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Preface

Brilliant diamond and carbon black (graphite) are both made of carbon (C). Diamond is an insulator
while graphite is a good conductor. This difference arises from the lattice structure. Graphite is a
layered material made up of sheets, each forming a two-dimensional (2D) honeycomb lattice, called
graphene. The electrical conduction mainly occurs through graphene sheets. Carbon nanotubes were
discovered by Iijima1) in 1991. The nanotubes ranged from 4 to 30 nm in diameter and were microns
(μm) in length, had scroll-type structures, and were called Multiwalled Nanotubes (MWNTs) in the
literature. Single-Wall Nanotubes (SWNTs) have a size of about 1 nm in diameter and microns in
length. This is a simple two-dimensional material. It is theorists’ favorite system. The electrical
transport properties along the tube present, however, many puzzles, as is explained below. Carbon
nanotubes are very strong and light. In fact, carbon fibers are used to make tennis rackets. Today’s
semiconductor technology is based on silicon (Si) devices. It is said that carbon chips, which are
stronger and lighter, may take the place of silicon chips in the future. It is, then, very important to
understand the electrical transport properties of carbon nanotubes. The present book has as its
principal topics electrical transport in graphene and carbon nanotubes.

The conductivity σ in individual carbon nanotubes varies, depending on the tube radius and the
pitch of the sample. In many cases the resistance decreases with increasing temperature while the
resistance increases in the normal metal. Electrical conduction in SWNTs is either semiconducting or
metallic, depending on whether each pitch of the helical line connecting the nearest-neighbor C-
hexagon centers contains an integral number of hexagons or not. The second alternative occurs more
often since the pitch is not controlled in the fabrication process. The room-temperature conductivity
in metallic SWNTs is higher by two or more orders of magnitude than in semiconducting SWNTs.
Currents in metallic SWNTs do not obey Ohm’s law linearity between current and voltage. Scanned
probe microscopy shows that the voltage does not drop along the tube length, implying a
superconducting state. The prevailing theory states that electrons run through the one-dimensional
(1D) tube ballistically. But this interpretation is not the complete story. The reason why the ballistic
electrons are not scattered by impurities and phonons is unexplained. We present a new interpretation
in terms of the model in which superconducting Bose-condensed Cooper pairs (bosons) run as a
supercurrent. In our text we start with the honeycomb lattice, construct the Fermi surface, and develop
Bloch electron dynamics based on the rectangular unit cell model. We then use kinetic theory to treat
the normal electrical transport with the assumption of “electrons,” “holes,” and Cooper pairs as
carriers.

To treat the superconducting state, we assume that the phonon-exchange attraction generates Cooper
pairs (pairons). We start with a Bardeen–Cooper–Schrieffer (BCS)-like Hamiltonian, derive a linear
dispersion relation for the moving pairons, and obtain a formula for the Bose–Einstein Condensation
(BEC) temperature

where n is the pairon density and vF the Fermi speed. The superconducting temperature Tc given here,
is distinct from the famous BCS formula for the critical temperature: 3.53kBTc = 2Δ0, where Δ0 is the
zero-temperature electron energy gap in the weak coupling limit. The critical temperature Tc for



metallic SWNTs is higher than 150 K while the Tc is much lower for semiconducting SWNTs.
MWNTs have open-ended circumferences and the outermost walls with greatest radii, contribute

most to the conduction. The conduction is metallic (with no activation energy factor) and shows no
pitch dependence.

In 2007 Novoselov et al.2) discovered the room-temperature Quantum Hall Effect (QHE) in
graphene. This was a historic event. The QHE in the GaAs/AlGaAs heterojunction is observed
around 1 K and below. The original authors interpreted the phenomenon in terms of a Dirac fermion
moving with a linear dispersion relation. But the reason why Dirac fermions are not scattered by
phonons, which must exist at 300 K, is unexplained. We present an alternative explanation in terms of
the composite bosons traditionally used in QHE theory. The most important advantage of our bosonic
theory over the Dirac fermion theory is that our theory can explain why the plateau in the Hall
conductivity (σxy) is generated where the zero resistivity (ρxx = 0) is observed.

This book has been written for first-year graduate students in physics, chemistry, electrical
engineering, and material sciences. Dynamics, quantum mechanics, electromagnetism, and solid state
physics at the senior undergraduate level are prerequisites. Second quantization may or may not be
covered in the first-year quantum course. But second quantization is indispensable in dealing with
phonon-exchange, superconductivity, and QHE. It is fully reviewed in Appendix A.1. The book is
written in a self-contained manner. Thus, nonphysics majors who want to learn the microscopic
theory step-by-step with no particular hurry may find it useful as a self-study reference.

Many fresh, and some provocative, views are presented. Experimental and theoretical researchers
in the field are also invited to examine the text. The book is based on the materials taught by Fujita for
several courses in quantum theory of solids and quantum statistical mechanics at the University at
Buffalo. Some of the book’s topics have also been taught by Suzuki in the advanced course in
condensed matter physics at the Tokyo University of Science. The book covers only electrical
transport properties. For other physical properties the reader is referred to the excellent book
Physical Properties of Carbon Nanotubes, by R. Saito, G. Dresselhaus and M.S. Dresselhaus
(Imperial College Press, London 1998).

The authors thank the following individuals for valuable criticisms, discussions and readings:
Professor M. de Llano, Universidad Nacional Autonoma de Mexico; Professor Sambandamurthy
Ganapathy, University at Buffalo, Mr. Masashi Tanabe, Tokyo University of Science and Mr. Yoichi
Takato, University at Buffalo. We thank Sachiko, Keiko, Michio, Isao, Yoshiko, Eriko, George
Redden and Kurt Borchardt for their encouragement, reading and editing of the text.

Shigeji Fujita
Akira Suzuki

Buffalo, New York, USA
Tokyo, Japan
December, 2012

1) Iijima, S. (1991) Nature (London), 354, 56.

2) Novoselov, K.S. et al. (2007) Science, 315, 1379.



Physical Constants, Units, Mathematical Signs and
Symbols

Useful Physical Constants
Quantity Symbol Value
Absolute zero temperature  0K = −273.16°C

Avogadro’s number NA 6.02 × 1023 mol−1

Bohr magneton μB = eħ/(2me) 9.27 × 10−24 J T−1

Bohr radius aB = 4πε0ħ/(mee
2) 5.29 × 10−11 m

Boltzmann’s constant kB = R/NA 1.38 × 10−23 J K−1

Coulomb’s constant k0 = 1/(4πε0) 8.988 × 109N m C−2

Dirac’s constant (Planck’s constant/(2π)) ħ = h/(2π) 1.05 × l0−34J s

Electron charge (magnitude) e 1.60 × 1019 C

Electron rest mass me 9.11 × 10−31 kg

Gas constant R = NAkBZ 8.314 J K−1 mol−1

Gravitational constant G 6.674 × 10−11 N m2 kg−2

Gravitational acceleration g 9.807 ms−2

Magnetic flux quantum Φ0 = h/(2e) 2.068 × 10−15 Wb

Mechanical equivalent of heat  4.184 J cal−1

Molar volume (gas at STP)  2.24 × 104cm3 = 22.4 L

Permeability of vacuum μ0 4π × 10−7 H m−1

Permittivity of vacuum ε0 8.85 × 10−12 F m−1

Planck’s constant h 6.63 × 10−34J s

Proton mass mp 1.67 × 10−27kg

Quantum Hall conductance e2/h 3.874 × 10−6S

Quantum Hail resistance RH = h/e2 25 812.81 Ω

Speed of light c 3.00 × 108m s−1

Subsidiary Units
newton                                  1 N = 1 kg m s−2

joule 1 J = 1 N m
coulomb 1 C = 1 A s

hertz 1 Hz = 1 s−1

pascal 1 Pa = 1 N m−2

bar 1 bar = 105Pa



Prefixes Denoting Multiples and Submultiples
103 kilo (k)

106 mega (M)

109 giga (G)

1012 tera (T)

1015 peta (P)

10−3 milli (m)

10−6 micro (μ)

10−9 nano (n)

10−12 pico (p)

10−15                                    femto (f)

Mathematical Signs
                                     set of natural numbers

set of integers
set of rational numbers
set of real numbers
set of complex numbers

∀x for all x
∃x existence of x

maps to
∴ therefore

because
= equals

approximately equals
≠ not equal to
≡ identical to, defined as
> greater than

much greater than
< smaller (or less) than

much smaller than
≥ greater than or equal to
≤ smaller (or less) than or equal to
∝ proportional to
~ represented by, of the order

(x) order of x



List of Symbols
The following list is not intended to be exhaustive. It includes symbols of frequent occurrence or
special importance in this book.
Å                                      ångstrom (= 10−8cm = 10−10m)

A vector potential
a0 lattice constant

a1, a2 nonorthogonal base vectors

B magnetic field (magnetic flux density)
CV specific heat at constant volume

c heat capacity per particle
c heat capacity per unit volume

c speed of light
(ε) density of states in energy space
(ω) density of states in angular frequency
(p), (k) density of states in momentum space

E total energy
E internal energy
EF Fermi energy

E electric field vector

EH electric field vector due to the Hall voltage

e electronic charge (absolute value)

êx, êy, êz orthogonal unit vectors

F Helmholtz free energy



f one-body distribution function
fB Bose distribution function

fF Fermi distribution function

f0 Planck distribution function

G Gibbs free energy
g g-factor

Hamiltonian

Ha applied magnetic field vector

Hc critical magnetic field (magnitude)

h Planck’s constant
h single-particle Hamiltonian
ħ Planck’s constant divided by 2π
I magnetization
i ≡ imaginary unit

i, j, k Cartesian unit vectors

J total current

j single-particle current

j current density
K thermal conductivity

k wave vector (k-vector)
k0 Coulomb’s constant

kB Boltzmann constant

Lagrangian function
L normalization length

mean free path

l angular momentum
M molecular mass

M* magnetotransport mass
M (symmetric) mass tensor
m electron mass

m* cyclotron mass

m* effective mass
N number of particles

number operator
NL Landau level

n particle number density
nc number density of the dressed electrons

np number density of pairons

P pressure

P total momentum

p momentum vector



p momentum (magnitude)
Q quantity of heat

q heat (energy) current
q charge
R resistance

R Bravais lattice vector

R position vector of the center of mass
RH Hall coefficient

r radial coordinate

r position vector
S entropy
S Seebeck coefficient
T absolute temperature
T0 transition temperature

Tc critical temperature

TF Fermi temperature

kinetic energy
TR grand ensemble trace
Tr many-particle trace
tr one-particle trace
V, volume
VH Hall voltage

potential energy
v speed (magnitude of v)

v velocity

vthermal thermal velocity

vd drift velocity

vd(= |vd|) drift speed

vF Fermi velocity

vF(= |vF|) Fermi speed

W work

w wrapping vector
Z partition function
α = −e/(2m) magnetogyric (magnetomechanical) ratio

eα ≡ z fugacity
β ≡ 1/(kBT) reciprocal temperature

χ magnetic susceptibility
ε single-particle energy
εF Fermi energy

εg energy gap

εp pairon energy

Θ(x) step function



θ polar angle

λ wavelength
λ penetration depth

λ(≡ eβμ) fugacity
κ curvature
κ quantum state
μ chemical potential

μ magnetic moment
μB Bohr magneton

v frequency
v Landau level occupation ratio (filling factor)
Ξ grand partition function
ξ dynamical variable
ξ coherence length
ρ mass density
ρ density operator
ρ many-particle distribution function
ρ resistivity
ρ(B) magnetoresistivity
ρH Hall resistivity

σ total cross section
σ electrical conductivity
σH Hall conductivity

σx, σy, σz Pauli spin matrices

τ relaxation time
τc collision time, average time between collision

τd duration of collision

φ distribution function
ϕ azimuthal angle
ϕ scalar potential
Φ magnetic flux
Φ0 flux quantum

Ψ quasiwavefunction for many condensed bosons
ψ wavefunction for a quantum particle
dΩ = sin θdθdϕ element of solid angle
ω ≡ 2πv angular frequency
ωc cyclotron frequency

ωc rate of collision (collision frequency)

ωD Debye frequency

| bra vector
| ket vector
(hkl), [hkl], hkl crystallographic notation



[ , ] commutator brackets
{ , } anticommutator brackets
{ , } Poisson brackets

Units
In much of the literature quoted, the unit of magnetic field B is the gauss. Electric fields are frequently
expressed in V cm−1 and resistivity in Ω cm.

The Planck constant h over 2π, ħ ≡ h/(2π), is used in dealing with an electron. The original Planck
constant h is used in dealing with a photon.

Crystallographic Notation
This is mainly used to denote a direction, or the orientation of a plane, in a cubic metal. A plane (hkl)
intersects the orthogonal Cartesian axes, coinciding with the cube edges, at a/h, a/k, and a/l from the
origin, a being a constant, usually the length of a side of the unit cell. The direction of a line is
denoted by [hkl], the direction cosines with respect to the Cartesian axes being h/N, k/N, and l/N,
where N2 = h2 + k2 + l2. The indices may be separated by commas to avoid ambiguity. Only
occasionally will the notation be used precisely; thus, [100] or [001] usually means any cube axis and
[111], any diagonal.

B and H
When an electron is described in quantum mechanics, its interaction with a magnetic field is
determined by B rather than H; that is, if the permeability μ is not unity, the electron motion is
determined by μH. It is preferable to forget H altogether and use B to define all field strengths. The B
is connected with a vector potential A such that B = ∇ × A. The magnetic field B is effectively the
same inside and outside the metal sample.

List of Abbreviations
1D                              one dimensional
2D two dimensional
3D three dimensional
ARPES angle-resolved photoemission spectroscopy
bcc body-centered cubic
BCS Bardeen–Cooper–Schrieffer
BEC Bose–Einstein condensation
c- composite-
c.c. complex conjugate
C- carbon-
CM center of mass
CNT carbon nanotube



cub, cub cubic
dHvA de Haas–van Alphen
dia diamond
DOS density of states
DP Dirac picture
“electron” see p. 7
EOB Ehrenfest–Oppenheimer–Bethe
f(c-) fundamental (composite-)
fcc face-centered cubic
h.c. Hermitian conjugate
hcp hexagonal closed packed
“hole” see p. 7
hex hexagonal
HP Heisenberg picture
HRC high-resistance contacts
HTSC high-temperature superconductivity
KP Kronig–Penney
lhs left-hand side
LL Landau level
LRC low-resistance contacts
mcl, mcl monoclinic
MIT metal-insulator transition
MR magnetoresistance
MWNT multiwalled (carbon) nanotube
NFEM nearly free electron model
NT nanotube
orc orthorhombic
QH quantum Hall
QHE quantum Hall effect
rhs right-hand side
rhl rhombohedral
sc simple cubic
SdH Shubnikov–de Haas
SP Schrödinger picture
sq square
SQUID superconducting quantum interference device
SWNT single-wall (carbon) nanotube
tcl triclinic
tet tetragonal
vrh variable range hopping
WS Wigner–Seitz
ZBA zero-bias anomaly



Chapter 1

Introduction

1.1 Carbon Nanotubes
Graphite and diamond are both made of carbons. They have different lattice structures and different
properties. Diamond is brilliant and it is an insulator while graphite is black and it is a good
conductor.

In 1991 Iijima [1] discovered carbon nanotubes (CNTs) in the soot created in an electric discharge
between two carbon electrodes. These nanotubes ranging from 4 to 30 nm in diameter were found to
have helical multiwalled structures as shown in Figures 1.1 and 1.2 after electron diffraction
analysis. The tube length is about 1 μm.

Figure 1.1 Schematic diagram showing (a) a helical arrangement of graphitic carbons and (b) its
unrolled plane. The helical line is indicated by the heavy line passing through the centers of the
hexagons.

Figure 1.2 A multiwalled nanotube. The tube diameter ranges from 4 to 30 nm and its length is about
1 μm. (Original figure, lijima [1])

The scroll-type tube shown in Figure 1.2 is called a multiwalled carbon nanotube (MWNT). A
single-wall nanotube (SWNT) was fabricated by Iijima and Ichihashi [2] and by Bethune et al. [3] in
1993. Their structures are shown in Figure 1.3.



Figure 1.3 SWNTs with different chiralities and possible caps at each end: (a) shows a so-called
armchair carbon nanotube (CNT), (b) a zigzag CNT, and (c) a general chiral CNT. One can see from
the figure that the orientation of the C-hexagon in the honeycomb lattice relative to the tube axis can
be taken arbitrarily. The terms “armchair” and “zigzag” refer to the arrangement of C-hexagons
around the circumference.
(From [4, 5]).

The tube is about 1 nm in diameter and a few micrometers in length. The tube ends are closed as
shown. Because of their small radius and length-to-diameter ratio > 104, they provide an important
system for studying two-dimensional (2D) physics, both theoretically and experimentally. Unrolled
carbon sheets are called graphene.1) They have a honeycomb lattice structure as shown in Figure
1.1b.

A SWNT can be constructed from a slice of graphene (that is a single planar layer of the
honeycomb lattice of graphite) rolled into a circular cylinder.

Carbon nanotubes are light since they are entirely made of the light element carbon (C). They are
strong and have excellent elasticity and flexibility. In fact, carbon fibers are used to make tennis
rackets, for example. Their main advantages in this regard are their high chemical stability as well as
their strong mechanical properties.

Today’s semiconductor technology is based mainly on silicon (Si). It is said that carbon-based
devices are expected to be as important or even more important in the future. To achieve this purpose
we must know the electrical transport properties of CNTs, which are very puzzling, as is explained
below. The principal topics in this book are the remarkable electrical transport properties in CNTs
and graphene on which we will mainly focus in the text.

The conductivity σ in individual CNTs varies, depending on the tube radius and the pitch of the
sample. In many cases the resistance decreases with increasing temperature. In contrast the resistance
increases in the normal metal such as copper (Cu). The electrical conduction properties in SWNTs
separates samples into two classes: semiconducting or metallic. The room-temperature conductivities
are higher for the latter class by two or more orders of magnitude. Saito et al. [6] proposed a model
based on the different arrangements of C-hexagons around the circumference, called the chiralities.



Figure 1.3a–c show an armchair, zigzag, and a general chiral CNT, respectively. After statistical
analysis, they concluded that semiconducting SWNTs should be generated three times more often than
metallic SWNTs. Moriyama et al. [7] fabricated 12 SWNT devices from one chip, and observed that
two of the SWNT samples were semiconducting and the other ten were metallic, a clear discrepancy
between theory and experiment. We propose a new classification. The electrical conduction in
SWNTs is either semiconducting or metallic depending on whether each pitch of the helical line
connecting the nearest-neighbor C-hexagon contains an integral number of hexagons or not. The
second alternative (metallic SWNT) occurs more often since the helical angle between the helical
line and the tube axis is not controlled in the fabrication process. In the former case the system
(semiconducting SWNT) is periodic along the tube length and the “holes” (and not “electrons”) can
travel along the wall. Here and in the text “electrons” (“holes”), by definition, are quasielectrons
which are excited above (below) the Fermi energy and which circulate clockwise (counterclockwise)
when viewed from the tip of the external magnetic field vector. “Electrons” (“holes”) are generated in
the negative (positive) side of the Fermi surface which contains the negative (positive) normal vector,
with the convention that the positive normal points in the energy-increasing direction. In the Wigner-
Seitz (WS) cell model [7] the primitive cell for the honeycomb lattice is a rhombus. This model is
suited to the study of the ground state of graphene. For the development of the electron dynamics it is
necessary to choose a rectangular unit cell which allows one to define the effective masses associated
with the motion of “electrons” and “holes” in the lattice.

Silicon (Si) (germanium (Ge)) forms a diamond lattice which is obtained from the zinc sulfide
(ZnS) lattice by disregarding the species. The electron dynamics of Si are usually discussed in terms
of cubic lattice languages. Graphene and graphite have hexagonal lattice structures. Silicon and
carbon are both quadrivalent materials but because of their lattice structures, they have quite different
physical properties.

1.2 Theoretical Background
1.2.1 Metals and Conduction Electrons
A metal is a conducting crystal in which electrical current can flow with little resistance. This
electrical current is generated by moving electrons. The electron has mass m and charge −e, which is
negative by convention. Their numerical values are m = 9.1 × 10−28 g and e = 4.8 × 10−10 esu = 1.6 ×
10−19 C. The electron mass is about 1837 times smaller than the least-massive (hydrogen) atom. This
makes the electron extremely mobile. It also makes the electron’s quantum nature more pronounced.
The electrons participating in the transport of charge are called conduction electrons. The conduction
electrons would have orbited in the outermost shells surrounding the atomic nuclei if the nuclei were
separated from each other. Core electrons which are more tightly bound with the nuclei form part of
the metallic ions. In a pure crystalline metal, these metallic ions form a relatively immobile array of
regular spacing, called a lattice. Thus, a metal can be pictured as a system of two components: mobil
electrons and relatively immobile lattice ions.



