product L, L. must be sufficiently large to ensure
stable vibrations.

Precession and nutation
We insert the explicit solution of (13.113) into (13.96) and (13.97), and expand with
respect to n(z):

L,— Ly 9 (L,—L,
a(t) ~ Z;fosﬂo + n(r)—(ﬂ) o (13.116)
®1sin“ By apB ®1sin“ B B=Fo
=ap +n(t)ar,
y (@) =y +n®y, (13.117)

where &g, &1, Y9, 1 are constants which depend on L, L/, and E (through S). For a
qualitative investigation of the superposition of nutation (8(¢)) and precession (x(?)),
we start from (13.116):

a(t) >~ &g + nodq cos(2t + o)
. ao
=amo<.— +cos(9t+§00))- (13.118)
@110
For cp/c1nog > 1, o always remains larger than zero (Fig. 13.42(a)). For ceo/c¢1no = 1,

the precession frequency may become equal to zero (Fig. 13.42(b)). For &g /19 < 1,
we have a backward motion in parts (Fig. 13.42(c)).
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A A A
B%X
By
/__m/ ,"
2n >
TGN A <L
w o m T © T
EXERCISE

13.12 Stable and Unstable Rotations of the Asymmetric Top

Problem. Use the Euler equations to show that for an asymmetric top the rotations
about the axes of the largest and smallest moment of inertia are stable; however, the
rotation about the axis of the intermediate moment of inertia is unstable.

Solution. We start from the Euler equations for the free top:

©,-0
o= 22— w3, (13.119)
CJ
0;—0
in=— Lo ws, (13.120)
0,
S
3= ——— 2w (13.121)
G

Let the top rotate about the body-fixed z-axis, i.e., w3 = wp = constant and w| = w;
= 0. To investigate the stability of the rotation about this principal axis, we tilt the
rotation axis by a small amount, so that new components w1, w; and an additional
Sws arise. For §ws, we have from the Euler equation

0, -0
Siry = %Swl&oz ~0. (13.122)
3

Neglecting quadratic small terms, we can set w3 = wg. From the other two Euler equa-
tions, we then obtain
O3 —0

Sy + Tz&ozwo —0, (13.123)
1

) 0 — 03
By + — o dwig = 0. (13.124)
2

To solve this coupled system, we use the ansatz

Sw| = AeM,

50y — B (13.125)

Fig. 13.42.
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This leads to a linear set of equations in A and B, where the determinant must vanish

for nontrivial solutions:

03 -0,

—w
0

A 0

o, - 6, —0. (13.126)
— W

A
) 0

From this, we find the characteristic equation

(03 -02)(0] —63)

2= 13.127
w( 0,0, ( )

For the rotation about the axis of the smallest moment of inertia ®3 < ®;, ®;, and
for the rotation about the axis of the largest moment of inertia ®3 > ®1, ®,, equation
(13.127) leads to a purely imaginary A:

A2 <0, (13.128)

and therefore to vibration solutions for §w; and dw,. The rotation about the axis of the
largest and smallest moment of inertia, respectively, is therefore stable.
The rotation about the axis of the intermediate moment of inertia

O1>03>0, or O)>03>0 (13.129)
leads to a real A and thus to a time evolution of éw; and dw> according to
50)1/2=C1/2COSh)»t+D1/QSinh)»t. (13.130)

The rotation axis turns away exponentially from the initial position. The rotation about
the axis of the intermediate moment of inertia is not stable!
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Lagrange Equations




Generalized Coordinates

In many cases, the motion of bodies considered in mechanics is not free but is re-
stricted by certain constraint conditions. The constraints can take different forms. For
instance, a mass point can be bound to a space curve or to a surface. The constraints
for a rigid body state that the distances between the individual points are constant.
If one considers gas molecules in a vessel, the constraints specify that the molecules
cannot penetrate the wall of the vessel. Since the constraints are important for solv-
ing a mechanical problem, mechanical systems are classified according to the type
of constraints. A system is called holonomic if the constraints can be represented by
equations of the form

fe(t1, 12, ..., 0) =0, k=1,2,....5. (14.1)

This form of the constraints is important since it can be used for eliminating dependent
coordinates. For a pendulum of length [ (14.1) reads x> + y? — I> = 0 if we put the
coordinate origin at the suspension point. The coordinates x and y can be expressed
by this equation.

We already met another simple example of holonomic constraints in the context of
the rigid body, i.e., the constancy of the distances between two points: (r; —r j)2 —
C 121 = 0. In this case the constraints served to reduce the 3N degrees of freedom of a
system of N mass points to the 6 degrees of freedom of the rigid body.

All constraints that cannot be represented in the form (14.1) are called nonholo-
nomic. These are conditions that cannot be described by a closed form or by inequali-
ties. An example of this type of constraint is the system of gas molecules enclosed in
a sphere of radius R. Their coordinates must satisfy the conditions r; < R.

A further classification of the constraint conditions is made based on their time
dependence. If the constraint is an explicit function of the time, then it is called
rheonomic. If the time does not enter explicitly, the constraint is called scleronomic.
A rheonomic constraint appears if a mass point moves along a moving space curve, or
if gas molecules are enclosed in a sphere with a time-dependent radius.

In certain cases the constraints may also be given in differential form, for example
if there is a condition on velocities, e.g., for the rolling of a wheel. The constraints
then have the form

N
Zak(m,xz,...,xN)dxk:O, (14.2)
k

where the x; represent the various coordinates, and the a; are functions of these coor-
dinates. We now have to distinguish between two cases.

W. Greiner, Classical Mechanics, 259
DOI 10.1007/978-3-642-03434-3_14, © Springer-Verlag Berlin Heidelberg 2010
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Fig. 14.1. A small sphere rolls
on a large sphere

wt?

S

Fig. 14.2.

If (14.2) represents the total differential of a function U, we can integrate it imme-
diately and obtain an equation of the form of (14.1). In this case the constraints are
holonomic. If (14.2) is not a total differential, we can integrate it only after having
solved the full problem. Then (14.2) is not suitable for eliminating dependent coordi-
nates; it is nonholonomic.

From the requirement that (14.2) be a total differential, one can derive a criterion
for the holonomity of differential constraints. One must have

U
E ardxy =dU with ap = —.
Xy
k
This leads to

dap U da;
3)61' a axiaxk o 3)61(‘

Thus, (14.2) represents a holonomic constraint if the coefficients obey the integrability
conditions

day da;
ax;  Oxi
These only mean that the “vector” a = {a1, a2, ..., ay} must be rotation-free (irro-

tational). In N-dimensional space, the situation is analogous.
To classify a mechanical system, we additionally specify whether the system is
conservative or not.

EXAMPLE |

14.1 Small Sphere Rolls on a Large Sphere

A sphere in the gravitational field rolls without friction from the upper pole of a larger
sphere. The system is conservative. The constraints change completely after getting
away from the sphere and cannot be represented in the closed form of (14.1), and
therefore the system is nonholonomic. Since the time does not enter explicitly, the
system is scleronomic.

EXAMPLE |

14.2 Body Glides on an Inclined Plane
A body glides with friction down on an inclined plane (see Fig. 14.2). The inclination
angle of the plane varies with time. The coordinates and the inclination angle are

related by

Y tanwt = 0.
X
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Thus, the time occurs explicitly in the constraint. The system is holonomic and rheo-
nomic. Since friction occurs, the system is furthermore not conservative.

EXAMPLE

14.3 Wheel Rolls on a Plane

An example of a system with differential constraints is a wheel that rolls on a plane
without gliding. The wheel cannot fall over. The radius of the wheel is a.

Z

g

For the calculation, we use the coordinates xs, yy of the center, the angle ¢ that
describes the rotation, and the angle v that characterizes the orientation of the wheel
plane relative to the y-axis.

The velocity v of the wheel center and the rotation velocity are related by the rolling
condition

v=ag.
The components of the velocity are
Xy = —vsiny,
Ym = vcosy.
By inserting v, we obtain
dxy +asiny -de =0,
dyy —acosy -do =0,
i.e., a constraint of the type of (14.2).

Since the angle 1 is known only after solving the problem, the equations are not
integrable. Hence, the problem is nonholonomic, scleronomic, and conservative.

If a body moves along a trajectory specified (or restricted) by constraints, there ap-
pear constraint reactions that keep it on this trajectory. Such constraint reactions are
support forces, bearing forces (-moments), string tensions, etc. If one is not especially
interested in the load of a string or a bearing, one tries to formulate the problem in
such a way that the constraint (and thus the constraint reaction) no longer appears in
the equations to be solved. We have tacitly used this approach in the problems treated
so far. A simple example is the plane pendulum. Instead of the formulation in Carte-

Fig. 14.3.

Exercise 14.2
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Fig. 14.4. Ellipse: y = bsing,

X =acosg

sian coordinates, where the constraint x2 + y2 =2
use polar coordinates (r, ¢).

The constancy of the pendulum length means that the r-coordinate remains con-
stant and that the motion of the pendulum can be completely described by the angle
coordinate alone. This procedure—the transformation to coordinates adapted to the
problem—shall now be formulated more generally.

If we consider a system of n mass points, then it is described by 3n coordinates
ri,ra,...,r,. The number of degrees of freedom also equals 3n. If there are s con-
straints, the number of degrees of freedom reduces to 3n — 5. The set of originally
3n independent coordinates now involves s dependent coordinates. Now the meaning
of the holonomic constraints becomes transparent. If the constraints are expressed by
equations of the form (14.1), the dependent coordinates can be eliminated. We can
transform to 3n — s coordinates g1, g2, . . . , g3,—s that implicitly incorporate the con-
straints and that are independent of each other. The old coordinates r; are expressed
by the new coordinates g; by means of equations of the form

must be considered explicitly, we

r1 =ri1(q1.92, ..., @3n—s,1),

r =12(q1,92, .-, Q3n—s, 1), (143)

r, =r,(q1,92, ..., q3n—s,1).

These coordinates g;, which now can be considered free, are called generalized coor-
dinates. In the practical cases considered here, the choice of the generalized coordi-
nates is already suggested by the formulation of the problem, and the transformation
equations (14.3) need not be established explicitly. Using generalized coordinates is
also helpful for problems without constraint conditions. For instance, a central force
problem can be described more simply and completely by the coordinates (7, ¥, ¢)
instead of the (x, y, z).

As a rule, lengths and angles serve as generalized coordinates. As will be seen
below, moments and energies etc. can also be used as generalized coordinates.

EXAMPLE

14.4 Generalized Coordinates

An ellipse is given in the x,y-plane. A particle moving on the ellipse has the coordi-
nates (x, y).
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The Cartesian coordinates can be expressed by the parameter @:
y=bsing, X =acose.

Thus, the motion of the particle can be completely described by the angle ¢ (the
generalized coordinate ¢).

EXAMPLE |

14.5 Cylinder Rolls on an Inclined Plane

The position of a cylinder on an inclined plane is completely specified by the distance /
from the origin to the center of mass and by the rotational angle ¢ of the cylinder about
its axis.

If the cylinder glides on the plane, both generalized coordinates are significant.

If the cylinder does not glide, / depends on ¢ through a rolling condition. Only one
of the two generalized coordinates will then be needed for a complete description of
the motion of the cylinder.

EXERCISE |

14.6 Classification of Constraints

Problem. Classify the following systems according to whether or not they are scle-
ronomic or rheonomic, holonomic or nonholonomic, and conservative or nonconserv-
ative:

(a) a sphere rolling downward without friction on a fixed sphere;

(b) acylinder rolling down on a rough inclined plane (inclination angle «);

(c) aparticle gliding on the rough inner surface of a rotation paraboloid; and

(d) a particle moving without friction along a very long bar. The bar rotates with the
angular velocity w in the vertical plane about a horizontal axis.

Solution. (a) Scleronomic, since the constraint is not an explicit function of time.
Nonholonomic, since the rolling sphere leaves the fixed sphere. Conservative, since
the gravitational force can be derived from a potential.

(b) Scleronomic, holonomic, nonconservative: The equation of the constraint rep-
resents either a line or a surface. Since the surface is rough, friction occurs. Therefore
this system is not conservative.

(c) Scleronomic, holonomic, but not conservative, since the friction force does not
result from a potential!

(d) Rheonomic: The constraint is an explicit function of time. Holonomic: The
equation of the constraint is a straight line that contains the time explicitly; conserva-
tive.

gy

0

Fig. 14.5. A cylinder rolls on
an inclined plane
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14.1 Quantities of Mechanics in Generalized Coordinates
The velocity of the mass point i can according to the transformation equation

ri =ri(CI1, . --:th)
be represented as

ori dqy  Oridgqy  Ori
dqy dt daq, dt Jt

r, =

In the scleronomic case, the last term drops. The velocity can also be written in the
form

. — Or; . or; . dq
I = Z @qa + a—;, where ¢y = d—ta (14.4)

o

and ¢, denotes the generalized velocity. In the following, we restrict ourselves to
the x-component. Moreover, we consider only the scleronomic case and write for the
x-component of (14.4)

. ax; .
ii=) aq; da. (14.5)
o

By differentiating (14.5) once again with respect to time, we obtain for the Cartesian
components of the acceleration

o Z 8xt . axi .
dt Bqa e
The total derivative in the first term is written as usual:
d [ 9x; %x; .
i\ ) = 2 g
dt \ 0qq 5 0gp0qq

The index to be summed over is denoted here by the letter 8, to avoid confusion
with the summation index «. Then we have

'—Z axl 9.7/3%1 Xa:g;ciija.

3Qﬁaq

The first term involves double summation over « and 8.

Let a system have the generalized coordinates g, ..., q that now shall be in-
creased by dq1, ..., dqy. We will determine the work performed by this infinitesimal
displacement. For an infinitesimal displacement of the particle i, we have

f

ar;
dr; = Z aq; dq. (14.6)

a=1

From this, we obtain the work performed:

dWZIiFi'dl'i—Z(ZF )dQQ—ZQaan,

i=1 i=1
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where

or;
Oy = ZF . aq;‘ (14.7)
13

Q, is called the generalized force. Since the generalized coordinate must not have
the dimension of a length, Q, must not have the dimension of a force. The product
Quga, however, always has the dimension of work.

In conservative systems, i.e., if W does not depend on time, one has

ow
dW = Z @dqa and dW = Z 0udqy.
o o

Then we must have

aw
dW —dW =0= Z(Qa - a—)dqa =0.
o qa

Since the g, are generalized coordinates, they are independent of each other, and
therefore it follows that (Q, — 0W/dq,) = 0 in order to satisfy the equation

Z(Qoz - 27W>d‘bx =0.

o

But this holds only if
ow
% b

The components of the generalized force are thus obtained as the derivative of the
work with respect to the corresponding generalized coordinate.



D’Alembert Principle and Derivation 1 5
of the Lagrange Equations

15.1 Virtual Displacements

A virtual displacement §r is an infinitesimal displacement of the system that is com-
patible with the constraints. Contrary to the case of a real infinitesimal displacement
dr, in a virtual displacement the forces and constraints acting on the system do not
change. A virtual displacement will be characterized by the symbol 4, a real displace-
ment by d. Mathematically we operate with the element § just as with a differential.
For example,

dsinx

dsinx = dx = (cosx)dx, etc.

We consider a system of mass points in equilibrium. Then the total force F; acting
on each individual mass point vanishes; hence, F; = 0. The product of force and virtual
displacement F; - §r; is called the virtual work. Since the force for each individual
mass point vanishes, the sum over the virtual work performed on the individual mass
points also equals zero:

> Fi-or;=0. (15.1)
i

The force F; will now be subdivided into the constraint reaction F; and the acting
(imposed) force F¢:

D (F¢+F5) - or; =0. (15.2)

‘We now restrict ourselves to such systems where the work performed by the constraint
reactions vanishes. In many cases (except, e.g., for those with friction) the constraint
reaction is perpendicular to the direction of motion, and the product F? - §r vanishes.
For instance, if a mass point is forced to move along a given spatial curve, its direction
of motion is always tangential to the curve; the constraint reaction points perpendicular
to the curve. There are, however, examples where the individual constraint reactions
perform work, while the sum of the works of all constraint forces vanishes; thus,

ZF,%-ari:o.
i
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The string tensions of two masses hanging on a roller represent such a case. We
refer to Example 15.1. This is the proper, true meaning of the d’ Alembert! principle:
The constraint reactions in fotal do not perform work. We always have

ZF;.ar,:o.
i

This is the fundamental characteristic of the constraint reactions. One can, of course,
trace this presupposition back to Newton’s axiom “action equals reaction,” as we just
have seen in the example of the string tensions between two masses. But in general
it does not follow from Newton’s axioms alone. The assumption that the total virtual
work of the constraint reactions vanishes can be considered to be a new postulate. It
accounts for systems of not freely movable mass points and can be expressed by the
forces imposed on the system, as we shall see below (see (15.5)). Then the constraint
position drops out from (14.2), and one has

> F¢or =0. (15.3)
i

While in (15.1) each term vanishes individually, now only the sum in total vanishes.
The statement of (15.3) is called the principle of virtual work. It says that a system is
only in equilibrium if the entire virtual work of the imposed (external) forces vanishes.
In the next chapter (equations (16.8) and (16.9)) the principle of virtual work (the fotal
virtual work vanishes) will be established by the Lagrangian formalism.

For holonomic constraints, the effect of the constraint reactions can be elucidated
by the following: If we consider the ith constraint in the form

gi(ry,ry,...,ry, 1) =0,

then the change of g; with respect to a change of the position vector r; must be
a measure of the constraint reaction Fj.l. on the jth particle due to the constraint
gi(ry,ro, ..., ry,t) =0. We thus can write

F=. =)L.agi(l'l,l'2,..,,rN’t)
! l 81‘/

=AVgi(ry, ..., 0).

Here A; is an unknown factor, since the constraints g; (ry, 12, ..., ry, t) = 0 are known
up to a nonvanishing factor. The total constraint reaction on the jth particle is then the
sum over all constraint reactions originating from the individual k constraints; hence,

k

k

0gi(r1,...,ry, 1)

Z z . -

Fj_§ Fjl._E Aj o, )
i=1 i=1

U Jean le Rond d’Alembert, b. Nov. 16 or 17, 1717, Paris, as the son of a general—d. Oct. 29, 1783,
Paris. D’ Alembert, who was abandoned by his mother, was found near the church Jean le Rond and
was brought up by the family of a glazier. Later he was educated according to his social status,
supported by grants. He studied at the College des Quatre Nations, and in 1741, he became a member
of the Académie des sciences. In mechanics, the d’ Alembert principle is named after him; moreover,
he worked on the theory of analytic functions (1746), on partial differential equations (1747), and on
the foundations of algebra. D’ Alembert is the author of the mathematical articles of the Encyclopédie.
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The virtual work performed by all constraints is then

N k N
0gi
SW =) F-8r;=>"% % r; (X1, ...,TN, 1) - 81,
j=1 i=1 j=1

k
= 2i8gi(r1, ..., TN, 1),
i=1

where

N
0gi
Sgi(ry,....,rNy, 1) = -or;.
gi(ry N> 1) Z al'j j
j=1
This is just the change of g; caused by the virtual displacements dr . Since the virtual
displacements are by assumption compatible with the constraints, i.e., the dr; satisfy
the constraints, we must have

6gi(ry,...,ry,t)=0.
From this, we see immediately that
F/-r;=0 (15.4a)

and therefore also

N
5W=ZF§ .81 =0. (15.4b)
j=l

Hence, for holonomic constraints the constraint reactions are perpendicular to the dis-
placements that are compatible with the constraints, and the virtual work of the indi-
vidual constraint reactions vanishes. In Chap. 16, equations (16.8) and (16.9), we shall
understand from a very general point of view that in the general case (hence including
the case of nonholonomic constraints), the sum of the virtual work of all constraint re-
actions must vanish. Therefore, Zi Ff - ér; = 0 always holds, while Ff -8r; = 0 holds
only in special (holonomic) cases.

The principle of virtual work at first only allows us to treat problems of statics. By
introducing the inertial force according to Newton’s axiom

Fi =p;, (15.5)

D’ Alembert succeeded in applying the principle of virtual work to problems of dy-
namics as well. We proceed in an analogous way to derive the principle of virtual
work. Because of (15.4a) and (15.4b) in the sum

> (F;i —p;)-8r; =0, (15.6a)

1

every individual term vanishes. If we again subdivide the total force F; into the im-
posed force Ff and the constraint reaction Ff, with the same restriction as above we
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Fig.15.1. Two masses on con-
centric rollers: The string ten-
sions F§ and F5 are parallel
but have different magnitudes

find the equation
Z(F? —pi)-ori =0, (15.6b)
i

where the individual terms can differ from zero; only the sum in (15.6b) vanishes. This
equation expresses the d’Alembert principle.

EXAMPLE |

15.1 Two Masses on Concentric Rollers

Two masses m and mj hang on two concentrically fixed rollers with the radii R
and R,. The mass of the rollers can be neglected. The equilibrium condition shall be
determined by means of the principle of virtual work.

For the conservative system under consideration (where no friction appears), the
total work performed by the constraint reactions vanishes, i.e.,

ZFf-érizo.
i

In the present example, the constraint forces are the string tensions F} and F5.
The vanishing of ), F - 8r; in the equilibrium state is equivalent to the equality
of the forques imposed by the string tensions F, F5 through the radii Ry, Ra:

Dy = RlFlz =D)= R2F2Z.
By means of the constraint, it follows with §z; = R8¢, §z0 = —R25¢, that
F{8z1 + Fy6z0 = (F{R1 — FyR2)8¢ = (D1 — D2)8¢ =0.

In the case of equal radii (R; = R»), the string tensions are equal.
From

> F¢or =0,
i

it follows that
mi1g8z1 +mpgdzo =0.
The displacements are correlated by the constraint condition; we have
371 = Ridp, 822 = —Ryd¢.
Hence, we obtain
(miRy —maR2)8¢0 =0
or
miRi=myR,

as the equilibrium condition.
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EXAMPLE |

15.2 Two Masses Connected by a Rope on an Inclined Plane

In the setup shown in Fig. 15.2, two masses connected by a rope move without friction.
The equation of motion shall be established by means of the d’ Alembert principle. For
the two masses, this principle reads

(F§ —p1) -8l + (F5 —p2) - 81, =0.

Fig. 15.2. Two masses on an
inclined plane connected by a
rope

The length of the rope is constant (constraint):
h+hL=I

This leads to
8ly=—8l, and [} =—I.

The inertial forces are
P1 =m{l} and p2 =m2'l'2.

By inserting this into (15.7) and taking into account that the accelerations are par-
allel to the displacements, we have

(m1gsina — my11)8l1 + (magsin B — mylr)8l, =0,
(mygsina — mlfl —mpgsinf — mzfz)rSll =0,

or

i mysino — my sin
1:

mi+mo

EXERCISE |

15.3 Equilibrium Condition of a Bascule Bridge

Problem. Find by means of the d’ Alembert principle the equilibrium condition for

(a) alever of length /1, with a mass m at a distance I from the bearing point, and
with a force F acting vertically upward at its end; and Fig. 15.3. Lever with mass m
(b) the bascule bridge in Fig. 15.4, with the forces G and Q acting. and force F;



272

15 D’Alembert Principle and Derivation of the Lagrange Equations

Fig. 15.4. Geometry of the
bascule bridge described in
the problem

v

origin

Solution. (a) The d’Alembert principle yields

ZFU~8rV=0.
v

‘We have
F] =F1ey, F2=—mgey
and

r; =/jcosge, + [ singe,,

[
r2 = [ cos pe, + [ sinpey = l_zrl'

1

Furthermore,

dry = (=l singey, + I cosgpey)dp and dr; =

This leads to

2

ZF” -8ry, = (F1licosep —mglacosg)dp =0,

v=I1
i.e., the equilibrium condition reads

F I f % T 3w
==m or -, —,
1 I 8 @ )

(b) The forces acting at the points 1 and 2 are

F; = —Ge,, Fi =—0Qe,.

Furthermore,
r;y =—acosge, +(d —asingp)e,
and

r; = (b +c)cosgpe, + (b + c) singey;

ie.,

dr1 = (asinpe, — acosgey)dp

b
T
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and
dry = (—(b +c)singe, + (b + ) cos pey)dgp.
The d’ Alembert principle reads
2
0= ZF" -8ry, =(Qacosg — G+ c)cosp)dp =[Qa — G+ c)]cospdep.
v=1
The equilibrium condition

b
QG+C

is independent of the angle ¢!

As is seen in Example 15.1 and Exercise 15.2, the drawback of the principle of vir-
tual displacements is that one still must eliminate displacements that are dependent
through constraints before one can find an equation of motion. We therefore introduce
generalized coordinates g;. If we transform the ér; in (15.6a) to 8g;, the coefficients
of the §¢g; can immediately be set to zero.

Starting from (15.6a), we introduce in the first sum according to (14.6) and (14.7),
the generalized forces

ZF o = ZF Z ori g0 = Z 0uda. (15.8)

‘We now consider the other term in (15.6a):
Zp[ . 51‘,’ = Zmii:i . 81‘,’.
i i
If we express dr; according to (14.6) by the §¢;, we obtain
R . or;
8T = Fi
Xi:pt i izl;ml i 90

By adding and simultaneously subtracting equal terms, we rewrite the right-hand side
of the equation:

) v d ‘ o
Zmiri.a—ql)_ i (E(mlrl) )+Z< (36]11))
. d [ 0r;
_Z<miri dt(aqu>>

d ) Y . d (o
=S (L (it ) =i 2 (15.10)
— \ dt aqy dt 86]\1

(15.9)

Exercise 15.3
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To derive the expression for the kinetic energy, we change the order of differentiation
with respect to ¢ and g, in the last term of (15.10):

dfony_ 9 (d N_ 9 (15.11)
dt \ 9qy dgy, \ dt aqy

Insertion in (15.10) yields

. or; d . or; 9
o miki - —= ) =D (miki - == ) —mivi - —vi ). (15.12)
; gy dt gy aqv

i

We can rewrite the expression dr; /dq, in the first term of the right side of (15.12) by
partially differentiating (14.4) with respect to g,:

3V,’ _ 81‘,’
Gy gy '

since (3/9¢,)(dr;/dt) = 0 and from the sum remains only the factor at ¢,. By insert-
ing this relation into (15.12), we obtain

. 8I'l' d 3V,’ 3Vl'
(g ) =2 (v )) = o 55
d{ o 1, 9 1,
_dr(aqv(,zzm’v"» aqu(zzm’vi)'

1

Here, ", (1/2)m;v? is the kinetic energy 7':

< . or; ) d (8T> aT
Z mit; - — | =—|— ) — —.
; gy dt \ 9, 0qy

Insertion into (15.9) leads to

d (3T aT
pr'“i:Z(E( ) —>6qv. (15.13)

gy ) gy

Using (15.8) and (15.13), we can express the d’Alembert principle by generalized
coordinates. Insertion of

Y F;-8r;i=) 0,8q, (compare (15.8))

v

into (15.6a) yields

d (0T oT
;(E<aqv> Ta Q”)‘”” =0 (1519

The g, are generalized coordinates; thus, the ¢, and the related 8¢, are independent
of each other. Therefore, (15.14) is satisfied only if the individual coefficients vanish,
i.e., for any coordinate ¢, we must have

d (of or 0,=0 1 f (15.15)
— — — =0, v=1,...,J. .
dt \ 3¢, ’
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As a further simplification, we assume that all forces F; can be derived from a potential
V (conservative force field):

F; = —grad, (V) = —Vi(V).

In this case, the generalized forces Q, can be written as

al‘i 8r,- A%
Q\J:ZFi'aqv=_ZviV’ =——,
l l

gy gy

because
aV A% oV 0x; ay; 0z;
lZ(a—)Ciex + 8_y,-ey + B_Zl'eZ) . (%ex + 8—%ey + @ez>
_Z(BV ox; 8V ay; +3_Vazi)
dx; 9qy ayi dqy  0zi gy
A%
B

By inserting Q,, = —9dV/dg, into (15.15), we obtain

d <8T> oT A%
(=) +—=0
dt \ gy, aqy,  0qy

and

d (3T -V _,
dt\ 3q, aqy

V is independent of the generalized velocity; i.e., V is only a function of the position:

av
Gy

=0.

Therefore, we can write

0

——(T-V)-— (15.16)
dt 9q, aqy

or, by defining a new function, the Lagmngian2
L=T-YV, (15.17)
d oL oL 0 1 f (15.18)
—— =0, v=1,..., 1. .
dt dqy  dqy

2 Joseph Louis Lagrange, b. Jan. 25, 1736, Torino—d. April 10, 1813, Paris. Lagrange came from a
French-Italian family and in 1755 became professor in Torino. In 1766, he went to Berlin as director
of the mathematical-physical class of the academy. In 1786, after the death of Friedrich II, he went to
Paris. There he essentially supported the reformation of the system of measures and was a professor
at various universities. His very extensive work includes a new foundation of variational calculus
(1760) and its application to dynamics, contributions to the three-body problem (1772), application
of the theory of continued fractions to the solution of equations (1767), number-theoretical problems,
and an unsuccessful reduction of infinitesimal calculus to algebra. With his Mécanique Analytique
(1788), Lagrange became the founder of analytical mechanics.
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Fig. 15.5. Two blocks
connected by a bar

are

These equations are called Lagrange equations, and the quantities dL/dq, are called
generalized momenta. In Newton’s formulation of mechanics, the equations of mo-
tions are established directly. The forces are thus put in the foreground; they must be
specified for a given problem and inserted into the basic dynamic equations

p;=F, i=1,..N.

In the Lagrangian formulation the Lagrangian is the central quantity, and L includes
both the kinetic energy T and the potential energy V. The latter one implicitly in-
volves the forces. After L is established, the Lagrange equations can be established
and solved. Both methods are equivalent to each other, as can be seen by stepwise
inversion of the steps leading from (15.6a) to (15.18).

EXAMPLE |

15.4 Two Blocks Connected by a Bar

Two blocks of equal mass that are connected by a rigid bar of length / move without
friction along a given path (compare Fig. 15.5). The attraction of the earth acts along
the negative y-axis. The generalized coordinate is the angle « (corresponding to the
single degree of freedom of the system).

yn

=

For the relative distances x and y of the two blocks, we have

X

x =/lcosa, y=Isina.
The constraint is holonomic and scleronomic. We will determine the Lagrangian
L=T-V.
The kinetic energy of the system is
1 .2 .2
T=—-mx"+y°).
2
For this purpose, we form x and y:
X =—I(sina)a, y=I(cosa)c.

Thus, we get for T

1 1
T= Em(l2(sin2a)o't2 + 1% (cos® @)&?) = Emzzdﬂ.
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For the potential, we have (conservative system),
V =mgy =mglsina.

The Lagrangian therefore reads
L=T-V= %mlzdz2 —mglsina.

We insert L into the Lagrange equation (15.16):

d oL 0L d 2.2
—— — —=—(ml l =0
droa  da ar e Tmslcosa
and

m12&+mglcoso¢=0, &+§cosa=0.

Multiplication by ¢ yields
ao + %dcosa =0.

These equations can be integrated directly. One obtains

1.2 8 .
Ea +781not=constant=c

or

&= 2<c— ?gim).

Separation of the variables « and ¢ leads to the equation

da f s _/a da
J2(c—(g/D) sina) 0= V2 —(g/D) sino
oo

The constants ¢ and #( are determined from the given initial conditions.

EXAMPLE |

15.5 Ignorable Coordinate

We will use the following example for the Lagrangian formalism to explain the con-
cept of the ignorable coordinate. The arrangement is shown in Fig. 15.6.
y x ®
r m

1

I=r+s

Example 15.4

Fig. 15.6. Two masses m and
M are connected by a string
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Example 15.5 Two masses m and M are connected by a string of constant total length [ =r + s.
The string mass is negligibly small compared to m + M. The mass m can rotate with
the string (with varying partial length ) on the plane. The string leads from m through
a hole in the plane to M, where the mass M hangs from the tightly stretched string
(with the also variable partial length s =/ — r). Depending on the values w of the
rotation of m on the plane, the arrangement can glide upward or downward. Thus, the
mass M moves only along the z-axis. The constraints characterizing the system are
holonomic and scleronomic. This arrangement has two degrees of freedom. The two
corresponding generalized coordinates ¢ and s uniquely describe the state of motion
of this conservative system.

We have

x=rcoseg=(l—s)cosg,
y=rsing = (I —s)sing.
For the kinetic energy T of the system, we obtain

7=1 d(l )2+1(l )2 24 Ly
2"\ @Y QT men M
1 22 1 2. .2
:E(m+M)s +E(l—s) me*.

The potential V reads
V=—-Mgs.
For the Lagrangian L, we get
L=T-V= %(m + M)s% + %(l —s)2m¢2 + Mgs.

We now form

d oL oL

& o= M ..’ - _ l— %) M i
a5~ Ms ds (= s)me”+ Mg
doL d L

—— =—((-5)’mg), —=0.

dt d¢  dt I

Because dL/d¢ = 0, ¢ is called an ignorable or cyclic coordinate. The Lagrange
equation for ¢ then reduces to

doL d
— = ((=5)*mp)=0
dr g~ ar LTS me)

or
(17— s)zt/'Jm = L = constant.

Here, L is the angular momentum of the rotating mass m.
This first integral of motion is the angular momentum conservation law. Generally
speaking, the Lagrangian equation of motion
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for an ignorable (cyclic) variable reduces to

d oL dp;
———=0 or ap;
dt 9q; dt

Here, p; = dL/dq; is the generalized momentum. The generalized momentum re-
lated to the cyclic coordinate is thus constant in time. Therefore, the general conserva-
tion law holds: The generalized momentum related to a cyclic coordinate is conserved.

The Lagrange equation for s reads

(m—l—M)&'—i—(l—s)ng)z—Mg:O
or, after multiplication by s,
L%
(I —=s)3m

The last equation can be integrated immediately, and we obtain as a second integral
of motion

(m + M)§s + —Mgs=0, with L=(—s)’mg.

T2

——— — Mgs=constant=T7T +V = E;
2(I —s)%m §

1 ‘2
E(m + M)s” +

i.e., the total energy of the system is conserved. The given system is in a state of equi-
librium (gravitation force = centrifugal force) for vanishing acceleration, d>s /dt = 0:

0=§=— | Mg—q Ly
=S= | M« _s)m<(l—s>2m>

_ [y L?
T m4+M B d—=s)3m/|

The result states that s must be constant. For a fixed distance sq, equilibrium therefore
appears for a definite angular momentum L = L, which corresponds to a definite
angular velocity w = ¢:

Lo=+/ Mmg(l — s0)3.

For L > Ly, the entire arrangement glides upward; for L < Ly, the string with the
two masses m and M glides downward. For L = Lo, the system is in an equilibrium
state. For the special case L=0(.e., ¢ = 0, no rotation on the plane), one simply has
the retarded free fall of the mass M.

EXAMPLE

15.6 Sphere in a Rotating Tube

As a further example of the Lagrangian formalism, we discuss a problem with
a holonomic rheonomic constraint. A sphere moves in a tube that rotates in the
x, y-plane about the z-axis with constant angular velocity w.

Example 15.5
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Fig. 15.7. Sphere in a rotating
tube

® y
______ ~ O
/ m
X,y-plane tube
Z-axis X
side view top view

This arrangement has one degree of freedom. Accordingly, we need only one gen-
eralized coordinate for a complete description of the state of motion of the system: the
radial distance r of the sphere from the rotation center.

One has

X =rcoswt,

y =rsinwt.

The Lagrangian L = T — V then reads

1 1
L= 5m()'c2 +39) = Em(ifz + w?r?),

if we take into account that for this arrangement the potential V = 0.
We now form

d oL . oL 2
— — =mF, — =mw-r.
dt or ar

Then we obtain the Lagrange equation
mi — mw’r = 0,

or
i — w?r =0.

This differential equation corresponds—up to the minus sign—to the equation for the
nondamped harmonic oscillator. It has a general solution of the type

r(t) = Ae® + Be .
With increasing time #, this expression for r(¢) also increases; i.e.,

lim r(t) =00 for A >0.

—>00
From the physical point of view, this means that the sphere is hurled outward by the
centrifugal force that results from the rotation of the arrangement.

The energy of the sphere increases. The reason is that the constraint reaction per-
forms work on the sphere. Although the constraint force is perpendicular to the tube
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wall, it is not perpendicular to the trajectory of the sphere. Hence, the product F* - §s
does not vanish.

EXERCISE |

15.7 Upright Pendulum

Problem. Determine the Lagrangian and the equation of motion of the following
system: Let m be a point mass on a massless bar of length / which in turn is fixed to
a hinge. The hinge oscillates in the vertical direction according to A (t) = hgcoswt.
The only degree of freedom is the angle ¢ between the bar and the vertical (upright
pendulum).

hinge

piston

gravitational
h(1)

force

Solution. The position of the point mass m is (x, y):

x =I[sin?, y="h(t) +1cost = hgcoswt +1cosv.
Differentiation of this equation yields

x =¥l cosd, y= —(whg sinwt + ¥l sin ).
Hence, the kinetic energy 7" becomes

T=m )

2
= %m(bzﬂ + w?h} sin” ot 4 2whod 1 sin ¥ sinwr),

and the potential energy reads

V =mgy =mg(hgcoswt + [ cos ).
Then the Lagrangian becomes

L=T-V

Mraogn 272 2 - .
= E[l? I“ + whgsin® ot + 2whott smz?slna)t—2g(hocosa)t+lcosﬂ)].

Exercise 15.6

Fig. 15.8. A mass m is fixed to
one end of a bar; the other end
of the bar is fixed to an oscil-
lating hinge
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The Lagrange equation reads

d (oL BL_O
dr \ 99 a

oL .
— = mi*% + mwhol sin ¥ sinwr,
o
oL . . .
35 = mwhoV¥lcos ¥ sinwt + mgl sin 1,
d oL 9 . . 2 .
Eﬁ = ml“Y + mwhpl¥ cos V¥ sinwt + mw”hol sin ¥ cos wt,
129 + a)holz'S‘ cos v sinwt + a)zhol sin ¥ cos wt — wholf? cos ¥ sinwt — glsin =0,
or
1P 4 w?ho sin® cos wr — gsiny =0.
The substitution ' =% — 7 = sin® = —sin®’; for small displacements, —sin ¢’ ~
¥, i.e.,

19 + (g — w*hocos wr)®’ = 0.

This is the desired equation of motion. If the piston is at rest, i.e., h(t) = hg =0, we
get

i§’+§ﬁ’=0.

This is the equation of motion of the ordinary pendulum!

EXERCISE |
15.8 Stable Equilibrium Position of an Upright Pendulum

Problem. Find the position of stable equilibrium of the pendulum of Exercise 15.7
if the hinge oscillates with the frequency w > /g/!.

Solution. We first rewrite the Lagrangian of the pendulum of Exercise 15.7 as fol-
lows: The terms

I/I’l(,()2

Th(z) sinfwr and  — mghqcoswt
can be written as total differentials with respect to time:

2
d( 1
%h% sin® wf = — (—Zma)h% sin wt cos wt) +C,

dt

d h
—mghpcoswt = — _ 8o sinwt ).

dt 1)
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We can omit these terms, since Lagrangians that differ only by a total derivative with
respect to time, according to the Hamilton principle § fttlz Ldt =0, are equivalent.
Hence,

L= %[5‘212 + w*h sin® wt + 2whod1 sin ¥ sinwt — 2g(hgcoswt + [ cos )]
= %[5212 + 2whoD1 sin ¥ sinwt — 2gl cos wt]. (15.19)

Another transformation yields

. d
mwhg?¥1sin Y sinwt = — o (mwhol cos ¥ sinwt) + mwzhol cos ¥ cos wt,
so that the Lagrangian finally reads
m 2.2 2
L= E[ﬁ 1“4+ 2w”hol cos ¥ coswt — 2glcos P ]. (15.20)

From this, one obtains of course the equation of motion as in Exercise 15.7.
We consider ¢ as a generalized coordinate with the appropriate mass coefficient
ml?. The equation of motion then reads

ml*y = mglsiny — maw?hol sin ¥ cos wt

du
= 15.21
5T f ( )
with u = mglcos® and f = —mw?hol sin® cos wt. The additional force f is due to

the motion of the hinge. For very fast oscillations of the hinge, we assume that the
motion of the pendulum in the potential u is superposed by quick oscillations &:

9(1) =9 (1) +£@).

The average value of the oscillations over a period 27 /w equals zero, while 5 changes
only slowly; therefore,
2r/w

ﬂ(t):% [ B (t)dt = D (1). (15.22)

0

Equations (15.21) with (15.22) can then be written as
QA 9y du
ml“9 () + ml“E(t) = —— + f ().
dv
Because f (1) = f(z; + &)= f(ﬁ) + £df/dv, an expansion up to first order in &
yields

v sd2U+f<5>+s
dv d2

f

o . d
ml*® + mil*E = — . 15.23
& 73 ( )

The dominant terms for the oscillations are m! 23;" and f (5):

mi’k = f (D)
2
. h ~
= &= _wl 0 sin ¥ cos wt,

Exercise 15.8
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3 i i 1

2
)
O
A B A
Fig. 15.9. Linear three-atom
symmetric molecule

and from this, we obtain

f

T (15.24)

ho . ~
&= Tsmﬂcoswt:—

We now calculate an effective potential created by the oscillations, and for this purpose
we average (15.23) over a period 27 /@ (the mean values over £ and f vanish):

= dUu af dUu 1 df
dv Sdl‘} dvy mw212f dv
This can be written as
2 dUett . 1 —
129 =——= th Uer=U+ ———— f2. 15.25
m 3 M eff + ek — 12 f ( )
Because cos? wt = 1/2, we get
ma)zh% .
Uetr = U + sin” ¢
mwzh% .
=mglcos? + sin“ o (15.26)

The minima of U, give the stable equilibrium positions:

du maw*h?
d;ff = —mglsinv + % sin® cos ¥ = 0
. 2gl
= sindt =0 or cost= — - (15.27)
w?h

From this, it follows that for any w the position vertically downwards (¢ = ) is
stable. ¥ = 0 is excluded because Ugs(? = 0) = mgl. Additional stable equilibrium
positions arise for w? > 2gl/ h% with the angle given above.

EXERCISE |
15.9 Vibration Frequencies of a Three-Atom Symmetric Molecule

Problem. Find the vibration frequencies of a linear three-atom symmetric molecule
ABA. We assume that the potential energy of the molecule depends only on the dis-
tances AB and BA and the angle ABA. Write the Lagrangian of the molecule in
appropriate coordinates (normal coordinates) where the Lagrangian has the form

m .
L=Y" 7"’(@3 — w2 @2).
o
The w, are the desired vibration frequencies of the normal modes. If one cannot

find the normal coordinates of the system, one can proceed as follows: If a system has
s degrees of freedom and does not vibrate, then the Lagrangian generally reads

1 ..
L= 3 zk:(mikxixk — kikxixg).
1
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The eigenfrequencies of the system are then determined by the so-called characteristic
equation

detlkix — @’mix| =0

Solution. We describe the geometry of the molecule in the x,y-plane. Let the dis-
placement of the atom o from the rest position ryo be denoted by x, = (x4, Vo), i.€.,
ry = Iqo + Xo. The forces that keep the atoms together are assumed to be to first order
linear in the displacement from the rest position, i.e.,

MA 2L 2y B Ky 2 2
L=—(x — x5 — —[(x1 —x2)" + (x3 — x2)°],
> (7 +x3) + 7 X > [(x1 = x2)" + (x3 —x2)7]
if we consider longitudinal vibrations. For these modes the conservation of the center
of gravity can be written as follows:

ma(x1 +x3)mpxy =0, [Zmara = Zmara0:|,
a o

and we can eliminate x, from L:

2
ma .o .2 my . © N2
LZT(XI+X3)+M(X1+)C3)

Ky, ma 2m?2
- — x12 +x32 +2—(x1 +x3)2 + —ZA(xl +x3)2 .
2 mp mpy
Hence, only two normal coordinates for the longitudinal motion can exist, because of
the conservation of the center of gravity.
Let ®1 = x; + x3, ® = x; — x3. L can then be written as

A MAMR -9 Kp 2 Kru 2
—0;+ —07— —0 ——07, =2mp +mp,
4 amy T e T = Aty
i.e., ®1 and O, are the two normal coordinates of the longitudinal vibration (u repre-
sents the total mass of the molecule).

(a) For x| = x3, ®, vanishes; i.e., ®; describes antisymmetric longitudinal vibrations
(Fig. 15.10).

(b) For x; = —x3, ®1 vanishes; i.e., ®, describes symmetric longitudinal vibrations
(Fig. 15.11).

A comparison of kinetic and potential energy yields the normal frequencies

Kru . L
Wq = , antisymmetric vibration,
mamp
Kp .
wy = /—, symmetric vibration.

ma

Exercise 15.8

M)
N\
Fig. 15.10.
— —
O
Fig. 15.11.
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A | For transverse vibrations (see Fig. 15.12) of the form in Fig. 15.13, we set
O K
B ma . . mp . T
1 L="2G +3h+ 225k - ZLasy,
Fig. 15.12.
Fig. 15.13. Y2

where ¢ is the deviation of the angle < (ABA) from x. For small values of §, we can
set

T T
§= <E —Ol]) + <E —Olz)
. Y . T
= sm(E —a1> +sm<§ —ozz>

= COoSu] + Cosa
Y2=—Y1 , »2—)3
= + .
[ l

We utilize the conservation of the center of gravity and angular momentum conserva-
tion to eliminate y, and y3 from L.

ma(y1 +y3) +mpy, =0 (conservation of the center of gravity).

To exclude rotation of the molecule, the total angular momentum must vanish:

. d .
D= Zma[ra X Vo] Zma[rao X Xg] = E Zma[rao X Xq],
o o o

which can be achieved by

Zma[rao X Xq] =0.
a

For our case, it thus follows that y; = y3. Then we get

o, Au?y? > Krl?
@=L ang p="AREpp TTC g2
mg 4 2

We thus obtain the eigenfrequency of the transverse vibration:

[2KT 1
wr = .
nmanp

EXERCISE

15.10 Normal Frequencies of a Triangular Molecule

Problem. Calculate the normal frequencies of a symmetric molecule AB A of trian-
gular shape:
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Fig. 15.14. Triangular mole-
cule

Solution. Conservation of the center of gravity here reads
ma(x1 +x3) +mpxy =0, ma(y1+y3) +mpy>=0.

For angular momentum conservation, we go to the rest position of atom B, and be-
cause mi| = m3 = my, it follows that

rio X X; +r3g x x3=0.
We have

rio X X; = |rjo/(—xj cosa + y; sina)e,

r3p X X3 = |l'3()|(—X3 CoOSa — y3 sina)e.
Because |rig| = |r3o0l, the angular momentum conservation law follows:

sina(y; — y3) =cosa(x; +x3) or y; —y3=cota(x] + x3).

Fig. 15.15. The various coor-
dinates for Exercise 15.10

The changes &/1 and 8/, of the distances AB and BA result by projection of the
vectors X; — Xp and X3 — Xp onto the directions of the lines AB and BA:

81y = (x1 — xp) sina + (y; — y2) cosa,

8l = —(x3 — xp) sina + (y3 — y2) cosa.

The change of the angle 2o =< (ABA) is found by projection of the vectors x; — X
and x3 — X» onto the directions orthogonal to the line segments AB and BA:

1 . 1 .
§= 7[(x1 —xp)cosa — (y1 — y2) sina| + 7[—(x3 — xz)cosa — (y3 — y2) sina].
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Exercise 15.10 We write the Lagrangian of the molecule as
ma . . mp . Ki K>
L= T(x% +%3) + 7x§ - 7[(511)2 +(©h)*] - 7(15)2.

Here, (K /2)[(811)2 + (812)?] is the potential energy of the rotation, and K; (16)2/2 is
the potential energy of the bending of the molecule. We adopt as new coordinates

Qo = x1 + X3, gs1 = X1 — X3, gs2 =y1+ Y3,

and then have

1 ma 1
X1 = z(Qq +gs1), X2 =——0q, x3 = =(Q« — gs51),
2 mp 2
1 ma 1
1 = z(gs2 + Qg cota), Y2 =——¢s2, 3= z(gs2 — Qg cotar).
2 mpg 2

Because y; — y3 = Qg cota, we find for L

ma 2mA 1 ) ma .» map .o
L:— _— _—
4 <mB +Sin2a>Qa+ 4 sl+4 qs2

K /2 1 2m
—Qi—l<ﬂ+ — ><1+ 31n2a)
4 mp SIn” o mp

2
(K sin® o + 2K, cos® o) — qs224M_2(K1 cos?a + 2K sin® &)
m
B

92
_Ll

+ 6]s161s2L(2K2 — K1) sina cosa.
2m3

Obviously, Q, is a normal coordinate, with the vibration frequency

K 2mp
a)é = —1<1 + —51n2a>
ma mp

Pure Qg-vibrations occur for x; = x3, y; = —y3; i.e., O, describes antisymmetric
vibrations with respect to the y-axis in Fig. 15.16.

Fig. 15.16.

The eigenfrequencies ws; and wyy of the normal vibrations for g1 and g5 must be
determined by the characteristic equation

K 2 2K 2 2uk1K
a)4—a)2[—1<1—i-ﬂ >+—2< 7A 'nzot)]—i—Milzz:O.
mp mAa mp mpmy
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The coordinates gs; and g5 correspond to vibrations that are symmetric about the
y-axis (Fig. 15.17):

x1=—x3, Qa=0 = yr=y3).

W /\i/\ Flg 15.17.

EXERCISE |

15.11 Normal Frequencies of an Asymmetric Linear Molecule

Problem. Find the normal frequencies for a linear, asymmetric molecule with the 3 o,

Exercise 15.10

shape in Fig. 15.18. c

Solution. Conservation of the center of gravity and of angular momentum now read
max1 +mpxa +mcx3 =0, x-center of gravity,
may) +mpy» +mcy3 =0, y-center of gravity,

maliyr =mclhys, angular momentum conservation.

For the potential energy of bending, we write

K2 2
v=7(15) , Ql=0l+h);

for that of rotation,
K> K/
V= 7()61 —x)? + 71(962 —x3)%

The analogous calculation as for Exercise 15.9 after some effort yields

Kglz( A N 412>

wr=— L
2 =
123 \mc ~ mag  mp

for the frequency of the transverse vibration, and also the equation quadratic in »?