1.2.2 Quantum Mechanics
Electrons move following the quantum laws of motion. A thorough understanding of quantum theory is
essential. Dirac’s formulation of quantum theory in his book, Principles of Quantum Mechanics [9], is
unsurpassed. Dirac’s rules that the quantum states are represented by bra or ket vectors and physical
observables by Hermitian operators are used in the text. There are two distinct quantum effects, the
first of which concerns a single particle and the second a system of identical particles.

1.2.3 Heisenberg Uncertainty Principle
Let us consider a simple harmonic oscillator characterized by the Hamiltonian

(1.1) 
where m is the mass, k the force constant, p the momentum, and x the position. The corresponding
energy eigenvalues are

(1.2) 
The energies are quantized in (1.2). In contrast the classical energy can be any positive value. The

lowest quantum energy ε0 = ħω0/2, called the energy of zero-point motion, is not zero. The most stable
state of any quantum system is not a state of static equilibrium in the configuration of lowest potential
energy, it is rather a dynamic equilibrium for the zero-point motion [10, 11]. Dynamic equilibrium
may be characterized by the minimum total (potential + kinetic) energy under the condition that each
coordinate q has a range Δq and the corresponding momentum p has a range Δp, so that the product
ΔqΔp satisfies the Heisenberg uncertainty relation:

(1.3) 
The most remarkable example of a macroscopic body in dynamic equilibrium is liquid helium (He).
This liquid with a boiling point at 4.2 K is known to remain liquid down to 0 K. The zero-point
motion of He atoms precludes solidification.

1.2.4 Bosons and Fermions
Electrons are fermions. That is, they are indistinguishable quantum particles subject to the Pauli
exclusion principle. Indistinguishability of the particles is defined by using the permutation symmetry.
According to Pauli’s principle no two electrons can occupy the same state. Indistinguishable quantum
particles not subject to the Pauli exclusion principle are called bosons. Bosons can occupy the same
state with no restriction. Every elementary particle is either a boson or a fermion. This is known as
the quantum statistical postulate. Whether an elementary particle is a boson or a fermion is related to
the magnitude of its spin angular momentum in units of ħ. Particles with integer spins are bosons,
while those with half-integer spins are fermions [12]. This is known as Pauli’s spin-statistics
theorem. According to this theorem and in agreement with all experimental evidence, electrons,
protons, neutrons, and μ-mesons, all of which have spin of magnitude ħ/2, are fermions, while
photons (quanta of electromagnetic radiation) with spin of magnitude ħ, are bosons.



1.2.5 Fermi and Bose Distribution Functions
The average occupation number at state k, denoted by nk , for a system of free fermions in
equilibrium at temperature T and chemical potential μ is given by the Fermi distribution Junction:

(1.4) 
where εk is the single-particle energy associated with the state k. The average occupation number at
state k for a system of free bosons in equilibrium is given by the Bose distribution junction:

(1.5) 

1.2.6 Composite Particles
Atomic nuclei are composed of nucleons (protons, neutrons), while atoms are composed of nuclei and
electrons. It has been experimentally demonstrated that these composite particles are
indistinguishable quantum particles. According to Ehrenfest–Oppenheimer–Bethe’s rule [12, 13], the
center of mass (CM) of a composite moves as a fermion (boson) if it contains an odd (even) number
of elementary fermions. Thus, He4 atoms (four nucleons, two electrons) move as bosons while He3

atoms (three nucleons, two electrons) move as fermions. Cooper pairs (two electrons) move as
bosons.

1.2.7 Quasifree Electron Model
In a metal at the lowest temperatures conduction electrons move in a nearly stationary periodic
lattice. Because of the Coulomb interaction among the electrons, the motion of the electrons is
correlated. However, each electron in a crystal moves in an extremely weak self-consistent periodic
field. Combining this result with the Pauli exclusion principle, which applies to electrons with no
regard to the interaction, we obtain the quasifree electron model. The quasifree electron moves with
the effective mass m* which is different from the gravitational mass me. In this model the quantum
states for the electron in a crystal are characterized by wave vector (k vector: k) and energy

(1.6) 
At 0 K, all of the lowest energy states are filled with electrons, and there exists a sharp Fermi surface
represented by

(1.7) 
where εF is the Fermi energy. Experimentally, the electrons in alkali metals, which form body-
centered cubic (bcc) lattices, including lithium (Li), sodium (Na), and potassium (K), behave like
quasifree electrons.

1.2.8 “Electrons” and “Holes”
“Electrons” (“holes”) in the text are defined as quasiparticles possessing charge e (magnitude) that
circulate counterclockwise (clockwise) when viewed from the tip of the applied magnetic field



vector B. This definition is used routinely in semiconductor physics. We use the quotation-marked
“electron” to distinguish it from the generic electron having the gravitational mass me. A “hole” can
be regarded as a particle having positive charge, positive mass, and positive energy. The “hole” does
not, however, have the same effective mass m* (magnitude) as the “electron,” so that “holes” are not
true antiparticles like positrons. We will see that “electrons” and “holes” are thermally excited
particles and they are closely related to the curvature of the Fermi surface (see Chapter 3).

1.2.9 The Gate Field Effect
Graphene and nanotubes are often subjected to the so-called gate voltage in experiments. We will
show here that the gate voltage polarizes the conductor and hence the surface charges (“electrons,”
“holes”) are induced. The actual conductor may have a shape and a particular Fermi surface. But in
all cases surface charges are induced by electric fields. If a bias voltage is applied, then some
charges can move and generate currents.

A.
Let us take a rectangular metallic plate and place it under an external electric field E, see Figure 1.4.

Figure 1.4 The surface charges are induced in the conductor under an external electric field E.

When the upper and lower sides are parallel to the field E, then the remaining two side surfaces are
polarized so as to reduce the total electric field energy. If the plate is rotated, then all side surfaces
are polarized.

B.
Let us now look at the electric field effect in k-space. Assume a quasifree electron system which has
a spherical Fermi surface at zero field. Upon the application of a static field E, the Fermi surface will
be shifted towards the right by qEτ/m*, where τ is the mean free time and m* the effective mass, as
shown in Figure 1.5. There is a steady current since the sphere is off from the center O. We may
assume that the ionic lattice is stationary. Then, there is an unbalanced charge distribution as shown,
where we assumed q = −e < 0. This effect will appear only on the surface of the metal. We used the
fermionic nature of electrons in B.

Figure 1.5 The Fermi surface is shifted by eEτ/m* due to the electric field E.





1.3 Book Layout
In Chapters 2 and 3 kinetic theory and Bloch electron dynamics are developed, respectively. Phonon
and electron-phonon interaction are discussed in Chapter 4. These chapters are preliminaries for the
theory of the conductivity of carbon nanotubes, which is discussed in Chapters 5 and 6.
Semiconducting SWNTs are discussed in Chapter 6. A quantum statistical theory of superconductivity
is summarized in Chapter 7. Chapter 8 deals with the supercurrents in metallic SWNTs, starting with
the BCS-like Hamiltonian and deriving expressions for a linear dispersion relation, and a critical
(superconducting) temperature. Metallic SWNTs exhibit non-Ohmic behavior, and charged particles
appear to run through the tube length with no scattering. We interpret this in terms of the condensed
Cooper pairs (pairons).

An applied static magnetic field induces a profound change in the electron states. Pauli’s
paramagnetic and Landau’s diamagnetism are described in Chapter 9. Landau states generate an
oscillatory density of states that induces de Haas–van Alphen oscillation which is discussed in
Chapter 10. The Quantum Hall Effect (QHE) in GaAs/AlGaAs is summarized in Chapter 11. The
QHE in graphene observed at room temperature is discussed in Chapter 12. The QHE occurs where
the “hole” (“electron”) density becomes high near the neck Fermi surface, which develops by
charging the graphene through the gate voltage. The different temperatures generate different carrier
densities and the resulting carrier diffusion generates a thermal electromotive force. A new formula
for the Seebeck coefficient is obtained and is applied to multiwalled carbon nanotubes in Chapter 13.
In Chapter 14, we, discuss miscellaneous topics.

1.4 Suggestions for Readers
Graphene and CNTs are composed entirely of carbons but their lattice structures are distinct from
each other. The simple free electron model does not work. To describe the electrical conduction of
graphene and CNTs it is necessary to understand a number of advanced topics including
superconductivity and Fermi surfaces.

1.4.1 Second Quantization
Reading Chapter 7 Superconductivity requires a knowledge of second quantization. The authors
suggest that the readers learn the second quantization in two steps.

1. Dirac solved the energy-eigenvalue problem for a simple harmonic oscillator in the
Heisenberg picture, using creation and annihilation operators (a†, a), see Chapter 4, Section 4.3.
We follow Dirac [9] and obtain the eigenvalues, (n′ + 1/2)ħω, where n′ is the eigenvalues of n =
a†a, n′ = 0, 1, 2, …
2. Read Appendix A.1, where a general theory for a quantum many-boson and fermion system is
presented.



1.4.2 Semiclassical Theory of Electron Dynamics
Electrons and phonons are regarded as waves packets in solids. Dirac showed that the wave packets
move, following classical equations of motion [9]. The conduction electron (“electron,” “hole”) size
is equal to the orthogonal unit cell size. The phonon size is about two orders of magnitude greater at
room temperature. The “electron” and “hole” move with effective masses m* which are distinct from
the gravitational effective mass me. Bloch electron dynamics are described in Chapter 3.

1.4.3 Fermi Surface
The time-honored WS cell model can be used for cubic lattice systems including a diamond lattice.
For hexagonal systems including graphene and graphite an orthogonal unit cell model must be used to
establish the k-space. Read Sections 5.2 and 5.4. The same orthogonal unit cell model must be used
for the discussion of phonons.

In our quantum statistical theory we do not jump to conclusions. We make arguments backed up by
step-by-step calculations. This is the surest way of doing and learning physics for ordinary men and
women.
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1) Graphene is the basic structural element of some carbon allotropes including graphite, CNTs,
and fullerenes. The name comes from graphite + -ene; graphite itself is composed of many
graphene sheets stacked together. Graphene as a name indicates a single, two-dimensional layer of
three-dimensional graphite which contains many layers of carbon hexagons. Two-dimensional
graphene can exist in nature as the spacing between layers (3.35 Å) is longer than the distance to
neighboring atoms aC-C (1-42 Å) within the same plane. It has been challenging to isolate one layer
from bulk graphite.



Chapter 2

Kinetic Theory and the Boltzmann Equation

Elements of the kinetic theory of gas dynamics, the Boltzmann equation method, and electrical
conduction are discussed in this chapter.

2.1 Diffusion and Thermal Conduction
In order to clearly understand diffusion let us look at the following simple situation. Imagine that four
particles are in space a, and two particles are in space b as shown in Figure 2.1.

Figure 2.1 If the particles flow out in all directions with no preference, there will be more particles
crossing the imaginary boundary CC’ in the a to b direction than in the opposite direction.

Assuming that both spaces a and b have the same volume, we may say that the particle density is
higher in a than in b. We assume that half of the particles in each space will be heading toward the
boundary CC’. It is then natural to expect that in due time two particles would cross the boundary CC’
from a to b, and one particle from b to a. This means that more particles would pass the boundary
from a to b, that is, from the side of high density to that of low density. This is the cause of diffusion.

The essential points in the above arguments are the reasonable assumptions that
(i) the particles flow out from a given space in all directions with the same probability, and
(ii) the rate of this outflow is proportional to the number of particles contained in that space.

In the present case condition (i) will be assured by the fact that each particle collides with other
particles frequently so that it may forget how it originally entered the space, and may leave with no
preferred direction. From a more quantitative perspective it is found that the particle current j is
proportional to the density gradient ∇n with n being the number density:

(2.1) 
where D is called the diffusion coefficient. This linear relation (2.1) is called Fick’s law [1, 2].

Consider next thermal conduction. Assume that the spaces a and b are occupied by the same number
of the particles. Further assume that the temperature T is higher in b than in a. Then, the particle speed



is higher in b than in a on the average. In due time a particle crosses the boundary CC’ from a to b and
another crosses the boundary CC’ from b to a. Then, the energy is transferred through the boundary. In
a more detailed study Fourier’s law [1, 2] is observed:

(2.2) 
where q is the heat (energy) current and the proportionality constant K is called the thermal
conductivity.

2.2 Collision Rate: Mean Free Path
Let us consider a particle moving through a medium containing n molecules per unit volume. If the
particle proceeds with a speed v, it will sweep the volume (vdt) × A = v Adt during the time interval
dt, where A represents the cross section. See Figure 2.2.

Figure 2.2 A particle moving with a speed v sweeps the volume (vdt)A during the time dt, where A
represents the cross section.

The particle would collide with any molecule if the latter lies within the cylinder. Now, the number
of molecules in the cylindrical volume vdt is n(v Adt) = nv Adt. Dividing this number by dt, we
obtain the number of collisions per unit time:

(2.3) 
This frequency ωc is called the collision rate. Note that the collision rate depends linearly on the

speed v, the number density n, and the cross section A.
The above consideration may be applied to the molecular collision in a gas. In this case, the

particle in question is simply one of the molecules. Let us estimate the collision rate for a typical gas.
For neon gas, the interaction potential between two atoms has a range of a few angstroms,

(2.4) 
Therefore, the total cross section A has the following order of magnitude:

(2.5) 
A typical atom has a kinetic energy of the order 3/2kBT. Therefore, it has the thermal speed

(2.6) 
Using the data T = 273 K and m (neon) = 20 mp (proton mass), we then obtain

(2.7) 
It is interesting to note that this molecular speed has the same order of magnitude as the speed of

sound 340 ms−1. At 0° C and 1 atmospheric pressure, the number of molecules per cm3 is



(2.8) 
If we substitute the values from (2.5)–(2.7) into (2.3), we obtain
(2.9) 

Here we see that atoms collide with each other an enormous number of times in a second.
Strictly speaking, we should choose the average speed of approach between atoms rather than the

thermal speed when estimating the value of v when both molecules move. Such a choice, however,
will not change the order of magnitude of ωc. In a more quantitative treatment, this choice becomes
important.

The inverse of the collision rate defined by

(2.10) 
is called the collision time, or the average time between collisions. Substituting the numerical value
from (2.9), we get

(2.11) 
Let us now compare this time τc with the average collision duration, the average time that the

molecule spends within the force range R of another particle. The latter is defined by

(2.12) 
Using the numerical values from (2.5) and (2.6), we have

(2.13) 
Comparison between (2.11) and (2.13) shows that

(2.14) 
This means that in a typical gas the molecules move freely most of the time, and occasionally collide
with each other.

By multiplying the thermal speed vthermal by the average time between collision τc, we obtain

(2.15) 
This quantity, called the mean free path, gives a measure of the distance that a typical molecule

covers between successive collisions. From (2.10) and (2.15), we obtain
(2.16) 
Note that the mean free path does not depend on the speed of the particle, and therefore has a value

independent of temperature. Introducing the numerical values from (2.7) and (2.11), we obtain
(2.17) 

We see that the mean free path is about three orders of magnitude greater than the force range.
Problem 2.2.1. Using the numerical values introduced in the present section, estimate

1. The probability of a particular particle being within the force range of another particle, and
2. The probability of a particular particle being within the force range of two particles
simultaneously.

Problem 2.2.2. Assume that the probability of collision for a small distance Δx is given by Δx/l.
Show that the probability of the particle proceeding without collision for a finite distance x is given



by exp(−x/l). Hint: limn→∞ (1 − x/n)n = e−x.

2.3 Electrical Conductivity and Matthiessen’s
Rule
Let us consider a system of electrons moving independently in a potential field of impurities, which
act as scatterers. The impurities are assumed to be distributed uniformly.

Under the action of an electric field E that points along the positive x-axis, a classical electron with
mass m will move following Newton’s equation of motion:

(2.18) 
in the absence of an impurity. Solving this, we obtain

(2.19) 
where vx

0 is the x-component of the initial velocity. For a free electron the velocity vx can increase
indefinitely and leads to infinite conductivity.

In the presence of impurities, the uniform acceleration will be interrupted by scattering. When the
electron hits a scatterer (impurity), the velocity will suffer an abrupt change in direction and grow
again following (2.19) until the electron hits another scatterer. Let us denote the average time between
successive scatterings or mean free time by τf. The average velocity vx  is then given by

(2.20) 
where we assumed that the electron forgets its preceding motion every time it hits a scatterer, and the
average initial velocity after collision is zero:

(2.21) 
The charge current density (average current per unit volume) j is given by

(2.22) 
where we used (2.20). According to Ohm’s law, the current density j is proportional to the applied
electric field E when this field is small:

(2.23) 
The proportionality factor σ is called the electrical conductivity [1, 2]. It represents the facility

with which the current flows in response to the electric field. Combining the last two equations, we
obtain

(2.24) 
This equation is used in the qualitative discussion of the electrical transport phenomenon. The

inverse mass-dependence law means that the ion contribution to electrical transport in an ionized gas
will be smaller by at least three orders of magnitude than the electron contribution. Also note that the



conductivity is higher if the number density is greater and if the mean free time is greater.
The inverse of the mean free time τf,

(2.25) 
is called the scattering rate or the relaxation rate. Roughly speaking this Γ represents the mean
frequency with which the electron is scattered by impurities (scatterers). The scattering rate Γ is
given by

(2.26) 
where nI, v, and A are respectively the density of scatterers, the electron speed, and the scattering
cross section.

If there is more than one kind of scatterer, the scattering rate may be computed by the addition law:
(2.27) 

This is called Matthiessen’s rule.
Historically and still today, the analysis of resistance data for a conductor is performed as follows:

if the electrons are scattered by impurities and again by phonons (quanta of lattice vibrations), the
total resistance will be written as the sum of the resistances due to each separate cause of scattering:

(2.28) 
This is the original statement of Matthiessen’s rule. In further detail, the electron–phonon scattering
depends on temperature because of the changing phonon population while the effect of the electron-
impurity scattering is temperature-independent. By separating the resistance into two parts, one
temperature-dependent and the other temperature-independent, we may apply Matthiessen’s rule.
Problem 2.3.1. Free electrons are confined within a long rectangular planer strip. Assume that each
electron is diffusely scattered at the boundary so that it may move in all directions without preference
after the scattering. Find the mean free path along the length of the strip. Calculate the conductivity.
Problem 2.3.2. Assume the same condition as in Problem 2.3.1 for the case in which electrons are
confined within a long circular cylinder. Find the conductivity.

2.4 The Hall Effect: “Electrons” and “Holes”
In this section we discuss the Hall effect, which was discovered in 1879 by E.H. Hall and published
in [3]. The “electron” (“hole”) has a negative (positive) charge −e (+e), e = 4.80 × 10−10esu = 1.6 ×
10−19C. As we see later, “electrons” and “holes” play very important roles in the microscopic theory
of electrical transport and superconductivity. Let us consider a conducting wire connected to a
battery. If a magnetic field B is applied, the field penetrates the wire. The Lorentz force,

(2.29) 
where q is the charge of the carrier, may then affect the electron’s classical motion. If so, the picture
of the straight line motion of a free electron in kinetic theory has to be modified significantly. If the
field B (magnitude) is not too high and the stationary state is considered, the actual physical situation
turns out to be much simpler.

Take the case in which the field B is applied perpendicular to a wire of rectangular cross section as



shown in Figure 2.3.

Figure 2.3 Schematic view of Hall’s experiment. The magnetic and electric forces (FB, FE) are
balanced to zero in the Hall effect measurement.

Experiments show that a voltage VH is generated perpendicular to the field B and electric current j
such that a steady current flows in the wire apparently unhindered. This is the essence of the Hall
effect. We may interpret this condition as follows. Let us write the current density j as

(2.30) 
where n is the density of conduction electrons and vd the drift velocity. A charge carrier having a
velocity equal to the drift velocity vd is affected by the Lorentz force:

(2.31) 
where EH is the electric field due to the Hall voltage VH. In the geometry shown in Figure 2.3, only
the x-component of the force F is relevant. If the net force vanishes:

(2.32) 
then the carrier can proceed along the wire (z-direction) unhindered.

Let us check our model calculation. We define the Hall coefficient RH by

(2.33) 
where the three qualities (EH, j, B) on the right-hand side can be measured. Using (2.30) and (2.32),
we obtain

(2.34) 
The Hall coefficient is a material parameter, because we will get different numbers for RH if we do

experiments with identical magnetic fields and current densities, but with different materials. The
experimental values for −1/(qn RH) in some metals are given in Table 2.1.

Table 2.1 Hall coefficients of selected metals.
Metal Valence -1/(nq RH)

Li 1 -0.8
Na 1 -1.2
K 1 -1.1
Cu 1 -1.5
Ag 1 -1.3



Au 1 -1.5
Be 2 0.2
Mg 2 0.4
In 3 0.3
Al 3 0.3

For alkali metals the agreement between theory and experiment is nearly perfect. The measured
Hall coefficient RH is negative for most metals. This can be understood by assuming that the charge
carriers are “electrons” having a negative charge q = −e. However, there are exceptions. As we see
in Table 2.1, Al, Be and others exhibit positive Hall coefficients. This can be explained only by
assuming that in these metals the main charge carriers are “holes” possessing a positive charge q =
+e. This is a quantum many-body effect. As we shall see later, the existence of “electrons” and
“holes” is closely connected to the curvature of the Fermi surface. Nonmagnetic metals which have
“holes” tend to be superconductors, as will be explained later.

2.5 The Boltzmann Equation
In the method of a Boltzmann equation the qualitative arguments in the simple kinetic theory will be
formulated in more precise terms. In some simple cases, the description of the transport phenomena
by this method is exact. In more complicated cases this method is an approximation, but it is widely
used.

Let us consider the electron-impurity system, a system of free electrons with uniformly distributed
impurities. We introduce a momentum distribution Junction φ(p, t) defined such that φ(p, t)d3p gives
the relative probability of finding an electron in the element d3p at time t. This function will be
normalized such that

(2.35) 
The electric current density j is given in terms of φ as follows:

(2.36) 
The function φ can be obtained by solving the Boltzmann equation, which may be set up in the

following manner.
The change in the distribution function φ will be caused by the force acting on the electrons in the

element d3p and by collision. We may write this change in the form:

(2.37) 
The force term dφ/dt|force, caused by the force − eE acting on the electrons can be expressed by

(2.38) 
If the density of impurities, nI, is low and the integration between electron and impurity has a short

range, the electron will be scattered by one impurity at a time. We may then write the collision term in
the following form:



(2.39) 
where dΩ is the solid angle1) in a spherical coordinate system and I(|p|, θ) is the differential cross
section. In fact, the rate of collision is given by (density of scatterers)×(speed)×(total cross section).
If we apply this rule to the flux of particles with momentum p, we can obtain the second integral of
(2.39), the integral with the minus sign. The integral corresponds to the loss of the flux due to the
collision (see Figure 2.4a). The flux of particles with momentum p can gain by inverse collision,
which is shown in Figure 2.4b. The contribution of the inverse collision is represented by the first
integral.

Figure 2.4 In (a), the electron suffers a change in momentum from p to p′ after scattering. The inverse
collision is shown in (b).

So far, we have neglected the fact that electrons are fermions and are therefore subject to the Pauli
exclusion principle. We will now look at the effect of quantum statistics.

If the final momentum state p′ was already occupied, then the scattering from state p to state p′
should not have occurred. The probability of this scattering therefore should be reduced by the factor
1 − φ(p′, t), which represents the probability that the final state p′ is unoccupied. Consideration of the
exclusion principle thus modifies the Boltzmann collision term given in (2.39) to

(2.40) 
When (2.40) is expanded, the two terms proportional to φ(p′, t)φ(p, t) in the curly brackets cancel
each other out. We then have the same collision term as given by (2.39).

Gathering the results from (2.37) through (2.39), we obtain

(2.41) 
This is the Boltzmann equation for the electron-impurity system. This equation is linear in φ, and

much simpler than the Boltzmann equation for a dilute gas. In particular, we can solve (2.41) by
elementary methods and calculate the conductivity σ. We will do this in the next section. For simple
forms of the scattering cross section, we can also solve (2.41) as an initial value problem (Problems
2.5.1 and 2.5.2).



As mentioned at the beginning of this section, the Boltzmann equation is very important, but it is an
approximate equation. If the impurity density is high or if the range of the interaction is not short, then
we must consider simultaneous scatterings by two or more impurities. If we include the effect of the
Coulomb interaction among electrons, which has hitherto been ignored, the collision term should be
further modified. It is, however, very difficult to estimate appropriate corrections arising from these
various effects.
Problem 2.5.1. Obtain the Boltzmann equation for an electron-impurity system in two dimensions,
which may be deduced by inspection, from (2.41). Assume that all electrons have the same velocity at
the initial time t = 0. Further, assuming no electric field (E = 0) and isotropic scattering (I = constant),
solve the Boltzmann equation.
Problem 2.5.2. Solve the Boltzmann equation (2.41) for three dimensions with the same condition as
in Problem 2.5.1. Define the Boltzmann H-function by H(t) ≡ (1/n) ∫ d3 pφ(p, t) ln(φ(p, t)/n). Evaluate
dH/dt. Plot H(t) as a function of time.

2.6 The Current Relaxation Rate
Let us assume that a small constant electric field E is applied to the electron-impurity system and that
a stationary homogeneous current is established. We take the positive x-axis along the field E. In the
stationary state, ∂φ/∂t = 0: the distribution function φ depends on momentum p only. From (2.41) the
Boltzmann equation for φ is then given by

(2.42) 
We wish to solve this equation and calculate the conductivity σ.

In the absence of the field E, the system, by assumption, is characterized by the equilibrium
distribution function, that is, the Fermi distribution function for free electrons:

(2.43) 
With the small field E, the function φ deviates from φ0. Let us regard φ as a function of E and expand
it in powers of E:

(2.44) 
where the subscripts denote the order in E. For the determination of the conductivity σ we need φ1
only. Let us introduce (2.44) in (2.42), and compare terms of the same order in E.

In the zeroth order we have

(2.45) 
Since the energy is conserved in each scattering,

(2.46) 
φ0(p) ≡ f(εp) clearly satisfies (2.45). In the first order in E, we obtain



(2.47) 
Therefore, we obtain from (2.42)

(2.48) 
For the moment, let us neglect the first term on the rhs. In this case, the rhs equals −(n1/m)|p|φ1(|p|) ∫

d ω I. Then, the function φ1(|p|) is proportional to px. Let us now try a solution of the form:

(2.49) 
where Φ(εp) is a function of εp (no angular dependence). Substitution of (2.49) into (2.48) yields

(2.50) 
Let us look at the integral on the rhs. We introduce a new frame of reference with the polar axis (the z-
axis) pointing along the vector p as shown in Figure 2.5. The old positive x-axis, which is parallel to
the electric field E, can be specified by the angle (θ, φ). From the diagram we have

Figure 2.5 A new frame of reference in which the positive z-axis points in the direction of the fixed
vector p. In this frame, the direction of the electric field E is specified by (θ, ϕ) and that of the
momentum p′ by (χ, ϕ1).

(2.51) 
The vector p′ can be represented by (p, χ, ϕ1). If we denote the angle between p′ and E by ϕ, we

have
(2.52) 
To express cos ϕ in terms of the angles (θ, ϕ) and (χ, ϕ1), we use the vector decomposition property

and obtain

or
(2.53) 
Let us now consider the first integral in (2.50):



(2.54) 
Since

(2.55) 
the first integral can be dropped. We then obtain

(2.56) 
The second integral in (2.50), therefore, is proportional to φ(p). We thus obtain the solution:

(2.57) 
where Γ(p) is given by

(2.58) 
The Γ here is positive and depends only on p ≡ |p| (or equivalently on the energy εp); it has the
dimension of frequency and is called the energy-dependent current relaxation rate or simply the
relaxation rate. Its inverse is called the relaxation time.

The electric current density jx can be calculated from

(2.59) 
We introduce φ = φ0 + φ1 + … in this expression. The first term gives a vanishing contribution (no
current in equilibrium). The second term yields, using (2.55),

(2.60) 
Comparing this with Ohm’s law, jx = σ E, we obtain the following expression for the conductivity:

(2.61) 
where we used ε = (px

2 + py
2 + pz

2)/(2m). A few applications of this formula will be discussed later.
Problem 2.6.1. For a classical hard-sphere interaction, the scattering cross section I is given by
1/2a2, where a is the radius of the sphere. Evaluate the relaxation rate Γ(p) given by (2.58). Using this
result, calculate the conductivity σ through (2.61). Verify that the conductivity calculated is
temperature-independent.
Problem 2.6.2. Formula (2.61) was obtained with the assumption that the equilibrium distribution
function in the absence of the field is given by the Fermi distribution function (2.43).

1. Verify that the same formula applies when we assume that the equilibrium distribution function
is given by the Boltzmann distribution function.



2. Show that the conductivity calculated by this formula does not depend on the temperature.
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1) In a spherical coordinate system, dΩ ≡ sin θdθdϕ = 2π sin θdθ, where θ is the scattering angle
and ϕ is the azimuth angle of its orthogonal projection on a reference plane measured from the a
fixed reference direction p on that plane. the angle between the initial and final momenta p and p′.



Chapter 3

Bloch Electron Dynamics

To properly develop a microscopic theory of the conduction a deeper understanding of the properties
of normal metals than what is provided by the free-electron model is required. On the basis of the
Bloch theorem, the Fermi liquid model is derived. At 0 K, the normal metal is shown to have a sharp
Fermi surface, which is experimentally supported by the fact that the heat capacity is linear in
temperature at the lowest temperatures. Electrons and holes, which appear in the Hall effect
measurements, are defined in terms of the curvature of the Fermi surface. Newtonian equations of
motion for a Bloch electron (wavepacket) are derived and discussed.

3.1 Bloch Theorem in One Dimension
Let us consider a periodic potential (x) in one dimension, see Figure 3.1, that satisfies

Figure 3.1 A periodic potential in one dimension. The blackened circles (•) indicate lattice ions.

(3.1) 
where a is the lattice constant and n is an integer.

The Schrödinger energy-eigenvalue equation for an electron is

(3.2) 
Clearly the wavefunction ψE(x + na) also satisfies the same equation. Therefore, ψE(x + na) is

likely to be different from ψE(x) only by an x-independent phase:

(3.3) 
where k is real, see below. Equation (3.3) represents a form of the Bloch theorem [1]. It generates
far-reaching consequences in the theory of conduction electrons. Let us prove (3.3). Since ψ(x) and
ψ(x + na) satisfy the same equation, they are linearly dependent:

(3.4) 
Using (3.4) twice, we obtain

Since the wavefunction ψ(x) does not vanish in general, we obtain



(3.5) 
Solving this functional equation, we obtain (Problem 3.1.1)

(3.6) 
where λ is a constant. Because the wavefunction ψ in (3.4) must be finite for all ranges, constant λ
must be a pure imaginary number:

(3.7) 
where k is real. Combining (3.4), (3.6), and (3.7) we obtain (3.3).

Let us discuss a few physical properties of the Bloch wavefunction ψ. By taking the absolute square
of (3.3), we obtain

(3.8) 
The following three main properties are observed:

(a) The probability distribution function P(x) ≡ |ψ(x)|2 is lattice periodic:
(3.9) 

(b) The exponential function of a complex number exp(iy) (y real) is periodic: exp(i(y + 2π m)) =
exp(iy), where m is an integer. We may choose the real number k in (3.3), called the k-number (2π
times the wavenumber), to have a fundamental range:

(3.10) 
the two end points (−π/a, π/a) are called the Brillouin boundary (points). This fundamental
range for k is called the first Brillouin zone.

(c) In general, there are a number of energy gaps (forbidden regions of energy) in which no
solutions of (3.2) exist (see Figure 3.4 and Section 3.2). The energy eigenvalues E are
characterized by the k-number and the zone number (or band index) j, which enumerates the
energy bands:

(3.11) 
This property (c) is not obvious, and it will be illustrated by examples in Section 3.2.

To further explore the nature of the Bloch wavefunction ψ, let us write
(3.12) 

and substitute it into (3.3). If the function uj,k(x) is lattice periodic,

(3.13) 
then (3.3) is satisfied (Problem 3.1.2). Equation (3.12) represents a second form of the Bloch
theorem. The Bloch wavefunction ψ(x) = uj,k(x) exp(ikx) has great similarity with the free-particle
wavefunction:

(3.14) 
where c is a constant. The connection may be illustrated as shown in Figure 3.2. For the free particle,
the k-number can range from −∞ to ∞, and the energy is

Figure 3.2 Variation of the real (or imaginary) part of the wavefunction ψE (x).



(3.15) 
with no gaps. This feature is different from the properties (b) and (c) in the list above.

An important similarity arises when we write the time-dependent wavefunction ψ(x, t) in the
running wave form:

(3.16) 
where the frequency ω is defined by

(3.17) 
and the amplitude U(x) is defined by

(3.18) 
Equation (3.16) shows that the Bloch wavefunction ψE(x) represents a running wave characterized by
k-number k, angular frequency ω, and wave train uj,k.

The group velocity v of the Bloch wavepacket is given by

(3.19) 
By applying the (quantum) principle of the wave-particle duality, we say that the Bloch electron
moves with the dispersion (energy-momentum) relation:

(3.20) 
The velocity v is given by (3.19). This gives a picture of great familiarity. We generalize our theory to
the three-dimensional case in Section 3.3.
Problem 3.1.1. Solve the following functional equations:

(i) f(x + y) = f(x) + f(y)
(ii) f(x + y) = f(x) f(y)

Hints: Differentiate (i) with respect to x, and convert the result into an ordinary differential
equation. Take the logarithm of (ii), and use (i). Answer: (i) f(x) = cx, (ii) f(x) = eλx, where c and λ
are constants.
Problem 3.1.2.

1. Show that Bloch’s wavefunction (3.12) satisfies (3.3).
2. Assuming (3.3), derive (3.12).

3.2 The Kronig–Penney Model
The Bloch energy-eigenvalues in general have bands and gaps. We show this by taking the Kronig–
Penney (KP) model [8]. Let us consider a periodic square-well potential (x) with depth V0(< 0) and
well width β(≡ a − α) as shown in Figure 3.3:

Figure 3.3 A Kronig–Penney potential has a square-well with depth V0 and width β periodically
arranged with period a = α + β.



(3.21) 
where a = a + β and the n are integers.

The Schrödinger energy-eigenvalue equation for an electron can be written as in (3.2). Since this is
a linear homogeneous differential equation with constant coefficients, the wavefunction ψ(x) should
have the form

(3.22) 
According to the Bloch theorem in (3.12), this function ψ(x) can be written as
(3.23) 
(3.24) 

The condition that the function ψ(x) be continuous and analytic at the well boundary yields the
following relationships (Problem 3.2.1):

(3.25) 

(3.26) 
By solving (3.25) with (3.26), we obtain the eigenvalue E as a function of k. The band edges are

obtained from
(3.27) 

which corresponds to the limits of cos(ka). Numerical studies of (3.25) indicate that (i) there are, in
general, a number of negative- and positive-energy bands; (ii) at each band edge, an effective mass
m* can be defined, whose value can be positive or negative and whose absolute value can be greater
or less than the electron mass m; and (iii) the effective mass is positive at the lower edge of each
band, and it is negative at the upper edge. A typical dispersion relation for the model, showing energy
bands and energy gaps, is shown in Figure 3.4. At the lowest band edge ε0 we have

(3.28) 
Near this edge the dispersion (energy-k) relation calculated from (3.25) is (Problem 3.2.2)

(3.29) 
(3.30) 

Figure 3.4 E-k diagram showing energy bands and forbidden gaps.



This one-dimensional KP model can be used to study a simple three-dimensional system. Let us
take an orthorhombic (orc) lattice of unit lengths (a1, a2, a3), with each lattice point representing a
short-range attractive potential center (ion). The Schrödinger equation (3.2) for this system is hard to
solve.

Let us now construct a model potential  defined by
(3.31) 

(3.32) 
Here the n are integers. A similar two-dimensional model is shown in Figure 3.5. The domains in

which  ≠ 0 are parallel plates of thickness β (< aj) separated by aj in the direction xj, (x1, x2, x3) = (x,
y, z). The intersection of any two plates are straight beams of cross section β2, where the potential 
has the value 2V0. The intersections of three plates, where the potential  has the value 3V0, are cubes
of side length β. The set of these cubes form an orc lattice, a configuration similar to that of the
commercially available molecular lattice model made up of balls and sticks. Note: Each square-well
potential j has three parameters (V0, β, aj), and this model represents the true potential fairly well
[12]. The Schrödinger equation for the 3D model Hamiltonian

Figure 3.5 A 2D model potential. Each singly shaded stripe has a potential energy (depth) V0. Each
cross-shaded square has a potential energy 2V0.

(3.33) 
can now be reduced to three one-dimensional KP equations. We can then write an expression for the
energy of our model system near the lowest band edge as



(3.34) 
where {mj} are effective masses defined by (3.30) with a = aj.
Equation (3.34) is identical to what is intuitively expected of the energy-k relation for the electron

in the orc lattice. It is stressed that we derived it from first principles, assuming a three-dimensional
model Hamiltonian . Our study demonstrates qualitatively how electron energy bands and gaps are
generated from the Schrödinger equation for an electron moving in a three-dimensional lattice space.
Problem 3.2.1. Derive (3.25). Hint: The wavefunction ψ and the energy eigenvalue E are given by

Use ψ and dψ/dx are continuous at the potential boundaries, say, x = 0 and x = a
Problem 3.2.2. Derive (3.30).

3.3 Bloch Theorem in Three Dimensions
Let us take a monovalent metal such as sodium (Na). The Hamiltonian  of the system may be
represented by

(3.35) 
where k0 ≡ (4πε0)−1. The sums on the rhs represent, respectively, the kinetic energy of electrons, the
interaction energy among electrons, the kinetic energy of ions, the interaction energy among ions, and
the interaction energy between electrons and ions. The metal as a whole is electrically neutral, and
hence the number of electrons equals the number of ions. Both numbers are denoted by N.

At the lowest temperatures the ions are almost stationary near the equilibrium lattice points.
Because of quantum zero-point motion, the ions are not at rest even at 0 K. But this fact does not
affect the following argument. The system then can be viewed as the one in which the electrons move
in a periodic lattice potential . The Hamiltonian of this idealized system that depends on the electron
variables only can be written as

(3.36) 
where (r) represents the lattice potential, and the constant energy C depends on the lattice
configuration.

Let us drop the Coulomb interaction energy from (3.36). We then have

(3.37) 
For definiteness, we consider an infinite orc lattice. We choose a Cartesian frame of coordinates (x,

y, z) along the lattice axes. The potential (x, y, z) = (r) is lattice periodic:
(3.38) 



(3.39) 
where (a, b, c) are lattice constants and the vector R is called the Bravais lattice vector.1) The
Schrödinger equation for an electron is

(3.40) 
where ε is the energy. Clearly ψk(r + R) also satisfies the same equation. The values of the
wavefunction ψk at r and r + R may therefore be different only by a r-independent phase:

(3.41) 
where k ≡ (kx, ky, kz) is called a k-vector. Equation (3.41) represents a form of Block’s theorem [1,
2]. It generates far-reaching consequences in the theory of conduction electrons.

The three principal properties of the Block wavefunctions are:
1. The probability distribution P(r) is lattice periodic:

(3.42) 
2. The k-vector k = (kx, ky, kz) in (3.41) has the fundamental range:

(3.43) 
The end points that form a rectangular box, are called the Brillouin boundary.

3. The energy eigenvalues ε have energy gaps, and the allowed energies ε can be characterized by
the zone number j and the k-vector k:
(3.44) 

Using (3.41), we can express the Bloch wavefunction ψ in the form:

(3.45) 
where u(r) is a periodic function:

(3.46) 
Formula (3.45) along with (3.46) is known as the Bloch theorem [1, 2]. The wavefunction ψk(r) in the
form (3.45) resembles a plane wave describing the motion of a free particle, but here the wave is
modulated by a periodic function uk(r). The k-vector k is connected with the momentum p by p = ħk.