1 1 1 1 KK/
w4—w2[K1<—+—) +K{<—+—)] T
ma mp mp mc mampmc
for the frequencies wy ,, wy, of the two longitudinal vibrations.
EXERCISE ]
15.12 Double Pendulum
Problem. Determine

(a) the generalized coordinates of the double pendulum;
(b) the Lagrangian of the system;

Fig. 15.18.

= O
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Fig. 15.19. Coordinates of the
double pendulum

(c) the equations of motion;

d) formi=my=mandl; =1 =1,

(e) as (d) for small amplitudes; and

(f) for the case (e) the normal vibrations and frequencies.

Solution. (a) The appropriate generalized coordinates are the two angles ¢ and 9,
that are related to the Cartesian coordinates by

x1 =11 cos, y1 =11 sinv,
(15.28)
xp =1[1cos + Ipcos s, yp =11 sint + [ sinv,.

(b) From (15.28), it follows by differentiation that

X1 =—l1191 sin ¥, V1 211191 cos U,

)'62 = —11191 sin 191 - 1252 sin 192, )'12 = 111'91 COS 191 + 121'92 COS 192.
The kinetic energy of the system is
_ l .2 .2 l .2 )
T = 2m1(x1 +y) + 2m2(x2 +3)
1 . 1 . . .
= Emllfﬂf + §m2(l%1912 + 1303 + 201191 D cos(91 — D).

(Addition theorem!)
To get the potential energy, we adopt a plane as a reference height, at the distance
1 + I below the suspension point:

V =miglli + 1 — li cos 9] + mag[l1 + 12 — (I cos 91 + [ cos B2)|.
The Lagrangian then becomes
L=T-V
= %mll%{ﬁ + %mz[l%f}% + 1303 + 201191 cos(P — 92)]
—migllh 4+l — i cos 1] — mag[li + 1 — (I cos By + [ cos¥2)].  (15.29)

(c) The Lagrange equations with ©#; and ¥, read

d (3L oL _, d (3L oL _,
dt \ 9, oy dt\ad,) 8
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One has

oL

35 = —mzlllzlélléz sin(¥) — 92) —m gl sind — mogly sin v,
1

oL 2 2 .
ﬁ =mlyt + mol% + mal19; cos(th — 1),
1

oL ..
35, = mal1 010 sin(¥ — ¥2) — mogly sin vy,
2

L . .
ﬁ = mzl%l?z + molilp 91 cos(P — ).
2

Thus, the Lagrange equations read
mll%{§1 + mﬂlzb'l + mzlllzﬁz cos(t — th) — mzlllzl'ﬁz({?l — 192) sin(# — ¥7)
= —m21112191192 sin(z?l - 192) — m1g11 sin 1?1 - Mlel sin 191
and
mal39s 4+ malila ¥ cos(91 — 92) — malily B (91 — Do) sin(Py — 92)
= mzlllﬂ.?l 192 sin(¥1 — ¥7) —moglar sindy,
or
(m1 4+ m) 301 + malilad; cos(91 — 02) + mali D3 sin(9) — )
= —(m1 +my)gly sinth (15.30)
and
mzlgﬁz + mzlllzl'?'] cos( — th) — mzlllzﬁlz sin(¥) — 97)
= —maglysinds.

These are the desired equations of motion.
(d) For the case

mi=my=m and [|=1[l=I,
(15.30) reduce to

2081 + 185 cos(91 — ¥2) + 193 sin(P — ¥2) = —2gsindy,
. . (15.31)
11 cos(91 — 1) 4 [Py — 197 sin(¥) — ¥2) = —g sin .

(e) If moreover the oscillations are small, then sin?t = ¢}, cos?¥ = 1, and terms
proportional to > are negligible, which leads to

2P + 19, = —2g01, 19 + 192 = —g0s. (15.32)
(f) With the ansatz

| wt [ wt
v =Ae', Uy = Are'®™,

Exercise 15.12
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Fig. 15.20. Mass point glides
on a cycloid

we then obtain
2(g — lw?)A| —lw?Ar =0, —1? A+ (g — lw*)Ar =0. (15.33)

To ensure that A; and A, do not vanish simultaneously, the determinant of the coeffi-
cients must vanish:

20g —lw?) —lw?
—l? =0,

g —lw?
and therefore,
ot — 4lga)2 + 2g2 =0

with the solutions

4lg £./1612g% — 812g2 g
2
= =2+vV2)2;
) 7 ( «/—)l,
ie.,
w%=(2+«/§)§, w§=(2—\/§)§ (15.34)

By inserting (15.34) into (15.33), we obtain

w?: Ay = —\/zAl, i.e., the pendulums oscillate out of phase,
1 p p
w?: Ay = «/§A1, i.e., the pendulums oscillate in phase.

2 p p

EXERCISE |
15.13 Mass Point on a Cycloid Trajectory

Problem. A mass point glides without friction on a cycloid, which is given by x =
a(¥ —siny) and y = a(l 4+ cos ) (with 0 < ¢ < 2m). Determine

(a) the Lagrangian, and
(b) the equation of motion.
(c) Solve the equation of motion.

Solution. The cycloid is represented by

x =a(¥ —sin®), y=a(l +cos?®),



15.1 Virtual Displacements

293

where 0 < ¢ <2m. The kinetic energy is
T= %m()’cz +9h) = %maz{[(l —cos )P’ + [~Gin)d ]},
and the potential energy is
V=mgy =mga(l +cosv).
The Lagrangian is given by
L=T—V =ma*(1 —cos®)¥> — mga(l + cos ).
The equation of motion then reads
4 (%) _AL
dt \ 9 CU
ie.,
i [2ma2(1 — cos 19)19] - [maz(sin 19)1'?2 + mga sin 19] =0

dt
or

D11 — cos9)D] — L(sin9)2 — L sinp =0
JE— J— _—— 1 — —S1 = N
dt 2 2a
ie.,
w 1 0 8 .
(1 —=cos®)? + =(sin})#° — = sin} = 0. (15.35)
2 2a
By setting u = cos(¢#/2), one has
du 1. /0.
— = ——sin| — |¥
dt 2 2
and
d*u ECATE. 52
— =——sin| = |9 — —cos| = .
dr? 2 2 4 2
Since cot(#/2) = sinv*/(1 — cos ¥), we can write (15.35) as

54 Loot(2)92 - Ecor(2) =0
— CO — —_ — —
2N 2 24 “°\ 2 ’

and therefore,

d*u g

—5+u=0. (15.36)

The solution of this differential equation is

U = Ccos 2 =Cjcos £I+Czsin ét.
2 V 4a V 4a

Exercise 15.13
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Yy
Fig. 15.21.

The motion is just like the vibration of an ordinary pendulum of length / = 4a. The
arrangement is therefore called a “cycloid pendulum.”

EXERCISE |

15.14 String Pendulum

Problem. A mass m is suspended by a spring with spring constant k in the grav-
itational field. Besides the longitudinal spring vibration, the spring performs a plane
pendulum motion (Fig. 15.21). Find the Lagrangian, derive the equations of motion,
and discuss the resulting terms.

Solution. We introduce plane polar coordinates for solving the problem and adopt
the radius r and the polar angle ¢ as generalized coordinates.

Yy =rcosg, Yy=7rcosg+rgsing,
(15.37)
X =rsing, X =rsing —rgcosg.
The kinetic energy is given by
1 1
T = Em()é2 +3H = Em(i’z +r2¢7). (15.38)

The length of the spring in its rest position, i.e., without the displacement caused by
the mass m, is denoted by ro. The potential energy then reads

k 2 k 2
V=—-mgy+ E(r —r0)" = —mgrcosg + E(r —ro)”. (15.39)
The Lagrangian is then
L 2. k 2
L=T—V=§m(r +r (p)+mgrc0s<p—§(r—ro) . (15.40)

The equations of motion of the system are obtained immediately via the Lagrange
equations:

d
E(mrz(b):—mgr sin . (15.41)

This is just the angular momentum law with reference to the coordinate origin. If we
take the time dependence of r into account, then we have

mrg = —mgsing — 2mr@. (15.42)

The last term on the right-hand side is the Coriolis force caused by the time variation
of the pendulum length r.
For the coordinate r, one obtains

mr = mrgb2 +mgcosp —k(r —rop). (15.43)
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The first term on the right side represents the radial acceleration, the second term
follows from the radial component of the weight force, and the last term represents
Hooke’s law. For small amplitudes ¢ the motion appears as a superposition of har-
monic vibrations in the r, ¢-plane.

EXERCISE |
15.15 Coupled Mass Points on a Circle

Problem. Four mass points of mass m move on a circle of radius R. Each mass point
is coupled to its two neighboring points by a spring with spring constant k (Fig. 15.22).
Find the Lagrangian of the system, and derive the equations of motion of the system.
Calculate the eigenfrequencies of the system, and discuss the related eigenvibrations.

Solution. The kinetic energy of the system is given by

T = mzs'f. (15.44)

v=1

| =

For small displacements from the equilibrium position, the potential reads

4

1

V=k Zl<sv+1 =)’ sa =1 (15.45)
V=

We set s, = Ry, and take the angles ¢, as generalized coordinates. Then the La-
grangian is

4 4
1 2 -2 1 2 2
L:T—V:EmR E 1<pv _EkR E 1(<pv+1 —@y)°. (15.46)
V= V=

From the Lagrange equations

d oL aL
— = ) (15.47)
dt 3¢, ¢y
we find the equations of motion:
d oL RS
all —m
d1 3¢y v
1
= — kR 20y — @ui1) + 200 — 9u-1)]
oL
(15.48)

S

Exercise 15.14

Fig. 15.22.
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. k
@1 = — (92 — 201 + @4),
m

. k
@2 = — (93 — 202 + 1),
m

For the case of four mass points, we then obtain

Fig. 15.23. Uniform rotation
and out-of-phase vibration

1 (15.49)
@3 = — (@4 — 203 + ¢2),
m
. k
g = — (@1 — 204 + @3).
m
With the ansatz ¢, = A, coswt, ¢, = —A,@? cos wt, we are led to the following linear
system of equations:
k 2 k k
2— —w —— 0 ——
m m m
k k k
LA S 0 "
m m m 2
=0. 15.50
0 - 2— —w - A
m m m 4
k k k 2
- 0 - 2— —w
m m m

For the nontrivial solutions, the determinant of the coefficient matrix must vanish. This
condition leads to the determining equation for the eigenfrequencies:

k 2 ? k 2 2
2——w 4— — o )(—w”) =0. (15.51)
m m
The frequencies are
k k
wi=0, @i=4—, @i=wj=2—. (15.52)
m

To calculate the related eigenvibrations, we insert these frequencies into the system of
equations (15.50).

€))] a)lz =0: A; = Ap = A3 = A4. The system does not vibrate but performs a uniform
rotation (Fig. 15.23(a)).

2 w% =4k/m: A1 = A3 = —Ay = —A4. Two neighboring mass points perform an
out-of-phase vibration (Fig. 15.23(b)).

1 1

(a) 3 (b) 3
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() @} =wi=2k/m: Ay = Ay = —A3 = —A4 or A| = Ay = —A; = —A3. Two
neighboring mass points vibrate in phase (Fig. 15.24(a,b)).

(a) 3 (b) 3

EXERCISE |
15.16 Lagrangian of the Asymmetric Top

Problem. Write down the Lagrangian of the heavy asymmetric top. Use the Euler
angles as generalized coordinates and determine the related generalized momenta.
Which coordinate is cyclic? Which further cyclic coordinate appears for a symmetric
top?

Solution. In the system of principal axes, the kinetic energy of motion is given by
1 , 1 5 1 5
T = E@la)] + 5(92502 + E@}CU3.
The potential energy is
V =mgh =mgl cosf.

We take the Euler angles (o, 8, y) as generalized coordinates. The angular velocities
expressed by these coordinates read (see (13.43)),

w) = dsinBsiny + Bcosy,
wy» = asinfBcosy — Bsiny,
w3 =acosf+y.

By inserting this into the Lagrangian L =T — V, we get
1 ) .2 52 2 N .
L= E®1(a sin” Bsin” y 4 B“cos” y +2aBsin Bsiny cos )
1 2 .2 2 ) Ch .
+ E@g((x sin“ Bcos”y + B sin” y — 2a B sin B sin y cos B)

1
+ §®3(dcos,3 + )})2 — MglcosB.

Exercise 15.15

Fig. 15.24. In-phase vibration
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The Euler angles as generalized coordinates obey the Euler—Lagrange equations
d oL oL
dt 9@ da

and the analogous equations for 8 and y. The Lagrangian does not depend on the
angle «; hence, this coordinate is cyclic, and the related generalized momentum is
conserved.

We determine the generalized momenta:

= O (asinBsiny + Bcosy)sinBsiny
+ Oy (@sinBcosy — Bsiny)sinBcosy
+ ®3(ccos B+ y)cos B

=« sinzﬂ((al sin? y + 0, cos? ¥) + (©1 — @) cosy sin Bsiny
+ ®3(acos B+ y) cos B.

In an analogous way, we obtain

oL

Pg = ﬁ =01fcos’y + Oyfsin’ y
4+ (®] — Oy)acosysinfsiny + Oz(acos B+ y),
oL . .
Py = = Os(@cos f + 7).
ay

For the symmetric top, ®1 = ®,, and thus, the Lagrangian simplifies considerably:
1 .2 52 1 . N2
L= 5®l(asm B+ B+ E@g(acosﬂ +y)* — MglcosB.

The Lagrangian of the symmetric top no longer depends on the angle y; therefore, the
angle y becomes cyclic too. Hence, the momentum p,, is also conserved.
The generalized momenta then read

Pa=0 sin? BO| + O3(xcos B+ y)cos f = constant,

pp = BO1+ O3(@cos p+ ),

Py = O3(dcos B + y) = constant.
The generalized momenta, being the projection of the total angular momentum onto
the rotational axis related to the particular Euler angle, have a direct physical meaning.

P« 1s the projection of the total angular momentum onto the space-fixed z-axis (see
Exercise 13.12):

pa=L-e,=L"e;.

This projection is a conserved quantity for the asymmetric and the symmetric top.
Since the gravitational force acts only along the z-direction, the angular momentum
about this axis remains unchanged.
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pgp is the projection of the total angular momentum onto the nodal line, i.e., the
axis about which the second Euler rotation is being performed:

pﬂ=L-e5=L-ex.

This momentum is not conserved.
Py can be interpreted as the projection of the total angular momentum onto the
body-fixed e, -axis:

py=L-e,=L-ey.

For a symmetric top, the body-fixed z’-axis is a symmetry axis, and the angular mo-
mentum projection L - e is conserved.

Exercise 15.16



Lagrange Equation for Nonholonomic 1 6
Constraints

For systems with holonomic constraints, the dependent coordinates can be eliminated
by introducing generalized coordinates. If the constraints are nonholonomic, this ap-
proach does not work. There is no general method for treating nonholonomic prob-
lems. Only for those special nonholonomic constraints that can be given in differential
form can one eliminate the dependent equations by the method of Lagrange multipli-
ers. We therefore consider a system with constraints given in the form

n
> andg, +aydt =0 (16.1)
v=1
(v=1,2,...,n = number of coordinates; n > s; [ = 1,2, ..., s = number of con-
straints).

The following considerations do not depend on whether the equations (16.1) are
integrable or not; i.e., they hold both for holonomic as well as for nonholonomic con-
straints.

Therefore, the method of Lagrange multipliers derived below can be used also for
holonomic constraints, if it is inconvenient to reduce all g,, to independent coordinates
or if one wants to keep the constraint reactions. Equation (16.1) is not the most general
type of a nonholonomic constraint, e.g., constraints in the form of inequalities are not
covered.

In our considerations, we start again—as in deriving the Lagrange equations—from
the d’ Alembert principle. According to (15.13), it reads in generalized coordinates as
follows:

Z(ia__T _ar Qv)gqv 0. (16.2)
v=1

This equation holds for constraints of any kind.

The g, shall now depend on each other. Therefore, the virtual displacements g,
cannot be freely chosen as earlier (compare (15.13)). To reduce the number of virtual
displacements to the number of independent displacements, we introduce the—for
the present—freely chosen Lagrange multipliers ;. In the general case, the Lagrange
multipliers A; with [ = 1,2,...,s are functions of the time and of the ¢, and g,.
Virtual displacements 8¢, are performed at fixed time, i.e., with 6z = 0. Then (16.1)
changes to

n
Zalv(Squ =0.
v=1
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These are also called instantaneous (belonging to a fixed time) constraints. This in
turn leads to

s n
Z Al Zalv‘SCIV =0
=1 v=1

or

n s
Z( Alalu)qu =0. (16.3)
=1

Equation (16.3) is now subtracted from (16.2):

n N
Z(%% — a% -0, — Zklah,)&]v =0 for v=1,...,s,...n. (16.4)
v=1 =1

These equations involve in total n of the variables ¢g,; s of them are dependent ¢,
which are connected with the independent ones through the constraints, and n — s are
independent ¢,. For the dependent ¢, the index v shall run from v =1 to v = s, for
the independent g, from v = s + 1 to v = n. The coefficients of the d¢q, in (16.4)
are such that through the s Lagrange multipliers A; (/ =1, ..., s) they can be chosen
as freely as allowed by the s equations for the constraints. Since the X; can take any
value, we can choose them in such a way that

v=s+1

These 8q, (for v =15+ 1, ..., n) are no longer subject to constraints. This means that
these d¢g, are independent of each other. One then must set the coefficients of the éq,
(v=s+1,...,n)equal to zero, just as in the derivation of the Lagrange equation for
holonomic systems.

This leads, together with the s equations for the dependent g, to n equations in
total:

—————QV—ZM%:o for v=1,....s,s+1,...,n. (16.5)

For conservative systems, the 0, can be derived from a potential:

av

Q\):_aqvo




16 Lagrange Equation for Nonholonomic Constraints

303

As in the derivation of the Lagrange equation for holonomic systems, we can re-
formulate (16.5) with the Lagrangian L =T — V as follows:

d oL oL
_____Z)"lah}:o’ V:l,...,n. (166)

These n equations involve n 4+ s unknown quantities, namely the n coordinates g,
and the s Lagrange multipliers A;. The additionally needed equations are just the s
constraints (16.1) which couple the g, ; however, these are now to be considered as
differential equations:

Zava}v‘f‘ah:O, [=1,2,...,s.
v

Thus, we have in total n + s equations for n + s unknowns. We thereby obtain both
the g, we were looking for, and also the s quantities A;.

To understand the physical meaning of the A;, we assume that the constraints of the
system are removed, but are replaced by external forces Q} which act in such a way
that the motion of the system remains unchanged. The equations of motion would
then also remain the same. These additional forces must be equal to the constraint
reactions, since they act on the system in such a way that the constraint conditions are
being fulfilled. With regard to these forces Q7 the equations of motion read

d oL L
4L L _ 16.7
TR TR (167)

where the Q7 enter in addition to the Q,. The equations (16.6) and (16.7) must be
identical. This leads to

0F =Y han: (16.8)
1

i.e., the Lagrange multipliers ); determine the generalized constraint reactions Q3;
they will not be eliminated but are part of the solution of the problem (see also the
statements in Chap. 17 on this topic). The relation (16.3) thus changes to

Y 0589, =0, (16.9)

implying that the total virtual work performed by all constraint reactions vanishes.
This can be considered as the general proof of the thesis introduced in (15.3), that
constraint reactions do not perform work.

EXAMPLE |

16.1 Cylinder Rolls down an Inclined Plane

As an example of the method of Lagrange multipliers, we consider a solid cylinder
that rolls down without gliding on an inclined plane with height /4 and inclination
angle «. This rolling condition is a holonomic constraint, but this is immaterial for the
demonstration of the method.

Fig. 16.1. A cylinder rolls with-
out gliding on an inclined plane
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Example 16.1

The two generalized coordinates are s, ¢. The constraint reads
Rp=s or Rdp—ds=0.

These equations can, of course, be integrated immediately, and with Rp = s +
constant, the constraint is holonomic. But we stick to the differential form of the con-
straints and demonstrate the method of Lagrange multipliers. In this way we even find
the constraint reactions.

The coefficients occurring in the constraint are

ag = —1, a, =R,

as is seen by comparison of coefficients with (16.1):

ZQIVSQU =0,
v

where / = 1 is the number of constraints, and §¢ = 0. The kinetic energy T can be
represented as the sum of the kinetic energy of the center-of-mass motion and of the
kinetic energy of the motion about the center of mass:

1 1 m R?
T—-ms?+ -0 =" (21 s?).
PRI 2<S+2‘p

with the mass moment of inertia of the solid cylinder

1 2
®solcyl = EmR .

The potential energy V is
V =mgh — mgssina.

The Lagrangian reads

2
L=T-V= %(s'%r R?¢2> — mg(h — ssina).
One should note that this Lagrangian cannot be used directly to derive the equation of
motion according to (15.17). The reason is that the two coordinates s and ¢ are not
independent of each other. Thus, ¢ is not an ignorable coordinate, although it does not
explicitly appear in the Lagrangian.

Since there is only one constraint, only one Lagrange multiplier A is needed. With
the coefficients

a, = —1, a, =R,
we obtain for the Lagrange equations

m§ —mgsina + A =0, (16.10)

%R%‘—,\R:o, (16.11)
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which together with the constraint

Rop=s (16.12)
represent three equations for three unknown quantities ¢, s, A. Differentiation of
(16.12) with respect to the time yields

Ry =35.
From this, it follows, together with (16.11), that

ms =2\.

Hence, (16.10) changes to

mgsina = 3A.
From this equation, we obtain for the Lagrange multiplier
A= —-mgsina.
3M8

The generalized constraint reactions are

1

1
ash = —gmg sinc, agh = ngg sin .

Here, a,A is the constraint reaction caused by the friction; ayA is the torque generated
by this force, which causes the rolling of the cylinder. One should clearly understand
that the constraint “rolling” demands a particular constraint reaction (friction force).
We have evaluated it here. We further note that the gravity is reduced exactly by the
amount of the constraint reaction azA.

Inserting the Lagrange multiplier A into (16.10), we obtain the differential equation
for s:

W 2
§=—gsina.
38

The differential equation for ¢ is obtained from this by inserting

R§ =§,

. 2g .
= ——SInc.
Y=3%

We have seen by this example that the method of Lagrange multipliers yields not only
the desired equations of motion but also the constraint reactions, which otherwise do
not appear in the Lagrangian.

EXERCISE |

16.2 Particle Moves in a Paraboloid

Problem. A particle of mass m moves without friction under the action of gravitation
on the inner surface of a paraboloid, which is given by

Example 16.1
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Exercise 16.2

xz—i—y2 =ax.

(a) Determine the Lagrangian and the equation of motion.

(b) Show that the particle moves on a horizontal circle in the plane z = h, provided
that it gets an initial angular velocity. Find this angular velocity.

(c) Show that the particle oscillates about the circular orbit if it is displaced only
weakly. Determine the oscillation frequency.

Solution. (a) The appropriate coordinates are the cylindrical coordinates r, ¢, z. The
kinetic energy expressed in cylindrical coordinates reads

r . . .
T = Em(r2 + 29 +2%).
Hence, the Lagrangian is

1
L= 5m(r'2+r2<;32+22) — mgz. (16.13)

2 2

The constraint is x2 + y2 = ax. Since x2 + y2 =r*, we have r* —az =0, or in

differential form, 2rér — adz = 0.
Adopting the notation r = q1, ¢ = g2, 2 = g3, from

ZAaQa =0
a

we find that A; =2r, Ay =0, A3 = —a.
The Lagrange equations read

d (0L oL
— — __:)\flAC(v a:1,2,3;
dt 8C]a 8510{

d (oL _oL _ . 16.14
dt(81'> PR 1 (1o19)

With (16.13), we obtain
. .2 d 2. .
m(iF —rg”) =2Arr, mE(F ®), mi=—mg — Ma, (16.15)

and the constraint 2r7 — az = 0. From this system, we can determine r, ¢, z, 1.
(b) The radius of the circle arising by intersection of the plane z = & with the
paraboloid is r2=az,

ro=+ah.
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From mZ = —mg — A1a, it follows with z = h that

mg
o

A=

From m (¥ — rgbz) =2\ 1r, it follows with ¢ = w, r = rg that

2
m(—roa)2) = 2(—%)r0 or = —g;
a a
ie.,
2g
w=,—
a

is the desired initial angular velocity.
(c) From md (r>¢)/dt = 0, it follows that r>¢ = constant = A. We suppose that the
particle has the initial angular velocity w; i.e.,

. ahw
A =ahw, andtherefore ¢=—.

72
Since the particle oscillates about z = & with only small amplitude, we use A =
—mg/a, which holds for z = h, and we obtain

2mg 229

2
m(i"—r(j}z):—Tr = F—a —ﬁ.

r3 a

Since the oscillation is small, we have r =rg + u; i.e.,

272, 2
a‘h“w 2g
- =—— . 16.16
L T P (ro+u) ( )
We have

1 1 1 u\"3 3u\ 1
(ro+u)>  r3(l Ealty) FU-n )
ro +u ro(l+u/ro)° 1y 70 ro /) ry

since u/rg < 1 (power series expansion)!
Thus, from (16.16), we obtain with ro = ~/ah, ® = /2g/a, the differential equa-
tion

8
i+8u=0 (16.17)

a

with the solution

/8 /8
U = g1 COS —gt + &7 sin —gt,
a a

and thus,

/8 /8
r=ro+u=+ah+ & cos —gt—i—szsin —gt;
a a

Exercise 16.2
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Exercise 16.2

i.e., r oscillates with w?> = 8g/a about the equilibrium value ro = +/ah. The oscilla-
tion period is

T a
=TT -,
0 28

while the orbital period is

T, =21 | L =27y,
2g

EXERCISE

16.3 Three Masses Coupled by Rods Glide in a Circular Tire

Problem. Three mass points m, my, m3 are fixed to the ends of two massless rods
and glide without friction in a circular tire of radius R, which stands vertically in the
gravitational field of the earth. Find the equations of motion by means of Lagrange
multipliers, and determine the equilibrium position. Find the frequency of small oscil-
lations about the equilibrium position.

Solution. We use the angles ¢1, ¢, and ¢3 as generalized coordinates. The angles
are not independent of each other, but are coupled by the rigid rods connecting the
mass points, via the constraints

@3 — @2 = o = constant,

(16.18)
¢ — @1 = B = constant.
In differential form, ZV apéq, =0, they read
83 — 892 =0,
(16.19)
gy — 81 = 0.
The Lagrangian of the system can be immediately given in these coordinates:
L=YT,-V,
Vv
1 .
= EZmVR2<p2—ZngR(1 —Ccos@y). (16.20)
v v

The Euler-Lagrange equations, generalized to nonintegrable constraints, i.e., con-
straints that are given only in the form (16.19), can be formulated by means of the
Lagrange multipliers A; (16.6):

d 3L  OL u
— - =Y nap. (16.21)
dt 3¢, 0@, ; Y
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The number of constraints in the case considered here is s = 2. We thus obtain the
three equations of motion:

myR*$, +mygRsing, = Aapy + rasy, v=1,23. (16.22)

From (16.19), we obtain by comparison the coefficients ay,:

ay =0, ap=-—1, aiz=1,
16.2

ax =—1, apn=1, a3 =0. (16.23)
Then (16.18) implies that

G3=@2=¢1. (16.24)
By inserting this into (16.22), we get

8 . A2 g . Al A2 g . A

=sing| + —— = =singy + — = =sing3 — . 16.25

ROt R T R R T e T R T e 10
Solving for A1 and X, leads to

A 0)(% . . . .

e m3ﬁ[m1(sm<ﬁ3 —singj) + ma(singz — singy)],

) (16.26)
) wy . . . .
2 =m M[mz(sm(pz — sing) + m3(singz — singy)].

Next, we set M = m + mo + m3 and a)g = g/R. The angles ¢3 and ¢, can be ex-
pressed by ¢ via the constraint (16.18), so that one differential equation in the variable
@1 describes the entire system. Hence, from (16.22) and (16.26) we obtain

2
w . . .
¢ = _Mo[ml sing) + my sings + m3 sin @3]

2
@,
= —ﬁo[ml singy + my sin(g + B) + m3sin(p + o + B)]. (16.27)

The equilibrium position is at the point of vanishing acceleration ¢; = 0:

m1 sin ¢ + m(sin @1 cos B + cos ¢ sin f)

+ m3[sing; cos(er + B) + cos g sin(a + B)| = 0. (16.28)

Solving for ¢ yields

my sin B 4+ m3 sin(a + B) > (16.29)

0
5,=0 = @7 = arctan| — + B
®1lg=0 1 ( m1 + my cos B + m3 cos(a )

We now consider small vibrations ¢ about the equilibrium position determined by
(16.29):

pr=¢)+0 with [9]<K1. (16.30)

Exercise 16.3
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Exercise 16.3

By means of the addition theorem sin(® + ¢) >~ sin® + ¥ cos® and ¢ = 1'9', we
obtain from (16.27) the desired frequency:
2

s _ 9% 0 0 0
D= —M[ml cos @) +mpcos(¢] +a) +m3cos(p; + o+ ,3)]19,

b = —Q%v. (16.31)

For small amplitudes, this differential equation describes the vibrations of a physi-
cal pendulum. For « = 8 = 0, and, hence, go‘l) =0, it turns into the equation of the
mathematical pendulum.



Special Problems

17.1 Velocity-Dependent Potentials

So far, we defined conservative forces F by the condition that they can be derived from
a potential V (r) by forming gradients, i.e.,

F(r,t) = —VV(r,1). (17.1)

The potential V (r, ¢) is a function of the position and in general also of the time. This
is possible as long as the forces do not depend on velocities or accelerations. There are,
however, such cases: for instance, the Lorentz force which acts on a charged particle
in the electromagnetic field is velocity-dependent:

Fe© =e<E+X XB>. (17.2)
C

Here, e is the charge of the particle, and E and B are the electric and magnetic field
strength, respectively. F ) indicates that this shall be an external force.

If external forces depend on the velocity or the acceleration, we shall call them
conservative as well if they can be expressed by a potential V' that depends on the
generalized coordinates g, the generalized velocities ¢; and the time ¢, according to

oV d Vv

—Y— 17.3
aqj+dt 9q; (47

Q=
with V = Vigj, q'j, 1).

In some cases, such a representation can be possible also for the ordinary coordi-
nates r; and the velocity v;. The relation for V = V (r;, v;, t) analogous to (17.3) then
reads

F; = V~V+dV V= 8V+d3V
e dt YT 9r; | dtrov;

Here,

v | o o
! vy vy 0V,

means the gradient vector with respect to the components of the velocity of the ith
particle.
The velocity-dependent potential
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is sometimes called the generalized potential. We know from (15.14) that the kinetic

energy T and the generalized forces Q; are related by

Now using (17.3), we obtain

doT 9T _ oV, dav
dtdg; dq;  dq;  didg;

or

if we define the generalized Lagrangian L by
L=T-V

with the generalized potential V (g, q;,1).

(17.5)

Sometimes, it is desirable to use another set of coordinates ¢ ;j instead of the set
of generalized coordinates ¢ ;. We now will show that this potential represents a gen-
eralized potential also in the new coordinates g; and the related velocities g ;- This

property is therefore independent of the selected spe<:1a1 coordinates.

Asin (14.7), the generalized forces Q ; belonging to g, g ; and the forces Q; from

(17.3) are related by

3N

6= Zgua"”.

l)

‘We have to show that
§~ v 42 d [0V
T dr\ag; )

For the proof, we need the relation
Odk _ 99k
og; 9q;

which immediately follows from

_d 0qk . Oqk
(qk)—zaajq,-+ ol
Then
3N )
v Zavaqv ZBVBqV+B_Vﬂ
8q, 85],) g — 0qy g ot dq;

——
=0

N 3
ZaV g, Zay(i,(Zaz”%vL
v

dqv BQJ 1 dgv \ 9q; aq

ot

2)

(17.6)

(17.7)

(17.8)

(17.9)
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Because

0, =3V  d(av
T dgy  di\dgqy )

we write the generalized force é j (17.6) as follows:

3N

_ Za"afh Zi<3_">3‘1v
8%1851] - ]dt gy 351‘

B Zavaqv %d(av 8q,,> Zan<aqv>
aqv8qj - ]dt gy, 09q; 9q, dt \ 9q

By inserting this expression into (17.9), we get
3N 3N
~ oV av [ o gy d
Qi=—— + — —q, 1+ —¢q
/ Zqu g, ;8% * gt
d (dV dq, oV d (dq,
+ NV ) ol B
VX_; dt <8qv aqj) Z qu dt (qu
The third term yields with (17.8)
32’V: d <av aq'u>_ d (av)
T di\9qy 9q; di\dq;
Thus, é j becomes
0= av L2 d (8V>
! aq] 86]]
3N
av ([ o gy d
+ ; = = + =
Z: gy (BQV (Z a(’Iaqa atCIv)>
v=1 a=1
8‘11}) 0 8Clv
- — |90+ —
Z 1 9qy ((XZ 9qa (aq; 9t g

Since ?ja does not depend on aj, the last two terms cancel each other, and we find that
(17.7) is valid. Thus, it has been shown that

also represents a generalized potential in the new coordinates ;.
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EXAMPLE |

17.1 Charged Particle in an Electromagnetic Field

In the lectures on electrodynamics' we shall show that the electric field strength E and
the magnetic field strength B can be derived from the scalar potential ®(r, t) and the
vector potential A(r, t), namely,

1 0A

E=-Vbd—- ——| B=V xA. (17.10)
c ot

In other words, the electromagnetic phenomena can be described by @, A instead of
E, B. Now we show that in the frame of the Lagrangian formalism the Lorentz force
(17.2) can be described by the velocity-dependent potential

Veed—SA.v. (17.11)
C

The Lagrangian then reads

1
L=T—V=§mv2—ed>+EA-v. (17.12)
C

We restrict ourselves to the Lagrange equation for the x-component:

—— - —=0. (17.13)
dt dvy  Ox
The other components follow likewise. We calculate
oL 0P n e A oL n N
— =—e—+-—"V, — =muvy + — Ay,
0x dx ¢ dx dvy et

and furthermore according to (17.13),

d 0d e oA edA,
—mvy=—€—+-——-V— — . (17.14)
dt Jdx ¢ ox c dt
For the last term, we obtain
dAy 0Ay  0Aydx  0dAydy  0A.dz
dt ot ox dt 3y dt = 9z dt
0A, 0A; 0A, 0Ax
_ o ., 17.15
ot ox vxt ay vyt 0z . ¢ )
and for the intermediate term,
0A 0A, 0A, 0A,
— V= — — . 17.16
0x v 0x b 0x vyt ax Vz ( )

Equations (17.15) and (17.16) are now inserted into (17.14) and yield
dmuvy od 10A, e(dA, 0A, e(dA, 0A;
=e|l——- + - —- vy — — —— v,
dt ox ¢ ot c\ Jx ay c\ 0z ax
e
=eE, + ;(vay — Byvy)

1
=€<E+—VXB) .
¢ X

I See W. Greiner: Classical Electrodynamics, 1st ed., Springer, Berlin (1998), Chapter 23.
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Corresponding expressions are obtained for the y- and z-components, so that we get
in total

d 1
E(mv):(E—i—;va), (17.17)

i.e., Newton’s equation of motion with the Lorentz force.

17.2 Nonconservative Forces and Dissipation Function (Friction
Function)

So far, the discussion was restricted to conservative forces only. We now consider
systems with conservative and nonconservative forces. Such systems are first of all
systems with friction. They play an important role in classical physics and recently
also in heavy-ion physics. If two atomic nuclei collide, many internal degrees of free-
dom are excited; one can say that the nuclei are being heated up. Energy of relative
motion is lost. This is a signature for friction forces, which are generally considered
as being responsible for the energy loss.

zone of %
friction

(@) (b)

We begin our discussion of nonconservative (e.g., friction) forces with the La-
grange equations in the form

d T dT
————=0;, j=12,...,n, (17.18)
dtdqj  9q;

and split the generalized forces Q; in a conservative part QE.C) and a nonconservative

part Q;f ) (f for friction):

0;=0""+0". (17.19)
Since QE.C) can be derived by definition from a potential according to (17.3), we can
introduce L =T — V and bring (17.18) into the form

d L oL
——_——0o7 j=1,2,...,n (17.20)
dtdqj  9q;

Example 17.1

Fig. 17.1. (a) Trajectory of
nucleus 2 in the Coulomb field
of nucleus 1. (b) Trajectory of
nucleus 2 in the Coulomb plus
nuclear field of nucleus 1
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If the nonconservative forces are friction forces, on the right-hand side appear only
these friction forces Q;f ). For these, we make the ansatz

n

Q;f) ==Y ficdx. (17.21)
k=1

where the f}; are the friction coefficients. If the friction tensor fji is symmetric, i.e.,

it = fri, the friction forces ) can be obtained by partial derivation with respect
J J j y P P
to the generalized velocities ¢; from the function

[EECN
=5 D fudkd (17.22)

k=1
according to

0 = _ b
! 9q;

D is called the dissipation function (friction function). The Lagrange equations
(17.20) can now be written as

d 3L D dL
— = . (17.23)

— et =

drdq; 9dq; 9q;
In order to understand the physical meaning of the dissipation function, we calculate
the work performed by the friction force QEf ) per unit time,

aw® ). .
dt :Z Q; 4= Zf,-kq,qkz—zp, (17.24)
J ik

i.e., the energy consumed by the friction force per unit time is twice the dissipation
function:

dE d
- = E(T +V)=-2D. (17.25)

This can also be directly derived from the Lagrange equations:
d oT oT d
—(T+V)= —qi —gi+—V. 17.26
L (T+V) lZaq,-q’+lZaq,-"’+dz (17.26)
With (17.23) we find

o= (L) ZM%)

g,
d . 0D
= d—(2T)+Zqi8—qi—Z qz +Z

d
=—@QT)+2D — i V. 17.27
( )+ Z q +- (17.27)

i

aqi
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By inserting this into (17.26), we obtain
d(T+V dQ@2T +2v
(T+V) _dQT+2V)
dt dt

D

or
dE
— =-2D,
dt

i.e., the result (17.25).
EXAMPLE |

17.2 Motion of a Projectile in Air

The particle shall be under the action of the conservative gravitational force with the
potential

V =mgz

and the nonconservative friction resistance of air. The air resistance depends on the
projectile velocity. We suppose the friction force to be proportional to the velocity. It
can then be derived from the dissipation function

| . )
D= Ecx(x2 + 32+,

and the Lagrange equations follow with L = (1/2)m (1 + y? + z?) — mgz according
to (17.23) as

mX +ax =0, my+ay=0, mZ+az+mg=0.

These equations of motion are known from the lectures on classical mechanics.”

17.3 Nonholonomic Systems and Lagrange Multipliers

In the preceding text, we have already discussed holonomic and nonholonomic sys-
tems. A brief recapitulation seems appropriate: For holonomic systems, the supple-
mentary conditions can be expressed in the closed form

gim,H)=0, i=12,....,s,v=1,2,...,N. (17.28)

N = number of particles. We therefore can eliminate s coordinates and express the
r, as functions of n = 3N — s independent generalized coordinates g;. For nonholo-
nomic systems, this is not possible, since the supplementary conditions appear in the
differential form

N

> gy 1) dry+ gi(ry, dt =0, i=1.2,....5s. (17.29)

=1

2 See W. Greiner: Classical Mechanics: Point Particles and Relativity, 1st ed., Springer, Berlin
(2004), Chapter 20.
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Since these equations shall be nonintegrable, one cannot eliminate s dependent co-
ordinates from them in the form (17.29). One therefore simply expresses the r; as
functions of 3N generalized coordinates g;. The g; are of course not all independent,
but are subject to supplementary conditions which are obtained by rewriting (17.29)
in terms of the g;:

3N
Zaﬂ(q, dq + ais(q,t)dt =0, i=1,2,...,s. (17.30)
=1

For virtual displacements 3¢, i.e., 8t = 0, these supplementary conditions change to

3N

Y ai(g.06q =0, i=12...5s. (17.31)
=1

In this form, the supplementary conditions can be combined with the Lagrange equa-
tions in the same form, namely,

3XN:<Q(’) 4oL _d 3L )3 0 (17.32)
o J 36]j dt 3q]'

The conservative forces were taken into account in the Lagrangian L. Because of
the conditions (17.31), not all 8¢g; in (17.32) are independent. To take this fact into
account, one multiplies in (17.31) by the—at the moment still unknown—factors A;
and sums up over i,

s 3N

D) hiau(g. 1)sq =0. (17.33)

i=11=1

Addition of (17.32) and (17.33) then yields

3N K
aL d oL
2 : (r) E
j=1<QJ i dgqj  drdq; +i=1 it )> B ( :

The factors A; are called Lagrange multipliers. They can be chosen arbitrarily in
(17.34). Among the 3N quantities §q;, however, only 3N — s can be chosen arbitrar-
ily, since the s supplementary conditions (17.31) still must be satisfied. We number
the 8¢ so that the first s of them are just the dependent ones; the last (3N — s) of the
8g; can be freely chosen.

Now we utilize the free choice of the s Lagrange parameters A;, which are deter-
mined in such a way that the coefficients of the first s variations é¢; in (17.34) vanish.
This obviously leads to the s equations

oL d oL :
(r) .

4 — -4 E ria;i(g,t) =0, =1,2,...,s, 17.35
Q] aCIj dr aq.j iaij(q,1) J N ( )

i=1

and (17.34) reduces to

3N s
JL d oL
(r) P J—
> (Qj +o - 70 + A,alj(q,t))éq] =0. (17.36)

a .
j=s+1 4 i=1
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In (17.36), all of the 6g; can now be freely chosen. Therefore, the expression in the
round bracket must vanish for every individual j; i.e., it follows that

s

o 4 OL _ d oL +3 hiaijq.0) = i=s+1,54+2,...,3N. (17.37)
Y - - a; = ’ =39S , S y ey : .

7 dg; dtdq; = A /
Now we see that the two sets of (17.35) and (17.37) have the same form and can be
simply combined to

— - Q<’>+Z,\au(q =0, j=1,2,...,3N. (17.38)
i=1

These are 3N equations which, together with the s supplementary conditions in the
form

3N

> ai(q. g +ai(qg.1) =0, i=12,.. s (17.39)
=1

determine the 3N + s unknown quantities, namely the 3N coordinates g; and s La-
grange multipliers A;. Hence, the total number of desired quantities (g, A;) is 3N +s.
This is also the number of (17.38) and (17.39) which determine these quantities.

The meaning of the Lagrange multipliers can be understood even more precisely if
we interpret the last term in (17.38) as an additional force Q;.Z), namely,

0\ = "1iaij(q. ). (17.40)

i=1

These forces Q;Z) are constraint reactions which appear since the motion of the sys-
tem is restricted by supplementary conditions. Indeed, if the supplementary conditions
disappear (a;; = 0), the constraint reactions also vanish; Q;Z) = (. The former equa-
tion (17.33) can now be written as

3N

Y 078g:=0 (17.41)

i=1

and can be interpreted as the vanishing of the virtual work of the constraint reactions.
It is clear that the method of Lagrange multipliers developed here for nonholonomic
systems can be applied to holonomic systems, too. The holonomic constraints (17.28)

gi(ry,t)=0, i=12....5,v=1,2,...,N,

can immediately be written in differential form:
N
Zai r1+—dt i=1,2... ... (17.42)

This is exactly the form (17.29) for nonholonomic systems. From now on, the ap-
proach with Lagrange multipliers can run on as explained above. We then obtain
(3N + s) coupled equations, while the former solution method for holonomic sys-
tems (based on the elimination of s coordinates from (17.28)) leads only to 3N — )
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Fig.17.2. A circular disk rolls
on the x,y-plane

Fig. 17.3. Projection onto the
X, y-plane

coupled equations. By the additional 2s equations the procedure now became much
more complicated. However, this complication has also a great advantage: We now
can determine the constraint reactions Q;Z) according to (17.40) without difficulty (by
solving the 3N + s equations).

EXERCISE ]
17.3 Circular Disk Rolls on a Plane

Problem. Determine the equations of motion and the constraint reactions of a cir-
cular disk of mass M and radius R that rolls without gliding on the x, y-plane (see
Fig. 17.2). The disk shall always stand perpendicular to the x, y-plane.

y

disk axis

(x,y)

Solution. We first consider how to mathematically formulate the constraints “without
gliding” and “always stands perpendicular to the x, y-plane.” This actually means
that the center of the disk is exactly above the contact point (x, y) (the disk stands
perpendicular), and the velocity of the circumference R® of the disk edge equals the
velocity of the contact point in the x, y-plane (& is the rotation angle of the disk
around its axis). The latter means that there is no gliding. If we introduce the angle
® between the disk axis and the x-axis (see Fig. 17.3), the condition “no gliding”
mathematically reads

¥ =RPsin®, y=—RdcosO. (17.43)
In another formulation, these differential supplementary conditions read

dx — Rsin®d®d =0,
(17.44)
dy+ Rcos®dd = 0.
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In the form (17.30), these conditions thus read

andx +apdy + a;3d® +ajpd® =0,
ax1dx + axdy + a3d® + ad® =0,

where
an =1, a;p =0, a;3=—Rsin®, a4 =0,
ar; =0, an =1, a3 = Rcos®, ary =0.

Thus, according to (17.40) the constraint reactions are

0% =1,
0 =1,

@ (17.45)
Qg = —AiRsin®+ ARcos O,
0% =o.

The kinetic energy of the disk is
1 ., 1 ., 1 5 1 5

T=-1Ld +=-0LO 4+ -_Mi"+-My~, (17.46)

2 2 2 2

where [ is the moment of inertia of the disk about the axis perpendicular to the disk
through the center, and /5 is the moment about the axis through the center and the
contact point (x, y).

The Lagrange equations (17.38) now read explicitly

Mx = Qx + A1,
My: Qy +)\'2a
. (17.47)
I1d=Q0¢ —ARsin® + AryRcos®,
12®= Oeo.

0Oy, Qy, Q¢, Qe are possible external forces. We study the case without such forces
and therefore set them equal to zero. This transforms (17.47) into

Mi =\,
My =,

. (17.48)
I1® =—XRsin® + AyRcos O,
12(:) =0,

which must be replaced by (17.43) according to (17.39):
i =Rdsin®,
. (17.49)

y=—RdcosO.

The last equation of (17.48) can be immediately integrated, leading to

O = ot + Oy.

Exercise 17.3
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Exercise 17.3

Fig. 17.4.

By inserting this into (17.49), one can calculate X and ¥, which determine A; and X,
through the first two equations of (17.48):

A = Mi = M(R®sin(wt + ©g) + wRD cos(wt + Op)),
. ) (17.50)
A =My=—M(R®Dcos(wt + ®p) — wRD sin(wt + BOp)).

This in turn is now inserted into the third equation (17.48), which then reads

I1® = —MR(R®sin(wt 4+ Og) + wR® cos(wt + O)) sin wt
—MR(R® cos(wt + Op) — wR® sin(wr + Op)) cos wt

= —MR*®;
ie.,
(Ii + MR>)® =0.

This leads to ® = 0 and hence @ = constant. Therefore, we can explicitly write down
the constraint reactions (17.45):

Q)(f) = MwR®d cos(wt + O),
Q&Z) = MwR® sin(wt + O), (17.51)

0¥ =0, o¥=o.

These constraint reactions must act to keep the disk vertical on the x,y-plane. If the
disk rolls along a straight line (w = 0), the constraint reactions disappear.

EXERCISE |
17.4 Centrifugal Force Governor

Problem. Consider the degrees of freedom, and determine the equation of motion
of the centrifugal force governor (Fig. 17.4) through the Lagrangian.
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Solution. The principle of the central force governor is applied, e.g., in automobiles.
The distributor drive shaft is tightly fixed to the carrier plate of a central force gov-
ernor which is attached below the interrupter plate. At higher speeds the centrifugal
masses press on their carrier plate against a “cog.” Thus, the distributor shaft set into
the driving shaft is moved additionally in the rotation direction by a cam. This mech-
anism causes a preignition needed at higher speeds. For more advanced motors with
“transistor ignition,” this mechanism is dropped.

\spring
—,—centrifugal masses

cog
\

carrier plate

The system has two degrees of freedom, which can be described by the angles 0
and ¢. The motion of m, M is restricted by the constraints represented by the four rigid
rods and the rotation axis. Hence, 8 and ¢ offer themselves as generalized coordinates.
We first determine the kinetic energy. The moment of inertia of the cylinder is

Ozz = Ly g2
Z7Z — 2 1)
and therefore,

1/1
Toot = E(EMR2+2ml2sin29>¢)2. (17.52)

The kinetic energy due to the motion in the x, y-plane is

m 1
Tolane = 231},2,, + EMv,Zu (17.53)
) d .
vy, =106, vy = E(_ZI cosf) =02l sinb. (17.54)

From this, it follows that
Tplane = (m + 2M sin” 6)1262. (17.55)

With the potential energy V = —2gIl/(m + M)cos6, we can write down the La-
grangian:

L =Tt + Tplane -V
1 )
= 5(@zz + 2mi? sin? 0)¢* + (m + 2M sin” 6)1%6>
+2gl(m + M) cos6. (17.56)

The Lagrange equations

d oL 9L _
dt dq, dq,

Exercise 17.4

Fig. 17.5. Centrifugal gover-
nor in automobiles
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Exercise 17.4 immediately yield the equations of motion:

oL
— =0,
d¢p

oL
70 = (©z7 4 2mi*sin®6)¢,
¢

dL 2 .2 : 272 :
%:2ml sinf cosO¢p“ + 4M sinf cos01°0“ — 2gl(m + M) sin0,
oL .

7= 2(m +2M sin” 0)1%6.