Equations (3.44)–(3.46) indicate that the Bloch wavefunction ψk(r), associated with quantum
numbers (j, k), is a plane wave characterized by k-vector k, angular frequency ω ≡ εj (ħk)/ħ and wave
train uj,k(r). It is clear from (3.45) that

(3.47) 
Hence, the probability is lattice periodic. The Bloch theorem holds in 3D or 2D only if the Bravais

vector is expressed in the Cartesian frame of reference. This is relevant to graphene physics, and will
be further discussed in Chapter 5, Section 5.2.
Problem 3.3.1.

1. Show that the Bloch wavefunction (3.41) satisfies (3.40).
2. Assuming (3.41), derive Equations (3.45) and (3.46).



3.4 Fermi Liquid Model
We consider a monovalent metal, whose Hamiltonian A is given by (3.35):

(3.48) 
The motion of the set of N electrons is correlated because of the interelectronic interaction. If we
omit the ionic kinetic energy, and the interionic and interelectronic Coulomb interaction from (3.48),
we obtain

(3.49) 
which characterizes a system of electrons moving in the bare lattice potential.

Since the metal as a whole is neutral, the Coulomb interaction among the electrons, among the ions,
and between electrons and ions, all have the same order of magnitude, and hence they are equally
important. We now pick out one electron in the system. This electron is interacting with the system of
N ions and N − 1 electrons, the system (medium) having the net charge +e. These other N − 1
electrons should, in accordance with Bloch’s theorem, be distributed with the lattice periodicity and
all over the crystal in equilibrium. The charge per lattice ion is greatly reduced from e to e/N because
the net charge e of the medium is shared equally by N ions. Since N is a large number, the selected
electron moves in an extremely weak effective lattice potential eff as characterized by the model
Hamiltonian:

(3.50) 
In other words any chosen electron moves in an environment far different from what is represented by
the bare lattice potential . It moves almost freely in an extremely weak effective lattice potential eff.
This picture was obtained with the aide of Bloch’s theorem, and hence it is a result of quantum theory.
To illustrate let us examine the same system from the classical point of view. In equilibrium the
classical electron distribution is lattice periodic, so there is one electron near each ion. The electron
will not move in the greatly reduced field.

We now assume that electrons move independently in the effective potential field eff. The total
Hamiltonian for the idealized system may then be represented by

(3.51) 
This Hamiltonian C is a far better approximation to the original Hamiltonian A than the
Hamiltonian B. In C both interelectronic and interionic Coulomb repulsion are not neglected but are
taken into consideration self-consistently. This theoretical model is a one-electron-picture
approximation, but it is hard to improve on by any simple method. The model in fact forms the basis
for the band theory of electrons.

We now apply Bloch’s theorem to the Hamiltonian C composed of the kinetic energy and the



interaction energy eff. We then obtain the Block energy bands εj (ħk) and the Bloch states
characterized by band index j and k-vector k. The Fermi–Dirac statistics obeyed by the electrons can
be applied to the Bloch electrons with no regard to interaction. This means that there is a certain
Fermi energy εF for the ground state of the system. Thus, there is a sharp Fermi surface represented by

(3.52) 
which separates the electron-filled k-space (low-energy side) from the empty k-space (high-energy
side). The Fermi surface for a real metal in general is complicated in contrast to the free-electron
Fermi sphere represented by

(3.53) 
The independent electron model with a sharp Fermi surface at 0 K is called the Fermi liquid model of
Landau [3]. As we show later, many thermal properties of conductors are dominated by those
electrons near the Fermi surface. The shape of the Fermi surface is very important for the conduction
behavior. In the following section, we shall examine the Fermi surfaces of some metals.

The Fermi liquid model was obtained in the static lattice approximation in which the motion of the
ions is neglected. If the effect of moving ions (phonons: quanta of lattice vibrations) is taken into
account, a new model is required. The electron–phonon interaction turns out to be very important in
the theory of superconductivity, which will be discussed in Chapter 7.

3.5 The Fermi Surface
Why does a particular metal exist in a particular crystalline state? This is a good question. The
answer must involve the composition and nature of the atoms constituting the metal and the interaction
between the component particles. To illustrate let us take Na, which forms a bcc lattice. This
monovalent metal may be thought of as an ideal composite system of electrons and ions. The system
Hamiltonian may be approximated by A in (3.48), which consists of the kinetic energies of electrons
and ions and the Coulomb interaction energies among and between electrons and ions. This is an
approximation since the interaction between electron and ion deviates significantly from the ideal
Coulomb law at short distances because each ion has core electrons. At any rate the study of the
ground state energy of the ideal model favors a fcc lattice structure, which is not observed for this
metal. If multivalent metals like Pb and Sn are considered, the condition becomes even more
complicated, since the core electrons forming part of the ions have anisotropic charge distribution.
Because of this complexity it is customary in solid state physics to assume the experimentally known
lattice structures first, then proceed to study the Fermi surface.

Once a lattice is selected, the Brillouin zone is fixed. For an orthorhombic (orc) lattice the
Brillouin zone is a rectangular box defined by (3.43). We now assume a large periodic box of
volume:

(3.54) 
Let us find the number N of the quantum states in the first Brillouin zone. With the neglect of the spin

degeneracy, the number N is equal to the total k-space volume enclosed by the Brillouin boundary
divided by unit k-cell volume:



(3.55) 
which equals the number of ions in the normalization volume. It is also equal to the number of
conduction electrons in a monovalent metal. Thus, the first Brillouin zone can contain twice (because
of spin degeneracy) the number of conduction electrons for the monovalent metal. This means that at 0
K, half of the Brillouin zone may be filled by electrons. Something similar to this actually happens to
alkali metals including Li, Na, K. These metals form bcc lattices. All experiments indicate that the
Fermi surface is nearly spherical and entirely within the first Brillouin zone. The Fermi surface of Na
is shown in Figure 3.6.

Figure 3.6 The Fermi surface of Na (bcc) is spherical within the first Brillouin zone.

The nearly free electron model (NFEM) developed by Harrison [5] can predict a Fermi surface for
any metal in the first approximation. This model is obtained by applying Heisenberg’s uncertainty
principle and Pauli’s exclusion principle to a solid. Hence, it has a general applicability unhindered
by the complications due to particle–particle interaction. Briefly in the NFEM, the first Brillouin zone
is drawn for a chosen metal. Electrons are filled, starting from the center of the zone, with the
assumption of a free electron dispersion relation. If we apply the NFEM to alkali metals, we simply
obtain the Fermi sphere as shown in Figure 3.6.

Noble metals, including copper (Cu), silver (Ag), and gold (Au) are monovalent fcc metals. The
Brillouin zone and Fermi surface of Cu are shown in Figure 3.7. The Fermi surface is far from
spherical. Notice that the Fermi surface approaches the Brillouin boundary at right angles. This arises
from the mirror symmetry possessed by the fcc lattice.

Figure 3.7 The Fermi surface of Cu (fcc) bulges out in the (111) direction to make contact with the
hexagonal zone faces.



For a divalent metal like calcium (Ca) (fcc), the first Brillouin zone can in principle contain all of
the conduction electrons. However, the Fermi surface must approach the zone boundary at right
angles, which distorts the ideal configuration considerably. Thus, the real Fermi surface for Ca has a
set of unfilled corners in the first zone, and the overflow electrons are in the second zone. As a result
Ca is a metal, and not an insulator. Besides Ca has electrons and holes. Divalent beryllium (Be)
forms a hexagonal closed packed (hcp) crystal. The Fermi surfaces in the second zone constructed in
the NFEM and observed [7], are shown in Figure 3.8a and b, respectively. Let us now consider
trivalent aluminum (Al), which forms a fcc lattice. The first Brillouin zone is entirely filled with
electrons. The second zone is half filled with electrons, starting with the zone boundary as shown in
Figure 3.9. For a more detailed description of the Fermi surface of metals, see standard texts on solid
state physics [2, 6, 8]. Al and Be are superconductors, while Na and Cu are not.

Figure 3.8 The Fermi surfaces in the second zone for Be. (a) NFEM “monster,” (b) measured
“coronet.” The coronet encloses unoccupied states.

Figure 3.9 The Fermi surface constructed by Harrison’s model (NFEM) in the second zone for Al.
The convex surface encloses vacant states.

3.6 Heat Capacity and Density of States
The band structures of conduction electrons are quite different from metal to metal. In spite of this, the
electronic heat capacities at very low temperatures are all similar, which is shown in this section. We
first show that any normal metal having a sharp Fermi surface has a T-linear heat capacity. We draw
the density of states (ε), and the Fermi distribution function f(ε) as a function of the kinetic energy ε
in Figure 3.10. The change in f(ε) is appreciable only near the Fermi energy εF. The number of excited
electrons, ΔN, is estimated by



Figure 3.10 The density of states in energy, (ε), and the Fermi distribution function f(ε) are drawn as
a function of the kinetic energy ε. The change in f is appreciable only near the Fermi energy εF if kBT 

 εF. The shaded area represents approximately the number of thermally excited electrons.

(3.56) 
Each thermally excited electron will move up with an extra energy of the order kBT. The approximate
change in the total energy Δ E is given by multiplying these two factors:

(3.57) 
Differentiating this with respect to T, we obtain an expression for the heat capacity:

(3.58) 
which indicates the T-linear dependence. This T-dependence conies from the Fermi distribution
function. Using the more rigorous calculation, we obtain

(3.59) 
The density of states, (εF), for any 3D normal metal can be evaluated from

(3.60) 
where the factor 2 is due to the spin degeneracy, and the surface integration is carried out over the
Fermi surface represented by

(3.61) 
As an illustration, consider a free electron system having the Fermi sphere:

(3.62) 
The gradient ∇ε(p) at any point of the surface has a constant magnitude pF/m, and the surface integral
is equal to 4πpF

2. Equation (3.60), then, yields

(3.63) 



As a second example, consider the ellipsoidal surface represented by

(3.64) 
After elementary calculations, we obtain (Problem 3.6.1)

(3.65) 
which shows that the density of states still grows like ε1/2, but the coefficient depends on the three
effective masses (m1, m2, m3).
Problem 3.6.1.

1. Compute the momentum-space volume between the surfaces represented by ε = px
2/2m1 +

py
2/2m2 + pz

2/2m3 and ε + dε = px′2/2m1 + py′2/2m2 + pz′2/2m3. By counting the number of
momentum states in this volume in the bulk limit, obtain (3.65).
2. Derive (3.65), starting from the general formula (3.60). Hint: Convert the integral over the
ellipsoidal surface to one over a spherical surface.

3.7 The Density of State in the Momentum
Space
In many applications of quantum statistical mechanics we meet the need for converting the sum over
quantum states into an integral. This conversion becomes necessary when we first find discrete
quantum states for a finite box, and then seek the sum over states in the bulk limit. The necessity of
such a conversion does not arise in the spin problem. This conversion is a welcome procedure
because the resulting integral, in general, is easier to handle than the sum. The conversion is of a
purely mathematical nature, but it is an important step in carrying out statistical mechanical
computations.

Let us first examine a sum over momentum states pk ≡ 2πħk/L corresponding to a one-dimensional
motion. Let us take the sum

(3.66) 
where A(pk) is an arbitrary function of p. The discrete momentum states pk ≡ 2πħk/L are equally
spaced, as shown by the short bars in Figure 3.11. As the normalization length L is made greater, the
spacing (distance) between two successive states, 2πħ/L, becomes smaller. This means that the
number of states par unit momentum interval increases as L increases. We denote the number of states
within a small momentum interval Δp by Δn. We now take the ratio,

Figure 3.11 The linear momentum states are represented by short bars forming a linear lattice with
unit spacing equal to 2πħ/L. As the normalization length L is made greater, the spacing becomes
smaller.



(3.67) 
Dividing both the numerator and denominator by the number of states, we get

(3.68) 
Note that this ratio Δn/Δp increases linearly with the normalization length L.

Let us now consider a quantity

(3.69) 
where Δl p is the l-th interval and pl represents a typical value of p within the interval Δl p, say the p-
value at the midpoint of Δl p. Since

the two sums (3.66) and (3.69) have the same dimension. Furthermore, their numerical values will be
close if (a) the function A(p) is a smooth function of p, and (b) there exist many states in Δl p so that
Δn/Δl p can be regarded as the density of states. Condition (b) is satisfied for the momentum states
{pk} when the length L is made sufficiently large. We can then expect that in the bulk limit, by
choosing infinitesimally small intervals : Δl p → d p, expressions (3.66) and (3.69) will have the
same value. That is,

(3.70) 
as L → ∞. But by definition, the sum on the rhs becomes the integral ∫ d p A(p)dn/d p, where

(3.71) 
In summary, we therefore have

(3.72) 
It is stressed that condition (a) depends on the nature of the function A. Therefore, if A(p) is

singular at some point, condition (a) is not satisfied and this may invalidate the limit (3.72). Such
exceptional cases do occur. We further note that the density of state dn/dp = L/(2πħ) does not depend
on the momentum.

The sum-to-integral conversion, which we have discussed, can easily be generalized for a



multidimensional case. For example, in three dimensions, we have

(3.73) 
where

(3.74) 
is called the density of states per unit volume in momentum space.

Let us choose a periodic cubic box of side length L for the normalization. The density of states
dn/d3 p can then be calculated by extending the arguments leading to (3.68). The result is given by

(3.75) 
For electrons, the spin degeneracy doubles this density. We therefore obtain

(3.76) 
with spin degeneracy.

Let us now use this result and simplify the normalization condition, which relates the chemical
potential μ with the average density n:

(3.77) 
where nκ gc denotes a grand canonical ensemble average of the number operator nκ, resulting in the
Fermi distribution function f(εκ).2) Note that κ denotes the set of states and εκ the single-electron
energy associated with state κ and the symbol “Lim” indicates the bulk limit. By choosing A(p) =
f(p2/2m), we obtain

(3.78) 
As a second example, we take the energy density of the system. The total energy of the many-particle
system is given by

(3.79) 
where εκ ≡ pκ

2/(2m) is the kinetic energy of the electron with momentum pκ. From (3.79), we obtain
the energy density e ≡ E/V:

(3.80) 
Equations (3.79) and (3.78) were obtained starting with the momentum eigenvalues corresponding to
the periodic boundary condition. The results in the bulk limit, however, do not depend on the choice
of the boundary condition.

The Fermi energy εF, by definition, is the chemical potential μ0 at absolute zero. We may look at
this connection as follows. For a box of finite volume V, the momentum states are quantized. As the



volume V is increased, the unit cell volume in momentum space, (2πħ)3/V decreases like V−1.
However, in the process of the bulk limit we must increase the number of electrons, N, in proportion
to V. Therefore, the radius of the Fermi sphere within which all momentum states are filled with
electrons neither grows nor shrinks. Obviously, this configuration corresponds to the lowest energy
state for the system. The Fermi energy μ0 ≡ pF

2/(2m) represents the energy of an electron with the
momentum magnitude pF at the surface of the Fermi sphere. If we attempt to add an extra electron to
the Fermi sphere, we must bring in an electron with an energy equal to μ0.
Problem 3.7.1. The momentum eigenvalues for a particle in a rectangular box with sides of unequal
length (Lx, Ly, Lz) are given by

Assuming that the particles are fermions, verify that the Fermi energy εF is the same, independent of
the box shape, in the bulk limit.

3.8 Equations of Motion for a Bloch Electron
In this section we discuss how conduction electrons respond to the applied electromagnetic fields.
Let us recall that in the Fermi liquid model each electron in a crystal moves independently in an
extremely weak lattice periodic effective potential eff(r):

(3.81) 
We write down the Schrödinger equation:

(3.82) 
According to Bloch’s theorem, the wavefunction ψ satisfies

(3.83) 
The Bravais vector R can take on only discrete values, and its minimum length can equal the lattice
constant a0. This generates a limitation on the domain in k. For example the values for each kα(α = x,
y, z) for a sc lattice are limited to [−π/a0, π/a0]. This means that the Bloch electron’s wavelength λ ≡
2π/k has a lower bound:

(3.84) 
The Bloch electron state is characterized by k-vector k, band index j and energy

(3.85) 
Here we defined the lattice momentum by p ≡ ħk. The energy-momentum (or dispersion) relation
represented by (3.85) can be probed by transport measurements. A metal is perturbed from the
equilibrium condition by an applied electric field; the deviations of the electron distribution from the
equilibrium move in the crystal to reach and maintain a stationary state. The deviations, that is, the
localized Bloch wavepackets, should extend over one unit cell or more. This is so because no
wavepackets constructed from waves whose wavelengths have the lower bounds 2a0 can be localized
within distances less than a0.



Dirac demonstrated [9] that for any p-dependence of the kinetic energy (ε = εj(p)) the center of a
quantum wavepacket, identified as the position of the corresponding particle, moves in accordance
with Hamilton’s equations of motion. Hence, the Bloch electron representing the wavepacket moves
in the classical mechanical way under the action of the force averaged over the lattice constants. The
lattice force −∂ eff/∂x averaged over a unit cell vanishes:

(3.86) 
Thus, the only important forces acting on the Bloch electron are the electromagnetic forces.

We now formulate dynamics for the Bloch electron as follows. First, from the quantum principle of
wave-particle duality, we postulate that

(3.87) 
Second, we introduce a model Hamiltonian,

(3.88) 
Third, we generalize our Hamiltonian  to include the electromagnetic interaction energy:

(3.89) 
where (A, ϕ) are vector and scalar potentials generating electromagnetic interaction energy:

(3.90) 
where r ≡ (x1, x2, x3). By using the standard procedures, we then obtain Hamilton’s equations of
motion:

(3.91) 
The first equation defines the velocity v = (v1, v2, v3). Notice that in the zero-field limit these
equations are in agreement with the general definition of a group velocity:

(3.92) 

(3.93) 
The first of (3.91) gives the velocity v as a function of p − qA. Inverting this functional relation, we
have

(3.94) 
Using (3.91)–(3.94), we obtain

(3.95) 
Since the vector f is a function of the velocity v, (3.95) describes how v changes by the action of the
Lorentz force (the right-hand term).

To see the nature of (3.95), we take a quadratic dispersion relation represented by

(3.96) 
where {mi

*} are effective masses and ε0 is a constant. The effective masses {mi
*} may be positive or



negative. Depending on their values, the energy surface represented by (3.96) is ellipsoidal or
hyperboloidal. See Figure 3.12. If the Cartesian axes are taken along the major axes of the ellipsoid,
(3.95) can be written as (Problem 3.8.1)

Figure 3.12 (a) Ellipsoid, (b) hyperboloid of one sheet (neck), (c) hyperboloid of two sheets
(inverted double caps).

(3.97) 
These are Newtonian equations of motion: mass × acceleration = force. Only a set of three effective
masses {mi

*} are introduced. The Bloch electron moves in an anisotropic environment if the effective
masses are different.

Let us now go back to the general case. The function f may be determined from the dispersion
relation as follows: take a point A at the constant-energy surface represented by (3.85) in the k-space.
We choose to point the positive normal vector in the direction in which energy increases. A normal
curvature κ is defined as the inverse of the radius of the contact circle at A (in the plane containing the
normal vector) times the curvature sign δA:

(3.98) 
where δA is +1 or −1 according to whether the center of the contact circle is on the positive side
(which contains the positive normal) or not. In space-surface theory [11], the two planes that contain
the greatest and smallest normal curvatures are known to be mutually orthogonal. They are, by
construction, orthogonal to the contact plane at A. Therefore, the intersections of these two planes and
the contact plane can form a Cartesian set of orthogonal axes with the origin at A, called the principal
axes of curvatures. By using this property, we define principal masses mi by

(3.99) 
where ∂pi is the differential along the principal axis i. If we choose a Cartesian coordinate system
along the principal axes, (3.95) can be written as (Problem 3.8.2)

(3.100) 
Note that these equations are similar to those of (3.97). The principal masses {mi}, however, are
defined at each point on the constant-energy surface, and hence they depend on p and εj(p). Let us take
a simple example: an ellipsoidal constant-energy surface represented by (3.96) with all positive mi

*.
At extremal points, for example, (p1,max, 0, 0) = , the principal exes of curvatures
match the major axes of the ellipsoid. Then the principal masses {mi} can simply be expressed in
terms of the constant effective masses {mj

*} (Problem 3.8.3).



The proof of the equivalence between (3.95) and (3.100) is carried out as follows. Since fi are
functions of (v1, v2, v3), we obtain

(3.101) 
The velocities vi from (3.91) can be expressed in terms of the first p-derivatives. Thus, in the zero-
field limit:

(3.102) 
which defines the symmetric mass tensor elements {mij}. By using (3.101) and (3.102), we can re-
express (3.95) as

(3.103) 
which is valid in any Cartesian frame of reference. The mass tensor {mij} is real and symmetric, and
hence can always be diagonalized by a principal-axes transformation [11]. The principal masses {mi}
are given by (3.99) and the principal axes are given by the principal axes of curvature.