(17.57)

(17.58)

From (17.57), we get

d (0L _4d [(©22 +2mi*sin?0)¢] =0 (17.59)
—_ — | = — mi~ S = V. .
dt \ 0¢ drt 2 ¢

For the Lagrange equation in 6, we need

d (0oL . D N2 . 242
i\ 2g = (2m +4M sin“0)I“0 + 8M sin6 cos 016~

Then

(2m + 4M sin” 0)1%6 + 4M 1?6 sin6 cos 6
—2mi*¢?sinf cos@ + 2gl(m + M) sin =0, (17.60)

and hence, we obtain the following equations of motion:

(2m + 4M sin® 0)1%6 + 21>(2M6? — m¢?) sin cos b + 2gl(m + M) sin6 = 0,

df(1

E[<§MR2 + 2mi? sin® 9)4 =0 (17.61)
c

T (1/2)MR + 2msin2 6

¢

From these equations of motion, the advantage of the Lagrangian formalism becomes
evident. To account for the complicated constraint reactions in Newton’s formulation
would be much more laborious.



Part VI

Hamiltonian Theory




Hamilton’s Equations

The variables of the Lagrangian are the generalized coordinates q, and the accom-
panying generalized velocities ¢,. In Hamilton’s theory,!the generalized coordinates
and the corresponding momenta are used as independent variables. In this theory the
position coordinates and the “momentum coordinates” are treated on an equal ba-
sis. Hamiltonian theory leads to an essential understanding of the formal structure of
mechanics and is of basic importance for the transition from classical mechanics to
quantum mechanics.

We now look for a transition from the Lagrangian L(g;, ¢;,t) to the Hamiltonian
H (q;, pi,t) and remember that the generalized momenta are given by

oL

pi = B_q,
We look for a transformation

L(gi,gi.1) = H(Qi,g—;,t>=H(Qi’piaI)- (18.1)

The question is, how to construct H? The recipe is simple and will be formulated in
the following equation (18.2). The mathematical background of such a transformation
(Legendre* transformation) can be easily demonstrated by a two-dimensional exam-
ple. We change from the function f(x, y) to the function g(x, u) = g(x, df/dy):

fx,y) = g(x,u) with uzg,
dy

where g(x, u) is defined by

glx,u) =uy — f(x,y).

L Sir William Rowan Hamilton, b. Aug. 4, 1805, Dublin—d. Sept. 2, 1865, Dunsik. Hamilton began
his studies in 1824 in Dublin. In 1827, before finishing his studies, he became professor of astronomy
and King’s astronomer of Ireland. Hamilton contributed important papers on algebra and invented
the quaternion calculus. His contributions to geometrical optics and classical mechanics, e.g., the
canonical equations and the Hamilton principle, are of extraordinary importance.

2 Adrien Marie Legendre, b. Sept. 18, 1752—d. Jan. 10, 1833, Paris. Legendre made essential contri-
butions to the foundation and development of number theory and geodesy. He also found important
results on elliptic integrals, on foundations and methods of Euclidean geometry, on variational cal-
culus, and on theoretical astronomy. For instance, he first applied the method of least squares and
calculated voluminous tables. Legendre dealt with many problems that Gauss was also interested
in, but he never reached his perfection. Beginning in 1775, Legendre served as professor at various
universities at Paris and published excellent textbooks which had a long-lasting influence.

W. Greiner, Classical Mechanics, 327
DOI 10.1007/978-3-642-03434-3_18, © Springer-Verlag Berlin Heidelberg 2010
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By forming the total differential, we realize that the function g formed this way no
longer contains y as an independent variable:

dg = ydu+udy —df

a d
= ydu + udy — —fdx - —fdy
ox ay
a
= ydu — —fdx,
dy

where now y = dg/du and dg/dx = —af/dx.
According to this short insertion, we now construct the Hamiltonian from the La-
grangian. We write for the Hamiltonian

H(gi, pi-1) =y pidi — L(qi, §i- 1)- (18.2)

1

We look for those equations of motion which are equivalent to the Lagrange equations
based on the Lagrangian L. To this end, we form the total differential:

dH:ZPidéi+Zq'idPi —dL. (18.3)
The total differential of the Lagrangian reads
oL oL .
dL=Y —dgi+ Y —dg; + ——du. (18.4)
dg; aq; t

We now utilize the definition of the generalized momentum, p; = dL/dq;, and the
Lagrange equation in the form

d oL
Inserting both into (18.4) yields
dL=Y" pidgi +Y dii+ L ai
= piagi pidqi ar
By insertion of dL into (18.3), it follows that
dH =" pidgi+ ) _didpi— ) _ pidgi — Y _ pidgi — oLy,
ot
Since the first and fourth term mutually cancel, there remains
dH =Y gidp; —»_ pid LY
A qidpi : pidqgi 9 4
l 4

Therefore, H depends only on p;, g;, and t; thus, H = H(q;, pi,t), and we have

oH oH oH . . oL
dH = Z 24 dg; + Z 8—pidpi + Wdt = Zqidpi — Zp,’dqi — Edt.
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From this immediately follow the Hamilton equations:

. oH . oH 9H  IL 155
G=5p P o at ot :

They are now the fundamental equations of motion in this formulation of mechan-
ics. The Hamiltonian H here plays the central role, similar to the Lagrangian L in
Lagrange’s formulation of mechanics. This Hamiltonian H is constructed according
to (18.2); but with the prescription that all velocities g; are expressed by the general-
ized momenta p; and the generalized coordinates g; through (18.1). In other words,
the equations (18.1) for the definition of the generalized momenta

_ 0L(gi. gi 1)
9qi
are solved for the generalized velocities ¢g;, so that
4i =4i(qi, pi)-

The ¢g; obtained this way are inserted into the definition of H (see (18.2)), so that the
Hamiltonian H finally depends only on ¢;, p;, and the time ¢; hence, H = H (q;, p;, ).
From this, the Hamilton equations (18.5) are established and solved.

The Lagrange equations provide a set of n differential equations of second order in
the time for the position coordinates. The Hamiltonian formalism yields 2n coupled
differential equations of first order for the momentum and position coordinates. In any
case, there are 2n integration constants when solving the system of equations.

From (18.5), it is seen that for a coordinate that does not enter the Hamiltonian, the
corresponding change of the momentum with time vanishes:

oH
9gi

=0 = p; =constant.

If the Hamiltonian (the Lagrangian) is not explicitly time dependent, then H is a
constant of motion since
oH

I, Z qz+ZaH PR

and with (18.5) this leads to

aqi

dH 0H

dt ot
Now it is clear that with d H/dt = 0 (since H shall not be explicitly time dependent)
it follows that d H /dt = 0, and thus, H = constant.

What is the meaning of the Hamiltonian; how can it be interpreted physically?
To see that, we consider a special case: For a system with holonomic, scleronomic
constraints and conservative internal forces, the Hamiltonian H represents the energy
of the system.

To clarify this, we first consider the kinetic energy:

1
= 3 vai‘f, v=1,2,...,N (N =number of particles).
v
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If the constraints are holonomic and not time-dependent, there exist transformation
equations r, =r,(g;), and therefore,

. or, .
f=) 7,

i

Insertion into the kinetic energy yields

ar, . ar, .
=" m Y () (2
XU: V%‘(aqiqz) <aqqu>

1 or, arv>. .
S (AT i,
x (2 — 3qi gk
= aikdidr.
ik

Thus, the kinetic energy is a homogeneous quadratic function of the generalized ve-
locities. The arising mass coefficients

1 Jr, Or,
=2 ;mv dqi I

are symmetric; i.e., ajr = ag;.
Now we can apply Euler’s theorem on homogeneous functions. If f is a homoge-
neous function of rank n, i.e., if

FOxr, Axa, oo Ax) = 1" f(xg, X2, .00, Xk,

then also

This can be shown by forming the derivative of the upper equation with respect to A;
thus,

="l f.
aoan 't a0 =S

By setting A = 1, the assertion follows. Euler’s theorem, applied to the kinetic energy
(n =2), means

T
Y -gi=2T. (18.6)
9qi

Since the forces are presupposed to be conservative, there exists a velocity-independent

potential V (g;), so that

JL _ oT
¢ ¢
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and therefore,

H=ZPiéi—L=Za—.Téi—L-

9qi
By using the relation (18.6) and the definition of the Lagrangian, we see that
H=2T-(T-V)=T+V=E.

Thus, under the given conditions the Hamiltonian represents the total energy. The
energy T — V represented by the Lagrangian is sometimes called the free energy.

One should note that H does not include a possible work performed by the con-
straint reactions.

The Hamiltonian formulation of mechanics emerges via the Lagrange equations
from Newton’s equations. This became evident in deriving (18.5), where we explicitly
used the Lagrange equations. The latter ones are however equivalent to Newton’s for-
mulation of mechanics (see d’Alembert’s principle and following text). Conversely,
one can easily derive Newton’s equations from Hamilton’s equations and thus show
the equivalence of both formulations. It is sufficient to consider a single particle in
a conservative force field and to use the Cartesian coordinates as generalized coordi-
nates. Then

. 1 . .
pi = mi;, H=EZX?+V(M) (i=1,23),
l
or
1 pi2
HZEZE‘FV(%')-

i

This leads to the Hamilton equations (g; = x;):

S

OH oV
aqi dq;’

oH ; .
= =— and p;=
api m

qi
or in vector notation
p=—gradV.

These are Newton’s equations of motion.

EXAMPLE |

18.1 Central Motion

Let a particle perform a planar motion under the action of a potential that depends
only on the distance from the origin. It is obvious that we should use plane polar
coordinates (r, ¢) as generalized coordinates.

1 2

T _V—_ _ _l 2 2.2y
L=T V_zmv V_2m(r +reg°) — V().
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Fig. 18.1. On pendulum mo-
tion

With py = 0L /94y, we get the momenta

aL . . Dr
pPr=—=mr or r=—,
or m
JL 5. . v
= —— =mr or = —F.
Py 0 ¢ ¢ mr2

Thus, the Hamiltonian reads

p: o py
H — . . L _ Fr ] V )
DPrt =+ Po® m + T2 + V)
The Hamilton equations then yield
. _0H p; . 0H  py
r = = —, (p = = —7,
apr m 0py mr?
and
. 8H _py 3V __0H _
P T T o Pe = dp

@ is a cyclic coordinate. From this follows the conservation of the angular momentum
in the central potential.

EXAMPLE |

18.2 The Pendulum in the Newtonian, Lagrangian, and Hamiltonian Theories
The equation of motion of the pendulum shall be derived within the frames of New-
ton’s, Lagrange’s, and Hamilton’s theory.
Newtonian theory: We begin with Newton’s axiom

p=K.

The arclength of the displacement is denoted by s, and the tangent unit vector by T.
Then (see Fig. 18.1)

K=—-mgsin®T,
and thus,
m3T = —mgsinOT.
With s =10, we have § = 0. We therefore get the equation of motion

(:)+§sin®=o.
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For small displacements (sin® ~ ® + - - ), this becomes
@+§®:0

This differential equation has the general solution

@:Acos\/gt—i-Bsin\/%t,

where the constants A and B are to be determined from the initial conditions.
Lagrangian theory:
1 1 . 1 .
T =—mv’>=-m(0)*> = —ml*>O>,
2 2 2
V=mgh=mg( —1cos®) =mgl(l —cos ®).

Hence, the Lagrangian for this conservative system reads
1 26552
L=T-V= Eml ®° —mgl(1l — cos ®).

Now we use the Lagrange equation

d (3L BL__O
dr\ 90 00~

With

dL , IL 2¢
— =—mglsin® and — =ml°O,
00 00

we have

ml*® 4+ mglsin®=0 or O+ %sin@:O.

Hamiltonian theory: Using the generalized momentum
oL

=—= mlz®,
pPe Yo

the kinetic energy can be written as

_ 1 pd
T 2mi?’

Since the total energy of the system is constant, the Hamiltonian reads

11’(2~)
H=T+V=—-
+ 2 mi?

+mgl(1 —cos ®).

The Hamilton equations yield

OH . 9H  pe
o= —— — _mglsin® and O = —— = P9
90 e mi2

Example 18.2
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The last equation gives
pe =ml 2.
Differentiation yields
po =mi*®.
By comparing this with the above expression for pg, we finally get again

('4)+§sin®=o.

EXERCISE |
18.3 Hamiltonian and Canonical Equations of Motion

Problem. A mass point m shall move in a cylindrically symmetric potential V (g, z).
Determine the Hamiltonian and the canonical equations of motion with respect to a
coordinate system that rotates with constant angular velocity » about the symmetry
axis,

(a) in Cartesian coordinates, and
(b) in cylindrical coordinates.

Solution. (a) The coordinates of the inertial system (x, y, z) and those of the rotating
reference system (x', ¥/, 7’) are related by

x = cos(wt)x” —sin(wt)y’,
y = sin(wt)x’ + cos(wt)y’, (18.7)
z=17.
Derivation of the coordinates yields
X = cos(wt)x” —sin(wt)y’ — w(sin(wt)x’ + cos(wt)y’),
y = sin(wt)x’ + cos(wt)y + w(cos(wt)x’ — sin(wt)y’), (18.8)
./

z=17.
In the primed coordinate system, the Lagrangian takes the form
1
L — Em[)'c/z + )}/2 +i/2 + w2(x/2 + y/z) +2w()~}/x/ _ )'c’y/)]
-V, y, 7). (18.9)

From (18.9), we calculate the generalized momenta as
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oL )
px = ﬁ zm(x/_wy/)v

/ aL ./ /
pyza_y/:m(y + wx'), (18.10)
oL
f =22 i
py = =me
Now we solve (18.10) for the velocity components x’, y’, z’:
p/
i = ;x +wy',
p/
V=;f—mﬂ (18.11)
,_ P
m
and calculate the Hamiltonian according to
H=Y gipi—L. (18.12)
i
This yields
H :m()-c/2 —a))'c/y/) +m()-)/2 +a))'/x/) +WZ2/2 —L
1
::pr”-—2wfyﬂ+2y2+2wy%’+zzz
_ ()'6/2+)'1/2+Z'/2+a)2(x/2 +y/2) +2w(}-]/x/ —)'c/y/))] +V
I .. . .
— Em[x& + y/z + Z/2 _ wz(x/z + y/Z)] B V4
P L@ 20 P e 2.2
_ X [ / AN /
= Eml:m2 +2Zy Dy + oy +W —2n—1x py +o'x
p/2
+ Lz _ w2x/2 _ wzy/z] 4V
m
1
:Ezu4?+m?+pf]—wum;—ymg+w(Jx@+yﬂm). (18.13)

H is explicitly time-independent and is therefore a constant of motion. The canonical

equations of motion read

H_ 1
= = — w ,
ap. mpx Y

./ 1 / /
V' =—p) —wx/, (18.14)
m

./
X

1
./ /
Z b
- Py

Exercise 18.3
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Exercise 18.3 ., OH 9V
px_ ax/_wpy axl’
oV
-/ /
Py = —wp}, — 3 (18.15)
. A%
= o

(b) For the transition to cylindrical coordinates, we differentiate the transformation
equations

x =0 cos¢’, y =0 sing’ (18.16)
with respect to the time:

X_/Zé/cosw/_g/(i)/sin(p/’

(18.17)
y =0 sing’ +0'¢’ cos¢’.
From (18.9) and (18.17), we calculate the generalized momenta:
,_ 0L _ 9L ¥ 9Ly
pQ_aQ/_a)'C/aé/ 3y’ 3o’
= plcosg’ + psing’, (18.18)
, 0L _ 9L di' | Loy
Py = a¢’ T oox! ¢ 9y ¢’
= —p,0'sing’ + plo’cos¢’. (18.19)
Now we solve for p and py. From (18.18), it follows that
/ /APS /
Py — Pl sing
p; _ e y : (18.20)
cos ¢
and from (18.19) (with (18.20)),
, Pycos¢’ + (p, — pysing’)o’sing’
by = o' cos2 @
2 (0’ cos? ¢’ + o' sin¢') Pycos¢’ + pyosing’
0’ cosZ ¢’ N 0’ cos? ¢’
= o1 ' cosg’ + p’ sing. (18.21)
p_y - Q/ p(p (p pQ (p .

Analogously, we obtain

/ / / 1 / . /
Py =Py osg’ = pysing’, (18.22)
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Now we insert (18.21) and (18.22) into (18.13) and obtain

2 1
H= I:p/g2 cos® ¢’ — Ep; cos¢'py,sing’ + o7 sin? (,0’p(/p2

2 1 1
12 02 s ’o/ 4 /2 2 7
+p, sin" g —i—apgsm(p Py COSQ +?p¢ cos (p]%
—o'py—y'p)+ V.7
1

1 . |
B ﬂ[p/gz T pg} B “’[Q/COW/P’@ sing’ +0'cosg/ 5 p, cos¢’

1
—0'sing’pj cos¢’ +0'sin @’Ep; sin go'i| +V(,7)

= ﬁ [p;} + ﬁpfpz + p22i| —wp, + V(' 2). (18.23)
A comparison of (18.13) and (18.23) shows that the Hamiltonian becomes especially
simple if it is represented in coordinates adapted to the symmetry of the problem.
From (18.23) we see that H does not depend on the angle ¢’ (¢’ is a cyclic coordinate),
hence the angular momentum component p(’p is a constant of the motion.

The canonical equations of motion read

) 1 ) 1 . 1
o' =—pjp, ¢'=—>p,~w,  I=-—p,
m me m (18.24)
. 1 ) A% .o .o A%
p@—mg/ﬂ’w rrG Py =0, Pz—_a_z,-

18.1 The Hamilton Principle

The laws of mechanics can be expressed in two ways by variational principles that
are independent of the coordinate system. The first of these are the differential prin-
ciples. In this approach, one compares an arbitrarily selected momentary state of the
system with (virtual) infinitesimal neighbor states. One example of this method is the
d’Alembert principle. Another possibility is to vary a finite path element of the sys-
tem. Such principles are called integral principles. The “path” is not understood as the
trajectory of a point of the system in the three-dimensional position space, but rather
as the path in a multidimensional space where the motion of the entire system is com-
pletely fixed. For a system with f degrees of freedom, this space is f-dimensional.
In all integral principles the quantity to be varied has the dimension of an action
(= energy - time); therefore, they are also called principles of minimum action. As
an example we will consider the Hamilton principle. The Hamilton principle requires
that a system moves in such a way that the time integral over the Lagrangian takes an
extreme value:

[5)

I:/Lm

3l

Exercise 18.3
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shall have an extremum, which can also be expressed as follows:

9]
8/Ldt=0. (18.25)

n

The path equation of the system can be determined by applying this principle.
Before considering (18.25) in more detail, we will briefly deal in general with the
variational problem.

EXAMPLE |

18.4 A Variational Problem

As an example for substituting a description in terms of coordinates by a description
independent of coordinates, one can consider the definition of a straight line in the
plane. The straight line is uniquely determined by fixing two of its points, and it can
also be described by a linear equation between the coordinates x and y. It can further
be described by the differential equation

“r 9 (18.26)

with the further prescription that the values of the desired function y(x) for x = x|
and x = x; are given numbers. These are descriptions using rectangular coordinates.
The straight line can however also be described as the shortest connection between
two points, i.e., by

/a’s = minimum. (18.27)

One may imagine the two given points as being connected by all possible curves, and
among these curves that curve be selected which yields the minimum value for the
given integral. This description of the straight line is independent of the choice of
particular coordinates.

As a preparation for the following, we show how the search for the shortest connec-
tion between two points of the plane can be reduced mathematically to (18.26). After
introducing rectangular coordinates x and y, the problem is to look for a function y(x)
for which y(x1) and y(x2) have given values and the integral

X
I =f,/ 1+ y'(x)2dx (18.28)
x1

takes a minimum value. Similar problems do not need to have a solution. So one
could put the problem (18.27) or (18.28) and prescribe not only the start point and the
endpoint, but also the direction of the curve at the start and endpoint, respectively. One
easily recognizes that under these conditions there is no shortest connection, unless
both of the given directions incidentally coincide with the straight connection.
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The problem (18.28) has some similarity with the search for the minimum of a
given function f(x). There one considers a small change of x and forms

df (x) = f'(x)dx.

If f/(x) #0, f(x) can increase or decrease for small changes of x, and thus, there
is no minimum at the point x. A necessary condition for a minimum is therefore
f'(x) = 0. This condition is not sufficient; it is also fulfilled for a maximum.

In the problem (18.28), we do not have to change a variable but a function y(x).
We replace y(x) by a “neighboring” function yp(x) 4+ en(x) of the desired func-
tion yp, where we will afterward assume the number ¢ is arbitrarily small. We must
have 7(x1) =n(x2) =0. y’ is then replaced by y, + ¢7’, and instead of the integrand

/1 4 y’2 we obtain the Taylor series expansion into powers of &:
!/

JUHGp+en= /1 +y62+<9¢/27]/+82(...),
l—l—y0

where the term indicated by £2(...) can be neglected for sufficiently small |g|. There-
fore, we have

X2 X2 X2 ’
I(e):/,/l+(y(’)+8n/)2dx%/1/1+y62dx+8/¢n’dx
X1 X1 X1 \/1+y62

which shall take a minimum for ¢ = 0. If the integral in the second term does not
vanish, the integral

)
/,/ 1+ y)2dx
x1

can increase or decrease by changing the function yo(x), depending on the sign of .
Hence, yp(x) does not provide a minimum of this integral. For a minimum rather
exists the necessary condition

/ n dx = (18.29)
1+ y)?

for any function 1 (x) that vanishes at x; and x». To be able to exploit the far-reaching
arbitrariness of the function n(x), we transform (18.29) by integration by parts:

X2

X
|:y7/ni| 2 /niyiédx—()
/]+y62 s 3 dx /1+y(’)2

Because 1(x1) = n(x2) =0, the first term drops. The second term

(18.30)

ot i

Example 18.4
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Example 18.4

then and only then becomes zero for all allowed functions 7 (x) if everywhere between
x1 and xp we have

4 %N _, (18.31)
dx,/l—ky(’)2

If this equation were not satisfied everywhere, we could choose n(x) so that it is
always positive where

4%

ax J1 42

is positive, and choose it as negative where this expression is negative, and in this
way establish a contradiction. We can also conclude this way: If (18.31) were not
fulfilled anywhere, one should set 1(x) equal to zero everywhere, except for a certain
interval about this place. But then the integral (18.30) does not vanish. We could not
choose the quantity n’ in (18.29) in this way; thus we could not draw the corresponding
conclusion for (18.29). From (18.31) now follows y(’) = constant or y(')’ = 0; that means
the former description (18.26). Thus, our calculation has replaced the requirement
that a definite integral be minimized by a function, by a differential equation for this
function.
Equation (18.31) allows yet another interpretation. We have

a y y
dx\/1+y/2 (\/14—)7/2)3.
As is shown in the theory of curves, this is an expression for the curvature of a curve.
Equation (18.31) thus states that the desired curve everywhere has the curvature 0.
We just have treated a simple problem of the “variational calculus.” Problems of
the type (18.27) or (18.28) are called variational problems. In Exercises 18.5 and 18.6
we shall meet further, less trivial variational problems.
|

4

18.2 General Discussion of Variational Principles

Given the integrable function F = F(y(x), y'(x)), we look for a function y = y(x),
so that the integral

X2

I= / F(y(),y'(x)) dx

X1
takes an extremum value.
This problem is transformed into an elementary extremum value problem by cov-
ering the ensemble of all physically meaningful paths by a parametric representation:
y(x, &) =yo(x) +en(x),

where ¢ means a parameter that is constant for every path, n(x) is an arbitrary differ-
entiable function that vanishes at the endpoints:

n(x1) =n(x2) =0.

The desired curve is given by yg(x) = y(x, 0).
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Yol ooo___

: Yo(x)
Yip------ !

Yo(x)+eEN(x)=y(x,€)

Xy X, X

The condition for an extremum value of the integral [/ is then

dl
de

e=0

The differentiation under the integral symbol (allowed if F is continuously differen-
tiable with respect to ¢) yields

X2 X2
dl aF 9 oF 9y’ oF oF
—=/ A dx:/ —n+—n')dx.
de dy de 9y’ de ay ay’
X1 X1
The second integrand can be integrated by parts:
X2 X2
oF dan oF ™ d oF
——dx=|—n| - — — |ndx
ay’ 9x 'y, dx dy’
X1 X1
Since the endpoints shall be fixed, the term integrated out vanishes, and the extremum

condition reads

X2

oF d OF
/ — — —— |ndx=0.
ay dx ady’

X1

Since n(x) can be an arbitrary function, this equation is generally satisfied only then
if

d OF(y(x),y' ()  IF(y(x),y'(x) _
dx ay’ ay n

0. (18.32)

This relation (18.32) is called the Euler—Lagrange equation. It is a necessary condition
for an extremum value of the integral /. The solution of the Euler—Lagrange equation,
a differential equation of second order, together with the boundary conditions yields
the wanted path. To simplify notation, we define the variation of a function y(x, ) as
the difference between y(x, ¢) and y(x, 0)

dy
8y=y(x,8)—y(x,0)=8— €
€ le=0

for very small ¢. Then the variational problem can be formulated as

X2

5/F(y(x),y’(x))dx=o.

X1

F can also include constraints by means of Lagrange multipliers (compare Chap. 16).

Fig. 18.2. Possible paths from
(x1, y1) to (x2, y2)



342

18 Hamilton’s Equations

Fig. 18.3. A chain hangs in
the gravitational field

EXERCISE |
18.5 Catenary

Problem. This is an example with a constraint. A chain of constant density ¢ (mass
per unit length: o = dm/ds) and length [ hangs in the gravitational field between two
points Pj(x1, y1) and P>(x2, y2). We look for the form of the curve, assuming that the
potential energy of the chain takes a minimum.

y P, .
\_is/.z

v

Solution. The potential energy of a chain element is
dV =goyds.

The total potential energy is then

x

V=ga/yds,

X1

where the line element is given by

d
ds =/1+y?2dx, y/=—y.
dx

The constraint of given length [ is represented by

X2

X
0=/ds—l=/\/1+y’2dx—l.
X1

X1

With the Lagrange multiplier A, the variational problem reads

X2 X2
ng/y,/l+y/2dx—)h8</\/1+y/2dx—l):O.
X1 X1

Since §/ = 0, we can introduce the function

F(y, )= —wy/1+y"?

in the Euler equation (18.32), where we chose i = A/go. From

dy  dx dy’ -

3



18.2  General Discussion of Variational Principles

343

it follows that

-y —y*—1=0.
We rewrite the last equation. With

iy
dx dy dx dy’

we obtain

dy’ ) dy v'dy'
Y=y —=y"+1, — =
dy y—u 1+y?

Integration yields

1
In(y =) + InCy = 7 In(1 + y'?)

or

Ci(y —m)=,/14+y"2.

From this, we get

[ =]
Cily—mw?—1

To integrate the left side, we substitute coshv = C(y — v), since cosh?y — 1 =
sinh? v. Then

1
dy = — sinhvdv,
Ci

and therefore,

1
— dv:/dx.
Cq

Integration yields
v=Ci(x +C2)

or

1

Y= cosh(C1(x + C2)) + .
1

Thus, the solution is the catenary. The constants give the coordinates of the lowest

point (xp, yo) = (—Ca2, (1/C1) + w). They are determined by the given length / of the

chain and by the suspension points P; and P;.
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Fig. 18.4. A passenger glides
down a chute

Fig. 18.5. Tllustration of vari-

ous chutes

EXERCISE |

18.6 Brachistochrone: Construction of an Emergency Chute

Problem. On board an aircraft, a fire breaks out after landing. The passengers must
leave by an emergency chute on which they glide down without friction. Determine
by variational calculus the form of the chute with the aim to evacuate the plane as fast
as possible (height of the hatch yg; distance to the bottom x¢). Find the time of gliding
as compared to the harsh free fall, assuming xo = (7r/2)yp.
Hint:  Use the substitution
, _dy

= — = —cot —!
Y dx 2

Remark: This problem is known as the “brachistochrone.”
y A

Yo

\/

A

y

Yol

Solution. The problem goes back to the Bernoulli brothers (brachistochrone, 1696).
Energy conservation yields

1
mgyo = Emvz +mgy,

w2

gbo-nN=5{— L
= @+ @y

28(yo—y)
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The total time T is then

T X0

2

T:fdt:/ de. (18.33)
J J 2g(yo—y)

To get the minimum time, one has to solve a variational problem of the form

X2

X1) = Yo,
S/F(x,y,y/)dxzo, Y1) =yo
y(x2) =0.
x|
Because
X2 X2
0/8F8+8F8/d /BF daF(Sd
= —_— —_— X = _—— X,
dy Y ay’ Y dy  dx dy’ Y
X1 X1

the Euler-Lagrange equation reads

d OF _OF _ 0 (18.34)
dx 3y 9y '
or
92 92 92 oF
y"” F+y F+—F——=0. (18.35)
dy'2 dyay’ axdy’ dy

If the functional F is independent of x, (18.35) can be directly integrated. One finds

d ( ,0F ,d oF ,0F dF
—F)=y —— 4y — ——
dx 9y’

dx ya_y’ ay’ dx
,d OF ( ,OF ,,3F> ,0F  9F
=Yoo o Y o) T Y oo T o
dx 0y ay ay ay ox
_ (40P _9FN =
=Y dxdy oy )
hence,
,OF 1
y — — F =constant = —. (18.36)
ay’ c
In our case, (18.33) is
1 2
I e
2g(yo—y)
Then (18.36) reads
R B S E L |
V2800 —y) J1+y? V28Go—y) ¢
1 1

(18.37)

2600 — (A +y?) 2

Exercise 18.6
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The transformation y’ = —cot? (® /2) yields

c? B o (O 1

—— =1+y“=1+4cot| — =5

2g(yo—y) 2 sin?(©/2)
and thus,

C2
y=y9o— —(1 —cos®).
48

By integration, one finds an equation for x (®), namely,

® dy N AC) 0\ do
—cot— = —=——sin| — Jcos| — | —
2 dx 2g 2 2 ) dx
p ) 9 / 2 e
® 1 1
= xz-/dx/_c—/sin2 Zao' = |(-0 - =sin@
2g 2 2g\2 2 0
0 0
2 2
x=—(0 —sin®),
4g

Y =10 — —(1 —cos ©). (18.38)
48
This is just the parametric representation of a cycloid.
The maximum value of ® is determined by xg and yg, namely,
X0 ® — sin O
yo 1—cos®g "

(18.39)
The transcendental equation (18.39) can be solved in general only numerically. Special
cases:

®p=0 ’ T |27r

x0/yo=0 | 7/2 | o0

Fig. 18.6. Possible types of
solution

Yo

Yo

Calculation of the gliding time according to (18.33) and (18.37):

14y

(dx/dy)? +1
2g(yo— )

2g(yo— )
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Yo
C2
= \/ 3 dy
, 2g(yo — y)(c= —2g(yo — ¥))

¢, 2 —2g(y0—y)
= —2Zarctan,| ————MM8MM8M8M8M8MM™
2g 2g(yo—y)
cfn 2 —2gvyo
=—|— —arctan,| ——— |,
g\2 2gy0
[¢2—2
T = Earccot ﬂ.
g 2gy0

The integral can be found in tables.

Yo

0

T 2y
XOZE)’O = Op=71 = c=+28%0 = TZ,%E'

For comparison, the time of free fall is

T = @
8

As is seen already from (18.25), according to the Hamilton principle the time is not
being varied. The system passes a trace point and the appropriate varied trace point at
the same time. Hence,

8t =0.

Starting from the integral

1)

81=8/L(qa(t),qa(t),t)dt=0, a=1,2,..., f, (18.40)

n

where f is the number of degrees of freedom, we perform the variation according to
the procedure described above and show that the Lagrange equations can be derived
from the Hamilton principle. We describe the variation of a path curve g, (¢) by

G (t) = qu(t) +38qq(1),

Exercise 18.6
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where the §g, vanish at the endpoints,
3qqa(t1) = 8qa(12) =0

Since time is not being varied, we have

L
/Ldt /8Ldt /( o qa+Z—5qa)dt. (18.41)

Because

d d
77590 = 72 (qu(t.2) = 4u (1, 0))
d d
= 77 (a(t.8)) = —-(qa(t,0)

d .
=0-qa(1) =084u (1), (18.42)

integration by parts of the second summand yields

1%

—5% f——&]a dt

153
oL n d dL
= |:—8q0,:| —/(——_>5qadt. (18.43)
0qq neoy dt 0qy

Since §g, vanishes at the endpoints (integration limits), we get for the variation of the
integral

9]
oL d oL
81 = E — —— 6 dt=0. 18.44
/( (8%)5 dt a‘kx) qa) ( )
n

For holonomic constraints, we imagine that the dependent degrees of freedom were
eliminated. We take the g, as the independent coordinates. Hence, the §g, are in-
dependent of each other, and the integral vanishes only if the coefficient of any §gy
vanishes. This means that the Lagrange equations hold:

4oL oL (18.45)

Likewise, one can obtain the Hamilton equations by replacing L by >, page — H
and considering the variations §p, and §g, as independent. This will be worked out
in the Exercise 18.7.

In order to show the equivalence of the Hamilton principle with the formulations of
mechanics studied so far, we shall demonstrate its derivation from Newton’s equations.
We consider a particle in Cartesian coordinates. It moves along a certain path r = r(¢)
between the positions r(#1) and r(#;). Now the path is varied by a virtual displacement
dr that is compatible with the constraint:

r(t) — r(t)+8r(t),  Sr(t)) =or(tr) =0.
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The time is not varied. The work needed for the virtual displacement is
SA=F.8r=F*.fr,

if F¢ is the external force and the constraint reaction does not perform work. If F¢ is
conservative, then

F¢.8r=—-§V,
and according to Newton
—8V =mfi - Sr.
The right-hand side can be transformed (the operator (d/dt)8r = dr is treated accord-
ing to (18.42)):
d(. 5r) = i d5 FSrm e SF A Sres 1., LE.S
—(@-ér)=r-—0r+r-dr=r-0r+r-or=45( =r r-or.
dt dt 2
Multiplication by the mass m yields
N d . 1 5
mr-ér=m—(r-6r) — 8 —mr~ |,
dt 2
and therefore,
(T —V)=46L d (- or)
— = =m—(r-or).
dt

Integration with respect to time leads to
5]
a/Ldtzm[f-ar]ﬁf =0.
1
Thus, the Hamilton principle for a single particle has been derived from Newton’s
equations. The result can be directly extended to particle systems. This can be un-
derstood quite generally in the following way: If a particle system obeys the La-
grange equations (18.45) (which are equivalent to Newtonian mechanics), then we
have (18.44) and from that—because of (18.43)—again (18.41) or (18.40), provided

that 8q (1) = 894 (2) = 0. Thus, the Lagrange equations are equivalent to the Hamil-
ton principle.

EXERCISE |
18.7 Derivation of the Hamiltonian Equations

Problem. Derive the Hamilton equations from the Hamilton principle.
Solution. The Hamilton principle reads

[5)
S/Ldt =0, (18.46)

3l
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Exercise 18.7

where the Lagrangian L is now expressed by the Hamiltonian H; hence,

LZZPaQa_H(panast) (18.47)
o
Then (18.46) becomes
193 %)
. ) oH oH
SLdt= | > |8padu + Pubfu — —0pa — ——5qu |dt. (18.48)
t n ¢ 9pa 94a
1 1

The second term on the right-hand side can be transformed by integration by parts,

5] I 15}

. d .
/potg%xdt:/paESQadt:paSQaH|§? _fpaSQadt- (18.49)

1 n n

The first term vanishes since the variations at the endpoints vanish: §gy(f1) =
8qq(t2) = 0. Hence, (18.48) becomes

19}

n
aH aH
0= /aLdz = f Z{[% - —:|8pa + [—pa - —]Sqa} dt. (18.50)
Y 0pa 090
1

3|

The variations §p, and d¢q, are independent of each other because along a path in
phase space the neighboring paths can have different coordinates or (and) different
momenta. Thus, (18.50) leads to

. oH
qoa = —3p s
o
. 9H (18.51)
Pa = Y s

which was to be demonstrated.

18.3 Phase Space and Liouville’s Theorem

In the Hamiltonian formalism, the state of motion of a mechanical system with f de-
grees of freedom at a definite time ¢ is completely characterized by the specification
of the f generalized coordinates and f momenta q1,...,qf; p1,..., py. These g;
and p; can be understood as coordinates of a 2 f-dimensional Cartesian space, the
phase space. The f-dimensional subspace of the coordinates g; is the configuration
space; the f-dimensional subspace of the momenta p; is called momentum space.
In the course of motion of the system the representative point describes a curve, the
phase trajectory. If the Hamiltonian is known, then the entire phase trajectory can
be uniquely calculated in advance from the coordinates of one point. Therefore to
each point belongs only one trajectory, and two different trajectories cannot intersect
each other. A path in phase space is given in parametric representation by g (¢), pi(¢)
(k=1,..., f). Because of the uniqueness of the solutions of the Hamilton equations,
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the system develops from various boundary conditions along various trajectories. For
conservative systems the point is bound to a (2 f — 1)-dimensional hypersurface of the
phase space by the condition H (g, p) = E = constant.

EXAMPLE |

18.8 Phase Diagram of a Plane Pendulum

If the angle ¢ is taken as a generalized coordinate, then we have for the plane pendu-
lum (mass m, length )
Py =ml 2p.
The Hamiltonian, which represents the total energy, reads
Py

1
H= Em(lgb)2 —mglcosp = o) —mglcosp =E.

The origin of the potential was put at the suspension point of the pendulum. One then
gets the equation for the phase trajectory py = py(¢):

Po = :I:\/Zmlz(E +mglcos ).

Thus, we obtain a set of curves with the energy E as a parameter.

For energies E < mgl, the phase trajectories are closed (ellipse-like) curves; the
pendulum oscillates forth and back (vibration). If the total energy E exceeds the value
mgl, the pendulum still has kinetic energy at the highest point ¢ = £ and continues
its motion without reversal of direction (rotation).

i
1

‘We now consider a large number N of independent points that are mechanically iden-
tical, apart from the initial conditions, and are therefore described by the same Hamil-
tonian. As a specific example, we can imagine particles in the beam of an accelerator.
If all points at time #; are distributed over a 2 f-dimensional phase space region G
with the volume

one can define the density
AN
=y
With the course of motion, G transforms according to the Hamilton equations into
the region G».

e

Fig. 18.7. Phase space and
phase diagram of the one-
dimensional pendulum
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Fig. 18.8. Evolution of a re-

gion in phase space

Fig. 18.9. Projection of the

volume element
4k Pk-plane

onto the

P p

G, G,

7, q 1>t q

The statement of the Liouville theorem?® is
The volume of an arbitrary region of phase space is conserved if the points of its
boundary move according to the canonical equations.

Or, in other words, performing a limit transition:

The density of points in phase space in the vicinity of a point moving with the fluid
is constant.

To prove that, we investigate the motion of system points through a volume element
of the phase space. Let us first consider the components of the particle flux along the
qr- and pg-direction.

The area ABC D represents the projection of the 2 f-dimensional volume element
dV onto the g, pr-plane.

Pit
o 1
4>de E—
dg,
A I B

9

The number of points entering the volume element per unit time through the “side
face” (with the projection AD onto the gi, pr-plane) is

oqk dpi - d Vi,
where
f
dVi = [ | d4u dpe
poy

is the (2 f — 2)-dimensional remainder volume element; dpy - d Vi is the magnitude of
the lateral surface with the projection AD in the pi,qk-plane.

3 Joseph Liouville, b. March 24, 1809, St. Omer—d. Sept. 8, 1882, Paris. Liouville was professor of
mathematics and mechanics in Paris, at the Ecole Polytechnique, at the Collége de France, and at
the Sorbonne. He was a member of the Bureau of Measures and of many scholarly societies. From
1840 to 1870, he was considered the leading mathematician of France. He worked on statistical
mechanics, boundary value problems, differential geometry, and special functions. His constructive
proof of the existence of transcendental numbers and, in 1844, the proof that ¢ and €2 cannot be roots
of a quadratic equation with rational coefficients, were of great significance.
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The Taylor expansion for the points leaving at BC in the first direction yields

) a )
(QQk + a—qk(QCIk)ko)de ~dVg. (18.52)

Analogously, for the flux in pg-direction we have

entrance through AB: o prdqy - d Vi,

5 (18.53)
exit through CD: (Q[ik + B—(ka)dpk>qu -dVg.
Pk

From the flux components in pj- and gi-direction, the number of system points per
unit time

3 9
—(—(@ék) + —(@bk)>dV (18.54)
gk 9pk

gets stuck in the volume element.

By summing over all k =1, ..., f, one obtains the number of points that get stuck
in total. This quantity just corresponds to the change with time (time derivative) of the
density multiplied by d V. Hence, we can conclude

f

do ( . . )
— = — + — . 18.55
o g o (04k) o0 (0px) (18.55)

We are dealing here with a continuity equation of the form

divior) + 22 —0
1v — = U.
e o

The divergence refers to the 2 f-dimensional phase space:

Continuity equations of this type often appear in flow physics (hydrodynamics,
electrodynamics, quantum mechanics). They always express a conservation law.
Application of the product rule in (18.55) yields

f . .

do . i do . 0 5

Z(—Q Qi +ok 4 22 Pk+Q—pk>+—Q=0. (18.56)
=\ gk dqr  Opk Pk

From the Hamilton equations, we have

Ak 32H 3 px 3%H
— = and — =— .
dgr  3qrdpk apr 9qx 0 pr

If the second partial derivatives of H are continuous, then
0¢ ap
gk bk _

O’
ogr O
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Fig. 18.10. On Liouville’s
theorem: Phase space for
particles in the gravitational
field

and from this, it follows that
f
d0 . 20 . d
2X}3%+—3m>+—g=a (18.57)

This just equals the total derivative of the density with respect to time,

d
0=0, (18.58)

and hence, ¢ = constant.

EXAMPLE |

18.9 Phase-Space Density for Particles in the Gravitational Field

The system consists of particles of mass m in a constant gravitational field. For the
energy, we have

2
H=E= L mgq.
2m
The total energy of a particle remains constant.

The phase trajectories p(q) are parabolas
p=+2m(E +mgq),

with the energy as a parameter. We consider a number of particles with momenta at
time ¢ = 0 between the limits p; < p < p», and with energies between E| < E < E».
They cover the area F in phase space. At a later time ¢ the points cover the area F'.
They then have the momentum

p'=p+mgt,

so that F” is the area between the parabolas limited by p; + mgr < p’ < py + mgt.
With

_w*2m) —E
q= mg

El
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the size of the areas is calculated as Example 18.9
p2 (/mg)((p*/2m)—E1) P
E, — E; E, — E;
F=|[dp dg=—— [ dp=—"—(p2—p1),
mg mg
Pv (1/mg)((p?/2m)—Ey) i

and likewise,

E, — Eq
= 7mg
_ E, — Eq

F' (py—pD)

(p2 — p1)-

This is just the statement of Liouville’s theorem: F = F’ means that the density of the
system points in phase space remains constant. The significance of Liouville’s theorem
lies in the field of statistical mechanics, where one considers ensembles because of
lack of exact knowledge of the system.

A special application is the focusing of particle currents in accelerators where a
large number of particles are subject to identical conditions. Here a reduction of the
beam cross section must lead to an undesirable broadening of the momentum distrib-
ution.

18.4 The Principle of Stochastic Cooling®

An essential implication of Liouville’s theorem is that the phase space occupied by an
ensemble of particles in the absence of friction behaves like an incompressible fluid.

We shall show in the following that the principle of stochastic cooling leads to a
(seeming) contradiction to the theorem of Liouville. For this purpose it is necessary
to expand on the method of stochastic cooling of antiprotons developed by van der
Meer.? The successful application of this method led to the proof of the existence of
the intermediate vector bosons IVB) W+, W~ and Z° predicted by the theory of
weak interactions.

4 This chapter was stimulated by a lecture given by Professor Herminghaus (Mainz), at the occa-
sion of the sixtieth birthday of Professor P. Junior 1988 in Frankfurt. My thanks go to colleague
Mr. Herminghaus for leaving his manuscript, which I found very useful when writing this section.

5 Simon van der Meer, b. Nov. 24, 1925, Den Haag. He received the Nobel prize for physics in
1984. He studied mechanical and electrical engineering at the Technical University of Delft, took his
diploma exams as engineer and worked at first in the Philips central laboratory in Eindhoven. In 1956
he got a position as a development engineer at CERN in Geneva. Here he soon earned a reputation
for professional competence, imagination, and also for his talent for theory. He was appointed a
“senior engineer.” Meanwhile the Italian physicist Carlo Rubbia, a scientific coworker at CERN, had
developed the idea to shoot 450 GeV protons from the just-finished super-high energy accelerator
“SPS” onto their artificially produced “antiparticles”—antiprotons. The project was realized as a
collider system. For the first time one could generate and demonstrate the so far only hypothetical
intermediate W- and Z-bosons. Van der Meer, a “genuine puzzler,” provided a genial invention: the
stochastic cooling, which allowed researchers to collect antiprotons in sufficient quantity and to store
them for the experiments. Only one year after their great success, which proved the predictions of
theory in a brilliant way, van der Meer and Rubbia were awarded with the Nobel prize for physics
“for decisive merits in the discovery of the field quanta of weak interaction.”
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Fig. 18.11. Schematic
representation of a proton—
antiproton collision. In the
collision quark—antiquark
pairs are created whose reac-
tions can lead to the creation
of intermediate vector bosons
(e = quark, o = antiquark)

IVB

Fig. 18.12. The existence of
intermediate vector bosons
could be proved for the first
time at CERN by the collision
of intense high-energy proton
and antiproton beams (N =
number of antiprotons in the
beam, Np = number of pro-
tons)

proton antiproton

According to the predictions of the theory, these particles should be able to decay
as follows:

IVB —> (18.59)

(18.60)

lepton + antilepton,

IVB —  quark + antiquark.

For the experimental proof of the IVB, one utilized the inverse reaction (18.60), by
shooting high-energy beams of antiprotons onto protons in the proton synchrotron
(PS) of the CERN. Since the protons consist only of three quarks (¢) and the antipro-
tons of three antiquarks (g), many quark-antiquark pairs are created by the violent
collisions. The reactions between these quarks and antiquarks can generate the inter-
mediate vector bosons (see Fig. 18.11). In order to reach a high event rate, which is
calculated according to

event rate = cross section - luminosity, (18.61)

one needs both a large cross section and a high beam luminosity. Now one has

N, - Ny

luminosity ~ (18.62)

Here, N, and N3 denote the number of protons (p) and antiprotons (p) in the beam,
and g represents the beam cross section. The higher the number of particles and the
lower the beam cross section, the higher is the event rate for creating an intermediate
vector boson. See also Fig. 18.12.

An efficient cooling mechanism for the antiproton beams is therefore needed. Each
particle of the beam moves by the action of magnetic fields in horizontal and vertical
vibrations about a closed pre-set trajectory. In this context the term cooling means
a reduction of the vibration amplitudes of the particles and thus of the beam cross
section, or a reduction of the width of the momentum distribution of the particles
about the mean value. This is illustrated by Fig. 18.13. Already well-tried cooling
methods are electron cooling, cooling by synchrotron radiation, and the stochastic
cooling, which will now be outlined in more detail.

The motion of each particle in the beam is described by a point in a 6-dimensional
phase space spanned by the 3 spatial and the 3 momentum coordinates. This phase
space point is surrounded by empty space. By an appropriate deformation of the phase
space element the particle can be shifted toward the center of gravity of the distribu-
tion. This is the principle of stochastic cooling.
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The experimental setup for cooling of antiproton beams is sketched in Fig. 18.14.

In the ideal case, a probe (pick-up) measures the position or the momentum of a
particle. This tiny signal is amplified and fed to the “kicker,” which then corrects the
transverse or the longitudinal momentum and thereby cools. Thus, the cooling can
be interpreted as a one-particle effect, since each particle cools itself by emission of a
self-generated signal (coherent effect). An essential prerequisite is that the particle and
the signal reach the kicker simultaneously. Because of the finite resolving power of the
probe in the real case, besides the desired signal the perturbing signals from other par-
ticles reach the kicker too. This noise causes a heating of the particles (incoherent
effect) and thus counteracts the cooling effect. This interplay of cooling and heat-
ing mechanisms is illustrated by Fig. 18.15 and will be discussed in Exercise 18.10.
The cooling effect is directly proportional to the signal amplification, while the heat-
ing is proportional to the square of the amplification. The particle is cooled only in
the hatched area (see Fig. 18.15). Evidently there exists an optimum of amplification
where the cooling effect reaches an extremum value. Thus, the greater the intensity
of the beams, the greater is the noise and the heating effect, and the less is the factor
of optimum amplification. Generation of an intense beam of antiprotons at CERN is
therefore performed by stages and may last several hours. The principle is illustrated
by Fig. 18.15.

First, an antiproton pulse of low intensity is injected at the left border of the vacuum
chamber (1). The corresponding momentum density distribution can be seen on the
right. The beam and its momentum width are then compressed by cooling (2). A high-
frequency voltage is used to shift the pulse to the right side of the chamber (3), thus
giving space for a further antiproton pulse which is injected into the chamber (4).
After cooling, the second pulse is shifted onto the already “deposited” pulse (5). This
procedure is repeated every 2 to 3 seconds for several hours. In this way, the longi-
tudinal phase-space density is increased by accumulation of more and more particles

Fig. 18.13. A beam before
and after cooling, (a) in po-
sition space, (b) in momen-
tum space. Part (b) essentially
shows the particle density ver-
sus the transverse momentum

Fig. 18.14. The cooling sys-
tem consisting of “pick-up,”
amplifier, and “kicker”
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Fig. 18.15. Sectional view of
the vacuum chamber with
beams in various stages of
the accumulation process. The
right-hand part shows the cor-
responding density distribu-
tion versus the momentum
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into the same momentum interval (6). The final 6-dimensional phase-space density of
the stack is higher than the density of a single pulse by a factor of 3 - 103, The intense
antiproton beam generated this way can now be further accelerated and brought to
collision with a proton beam. Only one year after the demonstration of the intermedi-
ate vector bosons, S. van der Meer and C. Rubbia® were awarded the Nobel Prize in
physics for their achievements.

We now come back to the apparent contradiction between Liouville’s theorem and
the method of stochastic cooling. While according to the Liouville theorem only a sin-
gle pulse can be accommodated in a ring, stochastic cooling allows one to accumulate
about 36,000 pulses in the course of a day. The final phase-space density is higher than
that of a single pulse by a factor of 3 - 108.