In (3.99) the third principal mass m3 is defined in terms of the second derivative, ∂2ε/∂p3
2, in the

energy-increasing (p3-)direction. The first and second principal masses (m1, m2) can be connected
with the two principal radii of curvature, (P1, P2), which by definition equal the inverse principal
curvatures (kappa1, κ2) (Problem 3.8.4):

(3.104) 
The equations in (3.104) are very useful relations. The signs (definitely) and magnitudes

(qualitatively) of the first two principal masses (m1, m2) can be obtained by a visual inspection of the
constant-energy surface, an example of which is the Fermi surface. The sign of the third principal
mass m3 can also be obtained by inspection: the mass m3 is positive or negative according to whether
the center of the contact circle is on the negative or the positive side. For example, the system of free
electrons has a spherical constant-energy surface represented by ε = p2/(2m) with the normal vector
pointing outward. By inspection the principal radii of curvatures at every point of the surface are
negative, and the principal masses (m1, m2) are positive and equal to m. The third principal mass m3
is also positive and equal to m. Equation (3.100) was derived from the energy-k relation (3.85)
without referring to the Fermi energy. It is valid for all wave vectors k and all band indices j.
Problem 3.8.1. Assume a quadratic dispersion relation (3.96) and derive (3.97).
Problem 3.8.2. Assume a general dispersion relation (3.88) and derive (3.100).
Problem 3.8.3. Consider the ellipsoidal constant-energy surface represented by (3.96) with all mi

* >
0. At the six extremal points, the principal axes of the curvatures match the major axes of the
ellipsoidal. Demonstrate that the principal masses {mi} at one of these points can be expressed
simply in terms of the effective masses {mj

*}.
Problem 3.8.4. Verify (3.104). Hint: Use a Taylor expansion.
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1) The vector R is a translational vector, which expresses a lattice periodicity.

2) We show briefly the derivation of the Fermi distribution function f(εκ). A detailed derivation is
given in for example [13]. When the Hamiltonian of a system, , is given by the sum of a single-
particle Hamiltonian h, that is,  = ∑j hj, the grand canonical ensemble average of a number
operator nκ then gives the Fermi distribution function f(εκ):

where the symbol “TR” denotes a many-body trace,  ≡ ∑κ nκ, εκ is the eigenvalue of h, β ≡
1/(kBT), and α ≡ βμ (μ: the chemical potential).



Chapter 4

Phonons and Electron–Phonon Interaction

Phonons, electron–phonon interaction, and the phonon-exchange attraction are discussed in this
chapter.

4.1 Phonons and Lattice Dynamics
In the present section, we review a general theory of heat capacity based on lattice dynamics.

Let us take a crystal composed of N atoms. The potential energy  depends on the configuration of
N atoms located at (r1, r2, ···, rN). We regard this energy  as a function of the displacements of the
atoms,

(4.1) 
measured from the equilibrium positions rj

(0).
Let us Taylor expand the potential

in terms of small displacements {ujμ}:

(4.2) 
where all partial derivatives are evaluated at u1 = u2 = ··· = 0, which is indicated by subscript 0. We
may set the constant 0 equal to zero with no loss of rigor. By assumption, the lattice is stable at the
equilibrium configuration. Then the potential  must be at a minimum, requiring that the first-order
derivatives vanish:

(4.3) 
For small oscillations we may keep terms of the second order in ujμ only. We then have

(4.4) 
where

(4.5) 
The prime (’) on  indicating the harmonic approximation, will be dropped hereafter. The kinetic
energy of the system is given by



(4.6) 
The kinetic energy of all the atoms is the sum of their individual kinetic energies.

We can now write down the Lagrangian  ≡  −  as

(4.7) 
The Lagrangian  in the harmonic approximation is quadratic in ujμ and jμ. According to the theory of
principal-axis transformation [1], we can in principle transform the Hamiltonian (total energy)  = 
+  for the system into the sum of the energies of the normal modes of oscillations:

(4.8) 
where {Qκ, Pκ} are the normal coordinates and momenta, and ωκ are characteristic frequencies. We
note that there are exactly 3 N normal modes.

Let us first calculate the heat capacity by means of classical statistical mechanics. This Hamiltonian
 is quadratic in canonical variables (Qκ, Pκ). Hence, the equipartition theorem holds. We multiply

the average thermal energy kBT for each mode by the number of modes 3N and obtain 3N kBT for the
average energy . Differentiating this with respect to T, we obtain 3NkB for the heat capacity, in
agreement with Dulong–Petit’s law. It is interesting to observe that we obtained this result without
knowing the actual distribution of normal-mode frequencies. The fact that there are 3 N normal modes
played an important role.

Let us now use quantum theory and calculate the heat capacity based on formula (4.8). The energy
eigenvalues of the Hamiltonian  are given by

(4.9) 
We can interpret (4.9) in terms of phonons as follows: the energy of the lattice vibrations is
characterized by the set of numbers of phonons {nκ} in the normal modes {κ}. Taking the canonical-
ensemble average of (4.9), we obtain

(4.10) 
where

(4.11) 
is the Planck distribution function.

The normal-mode frequencies {ωκ} depend on the normalization volume V, and they are densely
populated for large V. In the bulk limit, we may convert the sum over the normal modes into a
frequency integral and obtain

(4.12) 

(4.13) 



where (ω) is the density of states (DOS) in angular frequency defined such that the
(4.14) 

The constant E0 represents a temperature-independent zero-point energy.
Differentiating E(T) with respect to T, we obtain for the heat capacity:

(4.15) 
This expression was obtained under the harmonic approximation only, which is good at very low
temperatures.

To proceed further, we have to know the density of normal modes, (ω). To find the set of
characteristic frequencies {ωκ} requires solving an algebraic equation of 3 Nth order, and we need
the frequency distribution for large N. This is not a simple matter. In fact, a branch of mathematical
physics whose principal aim is to find the frequency distribution, is called lattice dynamics. Figure
4.1 represents a result obtained by Walker [2] after an analysis of the X-ray scattering data for
aluminum (Al), based on lattice dynamics. Some remarkable features of the curve are:

Figure 4.1 The density of normal modes (ω) in the angular frequency ω for aluminum. The solid
curve represents the data deduced from X-ray scattering measurements due to Walker [2]. The broken
lines indicate the Debye distribution with ΘD = 328 K.

1. At low frequencies,
(4.16) 

2. There exists a maximum frequency ωmax such that

(4.17) 
3. A few sharp peaks exist below ωmax.

Feature (1) is common to all crystals. The low-frequency modes can be described adequately in
terms of longitudinal and transverse elastic waves. This region can be represented very well by the
Debye continuum model [3], indicated by the broken line. Feature (2) is connected with the lattice
structure. Briefly, no normal modes of extreme short wavelengths (extreme high frequencies) exist.
There is a limit frequency ωmax. Sharp peaks were first predicted by van Hove [4] on topological
grounds. These peaks are often referred to as van Hove singularities [5, 6].



The van Hove singularities, the jumps in the derivative of the density of states, occur in two and
three dimensions when the constant-frequency plane touches the Brillouin boundary and undergoes a
curvature inversion. Similar singularities occur for conduction electrons, too. We give a full account
of the van Hove singularities in the following Section 4.2.

As we will see later, the cause of superconductivity lies in the electron–phonon interaction [7]. The
microscopic theory, however, can be formulated in terms of the generalized BCS Hamiltonian [7], see
Section 7.3, where all phonon variables are eliminated. In this sense the details of lattice dynamics
are secondary to our main concern. The following point, however, is noteworthy. All lattice
dynamical calculations start with the assumption of a real crystal lattice. For example, to treat
aluminum, we start with a face-centered cubic (fcc) lattice having empirically known lattice
constants. The equations of motion for a set of ions are solved under the assumption of a periodic
lattice-box boundary condition. Thus, the k-vectors used in both lattice dynamics and Bloch electron
dynamics are the same. The domain of the k-vectors can be restricted to the same first Brillouin zone.
Colloquially speaking, phonons (bosons) and electrons (fermions) live together in the same Brillouin
zone, which is equivalent to saying that electrons and phonons share the same house (crystal lattice).
This affinity between electrons and phonons makes the conservation of momentum in the electron–
phonon interaction physically meaningful. Thus, the fact that the electron–phonon interaction is the
cause of superconductivity is not accidental.

4.2 Van Hove Singularities
We define the van Hove singularities as jumps in the derivative of the density of states. The property
arising from the reflection symmetry that the constant-frequency plane touches the Brillouin boundary
at right angles [15] must be used to complete discussion of the van Hove singularities in 2D and 3D.

In Section 4.2.1, the normal modes of N coupled harmonic oscillators are obtained and discussed.
Low-frequency phonons in simple-cubic (sc), body-centered cubic (bcc), tetragonal (tet), and fcc
lattices are analyzed in Section 4.2.2. Van Hove singularities and others are discussed in Section
4.2.3.

4.2.1 Particles on a Stretched String (Coupled Harmonic
Oscillators)
Let us take a system of N particles, each with mass m, separated by the equilibrium distance l on a
stretched string with a tension τ. We consider small vertical displacements yj(t). We assume a
periodic boundary condition:

(4.18) 
The kinetic energy  is given by

(4.19) 
The potential energy  is given by

(4.20) 



which is invariant under cyclic permutation. The Lagrangian  is then

(4.21) 
The equations of motion are

(4.22) 
We assume solutions of the form:

(4.23) 
where k is a k-number. From the periodic boundary condition (4.18) this k-number satisfies

(4.24) 
or

(4.25) 
whose solution is

(4.26) 
Note that k has a dimension of an inverse distance. Substituting (4.23) into (4.22), we obtain

(4.27) 
or

(4.28) 
where ω0 ≡  is the (positive) frequency of a single harmonic oscillator. By convention, we
choose a positive angular frequency ω:

(4.29) 
We then obtain a dispersion relation:

(4.30) 
A general solution is composed of

(4.31) 
where kn and ωn are respectively given by

(4.32) 
These solutions characterized by (kn, ωn) represent waves propagating along the line with the phase
velocity

(4.33) 
We take first the case of an even number of particles, N. Then, N/2 is an integer. The number of

degrees of freedom for the system is N. Then, there exist only Nkn. The frequency ωn is an increasing
function of |kn|. We may choose an equal number, N/2, of positive +kn states and negative −kn states.



The Lagrangian  can be written as

(4.34) 
where Qkn

 are the normal coordinates and ωn normal mode frequencies.
We introduce canonical momenta

(4.35) 
and construct a Hamiltonian 

(4.36) 
The frequencies {ωn} are distributed, following the dispersion relation (4.32).

In the low-frequency (energy) region we obtain from (4.30)
(4.37) 

This relation is relevant to the low-energy (acoustic) phonons in a solid.

4.2.2 Low-Frequency Phonons
1. Simple Cubic Lattice: Let us consider small oscillations for a system of atoms forming a sc
lattice. We note that polonium (Po) forms a sc lattice [16]. We use a harmonic approximation.
Assume a longitudinal traveling wave along a cubic axis (x-axis). Imagine hypothetical planes
perpendicular to the x-axis containing atoms forming a square lattice. This plane has a mass per
unit square of side-length a (the lattice constant), equal to the atomic mass m. The plane is
subjected to a restoring force per cm2 equal to Young modulus Y. The dynamics of a set of the
parallel planes are similar to that of the coupled harmonic oscillators discussed in Section 4.2.1.

Assume next a transverse wave traveling along the x-axis. The hypothetical planes containing
the atoms are subjected to a restoring stress equal to the rigidity (shear) modulus S. The
dynamics is also similar to the coupled harmonic oscillators in one dimension (1D).
Low-frequency phonons are those to which Debye’s continuum solid model applies. The wave
equations are

(4.38) 
where i = 1 (longitudinal) or t (transverse). The longitudinal-wave phase velocity c1 is

(4.39) 
where ρ is the mass density. The transverse-wave phase velocity ct is

(4.40) 
where S is the shear modulus. The waves are superposable. Hence, the movement of phonons
is not restricted to the crystal’s cubic directions. In short there is a k-vector, k:
(4.41) 



where êx, êy, êz are the unit vectors in the Cartesian coordinates. The wave propagation is
isotropic.
For the transverse waves the polarization vector points in a direction in the 2D polarization
plane perpendicular to the k-vector. Hence, there are twice as many normal modes as those
modes for the longitudinal waves.

2. Body-Centered Cubic Lattice: Alkali metals like sodium (Na) and potassium (K) form bcc
lattices. The bcc lattice can be decomposed into two sublattices, one containing the corner atoms
forming a sc lattice and the other containing body-center atoms also forming a sc lattice. These sc
sublattices are similar with the same lattice constant a and the same crystal directions. The low-
frequency phonons in a bcc lattice can travel in the same manner as the low-frequency phonons in
the associated sc sublattice. In short they travel with a linear dispersion relation and
isotropically.
3. Tetragonal Lattice: Indium (In) forms a tet lattice (a1 = a2 ≠ a3, α = β = γ = 90°). Low-energy
phonons may travel along one of the crystal axes (x-axis). We may introduce a set of hypothetical
planes containing atoms. The plane has a mass density per cm2 and it is subjected to a restoring
stress. The dynamics of the plane motion is similar to the coupled harmonic oscillators discussed
earlier. The mass density and the stress depend on the crystal axis along which the acoustic (low-
energy) phonons travel. The elastic waves travel with linear dispersion relations. The wave
propagation is angle-dependent or anisotropic, however, because the mass density and the
restoring stress depend on the directions.
4. Face-Centered Cubic Lattice: Copper (Cu) and Al form fcc lattices. The fcc lattice can be
decomposed into three sublattices, one containing the eight corner atoms forming a sc lattice with
the side length a, a second containing the top and bottom face-center atoms forming a sc lattice
with the side length a, a third containing the side face-center atoms forming a tetragonal lattice
with the side-lengths (a/ , a/ , a). The unit cell of a tetragonal sublattice contains two atoms.
The acoustic longitudinal, transverse phonons associated with the sc-sublattices travel
isotropically and the phonons associated with the tetragonal sublattice travel anisotropically.
They have different phase speeds.

4.2.3 Discussion
Let us first take a sc lattice with the lattice constant a. We choose Cartesian coordinates (x, y, z) along
the cubic axes with the center O at a unit cell center. The Brillouin boundary is cubic with the side-
length 2π/a. The original lattice has a reflection symmetry with respect to the plane: x = 0. It also has
the same symmetry with respect to the y = 0-plane and the z = 0-plane. The low-frequency
longitudinal and transverse phonons have linear dispersion relations. Hence, the density of states has
a quadratic-ω dependence at low frequencies.

Second, we consider a bcc lattice. Since the bcc lattice can be decomposed into two similar sc
sublattices with the lattice constant a and with the same cubic lattice directions, the density of states
has a quadratic-ω dependence. The phonons for both sc and bcc lattices run isotropically. Hence, the
constant-frequency surface at low frequencies is a sphere.

Third, we consider a tet lattice. The low-frequency dispersion relation is linear. The density of



states has a ω-quadratic behavior. The phonon proceeds anisotropically, however.
Fourth, a fcc lattice is considered. A fcc lattice can be decomposed into two sc sublattices of the

lattice constant a and a tetragonal sublattice of side-lengths (a/ , a/ , a). The low-frequency
dispersion relations for the longitudinal and transverse phonons are all linear. The density of states
has a ω-quadratic behavior. The phonons associated with the tetragonal sublattice are anisotropic
while the phonons associated with the sc lattice is isotropic. We note that such detailed phonon-mode
behaviors are not available in Debye’s continuum model theory [3].

In a historic paper [17] Einstein resolved the mystery concerning the near-absence of the lattice
heat capacity of a diamond at room temperature. In his model each atom oscillates harmonically with
the angular frequency ω0. There is no frequency distribution. In our lattice-plane model developed in
Section 4.2.2, the single-atom frequency ω0 may be identified as

(4.42) 
This ω0 can be regarded as the average frequency:

(4.43) 
This view is supported by the fact that the Einstein temperature TE is a little lower than the Debye
temperature TD:

(4.44) 
For diamond, experiments indicate that

(4.45) 
According to (4.28), the angular frequency ω approaches 2ω0:

(4.46) 
at highest |kN|l/2 = π/2.

The density of states in 1D drops to zero at the maximum frequency. Aluminum forms a fcc lattice.
The fcc lattice can be decomposed into two sc sublattices and one tet sublattice. Since the shear
modulus S is smaller than the Young modulus Y, the transverse phonons have lower energies than the
longitudinal phonons for the same k-values. The phonons associated with the sc sublattices are more
easily excited than those associated with the tet sublattice since the restoring stresses are greater in
the latter (more compact unit cell). Thus, the lowest-energy normal modes come from the transverse
phonons associated with the sc sublattices. We may then conclude that the first peak in Figure 4.1
arises from the transverse sc phonons. The rise is greater than the Debye continuum model curve
(dotted line). This is in line with the ω-k (dispersion) relation in (4.32), which has a negative second
derivative for increasing k. The sharp peak arises as follows: for very small k, the dispersion relation
is linear and the constant-frequency plane is a sphere. As the frequency (or energy) increases, the
constant-frequency plane grows in size and, must approach and touch the six face-centers (singular
points) of the cubic Brillouin zone boundary. The plane must approach the zone boundary at right
angles because of the reflection symmetry possessed by the fcc lattice [15]. As the frequency
increases, the constant-frequency plane grows in size, touches the boundary, changes its curvature
sign, and eventually fills the whole k-space. The 2D cut of the surface development at z = 0 is
illustrated in Figure 4.2. The small circle in Figure 4.2a represents the cut of a constant-frequency



plane for small k. Between Figure 4.2b and 4.2c the curvature sign changes from convex to concave.
We will show that the change point is the point of the van Hove singularity [6].

Figure 4.2 2D intersections at kz = 0 of the constant frequency planes for a simple cubic lattice in the
ω-increasing order: (a–d). The shaded areas correspond to the lowest-frequency (energy) sides.
There is a singular point between (b,c) where the curvature sign changes.
After [6].

The density of phonon states in frequency per unit phase space, (ω), can be written as

(4.47) 
where the surface integral is over the surface S on which

(4.48) 
and in three dimensions:

The density is high at the contact where

(4.49) 
But there are only six contact points, which have zero measure in the integral. They contribute nothing
to the integral (4.47). The constant-frequency plane near the contact (singular points) is far from
spherical. A further increase in ω generates a collection of singularities forming small circles on the
zone boundary, which grows in size. The normal modes eventually fill up all the k-space and the
density of states vanishes thereafter. In the range up to the curvature inversion point ω1 the density of
the states (ω) increases with positive first and second derivatives:

(4.50) 



After the inversion point ω1, we have

(4.51) 
The first region ω < ω1 in (4.50) corresponds to the case of the growing normal-mode-filled k-space
(shaded): Figure 4.2a → b while the second case ω > ω1 in (4.51) to the shrinking empty k-space:
Figure 4.2c → d. The density of states D(ω) has a maximum, and is continuous at the curvature-
inversion point ω1 but its first derivative has a jump. The curvature inversion must exist since the
total number of normal modes is precisely equal to the number of degrees of the system, and it must
be contained within the Brillouin zone boundary. The curvature-inversion point is unstable, and can
be reached smoothly neither from the low-frequency side nor the high-frequency side. There are
unavoidable fluctuations and dispersions at this point, which may be probed by dynamic transport
measurements.

For a 1D (linear) crystal, the frequency ω is given by 2ω0| sin(kl/2)|. By direct calculation we
obtain

(4.52) 
Because of the inversion symmetry, the constant-frequency lines approach the Brillouin zone
boundary at right angles. There are no curvatures and no curvature inversions. The density of states
diverges at the end points (ω = ±2ω0). This singularity can be regarded as a precursor to the van
Hove singularities occurring in 2D and 3D.

Essentially the same thing happens for the phonons associated with the tet sublattice. This explains
the second peak in Figure 4.1. There are side-shoulders for the first and second peaks on the high-
frequency sides. These are due to the longitudinal phonons.

In summary the van Hove singularities (peaks) occur when the constant-frequency plane touches the
Brillouin zone boundary and undergoes a curvature inversion. There are two prominent peaks in Al
(fcc) due to the transverse phonons associated with the sc sublattices and the tet sublattice.