However, stochastic cooling and the Liouville theorem are dealing with different
situations. The former presupposes an ensemble of a finite number of discrete parti-
cles, while the Liouville theorem presupposes a phase-space continuum (see divv!).
A discrete ensemble thus represents only a model approximation of this condition that
works the better the more dense the occupation of the phase-space volume becomes.

This becomes clear by the example of the cooling rate (which will be calculated in
the subsequent problem):

1w
-= N(zg —g). (18.63)

% Carlo Rubbia, b. March 31, 1934, Goriza. He got his education as a physicist in Pisa at the Scuola
Normale, a time-honored university. Here he got his doctorate in 1958, after which he worked for a
year as a research scholar at the Columbia University in New York, and then as an assistant professor
in Rome. In 1960, he came to CERN at Geneva as high-energy physicist. Since 1972, he has held
a chair at Harvard University. In Geneva, Rubbia was inspired by the unified theory of weak and
electromagnetic interactions developed by A. Salam, S. Glashow, and S. Weinberg (Nobel Prize for
physics, 1979). In 1976, Rubbia proposed to CERN the construction of a new 450 GeV SPS accel-
erator for the purpose of proton-antiproton collision experiments. The accelerator achieved collision
energies of 540 GeV, which were sufficient to create the (so far only predicted) W- and Z-bosons.
Important for the success of the project was not only Rubbia, but also S. van der Meer, whose con-
tributions made possible the generation of sharply bunched, pulsed antiproton currents. Both of them
got the Nobel Prize for physics in 1984.
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N denotes the number of particles in the beam, W the bandwidth of the system and
g a gain factor that will be defined in problem 18.10. The essential point however is
the dependence of the cooling rate on the inverse of the particle number of the beam,
1/N. In the limit

1

lim — =0,

N—oo T
cooling is no longer possible, as we would expect.

We note that the same restriction for applying Liouville’s theorem basically also
holds in thermodynamics, but there the approximation is better by 12 orders of mag-
nitude (1012 — 10%4)!

Much more important, however, is the fact that Liouville’s theorem holds on the
condition that the particles obey the Hamilton equations, with a given Hamiltonian H.
In this sense the particle system must be closed. But just this condition is violated by
the reading off the particle position (coordinate, momentum pick-up) and by the cor-
responding correction (kicker; see Fig. 18.14). This is a calculated interference from
outside which cannot be described by a Hamiltonian. Hence, the Liouville theorem
does not have to be fulfilled; moreover, it must not hold at all!

EXERCISE |

18.10 Cooling of a Particle Beam

Problem.

(a) Calculate the cooling rate per second for a beam of N particles.

(b) When does maximum cooling occur?

(c) Calculate the cooling time for a beam of N = 10'? particles. Let the bandwidth of
the system be W =500 MHz, and g = 1.

Solution. (a) We first consider the case that the pick-up and the kicker are so fast that
they seize each particle independently (see Fig. 18.16). Let the displacement of this

xﬂ

Xpl 'ete

) Y SAPAS: S A P S S M -

particle from the beam axis be x;. After passing the distance 1 /4 (X is the wavelength
of the x-vibration), the deviation is corrected electromagnetically in the kicker. Let
the correction be

AXxp = gxi. (18.64)

The corrected distance x;. of the particle from the beam axis is thus given by

xp=xp — Axg = (1 — g)x (18.65)

Fig. 18.16. In the ideal case,
the pick-up seizes one particle
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Fig.18.17. A single particle is
seized by the pick-up and its
momentum is corrected after a
/4 wavelength at the kicker.
After one revolution, the new
trajectory leads to the cor-
rected spatial displacement x]/(

Fig. 18.18. In the real case,
the pick-up seizes several
(Ns) particles that cause a
noise

ENP

new trajectory

pick-up kicker old trajectory
amplifier
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(Fig. 18.17). For g = 1, the cooling would be ideal. However, in the real case there
appears a noise in the pick-up which is due to further Ny — 1 particles passing the
pick-up in the time interval T (see Fig. 18.18). Thus, the pick-up measures not only
the spatial displacement x; of the kth particle from the beam axis (x = 0), but also
that of the additional Ny — 1 particles located around the kth one. The recorded spatial
displacement is therefore the mean value of all N, seized particles (the kth and the
N — 1 located around the kth particle):

N,
1 s

(0) = 5 .X;Xj' (18.66)
]:

For clarity, we will label the kth particle in the sum on the right-hand side, e.g., the
numbering will be chosen so that j = 1 just denotes the kth particle. Moreover, it
should be clear that the remaining Ny — 1 particles are closely located around the kth
one when passing the pick-up. We therefore add the index & to the particular spatial
displacement x;:

N
1 s
(v) = 5 {xl,k + ij,k}, (18.67)
j=2
where x1 x = x; and x; i # x; for 2 < j < N;.
The correction for the kth particles is now
X = X — g(xk). (18.68)

This means that there will be no kick if the sample of N, particles on the average
moves on the beam axis:

xp=x¢ if (xx)=0. (18.69)
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In other words, the kicker will not be activated if the center of gravity

1 N 1 Ny
Sy = —— mxj = — Xk = {xk) (18.70)
mN ; PETON ; !

of the sample in the pick-up is already on the beam axis (all particles have the same
mass m).

For real measurements in the pick-up, this will, of course, not be fulfilled in gen-
eral. The probability that the center of gravity of the N, particles that are statistically
distributed over the beam just coincides with the beam axis is extremely low. In the
realistic case the sample will always be “kicked”.

We now want to know how the mean value of the spatial displacement of all N
particles in the beam will change by the mechanism of stochastic cooling. This mean
value is

1 N
E(x) = N};xk (18.71)

and will be denoted by E (xj) (expectation value) to distinguish it from the mean value
for the sample of Ny particles, (xi), which was defined in (18.66). It is however clear
that the mean value of the positions of all the particles just defines the beam axis.
Since we put the beam axis at the origin of the coordinate system, x = 0, the mean
value of the spatial displacement of all the particles from the beam axis just vanishes:

E(xp) =0. (18.72)

This always holds, independent of the mechanism of stochastic cooling. Thus, the
mean value E(x;) is not an appropriate quantity for investigating the mechanism of
stochastic cooling. It is evident that the mean square of the spatial displacement £ (x,f)
is much better suited for this purpose. We therefore will investigate the change of
E (x,%) by the stochastic cooling mechanism. First we consider the mean square spatial
displacement x,f for the kth particle, and to this end, we square (18.68):

x 2 =x? = 2gx () + g2 (). (18.73)

The change of x,% for a single passage through the kicker is thus given by
AG) = x7 — xp = —2gx () + g2 (u ) (18.74)

Since there is one kick per revolution, this is also the change of x,% per revolution. By
averaging over all particles, one obtains

E(AGD) = E(x> —x7) = E(x}?) — E(x})
= A(E(x]) = =28 E(xi{xi) + 82 E((xi ). (18.75)

The second equals sign in the first line follows from the additivity of the expectation
value E(...); compare (18.71).

To calculate the change of the expectation value of the mean square of the spatial
displacement per revolution, A(E(x,%)), the expectation values E (xx(xx)), E((x1¥)
must be expressed by E (x,%). We then obtain A(E (x,%)) as a function of E (x,%), ora

Exercise 18.10



362

18 Hamilton’s Equations

Exercise 18.10

differential equation for E (x k) the solution of which allows us to calculate the desired
quantities.
To evaluate E (xi(xr)), we write with (18.67)

N
E (xi(xe) Z {X1k+2x,k}
11 A
= w DNt DD ANk (18.76)
Ne IV N3z

In the first term, we used x| x = xx, and in the second one x; = x| .

We now realize that two different particles in the beam cannot be correlated (the
particles are statistically distributed over the beam!). Even though they belong to the
same sample of N particles around the kth particle, their spatial displacements x; x
and x;x, i # j, on the average must satisfy

N
1 .,
E(xixxjr) = v E xikxjx=0, for i#j. (18.77)

Thus, ifi =1 and 2 < j < Nj, then

N
1
E(x16xjk) = v le,kxj,k =0. (18.78)

This is now utilized in the second term of (18.76), which then vanishes. The first term
can immediately be rewritten using the definition of E, and we obtain

1
E (xp(xx)) = VE(x,f). (18.79)

Furthermore,

Z > surts

Sljl

_ Z le”le KXk (18.80)
i,j=1

i#]j

The second term again vanishes by using (18.77). In the first term we first average by
summing over all particles,

1 N 1 Ny 1 N

2 2
Ly LS = LY Bl (18.81)
N k=1 NYZ i=1 ) NYZ i=1 )

The mean square spatial deviation £ (xi% ) cannot depend on the label i of the particle

from the sample of N; particles, E (xi%k) =F (x,f). The sum over i therefore yields
only the additional factor Ny, and we obtain

2 1 2
E({(x¢)") = FE(x")‘ (18.82)
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Equation (18.75) with (18.79) and (18.82) thus turns into

2¢ — &2
N,

A(E(x}) = — E(x}) (18.83)
for the change of the mean square spatial displacement per revolution. The “differen-
tial” change d E (x,%) per “differential” revolution dn is

dE(x}) 26 —¢>
- E(x2). 18.84
dn N (xp) ( )

This differential equation is solved by the function

Do — 2
E(x,%):Cexp(—n gNg ) (18.85)
S

For the root of the mean square (rms) spatial displacement

Xrms ‘= E(X;%),
we obtain
2o — 2
Xrms = «/Eexp(—n g2Ng ) (18.86)
s

Xrms decreases to the eth fraction of its original value after

2Ny
np = — (18.87)
28 —-¢
revolutions. Since each revolution takes the time 7, it thus lasts for
2N, T
t=noT = , (18.88)
2g — g2

to reduce xyps to the fraction 1/e of its original value. Since among N particles orbit-
ing in the time T, N, particles are seized in the time T, for a homogeneous particle
flux density we have

T

stN?, (18.89)

and therefore,

2NTs (18.90)
7= . .
2g — g*
With the bandwidth W = 1/2T; (Nyquist’s theorem) or
1
T, = — (18.91)

20’

Exercise 18.10
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Fig. 18.19.

2g-¢*
1-

cooling

1 2 g
heating up

we finally obtain the cooling rate

—14

1 W
—=—Qg—-g). (18.92)
T N

(b) From the discussion of (18.92), it follows immediately that the cooling rate is
maximized for g = 1. For g > 2, the particles are heated up.

(c) With the numerical values given in the problem, for the cooling rate we get

1 500 MH 1
S Z1=5.10"%2, (18.93)
T 1012 s
and thus,
3 1
t=2-10 S%Eh. (18.94)



Canonical Transformations

Given a Hamiltonian H = H(q;, p;, t), the motion of the system is found by integra-
tion of the Hamilton equations:

. oH ) oH
pi=— and §i= o (19.1)
agi opi

For the case of a cyclic coordinate, we have, as we know,

oH =0, ie., pi=0.
9qi
Hence, the corresponding momentum is constant: p; = §; = constant.

Whether or not H contains cyclic coordinates depends in general on the coordi-
nates adopted for describing a problem. This is immediately seen from the following
example: If a circular motion in a central field is described in Cartesian coordinates,
there is no cyclic coordinate. If we use polar coordinates (o, ¢), the angular coordinate
is cyclic (angular momentum conservation).

A mechanical problem would therefore be greatly simplified if one could find a
coordinate transformation from the set p;, g; to a new set of coordinates P;, Q; with

0i=0i(pj,q;j, 1), Pi=Pi(pj,qj,1), (19.2)

where all coordinates Q; for the problem were cyclic. Then all momenta are constant,
P; = B;, and the new Hamiltonian H’ is then only a function of the constant momenta
P;; hence, H' = H'(P}). Then

OH'(P;

3H/(Pj) .
= ————" = @; = constant, P, = =
P 00,

i
Then integration with respect to time leads to
Q; = w;t + wy, P; = B; = constant.

Here, we presupposed that the new coordinates (P;, Q;) again satisfy the (canoni-
cal) Hamilton equations, with a new Hamiltonian H'(P;, Q;,t). This is an essential
requirement for a coordinate transformation of the form (19.2) to make it canonical.

Just as p; is the canonical momentum corresponding to g; (p; = dL/dq;), P; shall
be the canonical momentum to Q;. A pair (g;, p;) is called canonically conjugate
if the Hamilton equations hold for ¢; and p;. The transformation from one pair of
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canonically conjugate coordinates to another pair is called a canonical transformation.
Then

IH' : dH'
P = (19.3)

Qi:a—[)j’ 2 _an

At the moment, we do not yet require that all Q; be cyclic. This case will be con-
sidered later (Chap. 20).

In the new coordinates, we require Hamilton’s principle to be maintained. Thus,
for fixed instants of time, #; and t,, we have both

5]
3/L(C]j,c}j,t)dt =0
n
and

19}
3[L’(Qj, Q;,0)dt =0.

n

Thus, the difference

8 /(L —L)dt=0 (19.4)

also vanishes.
We observe that (19.4) will then be fulfilled even if the old and new Lagrangians
differ by a total time derivative of a function F:

15)

F dF

L_L/:I’ because S/Edt=8(F|12—F|n)=0’
151

since the variation of a constant equals zero. As we shall see, the function F medi-
ates the transformation (p;, g;) to (P;, Q;). F is therefore also called a generating
function. In the general case, F will be a function of the old and the new coordinates;
together with the time ¢ it involves 4n + 1 coordinates:

F=F(pj,qj,Pj,Qj.1).
But since simultaneously there are 2n transformation equations
0i=0i(pj,q;j,0), Pi=Pi(pj,qj,1), (19.5)

F involves only 2n + 1 independent variables. F must contain both a coordinate from
the old coordinate set p; (or g;) and one of the new P; (or Q;) to enable us to establish
a relation between the systems. Hence, there are four possibilities for a generating
function:
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Fi=F(qj, Qj.1), F,=F(qj, Pj,1),
F3s=F(pj, Qj,1), Fs=F(pj, Pj,1).

(19.6)

Each of these functions has 2n + 1 independent variables. The dependency must be
selected in a suitable way, according to the actual problem. We now derive the trans-
formation rules of the form (19.2) from a generating function of type F.

Because

dF
j— / — ..-_
L=L +I and L= E Piqi H, (197)
we have
dF
d_pigi—H=) PiQi—H+— (19.8)

For the total time derivative of | we then have

dF1 8F1 0F . dF
—_— —Q;+ —. 19.9
Z 3% Z 90, Qi+ ot ( )

We insert this expression into (19.8), which yields

. . 0F; . dF 3F1
ZPiQi—ZPiQi—H-I-H/:Za—q_(]i-FZ 20; Qi+ —
l
By comparing the coefficients, we obtain

_0Fi(g;. 0.1

)

9qi
oFi1(gi, Qj,t
P; _M, (19.10)
0Qi
g PR 050

ot

We are now prepared to derive the transformation equations for a generating func-
tion of the type F», which is also denoted by S:

FzESZS(qj, Pj,t).

For the derivation, we will use a comparison of coefficients as for Fp; therefore, we
require that F, be composed as follows:

FZ(‘Ij’Pj»t)ZZPiQi+F1(CIj’Qj»t)’ (19.11)

i

since then we can consider the problem analogously to F|. We imagine the Q; as
being expressed through the second equation of (19.10), i.e., through

0Fi1(q;, Qj, 1)

P=—
00,
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According to (19.8), we have

. : d
Zpiqi—HZZPiQi_H/-FEFl
i i

_ZPQl H +— (Fz(qj, Pj,t)— ZPQ).

This leads to
ZPiQi_ZPiQi_H“‘H/:%<F2(ijpjvt)_ZPiQi)
i i '

_ZBFZCI-FZ&FZP-}-@
1
_ZPiQi_ZPiQi
Pigi 0 Qi — =3+ i P+—
Y pigi+> BQi-H+H ZBF Z Fp 05
i i

Comparing again the coefficients now yields the equations

_ 9F2(qj, P, 1) dFy(gj, Pj, 1)

i , Qi = )
94i oF; (19.12)
' _ 0k (q;. Pj. 1)

The first two relations allow us to determine the transformation equations ¢; =
qi(Qj, Pj,t) and p; = p;(Qj, Pj,t), which by insertion into the third equation
of (19.12) yield the new Hamiltonian H'(P;j, Q;,1).

The transformation equations for the other types of generating functions are ob-
tained analogously, by choosing an appropriate sum which enables us to use the meth-
ods of the first two problems.

From (19.10) and (19.12), we obtain the dependence of the new coordinates
(P;, Qi) on the old (p;, g;) and vice versa. For the case Fp, from

k(g Q. 1)
9gi

follow the equations p; = p;(g;, Q. 1), which can be solved for the Q;:
Qi =0i(pj,qj,1).
Insertion into the equations

0Fi1(q;, Qj,1)
900,

then enables us to calculate

P =—

Pi=Pi(pj,q;,1).
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We now understand the name generating function for F: The function F determines
the canonical transformation

0i=0i(pj,q;,1), P;=Pi(pj,q;,t)
through equations of the type (19.10) or (19.12).

By means of Legendre transformations, we may furthermore define generating
functions F3(p;, Q;,t) and F4(pj, Pj,t). Based on the Legendre transformation

F3(pj, Qj,0) = Fi(q;, Q. 1) = Y _qipi (19.13)

we obtain with a similar derivation the canonical transformation rules

o 0K(pj, Q). 1) P___3F3(Pjanat)
’ dpi ’ ’ 30i
H —H+ 3F3(Pé’tQj,t)‘

Starting finally from

Fa(pj, Pj,t)=F3(pj, Qj, )+ ) _ Qi P, (19.14)

1

the following transformation rules emerge

dF4(pj, Pj, 1)

_0F(pj. Pj,1) _ 0F4(pj, Pj,1)
’ N ot

= , H =H+
' opi ' oP;

Calculating the second derivatives of the generating functions F} 7 3 4, we find the fol-
lowing relations to apply between old and new coordinates under a canonical trans-
formation

00;  0°F, o 00;  *Fy  Oqk
dqr  9qroP; 9P ape  oprdoP; 9P
qk qk i i Pk Pk [ i (1915)
P, *F Op P, 0°F3 _ dqq
gk 9qrd Qi 00;° dpk pkdQ; Qi

Exactly the existence of these mutual relations between old and new coordinates dis-
tinguishes a canonical transformation from a general transformation (19.2) of the sys-
tem’s coordinates. For the latter, (19.15) do not hold.

In the preceding derivation, the Hamiltonians H (q;, pj,t) and H "(Q j» Pj, 1) were
conceived as alternative descriptions of the same dynamical system. On the other
hand, we may as well conceive H and H' as describing different dynamical system.
A canonical transformation of H into H' then establishes a correlation of both dy-
namical systems. This way, it is sometimes possible to find the solution of a given
dynamical system by canonically transforming it into a second system that is easier to
solve. The solution of the original system is then obtained by canonically back trans-
forming the solution of the second system. With examples 19.4 and 21.16, we shall
work out the solutions of the damped and the time-dependent harmonic oscillators,
respectively, by canonically transforming these systems into the ordinary harmonic
oscillator.
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EXAMPLE |

19.1 Example of a Canonical Transformation

Let the generating function be given by

Fi(qj, Q)= ax Ok
k

According to (19.10) the particular transformation rules follow as

oF oF
_on p 1

A T

The example shows the in the Hamiltonian formalism, the momentum and position
coordinates play equivalent parts.

EXAMPLE |

19.2 Point Transformations

We consider the canonical transformation that is defined by the particular generating
function

Fa(qj. Pj.ty=_ Pifi(q;. 1),
k

with arbitrary differentiable functions f(g;,t). The transformation rules (19.12) for
this F> follow as

afk

0i = fi(gj,1), pi=ZPk—,

— 04

9fk

H'(Q;, Pj,t)y=H(qj,pj, 1)+ Pr—.

(Qj, Pj.t)=H(qj, pj,1) ij e

The new position coordinates Q; thus emerge as functions of the original position co-

ordinates g;, without any dependence on the momentum coordinates. Transformations

of this type are referred to as point transformations. This class of transformations is

generally canonical as we can always construct the corresponding generating function.
The particular case fr(q;,!) = qx then defines the identical transformation

Qi=qi. pi=Yy P&i=P, H(Q; Pj.ty=H(;. pj.1.
k

EXAMPLE |

19.3 Harmonic Oscillator

The kinetic energy 7' (p) and the potential energy V (g) of a particle be given by

2

1 1 k
T(p)= p—, Vig) = —kq2 = —ma)2q2, w? = —, m,k, w=const.,
2m 2 2 m
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with m denoting the particle’s mass, k a characteristic constant of the oscillator, and
w its characteristic frequency. The Hamiltonian of this system is then

2

p 1
H(g, p)=2—-+ Emwzqz- (19.16)

The canonical equations and the equation of motion follow as

i="2_ PO o= gomet, Gretg=0. (97
ap m aq
The direct way to evaluate the dynamics of this system is to integrate the equation of
motion. Here, we choose the “detour” over the canonical transformation formalism,
namely to map our system into another system with Hamiltonian H’ whose canonical
equations are even easier to solve. As the “target Hamiltonian” H’, we choose

H'(P)=wP. (19.18)

A simple transformation (H; g, p) = (H'; P, Q), that provides this mapping is obvi-
ously

2P
g=,/— sinQ, p=+2mwP cos Q, H =H. (19.19)
mw

We observe that the new momentum P has acquired the dimension of an action,
whereas the new position coordinate Q is now dimensionless, i.e. an angle. In order to
ensure that the form of the canonical equations is maintained in the new coordinates,
we must test whether this transformation is actually canonical. To this end, we must
find a generating function that yields the transformation rules (19.19).

We try a generating function of the form Fi(gq, Q,¢). The transformation
rules (19.19) are first cast into the particular functional form that corresponds to
the generating function Fi(q, Q,t), hence into the form p = p(q, O,t) and P =

P(q,Q.1)

1 1
p=mwq cot Q, P= —ma)qu, H =H. (19.20)
2 sin® Q

We must now find a function Fi(gq, Q, t) that yields these particular transformation
rules according to the general prescriptions (19.10). Thus, Fi(q, O, t) must satisfy

0 F 0F 1 5 1 oF;
E:qu cotQ, — —

00~ 2" 2o ot

Obviously, such a function exists and is given by

1
Fi(g, Q)= EquzcotQ-

The transformation (19.19) thus establishes indeed a canonical transformation. This
may be observed also from the fact that the rules (19.20) satisfy the symmetry condi-
tions (19.15)

P mwq  9p
dg sin?Q 90

Example 19.3
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With the evidence of the transformation (19.19) being canonical, it is ensured that the
transformed system (19.18) constitutes on its part a Hamiltonian system — and hence
the maintains the canonical form of the canonical equations. Explicitly, the canonical
equations of the transformed system are

/ /
o _ P(r)=—3i=o.
oP a0
These equations are thus equivalent to the original canonical equations (19.17) that
emerged from the original Hamiltonian (19.16). As H’ does not depend on Q, we
observe that the new canonical position coordinate Q is cyclic, hence that its conjugate
canonical momentum P represents a conserved quantity. The canonical equations for
Q(t) and P(t) can be immediately integrated, yielding

o) =

Q@) =wt + Q(0), P(t) = P(0).

The system’s dynamics are thus completely solved in the simplest possible manner.
Inserting the solution functions Q(¢) and P (¢) into the transformation rules (19.19),
we obtain the solutions in the original coordinates g (#) and p(z)

qt) = 2P ) sin(wt + Q(O)), p(t) =+/2mwP(0) cos(a)t + Q(O)).

maw

The trigonometric functions can finally be split by means of the addition theorems.
According to (19.19), the values sin Q(0) and cos Q(0) can then be expressed in terms
of the initial conditions ¢ (0) and p(0) of the original system

0
q(t) =q(0)coswt + & sin wt, p(t) = —q0)mwsinwt + p(0) coswt.
mw

As expected, we find the solution of the harmonic oscillator exactly in the form as we
would have obtained by a direct integration of the canonical equations (19.17).

At this point, one could well argue that overall effort needed to solve the canonical
equations (19.17) along the “detour” over the canonical transformation method is even
larger than that for the direct solution. But this is only due to the simplicity of the orig-
inal system. The example here was just chosen to demonstrate the method consisting
of three steps: (i) forth transformation of the initial conditions into a second system,
(ii) solving on that basis the dynamics of the second system, and (iii) transforming
back the obtained solution into the original system coordinates. We may depict both
alternatives by means of the following diagram:

Solution of the canonical equations
of Hamiltonian H

(H:q(0), p(0)) ————— (q(@), p(1))

Canonical forth

transformation Canonical back

of Hamiltonian M(0) M) transformation
and initial of the solution
conditions Solution of the canonical equations

of Hamiltonian H’

(H'; 0(0), P(0)) ——— (Q(), P(1))
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In the next Example 19.4, we will show that the method to determine the dynamics
of a given system by transforming it into a second system that is easier to solve can
indeed reduce the overall effort, as compared to a direct solution of the original system.
This will become obvious with Example 21.16, where we treat the time-dependent
damped harmonic oscillator. This case has long been thought of as possessing no
analytic solution. Yet, the solution of this problem by means of a generalized canonical
transformation is fairly straightforward. The price to pay is that we must find the
appropriate generating function.

EXAMPLE |

19.4 Damped Harmonic Oscillator

The Hamiltonian of the damped harmonic oscillator is explicitly time dependent
p* 1
H(q, p,1) = ~—e V" 4+ —mawe?'¢?, (19.21)
2m 2

with the abbreviations 2y = 8/m and w? = k/m. As before, m stands for the mass
of the moving point particle, 8 for the friction coefficient, and k for the oscillator’s
constant. The canonical equations follow as
oH t

— p( ) 6_2Vt,

qt) = g

oH
—p(t) = —— =q(t)mw* ",
dq
In the left-hand side equation, we see that the canonical momentum p(t) no longer
coincides with the kinetic momentum pyi,(f) = mq(t), provided that y # 0,

2yt 2yt

p(1) =mq(t) e’ = pun(t) e

We may combine the two first-order equations into one second-order equation for g ()
to obtain the equation of motion of the damped harmonic oscillator in its common
form

G+2y§+w’q=0. (19.22)

Instead of solving this equation directly by means of an appropriate Ansatz function,
we will first map the Hamiltonian (19.21) by means of a canonical transformation into
the Hamiltonian of an undamped harmonic oscillators. In present case, the canonical
transformation will be based on a generating function of type F», namely

1
Fa(q,P.t)=e""qP — 3mY g,

According to (19.12), the subsequent transformation rules follow as

aF;
p= 8_2 =’ P —mye?'q
q
0F,
0=%p=°
aF

2
H/_H:W:Veyth_mj/zezyt(Jz:)/QP—myzQz,

Example 19.3
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As the new position coordinate Q solely depends on the old position coordinate g, we
are dealing here with a particular case of the general class of point transformations.
Furthermore, the relation between old and new coordinates is obviously linear. We
may thus express the transformation rules in matrix form. Solving for the old coordi-
nates this yields

e g
(Z) — (—;yew er) (g) . (19.23)

According to the rule (19.12) for the mapping of the Hamiltonians, we get the
new Hamiltonian H’'(Q, P, ) by expressing the original Hamiltonian H(q, p, )
via (19.23) in terms of the new coordinates Q, P and, moreover, by adding d F /0t

1 1
H = Emfl 672yt(_myeth+eytP)2+ E’na)262y1672le2_i_yQP _mV2Q2

1 1
=m (P —my Q)+ m?Q* +y QP —my?Q*.
In the present example, we thus find a transformed Hamiltonian H’ that no longer
depends on time explicitly

/ P2 1 ~2 "2 ~2 2 2
H(Q,P)=ﬂ+§mwQ, O =w" -y

We now observe that H' emerges as exactly the Hamiltonian of an undamped har-
monic oscillator with angular frequency @ = 1/w? — y2. Its solution is already known
from Example 19.3

~ _1 ~ _1 . ~
() _ ccis cf)t ) m_ W ~s1n wt [0J(0)] . (19.24)
P(1) —mao sin wt cos wt P(0)
The solution functions ¢g(¢) and p(¢) of the damped harmonic oscillator now follows

as the product the solution (19.24) and the canonical forth and back transformations,
given by (19.23) and its inverse

g\ _( e 0 cos @t m~ &~ sinar 1 0\ /[q0

(p(t)) o <—mer’ eV’> (—md) sin ot cos ot ) (my 1> (p(O)) ’
On the right-hand side, the initial conditions Q(0), P(0) of the transformed system
were expressed through those of the original system, ¢ (0), p(0). Explicitly, according
to the inverse transformation of (19.23) at t = 0, we have Q(0) = ¢(0) and P(0) =
myq(0) + p(0). The determinants of all matrices are unity and hence the determinant
of the combined linear mapping (g(0), p(0)) — (g (t), p(¢)). This is in agreement
with the requirement of Liouville’s theorem.

In the form of the product of three matrices, it becomes obvious that the solution
method via canonical transformation consists of the three steps, as sketched at the
end of Example 19.3. We may finally express the solution of the damped harmonic
oscillator (19.22) concisely by multiplying the matrices

d®\ . (q(0)
(p(:)) =R <p(0)) :
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with

1 1 1

e Vcosat + yo~!sinwr] e V'm~ o~ sinot
R() = P P yt ~ ~ 1~ )
—eV'"mow o™ sinwt e’'[coswt — yw™ " sinwt]

& =w® — yz.
The present example shows that the task of solving the equation of motion of a given
dynamical system can be facilitated if we succeed to represent it as the transformed
solution of a another system that is easier to solve. But this works only if we can find
an appropriate generating function.

EXAMPLE |

19.5 Infinitesimal Time Step

We consider the particular canonical transformation that is generated by the function

Fa(qj. Pj.t)=Y qiP;+ H(qj. pj. 1) 5. (19.25)

1

Herein, H stand for the Hamiltonian of the given dynamical system, and 8¢ for an
infinitesimal interval on the time axis. From the general form of transformation rules
for generating functions of type F, we obtain the particular rules for (19.25) as

dF oH dpi
pi=—— =P +—b1=P — —51,
dqi 9qi dt
0F OH _ istorderin 8 oH dg;
Ql BPI C]z + 8P, 511 + apl ‘b + dt
, 0F oH dH
H=H+—=H+ —§t=H+ —t.
ot dt dt

In last rightmost terms of these equations, the canonical equations were inserted, re-
spectively. Solving for the transformed quantities, this means

P; = p; + p; 6t,
Qi =¢qi +4qi8t,
H' = H + H §1.

We now observe that the particular generating function (19.25) defines precisely the
canonical transformation that pushes the system ahead by an infinitesimal time step 6¢.
As any canonical transformation can be applied an arbitrary number of times in se-
quence, we can conclude that the transformation along finite time steps is also canon-
ical. This is an important result: the time evolution of a Hamiltonian system consti-
tutes a particular canonical transformation. As already stated, the class of canonical
transformations are characterized by their property to map Hamiltonian systems into

Example 19.4
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Hamiltonian systems. It is thus ensured that a Hamiltonian system remains a Hamil-
tonian system in the course of its time evolution.

EXAMPLE |

19.6 General Form of Liouville’s Theorem

With the theory of canonical transformations at hand, we may cast Liouville’s theorem
into the following general form: the volume element dV =dgq; ...dq, dp: ...dp, of
a Hamiltonian system with n degrees of freedom is invariant with respect to canonical
transformations,

can. transf.

dQ,...dQ,dP;...dP, dqy...dgydpy...dp,.

For general transformations of the system’s coordinates, the transformation of the
volume element dV is determined by the determinant D of its Jacobi matrix

dQ1...dQn,dPy...dP,=Ddq...dg,dp;...dpn,

D_a(Ql’--'a QYL’Plv"'?Pn)
9(q1,---.4qn, P, - Pn)

Liouville’s theorem thus states that the determinant D of the transformation’s Jacobi
matrix is unity in case that the transformation is canonical.

For the sake of transparency, we first prove Liouville’s theorem for the case of a
system with one degree of freedom, i.e., for n = 1. For such a system, the determinant
D of the Jacobi matrix emerging from a transition from old coordinates g, p to new
coordinates Q = Q(q, p), P = P(q, p) is given by

“dlg.p)  dqdp  9pdq

According to the general rule for the partial derivatives of the inverse functions g =
q(Q, P), p=p(Q, P) we have

ap 190
AP D dq’
which means that the determinant D of the Jacobi matrix can be expressed as
o ap7™!
p=22|or | (19.26)
dq P

In the particular case of a canonical transformation, the transformation rules can be
derived from a generating function F,(q, P, t), as stated in (19.12),

_ 0F> _ 0F;

o PT g

Inserting the expressions for Q and p, the determinant D is equivalently expressed as

p_ CR[PRT
~ 9gdP | dPdg

But this equals unity as the partial derivatives may be interchanged.
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The proof for the general case of systems with n degrees of freedom is worked out
analogously. In the case of a Hamiltonian system, the determinant D of the Jacobi
matrix that is associated with a general transformation of the system’s coordinates has
an even number of rows (columns). We assume the transformation to be invertible.
Then, we may express the new position coordinates Q; = Q;(g;, p;) as functions
of the old coordinates, and the old momenta as functions of the new coordinates,
pi = pi(Qj, Pj). The determinant of the associated Jacobi matrix is the represented
by

-1
D:a(le-«-,Qn)|:3(Plv--~an)j| | (19.27)
(g1, --->qn) LO(P1,..., Pn)

which generalizes the relation (19.26). Provided that a generating function
F>(qj, Pj, 1) exists, then the transformation is referred to as canonical, and the trans-
formation rules are given by (19.12). Inserting Q; and p; yields

B 2F,
~ [\dg;op dP;jdg
which is again unity as we may interchange the sequence of partial derivatives and
due to the fact that determinants of transposed matrices coincide.
We finally remark that the generating function F; used here in this proof is com-

pletely equivalent to the other types of generating function. For, the determinant
(19.27) of the transformation’s Jacobi matrix has the equivalent representations

:1,

D = (_1)na(P17”"P")|: a(p1,---» Pn) j|

(g1, ---»qn) L9(Q1,---, On)
za(P],...,Pn)|:8((]1,...,6]”) ]
a(p1s---» pn) LO(Q1, .., On)
=(_1),,3(Q1,-~-,Qn)|:3(6]1,~--74n):|_
o(pty...,pn) LO(Py,..., Py)

The result D = 1 for a canonical transformation then follows in the same way as above
by inserting the rules into the appropriate generating function Fi, F3, or Fy.

With the result of Example 19.5, we know that the time evolution of a Hamiltonian
system can be conceived as a particular canonical transformation whose generating
function is based on the Hamiltonian H. This yields the more special version of Liou-
ville’s theorem from Chap. 18, where it was stated that the volume element dV of a
Hamiltonian system is invariant in the course of the system’s time evolution.

EXAMPLE |

19.7 Canonical Invariance of the Poisson Brackets

For a Hamiltonian system H (q;, p;, t) of n degrees of freedom, and for two differen-
tiable functions F(q;, pj,t), G(qj, pj,t) of the canonical variables and time ¢, the

Example 19.6
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Poisson bracket' of F and G is defined by

F G]_Xn: IF 3G 9F G (19.28)
= \gi dpi opi dg; ) '

A special case is established if we set up the Poisson brackets of the canonical vari-
ables g; and p;. As these variables are required to not depend on each other, we im-
mediately get

lgi.q;1=0, [pi, pjl1=0, lgi, pj1=24ij. (19.29)

We first convince ourselves that the same relations hold for canonically transformed
coordinates Q; and P;, hence that the fundamental Poisson brackets (19.29) are in-
variant under canonical transformations. Making use of the relations (19.15), we find

n

op=3[1e e 0]
D D s o e

_ N[k 005 | 89k 90,7 _ 905 _
| 0P; dpr 0P dqy op;

n (19.30)
_y apr OP;  dqx aP,}_ LI
Sl 900 dpe 9Qi dak ] 90

n r

9Q; dP; 3Q; IP;
[0i, P1=) ——’———’}

=L 9qk dpx  Opr Iqi
_ N[Ok 0P dax 9P _ 9P _
- =lop ape 8P g ] ap

We are now prepared to show that the Poisson bracket of two arbitrary functions
F(gj,pj,t) and G(q;, pj,t) establishes likewise a canonical invariant. The time ¢

' Siméon Denis Poisson, French mathematician and physicist, b. June 21, 1781, Pithiviers, France—
d. April 25, 1840, Paris, France. Descending from a simple social background—his father was a
soldier—Poisson had good teachers who recognized his extraordinary gifts and made it possible for
him to begin studies at the Ecole Polytechnique in Paris in 1798. There, his mathematical talents
were recognized by Laplace and Lagrange. Poisson became an assistant professor, and, in 1806, a
full professor at the Ecole Polytechnique, where he energetically worked to improve teaching and the
formation of students.

His research initially was focused on the theory of ordinary and partial differential equations,
which he applied to many different physical problems. Thus, Poisson developed further the mechanics
of Laplace and Lagrange, and studied problems related to the propagation of sound, elasticity, and
static electricity. He later turned his interests towards the theory of probabilities, and recognized the
seminal nature of the Law of Large Numbers.

Many ideas and concepts are named after Poisson, such as the Poisson equation in potential the-
ory, the Poisson bracket of mechanics, the Poisson ratio in elasticity, and the Poisson distribution in
statistics.
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as the common independent variable of both the original and the transformed system
is not transformed. We may thus restrict ourselves to the nested mapping

F(qj.pj)=F(Q«(qj. pj). P(qj. pj))
G(qj,pj)=G(0«j. Pj). P(qj. p)))-

Applying the chain rule, one finds

JF 0 JIF 0P; 0G 0Q; 0G 0P;
7.6 =S Y Y\ (5g: 70 * 17 30, ) s0; a0 57, e
80; gk 3Pi dqr J\0Q; dpx  OP; dpy

_<3F 00, OF 3Pi><£@+86 8P>}

+ R
00Q; opx  OP; Opr J\OQ; dqr  IP; Iqx

Multiplying and recollecting the terms for Poisson brackets with respect to the coor-
dinates Q;, P; yields the equivalent expression

oF 090G oF 0G
[F, G]QP—ZZ{ [0i, Qi1+ — —[Pi, Pj]

30, 00, IP; IP;
aF BG[Q - dF 3G G 5 P]} (19.31)
9Q; aP; " 8P a0 '

Equation (19.31) holds for any invertible coordinate transformation. In the particular
case that the transformation is canonical, then in addition the relations (19.30) for the
fundamental Poisson brackets apply. In that case, (19.31) simplifies to

dF 0G OJF 090G

The Poisson bracket [F, G] is thus uniquely determined by functions F and G and
independent from the underlying coordinate system, provided that a transformation of
the coordinate system is canonical.

EXAMPLE |

19.8 Poisson’s Theorem

Poisson’s theorem embodies an important benefit of the Poisson bracket formalism: if
two invariants /1 and I, of a given dynamical system are known, then it is possible to
directly construct a third invariant /3. In order to demonstrate this, we first derive the
general rule for the total time derivative of a Poisson bracket

d[FG]— dFG + FdG

e ' Ldt’ Tdt |
The proof is easily worked out by directly calculating the total time derivative of the
Poisson bracket’s definition from (19.28)

Example 19.7



380

19 Canonical Transformations

Example 19.8

d “[OF d (3G\ 9G d dF d (3G
SR Gl=) | o )+ - (=
dt P aq; dt \ Op; api dt 8q, ap; dt \ 9q;
0G d (OF
dg; dt \ Op;
ZZ[BF a <8quj+8dej+3G>
P e dg; 0p; \ 0q; dt opj dt ot
0G 0 (d0F dgq; OF dp; . oF
aq; Op; 3qj' dt 3pj dt at
0G 0 (0F dq; OF dp; OF
ap; 0q; 3‘11‘ dt 3pj dt ot
oF 90 <8G dgj 0G dp; 8G>]

op; 0g;
Z[aF 1 (46) 96 0 (4, 46 0 (dr)
dg; Op; dg; op; \ dt op; dg; \ dt
oF 0 [(dG
dpi dgi \ dt
_[p 9G], [4F .
T dr dr’ |

If both I} = F as well as I = G are invariants of motion, i.e., if dF/dt = 0 and
dG/dt =0, we conclude

dgj dt ~ 9dp; dt ot

d

dt[F’ G]=0. (19.32)
With I3 = [F, G] we have then found another, possibly trivial, invariant of the system.

We remark that Poisson’s theorem in the form of (19.32) only applies for invariants
F and G, whose total time derivatives vanish identically.

In case that d F' /dt = 0 and dG /dt = O represent only implicit functions, we cannot
infer that the Poisson brackets [d F/dt, G] and [F, dG/dt] vanish. The reason is that
the construction of a Poisson bracket does not constitute an algebraic but an analytic
operation. In the latter case, we must impose the stronger condition that the partial
derivatives of d F/dt and dG /dt with respect to the g; and the p; all vanish

0 (dF 0 (dF dF
— — | = O’ _ — = —_, G =
dg; \ dt api \ dt dt

EXAMPLE

19.9 Invariants of the Plane Kepler System

The Hamiltonian for a plane and time-independent Kepler system is given by

1 Iz
Happp=5(pi+p)) =7 r=\ai+al.  p=Gom+m).
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Herein, G denotes the gravitational constant, and m 1, m, the masses of the respective Example 19.8
bodies. The canonical equations are obtained as

_ oH o . oH _ qi
- apl _pls pl - aql - I"Lr?,'

qi

The angular momentum D = g1 p> — g2 p1 constitutes an invariant of all systems with
central force fields. We verify this by directly calculating the time derivative of D and
subsequently inserting the canonical equations

dD . ) . )
ar q1P2+4q1P2 —q2P1 — q2DP1
w I
= —r—341QI2 +pip2+ r—ﬂz% — p2p1

=0.

Another invariant of this system is given by
q1
Ri=q1p3 —q2p1p2— m

We convince ourselves of this fact again by direct calculation of the time derivative
of Rl

drRy . , . . . . q1
= 1p2+2q1pzpz—qulpz—qulpz—qulpz—u7

qr . .
+ur—3(q1q1 +q292)
n n n
=pi1p3 — 2500202 = pips+ SN0+ r—3q§p1
m m
— r—3p1(q12 +43) + 0@ P1+a2p)

=0.

According to Poisson’s theorem, the function R, = [D, R;] then represents another
invariant of the system

Def D3R, 9DOIR, ODOIR, 9D IR,
RyZ[DR]=———— ——f —— —
dg1 dp1 9p1 dq1  9q2 dp2  Op2 g2

2
Looq
=—qp3 +qz<p§ -= +Mr—;>

I
—p1Qqip2 — q@2p1) +q1 (PIPZ - r—3611612)

2 q2
=q2pP] —41p1p2 — MT
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Example 19.8

We can prove this easily by directly calculating dR>/dt. The invariants R; and R;
constitute the components of the Runge—Lenz? vector. We will get back to the Runge—
Lenz vector in Example 21.21.

2 Carl David Tolmé Runge, German mathematician and physicist, b. August 30, 1856, Bremen,
Germany—d. January 3, 1927, Gottingen, Germany. Runge came from a family of merchants and
grew up in Havana and Bremen. He took up studies of literature at Munich, but soon switched to
mathematics and physics. As a student in Munich, he met Max Planck, which was the beginning of
a lifelong friendship. Runge finished his studies with a thesis on differential geometry, supervised
by Weierstrass, and became a professor of mathematics in Hanover in 1886. In 1906, he took up a
professorship in Gottingen. Runge worked on the numerical solution of equations—the Runge—Kutta
method for the solution of differential equations is named after him—and on spectroscopy. He did
spectroscopical measurements himself and contributed eminently to the understanding of the spectral
series of various atoms. Runge applied his results to the new field of the analysis of stellar spectra.
In a textbook on vector analysis, Runge described the derivation, originally found by Gibbs, of con-
served quantity of the Kepler problem. This discussion was then referred to by Wilhelm Lenz in his
early quantum mechanical treatment of the hydrogen atom. The corresponding conserved quantity
has become known as the Runge-Lenz vector.

Wilhelm Lenz, German physicist, b. February 8, 1888, Frankfurt am Main, Germany—d. April
30, 1957, Hamburg, Germany. Lenz attended the same school in Frankfurt as Otto Hahn, and took
up studies of mathematics and physics in Géttingen in 1906. He obtained his Ph.D. in 1911 with
Arnold Sommerfeld in Munich and became Sommerfelds assistant. In 1921, Lenz became professor
of theoretical physics in Hamburg. Among his students and assistants in Hamburg were Pascual
Jordan, Wolfgang Pauli, and Hans Jensen, who was awarded the Nobel Prize in physics in 1963 for
the development of the shell model of the atomic nucleus. Lenz’ contributions to the early quantum
mechanics of hydrogen-like atoms renewed interest in the Runge-Lenz vector, which, actually, had
been known long before. A simple model for the description of ferromagnets developed by Lenz and
proposed as a thesis topic to one of his students is well known today by the name of the student: the
Ising model.



Hamilton-Jacobi Theory

In the preceding chapter, we tried to perform a transformation to coordinate pairs
(gi, pi = Bi) for which the canonical momenta were constant. We now proceed one
step further and look for a canonical transformation to coordinates P; = p;o and
Q; = gio which all are constant and are given by the initial conditions. When we have
found such coordinates, the transformation equations are the solutions of the system
in the normal position coordinates:

qi = qi(gio, pio- 1), pi = pi(gio, pio, 1).

The coordinates (P;, Q;) obey the Hamilton equations with the Hamiltonian
H'(Q;, P;,t). Since the time derivatives vanish by definition, we have

oH’ . oH'
_—’ Qi =0= .
00; aP;

These conditions would certainly be fulfilled by the function H’ = 0. In order to
perform the coordinate transformation, we need a generating function. For histori-
cal reasons—1Jacobi made this choice—we adopt among the four possible types the
type F» = S(q;, P;, t), which already has been treated in the preceding chapter. It is
generally known as the Hamilton action function. For this choice the equations (19.12)
hold. We now require that the new Hamiltonian shall identically vanish. Then

Pi=0= (20.1)

aS

0S a5
— 4+ H s quiPl=—, ..., pp=—:1t|=0. 20.2
Py + (ql dn; P1 b Dn o ) (20.2)

Writing down this equation with the arguments, we obtain

9S(qi, Pi = PBi. 1)

a8 a8
o —I—H(ql,...,qn;—,...,—;t):O. (20.3)

9q1 0qn

This is the Hamilton—Jacobi differential equation." The P; denote constants that, as
noted above, are fixed by the initial conditions p;o. By means of this differential equa-
tion we can determine S. We note that this differential equation is a nonlinear partial

L Carl Gustav Jacob Jacobi, b. Dec. 18, 1804, Potsdam, son of a banker—d. Feb. 18, 1851, Berlin.
After his studies (1824), Jacobi became a lecturer in Berlin and in 1827 to 1842 held a chair as a pro-
fessor in Konigsberg (now: Kaliningrad). After an extended travel through Italy to restore his weak
health, Jacobi lived in Berlin. Jacobi became known for his work Fundamenta Nova Theoria Functio-
rum Ellipticarum (1829). In 1832, Jacobi discovered that hyperelliptic functions can be inverted by
functions of several variables. Jacobi also made fundamental contributions to algebra, to elimination
theory, and to the theory of partial differential equations, e.g., in his Lectures on Dynamics (1842 to
1843), published in 1866.
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differential equation of first order with n 4 1 variables g;, t. It is nonlinear, since H
depends quadratically on the momenta that enter as derivatives of the action func-
tion with respect to the position coordinates. There appear only first derivatives with
respect to the ¢; and the time.

To get the action function S, we have to integrate the differential equation n + 1
times (each derivative 9S/dq;, 0S/0t requires one integration), and we thus obtain
n + 1 integration constants. But since S appears in the differential equation only as a
derivative, S is determined only up to a constant a; i.e., § = §’ + a. This means that
one of the n + 1 integration constants must be a constant additive to S. It is, however,
not essential for the transformation. We thus obtain as a solution function

S=8(q1,---sqn; B1-.., Bns 1),

where the §; are integration constants. A comparison with (19.12) leads to the require-
ments

— aS — 85(91,,Qn»,31»»ﬁn»t) —
P tJsh

P = Bi; 0i ;. (20.4)

The B;, o; can be determined from the initial conditions.
The original coordinates result from the transformation equations (19.12) as fol-
lows: From
_0S(q;. B, D)
9B

follow the position coordinates

2%}

qi =qi(aj, Bj,1).
Insertion into

_ 9S(q;, Pj,1)

= pi(gi, Bi, 1)
agi

i
finally yields

pi = pi(a;, Bi, b).

Now the g;(aj, Bj,t) and p;(a;, Bj,t) are known as functions of the time and
of the integration constants o, 8;. This simply means the complete solution of the
many-body problem characterized by the Hamiltonian H(g;, p;,t).

We can separate off the time dependence in S. If H is not an explicit function of
the time, H represents the total energy of the system:

N

——=H=E. (20.5)

ot
From this, it follows that S can be represented as
S(qi, Pi, 1) = So(qi, Pi) — Et.

To explain the meaning of S, we form the total derivative of S with respect to time:

ds 3 3s . aS
- = A P .
dr Zaqiq’JrZaPi R
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But, since P,- =0, we have

dS(qi, Pi = Bi, 1) _Z as . S

di g T
Because
(9. Pj=Bj )=Pi amd S m
dqi ot
it further follows that
dS(qi, Pi(pa>qa), 1) )
l ldta 2= =) pidi — Hiai, pis ) = Lgi, pis ). (20.6)

H and L are not bound by restrictions; in particular they can be time-dependent. This
means that S is given by the time integral over the Lagrangian:

S = / L dt + constant. (20.7)

Since this integral physically represents an action (energy - time), the term action
function for S is obvious. The action function differs from the time integral over the
Lagrangian by at most an additive constant. However, this last relation cannot be used
for a practical calculation, since as long as the problem is not yet solved, one does not
know L as a function of time. Moreover, L(g;, pi,t) in (20.6) depends on the original
coordinates g;, p;, while the S-function is needed in the coordinates g;, P; (qq, P )-

Equation (20.7) is not unknown to us: The action function S turned up before when
formulating the Hamilton principle (18.25). Before further continuing this discussion,
we will illustrate the Hamilton—Jacobi method by an example.

EXAMPLE |

20.1 The Hamilton-Jacobi Differential Equation

We start again with the harmonic oscillator. The Hamiltonian is

2
_P ke
=om 27
The Hamilton action function then has the form (compare (19.12) and (20.3))
asS
S=S(g,P,t) and p=—.
dq

From this, we obtain the Hamilton—Jacobi differential equation:
s 1 (8S\* k ,
—+— — —q-=0.
ot T om (aq> +4
For solving the problem, we make a separation ansatz into a space and a time

variable. A product ansatz would not work here, since the differential equation is not
linear. We therefore set a sum:

S=S10) + $2(q).
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Example 20.1

For the partial derivatives, we then get

25 dSi(q) 2S _ dSi(1)
dq  dq ot dt

This leads to

oL (dS@\® ko,
—Slm—ﬁ( ” ) +54° =5,

where S is the separation constant. (The left-hand side depends only on the time ¢,
the right-hand side only on the coordinate g: Therefore, both sides can only be equal
if they are equal to a common constant 8.) For the time-dependent function, we then
have

S1(1)=—8,
which leads to
S1(t) = —pr.

For the space-dependent part, there remains the following equation:

1 (dSy@)\ | k , ds, \/7
— S2=p L2 omp—mkqe.
Zm( dg ) T2 =P dq mp —mkq

As sum of the two parts, we then obtain for §

S(q,ﬂ,t)zx/ﬂ/,/% —q%dq — Bt.

For the constant Q = «, we then have

N k [(2 —172
o[

The integral can easily be evaluated, and we obtain

O+i= @arcsin( %/ 2B) q).

With the usual abbreviation w? = k/m, we obtain the equation

2B .
q= - sinw(t + Q).

A comparison with the known equation of motion of the harmonic oscillator shows
that B corresponds to the total energy E, and Q to an initial time 7. Energy and time
are therefore canonically conjugate variables. Both the energy and the time #y (which
corresponds to an initial phase) are given by the initial conditions.
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The separation of the Hamilton—Jacobi equation represents a general (often the only
feasible) way of solving it. If the Hamiltonian does not explicitly depend on the time,
then

ds 39S 39S
v H(g g = 22 ) o, 208
ar " (ql ™ 5q 8qn) (20.8)

and the time can be separated off immediately. We set for S a solution of the form
S = So(gi, P;) — pt.

The constant 8 then equals H and normally represents the energy. After this separa-
tion, there remains the equation

BAY) A
H(ql,...,qn;—,..., ):E. (20.9)
aql 8‘1n

To achieve a separation of the position variables, we make the ansatz
S0(@1s -+ G Py Pa) =Y Sigis P) = S1(q1, PO+ -+ Su(qn, Po). (20.10)
i

This means that the Hamilton action function splits into a sum of partial functions S;,
each depending only on one pair of variables. The Hamiltonian then becomes

ds ds,
H<m,””qm——i.“, ")::E. (20.11)
dQI dQn

To ensure that this differential equation also separates into n differential equations for
the S;(gi, P;), H must obey certain conditions. For example, if H has the form

H(q1,....qn, P1,..., pn) = Hi(q1, p1) + -+ Hy(gn, pn), (20.12)

the separation is certainly possible. A Hamiltonian of this form describes a system of
independent degrees of freedom; i.e., in (20.12) there are no interaction terms, e.g., of
the form H(q;, pi.qj, p;), which describe an interaction between the ith and the jth
degree of freedom.

With (20.12), (20.11) reads

98 a5,
Hl(f]l,—l)+~~+Hn(qn,—n>=E. (20.13)
36]1 8‘]11

This equation can be satisfied by setting each term H; separately equal to a constant
Bi; hence,

a5 A
Hl(qla_>=ﬂlv ey Hn(Qn,—n>=ﬁn7 (20]4)
0q1 aqn
where
BitBt - +B=E. (20.15)

Thus, there are n integration constants §; in total.
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Since the kinetic energy term of the Hamiltonian involves the momentum p; =
dS;/dqg; quadratically, these differential equations are of first order and second degree.
As solutions, we then obtain the »n action functions

Si = S8i(qi, Bi), (20.16)

which, apart from the separation constants f;, depend only on the coordinate g;. Ac-
cording to (19.12), S; immediately leads to the conjugate momentum p; = dS;/dg; to
the coordinate g;. The essential point is (see (20.12)) that the coordinate pair (gq;, p;)
is not coupled to other coordinates (g, pk, i # k), so that the motion in these coordi-
nates can be considered fully independent of the other ones.

We now restrict ourselves to periodic motions and define the phase integral

Ji= f pidgi, (20.17)

which is to be taken over a full cycle of a rotation or vibration. The phase integral has
the dimension of an action (or of an angular momentum). It is therefore also referred
to as an action variable. If we replace the momentum by the action function

ds;

J; = 7§ Ldg;, (20.18)
dgi

we see from (20.16) that J; depends only on the constants §;, since g; is only an inte-

gration variable. We therefore can move from the constants §; to the likewise constant

Ji and use them as new canonical momenta. Hence, one performs the transformation

Ji = Ji(Bi) — Bi = Bi(Ji).

The total energy E which corresponds to the Hamiltonian can also be recalculated
by (20.15) to the Ji:

n
H=E=Y_Bi(J). (20.19)
i=1
The Hamiltonian is therefore only a function of the action variables, which take the
role of the momenta. All corresponding conjugate coordinates are cyclic. The con-
jugate coordinates belonging to the J; are called angle variables and are denoted by
o;. The generating function S, (¢;, Bx) turns with B (Ji) into S(g;, J;). The J; are the
new momenta. We therefore can apply (19.12), and for the related new coordinates,
we have
~_08(gi, Ji)
¥Yj= 3 :

By transforming to the action variables and angle variables, we thus have performed
a canonical transformation, mediated by the generating function

Si(qi, Bi) — Si(@i, Ji). (20.20)

This transformation from one set of constant momenta to another set actually does not
give new insights. The meaning for periodic processes lies in the angle variable ¢;.
Since we performed only canonical transformations, we have

. _0H
%_3],'

= v;(J;) = constant. (20.21)
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One can show that v; is the frequency of the periodic motion in the coordinate i. This
relation thus offers the advantage that the frequencies, which are often of primary
interest, can be determined without solving the full problem. We briefly demonstrate
this point by the following example:

EXAMPLE |

20.2 Angle Variable

We again consider the harmonic oscillator. The expression for the total energy

P> kq?

T2m 2

is transformed so that we get the representation of an ellipse in phase space:
A S
2mE = 2E/k

A Fig. 20.1. Ellipses in phase

p
space
=] 2E
/ >§( b !
\/ q
The phase integral is the area enclosed by the ellipse in phase space:

J:ffpdq:nab.

The two half-axes of the ellipse are

[2E
a=~2mE and b= -

‘We therefore obtain

m J |k
J=2nE |—, or E — .
k 2n V'm

This leads to the frequency

Il
T
Il
|

dH 1 [k
V= — = —.
dJ] 2n\Vm
EXERCISE

20.3 Solution of the Kepler Problem by the Hamilton—-Jacobi Method

Problem. Use the Hamilton—Jacobi method for solving the Kepler problem in a cen-
tral force field of the form

K
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Exercise 20.3

Solution. We adopt plane polar coordinates (r, ®) as generalized coordinates. The
Hamiltonian reads

1 p K
H:_<p2+1’_®>__. (20.22)

2m\"" 2 r

H is cyclic in ©, and hence, pg = constant =/. The p; can be expressed by the Hamil-
ton action function S:

N S

= — = = —, Q) =
94; Pr ar 14¢)

Di = constant = f;.

00

Thus, we obtain the Hamilton—Jacobi differential equation

as 1 [r/as\? 1/8s\*| «
9 (o S B T 20.23
8t+2m{<8r> +r2<8®> } r ( )

For the action function, we adopt a separation ansatz
S=81(r) + $2(0) + S3(1), (20.24)

which is inserted into (20.23):

1 [/as1)\* 1 /a%@\]| K 380
%{( ar >+r_2( 30 )}_7__ ar (20.25)

Equation (20.25) can be satisfied only if both sides are constant. The constant is the
total energy of the system, because

39S 39S
—o =H=E = —8—:=constant:ﬂ3=E. (20.26)

We remember that

_9S _as
AP B

P; = B;, Qi

o,

where «;, ; are constants that follow from the initial conditions.
We insert (20.26) into (20.25), and solve for 9.5,/90:

3$\* 2mK  (051\?
— ) =r“{2 e . 20.27
(a@)) r{mﬁ3+ r <8r (20.27)
The same argument that led us to (20.26) now yields

98, d$H ()
90~ de

= constant = f37, (20.28)

and therefore,

a8, dS 2mK  p?
8—‘ - d‘(r) - \/2m,33 Tl /3_3 (20.29)
r r r r
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The Hamilton action function can now be written down as follows:

S = / \/Zm,B3 + @ — ’32 dr + 2O — Bat. (20.30)

We now define 8, and 83 as new momenta Pg and P.. The quantities Q; conjugate
to the P; are also constant.

o= f\/z ,3+2m—K—ﬂ—2dr—t o (20.31)
’ wa B3 } - '

2
0o = E 5 /\/Zm/% m— _ ﬂ—zdr tO=a. (20.32)

If we identify o with ®’, which follows from the initial conditions, we obtain

Bodr

/ —0-0. (20.33)
12/ 2mps +2mK [r — B3/ r?

Insertion of the constants and substitution # = 1/r leads to
du

=0-0. (20.34)
VCmE)/12) + 2mKu/I2) — u?
This integral of the form
| o
ax?+bx +c
can according to integral tables be written as a closed expression, with
2mE  4m’K?
A=dac—b?=—4"= T2y,

2 4

-2 2mK /12
®=®'+arcsin< ut Cmk/) )

V(@m/12)Q2E + (mK?/12))

2 _
ey —arcsin( (Cu/mK) — 1 ) (20.35)
J1+ (2E12/m1<2
2
! (20.36)

K 1 +V1+ (2El2/mK2) cos(® — @ +7/2))

This is the solution of the Kepler problem, known from the lectures on classical me-
chanics. The types of trajectories follow from the discussion of conic sections in the
representation r = p/(1 + ecos ¢):

£=1=E =0: parabolas;
e<1=E <0: ellipses;
&>1=E >0: hyperbolas.

2 See W. Greiner: Classical Mechanics: Point Particles and Relativity, 1st ed., Springer, Berlin
(2004), Chapter 26.

Exercise 20.3
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Exercise 20.3

Equation (20.31) could be rewritten further, by pulling the differentiation into the
integral and transforming the resulting equation in such a way that the position r
becomes a function of the time. We skip that here.

EXERCISE |

20.4 Formulation of the Hamilton—Jacobi Differential Equation for Particle Mo-
tion in a Potential with Azimuthal Symmetry

Problem. Let a particle of mass m move in a force field that in spherical coordi-
nates has the form V = —K cos © /r2. Write down the Hamilton—Jacobi differential
equation for the particle motion.

Solution. We first need the Hamiltonian operator as a function of the conjugate mo-
menta in spherical coordinates. For this purpose we first write the kinetic energy 7 in
spherical coordinates:

i =re, +rOeg +rsin Oge, (20.37)
1 1 .
= T=_mif= 5m(f2 + 202 + r?sin® ©¢?). (20.38)

The Lagrangian then reads
1 .
L=T-V= Em(r'2 +r20% +r%sin’ ¢?) — V(r, ©, ¢). (20.39)

We now assume that V (r, ®, ¢) is velocity-independent (which is indeed fulfilled)
and form the canonical conjugate momenta:

oL | oL oL

Dr = e mr, Pe = 6 =mr’®, Py = @ = mr? sin’ Og¢. (20.40)
From this, we obtain
. Dr . pPoe . Py
= —, @ = —F, = ———F—~ .
" mr? Y
Hence, H can be given in the desired form
H= ZPO{‘?O( —L
o
. 1 p2 pé P2
— . . @ s 'r - [ V , @7
prr + pO + Prp€0 2m<m2 + r2m2 + m2r2 Sil’l2® + (V ‘P)
2 2 2
= bry Po P o v 6.0 (20.41)

T 2m o 2mr?  2mr2sin?©

and for the actual potential (see the formulation of the problem),

_ P_% P(%) P% _ K cos®
T 2m ' 2mr?  2mr2sin? © r?

(20.42)
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The p; as functions of the Hamilton action variables read

aS aS S

=, == = 20.43
o P07 R0 T o (2043)

pr=

Therefore, the Hamilton—Jacobi equation has the form

s 1 [/as\* 1/85\? 1 3S\?| Kcos®
R i (e Il (=) 22T 0. (2044
ot +2m{<3r> +r2(3®> +rzsin2®<3</>> ] r2 ( )

EXERCISE |
20.5 Solution of the Hamilton—Jacobi Differential Equation of Exercise 20.4

Problem.

(a) Find the complete solution of the Hamilton—Jacobi differential equation from the
preceding Exercise 20.4, and
(b) sketch how to determine the motion of the particle.

Solution. (a) The approach is analogous to Exercise 20.3. We adopt the separation
ansatz for S,

S=381(r) + $2(0) + S3(¢) — Et, (20.45)

and insert this into (20.44):

1 (38 2+ 1 (35 2+ 1 05\ _Kcos® _
2m \ or 2mr?\ 90 2mr2sin® @ \ ¢ r2

(20.46)
NENIONS ) 350)\* 1 [385(0)\*
r —2mEr-=— -
(%5) ("567) ~ae(5)
+2mK cos ®. (20.47)

Equations (20.46) and (20.47) can only be satisfied if both sides are constant:

3S1(r)\?
r? (%) — 2mEr? = constant = Bi1, (20.48)
r
<352(®))2 ! (353(‘p))2+2 Kcos® =B (20.49)
_ — m = . .
00 sinf@®\ ¢ !

To separate © from ¢, we multiply (20.49) by sin” ©:

953(0)\ 2 95:(0) )
(—;(¢)> =2mK cos @sin® ® — B sin’ © — (%) sin® ©. (20.50)
4

Exercise 20.4
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Exercise 20.5 The separation constant is denoted by 3, since
3S 0SSO\ .,
% = p, and thus < o9 = B35 =p,- (20.51)
Therefore,
2 2 2 (382)
2mK cos ®sin” ® — B sin“ ® — sin @(%> = py. (20.52)

Integration of (20.48), (20.51), and (20.52) yields

M =/U2mE+'B—;dr+cl,
r

2
Sz_f\/ZchosO B — “’ d®+C2, (20.53)

S3 == (pp(p + C3.

The complete solution of the Hamilton—Jacobi differential equation is obtained from
(20.53) and the ansatz (20.45) for S:

/,/2mE+&dr+/\/2chos® B — p‘” d@

+¢p, — Et +C. (20.54)

(b) The explicit equations for the motion of the particle follow from the requirement

aS aS

Qi:aPI- < ai:a—ﬁ,-’

since Q;, P; are constants that are denoted by «;, 8;, and thus,

aS as as
— =], — =), — = 3. (20.55)
3B OE dpy

The ¢; follow from the initial conditions; for example,

dr —t =y, (20.56)

aS m
ﬁ_/‘/ZmE—i-ﬂl/r2
/—m dr = i/—r dr
V2mE + B2 V2EJ /i21 B 2mE

2 B
{ = L , 20.57
= o+ 2E+4E2+C ( )
2
mr,
rt=0=r9 = wp—c= —O-I-—'Bl,
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and as the solution for 7,

2
mr?2 B mrg Bi

2E " 4E2 \ 2E ' 4E?

(20.58)

The 05/981 and 35/0 p, are treated likewise. The evaluation of the elliptic integrals
requires numerical methods.

We come back once again to our discussion in the context of (20.8) and (20.9). If
the Hamiltonian does not explicitly depend on the time, as is the case for conservative
scleronomic systems, the Hamilton—Jacobi differential equation can be brought to a
simpler form, since S can only linearly depend on ¢. We therefore transform to

S=3S8)— Et,

where So = So(¢ — 1,...,qn,B1,-.., PBn). One then obtains the so-called reduced
Hamilton—Jacobi equation:

M) 8S()>
36]1"”’ 9qy

H<q17---7qn’

The solution of this differential equation yields arbitrary constants, one of them, e.g.,
B1, is additive (Sp + ¢ solves the above Hamilton—Jacobi equation too) and can be
omitted. But the reduced Hamilton—Jacobi equation now involves the total energy, so
that So will also depend on E, and therefore, in

So=380(q1,-...qn. E, B2, ..., Bn)

B1 is replaced by E. We can express this in the following way: Just as in the original
Hamilton—Jacobi equation, the reduced form also has n integration constants, one of
them the total energy E.

EXERCISE |

20.6 Formulation of the Hamilton-Jacobi Differential Equation for the Slant
Throw

Problem. Use the reduced Hamilton—Jacobi differential equation to formulate the
equation of motion for the slant throw.

Solution. Let the coordinates of the throw plane be x (abscissa) and y (ordinate),
which will also be used as generalized coordinates.

— _m2, 2
H_T+V_E(x +y°) +mgy, (20.59)
oH ) oH )
Dx = - =mx, Dy = —— =my. (20.60)
x ay

The conjugate momentum p, = mx to the cyclic coordinate x (0 H/dx = 0) is a con-
served quantity. We recalculate (20.59) as

1
H(x, 3, px py) = 2= (3 + p)) +mgy. (20.61)

Exercise 20.5
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Since H does not depend explicitly on the time and the system is conservative, the
reduced Hamilton—Jacobi differential equation can be applied.

1[/080\2 [8Sp)\2
— (= — —E. 20.62
2m (ax)+<ay) ey (2062
By inserting the separation ansatz So = S1(x) + S2(y) into (20.62), we obtain
1 [ /881\? | (95:0))>
— + +mgy=E (20.63)
2m ax ay
or
9S1(x)\? > 350 \*
=2mE —2m’gy — ) (20.64)
dax dy

This is satisfied only if both sides of the equation are constant, since x and y are
independent coordinates.

(3553))2[32’ (asazy(y))zz QmE - By) — Imgy. 20.65)
Integration yields the solutions

S1(x) = y/Box +c1, (20.66)

$H(y) = —ﬁ [@mE — B2) —2m%gy] +c2. (20.67)

The complete solution of the reduced Hamilton—Jacobi differential equation is of the
form

1
So(x,y, E, B2) = v/ Bax — m[amE — B2) —2m*gy1* % + ¢, (20.68)
0S5 0S5
220 =t+a, 220 =02,
oFE 082
where the first relation holds because

Y AN
9l =——==——"1

oE oE

From this, we obtain y = y(t) as

b By — 2m2ey]/2 =
mg[(2mE B2) —2m7gyl' " =1+ (20.69)
& 2mE — By —2m*gy =m?g*(t + a1)?
1 s 2mE— B
= —— t _—
& y=—58ttan)T+ g
1
& y=——gt’+cit 4o (20.70)

2

In the last step, we renamed the constants.
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The analogous procedure with 35/9 8> = a» yields
y= —cl)c2 + cox +c3, (20.71)

i.e., the familiar throw parabola. For the case of the slant throw the Hamilton—Jacobi
equation may appear clumsy for establishing the equation of motion. A certain advan-
tage of the method shows up in complicated problems, e.g., in the Kepler problem in
Exercise 20.3.

|

20.1 Visual Interpretation of the Action Function S

In the preceding problems, the Hamilton—Jacobi differential equation proved success-
ful for establishing the equations of motion, in particular for complex mechanical
problems. There remains the question about the visual meaning of the action func-
tion S. We consider the motion of a single mass point in a time-independent potential
and write

S =380(q;, P;) — Et,

where, as already indicated, So(g;, P;) describes a spatial field which is time-
independent. With the labeling g1 = x, g2 =y, 93 =z and p| = px, p2 = py, p3 = Pz,
for the momentum components we have according to (19.12)

_9s 98, _9S 9S, _9s 98,
Tox ax’ PTe Ty T T e

Px

Written as a vector equation, this is
p=grad S =VS.

Since grad S is always perpendicular to the equipotential surfaces of S, we realize that
in a representation of the S-field by S = constant, the orbits are represented by trajec-
tories orthogonal to this set of surfaces. Accordingly, to a given field S belong all mo-
tions with trajectories perpendicular to the equipotential surfaces of S (S = constant),
and moreover along each trajectory all motions starting at an arbitrary moment (see
Fig. 20.2).

S=5E
S=4E
S=3E
S=2E
S=F

The time behavior of the S-field can be seen from the representation S = Sy — E't.
For ¢t = 0, the surfaces S(g;, P;) =0 and So(g;, P;) = 0 are identical. For r = 1, the
surface S = 0 coincides with the surface So = E, S = E with Sy = 2E, etc. This

Exercise 20.6

Fig. 20.2. Surfaces S

constant.
dotted

Trajectories

are
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means graphically that surfaces of constant S-values move across surfaces of constant
So-values, i.e., that surfaces of constant § move through space. The formal meaning
of S follows from the action integral. One has

/Ldt:/(pxdx—i—pydy—l—pzdz—Hdt),

aS N
/Ldl‘ /(—dx —dy —dZ-I——dt):Sz—S].

S therefore represents an action (energy - time). It is the time integral over the La-
grangian. The Hamilton principle § [ L di = 0 therefore states that a motion proceeds
with the boundary condition of minimum action.

EXAMPLE |

20.7 Illustration of the Action Waves

To illustrate the action waves, we consider the throw or fall motion in the gravita-
tional field of the earth, where the equation of motion is well known. In analogy to
Exercise 20.6, we obtain the following Hamilton—Jacobi differential equation:

1 [/08\> [as\*> [a8S\? EN
i 2 _o. 20.72
2m{<8x> +<8y> +<az) }+mgz+ ot ( )

With the separation ansatz S = Sy (x) + Sy(y) + S;(z) — Et, we obtain

Sy = xBkx, Sy = yBy

up to additive constants, and

1 [05.\° 2482
—(a—;) +mgz=E—u=ﬂz. (20.73)

2m 2m

The quantities B and B, are separation constants, just like 8. Integration over z
yields, up to a constant,

2 2
Se=—qy (B~ mgz)*?. (20.74)
gVm

We write the constant B, as B, = mgz( and thereby can express the total energy as

Px +P
2m

+mgzo. (20.75)

By insertion, one gets the action function

2 2
S=xBx + By — zmg/ﬁ(zo e <ﬂ zmﬂ + mgzo) (20.76)
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and by the familiar scheme the equations of motion,

a8
Qx:ax:%:x_i_xt,
3 B
Qy:ayzﬁzy—;y’ (2077)
Yy
Qz:az:a_z():_mVZg(ZO_Z) —mgt.

Among the possible motions of a body in the gravitational field we pick the ensemble
with By =0, By =0, zo = 0. From (20.76), we get for the surfaces with Sy = constant:

mi/2g

_\3/2
3 (=2)7~.

constant = —
These are planes parallel to the x, y-plane.

The possible trajectories are shown in Fig. 20.3 by dashed vertical straight lines.
Since the action function is real only for z < 0, there are only such throw conditions
that ascend up to the plane z = 0 and then return again. In the present example, the
action waves are planes parallel to the x, y-plane that propagate in z-direction. This
is easily seen from (20.76) for zo = constant # 0. Any vertical throw up to the height
zo thus belongs to the same S-field or to the same action wave, respectively. Here it is
not essential at which space point the throw motion begins.

Z‘/‘y y

As a further ensemble of motions, we consider

2mA/2
B=0. =0, B =" £ (20.78)
so that from (20.76) we obtain
2m+/2g
So =" {y—(-2*% (20.79)
3
& y=——C8+(—2)¥2 20.80
Y=o NeT] 0+ (—2) ( )

Equation (20.80) represents a Neil or semicubic parabola (y = ax3/?) in the y, z-plane.
The surfaces with Sy = constant are therefore surfaces parallel to the x-axis: F(y, z) =
0, i.e., cylindrical surfaces intersecting the y, z-plane in a set of Neil parabolas with
the top on the y-axis (Fig. 20.4).

Fig. 20.3.

Example 20.7
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Fig. 20.4.

Fig. 20.5. Projection onto the
v, z-plane of the preceding
Fig. 20.4

With increasing So the tops of the Neil parabolas move in the y-direction. The
related trajectories are throw parabolas in the y, z-plane which have no velocity com-
ponent along the x-direction and reach their highest point at z = 0 (dashed curves in
Fig. 20.5).

The velocity component in y-direction is the same for all throws:

2
Uy = g\/g

In this case, the action waves consist of cylindrical surfaces parallel to the x-axis that
propagate with increasing time in z-direction.

The starting point of the motion in the x, y-plane is again arbitrary; the turning
points of the trajectories are at z = 0. All throw parabolas parallel to the x-axis belong
to the same action wave; i.e., any throw described by (20.79) can be represented by a
set of action waves propagating in the z-direction and parallel to the x-axis.

We see from this example that the simple throw in the gravitational field can be cor-
rectly represented by the Hamilton—Jacobi formalism but becomes hopelessly compli-
cated. This confirms our thesis: Although the Hamilton—Jacobi method contains beau-
tiful formal ideas, it is hardly practicable, too clumsy, and too abstract for physicists.

EXAMPLE |

20.8 Periodic and Multiply Periodic Motions

In this example, the peculiarities of periodic motions shall be compiled and extended
to multiply periodic motions.>

3 Here, we follow A. Budo, Theoretische Mechanik, Deutscher Verlag der Wissenschaften, Berlin
(1956).
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1. Periodic motions: Here, one distinguishes two kinds, namely, the properly peri-
odic motion, for which

qit+1)=q;@),
pit +71) = pi(1),

(20.81)

i.e., both the coordinates and the momenta have the same period t. This motion is
also called libration. Two-dimensional examples are the (nondamped) harmonic os-
cillator or the (nondamped) vibrating pendulum. The phase-space diagram (the phase
trajectory) is a closed curve (see Fig. 20.6).

The other type of periodic motion is the rotation. Here one has (e.g., in the two-
dimensional case)

p(q +q0) = p(q), (20.82)

i.e., the momentum takes for g + g the same value as for g. The coordinate g is
mostly an angle variable and gp = 27. One might imagine for example a circulating
pendulum; in this case ¢ is the pendulum angle. The phase-space trajectory is then not
closed but periodic with the period go (see Fig. 20.7).

p

e g—| q

Fig. 20.7. Phase-space diagram of the rotation as a periodic motion. The trajectory is open but
has the period ¢gq. In other words, the momentum p is a periodic function of the coordinate g
with the period ¢g

The limiting case between rotation and libration is called limitation motion. The
pendulum, which is almost circulating, is an example for this type of motion. The
coordinate period gg is then gg = 27 as before, but the time period is T = oo.
(The pendulum then comes to rest in the upper vertical position (unstable point), i.e.,
the function graph terminates at the point gg.) If the system is conservative and is
described by the Hamiltonian H (p, g), we have the equations

H(p,q)=FE,

H 05 =FE
q’aq =

The first equation yields p = p(q, E), i.e., for a given energy E the phase trajectory.
The second equation is the (reduced) Hamilton—Jacobi equation from which the action
function (generating function) F>(q, P) = S(gq, E) can be calculated. If that is done,
one can calculate the phase-space integral

(20.83)

S
J =y§pdq = jﬁ gdq. (20.84)

401
Example 20.8
p
I q

Fig.20.6. Two-dimensional phase
diagram of a properly periodic
motion. A closed phase tra-
jectory occurs, e.g., for a non-
damped vibrating pendulum



402

20 Hamilton-Jacobi Theory

Example 20.8

Here, § means the integration over a closed trajectory in the case of libration, or over
a full period g1 < g < ¢1 + qo in the case of rotation. Hence, the phase integral J
exactly corresponds to the shaded areas in Figs. 20.6 and 20.7

The phase integral J = J(E) depends only on E and is constant in time, since the
total energy is constant in time. Hence, (20.84) leads to the relations

J=J(E) or E=E). (20.85)

As a consequence, the function S(g, E) changes to
S(¢.E) = Sg,EU)=S(q,J). (20.86)

The function S'(g, J) can serve as the generator of a canonical transformation. The
new momentum is now identified with J, i.e.,

P=J. (20.87)
The canonically conjugate variable belonging to P = J is denoted by Q = ¢. Itis also
called an angle variable and is calculated according to (20.4) as

_ a8 (g, J)

20.88
i ( )

As 8’ does not explicitly depend on time, the transformed Hamiltonian H' is obtained
by expressing the original Hamiltonian (20.83) in terms of the transformed variables

H'(p,J)=E(). (20.89)

The Hamilton equations in the new coordinates then read

. oH' . 0EW)
0= oP Q= 37 = constant,
, (20.90)
pP=— or J=0.
00

dE(J)/dJ depends only on J, which is constant in time. Hence, ¢ is also constant in
time, and then

oE

¢= (w>t+6. (20.91)

Here, the phase constant § appears. If we had not selected S’(g, J) as the generating
function but rather the complete time-dependent action function

W(g,J.t)=S'(qg.J) — E(J)t, (20.92)

the coordinate conjugate to J would be according to (20.88)

IW(q.J) 05'(q.J) 8E(J)t
aJ  aJ aJ
AE(J)

= =34, 20.93
%] 57 ( )

i.e., just the phase constant from (20.91). Equation (20.91) states that the angle
variable ¢ linearly increases with the time. It is a cyclic coordinate as is evident
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from (20.89), since the Hamiltonian H'(¢, J) = E(J) does not depend on ¢. The
change of ¢ during a period t is found from (20.91) to be

IE
Ap = <_>f, (20.94)
aJ

which can be specified more precisely by means of (20.88). We have

d 328'(q, J
Ag = _(pd zfﬁdq
aq agaJ
o [9S(q.J 3J
z_fﬁdqz_ﬂ. (20.95)
aJ dq aJ

Hence, the angular coordinate increases during a period after which the system returns
to its initial configuration, exactly by 1. We therefore can state that the motion of the
system is periodic in ¢ with the period 1. Combining (20.94) and (20.95) yields

0E

E 1
[— — —
aJ

1 377 V. (20.96)
v is the frequency of the periodic motion. Obviously the complete solution of the
equations of motion is not needed for calculating v. It is sufficient to express E as a
function of J and to differentiate with respect to J. This is the advantage of introduc-
ing the action (J) and angle variables (¢). The approach is illustrated in Example 20.2
for the case of the harmonic oscillator.

2. Separable multiply periodic systems: We imagine a conservative system with
f degrees of freedom, which is described by the f coordinates ¢, ...,qs and is
separable. This means that the solution of the reduced Hamilton—Jacobi equation

08 0S8
H<q1,...,qf;—,...,—)=E (20.97)
9q1 0q ¢
can be written in the form
S(q1s---,q5 E, B2y ..., Bf)
=S1(qi; E,Bo,....Bp)+ -+ Splgs; E, B2, ..., By). (20.98)
The f integration constants
E, B2, B3, ..., Bf (20.99)
characterize the constant momenta P, ..., Py. If the Hamiltonian decomposes into

a sum of terms H(g;, pi), only one constant appears in the functions Si(gk; E,
B2, ..., By) in (20.98); the functions then have the form Sy (g, Br)—see (20.10).
When can we classify a motion as periodic? The answer is simple: If any pair of
conjugate variables (g;, p;) always behaves as discussed in the first part of this ex-
ample, the motion is periodic. More precisely: The projection of the phase trajectory

Example 20.8
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onto each q;,p;-plane of the phase space must be either a libration or a rotation, to
guarantee the periodicity of the entire motion of the system.

The procedure is analogous to that outlined in the first section. First one defines the
action variables

0Si(qi; E, B2, ..., Br)
Jizfpid‘b'=¢ (@i B P By dgi
9g;
=Ji(E, B2, ....Bp), i=1,...,f (20.100)

They are constant in time, since E, 85, ..., By are constant. The f equations (20.100)
can be solved for E, B, ..., By and yield

E=E(,....,Jp),
B2=p2(J1,-.., Jp),

(20.101)
Br=BrJ1,.... Jp).
By inserting (20.101) into (20.98), we obtain
Si(@is EUR)s Bo(Ji)s - Br (i) = S'(qis Jrs - T p). (20.102)
This is a generating function with the constant momenta
P, =J. (20.103)

The relation (20.102) is fully analogous to the relation (20.86), and (20.103) corre-
sponds to (20.87). The canonically conjugate angle variables result—like (20.88)—
from

% BS/(qk,Jl,...,J) ,
0 = BJ_Z L R (20.104)

Among the canonical variables (Q;, P;) = (¢;, J;) is the Hamiltonian
H'(¢i, J;) = E(J)), (20.105)

since the Hamiltonian is independent of time (see (20.83)). From this follow the
Hamilton equations

. OH'  JdE(Jy)
= 9P = 57 = constant = v;,
8lH’ ! (20.106)
Ji=— =0
g
hence,
@i =vit + 6,
(20.107)

J; = constant.
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We are now interested in the change of the angle variables ¢; over a period (full rev-
olution or back-and-forth motion of a coordinate ¢; with the remaining coordinates
kept fixed). It is given by

dgi ?g 9%’
Avg; = dqy = d
ki y§ o Lk o T0q Lk

a a8’ J 0 Jk

- ¢ — =L 5. 20.108
37 ¥ 2 U= 7, = o ( )

According to (20.107),
Ar@r = Vg Ty, (20.109)

if 7; is the “vibration time” (time interval of the period) of gz. A comparison
of (20.109) and (20.108) yields

Vet = 1. (20.110)
Thus,
1
Vg = — (20.111)
T

obviously are the frequencies of the gx-motion. In other words, according to (20.106)
the (fundamental) frequency vy for the coordinate g is vy =dE(Jy, ..., Jr)/dJk.

Equations (20.104) can also be inverted, which yields the original coordinates ¢,
with

gk =qk(P1, ..., 95), k=1,....f (20.112)

as functions of the new angle variable ¢;. When increasing ¢; by Ag; = 1 (keeping
the values of all other ¢ with k # i fixed), g; (and only this!) must run through a
period. This follows from (20.108): If gx (with k # i) ran through a period when g;
changes to ¢; + Ag; = ¢; + 1, then according to (20.108) the variable ¢ also should
increase by Agy = 1. But this shall not occur by assumption. Therefore if ¢; increases
to ¢; + 1, g; changes as follows:

v —> @i+ 1,
qi = qi for libration, (20.113)
qi — qi +qio for rotation.

For a libration, g; is periodic; for a rotation,

qi — %iqio (20.114)

is a periodic function of ¢;. Actually,

¢i = ¢i+1,
(20.115)
qi — ¢iqio — qi +qio — (@i + Dgio = q; — ¢igio.

Example 20.8
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We therefore can expand the separation coordinates ¢; (for libration) or ¢; — ¢;gio (for
rotations) in a Fourier series and write

qi(p1(@), ..., 05(1)) foo
— Z ar(lz)eﬂnw,-n
qi — @iqio(e1(®), ..., @r(1)) n=—00

+00
= Y afemiuirtin, (20.116)
n=—o0
where
1
a,gi)(ﬁl’lv---,§0i—17</7i+1»~--7</7f):/Qi(ﬁl)l,---,¢.f')€7i2ﬂn¢i dy;. (20.117)
0
The Fourier coefficients a,(li) (@1,...,0i—1, Qi+1, ..., ¢y) in general still depend on all

angle variables, except for ¢;.

We now imagine other variables x; which describe the system and are useful for
certain problems. They shall unambiguously depend on the ¢;(¢) and therefore are
also functions of the time. Then we can write

x1(q1(1), ... q7 (1))

+0oo +00
- 0} 2 (ny@+-+nppr)
- Z Z Anl ,,,,, ny€ : sl
np=-—00 nf=—00
e .
= Z Agl) """" nfezZH[(mU1+<.-+nfvf)t+(8nl+...+8nf)]’ I=1,..., f
ni,..., nf=—00 '

(20.118)

In the second step, we used ¢; = v;t + §;. The coordinates x; can be represented only
by a multiple Fourier series. Equation (20.118) now suggests that the motion x;(#) is
in general not periodic in time. For example, if ¢ increases by At = 1/vy, the first
exponential factor in (20.118) does not change because e!271V1A! = pi2mmivi(/vi) —
¢/?™1 = 1, but the other exponential factors in (20.118) vary. The system is therefore
called multiply periodic in the coordinates x;. If the system is simply periodic, the

frequencies vy, ..., vy must be correlated by f — 1 equations of the type
Ciivi +Cipvp+---+Cipvp =0, i=1,...,f—1 (20.119)
These are f — 1 equations for the f unknown quantities vy, ..., vs. It is evident that

besides v;, also vv; (v an arbitrary factor) is also a solution of (20.119). Let v; =
n;/m;; thus, the v; can be represented by the fraction n; /m;. Then

v,f:(mlmz.--mf)vi:(ml---mf)% (20.120)
1

are also solutions of (20.119). Hence, the vlf are integers. Since the solutions of
(20.119) can be determined only up to a common factor v, the general solution reads

Vi = apv, (20.121)
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where the a; = (mymy ---m ¢)n; /m; are integers, and v is a common factor. Thus, the
system is periodic if and only if all frequencies are commensurable. The fundamental
frequency vy is then the largest common divisor of all frequencies vy, ..., vy. If there
exist only s (with s < f — 1) relations of the form (20.119), s frequencies can be
rationally expressed by the remaining ones. The system (the motion) is then called
s-fold degenerate or (f — s)-fold periodic. Special cases are

e s = 0: the motion is f-fold periodic or nondegenerate;
e s = f — 1: the motion is single-periodic or fully degenerate.

20.2 Transition to Quantum Mechanics

In the last chapters, we have emphasized the formal aspects of mechanics. Although
for solving practical problems sometimes no advantages could be achieved, the in-
sights in the structure of mechanics provided by the Hamiltonian formalism con-
tributed essentially to the development of quantum mechanics. For example, the con-
cept of the phase integral was of fundamental importance for the transition to quantum
mechanics. The first clear formulation of the quantum hypothesis consisted of the re-
quirement that the phase integral take only discrete values; hence,

J=¢pdq=nh, n=1273,..., (20.122)

where £ is Planck’s action quantum, which has the value 7 = 6.6 - 10734 J's. We again
consider the case of the harmonic oscillator. In Example 20.2, we evaluated the phase
integral

m
J=27E /?. (20.123)

v = (1/2m)+/k/m was the frequency. With the quantum hypothesis, we then obtain
E, =nhv. (20.124)

Thus, the quantum hypothesis leads to the conclusion that the vibrating mass point
can take only discrete energy values E,. For the motion, this means that only certain
trajectories in the phase space are allowed. We therefore get ellipses for the phase-
space trajectories (compare Example 20.2), whose areas (the phase integral) always
differ by the amount 4. In this way, the phase space acquires a grid structure that is
defined by the allowed trajectories.

Each trajectory corresponds to an energy E,. In a transition between two trajec-
tories the mass point receives (or releases) the energy E, — E;;, = (n — m)hv. The
smallest transferred amount of energy is given by hv.

A
Y

Example 20.8

Fig. 20.8. In quantum me-
chanics, the phase-space tra-
jectories of the harmonic os-
cillator are ellipses that differ
by an area of h
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Since the action quantum / is so small, the discrete structure of the phase space
is significant only for atomic processes. For macroscopic processes the trajectories
in the phase space are so dense that one can consider the phase space as a contin-
uum. The energy quanta hv are so small that they have no meaning for macroscopic
processes. For example, the energy emitted in a transition in the hydrogen atom is
hv = 13.6eV (electron volt). Expressed in the (macroscopic) unit of Watt seconds
hv =2-10"'® Ws. The quantum hypothesis was confirmed by the explanation of the
spectra of radiating atoms.

EXERCISE |
20.9 The Bohr-Sommerfeld Hydrogen Atom

Problem. At the beginning of the development of modern quantum mechanics,
N. Bohr and A. Sommerfeld formulated a “quantization prescription” for periodic
motions. Accordingly, only such trajectories in phase space are admitted for which
the phase integral

fpadqaznah, ng=0,1,2,... (20.125)

is a multiple of Planck’s action quantum & = 6.626 - 1073*Js. The integral extends
over a period of motion. g, and p,, are the generalized coordinates and the canonically
conjugate momenta, respectively.

(a) Write the Lagrangian, the Hamiltonian, the Hamilton equations, and the constants
of motion for a particle in the potential v(r) = —e?/r.

(b) Calculate the bound energy states of the hydrogen atom from the condi-
tion (20.125).

Solution. (a) The Lagrangianis L =T — V = (1/2)mv? + ¢*/r. The Hamiltonian
then follows as

. 9L 1o, e 1 5 1 5, &
H— e L=-m?-T == - -— 20.126
Ea fage ST = — = omi - Smrgt — — ( )

in polar coordinates. The canonical momenta are

aL aL
p¢=T:mr2¢=£ and p, = — =mr. (20.127)
¢ or

L is the angular momentum of the particle.
Then

2 2 2
)4 e

H(p.q)=2r + L - (20.128)
2m  2mr r

Constants of motion are

(i) H = E, since H(g, p) does not explicitly depend on the time; and
(ii) p, = L, since g is a cyclic variable.
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L represents the constant angular momentum. The Hamilton equations read

) oH . O0H Dy
=", = Oy
SH 2 P 5 f}" o, (20.129)
pr == _ﬁlg’ r == - .
ar romr apr m
(b) The quantization conditions for the angular motion are
lh =‘¢p¢d<p=/£d¢=2nﬁ
0 (20.130)

h
= L=Ih, h=—, [=0,1,2,...,
2

i.e., the orbital angular momentum can take only integer multiples of 7. For the radial
motion, the phase integral equals

de 62 E
kh = prdr— 2m E+ dr, k=0,1,2,.... (20.131)

T'min

The limits of integration are determined from the condition

P— (20.132)
thus,
PO
mo g™ 2mE
(20.133)
r __e VA with A =—4mQEL* + me*)
"7 2E T 4mE B '

The integral in (20.131) is of the type

ar?+b VX
/ vartHorte . @, (20.134)
r r
and one easily verifies by differentiation that
VX b d d
O = SX+ 2 T _4o¢ T (20.135)
r VX () r/ X ()
Here, X (r) = ar? + br + c. Furthermore,
dr 1 . <2ar + b) i
=— arcsin for a <0 (since E < 0)
Mo RN R WV
and
dr 1 br +2c
= arcsin for c¢<0Oand A <O. 20.136
/ r/X(@r) J/—c (r«/—A) ( )

Exercise 20.9
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Exercise 20.9

Here,
A =4ac — b*. (20.137)
This leads to
VX (r) b . (2ar +2b
—d :\/ar2+br+c——arcs1n —_—
f r 2J=a NEYN
c br +2c¢
+ arcsin 20.138
v —c (r«/—A) ( )

fora <0,c <0, A <0.In our case (see (20.131)),

a=2mE, b =mc?, c=—L?
(20.139)
A =—4mQEL? + me").

For the integral, one gets (with E < 0)

2mEr? + 2me2r — L2 4

r

r

= V2mEr? + 2me2r — L2

2 2 2 2
me . (4mEr +2me ) . <2me r—2L )
+ ——arcsin| ———— | — Larcsin[| —————— ). (20.140)
—2mE ( v=A rv/—A
Insertion of the integration limits yields
2 2 4
e onL—kh. (20.141)
If one defines the “principal quantum number” n =1+ k =0, 1,2, ..., the formula

for the binding energy reads

me4

E, = BTk (20.142)
This formula for the discrete energy levels in the hydrogen atom agrees exactly with
the quantum mechanical result. Only the value n = 0, which was allowed in this con-
sideration, is excluded in the quantum mechanical approach. The underlying classi-
cal picture (electron moves in an elliptic orbit with the eccentricity e = /1 — (I/n)?)
leads however to contradictions and must be modified in quantum mechanics. Because
n =1+ k, the energy levels withn =1, 2, ..., are twofold, threefold, ..., degenerate.

EXERCISE |

20.10 On Poisson Brackets

Problem. If the functions F and G depend on the coordinates ¢g,, the momenta p,,
and the time ¢, the Poisson bracket of F and G is defined as follows:
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[F. G = Z 9F 9G 9F 8G Exercise 20.10
' B p 0ga Opy 0pa 9o .

Show the subsequent properties of this Poisson bracket:
(@) [F,G]=—[G, F],
() [F1+ F2, G]l=[F1, Gl +[F2, G,

F
(¢) [F,gr]=——, and
apr

IF
(d) [F,Pr]=8 .
qr

Solution. (a)
dF oG dF oG dG OF G OF
e
o 09 Opa  IPy 0qGa o 09o Opa Py 0o
= —[G, F].

We see that the Poisson bracket is not commutative.

(b)

R4 B o1 (LR 96 A+ By 0G
! > B 0qq 0pu 0pa 090

o

_ <8F1 G dF] 3G> +Z(8F2 G F, 8G>
p 0o Opa 0pa 9qu " 0o Opa 0pa 09y

=[F1,G] +[F2, G].

Therefore, the Poisson bracket is distributive.

(©)

oF 0 oF 0
[F,C]r]:Z< qr Qr>
o

39 o Pu 04

3, 9F IF
apa q}’ - apa ra apr

Here, 6,4 is the Kronecker symbol:

Sra=1 for r=a,

6rq =0 for r#a.
(d) Analogously, we find
oF 0 oF 9 oF oF
[F, p) = Z(—ﬁ _ —ﬁ) _ Z<—3m> _oF
P 9qa 0pa Opa 9qq o 09« 9qr

since dp,/dgq = 0.
We shall meet the rules on Poisson brackets in quantum mechanics again, since the
transition to quantum mechanics (the so-called canonical quantization) is performed
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Exercise 20.10

by the transition to operators and by replacing the Poisson bracket [, ] by the commu-
tator (1/ih){, }, where

{A,B}_ = AB — BA.

If we form, e.g., [g;, p;], we obtain

dqi Opj  qi Op;
D _2 Lt A LR R R 20.143
ar- b a <8qa 0pa  Opa 9qq Y ( )

In the canonical quantization, one passes from the classical momenta p; to operator
momenta ﬁj, and from the classical Poisson bracket [, ] to the quantum mechanical
Poisson bracket (1/ik){, }—. Thus, in the canonical quantization one substitutes the
relation (20.143) by

{qi, Pj}- = ihd;j. (20.144)

Equation (20.144) is satisfied if p; = —ihd/dq;:

d
'7’\' 7=_.h s )
{gi, pj} i {ql aqj}_

where the commutator operates on a function f(q1, ..., gs). For example,

9
—ih{a—,qi} f(qi,....qal
qj -

9 9
= —ih[—(qif(ql,...,qa)) _Qi_f(CIls---sCIa)i|
aq; 9q;

= —iﬁ&'j - f(@q1s---,90),

where the product rule was used and thus (20.144) is verified. The rules for the quan-
tum mechanical commutators are identical with those for the Poisson brackets. One
might say that quantum mechanics is another algebraic realization of the Poisson
brackets. As will be seen in quantum mechanics, this conclusion is premature and
in this form not correct.

EXERCISE |
20.11 Total Time Derivative of an Arbitrary Function Depending on ¢, p, and ¢

Problem. Let H denote the Hamiltonian. Show that for an arbitrary function depend-
ing on g;, p;, and t we have
df _of

E‘EHJC’H]'
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Solution. The total differential of the function f(p;, g;, t) reads Exercise 20.11
af
d t+ Z —dqa + gpn P (20.145)
af _df af . 3f
L = . 20.146
= = Z( an b ( )
By means of the Hamilton equations
oH oH .
8pa ‘Ioz ) Bqa - p o>

we can rewrite (20.146) as

d_f_g+z<af 3H  of 8H> af

dt — dt G o Pa G ot

+[f, H]. (20.147)
0ga Opy 0Py Iqq

Thus, the Poisson brackets enter automatically. Equation (20.147) reminds us even
more of the results of quantum mechanics than the analogies of the last problem. In
quantum mechanics we shall find the following expression for the time derivative of
an operator F:

dF 8FJF I{F H) (20.148)

dt  at ih T )
where H represents the Hamiltonian operator of the quantum mechanical problem. It
is, e.g., of the form

I TP o~ 0
H=H(x,p) with p=—ih—
ox

and depends in general on the coordinates, momentum operators, and possibly even

further quantities, e.g., spin.
________________________________________________________________________|]



Extended Hamilton-Lagrange Formalism 2 1

21.1 Extended Set of Euler-Lagrange Equations

The conventional formulation of the principle of least action (Hamilton principle,
see (18.25)) is based on the action functional S[q;(#)], defined by

_[" dg;
Slg; )] = L Qj,g,l‘ dt, (21.1)
fa

with L(gj,qj,t) denoting the system’s conventional Lagrangian, and (q1(?), ...,
gn(t)) the set of configuration space variables as functions of time. In this formu-
lation, the independent variable time ¢ plays the role of the Newtonian absolute time.
The clearest reformulation of the least action principle for relativistic physics is ac-
complished by treating the time 7 (s) = go(s)/c—ijust like the configuration space vari-
ables g (s)—as a dependent variable of a newly introduced independent variable, s.
The idea behind is to place all space-time variables on equal footing. The action func-
tional (21.1) then rewrites in terms of an extended Lagrangian L

5b dqg; dt
SI[Qj(s)’t(S)]:/ Ll(st%,t, £>ds. (21.2)

As the action functional (21.2) has the form of (21.1), the subsequent Euler—Lagrange
equations that determine the particular path (g;(s),#(s)) on which the value of the
functional S[g;(s), £(s)] takes on an extreme, adopt the customary form,

d ( oLy > aL 0 21.3)
- d - — = Uu. .
ds\y(<e))  dqp

Here, the index =0, ..., n spans the entire range of extended configuration space

variables. In particular, the Euler—Lagrange equation for # (s) writes

d (9L Ly
) 7=
ds

The equations of motion for both g;(s) and (s) are thus determined by the extended
Lagrangian Li. The solution g (¢) of the Euler-Lagrange equations that equivalently
emerges from the corresponding conventional Lagrangian L may then be constructed
by eliminating the evolution parameter s.