4.3 Electron–Phonon Interaction
A crystal lattice is composed of a regular array of ions. If the ions move, then the electrons must move
in a changing potential field. Fröhlich proposed an interaction Hamiltonian, which is especially
suitable for transport and superconductivity problems. In the present section we derive the Fröhlich
Hamiltonian [8, 9].

For simplicity let us takes a sc lattice. The normal modes of oscillations for a solid are longitudinal
and transverse running waves characterized by wave vector q and frequency ωq. First, consider the
case of a longitudinal wave proceeding in the crystal axis x, which is represented by

(4.53) 
where uq is the displacement in the x-direction. The wavelength λ ≡ 2π/q(< 2a0) is greater than twice
the lattice constant a0. The case, λ = 12a0, is shown in Figure 4.3.



Figure 4.3 Longitudinal waves proceeding in the x-direction: λ = 12a0. Circle ( ) indicates a lattice
ion.

If we imagine a set of parallel plates containing a great number of ions fixed in each plate, we have
a realistic picture of the lattice vibration mode. From Figure 4.3 we see that the density of ions
changes in the x-direction. Hence, the longitudinal wave modes are also called the density-wave
modes. The transverse wave modes can also be pictured from Figure 4.3 by imagining a set of
parallel plates containing a great number of ions fixed in each plate and assuming the transverse
displacements of the plates. Notice that this mode generates no charge-density variation.

Now, the Fermi velocity vF in a typical metal is of the order 106 m s−1 while the speed of sound is
of the order 103ms−1. The electrons are then likely to move quickly to negate any electric field
generated by the density variations associated with the lattice wave. Hence, the electrons may follow
the lattice waves quite easily. Given a traveling normal mode in (4.53), we may assume an electron
density deviation of the form:

(4.54) 
Since electrons follow phonons immediately for all ωq, the factor Cq can be regarded as independent
of ωq. We further assume that the deviation is linear in q · uq = quq and again in the electron density
n(r). Thus,

(4.55) 
This is called the deformation potential approximation [18]. The dynamic response factor Aq is
necessarily complex since there is a time delay between the field (cause) and the density variation
(result). The traveling wave is represented by the exponential form (4.54). Complex conjugation of
this equation yields Cq

* exp(iωqt − iq · r). Using this form we can reformulate the electron’s response,
but the physics must be the same. From this consideration we obtain (Problem 4.3.1)

(4.56) 
The classical displacement uq changes, following the harmonic equation of motion:

(4.57) 
Let us write the corresponding Hamiltonian for each mode as

(4.58) 
where we dropped the mode index q. If we assume the same quantum Hamiltonian  and the basic
commutation relations:

(4.59) 
then the quantum description of a harmonic oscillator is complete. The equations of motion are
(Problem 4.3.2)



(4.60) 
We introduce the dimensionless complex dynamical variables:

(4.61) 
Using (4.60) we obtain

(4.62) 
We can express (q, p) in terms of (a, a†):

(4.63) 
Thus, we may work entirely in terms of (a, a†). After straightforward calculations we obtain
(Problem 4.3.3):

(4.64) 

(4.65) 
(4.66) 

and we finally obtain from (4.64)–(4.66)

(4.67) 
The operators (a†, a) satisfy the Base commutation rules (4.66). The energy-eigenvalue equation for
 is now reduced to finding the eigenvalues and eigenstates of the Hermitian operator
(4.68) 

The eigenvalue equation is
(4.69) 

where n′ and |n′  are eigenvalues and eigenkets, respectively.
We shall show that n has as eigenvalues all nonnegative integers. Multiplying (4.69) by the eigenbra

n′| from the left, we obtain
(4.70) 

Now, n′|a†a|n′  is the squared length of the ket a|n′  and hence
(4.71) 

Also, by definition n′| n′  > 0. Hence from (4.70) and (4.71), we obtain
(4.72) 

the case of equality occurring only if
(4.73) 
Consider now [a, n] = [a, a† a]. We may use the following identities:
(4.74) 

and obtain



(4.75) 
Rearranging terms in (4.75) and multiplying it by the eigenket | n′  from the right, we obtain

(4.76) 
Now, if a|n′  ≠ 0, then a|n′  is, according to (4.76), an eigenket of n belonging to the eigenvalue n′ −

1. Hence, for nonzero n’, n′ − 1 is another eigenvalue. We can repeat the argument and deduce that, if
n′ − 1 ≠ 0, n′ − 2 is another eigenvalue of n. Continuing in this way, we obtain a series of eigenvalues
n’, n′ − 1, n′ − 2, ··· that can terminate only with the value 0 because of inequality (4.72). By a similar
process, we can show from the Hermitian conjugate of (4.75):

(4.77) 
that the eigenvalue of n has no upper limit (Problem 4.3.4). Hence, the eigenvalues of n are
nonnegative integers:

(4.78) 
The energy-eigenvalue equation for the harmonic oscillator is
(4.79) 

where the energy E is given by

(4.80) 
Here we omitted the primes for the eigenvalues since they are self-evident. In summary we obtain

Eigenvalues of n ≡ a† a: n′ = 0, 1, 2, …
Vacuum ket |ϕ : a|ϕ  = 0
Eigenkets of n: |(ϕ , a†|ϕ , (a†)2|ϕ , … having the eigenvalues 0, 1, 2,…
Eigenvalues of : E = (n + ) ħω

The main result (4.80) can be obtained by solving the Schrödinger equation:

(4.81) 
which requires considerable mathematical skills.

The ket |n  can be expressed in terms of (a, a′). Let |ϕ0  be a normalized eigenket of n belonging to
the eigenvalue 0 so that

(4.82) 
This ket is called the vacuum ket. It has the following property:

(4.83) 
Using the Bose commutation rules (4.66) we obtain a relation (Problem 4.3.5):

(4.84) 
which may be proved by induction. Multiply (4.84) by a† from the left and operate the result to |Φ0 .
Using (4.83) we obtain

(4.85) 
indicating that (a†)n′|ϕ0  is an eigenket belonging to the eigenvalue n′. The square length of (a†)n’|ϕ0  is

(4.86) 
We see from (4.85) that a|n′  is an eigenket of n belonging to the eigenvalue n′ − 1. Similarly, we can



show from [a, a†] = a† that a†|n′  is an eigenket of n belonging to the eigenvalue n′ + 1. Thus, operator
a, acting on the number eigenket, annihilates a particle, while operator a† creates a particle.
Therefore, a and a† are called annihilation and creation operators, respectively.

In summary, the quantum Hamiltonian and the quantum states of a harmonic oscillator can be simply
described in terms of the bosonic second-quantized operators (a, a†).

We now go back to the case of the lattice normal modes. Each normal mode corresponds to a
harmonic oscillator characterized by (q, ωq). The displacements uq can be expressed as

(4.87) 
where (aq, aq

†) are annihilation and creation operators satisfying the Bose commutation rules:

(4.88) 
We can express the electron density (field) by
(4.89) 

where ψ(r) and ψ†(r) are annihilation and creation electron field operators, respectively, satisfying
the following Fermi anticommutation rules:

(4.90) 
The field operators ψ(ψ†) can be expanded in terms of the momentum-state electron operators

ck(ck
†):

(4.91) 
where operators (c, c†) satisfy the Fermi anticommutation rules:

(4.92) 
Let us now construct an interaction Hamiltonian F, which has the dimension of an energy and

which is Hermitian. We propose

(4.93) 
where h.c. denotes the Hermitian conjugate. Using (4.55), (4.87), and (4.91) we can express (4.93) in
a second-quantized form (Problem 4.3.6):

(4.94) 
This is the Fröhlich Hamiltonian. Electrons describable in terms of ck’s are now coupled with
phonons describable in terms of aq’s. The term

can be pictured as an interaction process in which a phonon is absorbed (emitted) by an electron as
represented by the Feynman diagram [10, 11] in Figure 4.4a(b). Note: at each vertex the momentum is
conserved. The Fröhlich Hamiltonian F is applicable for longitudinal phonons only. As noted
earlier, the transverse lattice normal modes generate no charge density variations, making the



electron–transverse phonon interaction negligible.

Figure 4.4 Feynman diagrams representing (a) absorption and (b) emission of a phonon (indicated by
the dashed line) by an electron. They correspond to the interaction terms in (4.94).

Problem 4.3.1. Prove (4.56).
Problem 4.3.2. Verify (4.60).
Problem 4.3.3. Verify (4.64)–(4.66).
Problem 4.3.4. Verify that the eigenvalues of n have no upper limit. As shown in the text the
eigenvalues are separated by unity and the lower bound is zero. Hence the eigenvalues n′ are 0, 1, 2,
···.
Problem 4.3.5. Prove (4.84) by mathematical induction.
Problem 4.3.6. Show that the second-quantized form of F is given by (4.94).

4.4 Phonon-Exchange Attraction
By exchanging a phonon, two electrons can gain an attraction under a certain condition. In this section
we treat this effect by using the many-body perturbation method [12, 13].

Let us consider an electron–phonon system characterized by

(4.95) 
where the three sums represent respectively the total electron kinetic energy ( el), the total phonon
energy ( ph), and the Fröhlich interaction Hamiltonian ( F) (see (4.94)).

For comparison we consider an electron gas system characterized by the Hamiltonian

(4.96) 
where

(4.97) 
The elementary interaction process can be represented by a diagram as in Figure 4.5. The wavy
horizontal line represents the instantaneous Coulomb interaction C. The net momentum of a pair of
electrons is conserved:



Figure 4.5 The Coulomb interaction represented by the horizontal wavy line generates the change in
the momenta of two electrons.

(4.98) 
as seen by the appearance of the Kronecker delta in (4.97). Physically, the Coulomb force between a
pair of electrons is an internal force, and hence it cannot change the net momentum.

We wish to find an effective Hamiltonian eff between a pair of electrons generated by a phonon
exchange. If we look for this eff in the second order in the coupling constant λ, the likely candidates
may be represented by the two Feynman diagrams1) in Figure 4.6. Here, the time is measured upward.
In the diagrams in Figure 4.6a,b, we follow the motion of two electrons. We may therefore consider a
system of two electrons and obtain the effective Hamiltonian eff through a study of the evolution of
two-body density operator ρ2. For brevity we shall hereafter drop the subscript 2 on ρ indicating the
two-body system.

Figure 4.6 (a,b) A one-phonon exchange process generates the change in the momenta of two
electrons similar to that caused by the Coulomb interaction.

The system-density operator ρ(t) changes in time, following the quantum Liouville equation:

(4.99) 
where the superscript (x) on  indicates the Liouville operator.2) We assume the Hamiltonian  in
(4.96), and study the time evolution of ρ(t), using quantum many-body perturbation theory. We sketch
only the important steps; more detailed calculations are given in Fujita and Godoy’s book [12, 13].

Let us introduce quantum Liouville operators3),
(4.100) 

which generate a commutator upon acting on ρ, see (4.99). We assume that the initial-density operator
ρ0 for the combined electron–phonon system can be written as

(4.101) 
which is reasonable at 0 K, where there are no real phonons and only virtual phonons are involved in
the dynamical processes. We can then choose



(4.102) 
where |0  is the vacuum-state ket for phonons:

(4.103) 
The phonon vacuum average will be denoted by an upper bar or angular brackets:

(4.104) 
Using a time-dependent perturbation theory and taking a phonon-average, we obtain (Problem 4.4.1)
from (4.99)

(4.105) 
In the weak-coupling approximation, we may calculate the phonon-exchange effect to the lowest

(second) order in λ, so that we obtain (Problem 4.4.2)

(4.106) 
In the Markovian approximation we may replace (t − τ) by (t) and take the upper limit t of the τ-
integration to ∞. Using these two approximations, we obtain from (4.105)

(4.107) 
Let us now take momentum-state matrix elements of (4.107). The lhs is

(4.108) 
where we dropped the upper bar indicating the phonon average. The rhs requires more sophisticated
computations since the Liouville operators ( x, 0

x) are involved. After lengthy but straightforward
calculations, we obtain (Problem 4.4.3) from (4.107)

(4.109) 
where 1,2| eff|3,4  is given by

(4.110) 
The Kronecker delta δk3+k4,k1+k2

 in (4.110) means that the net momentum is conserved, since the
phonon-exchange interaction is an internal interaction.

For comparison, consider the electron-gas system characterized by the Hamiltonian C in (4.96).
The two-electron density matrix χC for this system changes, following

(4.111) 
which is of the same form as (4.109). The only differences are in the interaction matrix elements.



Comparison between (4.97) and (4.110) yields (Problem 4.4.4)

(4.112) 

(4.113) 
In our derivation, the weak-coupling and the Markovian approximation were used. The Markovian
approximation is justified in the steady-state condition in which the effect of the duration of
interaction can be neglected. The electron mass is four orders of magnitude smaller than the lattice-
ion mass, and hence the coupling between the electron and ionic motion must be small by the mass
mismatch. Thus, expression (4.113) is highly accurate for the effective phonon-exchange interaction at
0 K. This expression has remarkable features. First, it depends on the phonon energy ħωq. Second, it
depends on the electron energy difference εk1+q − εk1

 before and after the transition. Third, if

(4.114) 
the effective interaction is attractive. Fourth, the attraction is greatest when εk1+q − εk1

 = 0, that is,
when the phonon momentum q is parallel to the constant energy (Fermi) surface. A bound electron
pair, called a Cooper pair, may be formed due to the phonon-exchange attraction as demonstrated by
Cooper [14], which will be discussed in the following chapter.
Problem 4.4.1. Derive (4.105).
Problem 4.4.2. Derive (4.106).
Problem 4.4.3. Derive (4.109) along with (4.110).
Problem 4.4.4. Derive the expressions (4.112) and (4.113).
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Chapter 5

Electrical Conductivity of Multiwalled Nanotubes

The electrical conductivity of carbon nanotubes varies, depending on the temperature, radius, and
pitch of the sample. In the majority of cases, the resistance decreases with increasing temperature,
indicating a thermally activated process. The standard band theory based on the Wigner–Seitz (WS)
cell model predicts a gapless semiconductor, which does not account for the thermal activation. A
new band model in which an “electron” (“hole”) has an orthogonal unit cell size for graphene is
proposed. The normal charge carriers in graphene transport are “electrons” and “holes.” The
“electron” (“hole”) wavepackets extend over the unit cell and carry the charges − e (+e). Thermally
activated “electrons” or “holes” are shown to generate the observed temperature behavior of the
conductivity in multiwalled nanotubes.

5.1 Introduction
In 1991 Iijima [1] discovered carbon nanotubes in the soot created in an electric discharge between
two carbon electrodes. A nanotube (nt) can be considered as a single sheet of graphite, called
graphene, that is rolled up into a tube. A single-wall nanotube (swnt) has a radius of 5–10 Å while a
multiwalled nanotube (mwnt) rolled like wallpaper has a size exceeding 10 nm (= 100 Å) in radius
and microns in length. Nanotubes have remarkable mechanical properties that can be exploited to
strengthen materials. And since they are composed entirely of carbon, nanotubes are light and also
have a low specific heat. Ebbesen et al. [2] measured the electrical conductivity of individual
nanotubes. In the majority of cases, the resistance R decreases with increasing temperature T while
the resistance R for a normal metal like copper (Cu) increases with T. This temperature behavior in
nanotubes indicates a thermally activated process. Schönenberger and Forró [3] reviewed many
aspects of carbon nanotubes; this review and [2] contain many important references. The current band
theory based on the Wigner–Seitz (WS) cell model [4] predicts a gapless semiconductor for graphene
and cannot explain the observed T-behavior. A new theory is required. The WS model is suited for
the study of the ground state energy of a crystal [5]. To treat electron motion for a honeycomb lattice,
we must introduce a different unit cell [5]. We present a new theoretical model for Bloch electron
dynamics [6].

5.2 Graphene
Following Ashcroft and Mermin [5], we adopt the semiclassical electron dynamics in solids. In the
semiclassical (wavepacket) theory, it is necessary to introduce a k-vector:

(5.1) 



since the k-vector is involved in the semiclassical equation of motion:

(5.2) 
where E and B are the electric and magnetic fields, respectively, and the vector

(5.3) 
is the electron velocity where ε is the energy. The choice of the Cartesian axes and the unit cell for a
simple cubic (sc) crystal is obvious. We choose the center of the cube as the origin and take the x-, y-,
and z-axis along the cube sides. Two-dimensional crystals such as graphene can also be treated
similarly, with only the z-component being dropped. We must choose an orthogonal unit cell for the
honeycomb lattice, as shown below.

Graphene forms a 2D honeycomb lattice. The WS unit cell is a rhombus (shaded area) as shown in
Figure 5.1a. The potential energy (r) is lattice, periodic:

Figure 5.1 (a) The WS unit cell, a rhombus (shaded area) for graphene. (b) The orthogonal unit cell,
a rectangle (dotted lines) with side lengths (b, c). Open circles ( ) indicate the C+ ions and the lines
between open circles indicate the chemical bonds.

(5.4) 
where

(5.5) 
are Bravais vectors with the primitive vectors (a1, a2) and integers (m, n).1) In the field theoretical
formulation the field point r is given by

(5.6) 
where r’ is the point defined within the standard unit cell. Equation (5.4) describes the 2D lattice
periodicity but does not establish the k-space, which is explained below.

We first consider an electron in a simple square (sq) lattice. The Schrödinger wave equation is

(5.7) 



The Bravais vector for the sq lattice Rmn
(0) is

(5.8) 
The system is lattice periodic:

(5.9) 
If we choose a set of Cartesian coordinates (x, y) along the sq lattice, then the Laplacian term in (5.7)
is given by

(5.10) 
If we choose a periodic sq boundary with the side length Na (N: integer), then there are 2D Fourier
transforms and (2D) k-vectors.

We now go back to the original graphene system. If we choose the x-axis along either a1 or a2, then
the potential energy field (r) is periodic in the x-direction, but it is aperiodic in the y-direction. For
an infinite lattice the periodic boundary is the only acceptable boundary condition for the Fourier
transformation. Then, there is no 2D k-space spanned by 2D k-vectors. If we omit the kinetic energy
term, then we can still use (5.4) and obtain the ground state energy (except the zero-point energy).

We now choose the orthogonal unit cell as shown in Figure 5.1b for graphene [6]. The unit cell
(rectangle) has side lengths:

(5.11) 
where a0 is the nearest-neighbor distance between two C+ ions. The unit cell has four (4) C+ atoms.
The system is lattice periodic in the x- and y-directions, and hence there are 2D k-spaces.

The importance of using the Cartesian unit cell is also underscored by the stability of the lattice
structure. If a lattice is in a stable equilibrium, then the excitation energy of an electron (and a
phonon) must be quadratic in each Cartesian component of the momentum. This property is assured if
the lattice has an inversion symmetry. The honeycomb lattice clearly has a reflection (mirror)
symmetry about the x-and y-axis in Figure 5.1b. The reflection symmetry can be discussed only in
terms of the Cartesian frame of coordinates.

We shall further discuss lattice stability and reflection symmetry in detail in Section 5.3.
The “electron” (“hole”) in the present text is defined as a quasielectron that has an energy higher

(lower) than the Fermi energy εF and “electrons” (“holes”) are excited on the positive (negative) side
of the Fermi surface with the convention that the positive normal vector at the surface points in the
energy-increasing direction.

The “electron” (wavepacket) may move up or down along the y-axis to the neighboring hexagon
sites passing over one C+. The positively charged C+ acts as a welcoming (favorable) potential
valley for the negatively charged “electron” while the same C+ act as a hindering potential hill for the
positively charged “hole.” The “hole,” however, can move horizontally along the x-axis without
meeting the hindering potential hills. Thus, the easy channel direction for the “electrons” (“holes”)
are along the y-(x-)axes, see Figure 5.1b.

Let us consider the system (graphene) at 0 K. If we put an electron in the crystal, then the electron
should occupy the center O of the Brillouin zone, where the lowest energy lies. Additional electrons



occupy points neighboring the center O in consideration of Pauli’s exclusion principle. The electron
distribution is lattice periodic over the entire crystal in accordance with the Bloch theorem [8].

Carbon (C) is a quadrivalent metal. The first few low-lying energy bands are completely filled. The
uppermost partially filled bands are important for discussion of transport properties. We consider
such a band. The (2D) Fermi surface, which defines the boundary between the filled and unfilled k-
space (area), is not a circle since the x-y symmetry is broken (b ≠ c). The effective mass of the
“electron” is lighter in the y-direction than perpendicular to it. Hence, the motion of the electron is
intrinsically anisotropic. The negatively charged “electron” stays close to the positive C+ ions while
the “hole” is farther away from the C+ ions. Hence, the gain in Coulomb interaction is greater for the
“electron.” That is, the “electron” is more easily activated. Thus, the “electrons” are the majority
carriers at zero gate voltage.

We may represent the activation energy difference by [6]
(5.12) 

The thermally activated (or excited) electron densities are given by

(5.13) 
where j = 1 and 2 represent the “electron” and “hole,” respectively. The prefactor nj is the density at
the high-temperature limit.

5.3 Lattice Stability and Reflection Symmetry
In 1956 Lee and Yang published a historic paper [9] on parity nonconservation for neutrinos after
examining the space inversion property of the massless Dirac relativistic wave equation. Inversion
and reflection symmetry properties are also important in solid state physics. They play important
roles for the stability of crystal lattices in which electrons and phonons move. On the basis of the
reflection symmetry properties, we show that the monoclinic (mcl) crystal has a one-dimensional
(1D) k-space, and the triclinic (tcl) crystal has no k-vectors for electrons. For phonons a tcl crystal
has three disjoint sets of 1D nonorthogonal k-vectors. The phonons’ motion is highly directional, and
there are no spherical waves formed.

There are seven crystal systems, as seen in the book by Ashcroft and Mermin [5]. They are the
cubic (cub), tetragonal (tet), orthorhombic (orc), monoclinic (mcl), rhombohedral (rhl), hexagonal
(hex), and triclinic (tcl) systems. Arsenic (As) and Bismuth (Bi) form rhl crystals. A rhl crystal can
be obtained by stretching (or contracting) the three body-diagonal distances from a sc crystal. But the
body-diagonal directions remain orthogonal to each other after any stretching. Hence, if an orthogonal
unit cell with the Cartesian axes along the body diagonals containing six corner atoms is chosen, then
the system is periodic along the x-, y-, and z-axes passing the center. Thus, the system can be regarded
as an orc crystal, and hence it has a 3D k-space. Diamond (C), silicon (Si), and germanium (Ge) form
diamond (dia) crystals. A dia lattice can be decomposed into two face-centered cubic (fcc)
sublattices, and can therefore be treated similarly to a cub crystal. A number of elements including
graphite form hex crystals, hex crystals can be treated similarly to orc crystals by choosing orthogonal
unit cells. See below for the case of graphite.

A crystal lattice must be stable. If the lattice is symmetric under the space inversion:



(5.14) 
then the electron energy ε is quadratic in (kx, ky, kz) near the origin. The five systems, cub, tet, orc,
hex, rhl, have inversion symmetry. The mcl has a mirror symmetry only with respect to the x-y plane.
Therefore, the mcl has a 1D k-space. No reflection symmetry is found for a tcl crystal. Therefore, the
tcl must be an insulator.

A mcl crystal has a c-axis. It is reflection-symmetric with respect to the x-y plane perpendicular to
the c-(z-)axis. It has only 1D k-vectors along the c-axis. A tcl crystal has no reflection symmetry and
it has therefore no k-vectors. Hence, it is an intrinsic insulator.

In summary, cub, tet, orc, rhl, and hex crystals have 3D k-space spanned by 3D k-vectors. mcl
crystals have 1D k-space. tcl crystals have no k-vectors.

This is a significant finding. The same results can also be obtained by using the Schrödinger
equations as shown in Section 5.2

Let us now consider small oscillations for a system of atoms forming a sc lattice. Assume a
longitudinal wave traveling along a cubic axis (say, the x-axis). Imagine hypothetical planes
perpendicular to the x-axis containing atoms forming a square lattice. This plane has a mass per unit
square of side length a (the lattice constant), equal to the atomic mass m. The plane is subjected to a
restoring force per cm2 equal to the Young modulus Y. The dynamics of a set of the parallel planes are
similar to that of coupled harmonic oscillators.

Assume next a transverse wave traveling along the x-axis. The hypothetical planes containing many
atoms are subjected to a restoring stress equal to the rigidity (shear) modulus S. The dynamics is also
similar to the coupled harmonic oscillators in 1D.

Low-frequency phonons are those to which Debye’s continuum solid model [10] applied. The wave
equations are

(5.15) 
where i = 1 (longitudinal) or t (transverse). The longitudinal wave phase velocity ci is

(5.16) 
where ρ is the mass density. The transverse wave phase velocity ct is

(5.17) 
The waves are superposable. Hence, the movement of phonons is not restricted only to the crystal’s
cubic directions. In short, there is a 3D k-vector, k. The wave propagation is isotropic.

Consider now an orc crystal. We may choose a Cartesian coordinate (x, y, z) passing through the
center of the unit cell. The small oscillations are similar to the case of a sc lattice. The dynamics of
the parallel plates are the same but the restoring forces are different in x-, y-, z-directions. The plane
waves have different phase velocities, depending on the directions. They are superposable since
these waves are still solutions of the wave Equations (5.15).

Phonons are quanta corresponding to the running plane wave modes of lattice vibrations. Phonons
are bosons, and the energies are distributed, following the Planck distribution function:



(5.18) 
There is no activation energy as in the case of the “electrons.” This arises from the boson nature of
phonons. The temperature T alone determines the average number and the average energy.

Phonons and conduction electrons are generated based on the same lattice-and k-spaces. This is
important when describing the electron–phonon interaction.

The “electrons” and “holes” by postulate have the same orthogonal unit cell size. Phonon size is
much greater than the electron size. The low-energy phonons have small k and great wavelengths. The
average energy of a fermionic electron is greater than a bosonic phonon by two or more orders of
magnitude. This establishes the usual physical picture that a point-like electron runs and is
occasionally scattered by a cloud-like phonon in the crystal.

We saw earlier that a mcl crystal has 1D k-vectors pointing along the c-axis for the electrons. There
are similar 1D k-vectors for phonons. Besides, there are two other sets of 1D k-vectors. Plane waves
running in the z-direction can be visualized by imagining the parallel plates, each containing a great
number of atoms executing small longitudinal and transverse oscillations. Thus, plane waves
proceeding upward or downward exist.

Consider an oblique net of points (atoms) viewed from the top as shown in Figure 5.2. Planes
defined by the vector a and the x-axis are parallel and each plane contains a great number of atoms.
Planes defined by the vector b and the c-axis are also parallel, and each contains a number of atoms
also executing small oscillations. These three sets of 1D phonons stabilize the lattice.

Figure 5.2 An oblique net with base vectors (a, b).

We next consider a tcl crystal, which has no k-vectors for electrons. There are, however, three sets
of 1D k-vectors for phonons as shown below. Take a primitive tcl unit cell. The opposing faces are
parallel to each other. There are restoring forces characterized by the Young modulus Y and shear
modulus S. Then, there are 1D k-vectors perpendicular to the faces. The set of 1D phonons can
stabilize the lattice. These phonons in tcl are highly directional. There are no spherical waves
formed. We used the lattice property that the facing planes are parallel. This parallel plane
configuration is common to all seven crystal systems. A typical hex system, graphene, clearly has
three sets of parallel material planes containing many atoms.
The rhl system similarly has parallel planes. The parallel material plane configuration is the basic
condition for phonon generation and lattice stability.

In summary, we established based on the reflection symmetry properties of crystals that:



The cub, tet, orc, rhl, and hex crystal systems have 3D k-spaces for electrons. The mcl system has
a 1D k-space. The tcl crystal system has no k-vectors.
The mcl and tcl crystal systems have 1D phonons, which are highly directional. No spherical
phonon distributions are generated.
The parallel material plane configuration is the basic condition for phonon generation and lattice
stability.
For rhl and hex crystals orthogonal unit cells must be chosen for electron dynamics.
“Electrons” and “holes” have the same unit cell size, and they move with different effective
masses. “Electrons” and “holes” in semiconductors are excited with different activation
energies. Phonons can be excited with no activation energies.
Both phonons and electrons are generated based on the same orthogonal unit cells. This fact is
important when dealing with the electron–phonon interaction.
Both electrons and phonons move as wavepackets. The electron size is the orthogonal unit cell
size. The average phonon size is greater by two or more orders of magnitude at room
temperature.

5.4 Single-Wall Nanotubes
A tube made of a graphene sheet (a single graphite layer) rolled up into a circular cylinder is called a
single-wall nanotube. The charge may be transported by the channeling “electrons” and “holes” in the
graphene wall. But the “holes” present in the inner surface of the swnt also contribute to charge
transport. The carbon ions in the wall are positively charged. Hence, the positively charged “holes”
move inside the tube wall. In contrast, the negatively charged “electrons” are attracted by the carbon
wall and hence cannot travel in a straight line inside the tube wall. Because of this extra channel in
the inner surface of the carbon wall, “holes” are the majority carriers in nanotubes although
“electrons” are the dominant carriers in graphene. Moriyama et al. [11] observed electrical transport
in swnts in the temperature range 2.6–200 K, and determined from a field effect (gate voltage) study
that the carriers are “holes.”

The conductivity was found to depend on the helicity or the pitch of the swnt. The helical line is
defined as the line passing through the centers of the nearest neighbors of the C+-hexagons. The
helical angle φ is the angle between the helical line and the tube axis.2) The degree of helicity h may
be defined as

(5.19) 
For a macroscopically large graphene the conductivity does not show any directional dependence as
we saw in Section 5.2. The conductivity σ in a swnt was experimentally found to depend on the
helicity h [2]. This is a kind of finite size effect. The circumference, that is, 2π times the tube radius is
finite while the tube length is macroscopic.

5.5 Multiwalled Nanotubes
A graphene sheet can be rolled like wallpaper to produce a multiwalled nanotube (see Figure 1.2).



The radius of a mwnt tube can reach 100 Å. The “holes” run in shells between the walls. The shell
area is greatest at the greatest radius. The “hole” current flows should therefore be greatest in the
outermost shells, which is what is observed. The “hole” current in the shells should also be an
activated process and the “hole” mass m3

* is different from the graphene “hole” mass m2
* in the

carbon wall.
We are now ready to discuss the electrical conductivity of nanotubes. There are four currents

carried by [6]
(a) “Electrons” moving in graphene walls with mass m1

* and density n1 exp(−ε1/(kBT)), running
through the channels 110  ≡ [110], [011], and [101].
(b) “Holes” moving inside graphene walls with mass m2

* and density n2exp(−ε2/kBT)), running
through the channels 100  ≡ [100], [010], and [001].
(c) “Holes” moving in shells between the walls with the mass m3

* and the densities n3
exp(−ε3/(kBT)) running in the tube-axis direction. The activation (or excitation) energy ε3 and the
effective mass m3

* may vary with the radius of the shell and the pitch.
(d) Cooper pairs (pairons), which are formed by the phonon-exchange attraction.

In actuality, one of the currents may be dominant, and be observed.
In the normal Ohmic conduction the resistance R is proportional to the sample (tube) length. Then,

the conductivity σ can be defined, and this σ is given by the Drude formula:

(5.20) 
where q is the carrier charge (±e), m* the effective mass, n the carrier density, and τ the relaxation
(collision) time. The relaxation rate Γ ≡ τ−1 is the inverse of the relaxation time. If the impurities and
phonons are scatterers, then the rate Γ is given by the sum of the impurity scattering rate Γimp and the
phonon scattering rate Γph(T) (Matthiessen’s rule [5]):

(5.21) 
The impurity scattering rate Γimp is temperature-independent, and the phonon scattering rate Γph(T) is
temperature (T)-dependent. The phonon rate Γph(T) is linear in T above 4 K:

(5.22) 
The temperature dependence of the conductivity should arise from the carrier density n(T) and the
phonon scattering rate Γph(T). Writing the T-dependence explicitly, we obtain from (5.14)–(5.22)

(5.23) 
Ebbesen et al. [2] measured the electrical conductivity of individual nanotubes of different radii

and pitches. The data are reproduced in Figure 5.3. Sample data were detailed in Table 1 in [2].
Resistance R is seen to decrease with increasing temperature T for NT8 and NT2. They may be
interpreted in terms of the three normal currents (a)–(c) mentioned above. NT4 and NT5 were
analyzed using a semilog-arithmic plot of R versus T−1 as shown in [2, Figure 3], which is
reproduced in Figure 5.4.



Figure 5.3 Temperature dependence of the resistance of different NTs after Ebbesen et al. [2]. (a)
Nanotube NT8, (b) NT7a, (c) NT6, (d) NT1, NT2, NT7b.

Figure 5.4 Semilogarithmic plot of the resistance R of NT4 and NT5 versus the inverse of the
temperature after Ebbesen et at. [2].



The slopes yield activation energies ε of 0.1 and 0.3 eV for NT4 and NT5, respectively. The
currents in NT5 should be due to the “electrons” running through the channels 110  in the graphene
wall or the “holes” running in the channels 100 . The Hall coefficient or the Seebeck coefficient
measurements will answer this question. The lack of linearity in NT4 suggests that the relevant
currents are due to the “holes” moving in shells along the tube axis. The activation energy ε3 depends
on the tube radius and circumference. Since the currents along the tube axis are from the shells
between walls of different circumferences, there is a distribution of ε3, which destroys strict linearity.

NT7a in Figure 5.3 shows a resistance increase starting above around 220 K. A possible cause for
this is a “neck” Fermi surface where the electron effective mass becomes abnormally high, making the
conductivity very small. If this is the case, the resistance should rise and fall as the temperature is
increased further. This needs to be checked experimentally.

NT6 in Figure 5.3 shows a very small T-independent resistance at room temperature. A room-
temperature superconductivity, if it exists, is a quite remarkable phenomenon. The superconducting
state has a critical temperature Tc above which the normal currents flow. The data indicates that the
critical temperature Tc is higher than 350 K. It is desirable to perform experiments to see if the
resistance is recovered at higher temperatures.

5.6 Summary and Discussion
The conductivity of carbon nanotubes is varied, depending on the temperature T, the tube radius, and
pitch. In the majority of cases, the conductivity σ decreases with increasing T, often called the
semiconductor-like T-behavior. The current band theory based on the WS cell model predicts a
gapless semiconductor, and cannot explain the observed T-behavior. A new band model suitable for



the Bloch electron dynamics is presented, in which the “electron” (“hole”) has not only the charge −
(+)e but also the rectangular size.

Applying our model to graphene and nanotubes, we have obtained the following results:
In graphene “electrons” (1) are easier to excite than “holes” (2) with the activation energies ε1 <
ε2. The majority carriers are “electrons” without external fields.
The “electron” motion is intrinsically anisotropic so that the effective mass m1

* is much smaller
in 110  than perpendicular to it.
If the “electron” density is varied by the application of a gate voltage, then a “neck” Fermi
surface develops.
The “electron” (“hole”) moves easily in the direction 110  ( 100 ) with the effective mass m1*
(m2*). The channeling “electrons” and “holes,” however, generate isotropic currents.
In swnts “electrons” and “holes” can run in the carbon wall in the same manner as in graphene.
The tube length is macroscopic. But the circumference is finite, and it is measured in nanometers.
This generates a helicity (pitch) dependence for the conductivity.
The “holes” on the inner side of the carbon wall can contribute to the conduction. Because of this
extra channel the majority carriers in swnts are “holes.”
In mwnt “holes” run in shells between carbon walls. The “hole” currents depend on the size of
the shells. The currents are greatest for the outermost shells.
Only “holes” can be excited in the shells with the activation energies ε3. The ε3 depend on the
circumference. A distribution of ε3 destroys the strict Arrhenius law.

The conductivity in mwnts varies widely. The behavior in most cases can be interpreted in terms of
“electrons” and “holes” and using the Drude formula (5.20). Some nanotube samples show a
nonlinear current–voltage behavior; a superconductivity is suspected, which will be treated in
Chapter 8.
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Chapter 6

Semiconducting SWNTs

The conduction of a single-wall carbon nanotube depends on the pitch. If there are an integral number
of carbon hexagons per pitch, then the system is periodic along the tube axis and allows “holes” (not
“electrons”) to move inside the tube. This case accounts for the semiconducting behavior with an
activation energy of the order of 3 meV. There is a distribution of the activation energy since the pitch
and the circumference can vary. In other cases, SWNT show metallic behaviors. “Electrons” and
“holes” can move in the graphene wall (two dimensions). The conduction in the wall is the same as in
graphene if the finiteness of the circumference is disregarded. Cooper pairs formed by phonon
exchange attraction moving in the wall are shown to generate a temperature-independent conduction
at low temperature (3–20 K).

6.1 Introduction
Iijima [1] found after his electron diffraction analysis that the carbon nanotubes range from 4 to 30 nm
in diameter, and consisted of helical multiwalled tubes. A single-wall nanotube (SWNT) is about 1
nm in diameter and microns (μm) in length. Ebbesen et al. [2] measured the electrical conductivity σ
of carbon nanotubes and found that σ varies depending on the temperature T, the tube radius r, and the
pitch p. Experiments show that SWNTs can be either semiconducting or metallic, depending on how
they are rolled up from the graphene sheets [3]. In this chapter we present a microscopic theory of the
electrical conductivity of semiconducting SWNTs, starting with a graphene honeycomb lattice,
developing Bloch electron dynamics based on a rectangular cell model [3], and using kinetic theory.

A SWNT can be formed by rolling a graphene sheet into a circular cylinder. The graphene which
forms a honeycomb lattice is intrinsically anisotropic as we shall explain in more detail in Section
6.2. Moriyama et al. [4] fabricated 12 SWNT devices from one chip, and observed that two of the
SWNT samples were semiconducting and the other ten metallic, the difference in the room-
temperature resistance being of two to three orders of magnitude. The semiconducting SWNT samples
show an activated-state temperature behavior. That is, the resistance decreases with increasing
temperature. Why do these two sets of samples show very different behavior? The answer to this
question arises as follows. The line passing the centers of the nearest-neighbor carbon hexagons
forms a helical line around the nanotube with a pitch p and a radius r. In Figure 6.1a, a section of the
circular tube with pitch p is drawn. Its unrolled plane is shown in Figure 6.1b. The circumference 2πr
likely contains an integral number m of carbon hexagons (units). The pitch p, however, may or may
not contain an integral number n of units. The pitch is not controlled in the fabrication process. In the
first alternative, the nanotube is periodic with the minimum period p along the tube axis. Then, there
is a one-dimensional (1D) k-vector along the tube. A “hole” which has a positive charge +e and a
size of a unit ring of height p and radius r can move inside the positively charged carbon wall. An



“electron” having a negative charge −e and a similar size is attracted by the carbon wall of positive
C+ ions, and hence it cannot travel in a straight line inside the wall. Thus, there should be an extra
“hole” channel current in a SWNT. Moriyama et al. [4] observed a “hole”-like current after
examining the gate voltage effect. The system should have the lowest energy if the unit ring contains
an integer set (m, n) of carbon hexagons, which may be attained after annealing at high temperatures.
This should occur if the tube length is comparable with the circumference. The experimental tube
length is much greater (thousand times) than the circumference 2π r, and the pitch angle can be varied
continuously. As has already been stated in the fabrication process the pitch is not controlled. The set
of irrational numbers is greater in cardinality than the set of rational numbers. Then, the first case in
which the unit contains an integer set (m, n) of hexagons must be in the minority. This case then
generates a semiconducting transport behavior. We shall show later that the transport requires an
activation energy. Fujita and Suzuki [7] showed that the “electrons” and “holes” must be activated
based on the rectangular cell model for graphene.

Figure 6.1 (a) A section of circular tube wall with a radius r and pitch p. (b) Its unrolled plane.

Saito, Dresselhaus, and Dresselhaus [3] state that a SWNT is characterized by two integer indices
(m, n), for example, m = n for an armchair nanotube whereas m = 0 for a zigzag nanotube. If n − m is a
multiple of 3, then the SWNT is metallic. They then argued that approximately one third of SWNTs
are metallic, and the other two thirds are semiconducting. This model is in variance with the
experimental observation by Moriyama et al. [4], where the majority of SWNTs are metallic. We must
look for a different classification scheme.

If a SWNT contains an irrational number of carbon hexagons, which happens more often than not,
then the system does not allow conduction along the tube axis. The system is still conductive since the
conduction electrons (“electrons,” “holes”) can move inside the tube wall. This conduction is two-
dimensional (2D), as opposed to 1D, as can be seen in the unrolled configuration, which is precisely
the graphene honeycomb lattice. This means that the conduction in the carbon wall should be the same
as the conduction in graphene if the effect of the finiteness of the tube radius is neglected.