As the actions, S and i, are supposed to be alternative characterizations of the
same underlying physical system, the action principles 65 = 0 and 65| = 0 must hold
simultaneously. This means that

S dt Sh
8/ L—ds=8/ Lids,
Sa ds Sa
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which, in turn, is assured if both integrands differ at most by the s-derivative of an
arbitrary differentiable function F(g;, t)

Functions F(g;, t) define a particular class of point transformations of the dynamical
variables, namely those ones that preserve the form of the Euler—Lagrange equations.
Such a transformation can be applied at any time in the discussion of a given La-
grangian system and should be distinguished from correlating L and L. We may thus
restrict ourselves without loss of generality to those correlations of L and L1, where
F = 0. In other words, we correlate L and L without performing simultaneously
a transformation of the dynamical variables. We will discuss this issue in the more
general context of extended canonical transformations in Sect. 21.3. The extended
Lagrangian L is then related to the conventional Lagrangian, L, by

dg; dt dq; dt dqg; dgqi/ds
Lilgn & 0 S8 — (g, 2 )2 i . 214
‘(q’ ds ds) (qf dr ') ds dr  di/ds @14)

The derivatives of L from (21.4) with respect to its arguments can now be expressed
in terms of the conventional Lagrangian L as

oL oL dt
! = T i=11"-1n7 (21.5)
dgi  9dgids
oL, oL dt
- = 21.6
Jt ot ds ( )
oL oL
dql. = i=1,...,n, 21.7)
o(FE) ()
dLy "\ 3L dg;
- el (21.8)
dt d i
(%) o)

With go = ct, (21.7) and (21.8) yield for the following sum over the extended range
uw=0,...,n of dynamical variables

" 9L, dq, "\ AL dq; |dt <~ OL dg;
=|L— —— |—+ -
Z (dﬂ) ds Z a(%) dt |ds Z 3(%) ds

n=0 0 ds i=1 i=1

=1L.

The extended Lagrangian L thus satisfies the constraint

", 0L, d
Ll_za(ﬁ)%zo. (21.9)
u=0 ds

The correlation (21.4) and the pertaining condition (21.9) allows two interpretations,
depending on which Lagrangian is primarily given, and which one is derived. If the
conventional Lagrangian L is the given function to describe the dynamical system in
question and L is derived from L according to (21.4), then L is a homogeneous form
of first order in the n 4 1 variables dqo/ds, ..., dq,/ds. This may be seen by replac-
ing all derivatives dq, /ds with a x dg,,/ds, a € R in (21.4). Consequently, Euler’s
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theorem on homogeneous functions states that (21.9) constitutes an identity for L.
The Euler-Lagrange equation involving dt/ds then also yields an identity, hence, we
do not obtain a substantial equation of motion for 7(s). In this case, the parameteri-
zation of time 7(s) is left undetermined—which reflects the fact that a conventional
Lagrangian does not provide any information on a parameterization of time.

In the opposite case, if an extended Lagrangian L is the primary function to de-
scribe our system, then L is no longer a homogeneous function, in general. In that
case, (21.9) no longer establishes an identity but (21.9) furnishes a constraint function
for the system. Furthermore, the Euler—Lagrange equation involving d¢ /ds then yields
a non-trivial equation of motion for 7 (s). The conventional Lagrangian L may then be
deduced from (21.4) by means of the constraint function (21.9).

To summarize, by switching from the conventional variational principle (21.1) to
the extended representation (21.2), we have introduced an extended Lagrangian L
that additionally depends on d¢(s)/ds. Due to the emerging constraint function (21.9),
the actual number of degrees of freedom is unchanged. Geometrically, the system’s
motion now takes place on a hyper-surface, defined by (21.9), within the tangent bun-
dle T (M x R) over the space-time configuration manifold M x R. This contrasts with
the conventional, unconstrained Lagrangian description on the time-dependent tangent
bundle (TM) x R.

EXAMPLE |

21.1 Extended Lagrangian for a Relativistic Free Particle

As only expressions of the form ) ; ‘152 — ¢?t? are preserved under the Lorentz group,
the conventional Lagrangian for a free point particle of rest mass mq, given by

dq; 1 dgi \?
Lnr(Qjait],t)zT—Vz—mo <ﬁ> — moc?, (21.10)
i=1

is obviously not Lorentz-invariant. Yet, in the extended description, a correspond-
ing Lorentz-invariant Lagrangian L; can be constructed by introducing s as the
new independent variable, and by treating the space and time variables, g;(s) and
qo(s) = ct(s), equally. This is achieved by adding the corresponding derivative of the
time variable ¢ (s),

3 2
dqj dt 1 1 dqgi dt
L t,— | == — — ) —1]. 21.11
1<6]/, 75 ’ds) 5 moc |: ZZ( ) <ds> :| ( )

The constant third term has been defined accordingly to ensure that L converges
to Ly in the limit dt/ds — 1. Of course, the dynamics following from (21.10) and
(21.11) are different—which reflects the modification our dynamics encounters if we
switch from a non-relativistic to a relativistic description. With the Lagrangian (21.11),
we obtain from (21.9) the constraint

( >2—i22j:<d‘1’> —0. 21.12)
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Example 21.1

As usual for constrained Lagrangian systems, we must not insert back the constraint
function into the Lagrangian prior to setting up the Euler—Lagrange equations. Phys-
ically, the constraint (21.12) reflects the fact that the square of the four-velocity vec-
tor is constant. It equals —c? if the sign convention of the Minkowski metric is de-
fined as n*¥ =n,, = diag(—1, +1, 41, +1). We thus find that in the case of the La-
grangian (21.11) the system evolution parameter s is physically nothing else than the
particle’s proper time In contrast to the non-relativistic description, the constant rest
energy term — 2mc in the extended Lagrangian (21.11) is essential. The constraint
can alternatively be expressed as

ds 1 dq, 1
dt c? 4 ’

which yields the usual relativistic scale factor, y. The conventional Lagrangian L that
describes the same dynamics as the extended Lagrangian L; from (21.11) is derived
according to (21.4)

dqj dqj dt\ds
L(qg; Lifq;, 2, )2
<q” dt’) ‘(qf’ ds ' ds d;

= 2 12 dai’\" 21.13)
= e c? - dt )’ ’

We thus encounter the well-known conventional Lagrangian of a relativistic free
particle. In contrast to the equivalent extended Lagrangian from (21.11), the La-
grangian (21.13) is not quadratic in the derivatives of the dependent variables, g, (t).
The loss of the quadratic form originates from the projection of the constrained
description on the tangent bundle 7(M x R) to the unconstrained description on
(TM) x R. The quadratic form is recovered in the non-relativistic limit by expanding
the square root, which yields the Lagrangian Ly, from (21.10).

EXAMPLE |

21.2 Extended Lagrangian for a Relativistic Particle in an External Electromag-
netic Field

The extended Lagrangian L of a point particle of rest mass mq and charge ¢ in an
external electromagnetic field that is described by the potentials ¢ (g;, ¢) and A(g;, 1)
is given by

dg; dt 1 dg; dt
Lo & L) = 2 —1
1(61], ds b ds) |: 22( ) (ds) :|

+2 A'—'—é‘(ﬁ— (21.14)
c
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The associated constraint function coincides with that for the free-particle Lagrangian
from (21.12) as all terms linear in the velocities drop out calculating the differ-
ence in (21.9). Similar to the free particle case from (21.13), the extended La-
grangian (21.14) may be projected into (TM) x R to yield the well-known conven-
tional relativistic Lagrangian L

dg; da, da,
L<qj,%,t>=—moc2 1—_2(") Z T NCIRE)

Again, the quadratic form of the velocity terms is lost owing to the projection.

For small velocities dg;/dt, the quadratic form is regained as the square root in
(21.15) may be expanded to yield the conventional non-relativistic Lagrangian for a
point particle in an external electromagnetic field,

d d: dl
Lnr(q,, , ) OZ( q) §ZA —q—;qs moc?. (21.16)

Significantly, this Lagrangian can be derived directly, hence without the detour over
the projected Lagrangian (21.15), from the extended Lagrangian (21.14) by letting
dt/ds — 1.

Comparing the Lagrangian (21.16) with the extended Lagrangian from (21.14),
we notice that the transition to the non-relativistic description is made by identify-
ing the proper time s with the laboratory time ¢ = g/c. The remarkable formal sim-
ilarity of the Lorentz-invariant extended Lagrangian (21.14) with the non-invariant
conventional Lagrangian (21.16) suggests that approaches based on non-relativistic
Lagrangians L,; may be transposed to a relativistic description by (i) introducing the
proper time s as the new system evolution parameter, (ii) treating the time 7(s) as
an additional dependent variable on equal footing with the configuration space vari-
ables g (s)—commonly referred to as the “principle of homogeneity in space-time”—
and (iii) by replacing the conventional non-relativistic Lagrangian Ly, with the cor-
responding Lorentz-invariant extended Lagrangian L1, similar to the transition from
(21.16) to (21.14).

21.2 Extended Set of Canonical Equations

The Lagrangian formulation of particle dynamics can equivalently be expressed as a
Hamiltonian description. The complete information on the given dynamical system is
then contained in a Hamiltonian H, which carries the same information content as the
corresponding Lagrangian L. It is defined by the Legendre transformation

n

dgi dq;
H(q/',ij):Zpi%—L(qj,d—t’,t>, (21.17)
i=1

with the canonical momenta p; being defined by

oL

2(E)

pi =

Example 21.2
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Correspondingly, the extended Hamiltonian H; is defined as the extended Legendre
transform of the extended Lagrangian L as

n

dqi dt dqj dt
Hi(qj. pj.t.e) =) pi—— —e——L (q,;, =Lt =) (21.18)
P ds ds ds ds

Herein, —e denotes the conjugate quantity of time ¢. Corresponding to the con-
ventional formalism, we assume the extended Lagrangian L; to be regular, which
means that the Hesse matrix 82L1/[8(dqﬂ/ds)8(dq,,/ds)] be invertible. We know
from (21.7) that for i =1, ..., n the momentum variable p; is equally obtained from
the extended Lagrangian L1,

0L
dgi\
(F)
This fact ensures the Legendre transformations (21.17) and (21.18) to be compatible.

For the corresponding definition of po, we must take some care as the derivative of L
with respect to dt /ds evaluates to

pi = (21.19)

0L ndg oL
AT

The momentum coordinate pg that is conjugate to go = ct must therefore be defined
as

(Q/ pjat)

po(s) =—@, E(S)iH(q/'(S),pj(S),t(S)), (21.20)

with e(s) representing the instantaneous value of the Hamiltonian H at s, but not the
function H proper. This distinction is essential as the canonical coordinate py must
be defined—Ilike all other canonical coordinates—as a function of the independent
variable only. The reason is that the g,, p, with u =0, ..., n depict the coordinates
pertaining to the base vectors that span the (symplectic) extended phase space. We
may express this fact by means of the comprehensible notation

oLy ) o e(s)=——1L(5 (21.21)
a (%) a(4h)

The constraint function from (21.9) translates in the extended Hamiltonian description
simply into

po(s) =

Hi(gj(s). pj(s),1(s), e(s)) =0. (21.22)

This means that the extended Hamiltonian H; directly defines the hyper-surface on
which the classical motion of the system takes place. The hyper-surface lies within the
cotangent bundle 7*(M x R) over the same extended configuration manifold Ml x R
as in the case of the Lagrangian description. Inserting (21.19) and (21.21) into the
extended set of Euler-Lagrange equations (21.3) yields the extended set of canonical
equations,

dpu _ M dq, 9H,
ds  dq,’ ds  dp,

(21.23)
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The right-hand sides of these equations follow directly from the Legendre transforma-
tion (21.18) since the Lagrangian L; does not depend on the momenta p, and has,
up to the sign, the same space-time dependence as the Hamiltonian H. The extended
set is characterized by the additional pair of canonical equations for the index u =0,
which reads in terms of 7(s) and e(s)

E=aﬂ, ﬁ:—aﬂ. (21.24)
ds ot ds de

In contrast to the total time derivative of the Hamiltonian H(g;, p;,t), the total s
derivative of the extended Hamiltonian H;(q,, py) always vanishes. Calculating the
total s derivative of Hj, and inserting subsequently the extended set of canonical equa-
tions (21.23), we find

dH1 _Z[aﬂl o aHldﬂ]:i[aHI dH1 0H: 3H1]
dqyu ds op, ds r 0qu 0ppu 8pu 0qu

Formally, an extended Hamiltonian H; (p,, g,) = const. thus describes an autonomous
Hamilton system, hence a system that does not explicitly depend on its independent
variable.

By virtue of the Legendre transformations (21.17) and (21.18), the correlation
from (21.4) of extended and conventional Lagrangians is finally converted into

dt
HI(CI]vP,t,@)Z(H(CI],p,t)_e)_,

21.25
75 ( )

as only the term for the index u = 0 does not cancel after inserting (21.17) and (21.18)
into (21.4).

The conventional Hamiltonian H is defined as the particular function whose
value coincides with the extended phase-space variable e. In accordance with (21.20)
and (21.22), we thus determine H for any given extended Hamiltonian H; by solving
Hy =0 for e. Then, H emerges as the right-hand side of the equation e = H.

In the converse case, if merely a conventional Hamiltonian H is given, and Hj is set
up according to (21.25), then the canonical equation for d¢/ds yields an identity, hence
allows arbitrary parameterizations of time. This is not astonishing as a conventional
Hamiltonian H generally does not provide the information for an equation of motion
for 7 (s).

EXAMPLE |

21.3 Trivial Extended Hamiltonian

The trivial extended Hamiltonian H; is defined by

According to (21.24), the canonical equation for dt/ds is obtained as

dt _ 0H,
ds ~  de
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Up to arbitrary shifts of the origin of our time scale, we thus identify t (s) with s. As all
other partial derivatives of H; coincide with those of H, so do the respective canonical
equations. The system description in terms of H; from (21.26) is thus identical to the
conventional description by a Hamiltonian H and does not provide any additional
information.

EXAMPLE |

21.4 Hamiltonian of a Free Relativistic Particle

We present the systematic approach how to set up the Lorentz-invariant extended
Hamiltonian H;, for a given non-invariant conventional Hamiltonian H,.. For the
case of a free particle of rest mass m, the non-relativistic Hamiltonian that includes
the particle’s rest energy is given by

2
p
Hye(p) = oo moc?. (21.27)

Herein, p denotes the 3-component vector of particle momenta, p = (p1, p2, p3). The
equivalent extended Hamiltonian (21.26) that yields the same dynamics in terms of the
subsequent canonical equations (21.23) is then

2
14
Hin(p,e) = 2 — e+ moc?, (21.28)

in conjunction with the general side condition for extended Hamiltonians,
Hin(q, p,t,e) =0. As solely expressions of the form q2 — 22 and p2 — 62/62
are maintained under Lorentz transformations, (see Example 21.18), the Hamiltoni-
ans (21.27) and (21.28) are obviously not Lorentz invariant. In the description of ex-
tended Hamiltonians, the corresponding Lorentz-invariant form of (21.28) can easily
be constructed

2

1 5 e 1 5
Hy(p,e) = Z—mo 3 + Emoc . (21.29)

The constant term was adjusted to preserve the relation e = mqc? for p = 0. The side
condition H; = 0, which represent an implicit function, now yields the relativistic
energy-momentum correlation

e =p* +mdct, (21.30)
Although p and e denote formally independent canonical variables, only those com-
binations of p and e have physical significance that satisfy (21.30). Of course,
the canonical equations that follow from (21.29) are different from those following
from (21.28). This reflects the modification that a system’s description encounters
if we switch from a non-relativistic to a relativistic viewpoint. The extended set of
canonical equations (21.23) emerging from the extended Hamiltonian (21.29) is

_He _dpi _ OHir _ dgi _ pi
dg; ds ’ ap; ds mg
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0H _ de 0H| _ dt e

ar ds de ds  moc?’

In conjunction with the energy-momentum correlation from (21.30), the non-trivial
canonical equations are expressed as
2.2 2.4
dg; pi dt e \ Pet Hmye

_p o d_ e , 2131
ds  myg ds  moc? moc? ( )

We may finally rewrite the canonical equation for the g; in terms of the time ¢ as the

independent variable

dgi _dgids _ pimoc® _pic>  pic®  3H(p)

dt  dsdt mgy e e

(21.32)

P22 + m(2)64 opi

But this is nothing else than the non-trivial canonical equation of the conventional
Hamiltonian

Hy(p) = e =/ p2c® + m}c*. (21.33)

We thus encounter the well-known conventional Hamiltonian H,(p) of the free rela-
tivistic particle. In contrast to the extended Hamiltonian (21.29), the physically equiv-
alent conventional Hamiltonian (21.33) does not manifest anymore its Lorentz invari-
ance.

To complete this example, we show that the extended Hamiltonian (21.29) also
emerges as the Legendre-transformed Lagrangian (21.11) from Example 21.1. The
extended Legendre transformation that relates extended Lagrangians with extended
Hamiltonians was defined in equations (21.18), (21.19), and (21.21) of Sect. 21.2. For
the addressed case, the canonical momenta evaluate to

o 0Ly —m@ e__aLl o Czﬂ
p‘_a(%)_ 05 ~o(iny T as

The extended Hamiltonian is then obtained by expressing the derivatives dg; /ds and
de/ds that are contained in the Lagrangian and in the Legendre transformation rule in
terms of the momenta p; and e,
2 2
p; 2 2 1

p; e
Hi(p.e)=3 t————Li(p.e), Li(p.e)=) - — —Smoc?.
; oo i

2mgy  2mgc? 2
The extended Hamiltonian is then

1 , €7 1,
Hi(p,e)= 2—m0 § p;i — 2 + Emoc ,
i

which coincides with (21.29).

EXAMPLE |

21.5 Hamiltonian of a Relativistic Particle in a Potential V (¢, ¢)

The non-relativistic dynamics of a particle in a potential V (g, ¢) is described by the

Hamiltonian
2

Hu(g. p.t) = 2”— +V(q.1). 21.34)
mo

Example 21.4



424

21 Extended Hamilton-Lagrange Formalism

Example 21.5

Analogously to the dynamics of a free relativistic particle, treated in Example 21.4,
the relativistic dynamics of a particle in an external potential V (g, ¢) is described by
the extended Hamiltonian

1 e—Vig.n0\?| 1
Hi(q,p.t,e)=—|p* — ez Vig.\ —moc?. (21.35)
2myg 2

c

The constant term was chosen to ensure that for p =0 and V (q, ) = 0 the constraint
Hy;=0leads to e = moc2. Consequently, for the general case H; ; = 0 induces the
scleronomous constraint

(e—V(g,n) = p> +mdct. (21.36)

Again, q, p, t and e represent independent canonical variables, but only those combi-
nations of ¢, p, t and e have a physical meaning which satisfy (21.36).

The extended set of canonical equations (21.23) emerging from the extended
Hamiltonian (21.35) is

_OHiy _dpi _ e—V(g,1) 3V OHir _dqi _ pi
dg; ds moc?  dq;’ ap; ds mg’
8H1,r_de_e—V(q,t) oV 8H1,r_ dt _e—V(q,t)
ar  ds  moc: A’ de ds  moe?

We may express the canonical equations equivalently using the time ¢ as the indepen-
dent variable, and eliminate the canonical variable e by means of the constraint (21.36)

dpi _dpids  e—V(g.)dV moc> OV 3H,
dt  ds dt moc2  dgie—Vi(g,t)  dq;  q;
dgi _dgids p;  moc? pic? pic? _0H;

de —dsdimoe=Vig.n e=V@.n  [po o0 0

de deds e—V(q,1)dV moc? A

dt — dsdt  moc2 9t e—V(g,t) ot ot

These equations can be conceived to represent the canonical equations emerging from
the conventional Hamiltonian

Hi(q,p.1)=e=,/p*2+mic*+V(q,0). (21.37)

We thus encounter the Lorentz invariant form of the conventional Hamiltonian for a
particle in an external potential V (g, t). The Hamiltonians H , from (21.35) and H;
from (21.37) are physically equivalent, hence describe the same dynamics. On the
other hand, the extended Hamiltonian H ; additionally determines the parameteriza-
tion of time t =7 (s).

We finally note that the extended Hamiltonian (21.35) can be derived according
to (21.18), (21.19), and (21.21) as the Legendre transformed function of the extended
Lagrangian
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dqj dt
Ll<qjv—vt1_)

ds ds
= Lipe?| L3 (% (Y | S vign (2138)
IR —\ ds ds 05 '

From (21.38), the correlations of the “velocities” dg; /ds and dt /ds with the canonical
momenta, p; and —e, evaluate to

oL dg; oL dt
(= =m0, == =moc? T+ V(g. 1), (21.39)
() s 2(5) s

EXAMPLE |

21.6 Relativistic “Harmonic Oscillator”

In this example, we discuss the relativistic motion of a particle in a quadratic external
potential. According to (21.35), the extended Hamiltonian of this system is given by

1 e— lqu 2 1
Hi (g, p,e)=~—|p* = —2—) |+ zmoc™. (21.40)
2mg c 2

The associated constraint H; ((q, p, ¢) = 0 yields a relation of the formally indepen-
dent canonical variables p, q, and e

1 2
p2 — <e - 5qu> +mict =0. (21.41)

Solving this relation for e, we obtain the corresponding conventional Hamiltonian H;
as the right-hand side of the equation e = H;,

1
Hi(q, p) =/ p2c? + m}c* + Equ' (21.42)

The extended set of canonical equations following from the extended Hamil-
tonian (21.40) are

0H: _dgi _ pi _aHl,r_@__e—%quk '
ap; ds mg’ dg; ds moc? ai-
OHy; _de _ OH,, dt _e—5kq*

ar  ds de ds  moc?

We may again express these equations equivalently by eliminating e according
to (21.41) and by replacing s with the laboratory time ¢ as the system’s independent
variable

dt _ﬁﬁ_ /p2c2+m%c4_ 8p,~’

dp,-_ dpids_k _8Hr

di  dsdi T g

dg; dq;ds pic? 0 H;

(21.43)

Example 21.5
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As expected, we encounter the canonical equations of the conventional Hamil-
tonian (21.42). The pair of first-order equations can be merged into a single second-
order equation for g; (¢),

.2 3
G + i[l _1 gt)]z g(t) =0. (21.44)
mo c

For ¢(t) — ¢ we thus have §(¢) — 0. In agreement with the postulates of special
relativity, the speed of light, ¢, constitutes the absolute limit for the particle’s velocity,
q(t). The term in brackets forms a power of the relativistic correction factor, y

-\ 2
y2=1— <1> . (21.45)
c
The equation of motion (21.44) may thus be rewritten concisely as
.. k
q@) + 54()=0. (21.46)
moy

In this form, the equation of motion appears to agree with its non-relativistic coun-
terpart, except for the occurrence of the relativistic correction factor y3 in front of
the rest mass term mg. For ¢ < ¢, hence for y — 1, indeed the equation of motion
of the ordinary harmonic oscillator comes out. Yet, the explicit form (21.44) of the
equation of motion shows that we are dealing with a non-linear system, with solutions
that no longer consists of harmonic oscillations. Thus, strictly speaking, a relativistic
oscillator can never be a harmonic oscillator.

In accelerator physics, the quantity moy? is referred to as the “longitudinal mass”
of an ion beam particle. In the laboratory system, the longitudinal oscillation fre-
quency of the relativistic motion of a particle in an accelerator or high energy storage
ring appears as if the particle’s mass be increased by a factor of 3.

EXAMPLE |

21.7 Extended Hamiltonian for a Relativistic Particle in an External Electromag-
netic Field

The Hamiltonian counterpart H; of the extended Lagrangian (21.14) from Exam-
ple 21.2 for a relativistic point particle in an external electromagnetic field is obtained
via the Legendre transformation prescription from (21.18). According to (21.19)
and (21.21), the canonical momenta p; and pq are introduced by

oL dg;
pPi = dl. =m0ﬁ+£Ai(qJ),
gy s e
21.47
Po= oLy _mO@_E(ﬁ(‘I r) ( )
=—— == 1),
a(%) ds c

We notice that the kinetic momentum p; x = mdgq; /ds differs from the canonical mo-
mentum p; in the case of a non-vanishing external potential A; # 0. The condition for
the Legendre transform of L to exist is that its 4 x 4 Hessian matrix with elements
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92L, /[0(dq,,/ds)d(dq, /ds)] must be non-singular, hence that the determinant of this
matrix does not vanish. For the extended Lagrangian (21.14) from Example 21.2, this
is actually the case as

. ( 921, > 420
et ——— | =m .
dq dgy 0
335 )o(F)
This falsifies claims occasionally found in literature that the Hesse matrix associated
with an extended Lagrangian L be generally singular, and that for this reason an ex-
tended Hamiltonian H; generally could not be obtained by a Legendre transformation
of an extended Lagrangian L.

With the Hessian condition being actually satisfied, the extended Hamiltonian H;
that follows as the Legendre transform (21.18) of L evaluates to

1 2 _ i 2 1
Hi(q,p.t,e)= %[(P - %A(q, t)) - <%> :| + Emocz. (21.48)

The constraint H; = 0 then furnishes the usual relativistic energy-momentum relation

2
(e—¢d(g.n)’ =c? (p - %A(q, t)> +mct. (21.49)

The conventional Hamiltonian H (g, p,t) that describes the same dynamics is deter-
mined according to (21.20) as the particular function, whose value coincides with e.
Solving H; = 0 from (21.48) for e, we directly find H as the left-hand side of the
equation H =e,

2
Hz\/cz<p—§A(q,t)> +mdct+¢p(g 1) =e. (21.50)

The Hamiltonian Hy(q, p,t) that describes the particle dynamics in the non-
relativistic limit is obtained from the Lorentz-invariant Hamiltonian (21.50) by ex-
panding the square root

2
Hnr:L<p—£A(q,t)> +¢p(q. 1) + moc?. (21.51)
2mg c

In contrast to the extended Lagrangian description, a direct way to transpose the rel-
ativistic extended Hamiltonian from (21.48) into the non-relativistic Hamiltonian Hy;
does not exist. We conclude that the Lagrangian approach is more appropriate if we
want to “translate” a given non-relativistic Hamilton-Lagrange system into the corre-
sponding Lorentz-invariant description.

In order to show that the extended Hamiltonian (21.48) and the well-known con-
ventional Hamiltonian (21.50) indeed yield the same dynamics, we now set up the
extended set of canonical equations (21.23) for the extended Hamiltonian (21.48)

@c3<kc)aAk;e 0¢
k=1

ds moc 4=

de e ¢ JAg g ¢
I = __Z<Pk - ;Ak>— + o (e—=C¢)—,

Example 21.7
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dg; 1
i _(Pi - £Ai>,
ds mo c

dt
ds ~ mgc?

(21.52)

From the last equation, we deduce the derivative of the inverse function s = s(¢) and
insert the constraint from (21.49)

ds moc? moc?

dte=td Joagp—Cag.n) +md

(21.53)

The canonical equations (21.53) can now be expressed equivalently with the time ¢ as
the independent variable

dpi _ dpids
dt —  ds dt
e ¢ Ak ¢
=- > Z(pk_;Ak)a._'_{T’
\/CZ(P—%A(q,t)) +mict k % L
de deds
(e ¢ 0Ag ¢
== ; , Z(pk_;Ak>W+§5’
Jp - LA, 0) +mict T
dgi dgid 2
dgi _ dgids _ ¢ (,,i_%Ai),

dt — dsdt 2
Ve p — A0 +mied
The right-hand sides of (21.54) are exactly the partial derivatives d H /dq;, d H/dt, and
d H /dp; of the Hamiltonian (21.50)—and hence its canonical equations, which was to
be shown.
The physical meaning of the dt/ds is worked out by casting it to the equivalent
form

—%A 2 2
S PP s L L0k cz(;“)) = 1+<pk(s)> =),
ds myc

with p; (s) the instantaneous kinetic momentum of the particle. The dimensionless
quantity dt/ds thus represents the instantaneous value of the relativistic scale fac-
tor y.

21.3 Extended Canonical Transformations

The conventional theory of canonical transformations is built upon the conventional
action integral from (21.1). In this theory, the Newtonian absolute time ¢ plays the role
of the common independent variable of both original and destination system. Similarly
to the conventional theory, we may build the extended theory of canonical equations
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on the basis of the extended action integral from (21.2). With the time ¢ = go/c and the
configuration space variables g; treated on equal footing, we are enabled to correlate
two Hamiltonian systems, H and H’, with different time scales, ¢ (s) and T (s), hence
to canonically map the system’s time ¢ and its conjugate quantity e in addition to the
mapping of generalized coordinates ¢ and momenta p. The system evolution parame-
ter s is then the common independent variable of both systems, H and H'. A general
mapping of all dependent variables may be formally expressed as

Q[LZQ/,L(qva Dv), P/L:P[L(q\h pv), m=0,...,n (21.55)

Completely parallel to the conventional theory, the subgroup of transformations (21.55)
that preserve the action principle §S; = 0 of the system is referred to as “canonical.”
The action integral (21.2) may be expressed equivalently in terms of an extended
Hamiltonian by means of the Legendre transformation (21.18). We thus get the fol-
lowing condition for a transformation (21.55) to be canonical

/a |:Zpu——H1 qv,p,,):|ds=5/:Z |:ZP“ P Hl(QU, ):|ds
(21.56)

As we are operating with functionals, the condition (21.56) holds if the integrands dif-
fer at most by the derivative d F /ds of an arbitrary differentiable function Fi(q,, Q)

d " do dF
Zpuﬂ_Hl ZP“—M_ {+d—sl. (21.57)

We restrict ourselves to functions Fi(q,, Q) of the old and the new extended config-
uration space variables, hence to a function of those variables, whose derivatives are
contained in (21.57). Calculating the s-derivative of Fi,

d 0F dg, OF d
i Z[ F1dqu | 07 Q“] (21.58)

dq, ds BQM ds

we then get unique transformation rules by comparing the coefficients of (21.58) with
those of (21.57)

9T, 9T,
pu=—t P,=——L  H =H,. (21.59)
8% 00,

JF1 1is referred to as the extended generating function of the—now generalized—
canonical transformation. The extended Hamiltonian has the important property to be
conserved under these transformations. Corresponding to the extended set of canon-
ical equations, the additional transformation rule is given for the index u = 0. This
transformation rule may be expressed equivalently in terms of 7(s), e(s), and 7' (s),
E(s) as

aF aF

e=——-, E=——7f (21.60)
ot oT
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with E, correspondingly to (21.20), the value of the transformed Hamiltonian H'

E(s)
Pt

Po(s) = — E(s)Z H'(Q(s), P(s), T(s)). (21.61)

The transformed Hamiltonian H’ is finally obtained from the general correlation of
conventional and extended Hamiltonians from (21.25), and the transformation rule
H{ = H, for the extended Hamiltonian from (21.59)
[H'(Q,P,T)- E]d—T =[H(q.p.,1)— e]—t
b 9 ds b K ds .
Eliminating the evolution parameter s, we arrive at the following two equivalent trans-

formation rules for the conventional Hamiltonians under extended canonical transfor-
mations

aT
[H'(Q.P.T) - E]E =H(q,p,1)—e,
(21.62)

[H(g. p.1) — ] o= = H'(Q. P.T) —
aT
The transformation rules (21.62) are generalizations of the rule for conventional
canonical transformations as now cases with T # ¢ are included. We will see at the
end of this section that the rules (21.62) merge for the particular case 7 = ¢ into the
corresponding rules (19.10), (19.12) of the conventional canonical transformation the-
ory.
By means of the Legendre transformation

- dF
Foqu. Py =Fi(qv. Q)+ Y QuPu.  Pu= —5, (21.63)
u=0 ®

we may express the extended generating function of a generalized canonical trans-
formation equivalently as a function of the original extended configuration space vari-
ables g, and the extended set of transformed canonical momenta P,. As, by definition,
the functions ¥ and J agree in their dependence on the g, so do the corresponding
transformation rules

0F  0F

gy, g, "

This means that all g, do not take part in the transformation defined by (21.63). Hence,
for the Legendre transformation, we may regard the functional dependence of the gen-
erating functions to be reduced to F; = F1(Q") and F, = F»(P,). The new transfor-
mation rule pertaining to J, thus follows from the P,-dependence of F;

8}"2 B dF1 90, 30, aP,
Z[agu aP, P ®ap, +Q“3P

n

90 90
_Z[ 1t 3PM PMB—P/:"‘QM‘SW}

= 0.
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The new set of transformation rules, which is, of course, equivalent to the previous set
from (21.59), is thus

_ % 7

= , =—, H{ = H;. 21.64
94, Ou 9P, | =Hi ( )

Pu

Expressed in terms of the variables q, p,t,e,and Q, P, T, E the new set of coordinate
transformation rules takes on the more elaborate form

0 0 0 0
R R AR B
qi

(21.65)

= -, e 5 = .
P at oE

Pi

Similarly to the conventional theory of canonical transformations, there are two more
possibilities to define a generating function of an extended canonical transformation.
By means of the Legendre transformation

_oA

F3(pv, Ov) = Fi(qv, Qv)_ZqMP;L» Pu= EY
=0 du

we find in the same manner as above the transformation rules

0F3 0F3
du = — , Pp, =T a4
apu aQ/L

H{=H,. (21.66)

Finally, applying the Legendre transformation, defined by

0F3

n
Fa(po, P)=F3(pv, Q)+ Y QuPu,  Pu= TR
s

u=0
the following equivalent version of transformation rules emerges

0% 7,

— , == H{ = H;. 21.67
I, 9P, = (21.67)

qu =

Calculating the second derivatives of the generating functions, we conclude that the
following correlations for the derivatives of the general mapping from (21.55) must
hold for the entire set of extended phase-space variables,

8Qu_8pv aQM__BQV

aqy BPM’ apy BPM’ (21.68)
0P, dpy P, dqy '
aqy aQu ' opy 8QM.

Exactly if these conditions are fulfilled for all u,v =0, ..., n, then the extended co-
ordinate transformation (21.55) is canonical and preserves the form of the extended
set of canonical equations (21.23). Otherwise, we are dealing with a general, non-
canonical coordinate transformation that does not preserve the form of the canonical
equations.
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21.8 Identical Canonical Transformation

As the first example of an extended generating function F>(q;, P}, t, E), we consider
the generating function of the identical transformation

n n
Fa(qj, Pj 1, E)=") quPu=7 qiPi—1E.
n=0 i=1

The particular transformation rules for this case follow from their general form, given
by (21.65),

pi=PF;, Qi =qi, e=E, T=t, H{ =H,.
According to (21.62), the transformation rule for the extended Hamiltonians,
Hl’ = H\, yields now for the conventional Hamiltonians, H’ and H,

(H/—E)E;—sz—e,

which means, after inserting the coordinate transformation rules,
H/(Qj’ P]’ T)= H(q]’ pj’t)'

The existence of a neutral element is a precondition for the set of extended canonical
transformations of a Hamiltonian system H(p;, q;, t) to form a group.

EXAMPLE |

21.9 Identical Time Transformation, Conventional Canonical Transformations

The connection of the extended canonical transformation theory with the conventional
one is furnished by the particular extended generating function

Fa(qj, Pj,t, E) = F2(qj, Pj,t) —tE, (21.69)

with F(q;, Pj, t) denoting a conventional generating function. According to (21.65),
the coordinate transformation rules following from (21.69) are
_ 0F, 0F, F,

_ o2 =22 22 F  T=t
94 Qi=3p =% T

Pi

Together with the general transformation rule (21.62) for conventional Hamiltoni-
ans, we find the rule for Hamiltonians under conventional canonical transformations
from (19.12),

0F>

Canonical transformations that are defined by extended generating functions of the
form of (21.69) leave the time variable unchanged and thus define the subgroup of
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conventional canonical transformations within the general group of extended canoni-
cal transformations. In the present example, the time ¢ also forms a common indepen-
dent variable of both the original and the transformed system — just as presupposed in
case of a conventional canonical transformation. Corresponding to the trivial extended
Hamiltonian from (21.26), we may refer to (21.69) as the trivial extended generating
function.

EXAMPLE |

21.10 Extended Point Transformations

We consider the extended canonical transformation defined by an extended generating
function that is linear in the P,,

Falqu, P) =) Pu fulqn) =Y _ Pifiqj.t) — Efo(g;. )/c,

a=0 i=1

with the f,(g,) denoting arbitrary differentiable functions. The transformation
rules (21.64) for this F; follow as

u 3 o v /
Ou= fulgy), pu:ZPa ];q(z )» H{(Q,, Py) = Hi(qv, pv)-
a=0

The new configuration space coordinates Q;,i =1, ..., n and the new time T = Qq/c
thus emerge as functions of the original configuration space coordinates ¢g; and time
t = qo/c, without any dependence on the canonical momenta and energy. Similar to
the case of a conventional canonical transformation (see Example 19.2), mappings of
this type are referred to as point transformations.

For the particular case fo = fo(t), we get the rule T = fy(¢)/c. The transformed
time T then only depends on the original time, ¢, and not on the configuration space
variables, g;. For multi-particle systems, 7' then retains in the transformed system the
property of the original system’s time ¢ to be common to all particles.

EXAMPLE |

21.11 Time-Energy Transformations

The general form of an extended generating function F3 that defines an extended
canonical transformation that leaves position and momentum coordinates invariant,
but transforms solely time ¢ and energy e, is given by

Fi(pj, Qj.e,T) == piQi+ f(e,T).

i=1

Herein, f(e, T) denotes an arbitrary differentiable function of the energy e of the
original system, and of the time 7 of the transformed system. According to (21.66),
the particular transformation rules are

E—% t—%

=5 =0 H| = H. (21.70)

P; = pi, qi = Qi,

Example 21.9
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The transformed conventional Hamiltonian H’ follows from (21.62) as

3*f L df

0edT + oT”

The special case f(e, T) = eT again yields the identical transformation. We observe
that the transformed Hamiltonian H' emerges from the original Hamiltonian H by
multiplication with a the factor 3 f/9edT . This contrasts to the case of conventional
canonical transformations from Chap. 19, for which H’ emerges from H by addition
of the partial time derivative of a conventional generating function F 3 3 4.

H'(qj.p;. T)=[H(qj. pj.1) — ]

EXAMPLE |

21.12 Liouville’s Theorem in the Extended Hamilton Description

For extended canonical transformations, the pertaining generalized form of Liou-
ville’s theorem applies analogously to the conventional Liouville theorem from Ex-
ample 19.6,

. can, transf.

dQo...dOndPy...dP, 5" T dao. . dgudpo...dp,.

This may be written equivalently as
. can. transf.

dQy...dQndPy...dP,dT dE " “=""" 4g\ .. .dqndp ...dp,dtde.
The generalized form of Liouville’s theorem thus states that the extended volume form
dVi=dqo...dgydpo...dp,dtde is conserved under extended canonical transfor-
mations, hence that the determinant D that is associated with the Jacobi matrix of the
transformation is always unity. As the amount of canonical variables remains an even
number in the extended description, we may again represent D by

b Q... Qn>[a<po,...,pn>}l
3(qo---.qn) LI(Po,..., P |

If the transformation rules can be derived from a generating function of type
F2(qu, P,), then we are dealing with the particular case of a canonical coordinate
transformation. Inserting the equations for Q,, and p, yields

b 92 F> 2F \|™!

B ‘(E)q,Lan)‘ <3Puaqu)

This equation holds as (i) the partial derivatives may be interchanged, and (ii) due
to the fact that transpose matrices have the same determinant. We will see in Exam-
ple 21.18 that under generalized canonical transformations—hence transformations
that also map the time scales of original and destination systems—only the gener-
alized version of Liouville’s theorem applies, and not the conventional form from
Example 19.6.

=1.

EXAMPLE |

21.13 Extended Poisson Brackets

In Example 19.7, we proved the invariance of conventional Poisson brackets [F, G]
under conventional canonical transformations. We will show that under generalized
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canonical transformations, the invariance property holds for extended Poisson brack-
ets, [F, G]°. In analogy conventional brackets, the extended Poisson brackets are de-
fined by

Gl —-——+——. (2171
9qu Opu  Opu 9qu

" (9F 3G IF 3G dF 3G 9F 3G
Z ( > LF, at de de 0Ot
Herein, F' = F(qu, pu) = F(qi, pi,t,e) and G = G(qu, pu) = G(gi, pi, t, e) denote
arbitrary differentiable functions. Due to the complete analogy of conventional and
extended canonical transformation formalisms, the proof of the invariance of extended
Poisson bracket under extended canonical transformations formally coincides with
that of Example 19.7. We thus find that under extended canonical transformations

L, G]q piae = LF G]CQ,P,T,E' (21.72)

We will show in Example 21.18 that the Lorentz transformation can be conceived
as a particular extended canonical transformation. Consequently, extended Poisson
brackets are always Lorentz invariant.

The total s derivative of a function f = f(g;, pi,t) is

Z(af dq, af dpi>+8fdt
. aq; ds ap,- ds at ds
Z( af d‘lu 8f dﬂ)
N aq, ds 8pM ds
of 0H af oH
zz<_f_1__f_1>=[f, HiTE. (21.73)
n=

In the context of the extended Hamilton formalism, the extended Poisson bracket of an
explicitly time-dependent function f (g;, p;, t) with the extended Hamiltonian H; thus
yields directly the total derivative of f with respect to the independent variable, s. This
agrees formally with the conventional Poisson bracket of a conventional Hamiltonian
H with a function f(g;, p;) that does not explicitly depend on time ¢. In that case, we
obtain the total time derivative of f.

EXAMPLE |

21.14 Canonical Quantization in the Extended Hamilton Formalism

By canonical quantization, we denote a formalism to derive the quantum mechanical
equations of motion for a complex wave function y(g,,) on the basis of a correspond-
ing classical system that is described by an extended Hamiltonian H;. Explicitly, this
means to replace the classical momenta p,, with momentum operators p,,, along with
the replacement of the classical extended Poisson brackets [ , ]° by quantum mechan-
ical commutators { , } . The quantum mechanical commutator {, } of two operators
A and B is defined as

~

{A,B} =AB - BA. (21.74)

Example 21.13
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Analogously to the fundamental Poisson bracket (19.29) from Example 19.7, we then
find for the extended set of fundamental commutators

{éu’év}_:Q {]3;/.7]31)}_:0» {5};/.7131)}_:1'715;/,117 w,v=0,...,n.

(21.75)
Equations (21.75) are obviously satisfied if
q D ih 0 (21.76)
=qu, =—ih—. .
i =4u Pv 9

For, if we let the commutator {g,., p,} of the operators g, and p, act on an explicitly
time-dependent function ¥ (qy) =¥ (q1, ..., qn, 1), we get

A A . ad . 0 9
{qll«s Pu}_lﬁ(fh) - lh{a_qv, C]ﬂ,} Iﬂ = lh(%(qulﬂ) —qua—qvw)

=ihd, ¥ (gs). 21.77)
Because of gg = ct, the momentum operator for the index v =0, i.e. pg = —é/c, has
the alternative representation
e=1ih 9 (21.78)
e=ih—. .
ot
Parallel to the momentum operators p; = —ihd/dq; that are conjugate to the config-

uration space variables g;, one thus finds in the extended description the operator ¢
for the system’s instantaneous energy content as the conjugate quantity of the time
variable 7.

Furthermore, in the extended Hamiltonian formalism of canonical quantization,
the extended Hamiltonian H; = 0 from (21.25) is replaced by the extended Hamilton
operator 1:11 =0

H = ﬂ(ﬁ—é): ﬂ(ﬁ—ihi> =0, (21.79)
ds ds at

with H denoting the related conventional Hamilton operator of the given quantum

mechanical problem. As long as the operator equation H; =0 is not submitted to

an extended canonical transformation, we are allowed to identify the time ¢ with the

system’s evolution parameter s, (f = s). We thereby find an operator equation that is

no longer Lorentz invariant

~ 0 ~
H—ih—=0. (21.80)
ot
If we let these operators act on an explicitly time-dependent function v (g;, t), we get
the following partial differential equation

oY (gi, 1)
ot

Ay (qi,0) =il (21.81)
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In the realm of quantum mechanics, this equation is referred to as the Schrodinger
equation.

EXAMPLE |

21.15 Regularization of the Kepler System

As a first example of an extended canonical transformation that includes a mapping of
the time scale of the given dynamical system, we discuss the generalized formulation
of L. Euler’s regularization of a Kepler system. This technique is commonly referred to
as the “Kustaanheimo-Stiefel (KS)” transformation, and sometimes also as the “Hopf™
transformation. It has the properties (i) to ensure the regularization of the equations
of motion, (ii) to permit a uniform treatment all three types of Keplerian motion, and
(iii) to transform the equations of the two-body problem into a harmonic oscillator
form. We formulate this transformation here as a generalized canonical transforma-
tion, where in addition to a transformation of spatial and momentum coordinates the
physical time ¢ of the original Kepler system is mapped into a new time 7 that para-
meterizes the motion within the transformed system. We write the Hamiltonian of the
Kepler system in normalized form

1 K
Higj pp) =51 +p3+p3)—— K=Gm+m) r’=qi+45+45.

(21.82)

Herein, G denotes the gravitational constant, m1, my the masses of the interacting
bodies, and r their distance in the 3-dimensional configuration space. As H does not
depend on time explicitly, we have d H/dt = de/dt = 0, and hence

1 K
e= E(p% +p3+p3) — — = const (21.83)
Obviously, in this description the system has a singularity for » — 0. We will now
show that the Kepler system (21.82) can be canonically transformed into another
Hamiltonian system that does not exhibit any singularities. This canonical transfor-
mation can be defined in terms of a generating function of type 73,

1
F3(Qj.pj. T, e)= —Epl(Q% - 0}- 0%+ Qi) —p2(Q102 — 0304)

T
—P3(Q1Q3+Q2Q4)+8/0 §(r)dr. (21.84)

As the generating function is linear in the p; and in e, the KS-transformation consti-
tutes an extended canonical point transformation. It depends on an as yet undetermined
time function &£ (7') and has the particular feature that the transformed system has four
degrees of freedom in place of three of the original system. We will see that this
particular correlation of both systems gives rise to some freedom in fixing the initial
conditions of the transformed system. According to the transformation rules (21.66),
the old spatial coordinates ¢g; are expressed in terms of the new ones, Q;, as

Example 21.14
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3 2 2 2 2

D=0 = E(Ql -0 — 03+ 03),
aF3

Q2=—B—=Q1Q2— 0304, (21.85)

P2

0F3

$3=—7—=0103+ 0204
ap3

We directly verify that

1
r=\/q]2+q§+q32=5(Q%+Q%+Q§+Qﬁ). (21.86)

The momenta P; of the transformed system follow from the generating func-
tion (21.84) as

0F3
Pi=——== p101+p202+ p303,
001
0F3
Py=——==—p102+ p201 + p304,
00>
oOF (21.87)
3
Ps=——==—p103— p204+ p301,
903
0F3
Py=——== p1Q4—p203+ p302,
004
which yields
P2+P2+ P2+ P2
pi+pi+pi=—t—2——3 1% (21.88)
01+ 05+ 035+ 05
The transformations of energy e and time ¢ are
3F; dF; T
E=—=¢&(T), = —= &(r)dr. (21.89)
oT de 0

From the transformation rule for the conventional Hamiltonians from (21.62), H' is
finally obtained as

H'(Qj. P;.T)=H(qj. pj.t)§(T), (21.90)

which is, as expected, in agreement with the transformation rule of their values, E
and e. In explicit form, the transformed Hamiltonian H'(Q j» Pj, T) is then found by
expressing the original Hamiltonian in terms of the new variables

T 1
o7+ Q§(+)Q§+ Qz[z(”f + P34 P24 Pf)-2K |, @19

H'(Qj,P;,T)=

The constant energy e of the original system writes in terms of the new coordinates

1 2 2 2 2
_ (P PR A PP+ ) 2K

= const. (21.92)
02+ 03+ 0%+ 03
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From H’, the canonical equations of the transformed system evaluate to

8H’_dQ,-_ £(T) |
0r T 01+ 03+ 03+ 0F
CoH P 26(T) [P |

We may merge the pairs of first-order equations into second-order equations for the
Qi,i=1,...,4

0. L d ! d 2020 02 02|99
§(T) 2

-2 i =0. 21.93

e[Q%+Q§+Q§+Q§]Q (21.93)

After having worked out the equations of motion of the transformed system, we are
now in the state to fix the as yet undetermined time function &£(7"). With the trans-
formed canonical position coordinates conceived as functions of the transformed time,
Qi = Qi(T), we may define

E(T) = QH(T) + Q3(T) + Q¥(T) + Q3(T). (21.94)

By virtue of the fixation of £(T), the relation of the physical time ¢ of the Ke-
pler system to the time 7 of the transformed system is uniquely determined
through (21.89)

T
1(T) =/0 [0}(1) + Q%(v) + Q%(v) + 0} (D) ]dr. (21.95)

Note that the identification of & (T) with the time evolution of a function the canonical
variables does not mean that £(7T") acquires an explicit dependence on the canonical
variables. With this particular scaling of the transformed time 7, the equations of
motion (21.93) simplify to

d*Q;
dT?

—2¢Q; =0. (21.96)

For e < 0, the orbit is closed in the original Kepler system. In the transformed system,
we then get four uncoupled equations of motion of the time-independent harmonic
oscillator, which we already know to be analytically solvable.

Equations (21.96) can be regarded as the equations of motion that emerge from the
canonical equations of the Hamiltonian

1
H"(Q;, Pj)= E(Pl2 + P74 PI+ P} —e(Q7+ 03+ 03+ 0F). (21.97)

By means of the relation (21.92), we immediately find the constant value E” of the
Hamiltonian (21.97)

E” =2K =const. (21.98)

Example 21.15
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The original Kepler system may now be solved according to the scheme sketched
at the end of Example 19.3. We must first transform the given initial conditions
q1(0), ¢2(0), ¢3(0) and p1(0), p2(0), p3(0) of the Kepler system into the initial con-
ditions Q1(0), 02(0), 03(0), Q4(0) and P;(0), P»(0), P3(0), P4(0) for (21.96). This
can be worked out by inverting the transformation rules (21.85). For a unique inverse
to exist, we must choose one constraint, which may be defined for convenience as

04(0) Z'o. (21.99)

With this setting, the initial values of the configuration space variables of the trans-
formed system are

q2(0) q3(0)
0) = 0 0), 0) = , 0)= . 21.100
0100) =+/q1(0) +r(0) 02(0) 010) 03(0) 0,0) ( )

The initial momenta P; (0) are then directly obtained from the general transformation
rules (21.87). Now, the harmonic oscillator equations (21.96) may be solved analyt-
ically to find the solutions Q;(T), P;(T) at time T. The configuration space coordi-
nates ¢;(7') at time T of the original Kepler system are then found from the trans-
formation rules (21.85). The corresponding momentum coordinates p;(7") at time T
of the original Kepler system follow by solving the transformation rules (21.87) for
the p;

1
p1= Z(QIPI — Q2P — Q3P3+ Q4 Py)

1
p2= ;(szl +01Pr— Q4P3— Q3Ps)

1

p3= ;(Q3P1 + 04Pr+ Q1P3+ 02 Py)

1
0= Z(_Q4P1 + 03P — Q2P+ Q1 Pa).
The remaining task is to invert the analytic solution of (21.95) to find the represen-

tation 7' (¢). We can then finally express the solutions ¢;(T"), p; (T) in terms of the
Kepler’s system time ¢ to obtain the g; () and the p; ().

EXAMPLE |

21.16 Time-Dependent Damped Harmonic Oscillator

As another example for an extended canonical transformation we will show that the
time-dependent harmonic oscillator with also time-dependent damping coefficient can
directly be mapped into a conventional (time-independent) undamped harmonic oscil-
lator. Written for n degrees of freedom, the Hamiltonian of the original system is given
by

| 1 !
Hgj pjsy=5¢"0 ) i+ eV’ 3 47, (21.101)
i=1 i=1
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with w?(¢) and F () denoting arbitrary, not necessarily periodic, differentiable func-
tions of time. The subsequent equations of motion follow as

pi=e"DG,  Gi+f§+e*()q=0, fO=F@), i=1,...,n
(21.102)

As the “target system” H'—with T the independent variable—we demand the ordi-
nary time-independent and undamped harmonic oscillator,

1 n 1 n
H/(Qj:Pj)ZEZPiZ‘I‘EQzZQiZ- (21.103)
i=1 i=1

In the context of the generalized canonical transformation theory, this means that the
transformed time 7T represents a cyclic coordinate — which means that the conjugate
coordinate energy E represents a constant of motion.

The generating function F3(g;, P;,t, E) that defines the desired mapping of the
Hamiltonian (21.101) into (21.103) turned out to be

eF)

1 oFO &) 2
Palas Py B) = gy Dkt e [é(t) o]

i

t
—E/ AT (21.104)
0o (1)

Herein, £(¢) denotes an as yet undetermined, hence a priori arbitrary differentiable
function of time. According to the general transformation rules (21.65) for generating
functions of type J,, the particular rules for the transformation of canonical coordi-
nates and time follow as

i) \36—&nHVef /e el /g) \P)’ o &)

As the new spatial coordinates Q; and the new time 7 depend on the old spatial
coordinates ¢; and the old time ¢, respectively, we are actually dealing with a point
transformation. The transformation of the time scales of both systems is governed by
the as yet undetermined time function & (7).

In terms of the new coordinates, the transformation rule for the energy e =
—d.JF, /0ot is found from our F, as

E= se+ (r&- SZQ,P+ L(eE— 62+ fei— g2 - 28>0t

(21.106)

Because of 37 /9t = 1/£(t), the relation of old and new Hamiltonians, H and H’,
follows from the general rule from (21.62), yielding

H —E=&(t)(H —e).

With H the original Hamiltonian from (21.101), we get the new Hamiltonian
H'(Qj, P;,T) by eliminating the old variables according to the transformation

Example 21.16



442

21 Extended Hamilton-Lagrange Formalism

Example 21.16

rules (21.105) and (21.106)

1nZanl“ 1'2 2212212'
—gi;f’i +5§Q,~[5€%‘—Zé +E80T = 877~ o8 f]. (21.107)

This is obviously the desired Hamiltonian H’ of the ordinary harmonic oscilla-
tor (21.103), provided that its constant coefficient Q2 is identified with the terms in
brackets of the transformed Hamiltonian (21.107)

2=%5§—%éz+§2(w2—%f2—%f'>=const. (21.108)

Correspondingly, the transformed Hamiltonian H' does not explicitly depend on time
if and only if dQ?/dt = 0, which means that the third-order equation

E+E(do” —2f — f2)+£(dwi— f— ff)=0 (21.109)

must be satisfied. As a consequence of this requirement, depending on the given exter-
nal functions w?(¢) and f (¢), the function &(¢) is now determined. This means, further-
more, that the particular correlations of canonical coordinates, energy, and time scales
of both systems are now pinpointed according to the transformation rules (21.105)
and (21.106). With £(¢) a solution of the linear and homogeneous third-order equa-
tion (21.109), then §2 = const., and hence the value E = E(0) of H’ constitutes a
constant of motion. Thus, it is the freedom associated with extended canonical trans-
formations to arbitrarily adjust the time scales of the involved systems that enables us
to free the target system H’ from its explicit dependence on the independent variable.

If we express the constant value of the new Hamiltonian H'(Q;, P;) = E = const.
in terms of the old coordinates p; and g;, then we isolate an invariant of the original
system (21.101),

= *FEZ ——S Equzpz

1 .. .
- ZeF(t)(E —sf—sf+2sw2(z))zq3. (21.110)
i=1
The time function £(¢) can be attributed a physical meaning. We easily convince us
that

g =e"0% "0 Q1.111)

i=1

represents a solution of (21.109), provided, of course, that all g;(¢) are solutions of
the equation of motion (21.102) of the time-dependent damped harmonic oscillator.
Inserting (21.111) into the representation (21.110) of the invariant E, then the latter
takes on the equivalent form

E:ZQEZP?—(Z%M) = Z(pzq, q,-p,;)z. (21.112)

i,J

The actual invariance of E can be proved directly by calculating its time derivative.
Obviously, the invariant (21.112) of the time-dependent damped harmonic oscilla-
tor (21.102) has exactly the form of the conservation law for the angular momentum
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in central force fields. In the realm of accelerator physics, the quantity &ms = ~/E /n
is referred to as the “root-mean-square (rms) emittance.” The “rms-emittance” of a
charged particle beam is thus invariant along the beam axis, as long as (i) the particle
motion may approximately be described by linear equations of motion and (ii) the
number of beam particles is maintained.

Inserting (21.111) into (21.108) we finally find that the invariant E coincides with
the coefficient 2 from the transformed Hamiltonian (21.103) provided that &(¢) is
given by (21.111),

Q*=E. (21.113)

Having related the time-dependent damped harmonic oscillator (21.101) by means of
an extended canonical transformation with the ordinary (time-independent) harmonic
oscillator (21.103), we may now explicitly work out the solution functions g; (¢) and
pi (1) of the equations of motion (21.102). The explicit solutions Q;(T) and P;(T') of
the ordinary harmonic oscillator are known from Example 19.3

Qi(T)\ _( cosQT Q7 LsinQTY (0 (0)
(Pi(T)) - <—Q sin QT cos QT ) <Pi (0)) : (21.114)

The solution functions g; (T) and p;(T) of the time-dependent damped harmonic os-
cillator follow subsequently as the product of the solution (21.114) with the transfor-
mation (21.105),

(‘Ii(T)>_ VE/eF 0 ( cos QT Q—lsinQT>
pi(T) %(é—gf)\/m Vef g | \—QsinQT cos QT

Qi(0)>

X . 21.115
(P,- ©) L)
The initial conditions Q;(0) and P;(0) can, furthermore, be expressed through the

qi(0) and the p;(0) by means of the inverse transformation of (21.105) at time ¢ =
T =0,

(Qi(0)> _ Vel O /£(0) 0 (q,- (0>>
P;(0) —1E0) —£(0) £(0)yeFO/£(0)  E©0)/eFO ) \pi(0))

(21.116)

We switch to the time scale of the original system by expressing 7 in terms of ¢
according to the corresponding transformation rule from (21.105). The solution of the
time-dependent damped harmonic oscillator from (21.102) is thus finally given by

qi() _ 4 (0) _/fd_f
(pi(t)>_R(t) (pi(0)>’ 0= o 21.117)

Herein, £(¢) denotes the uniquely determined solution of (21.108) for given initial
conditions £(0), £(0) and a fixed Q2 = const. The elements of the solution matrix
R(t) are obtained by multiplying the three matrices involved,

[E(1) e @ 1,. sin Q7T (¢)
ri(f) = W[COS QT (1) — 5(5(0) - f(o)é(o))T]

Example 21.16
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ria() = E(0)&(2) sinQT (1)
VeFO F)
eFO) ,FOT] . .
rzl(t)Z,IM[E(E(I)—f(t)é(t)—«‘3(0)+f(0)$(0))0059T(f)

L : in QT
- {z@(‘” ~ FOEO)(ED - FOEMD) + 92}_0>]

(21.118)

Q

[£(0)eF® 1. sin QT (¢)
rp(f) = W[COS QT (1) + E(s(t) - f(l)é(t))T}-

For all times ¢, the determinant D = ry1ryy — riar21 of matrix R(¢) has the value
D = 1. The linear mapping (g (0), p(0)) — (g(¢), p(¢)) is thus in agreement with
the requirement of Liouville’s theorem. For the particular case 2 — 0, we find that
(sinT)/ 2 — T. In that case, the particle motion in a time-dependent damped har-
monic oscillator are mapped into free particles.

The rule for the transformation of time + — T that emerges from the generating
function (21.104) has the particular property that the transformed time 7 does not de-
pend on the coordinates of the particles. Exactly for that reason, the transformed time
T maintains the property of the original time ¢ to be a common coordinate for all parti-
cles in the transformed system. This means that 7 may serve as the common evolution
parameter of all particle coordinates Q;(7) and P;(T) in the transformed system. In
other words, T has the global property of the transformed system’s time. Mathemat-
ically, T has this property due to the fact that the (7;, ¢;) and the (E, t) terms in the
particular generating function (21.104) are additive. Therefore, this extended canon-
ical transformation can be split into a conventional canonical transformation plus a
pure canonical time-energy transformation from Example 21.11. This is not always
possible as extended canonical transformations can be defined that do not admit a sep-
aration of the transformation of space and time coordinates. We will encounter such
a canonical transformation in Example 21.18, where the Lorentz transformation is
formulated as an extended canonical transformation.

EXAMPLE |

21.17 Galilei Transformation

Galileo’s principle of relativity constituted until its absorption as a limiting case into
Einstein’s principle in the year 1905 the most undoubted principles of classical dy-
namics. It stated that there exists an “absolute time” ¢ that is instantaneously common
to all coordinate systems, how distant apart these systems ever may be located. If we
consider the special case of two coordinate systems that are moving with respect to
each other along one coordinate axis at a constant velocity v, the transformation rule
for the positions g, Q and times ¢, T of a moving body of mass m( between these two
systems is simply

qg =0 +vt, t=T.

Formulated as an extended canonical transformation, the generating function of type
JF> of the Galilei transformation is then

Falg, P, t,E)=Pq— Et —v(Pt —moq). (21.119)



21.3 Extended Canonical Transformations

445

The complete set of transformation rules of the canonical coordinates is then

9 F O F
p=8—2=P+mOU’ e:—a—tzzE—i-UP,
q (21.120)
0= t r=_372_, H =H
=0 = — VI, =——=1, = .
ap ¢ OE 1=

From the general transformation rule for extended Hamiltonians, H 1’ = Hj, the rule
for the conventional Hamiltonians H’ and H is then obtained according to (21.62)
with 07 /9t =1 as

H=H +vP. 21.121)

As required, the rule for the Hamiltonians is in agreement with the rule for their values,
eand E.

EXAMPLE |

21.18 Lorentz Transformation

The correct transformation rule between coordinate systems that move with respect
to each other at constant velocity (“inertial systems”) is based on the finding that the
velocity of light, c, is actually finite. This rule is referred to as the “Lorentz transfor-
mation.” A finite ¢ constituting the upper speed limit for any signal obviously means
that a finite time span is needed for the signal to pass from one reference system to
another. As an immediate consequence, Galileo’s concept of an “absolute time” that
is instantaneously common to all inertial systems had to be abandoned. Instead, it is
obviously necessary to also transform the time ¢ if one performs the transition from
one inertial system to another.

The special principle of relativity requires that the formulation of the description
of a physical system must be the same in all inertial systems. This means in particu-
lar for Hamiltonian systems that the Lorentz transformation must maintain the form
of the Hamiltonian. On the other hand, as we know from the preceding Chap. 19
and Sect. 21.3, only canonical transformations maintain the form of the canonical
equations. We conclude that the Lorentz transformation must constitute a particular
canonical transformation. As the Lorentz transformation necessarily associated with a
transformation of the time coordinate, ¢t — T, it may be described only in terms of an
extended canonical transformation. Its extended generating function F is given by

E
Fa(q, Pt E)=y[Pq—Et—u<Pt——2q>], (21.122)
C

with v denoting the constant relative velocity of the respective inertial systems. In the
formulation given here, the coordinate systems are adjusted to ensure that the relative
motion of both systems occurs along one coordinate axis, g. As usual, we denote by
y the dimensionless length and time scaling factor y = 1/4/1 — 82, with 8 =v/c
the scaled relative velocity. We observe that the generating function (21.122) of the
Lorentz transformation merges into that of the Galilei transformation (21.119) from
Example 21.17 for v < ¢, hence for § — 0, y — 1, E/c? =m — mg. Namely, the
total mass m = E /c? in (21.122) is replaced by the constant rest mass g in the case of

Example 21.17



446

21 Extended Hamilton-Lagrange Formalism

Example 21.18

the Galilei transformation. With regard to the transformation rules that emerge from
the generating functions, it is exactly the replacement of the second E-dependent term
in (21.122) by the constant mass term mq in (21.119) from Example 21.17 that induces
the time transformation rule ¢t = T of the Galilei transformation.

For the generating function (21.122), the general transformation rules (21.65) for
extended canonical transformations yield the particular rules

oF, E d0.F;
p=—2= (P—i——zv), e:——zzy(E—i—vP),

aq c at

8 F, 8% ; (21.123)
= —_—= —[’ T:——: r— — . H/:H.
0 3P y(g —vr) 3E 7/( czq> 1 1

The transformation rules for the variables Q and T follow as

o\ _( v —Br\(«
(CT>_<—/3V y )(ct)' (21.124)

The canonical transformation approach to represent the Lorentz transformation en-
sures that we simultaneously obtain the rules for conjugate coordinates, P and E,

é/C ﬁ} ) E/C E/C ﬁ) y é/C ’

With the real angle o = arcosh y = arsinh By, the linear transformations (21.124) and
(21.125) can be rewritten as orthogonal mappings, hence as the imaginary rotations

O\ [ cosia sinia q
icT)  \—sinia cosia) \ict)’

. (21.126)
P \ [ cosiad sinia D
iE/c) \—sinia cosia /) \ie/c)’
Obviously, these transformation maintain the “distances”
Qz—cszzqz—cztz, PZ—EZ/CZ:pz—eZ/cz. (21.127)

With 37 /9t = y, the transformation rule for conventional Hamiltonians, H' and H,
under Lorentz transformations follows according to (21.62) as

(H—E)y=H—e. (21.128)
Together with the rule (21.125) for the transformation of the energies e, E
e=yE+ ByPc (21.129)

the transformation rule for Hamiltonians under Lorentz transformations is finally
found from (21.128) as

H=yH' +ByPc. (21.130)

As expected, the Hamiltonians H, H’ transform equally as their respective
values, ¢, E.
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As the Lorentz transformation constitutes an extended canonical transformation, Example 21.18
the extended version of Liouville’s theorem from Example 21.12 applies,

9Q.P.T.E) 1 |
d(g, p,t,e)
On the basis of the transformation rules (21.124) and (21.125), we easily verify that
the requirement (21.131) is indeed fulfilled
90Q,P,T,E) 9(Q,T) d(P,E)
dg, p.t.e) d(g,1) 9(p,e)
y  —cBy y —By )
=gy c |=[a- =1
Yo ll=cBy v

(21.131)

c
Yet, we must be aware of the fact that the forms dg dp and dt de of the projection
planes (g, p) and (z, e) are not invariant under Lorentz transformations
Wo.P _, ATE)
a(q. p) ’ a(t, e)

Thus, under Lorentz transformations, the conventional form of Liouville’s theorem
from Example 19.6 does not hold!

(21.132)

EXAMPLE |

21.19 Infinitesimal Canonical Transformations, Generalized Noether Theorem

We define the following generating function of an infinitesimal extended canonical
transformation that generalizes the infinitesimal time-step transformation from Exam-
ple 19.5,

n
Faqu P) =) quPu+e€l(qu. py). (21.133)
n=0

Herein, € denotes the infinitesimal parameter and I (¢,, p,) a differentiable function

of all variables of the extended phase space (u,v =0, ...,n). The coordinate trans-
formation rules follow as
0F, P 4 ol
p = — = 6_,
Cg gy (21.134)
0 0F> n ol
= — = e—-
"=ap, TGP,

To first order in €, we derive the variations §p,, and 6q, from the transformation
rules (21.134),

Spu="P, o
= — =—€—,
Pu w— Pu 94,0
ol

8q, = — =€ —.
AQu=0u—qu T

(21.135)
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The total s-derivative of I(q,, p,) is then

dl . a1 dqy . al dp,
0q, ds opu ds

Z(S 0H, iy 81‘1])
m Mapu ”3%
= —06H,. (21.136)

Thus, by means of the canonical equations (21.23) and the first-order transformation
rules (21.135), we have found that the characteristic function I (g,, p,) that is con-
tained in the generating function (21.133) constitutes a constant of motion exactly if
the extended Hamiltonian Hj is invariant under the transformation (21.135) generated
by (21.133). In other words, if the rules (21.135) define a symmetry transformation
of the given Hamiltonian system then the characteristic function I (g,, p,) of the gen-
erating function (21.133) constitutes a constant of motion. The correlation (21.136)
of a Hamiltonian system’s invariants / to the symmetry transformations that main-
tain the value of its extended Hamiltonian H; establishes Noether’s theorem' of point
mechanics in the extended Hamiltonian formalism

dl
ds

The derivation of Noether’s theorem in the context of the Lagrangian formalism? is
restricted to extended point transformations (see Example 21.10). Yet, the extended
canonical transformation approach allows to describe more general possible symme-
try mappings as the rules (21.134) are not restricted to point transformations. Con-
sequently, (21.137) in conjunction with the infinitesimal canonical mapping (21.135)
represents a generalized formulation of Noether’s theorem.

The variation of an arbitrary function u(qg,, p,) under the infinitesimal canonical
transformation that is induced by I(g,, p,) according to the rules from (21.135) is
then

U Amalie “Emmy” Noether, German mathematician, b. March 2, 1882, Erlangen, Germany—d. April
14, 1935, Bryn Mawr, Pennsylvania, USA. Emmy Noether grew up in Erlangen in the family of a
mathematician and passed the state examination for teachers of foreign languages. When in 1903,
women were for the first time allowed to study at Bavarian universities, she took up studies of mathe-
matics in Erlangen and graduated in 1907. Following an invitation by Felix Klein and David Hilbert,
she then moved to Gottingen. She was not allowed a habilitation, the German qualification to become
a professor, until 1919, and only in 1922 she became an assistant professor, and the first paid job as
a professor in 1923. In 1928/29 she was a guest professor in Moscow, and on 1930 in Frankfurt am
Main. Because of her Jewish descent and her political views, she was forbidden to teach in 1933.
Noether emigrated to the US, where she found a position as a guest professor at the Bryn Mawr
Women’s College.

Emmy Noether’s work on the theory of invariants, the theory of ideals and of rings and modules
was instrumental to the development of modern algebra. Her theorem linking continuous symmetries
of a physical system to conserved quantities is one of corner-store concepts of modern physics.

2 In the original publication of Emmy Noether (“Invariante Variationsprobleme,” Nachr. Kgl. Ges.

Wiss. Gottingen, Math.-Phys. K. 1918, 235), the theorem was presented for continuous systems in
the Lagrangian formalism.
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Su(gy. p )—Z(a—MSq + 2 s >
vs Fv - aqu 13 apﬂ 2

ou 9l u ol
:62<_“___“_), (21.138)
w

0q, 0p,  Opy dq,

In the notation of extended Poisson brackets that was introduced in Example 21.13,
we may express the variation u concisely as

Su=ce€lu,I. (21.139)

As (21.139) applies for arbitrary differentiable functions u = u(q,, py), we may
equivalently write it as an operator equation,

A

Su=€eUu.

The operator U is thus given by

. al 9 al 9
U:[.,I]ezz S (21.140)
m op, 0q,  9qu dpy

The dot in the Poisson bracket expression stands here as a placeholder for a function
the operator U acts on. We refer to U as the generator of the infinitesimal symmetry
transformation (21.135) that is associated with the invariant /. Obviously, I itself is
invariant under the symmetry transformation (21.135) which it generates

SI=eUl =¢[l, I°=0. (21.141)

Two invariants /1 and I, of a given Hamiltonian system H then define the two sym-
metry operators

Ui=[..h1°% U=I[..bI" (21.142)

The concatenations of the operators U, and U, can then be expressed as nested Pois-
son brackets. Skipping the superscript ¢, this reads

U0, =01l.,b1=[[..bl, 1],  GUi=0.,11=[[., 1], b]. (21.143)

The commutator {0 1 02}_ of the operators l71 and ﬁz then defines a generally not
vanishing operator Uz, which is represented in terms of extended Poisson brackets as

U3 = {0, 0a} =010, - 0,0,
[[..R]0O]—[[..h),. L]=—[N,[.. R]] - [I2, 1, .]]
[.. [, I1]]
[

(], with  I3=[I, I]. (21.144)

According to Poisson’s theorem from (19.32), the function I3 = [I, I1] represents
another invariant of the respective Hamiltonian system. Consequently, the operator
Us equally defines a symmetry transformation of the system. The commutator of two

Example 21.19
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generators of symmetry transformations thus provides another generator of a symme-
try transformation. The group of generators of symmetry transformations of a Hamil-
tonian system thus forms in conjunction with the commutator operation a Lie—Poisson
algebra. For a given Hamiltonian system, we do not know a priori whether all its in-
variants have been found, and hence whether the Lie—Poisson algebra of symmetry
operators is complete. Yet, by applying Poisson’s theorem to all pairs of known invari-
ants, it is always possible to find a subset of invariants /; that is closed with respect
to evaluating their mutual Poisson brackets. With respect to the set of generators of
symmetry transformations we thus find a sub-algebra for pertaining symmetry opera-
tors U je

EXAMPLE |

21.20 Infinitesimal Point Transformations, Conventional Noether Theorem

As we are dealing with an infinitesimal transformation, we may eliminate the original
coordinate g, from the generating function (21.133) of Example 21.19. Solving for /,
we rewrite this equation to first order in € as

n

ol
€1(qv, pv) = F2(qv, Pv) — ZO(QM B EE>PM
M:

n n
al
=Fa(qu, P) =Y QuPu+e)  puz—

=0 =0 Pu

- al
=Fi(qv, Ov) +€ ZP}L—-
n=0 Op

In the last step, we have replaced the generating function of type F2(q., Py) by an
equivalent function of type Fi(qy, Q) according to (21.63). In our case of an infini-
tesimal transformation, the generating function ] may alternatively be expressed to
first order in € as

Fi(gv, Ov) = Fi1(qv, dqv) =€ f(qv).

The function I (g,, p,) may thus be expressed as

n

al
G, p) =) pusy—+ f(@). (21.145)
=0 Pu

This equation is obviously fulfilled for functions /(gq,, p,) that are linear in the p,
n
I(qv. po) ==Y punu(@v) + f(qv). (21.146)
n=0

The functions 1,(qy) in (21.146) are defined to only depend on the extended set of
canonical variables ¢, hence on the configuration space variables g; and time ¢ in the
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conventional description. With this /(q,, p,), the generating function (21.133) from
Example 21.19 defines the extended point transformation

Ou=qu—enulqy), n=0,....n (21.147)

We may write (21.146) equivalently in the conventional description by replacing the
canonical variable pg = —e/c according to (21.20) with the Hamiltonian H(g;, p;, t).
Furthermore, the system evolution parameter s must be replaced with the physical time
¢t as the independent variable. With & = ng/c, the special Noether invariant (21.146)
then writes

I=&q;, ) H =) piniq;, 1)+ f(q;,1). (21.148)

i=1

This defines the conventional Noether invariant of point mechanics. If we can find
functions &(q;,1), ni(gj,t), and f(q;,t) for a given Hamiltonian H(q;, p;,t) that
satisfy d1/dt =0, then I from (21.148) constitutes a constant of motion. The Hamil-
tonian form of Noether’s theorem presented here then states that the corresponding
symmetry of the given Hamiltonian system is given by an extended canonical point
transformation that is determined by those functions £(g;,t) and n;(g;, t)

T'=t—-¢€&(qj,1), Qi =qi —€ni(g;,1). (21.149)

As a result of the fact that the Noether theorem from (21.148) represents only a special
case, not all invariants of a given system can be expressed by (21.148) in general. As
we see from the symmetry transformations (21.149) that are associated with invariants
of the form (21.148), only those symmetries that are represented by extended point
transformations are covered by the conventional Noether theorem.

Invariants that are not of the form of (21.148) are commonly referred to in liter-
ature as “non-Noether invariants,” an example of which we will encounter in Exam-
ple 21.21. The symmetry transformations associated with “non-Noether invariants”
do not constitute extended point transformations, and hence do not emerge straight-
forwardly in the context of the Lagrangian formalism.

EXAMPLE |

21.21 Runge-Lenz Vector of the Plane Kepler System as a Generalized Noether
Invariant

The classical Kepler system is an example of a two-body problem whose masses in-
teract according to an inverse square force law. In its plane version, the Hamiltonian
of this system writes in scaled coordinates (see also Example 19.9)

1, 1, K
H=§p1+§p2—7. (21.150)
Vai+ 45
The canonical equations follow as
di i=1.2. (21.151)

4i = pi» pi=—K———,
V@i +43)?

Example 21.20
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As the characteristic function I = I(q1, g2, p1, p2,t) that is contained in the gen-
erating function for an infinitesimal canonical transformation (21.133) from Exam-
ple 21.19, we define

I=—pip2niqi.q2. 1) — p3m2(qi, g2, 1) + f(q1, g2, 1) (21.152)

The as yet unknown coefficients n1(q1, g2, t), 12(q1, g2, t), and f(q1, g2, t) contained
herein must now be determined accordingly to render / a constant of motion. With the
physical time ¢ the system’s independent variable, the condition therefore writes

d
Zl=pp2m@ g0 - Pamgr g2, ) + f(q1,q2,1)] =0. (21.153)

Inserting the canonical equations, we then find

——————(q1p2m +q2p1m1 +2q2p21m2) — 171172<— +—pP1+—p
q? +q2)?

danpy  am N af ~ of of

2

— — 4+ — — —_— 4+ — —pr =0. 21.154
Pz(at +8q1p1+8q2p2 +8t+8q1p1+8q2p2 ( )

As this polynomial in the p; must be satisfies not only in one instant of time 7y but
for all times ¢, we conclude that the coefficients of each power p! p5', n,m =0,...,3
must vanish separately. We thus obtain here eight separate conditions,

0 d d 0 0 0 d
m o dm o dm m o dm_ o dm 0 A

k] s s ’

dq1  dqr  dqy  Oqi ot ot ar

© of © (21.155)
e e +a— =0, ﬁ(qml +2612?72)+8— =0.
v (‘11 +42)3 7 (‘]1 + ‘]2)3 1

From the conditions in the upper line, the following particular solutions emerge

m=q, m=-qi, f=f(q1,q2). (21.156)
We may now easily convince ourselves that the function
q1

N

is a solution of both conditions from the lower line. This shows that an invariant of
the form of (21.152) exists. Inserting the solutions 11, 12, and f into (21.152) finally
yields

fq1,q2) =—K (21.157)

q1
Vi + a3

This constant of motion represents one component of the Runge-Lenz vector, which is
referred to in literature of a “non-Noether invariant.” Due to its quadratic momentum
terms, the invariant (21.158) cannot be expressed as a conventional Noether invariant
of the form of (21.148) from Example 21.20. By systematically defining appropriate
polynomial functions I (g, p,) of the p,, we may construct the invariants of Hamil-
tonian systems from the solutions of systems of coupled partial differential equations.

gL, = —pip2g2 + p3q1 — K (21.158)
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The symmetry transformation that is associated with the invariant /gy, follows
from the rules (21.135) of Example 21.19

2
q
3q1 = —€p2q2, Sp1= —€(P§ - K—2),
V@i +a3)?

q192
3q2 = €(2pa2q1 — p192), dpr = e(plpz - K7>

V@i +a3)?

As the variations of the spatial coordinates depend on the canonical momenta,
this transformation is not a point transformation—and thus represents a generalized
Noether symmetry. We finally get as the generator 0RL] =[., Iry,] of the pertaining
symmetry transformation of the system

0 e )L
RL; = —P292 P291 — P192
! 0q1 g2

2
q 0 192 d
_<p§_K72)a_+<p1p2_KL>a_.
V@@t +4q3)37 Pt V@i +4q3)3/ P2

Example 21.21



Extended Hamilton-Jacobi Equation 2 2

In the context of the extended canonical transformation theory, we may derive an
extended version of the Hamilton—Jacobi equation. We are looking for a generating
function F>(qy, Py) of an extended canonical transformation that maps a given ex-
tended Hamiltonian H; = O into a transformed extended Hamiltonian that vanishes
identically, H{ = 0, in the sense that all partial derivatives of H{(Q,, P,) vanish.
Then, according to the extended set of canonical equations (21.23), the derivatives of
all canonical variables Q, (s), P, (s) with respect to the system’s evolution parameter
s must vanish as well

OH _,_dQ OH|
ap, ds’ 30,

dp
0=—=%, u=0,...,n (22.1)
ds
This means that all transformed canonical variables Q,, P, must be constants of mo-
tion. Writing the variables for the index p = 0 separately, we thus have

T = ag = const., Q; = a; = const., E = — By = const.,

P; = B; = const.

Thus, corresponding to the conventional Hamilton—Jacobi formalism, the transformed
canonical variables, Q; and P;, are constants. Yet, in the extended formalism, the
transformed time 7 is also a constant. The particular generating function F(q,, Py)
that defines transformation rules for the extended set of canonical variables such that
(22.1) hold for the transformed variables thus defines a mapping of the entire system
into its state at a fixed instant of time, hence—up to trivial shifts in the origin of the
time scale—into its initial state at 7 = 7(0)

T =1(0), Qi =4i(0), Pi = pi(0), E =H(q;(0), p;j(0),1(0)).

We may refer to this particular generating function as the extended action function
Fo = S1(qv, P,). According to the transformation rule Hl’ = H, for extended Hamil-
tonians from (21.59), we obtain the transformed extended Hamiltonian Hl/ = (0 sim-
ply by expressing the original extended Hamiltonian H; = 0 in terms of the trans-
formed variables. This means for the conventional Hamiltonian H(q;, p;,t) accord-
ing to (21.25) in conjunction with the transformation rules from (21.65),

Y 0S5 |dt
H Qj,?”,t +W £=0

W. Greiner, Classical Mechanics, 455
DOI 10.1007/978-3-642-03434-3_22, © Springer-Verlag Berlin Heidelberg 2010


http://dx.doi.org/10.1007/978-3-642-03434-3_22

456

22 Extended Hamilton—Jacobi Equation

As we have ds/dt # 0 in general, we finally get the generalized form of the Hamilton—
Jacobi equation,

=0. (22.2)

g ey

R 25
1 1,t>+—1

H(q. ... g 2L . 2L
(ql ™ 94, dqn dt

Equation (22.2) has exactly the form of the conventional Hamilton—Jacobi equation.
Yet, it is actually a generalization as the extended action function S| represents an
extended generating function of type F,, as defined by (21.63). This means that S is
also a function of the (constant) transformed energy £ = —cPo(0) = —Bp.

Summarizing, the extended Hamilton—Jacobi equation may be interpreted as defin-
ing the mapping of all canonical coordinates g, p;, t, and e of the actual system into
constants Q;, P;, T, and E. In other words, it defines the mapping of the entire dy-
namical system from its actual state at time ¢ into its state at a fixed instant of time, T ,
which could be the initial conditions.

EXAMPLE |

22.1 Time Dependent Harmonic Oscillator

As a simple example for the method to analyze an explicitly time-dependent Hamil-
tonian system by means of the generalized Hamilton—Jacobi equation we choose the
time-dependent harmonic oscillator

1 . 2 1 2 . 2
H(q/,pj,t)=§2]jpi + 50 (r)_leqi. (22.3)
1= 1=

With 1 =81(q1,..-,gn,t, P1,..., Py, E) an extended action function, we encounter
the following Hamilton—Jacobi equation (22.2) for this system

% _Z<asl> n wz(t)qu—O (22.4)

The problem is now to find a solution S; for this nonlinear partial differential equa-
tion. We start with generating function of the extended canonical transformation from
Example 21.16, and restrict ourselves for simplicity to the case of zero damping,
(F(t)=0),

150)
Siqj.1. Py, E) = g [ (225)
S Jsa Z 5P T & 0 &)
In the first instance, we require only the transformed energy E = —cPy(0) = —pSo

in (22.5) to represent a constant. We insert the partial derivatives of S; with respect to
P;, gi, and time ¢

05 _ g
LaR JE
s, P 1&
i = _ iy 15 (22.6)
"Toq VB 28"

_9Si_ 18 (B 8\ E
ST T B A q’P’+4(s_s2)qu"_s
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into the Hamilton—Jacobi equation (22.4). Expressed in terms of the transformed co-
ordinates, we find

1 1
E—EZPiZ—EQZZQ?zo. (22.7)
i i
In this equation, the sum of all terms proportional to >, Qi2 was denoted by Q2,

QX1 = %sé’ —~ }52 +£20%(1).

For the required constant transformed energy E, (22.7) can only be satisfied for all ¢
if ©2 itself constitutes a constant of motion

—éé E + £20%(1) = Q% = const. (22.8)

With &£(¢) a solution of (22.8), the transformation rules for the coordinates are now
uniquely determined

_ _
0= \/55 f §pi — 5 \/— qi-
As the action function S1 = S1(q;, ¢, Pj, E) constitutes an extended generating func-
tion, the corresponding transformation maps the original time ¢ into a new time T, in
conjunction with the usual mapping of the canonical coordinates, Q;(T) and P;(T).
The correlation of new time 7 and original time ¢ is determined by the solution &(z)
of (22.8)

(22.9)

_ 3S1_ tdr
T(t)= = % (22.10)

The transformed Hamiltonian H'(Q, P;, T) follows now from the general transfor-
mation rule (21.62) for extended generating functions F with 07’ /9t = 1/£,

H —E=:(1)(H —e) (22.11)

which reads explicitly in the new coordinates Q;, P;
1 n 1 n
H'(Q), Pp=5) P+59°) 0F (22.12)
i=1 i=1

This Hamiltonian H’ does not explicitly depend on T if and only if &(¢) represents a
solution of (22.8) with constant $22. In this case, H’ corresponds to the Hamiltonian
of the ordinary (time-independent) harmonic oscillator. As required, the value of H’,
given by E = —fy, is now a constant of motion. In contrast, the canonical coordinates
(Qi, P;) of this system are not constant. The given task to map the time-dependent
harmonic oscillator (22.3) into a system where all transformed canonical coordinates
oy, B, depict constants of motion is thus as yet performed for By only. However,
we may now in a second step transform the Hamiltonian (22.12) into a new Hamil-
tonian that vanishes identically, H” = 0. To this end, we first set up the corresponding

Example 22.1
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Hamilton—Jacobi equation,

s 1 s \2 1

ﬁJFEZ(aQ) 3972 0i=0 @219
. 1 .
1 1

We now try to find a solution S = S(Q;, T, 8;) that depends on the constant trans-
formed momenta 8; = const. We may here restrict ourselves to a conventional action
function S as the Hamiltonian (22.12) does not explicitly depend on the independent
variable, i.e. the transformed time 7'. Due to the quadratic dependence of the Hamil-
tonian (22.12) on the Q; and the P;, we try to determine the solution S(Q;, T, ;)
of (22.13) by defining

1 1
§ = za(T) Z Q? +b(T) Z Qifi + 5e(T) Xi:ﬁf. (22.14)

Inserting the partial derivatives

S as 1. . 1.
50, =aQ; + bB;, ﬁziaZQ?+in:Qiﬂi+§C;ﬁiZ (22.15)

i
into the actual Hamilton—Jacobi equation (22.13) yields

1. : 1.

Sa+a®+9%) 3 0F+(b+ab)y Qifi+5(c+0°) Y F7=0.  (2216)
i i i

This equation can only be satisfied for arbitrary Q; at all times 7 if the coefficients

in (22.16) vanish separately

a+a’+Q>=0, b+ab=0, ¢+ b2 =0. (22.17)

Starting with the leftmost non-linear first-order differential equation for a(7"), we may
solve this coupled set step-by-step

tan Q27
co(T)=— . (22.18)

T)=—Qtan QT, b(T)= ,
(1) an T cos QT Q

We thus find the following action function S(Q;, T, ;) as the solution of the
Hamilton—Jacobi equation (22.13)

cos Q2T

1 2
S=—§QtanQTZQi+ 5
l

> 0ipi - %tanm 3 B2 (22.19)

i

By means of this action function, we may now work out the relation of the coordinates
Qi(T) and P;(T) with the integration constants «; and B;. We thereby show that
the action function § = F> represents exactly the generating function of a canonical
transformation that map the Hamiltonian H’ from (22.12) into a new Hamiltonian
H” = 0 that vanishes identically. According to the general rules from (19.12), we
obtain for (22.19) the particular transformation rules
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as Q; tan QT
0B8;  cosQT Q
N
Pi=—=-0;Qtan QT + ——— b
00; cosQT’
N 1 Q? QsinQT (2220
sin
H// — H/ . H/ - 2
T 2cos2s2TZ P cos2 QT ZQ’gl
1 1 )
 2cosQT Xi:ﬁi
Solving for the coordinates Q; and P; this finally yields
sin QT
Qj=ajcos QT + B; g
Pj = —a;QsinQT + B cos QT, (22.21)

%ZP,?—%QQZQ%EO
i i

With H” = 0 our task has been accomplished. The representation of the Q ; and the P;
as functions of the integration constants «z; and 8; means to have completely solved
our system. We may, furthermore, merge the coordinate transformations of the first
and second step

. V&) 0 sin QT .
(q’> =[1é0 1 cos 2T Q (“’) , (22.22)
P 250 JED) \~esineT coser ) \Ai
wherein 0 £ © = const. and £(¢) denotes a solution of
%é‘é’ - %éz +E0’ (1) =@, (22.23)

The transformed time T then follows from

t
T:/ dr (22.24)
0o &(7)

With the particular initial conditions £(0) = 1 and £(0) =0, the constants « j»Bj ob-
viously represent the values of the coordinates g, p; at the instant of time t = 0.

Both, the extended action function Si(g;,t, P;, Bop) from (22.5), and the con-
ventional action function S(Q;, T, ;) from (22.19) define canonical transforma-
tions. The concatenation of both transformations then establishes again a canonical
transformation. In principle, it is thus possible to find an extended action function
Si(gj,t,Bj, Po) = S;(qu, Bu) that yields the solution of (22.4) with all 8, constants,
which means to solve the problem in one step.

Example 22.1



Part V"

Nonlinear Dynamics

The treatment of mechanics in these lectures would not be complete if we did not deal
at least in brief with a topic which recently has attracted much attention: nonlinear
dynamics, and thereof the “theory of chaos” as a special topic.

The starting point is the observation that ordered and regular motions like those
occurring in the harmonic oscillator, the pendulum, or the Kepler problem of plane-
tary motion are more an exception in nature than the standard case. One frequently
encounters erratic phenomena and phenomena that are unpredictable in the details.
A particularly striking example is the occurrence of turbulence in the flow of liquids.

Toward the end of the nineteenth century, the “father of nonlinear dynamics,” Henri
Poincaré,! for the first time pointed out that an irregular behavior in mechanics is not
at all an unusual feature if the system being studied involves a nonlinear interaction.
Closely related is the—at first sight astonishing—insight that also very simple systems
may exhibit a highly complex dynamics. A simple deterministic differential equation
involving nonlinearities may have solutions the behavior of which over longer time
periods evolves quite irregularly and practically cannot be predicted. This is one of the
characteristic features of chaotic systems. The meaning of this concept, which may be
precisely defined in the frame of nonlinear dynamics, extends far beyond mechanics,
since the phenomenon of chaos arises in many fields not only of physics but also of
chemistry, biology, etc.

In the following sections, we shall learn quite a lot about general properties of
nonlinear dynamic systems. The time dependence and stability of their solutions will
be discussed, and concepts like attractors, bifurcations, and chaos will be introduced.

U Jules-Henri Poincaré, French mathematician and physicist, b. April 29, 1854, Nancy—d. July 17,
1912, Paris. Poincaré studied at the Ecole Polytechnique and the Ecole des Mines and was a scholar of
Ch. Hermite. Soon after he received his doctorate, he obtained a chair at the Sorbonne in 1881, which
he held until his death. In pure mathematics, he became famous as the founder of algebraic topology
and of the theory of analytic functions of several complex variables. Further essential fields of work
were algebraic geometry and number theory. But Poincaré also dealt with applications of mathematics
to numerous physical problems, e.g., in optics, electrodynamics, telegraphy, and thermodynamics.
Together with Einstein and Lorentz, he founded the special theory of relativity. Poincaré’s work on
celestial mechanics, in particular, on the three-body problem, culminated in a monograph in three
volumes (1892-1899). In this context, he was the first who discovered the appearance of chaotic
orbits in planetary motion. Poincaré has been called “the last universalist in mathematics” because of
the unusually broad scope of his interests.
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However, a detailed treatment of nonlinear dynamics, its manifold problems, and in-
terdisciplinary applications exceeds the scope of this book.? In particular, we cannot
deal in more detail with the important topic of chaos in Hamiltonian systems.

2 Some textbooks from the very extensive literature on nonlinear dynamics:

H. Schuster, Deterministic Chaos, VCH Verlag (1989).

G. Faust, M. Haase and J. Argyris, Die Erforschung des Chaos, Vieweg (1995). (This was also trans-
lated into English and published as G. Faust and M. Haase, J. Argyris, An Exploration of Chaos,
North-Holland (1994).)

H.-O. Peitgen, H. Jiirgens and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer
(1992).

R.C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press (1994).

G. Jetschke, Mathematik der Selbstorganisation, Deutscher Verlag der Wiss., Berlin (1989).



Dynamical Systems

A unified theoretical description may be given for many of the systems of interest.
A system is described by a finite set of dynamic variables that will be combined to
a column vector x = (xp, ..., xN)T € RV. The state of the system at a given time ¢
is uniquely described by such a point x in phase space. The x; are generalized co-
ordinates that may represent a variety of quantities. Note that the vector x shall also
comprise the velocities (or momenta, respectively). We now assume that the system
behaves deterministically. Thus, the entire time evolution x(¢) is determined if an
initial value x(#p) is given. The time evolution shall be described by a differential
equation of first order with respect to time:

d
—x(1) =F(x(t), 1; ). (23.1)
dt
Here, F is in general a nonlinear function of the coordinates x (also called the ve-
locity field or vector field). Moreover, F may also still explicitly depend on the time
t, for example if varying external forces are acting on the system. If there is no such
dependence, the system is called autonomous. Finally, the third argument in (23.1)
shall indicate that possibly there exist one or several control parameters A. These are
fixed given constants whose values affect the dynamics of the system and may pos-
sibly change the character of the dynamics. Typical control parameters are, e.g., the
coupling strength of an interaction, or the amplitude or frequency of an external per-
turbation imposed onto the system.

Note: A possible explicit time dependence in (23.1) may be eliminated by a simple
trick. For this purpose we consider a system with one additional degree of freedom,

< T N+1
X=(x1,..., XN, XN+1) €R +1

and postulate for the additional vector component the differential equation

d
—xy+1=1.

dt
With the initial condition xy41(0) = 0, this simply implies x4 (¢) = ¢. Hence, the
time on the right side of #+ may be replaced by xyy1, and we are dealing with an
autonomous system with one additional dimension.

The equation of motion (23.1) is very far-reaching, in spite of its simple shape. In
particular, it incorporates the Hamiltonian mechanics as a special case: For a system

with N degrees of freedom described by the generalized coordinates g1, ..., gx and
the associated canonical momenta p1, ..., py, the Hamiltonian equations of motion
W. Greiner, Classical Mechanics, 463
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(see Chap. 18) read as follows:

oH . oH
= 3 p = N
api l 9gi

gi (23.2)
If the coordinates and momenta are combined according to x = (q1,...9N;
Ply--s pN)T to a 2N -dimensional vector, then (23.2) may be written as a combined
matrix equation of the form (23.1):

d
Ex:JVXH. (23.3)

VxH stands for the gradient vector of the Hamiltonian function,

OH OH oH aH \T
VeH=(—,. .., — — ..., —, (23.4)
9q1 dgn  0p1 opn

and the 2N x 2N -matrix J provides both the permutation of the components as well
as the correct signs:

0 +I
J=<_I o)’ (23.5)

where I denotes the N x N unit matrix. By the way, J has the following useful prop-
erties:

J'=)T=-J), JP=-1 detJ=1. (23.6)

Moreover, dissipative systems may also be described by (23.1) by introducing
velocity-dependent friction terms; see, e.g., Example 23.2.

Obviously, the solutions of (23.1) may be highly manifold. For a given starting
vector x(t = 0) = Xg, a trajectory X(t), also called an orbit, may be calculated (which
in nonlinear systems, as a rule, is of course not feasible in an analytic manner) the
mathematical existence and uniqueness of which is guaranteed under very general
conditions by the theory of differential equations. Of particular interest is the asymp-
totic behavior of the trajectory at large times: Does it reach a stationary state (a fixed
point) or a periodic vibration (a limit cycle), or does it behave irregularly?

The connection between x(¢) and X is mathematically a mapping ®; : R¥Y — RV,
namely,

D, (x0) = x(1). (23.7)

This mapping that depends on the time ¢ as a parameter is called the phase flow or
simply the flow of the vector field F(x). For # = 0, the flow obviously reduces to the
identical mapping

=1 (23.8)

Furthermore, for autonomous (not explicitly time-dependent) systems, we have for a
subsequent performance of two time shifts

q)tl ‘th - q>t1+t2- (239)
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For a thorough understanding of the dynamical system, it is not sufficient to inspect
individual trajectories. Of much more interest is the behavior of the ensemble of all
trajectories in phase space. This may be interpreted as a query for the global properties
of the mapping ®,. Important questions are as follows: Can the flow be characterized
universally “on the large scale”? Are there regions with qualitatively distinct behavior
(ordered vs. disordered motion)? How does the flow vary with the value of a possibly
existing control parameter A (are there critical threshold values at which a new type of
behavior arises)?

The answer to these questions depends of course on the system being considered.
Nevertheless, one may find general criteria in the frame of nonlinear dynamics, and
it turns out that seemingly very distinct systems display amazing similarities in their
dynamics.

23.1 Dissipative Systems: Contraction of the Phase-Space Volume

Conservative systems are characterized by a volume-conserving dynamical flow. Li-
ouville’s theorem, proved in Chap. 18, states that the volume of a cell in the 2N-
dimensional phase space (q1,...,9nN; P1,---, pn) does not vary with time if the
points contained therein are moving according to the Hamiltonian equations. In dissi-
pative systems, on the contrary, the cells in phase space are shrinking with time. We
shall now derive a quantitative measure of this phenomenon for a general autonomous
dynamical system, the trajectories of which obey the equation of motion

d
Ex(r) =F(x(t)) (23.10)

in an N-dimensional phase space. To this end, we consider a small volume element
AV (x) that at time t =ty shall be at the position x = Xy and shall move with the flow.
In Cartesian coordinates, the volume is given by the product of the edge lengths,

N
AV (x) =HAxl~(x). (23.11)

i=1

The time derivative of this quantity is, according to the chain rule, given by

d N dAx (x)

AV = ; = gAx,-(x)
ﬁ ()Z 1_dAu() (23.12)
i i Axi(x) dt '
\—,_/
=AV(x)

where the extension Ax;/Ax; has been added. Hence, the relative change (= logarith-
mic time derivative) of the volume is

N

AVX) =) 1 _dAnt) (23.13)

AV (x) dt Axi(x) dt
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The change of the edge lengths of the volume' may be calculated from the equation of
motion (23.10). Let us consider the distance between two edges of the cube along the
i-direction which are determined by the trajectories xo(f) with xo(f9) = X¢ and x(¢)
with x(fp) = Xg + €; Ax;:

dAx,' d

a |, = E(xi(t) — x0i (1)) .
= Fi(x(10)) — Fi(x0(t0))
= Fi(Xo +€; Ax;) — Fi(Xo). (23.14)

For small deviations Ax;, the Taylor expansion of F(x) yields to first order

dAx,-
dt

_OF
- 3)(,'

Ax;. (23.15)

X0

fo

At the point 1o =, Xg = X (23.13) thus yields

N
1 d oF;
A(X) = LAV = —V.F. 23.16
®=voat'® ;Bxi (23.16)

The rate of change A of the phase-space volume is therefore determined by the diver-
gence of the velocity field F.

Liouville’s theorem is included in (23.16) as a special case. According to
(23.3)—(23.5), the velocity field of a Hamiltonian system with the coordinates x =

(q1s---+qN; P1s -+, pN)T reads

OH OH 0H aH\T
F(x)=(—,...,—;——,...,——) . (23.17)
op1 opN  Oq1 ogn

This leads to the volume change

N N
A=V .F= —F; —F
Z 31]5 l+z 3 1 N+i
i=1 i=1
N N
0 0H 0 0H
= — — — =0, (23.18)
; dqi Ipi 7 pi 9q;

which confirms that conservative systems are volume conserving.

If the flow in phase space is contracting, i.e.,if A =V - F <0, the system is called
dissipative. This is so far a local statement holding at a point X in phase space. In order
to get a global estimate of the dynamics, A (x) has to be averaged over a trajectory x().
If A thereby changes sign, then there is no simple method of finding out whether the
system is dissipative; one actually has to evaluate the mean value.

In dissipative systems, the volume filled by neighboring trajectories shrinks with
increasing time; asymptotically it even tends to zero. This may happen in a trivial
manner if the trajectories are converging. In the simplest case they are moving towards

I Strictly speaking, the shape of AV is distorted, and the edges do not remain orthogonal to each
other. But this is of no meaning when calculating the volume to lowest order.
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an equilibrium point and the motion comes to rest (see the section on limit cycles).
There is, however, also the possibility that the volume is shrinking and the distance
between the trajectories is being reduced only along certain directions, while they are
diverging in other directions. In this case the resulting distance even increases with
time. An originally localized region in phase space is so to speak “rolled out” and
widely distributed by the dynamic flow. The shrinking of the volume towards zero
then means that an originally N-dimensional hypercube in phase space changes over
to a geometric object with lower dimension D < N. D may even take a nonintegral
value, as will be explained in Chap. 26.

23.2 Attractors

The dynamics of a nonlinear system may be highly complicated. It is convenient to
distinguish between transient and asymptotic behavior. A transient process denotes
the initial behavior of a system after starting from a given point X in phase space.
Naturally, it is particularly difficult to make general statements, since the transients
depend on the particular initial condition. Theorists therefore tend to ignore this part
of the trajectory, even if it may play an important role in practice, depending on the
dominant time scales. Only recently has the study of transients gotten more attention.

The systematic treatment of the asymptotic or stationary behavior of a system is
somewhat simpler. “Stationary” shall not mean here that the system is at rest but only
that possible transient phenomena have faded away. In dissipative systems, which will
be treated here, the trajectories will asymptotically approach a subset of the phase
space of lower dimension, a so-called attractor.

The definition and correct mathematical classification of attractors is not quite sim-
ple. Actually there are several concepts in literature that differ from each other in de-
tail. Here we first give a mathematical definition> but shall also illustrate the concept
of the attractor by various examples in the subsequent chapters.

Let us consider a vector field F(x) on a space M (e.g., M = R") with an associated
phase flow ®,. A subset A C M is denoted as an attractor if it fulfills the following
criteria:

(1) A is compact.
(2) A is invariant under the phase flow ;.
(3) A has an open environment U that contracts to A under the flow.

This statement needs several explanations:

(1) A set is called compact if it is closed and restricted. This means that any limit
value of an infinite sequence belongs itself to the set, and the set cannot extend up
to infinity. “Exploding” solutions where for example particles escape to infinity
therefore cannot be attractors.

(2) Invariance under the phase flow means that

o, (A)=A forall r. (23.19)

Hence, a point on the attractor never may leave this attractor.

2 F. Scheck, Mechanik, Springer (1992). This book is also available in English: F. Scheck, Mechan-
ics: From Newton’s Laws to Deterministic Chaos, 3rd edition, Springer (1999).
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Fig. 23.1. Visualization of the
definition of an attractor A
(hatched). In the course of
time evolution, the environ-
ment U is shrinking such that
for t+ > ty it is enclosed in
any arbitrary smaller environ-
ment V

M

(3) This may be formulated in two steps. First, the environment U D A is larger than
the attractor itself, since we are dealing with an open range that includes the com-
pact A. U shall be positively invariant, i.e.,

®,(U)CU forall t>0. (23.20)

If a point once lies within U, then it cannot leave it. It will, on the contrary, even be
pulled toward A, which may be formulated as follows: For any open environment
V of A that lies completely within U, i.e., A C V C U, one can find a time ty
after passing that the image of U lies entirely within V:

O, U)CV forall t>ty. (23.21)

Since V may be chosen arbitrarily “close” about A, this means that for large time
values U is shrinking toward the attractor A.
Frequently, the definition of an attractor is still extended by the requirement
that it shall consist of one piece only.
(4) A cannot be separated into several closed nonoverlapping invariant subsets.

An important property of an attractor is its domain of attraction. The maximum
environment U that contracts to A is called the basin of attraction B. In correct math-
ematical formulation, B is the union of all open environments of A that fulfill the
conditions (23.20) and (23.21).

The introduction of the concept of attractor given here is rather complex. This is
justified, however, by the fact that attractors may have very complex properties. Of
central importance for nonlinear dynamics are the concepts of strange and chaotic
attractors, which sometimes—not quite correctly—are used as synonyms. These con-
cepts will become fully transparent only in the subsequent chapters and by examples.
But we shall present the definitions now:

Chaotic attractor: The motion is extremely sensitive with respect to the initial con-
ditions. The distance between two initially closely neighboring trajectories increases
exponentially with time. For more details see Chap. 26.

Strange attractor: The attractor has a strongly rugged geometrical shape that is
described by a fractal. For more details see Chap. 26.

Both of these properties arise, as a rule, in common. There are, however, also ex-
amples® where an attractor is chaotic but not strange, or is strange but not chaotic.

3¢ Grebogi, E. Ott, S. Pelikan and J.A. Yorke, Physica 13D, 261 (1984).
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23.3 Equilibrium Solutions

A particularly simple case arises if the system is in stationary equilibrium, i.e.,
F(xg) =0 suchthat x(¢#) =Xy = constant. (23.22)

Such an xg is also called a critical point or fixed point. Of particular interest is the
question of whether or not the system is moving toward such a fixed point and—if
several ones exist—to which of them. A fixed point that attracts the trajectories is the
simplest example of an attractor. In this case the set A defined in the previous section
is trivial and consists of a single point.

We are therefore interested in the stability of equilibrium solutions. To this end we
consider the trajectories x(#) in the vicinity of a critical point Xo. We thus require that
the distance

E)=x(t)—xo (23.23)

be a small quantity. Under this condition, the problem may be greatly simplified, since
it usually suffices to take only the lowest term of the Taylor expansion of F(x) into
account. The linearized equation of motion then reads

d
EEO) =ME§(@), (23.24)

where terms of quadratic or higher order in & were neglected. M denotes the Jacobi
matrix (functional matrix) of the function F(x) evaluated at the position xg. This ma-
trix has the elements

_OF
Z)xk Xo.

Mix (23.25)

Contrary to the original nonlinear equation of motion (23.1), the solution of the lin-
earized problem (23.24) is in principle simple; it may be given analytically. Let us
first consider the trivial special case of a one-dimensional system (N = 1). The Jacobi
matrix then has only a single element, say, w, and (23.24) is solved by

£(t) = e"§(0). (23.26)

The character of the solution is determined by the sign of u: For u < 0, xg
is a stable equilibrium point, since small perturbations decay exponentially. For
w > 0, the equilibrium is unstable, since even the smallest displacements from
the equilibrium position “explode” exponentially. For p = 0, the limit case of in-
different or neutral equilibrium arises. The behavior of the system under pertur-
bations is then determined by the higher derivatives of the function F(x) at the
point xg.

The general case (N > 1) may be treated as in Chap. 8 by the method of normal
vibrations. One then constructs solution vectors u(¢) normalized to 1, all components
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of which show the same (exponential) time dependence:

u(t) = eM'u. (23.27)
Using (23.24), one arrives at the eigenvalue problem

Mu = pu. (23.28)

This N-dimensional linear system of equations only has nontrivial solutions if the
determinant

det(M;; — pudij) =0 (23.29)

vanishes. This characteristic equation (secular equation) has as a polynomial of Nth
order in general N eigenvalues i, with the associated eigenvectors u,. The general
solution of (23.24) may then be written as a superposition

N

ED)=) cpe'uy, (23.30)

n=1

where the expansion coefficients ¢, may be determined from the initial condition at
t = 0. The eigenvalues u, may be real or complex. Complex eigenvalues thereby arise
always pairwise: If j, solves (23.29), then the complex-conjugate p;: obviously also
solves the equation, since the Jacobi matrix M;; is real.

The real parts of the eigenvalues of the characteristic equation are decisive for char-
acterizing an equilibrium point xo. We now define a tightened form of the condition
of stability: An equilibrium point x¢ with F(x¢) = 0 is called asymptotically stable if
there exists an environment U > X within which all trajectories are running toward
xo for large times:

lim x(r) =x¢9 for x(0)eU. (23.31)
—00

If the function (the vector field) F is sufficiently smooth so that it can be described
by the linear approximation, one may immediately give a sufficient condition for as-
ymptotic stability: The point X is asymptotically stable if all eigenvalues of the Jacobi
matrix have a negative real part, i.e., if

Rup, <c<0 forall n=1,...,N (23.32)

with a positive constant c.
A glance at (23.30) shows that under this condition all contributions to the dis-
placement & () exponentially tend to zero, such that asymptotically

(1) — Xo|| < constant - ¢~ it Mra (23.33)

Conversely, if at least one of the eigenvalues has a positive real part, Ru, > 0, then
xo is an unstable fixed point, since displacements along u,, are increasing exponen-
tially.

With the knowledge of the eigenvectors u,, the total phase space may be spanned in
partial spaces. The stable (or unstable) partial space is spanned by all vectors u,, satis-
fying Ry, <0 (or > 0). In addition, a partial space may occur with the special value
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N, = 0. If this happens, one speaks of a degenerate fixed point. (The associated par-
tial space is also called the center; but we shall not deal here in more detail with the
related problems.) If one considers a general perturbation of a trajectory, it will have
components in all partial spaces. After a sufficiently long time the contribution with
the maximum Ry, will dominate.

Finally, we note that the linear stability analysis holds only in the vicinity of a
critical point Xg. It may be shown mathematically that the topological behavior of the
flow does not change there under the influence of the nonlinearity. But this vicinity
may be very small, such that one cannot make a statement about the global behavior
of the flow by this way.

EXAMPLE |

23.1 Linear Stability in Two Dimensions

The stability analysis becomes particularly transparent for the case N =2 that corre-
sponds to a dynamic system with one degree of freedom x; = ¢ and the associated
momentum x = p. In the vicinity of a fixed point x = F(xg) = 0, the motion is deter-
mined in a linear approximation by the four elements of the Jacobi matrix M;;. The
characteristic equation (23.29)

My —p My,

=0 23.34
M3, My — ( )
is a quadratic polynomial
1 — (M1 + M) + My My — MizMay =0 (23.35)
or
u?—2su+d=0 (23.36)
with
1 1
SZE(M11+M22)=§TI‘M, d=M| 1My — M{oM>; =det M. (23.37)

The two solutions of (23.36) may be given explicitly:

,u1/2=S:|:\/S2—d. (23.38)

Depending on the magnitude and sign of the two constants s and d, there are many
distinct possibilities for the eigenvalues w1, (o:

(a) u1, no real and both negative (if s <0 and 0 < d < s2)  stable node
(b) 1, pp real and both positive (if s > 0and 0 < d < s2)  unstable node

(c) w1, up real with distinct signs (if d < 0) saddle

(d) w1 = 3, negative real part (if s <0 and d > 52) stable spiral
e)u = M;, positive real part (if s > 0 and d > s2) unstable spiral
® = ,u,;, purely imaginary (if s =0 and d > 0) rotor

The ranges are represented in Fig. 23.2 in the s, d-plane. To these alternatives, there
correspond distinct types of trajectories & (¢) = x(¢) — xo according to (23.30).
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Fig. 23.2. Ranges of distinct
stability depending on the pa-
rameters s and d

Fig. 23.3. Various types of
stability of a fixed point in two
dimensions. Upper row: Sta-
ble and unstable node, saddle.
Lower row: Stable and unsta-
ble spiral, rotor
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Figure 23.3 illustrates how the trajectories in the vicinity of a stable node are run-
ning into the fixed point:

E(t) =ci e Mlhuy 4 ¢y e7IM2lyy, (23.39)

where u; and u; are the (not necessarily orthogonal) eigenvectors. The curvature of
the trajectories arises if @ 7 (y. These curves are parabola-like, with a common tan-
gent at the origin (in u; - or up-direction depending on whether p or 1 is larger). The
trajectories for the unstable node, Fig. 23.3(b), have the same shape but are passed in
the opposite direction (exponential “explosion”). For the case of a saddle the trajec-
tories are running in the u;-direction (let ;1 < o without restriction of generality)
toward the fixed point but are pushed off in the up-direction, which results in the
hyperbola-like trajectories of Fig. 23.3(c).
If the eigenvalues are complex,

U1 = fr +1li, M2 = Wy — L4, (23.40)
this will hold, because of (23.28), for the eigenvectors too:

u =u, +iuy;, w=u, —iu;. (23.41)
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The general solution (23.30) then has the form

E@) =creuy +cref?uy (23.42)
*
=cj ey +cf eti'uf

=2e"9R(c; eMi'uy), (23.43)

where ¢ = ¢} to get & real. If the constant ¢, the value of which is fixed by the
initial condition & (0), is split into magnitude and phase, and the same is done for the
Cartesian components of the complex eigenvector uy,

c1=pe?, u=ae®e, +befe,, with a®+b*=1, (23.44)
then (23.42) may be rewritten as follows:
E(t)=2per[acos(uit + ¢ + a)ex +bcos(uit + ¢ + Bey]. (23.45)

The factor in brackets describes harmonic vibrations shifted in phase relative to each
other (if @ # B). One thus has the parametric representation of an ellipse. Due to the
prefactor, the size of the ellipse varies exponentially with time. Thus, the trajectories
are logarithmic spirals moving toward the fixed point or away from it, depending on
the sign of the real part of u; see Fig. 23.3(d), (e)—hence, the name spiral. The case
of the rotor with 9%ty = 0 plays a particular role, since the trajectories in the vicinity of
Xo are periodic functions (concentric ellipses). This means that the equilibrium point
is stable (small displacements are not amplified) but not asymptotically stable (the
trajectory does not run into the fixed point), and hence this point is not an attractor.

EXERCISE ]
23.2 The Nonlinear Oscillator with Friction

Problem. Let a one-dimensional system be described by the following equation of
motion:

¥+ax+Bx+yx>=0. (23.46)

Show that the system is dissipative. Interpret the individual terms and discuss the
possible fixed points and their stability.

Solution. We are dealing with a harmonic oscillator involving friction and nonlinear-
ity. Besides the linear backdriving force of the harmonic oscillator (third term), there
acts a friction force proportional to the velocity (second term). Moreover, a cubic non-
linearity (fourth term) becomes important. This force law corresponds to a potential

Vo) = Zax? 4 Dyt (23.47)
2 4

where m denotes the mass. We obtain various types of motion, depending on the

magnitude and sign of the constants in (23.46). We first rewrite the equation of mo-

tion (23.46) in the standard form. For this purpose, we introduce the velocity as

Example 23.1
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Exercise 23.2

Fig. 23.4. Potentials of the
quadratic oscillator for vari-
ous signs of the parameters §
and y

a second coordinate, X = (x, y) = (x, x), which leads to the coupled differential equa-
tions of first order:

o d (x)_ y _
YT <y> B (—ay — Bx — J/x3> =FX). (23.48)

For o > 0, the system is dissipative, since the divergence of the velocity field is

) 3
A=V .-F=—y+ —(—ay—Bx —yx’)=—a <0. (23.49)
ox ay

The equilibrium condition F(xq) reads
y=0, x(B+yx>)=0. (23.50)

Hence, besides the equilibrium position x¢g = (0, 0) without displacement, there still
occur two further symmetrically positioned fixed points xo = (£+/—B/v, 0), provided
that the constants 8 and y have distinct signs. Figure 23.4 shows the associated po-
tential functions V (x) for all combinations of signs.

VA B>0,v>0 VA B>0,vy<0 VA B<0,v>0 VTB<O,y<O
AR
(@) o) (© (d

To discuss the linear stability, we need the Jacobi matrix

_ (—,3 _03yx2 _1a) (23.51)

The characteristic equation (23.36) in Example 23.1 for the eigenvalues involves the
following coefficients:

o (9F1/0x 9F1/dy
“\omyjax aF/ay

1
For x¢ = (0, 0): s:—Ea, d=_p,

Forxop = (0, £/—B/y): s:—%a, d=-28.

Obviously, asymptotic stability may occur only for a positive sign of the constant
o > 0. Only then is one dealing physically with a damping friction term. For the fixed
point in the rest position xo = (0, 0), we get the alternatives

D B> }—1012 stable spiral
2)0<p< %az stable node
B3)p<0 saddle

In the first case, there arise weakly damped vibrations, in the second case the oscillator
is overdamped, and the displacement monotonically tends to zero. For 8 < 0, the equi-
librium position is unstable, as may be seen from the potential plots in Fig. 23.4(c), (d).
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The analogous considerations for the fixed points xg = (:I:«/ —-B/v, 0) lead to (assum-
ing o > 0):

(1 =28 > %az stable spiral
2)0<-28< ia2 stable node
B3)p=0 saddle

The factor 2 arises because the curvature of the potential (23.47) in the equilibrium
positions with finite displacement is twice as large as in the rest position. Only the
double-oscillator potential (Fig. 23.4(c)) allows stable displaced fixed points (8 < 0
and y > 0).

It is instructive to plot the position of the fixed points as a function of the pa-
rameter B. As is seen from Fig. 23.5, for 8 = 0 there occurs a square-root branch-
ing. For y > 0, a stable equilibrium position bifurcates into two new stable solutions.
Such bifurcations (Lat. furca = fork) frequently occur in nonlinear systems; see also
Chap. 25.

(@) Xy >0 (b) X0 v<0

- -

23.4 Limit Cycles

Besides the simple stationary equilibrium points studied in detail in the section on
attractors, a dynamic system may exhibit still other types of stable solutions. These
are the so-called limit cycles that are characterized by periodically oscillating closed
trajectories. Similar to the fixed points discussed already, limit cycles may also act as
attractors of motion; compare the section on attractors. Then there exists a more or less
extended range in phase space (the “basin of attraction” of the attractor): trajectories
starting from there move toward the limit cycle, which is approached for + — oo. For
limit cycles, one may also perform a mathematical stability analysis as for fixed points
which by its very nature is somewhat more difficult.

We shall concentrate ourselves here to a special but typical example, namely a har-
monic oscillator with a nonlinear friction term. The associated differential equation
has the general form

d’x dx )

W+f(x)5+w x=0. (23.52)
If the middle term is absent, we obtain a harmonic oscillator with angular frequency w.
The case of a constant coefficient, f(x) = o = constant, leads to a linear differential
equation that may be solved easily. The character of the solution is determined by an
exponential factor exp (—at/2). The solution thus decreases exponentially toward the
fixed point at x = X = 0 if « is positive. A negative value of o means that a force is
acting along the same direction as that of the instantaneous velocity which leads to an
unlimited amplification of the solution (negative damping). Physically one of course

Exercise 23.2

Fig. 23.5. Position of the sta-
ble (continuous) and unstable
(dotted) fixed points depend-
ing on the parameters B and y
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no longer deals with a friction force; rather an external source must exist that pumps
energy into the system.

If allowance is made for more general functions f(x), it may happen that the damp-
ing coefficient takes partly positive, partly negative values, depending on the displace-
ment. Of particular interest is the case when f(x) is negative for small magnitudes of
x, and positive for large displacements. The simplest ansarz providing such a behavior
is a quadratic polynomial

fE) =a(x? —xp), (23.53)

where o determines the strength of the damping/excitation and two zeros are at x =
+xp. The zeros may be set to the value 1 without loss of generality by rescaling the
variables to x” = x/xo with o’ = oexg. For convenience one may also choose the value
1 for the frequency by rescaling the time: ¢’ = wot with a” = o’ /w. The standard form
of the equation of motion then reads (dropping the primes again):

d%x

PN I e (23.54)
dt? dt ' '

This differential equation has been set up and discussed in 1926 by the Dutch engi-
neer B. van der Pol. It served first for describing an electronic oscillator circuit with
feedback (at that time still with valves), but it was already clear to the author that his
equation could be applied to a variety of vibrational processes. Actually the origin
of this equation may be traced back even further, since around 1880 Lord Rayleigh
investigated the following differential equation in the context of nonlinear vibrations:

d*v N 1/dv\® dv b0 (23.55)
— tal=l =) —— v=0. .
dt? 3\ dr dt

One easily sees the relation between (23.54) and (23.55). We have only to differentiate
the Rayleigh equation (23.55) with respect to time and then substitute

dv

2 —x

dt
to get the van der Pol equation (23.54). Thus, both equations are essentially equivalent
to each other.

We now discuss the solutions of the van der Pol equation (23.54). It may be trans-
formed as usual to the standard form (23.1) of two coupled differential equations of
first order for the vector x(¢) = (x, y)™:

(23.56)

dx

ax _ 23.57
a7 ( )
d

d—f — —x—a@?—1Dy. (23.58)

It is now advantageous to transform to polar coordinates in the x, y-phase space:
X =rcosf, y =rsinf. (23.59)

The time derivatives of » and 8 may be expressed by those of x and y. For the radius
coordinate the relation follows immediately from the differentiation of r? = x? 4 y2:

dr dx dy

— =x— . 23.60
rdt xdt+ydt ( )
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An analogous relation for the angle coordinate may be obtained from the time deriva-
tives of (23.59):

d d do
g —rcos9 — r—sin®, (23.61)
dt dt dt
d d do
o —rsin9+r—cos9. (23.62)
dr dt dt

By multiplying the first of these equations by y and the second one by x and subtract-
ing both equations, one obtains
2d0 _ dy  dx

—. 23.63
dt xdt ydt ( )

Using (23.60) and (23.63), the van der Pol system of equations in polar coordinates
reads as follows:

dr

= —a(rfcos?0 — 1)rsin®6, (23.64)
do 202 :
T —1 —a(r“cos“0 — 1)sin6 cosb. (23.65)

The nonlinear terms on the right-hand side have a rather complex shape, but one may
give some qualitative statements on the solutions to be expected. In the limit o =0,
one has of course a normal harmonic oscillator. The trajectories in phase space are
circles which are traveled through uniformly with the frequency 1, such that

x(t) = p sin(t — tp) (23.66)

with arbitrary p and ty. Due to the nonlinearity in (23.64) and (23.65), the behavior of
the solution is modified. As long as o < 1, the influence on the revolution frequency
remains small: Since the function sinf cosf changes its sign twice in each period,
the influence of the nonlinear term in (23.65) cancels out on the average. It is quite
different, however, for the radial motion: Here sin 0 is positive definite, and small
changes of the radius may accumulate from period to period. The evolution direction
of the effect is determined by the sign of —a(r?cos*6 — 1). In the following we
shall discuss the (more interesting) case « > 0 (the set of solutions for « < 0 may be
obtained by inversion of the time coordinate t — —t).

For small displacements r < 1, the factor —a (r> cos® 6 — 1) is then always positive,
and the radius increases slowly but monotonically. For large displacements r > 1,
on the contrary, the factor is predominantly negative (except for the vicinity of the
zeros of cosf), and the mean radius decreases from cycle to cycle. A more detailed
investigation as is performed in Exercise 23.3 shows that the trajectory in the course of
time approaches a periodic one, independent of the initial conditions, which for given
« is uniquely determined. This is the limit cycle of the system.

As long as « is very small, the limit cycle resembles a harmonic vibration as in
(23.66). The crucial difference is, however, that the amplitude p now has a sharply
determined value, namely, p = 2. If one starts from a smaller or larger value, the tra-
jectory is a spiral approaching the limit cycle. The result of a numeric calculation
for the value oo = 0.1 is represented in Fig. 23.6. One can follow the spiraling mo-
tion towards the limit cycle. Moreover, deviations from the purely harmonic vibration
become visible.
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Fig. 23.6. (a) The solutions
of the system of differential
equations (23.57) in the x, y-
plane approach the limit cy-
cle (bold curve), a slightly
deformed circle, independent
of the initial condition. The
nonlinearity parameter is o =
0.1. (b) The solutions x(t)
of the van der Pol oscillator
after a transient motion co-
incide with an approximately
harmonic vibration

-’

S

Even more interesting is the solution in the opposite limit o >> 1, in which the non-
linearity plays a dominant role. Here also a limit cycle evolves for the same reasons,
the shape of which, however, strongly differs from a harmonic vibration. Figure 23.7
shows the phase-space plot and the trend of the amplitude of the limit cycle for the
case o = 10. One notices that the displacement remains in the range of the maximum
amplitude x = 2 and slowly decreases toward x = 1. Subsequently, a sudden “flip-
over” sets in, and the displacement drops to the value x = —2. Then the game repeats
with opposite sign. The period length of this kind of vibration is no longer determined
by the oscillator frequency (here w = 1) but takes a much larger value. An analytic
investigation (see Exercise 23.4) shows that it increases proportional to the “friction”
parameter o:

T~@3-2In2)e. (23.67)
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A motion performed by a van der Pol- or Rayleigh oscillator for large « is also
called relaxation vibration. The name indicates that a tension builds up slowly which
then equilibrates via a sudden relaxation process. Such relaxation vibrations fre-
quently occur in nature. For example, the vibration of a string excited by a bow, the
squeak of a brake, and even the rhythm of a heartbeat or the time variation of animal
populations may be classified in this way.

An important and also practically useful property of nonlinear oscillators with a
limit cycle lies in the fact that self-exciting vibrations occur that are well defined and
independent of the initial conditions. As a somewhat nostalgic example, we quote the
balance of a mechanical clock, the vibrations of which are largely independent of the
strength of the driving force. Finally, we quote without proof a mathematical theorem®
stating that the possible types of motion of a two-dimensional system (corresponding

4 See, e.g., J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifur-
cations of Vector Fields, Springer (1983).

Fig. 23.7. Solutions of the
van der Pol oscillator with
strong nonlinearity, o = 10.
The meaning of the curves is
the same as in Fig. 23.6



480

23 Dynamical Systems

to a mechanical system with one degree of freedom: one coordinate plus one velocity)
are completely governed by fixed points and limit cycles.

The theorem of Poincaré and Bendixson: Let a two-dimensional dynamic sys-
tem x(1) = (x(¢), y(¢t))T be described by the differential equation

dx Fx)

J— X

dt
with a continuous function F. Let B be a closed and restricted range of the x,y-plane.
If a trajectory lies in B for any time ¢t > 0, x(t) € B, there are three possibilities:

(i) x(z) is a periodic function,
(i1) x(t) asymptotically approaches a stationary equilibrium point, and
(iii) x(¢) asymptotically approaches a periodic function (limit cycle).

The general theorem says of course nothing about the number and shape of the
fixed points and limit cycles. However, it excludes the existence of more complicated
nonperiodic types of solutions! It is important that the statement holds only for two-
dimensional systems. Two trajectories are not allowed to intersect each other in phase
space, which in the two-dimensional plane leads to considerable restrictions. But in
more than two dimensions the trajectories may “evade” each other, and more com-
plex patterns of motion are possible. In this case, the already-mentioned strange at-
tractors with a complicated shape may also occur. This will be treated in the next
chapters.

EXERCISE |

23.3 The van der Pol Oscillator with Weak Nonlinearity

Problem. Show that the solutions of the van der Pol oscillator for small values of «
are spirals that approach a circle (the limit cycle) with the radius 2.

Hint: Tt is a good idea to introduce new variables that are averaged over one oscil-
lation period.

Solution. We start from the plausible assumption that for ¢ < 1 the solution of the
system of differential equations (23.64) and (23.65) differs only slightly from that of
the harmonic oscillator if it is considered for short time intervals. In order to calculate
a long-term drift of the variables, it is efficient to average over one vibrational period
in each case. We define the averaged amplitude 7 (t) as

(23.68)

The integration thereby extends over a full revolution of the angle, i.e., from 6 to
6 — 2m (the minus sign arises because of d6/dt >~ —1). The corresponding time inter-
val runs from ¢ to approximately (for ¢ = 0 exactly) the value ¢ 4 2.
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We are interested in the time variation of the averaged amplitude for which accord-
ing to (23.64) we have

dr 1
O a— ¢ dorsin?0(cos?6 — 1)
dt 21
27
do 1, .9
=—u —r(r — sin“ 260 — sin 9). (23.69)
27 4
0

For small «, the quantity r(¢) considered over a period varies only slowly, and hence
may be pulled out of the integral and replaced by 7 (¢). The remaining angle integration
is trivial, since the mean value of both sin?@ and sin? 26 just equals 1/2. Hence, the
averaged amplitude satisfies the differential equation

_ 1_,
ar l—Zr , (23.70)

which is correct up to the order O(a?). The circulation frequency, on the contrary,
does not change to first order:

_ 2w
db do
—=/—[—1—a(rzcosze—l)sinecose]z—l. (23.71)
dt 2
0

The angular integral vanishes here, since the integrand is an odd function with respect
to & = . The differential equation (23.70) for the averaged amplitude may be solved
in closed form. We write

u
d—; = aF — b3 (23.72)

and transform to the new variable

1 dr
r r

Obviously, (23.72) reduces to the simple linear differential equation

Ldu _ i~ (23.74)
2ar MY '

the solution of which is a shifted exponential function:
b —2at
u(t)y=—+ce -, (23.75)
a

where the free constant ¢ is to be determined from the initial condition: ¢ = u(0) —
b/a. Insertion of a = «/2 and b = «/8 finally yields

B 2r(0)
PO+ G2 O)e

r(t) (23.76)

Exercise 23.3
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Exercise 23.3

Fig. 23.8. The cubic limit
curve z(x) determines the as-
ymptotic behavior of the re-
laxation vibrations of the van
der Pol oscillator

Thus, it is proved that the trajectories are spirals which approach a circle with radius 2
from inside (7 (0) < 2) or outside (r(0) > 2). This is the limit cycle of the van der Pol
oscillator for small values of «.

EXERCISE ]
23.4 Relaxation Vibrations

Problem. Discuss the solutions of the Rayleigh oscillator (23.55) qualitatively for
large values of the parameter o > 1. Find an approximate solution for the period
length of the resulting relaxation vibration.

Solution. The differential equation (23.55) of the Rayleigh oscillator written in stan-
dard form reads

dv

dt (23.77)
dx _ 1 3
d[ = v (07 3x X ].

In order to discuss the behavior of the solution for large values of «, it is convenient
to rescale the amplitude to a new variable z = v/«:

dz _ 1

di o (23.78)
dx

i —afz+ f()],

with the abbreviation f(x) = (x3/3) — x. From this quantity one may read off the
direction of the trajectory for any point of the z,x-plane:

dx _dx/dt _ ,z+ f(x)

dx _ _ 23.79
dz  dzjdr 0 x (23.79)

This means that for o > 1, the trajectories are almost vertical. Other directions
may occur only near the curve z(x) = — f(x). This cubic limit curve subdivides the
z, x-plane into two halves (see Fig. 23.8). In the right half, the derivative dx /dt is neg-
ative, according to (23.78), and the trajectories are running (almost) vertically down-
ward. In the left half, they are running upward.

o0
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From this knowledge, the motion for large @ may be constructed graphically. Be-
ginning from an arbitrary initial point, e.g., the point O in the figure, the trajectory
at first falls almost vertically down to the curve z(x) = — f(x). The further motion
proceeds with significantly lower velocity near this curve (directly on the curve the
velocity would vanish, dx/dt = 0). Finally, the point of inversion B is reached at
(z,x) =(2/3,1).

Because dz/dt > 0, the trajectory cannot follow the backward-running branch of
the curve but “falls down” to the point C at (2/3, —2). Now the game is repeating
with inverse sign. The curve ABC D forms the limit cycle of the Rayleigh oscillator.
It consists of two slowly passed parts (x =2...1 and —2...—1) and two fast jumps
(x=1...—2and —1...2). This discussion immediately applies, of course, to the van
der Pol oscillator, since according to (23.56) its displacement just corresponds to the
velocity x of the Rayleigh oscillator introduced in (23.77).

The period length T of the relaxation vibration may be evaluated easily:

d
T:yﬁdt:a%—z, (23.80)
X

where the integral extends over a full period. Since the motion along the partial
branches BC and DA proceeds very quickly, it is sufficient to calculate the contri-
bution of AB:

d d
T~a —Z—i—a e
X

AB CD
1

d dz)d
=2 —Z=2a/dx Z/dx. (23.81)
X

X
AB 2

The derivative dz/dx is to be formed on the curve AB, i.e., dz/dx = —df/dx:

1

2
—df/d 2 1
T:Za/dxﬂz%t/dxx =2a<§x2—lnx>
2

2

X X 1

=03 —-2In2)a ~1.614c. (23.82)

The period length calculated numerically in Fig. 23.7b for o« = 10 amounts to about
19, hence the asymptotic range is not yet fully reached.

Exercise 23.4
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In Chap. 23, we have considered the stability of an equilibrium point xg by investigat-
ing the behavior of the trajectories in the vicinity of this point. Now we are interested
in the environment of a time-dependent reference trajectory X, (¢). The former case of
a stationary fixed point X, (f) = Xo = constant is of course included too. One may again
distinguish between various kinds of stability. Stability in the sense of Lyapunov exists
if a point on a neighboring trajectory x(f) remains close to x,(¢) for all times. The
formal expression of this concept reads as follows: A path x, (¢) is called Lyapunov-
stable if for any € > 0 a value §(¢) > 0O can be found such that any solution with
|x(t9) — X, (tp)| < & satisfies the condition |x(7) — X, (¢)| < € for all times ¢ > 1g.

Figure 24.1(a) shows that the “perturbed” paths are confined within an (N + 1)-
dimensional tube of radius € about the reference trajectory. This does not yet mean
that the trajectories are approaching each other with time. If the latter happens, one
speaks as before (see (23.31)) of asymptotic stability; see Fig. 24.1(b).

~ A~
N\/ﬁ

(b) -1

Fig.24.1. (a) The neighboring paths x(¢) of a Lyapunov-stable path x,-(¢) remain in its vicinity.
(b) In the case of asymptotic stability, neighboring paths are attracted such that the distance
decreases to zero with increasing time

A path x,(¢) is called asymptotically stable if it is Lyapunov-stable and if for the
neighbor trajectories lim;_, o |X(¢) — X, ()| = 0.

It is of interest that for time-dependent trajectories X, (¢) there exists still another
concept of stability that was not needed for stationary fixed points Xo. It may happen
that although the shape of two paths in phase space is very similar, these paths are nev-
ertheless passed with distinct speeds; see Fig. 24.2. Thereby a time shift may evolve,
|x(#) — X, (¢)| increases, and the definitions of stability given so far do not apply. One
therefore introduces a weakened version: A path x, (¢) is called orbitally stable if for
any € > ( a value §(¢) > 0 can be found such that any solution with |x(fg) — X, (fo)| < &
is confined for all times ¢ > #y within a tube of radius € about the path x, (¢).

W. Greiner, Classical Mechanics, 485
DOI 10.1007/978-3-642-03434-3_24, © Springer-Verlag Berlin Heidelberg 2010

Fig. 24.2. Example of a path
that is asymptotically sta-
ble but not orbitally stable.
Neighboring paths are passed
with distinct speeds
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Using this definition, we consider the geometric position x(¢). The time as a para-
meter of this curve, on the contrary, does not play a role.

24.1 Periodic Solutions

The investigation of the stability of time-dependent solutions is by its very nature
more difficult than in the case of stationary fixed points. Here we shall treat the im-
portant special case of periodic solutions. Then we may apply a formalism that goes
back to the French mathematician Floquet (1883). Thus, we assume that the reference
trajectory X, (t) repeats itself after a period length T,

X (t +T) =%, (). 24.1)

This may originate in two distinct manners. First, in an autonomous system vibrations
may arise by themselves, e.g., in the harmonic oscillator. Here the right-hand side
of the equation of motion does not depend explicitly on the time, X = F(x). On the
other hand, there are also periodically externally excited systems which are under the
action of a time-dependent external drive with the periodicity F(x, ¢ + T) = F(x, 1)
that reflects itself in the trajectory. An advantage is here that the period length T is
imposed from outside, while the vibrational frequency of an autonomous system is
not known from the beginning and must be determined—except for simple special
cases—by numerical solution of the equation of motion.

To discuss the stability of x,(¢), one investigates, as in (23.23), the neighboring
trajectories

X(1) =x-(t) + &), (24.2)

where the deviation &(¢) is assumed to be small. From the equations of motion

x(1)=F(x,1) and x%.(t) =F(x.,0), (24.3)
we find

X +E=Fx, +&1)=Fx,1)+E, (24.4)
or

E=F(x, +&,1)—Fx., 1) =G, 1) (24.5)

This equation can be linearized by expanding the right side in a Taylor series and
neglecting higher terms:

EN=M®E) (24.6)
with the Jacobi matrix (here written in abstract without giving the indices)
oG oF
M(r) = —’ =— . (24.7)
9 le—o  Xlx ()

Equation (24.6) is, like (23.24), a linear system of differential equations, but now the
matrix of coefficients is periodically time-dependent, M(t + T) = M(t), while for-
merly it was constant. This periodicity also holds for autonomous systems: Although
the function F(x) does not involve the time explicitly, the reference trajectory X, (¢) by
itself nevertheless induces a periodic time dependence.
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24.2 Discretization and Poincaré Cuts

There exists a mathematical tool that is useful for the stability analysis of time-
dependent paths but also in general for the qualitative understanding of dynamic sys-
tems. The basic idea is to perform a discretization of the time dependence of a trajec-
tory. This may be done in two somewhat different ways.

An obvious possibility is the stroboscopic mapping. Instead of the continuous func-
tion x(¢), one considers a discrete sequence of “snapshots” x, = x(#,),n =0,1,2,....
The time points of support of the spectroscopic method are chosen as equidistant,
hence t, = t9 + nT with a scanning interval 7. Of course one should choose a value
of T that is appropriate for the problem. If an oscillating driving force is acting, one
will use its period length for T'. The stroboscopic method becomes particularly simple
if the trajectory x(¢) itself is periodic and T coincides with the period length; then all
X, are of course identical. The stroboscopic mapping of the path consists of a single
point X, = X¢ in phase space. One should note that the position of the point Xy depends
of course on the selected reference time 7y and thereby may be shifted arbitrarily along
the orbit.

As was described in the preceding section, for a stability analysis one investi-
gates neighboring trajectories x(¢) that are in general no longer strictly periodic. The
thin line in Fig. 24.3 shows such an example. The first three stroboscopic snapshots
X0, X1, X2 are marked by dots and the distance vectors &, = X, — X, are plotted.

An alternative method of discretization of trajectories, which is not oriented to the
periodicity and is of advantage particularly for autonomous systems having no fixed
eigenfrequency, is the Poincaré cut. When changing over to the discretized sequence
X;,, one again chooses momentary snapshots of the continuous orbit x(¢). As a criterion
one now adopts not any fixed equidistant time distances, but rather a geometric prop-
erty of the orbit itself, namely the piercing of a given hypersurface . One thereby
selects an (N — 1)-dimensional hypersurface in phase space and marks all points x,
at which the trajectory intersects the hypersurface. One further requires that ¥ is not
only touched but properly pierced. Mathematically this means that the surface shall be
transverse to the dynamic flow, n(x) - F(x) # 0 everywhere on X, where n is the sur-
face normal. One therefore speaks of a transverse cut. In a transverse cut one usually
marks only points with a definite sign of F - n, i.e., only piercings of X that proceed
in the same direction.

This method of discretization of trajectories was invented by Henri Poincaré and is
called the Poincaré cut. Figure 24.4 shows as an example a trajectory in an (N = 3)-
dimensional space, with the x,y-plane as the cut surface X. Three piercings in the
negative z-direction are marked as Xo, X1, X2. The use of Poincaré cuts makes sense

Z A

Fig.24.3. The stroboscopic scan-
ning of the distance &(r) =
x(t) — x,(¢) yields informa-
tion on the stability of a path

Fig. 24.4. The piercing points
of a trajectory through a
given surface constitute the
Poincaré cut
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only then if the trajectory is moving largely or completely in a restricted range of
the phase space, such that the cut surface is pierced again and again. Many systems
with approximately periodic or also chaotic motion satisfy this condition. Examples
of nontrivial Poincaré cuts will be given in Chap. 27.

An advantage of the Poincaré cut is first of all the reduction of dimension of the
phase space from N to N — 1, which may be very helpful for the qualitative discus-
sion. For detailed studies, not only does one want to know the ensemble of points
X,, but also their detailed sequence. Mathematically, this connection is mediated by a

mapping
P:x, > Xp4+1 Wwith X,,X,41 € X. (24.8)

This Poincaré mapping thus connects every point of the sequence xg, X1, X3, ... with
its successor. Note that P has no index. It is a single mapping of the plane ¥ onto itself,
which according to (24.8) is “scanned” at individual points. The individual points of
the Poincaré cut arise by successive iteration of the Poincaré mapping

X1 = P(xp), x» = P(x1) = Pz(xo), e X, = P"(xp). (24.9)

Hence, the long-term behavior of a trajectory may be derived from the properties of the
iterated Poincaré mapping P", n — oo. If the time evolution of the dynamic system is
determined by a differential equation X = F(x, ¢), the Poincaré mapping is unique and
also reversible (possibly except for singular points), since trajectories are not allowed
to intersect each other.

The problem of describing a dynamic system is of course not yet solved by defining
the Poincaré mapping but is only postponed, since P must also be constructed explic-
itly. In most cases this cannot be achieved analytically, and one is finally left with a
numerical integration of the differential equation of the system. It turns out, however,
that the exact Poincaré mapping P frequently has amazing common features with
very simply constructed analytic discrete mappings. As an example we shall discuss
the “logistic mapping” in Chap. 27.

Let us return to the problem of stability of periodic paths. As was outlined in the
preceding section, it is sufficient to investigate the small deviations & (1) = x(¢) — X, (¢)
from the reference trajectory in the linear approximation. In this approximation the
Poincaré mapping simplifies to a linear mapping, i.e., the multiplication by a ma-
trix C:

§,,1=CE,: hence, x,=C"§,. (24.10)

Decisive for the long-term behavior of the deviation &(¢) are the eigenvalues
M, ..., An of the matrix C. If all eigenvalues satisfy the condition |A;| < 1, the map-
ping is contracting, and the sequence converges toward zero. In this case the periodic
solution x,(¢) is thus asymptotically stable. If at least one of the eigenvalues |A| > 1,
the perturbations are increasing along the direction of the associated eigenvector, and
the path is unstable.

In the subsequent example, the mathematical theory of the stability of periodic
solutions developed by Floquet will be presented in more detail.
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EXAMPLE |

24.1 Floquet’s Theory of Stability

As described at the beginning of this chapter, we are interested in the long-term be-
havior of the path deviations & (t) = x(¢) — x,- () which approximately obey a linear
differential equation

d
E‘;’O)ZMS(I) (24.11)

with a periodic matrix of coefficients M(z + T) = M(z). Since we are dealing with
a linear problem, any solution may be expanded in terms of a fundamental system
of linearly independent basic solutions ¢ (), ..., ¢y (¢). The basic solutions are not
uniquely determined, and for sake of clarity we choose them in such a way that at the
time ¢t = 0 (we might choose also # = fy) they just coincide with the unit vectors in the
N-dimensional space:

$,(0)=(1,0,....,00T to ¢5(©0)=(0,0,...,1)T, (24.12)

where the transposition symbol T indicates that these vectors shall be column vectors.
Geometrically all of these vectors are lying on a (hyper-) spherical surface of radius
unity. The superposition of a general solution & () reads

N
EN) =) _cid; 1), (24.13)
i=1
which may also be written in matrix form:
E)y=@@)c. (24.14)

¢ is a column vector formed out of the expansion coefficients, and ® is an N x N-
matrix containing one of the basic vectors in each column,

@) =[p1().....on(1)] and c=(cr.....cn)" (24.15)
Due to (24.12), the matrix @ satisfies the initial condition
®0)=1 (24.16)

How does the periodicity of the differential equation (24.11) manifest itself in the
matrix ®? To see this, one should realize that any solution & of (24.11) at the time
t 4+ T satisfies the same differential equation as at the time 7. This does of course not
mean that the solution will be periodic; in general £(t 4+ T') # £(¢). But it may be
expanded both in terms of the basic solutions ¢;(z 4+ 7') as well as in terms of the

¢ (1),
EG+T)=®(+T)e andalso £ +T)=®()c. (24.17)
This implies a linear relation

®(t+T)=o1)C. (24.18)
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The constant N x N-matrix C is called the monodromy matrix. This quantity gov-
erns how the solutions develop from one period to the next. Using the initial con-
dition (24.16), one may immediately read off the value of the monodromy matrix
from (24.18):

C=o(). (24.19)

Hence, the monodromy matrix may be calculated by integrating the differential equa-
tion (24.11) N times with distinct initial conditions over a period from O to 7 and
writing the resulting solution vectors ¢;(T) into the columns. The evolution of the
matrix ®(¢) for arbitrarily large times is obtained by iteration of (24.18). For full pe-
riods in particular, we have

®(2T) = ®(T)C = ®(0)CC = C?, (24.20)
and generally,
d(nT)=®"(T)=C". (24.21)

According to (24.14) and (24.21), the evolution of the solutions & () for large times
is thus determined by the powers of the monodromy matrix C. What happens thereby
may be read off from the N eigenvalues A; of this matrix, which are called character-
istic multipliers or Floguet multipliers,

& (THu; = A; (T)u;. (24.22)

If u; is an eigenvector of the matrix ®(7'), then it keeps this property for the iterated
mapping as well, e.g.,

PQ2T)u; = S(T)®(T)u; = PA; (THu; = )Liz(T)u,-

=0Ty, et (24.23)

This leads to the following functional equation for the eigenvalues of the iterated map-
ping:

Li(nT)=A(T). (24.24)
This behavior is characteristic for the exponential function; i.e., (24.24) is solved by
1i(T) =% (24.25)

with an (in general complex) constant o; that is called the Floguet exponent. We still
note that (24.21) may be considered a functional equation like (24.24), with the same
kind of solution

o(T)=¢%. (24.26)

Here, a matrix S stands in the argument of the exponential function, and the resulting
function value is again a matrix. Such a matrix function is mathematically defined
simply through its power series expansion. One can show that the eigenvalues of the
matrix S introduced by (24.26) are just the Floquet exponents o; of (24.25). If one is
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interested in the evolution matrix at any times (not only multiples of the period T),
then (24.26) still has to be generalized:

d1)=U®mn) S with UO) =L (24.27)

The matrix U(#) may exhibit a complicated time dependence but must be periodic.
Because of (24.18), we have

UG+ T)SD = o1)@(T) =U@) ST . (24.28)

The product of the exponential functions on the right side may be combined to
exp (St) exp (ST) = expS(¢t + T) (for noncommuting matrices in the exponent this
would in general not be correct), and we find

Ut +T)=U(@). (24.29)

Hence, for the long-term behavior of the solutions &€(¢), U does not play a role. This
behavior is only determined by the magnitude of the Floquet multipliers ;. Begin-
ning with an eigenvector & (0) = u;, this solution according to (24.24) will increase as
E(nT) =u; exp(o;nT). From that, we conclude the following: The trajectory x, () is
asymptotically stable if for all Floquet multipliers we have |1;| < 1;1i.e., Reo; < 0.1t
is unstable if for at least one eigenvalue we have |A;| > 1;i.e., Re ; > 0.

These statements, which were obtained by linearizing the equation of motion, trans-
fer also to the stability behavior of the nonlinear system. The limit of marginal stability
|Ai] = 1 may be cleared up only by additional investigations.

For an autonomous periodically vibrating system, a peculiarity arises: In this case,
one of the eigenvalues always has the value A = 1 and must not be considered in the
stability analysis. To prove this assertion, we consider the function X, (¢). The mode
under consideration is namely the motion tangential to the reference orbit. For an
autonomous system, one obtains by differentiating the nonlinear equation of motion

oF
() =Fx) — X(0)= x X, =M()x,, (24.30)
X |y,
which agrees with the linearized equation of motion (24.16). The time evolution of the
solutions of this differential equation is determined by the matrix ®(¢); hence,

X, (1) = ® ()%, (0). (24.31)

The reference orbit x, (¢) and therefore also its derivative X, (¢) are however (contrary
to the case of general perturbations & (¢)) periodic; hence,

X-(T) = ®(T)%,(0) = x,(0), (24.32)

which proves that the monodromy matrix has an eigenvector, namely, X, (0), with the
eigenvalue A = 1. This is vividly clear: A reference orbit that is shifted in the tangential
direction simply corresponds to a shift of the time coordinate + — ¢ + §¢. Since the
absolute value of the time does not play a role in autonomous systems, X,(¢) and
x(t) = x,(t + &t) are always running with unchanged distance one behind the other.
Hence, the associated Floquet multiplier must have the value unity.

Example 24.1
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24.2 Stability of a Limit Cycle

Problem. Let a nonlinear system be described by the following equation of motion:
i=—y+x(p—@2+y9),
) 5 (24.33)
y=x+y(p— (" +y9).

Investigate the stable solutions and find the Floquet multipliers of the limit cycle.

Solution. A stationary fixed point exists at Xo = (0, 0)T. Its stability is governed by
the Jacobi matrix (24.7)

oF p—3x*—y* —1-—2xy
M(x) = o = ( e ) (24.34)

which at the fixed point xq takes the form

M(xg) = (’f _pl) . (24.35)

The two eigenvalues are according to Example 23.1:

pip=stVs2—d=p+,/p>— (P2 +1)=p+i. (24.36)

Hence, for p < 0 one has a stable spiral and for p > 0 an unstable one; p = 0 repre-
sents the special case of a rotor.

By inspecting (24.33), one immediately finds a periodic solution for o > 0, since
for constant x2 + y? = p the system reduces to a harmonic oscillator:

X (1) = (Jpcost, /psint)T. (24.37)
The Jacobi matrix (24.12) evaluated at the limit cycle (24.37) reads

_ 2 1 :
2pcos’ ¢t 1 2psmtcost>. (24.38)

—2psintcost —2psin®¢

M) =M(x,) = <1

For the linearized system of equations (24.33) with this matrix M(z), the normalized
fundamental solutions (24.12) from Example 24.1 may be given explicitly. One finds

¢1(z)=e—2pf<°9”> and ¢2(t)=<_5i“t>. (24.39)

sint cost

Combining these vectors to the matrix ®(¢) and evaluating at T = 2z leads to the
monodromy matrix

—4m
C=&(T)= <e 0 ’ ?) (24.40)

Hence, the basic solutions (24.39) are also already eigenvectors of the monodromy
matrix, with the eigenvectors

M=e ¥ and Ay=1. (24.41)
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As expected, one of the Floquet multipliers has the value unity (the corresponding
eigensolution ¢, (?) is tangential to X, (