We consider graphene in Section 6.2. The current band theory of the honeycomb crystal is based on
the Wigner–Seitz (WS) cell model [3, 5]. The model applied to graphene predicts a gapless
semiconductor, which is not observed. The WS model [5] is suitable for the study of the ground state
energy of the crystal. To describe the Bloch electron dynamics [6] one must use a new theory based
on a Cartesian unit cell which does not match the natural triangular crystal axes. Also phonons can be
discussed naturally by using the Cartesian coordinate systems, and not with the triangular coordinate
systems. The conduction electron moves as a wavepacket formed by Bloch waves as pointed out by



Ashcroft and Mermin in their book [6]. This picture is fully incorporated into our theoretical model
[7].

6.2 Single-Wall Nanotubes
Let us consider the long SWNT rolled with a graphene sheet. The charge may be transported by the
channeling “electrons” and “holes” in the graphene wall. But the “holes” within the wall surface also
contribute to the transport of charge. Because of this extra channel inside the carbon nanotube,
“holes” are the majority carriers in nanotubes although “electrons” are the dominant carriers in
graphene. Moriyama et al. [4] observed electrical transport in a semiconducting SWNT in the
temperature range 2.6–200 K, and found from the field (gate voltage) effect study that the carriers are
“hole”-like. Their data are reproduced in Figure 6.2.

Figure 6.2 Log-scale plot of the currents in a semiconducting SWNT as a function of inverse
temperature after Moriyama et al. [4].

The conductivity depends on the pitch of the SWNT. The helical line is defined as the line passing
through the centers of the nearest neighbors of the C+-hexagons. The helical angle φ is the angle
between the helical line and the tube axis. The degree of helicity h may be defined as

(6.1) 
The conductivity σ in (semiconducting) SWNTs depends on this helicity h. This is a kind of finite size
effect. The circumference is finite while the tube length is macroscopic.

In a four-valence electron system such as graphene all electrons are bound to ions and there is no
conduction at 0 K. If a “hole” having the charge + e and the size of a unit cell is excited, then this
“hole” can move along the tube axis with the activation energy ε3 and the effective mass m3. Both ε3
and m3 depend on the radius and the pitch.

We are now ready to discuss the conductivity of a SWNT. There are four currents carried by



(a) “Electrons” moving in the graphene wall with mass m1 and density

running through the channels 110  (≡ [110], [011], and [101]).
(b) “Holes” moving inside the graphene wall with the mass m2 and the density

running through the channels 100  (≡ [100], [010], and [001]).
(c) “Holes” moving with the mass m3 and the density

running in the tube-axis direction. The activation (or excitation) energy ε3 and the effective
mass m3, vary with the radius and the pitch.
For a macroscopically large graphene the conductivity does not show any directional
dependence. The same easy channels in which the “electron” runs with a small mass, may be
assumed for other hexagonal directions, [011] and [101].
The currents run in the three channels 110  ≡ [110], [011], and [101]. The total current
(magnitude) along the field direction μ is proportional to [10]

(6.2) 
Hence, the total current does not depend on the angle  between the field direction μ and the
channel current direction κ (Problem 6.2.1).

(d) Cooper pairs (pairons) formed by the phonon-exchange attraction, which move freely in the
graphene wall.

In actuality, one of the currents may be dominant, and be observed. In the normal Ohmic conduction
because of the conduction electrons the resistance is proportional to the sample (tube) length. Then,
the conductivity σ is given by the Drude formula:

(6.3) 
where q is the carrier charge (±e), m* the effective mass, n the carrier density, and τ the relaxation
(collision) time. The relaxation rate Γ ≡ τ−1 is the inverse of the relaxation time. If the impurities and
phonons are scatterers, then the rate Γ is the sum of the impurity scattering rate Γimp and the phonon
scattering rate Γph(T):

(6.4) 
The impurity scattering rate Γimp is temperature-independent and the phonon scattering rate Γph(T) is
temperature (T)-dependent. The phonon scattering rate Γph(T) is linear in T above around 2 K:

(6.5) 
The temperature dependence should arise from the carrier density n(T) and the phonon scattering rate
Γph(T). Writing the T-dependence explicitly, we obtain from Equations (6.3) and (6.5)



(6.6) 
where the carrier density n is replaced by the thermally activated (or excited) electron densities nj(T):

(6.7) 
The prefactor nj is the density at high temperature.

Moriyama et al. [4] used the Arrhenius plot for the data above 20 K and obtained the activation
energy

(6.8) 
By studying the field (gate voltage) effect, the carriers were found to be hole-like. Thus, the major
currents observed can be interpreted in terms of the “holes” moving within the tube wall.

This “hole” axial transport depends on the unit ring containing m × n hexagons. Since the pitch and
the circumference have distributions, the activation energy ε3 should also have a distribution. Hence,
the obtained value in (6.8) must be regarded as the averaged value.

Liu et al. [11] systematically measured the resistance ρ(T) of SWNTs under hydrostatic pressures,
and fitted their data by using a 2D variable range hopping (vrh) theoretical formula [12]:

(6.9) 
Here ρ0 is a (resistance) parameter and

(6.10) 
is a (temperature) fit parameter. Mott’s vrh theory [12] is applicable when highly random disorders
exist in the system. An individual SWNT (annealed) is unlikely to have such randomness. We take a
different view here. The scattering is due to normally assumed impurities and phonons. But carriers
(“holes”) have a distribution in the unit cell size. Hence, the distribution of the activation energy
introduces the flattening of the Arrhenius slope by the factor 1/3.

We now go back to the data shown in Figure 6.2. Below 20 K the currents observed are very small
and they appear to approach a constant in the low-temperature limit (large T−1 limit). These currents,
we believe, are due to the Cooper pairs.

The Cooper pairs (pairons) move in 2D with the linear dispersion relation [13]:
(6.11) 

(6.12) 
where vF

(j) is the Fermi velocity of the “electron” (j = 1) and of the “hole” (j = 2).
Consider first “electron” pairs. The velocity v is given by (omitting superscript)

(6.13) 

(6.14) 
The equation of motion along the E-field (x-)direction is



(6.15) 
where q′ is the charge ±2e of a pairon. The solution of (6.15) is given by

(6.16) 
where px

0 is the initial momentum component. The current density jp is calculated from q′ (charge) ×
np (number density) ×  (average velocity). The average velocity  is calculated by using (6.13) and
(6.16) with the assumption that the pair is accelerated only for the collision time τ. We obtain

(6.17) 
For stationary currents, the pairon density np is given by the Bose distribution function f(εp)

(6.18) 
where eα is the fugacity. Integrating the current jp over all 2D p-space, and using Ohm’s law j = σE
we obtain for the conductivity σ (Problem 6.2.2):

(6.19) 
In the temperature ranging between 2 and 20 K we may assume the Boltzmann distribution function

for f(εp):

(6.20) 
We assume that the relaxation time arises from the phonon scattering so that τ = (aT)−1, see
(6.3)–(6.5). After performing the p-integration and setting q′ = − 2e for the pairon charge, we obtain
(Problem 6.2.3)

(6.21) 
We note that this σ is temperature-independent. If there are “electron” and “hole” pairs, they

contribute additively to the conductivity. These pairons should undergo a Bose–Einstein condensation
at a temperature lower than 2.2 K. We predict a superconducting state at lower temperatures.
Problem 6.2.1. Show that cos2  + cos2(  + 2π/3) + cos2(  − 2π/3) = 3/2.
Problem 6.2.2. Derive (6.19).
Problem 6.2.3. Derive Equation (6.21).

6.3 Summary and Discussion
A SWNT is likely to have an integral number of carbon hexagons around the circumference. If each
pitch contains an integral number of hexagons, then the system is periodic along the tube axis, and
“holes” (not “electrons”) can move along the tube axis. The system is semiconducting with an
activation energy ε3. This energy ε3 has a distribution since both pitch and circumference have



distributions. The pitch angle is not controlled in the fabrication process. There are numerous other
cases where the pitch contains an irrational numbers of hexagons. In these cases the system shows a
metallic behavior experimentally [14].

In the process of arriving at our main conclusion we have uncovered the following results:
“Electrons” and “holes” can move in 2D in the carbon wall in the same manner as in graphene.
The above implies that the conduction in the wall shows no pitch dependence for a long SWNT.
The Cooper pairs are formed in the wall. They should undergo BEC at low temperatures,
exhibiting a superconducting state.

A metallic SWNT will be treated in Chapter 8.
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Chapter 7

Superconductivity

We describe the basic properties of superconductors, occurrence of superconductors, theoretical
background, and quantum statistical theory of superconductivity in this chapter.

7.1 Basic Properties of a Superconductor
Superconductivity is characterized by the following six basic properties: zero resistance, Meissner
effect, magnetic flux quantization, Josephson effects, gaps in elementary excitation energy spectra, and
sharp phase change. We shall briefly describe these properties in this section.

7.1.1 Zero Resistance
The phenomenon of superconductivity was discovered in 1911 by Kamerlingh Onnes [1], who
measured extremely small electric resistance in mercury below a certain critical temperature Tc (≈
4.2 K). His data are reproduced in Figure 7.1. This zero resistance property can be confirmed by the
never-decaying supercurrent ring experiment described in Section 7.1.3.

Figure 7.1 Resistance (in ohm) versus temperature (in kelvin), after Kamerlingh Onnes [1].

7.1.2 Meissner Effect
Substances that become superconducting at finite temperatures will be called superconductors. If a
superconductor below Tc is placed under a weak magnetic field, it repels the magnetic field B
completely from its interior as shown in Figure 7.2a. This is called the Meissner effect, which was
discovered by Meissner and Ochsenfeld [2] in 1933.



Figure 7.2 The Meissner effect. (a) A superconductor repels a weak magnetic field from its body
below the transition temperature (T < Tc) while (b) at a temperature above the transition temperature
(T > Tc) the magnetic field penetrates its body.

The Meissner effect can be demonstrated dramatically by a floating magnet as shown in Figure 7.3.
A small bar magnet above Tc simply rests on a superconductor dish. If the temperature is lowered
below Tc, then the magnet will float as indicated. The gravitational force exerted on the magnet is
balanced by the magnetic pressure (part of the electromagnetic stress tensor) due to the
nonhomogeneous magnetic field (B-field) surrounding the magnet, which is represented by the
magnetic flux lines.

Figure 7.3 A floating magnet.

Later more refined experiments reveal that a small magnetic field penetrates into a very thin surface
layer of the superconductor. Consider the boundary of a semi-infinite slab. When an external field is
applied parallel to the boundary, the B-field falls off exponentially:

(7.1) 
as indicated in Figure 7.4. Here λ is called a penetration depth, which is of the order of 500 Å in
most superconductors at lowest temperatures. Its small value on a macroscopic scale allows us to
describe the superconductor as being perfectly diamagnetic. The penetration depth λ plays a very
important role in the description of the magnetic properties.

Figure 7.4 Penetration of the magnetic field into a superconductor slab. The penetration depth λ is of
the order of 500 Å near 0 K.



7.1.3 Ring Supercurrent and Flux Quantization
Let us take a ring-shaped cylindrical superconductor. If a weak magnetic field B is applied along the
ring axis and the temperature is lowered below Tc, then the field is expelled from the ring due to the
Meissner effect. If the field is slowly reduced to zero, part of the magnetic flux lines can be trapped
as shown in Figure 7.5. The magnetic moment generated is found to be maintained by a never-
decaying supercurrent flowing around the ring [3].

Figure 7.5 A set of magnetic flux lines are trapped in the ring.

More delicate experiments [4, 5] show that the magnetic flux enclosed by the ring is quantized as
(7.2) 

(7.3) 
Φ0 is called a (Cooper pair) flux quantum. The experimental data obtained by Deaver and Fairbank
[4] are shown in Figure 7.6. The superconductor exhibits a quantum state represented by the quantum
number n.

Figure 7.6 The magnetic flux quantization, after Deaver and Fairbank [4]. The two sets of data are
shown as Δ and .



7.1.4 Josephson Effects
Let us take two superconductors (S1, S2) separated by an oxide layer of thickness on the order of 10
Å, called a Josephson junction. This system as part of a circuit including a battery is shown in Figure
7.7. Above Tc, the two superconductors, S1 and S2, and the junction I all show potential drops. If the
temperature is lowered beyond Tc, the potential drops in S1 and S2 disappear because of zero
resistance. The potential drop across junction I also disappears! In other words, the supercurrent runs
through junction I with no energy loss. Josephson predicted [6], and later experiments [7] confirmed,
this Josephson tunneling, also called a DC Josephson effect.

Figure 7.7 Two superconductors S1 and S2, and a Josephson junction I are connected to a battery.

Let us take a closed loop superconductor containing two similar Josephson junctions and make a
circuit as shown in Figure 7.8. Below Tc, the supercurrent I branches out into I1 and I2. We now apply
a magnetic field B perpendicular to the loop. The magnetic flux can go through the junctions, and the
field can be changed continuously. The total current I is found to have an oscillatory component:

Figure 7.8 Superconducting quantum interference device (SQUID).

(7.4) 
where Φ is the magnetic flux enclosed by the loop, indicating that the two supercurrents I1 and I2,
macroscopically separated (~ 1 mm), interfere just as two laser beams coming from the same source.
This is called a Josephson interference. A sketch of the interference pattern [8] is shown in Figure
7.9.

Figure 7.9 Current versus magnetic field, after Jaklevic et al. [8].



The circuit in Figure 7.8 can be used to detect an extremely weak magnetic field. This device is
called the Superconducting Quantum Interference Device (SQUID).

In the thermodynamic equilibrium, there can be no currents, super or normal. Thus, we must deal
with a nonequilibrium condition when discussing the basic properties of superconductors such as
zero resistance, flux quantization, and Josephson effects. All of these arise from the supercurrents that
dominate the transport and magnetic phenomena. When a superconductor is used to form a circuit with
a battery, and a steady state is established, all current passing the superconductor are supercurrents.
Normal currents due to the moving electrons and other charged particles do not show up because no
voltage difference can be developed in a homogeneous superconductor.

7.1.5 Energy Cap
If a continuous band of the excitation energy is separated by a finite gap εg from the discrete ground
state energy level as shown in Figure 7.10, then this gap can be detected by photo-absorption [9, 10],
quantum tunneling [11], heat capacity [12], and other experiments. This energy gap εg is found to be
temperature-dependent. The energy gap εg(T) as determined from the tunneling experiments [13] is
shown in Figure 7.11. The energy gap is zero at Tc, and reaches a maximum value εg(0) as the
temperature approaches 0 K.

Figure 7.10 Excitation energy spectrum with a gap.

Figure 7.11 The energy gap εg(T) versus temperature, as determined by tunneling experiments, after
Giaver and Megerle [13].



7.1.6 Sharp Phase Change
The superconducting transition is a sharp phase change. In Figure 7.12, the data of the electronic heat
capacity Cel plotted as Cel/T against T, as reported by Loram et al. [14] for YBA2CuO6+x (2D
superconductor) with the x-values, are shown. The data at x = 0.92 have the highest Tc. There are no
latent heat and no discontinuity in Cel at Tc. Below Tc there is a complex long-range order, which may
be treated by the Ginzburg–Landau theory [15]. For a 3D superconductor such as lead (Pb), there is a
jump in the heat capacity and the phase change is of the second order (no latent heat).

Figure 7.12 Electronic heat capacity Cel/T over temperature T, that is y(x, T) ≡ Cel/T is plotted
against T for YBa2Cu3O6+x relative to YBa2Cu3O6. Values of x are 0.16, 0.29, 0.38, 0.43, 0.48, 0.57,
0.67, 0.76, 0.80, 0.87, 0.92, and 0.97, after Loram et. al. [14].

7.2 Occurrence of a Superconductor
The occurrence of superconductors is discussed in this section.



7.2.1 Elemental Superconductors
More than 40 elements become superconducting at the lowest temperatures. Table 7.1 shows the
critical temperature Tc and the critical magnetic fields Bc at 0 K. Most nonmagnetic metals tend to be
superconductors, with notable exceptions being monovalent metals such as Li, Na, K, Cu, Ag, and Au.
Some metals can become superconductors under applied pressures and/or in thin films, and these are
indicated by asterisks in Table 7.1.

Table 7.1 Superconductivity parameters of the elements.

7.2.2 Compound Superconductors
Thousands of metallic compounds are found to be superconductors. A selection of compound
superconductors with critical temperature Tc are shown in Table 7.2. Note: the critical temperature
Tc tends to be higher in compounds than in elements. Nb3Ge has the highest Tc (~ 23 K).

Table 7.2 Critical temperatures of selected compounds.

Compound superconductors exhibit type II magnetic behavior different from that of type I elemental



superconductors. A very weak magnetic field is expelled from the body (the Meissner effect) just as
by the type I superconductor. If the field is raised beyond the lower critical field Hc1, the body allows
a partial penetration of the field, still remaining in the superconducting state. A further field increase
turns the body to a normal state upon passing the upper critical field Hc2. Between Hc1 and Hc2, the
superconductor is in a mixed state in which magnetic flux lines surrounded by supercurrents, called
vertices, penetrate the body. The critical fields vs. temperature are shown in Figure 7.13. The upper
critical field Hc2 can be very high (20T = 2.0 × 105 G for Nb3Sn). Also the critical temperature Tc
tends to be high for high- Hc2 superconductors. These properties make compound superconductors
useful for devices and magnets.

Figure 7.13 Phase diagram of type I (a) and type II (b) superconductors.

7.2.3 High-Tc Superconductors
In 1986 Bendnorz and Müller [16] reported the discovery of the first cuprate superconductors, also
called high-temperature superconductors (HTSC). Since then, many investigations have been carried
out on the high-Tc superconductors including YBACuO with Tc ~ 94 K [17]. The boiling point of
abundantly available and inexpensive liquid nitrogen (N) is 77 K. So the potential application of
HTSC’s, which are of type II, appears to be great. The superconducting state of these conductors is
essentially the same as that of elemental superconductors.

7.3 Theoretical Survey
We review briefly the current theories of superconductivity.

7.3.1 The Cause of Superconductivity
At present superconductivity in solids is believed to be caused by a phonon-exchange attraction.
When a phonon is exchanged between two electrons, a bound electron pair, called a Cooper pair
(pairon), is formed [18].

The exchange of a boson (phonon) between the two fermions (electrons) can be pictured as the
emission of a boson by a fermion and the subsequent absorption of the boson by another fermion. To
describe the emission and absorption of the boson requires a new theory, called a second-



quantization formulation in which creation and annihilation operators are introduced. The second-
quantization formulation is summarized in Appendix A.1. The electron–phonon interaction and the
phonon-exchange attraction are discussed in Chapter 4 (Sections 4.3 and 4.4).

7.3.2 The Bardeen–Cooper–Schrieffer Theory
In 1957 Bardeen, Cooper, and Schrieffer (BCS) published a classic paper [19] that is regarded as
one of the most important theoretical works in the twentieth century. The Nobel Prize for physics in
1972 was shared by Bardeen, Cooper, and Schrieffer for this work. We shall briefly review the BCS
theory.

In spite of the Coulomb repulsion among electrons there exists a sharp Fermi surface for the normal
state of a conductor, as described by the Fermi liquid model of Landau [20, 21] (see Chapter 3,
Section 3.4). The phonon-exchange attraction can bind pairs of electrons near the Fermi surface
within a distance (energy) equal to Planck constant ħ times the Debye frequency ωD. The bound
electron pairs, each having antiparallel spins and charge (magnitude) 2e, are called Cooper pairs
(Pairons). “Cooper pair” and “pairon” both denote the same entity. When we emphasize the
quasiparticle aspect rather than the two electron composition aspect, we use the term “pairon” more
often in this text.

BCS started with a Hamiltonian BCS in the form:

(7.5) 
where εk1

 ≡ ε1 is the kinetic energy of a free electron measured relative to the Fermi energy εF and
ck1s1

†(ck1s1
) ≡ c1

†(c1) are creation (annihilation) operators satisfying the Fermi anticommutation rules:

(7.6) 
The first (second) sum on the rhs of (7.5) represents the total kinetic energy of “electrons” with

positive εk (“holes” with negative εk). The matrix element 1,2| |3,4  denotes the net interaction arising
from the virtual exchange of a phonon and the Coulomb repulsion between electrons. Specifically,

(7.7) 
where 0 is a constant (energy) and V is a sample volume.
Starting with the Hamiltonian (7.5), BCS obtained an expression W for the ground state energy:
(7.8) 

where

(7.9) 



is the pairon ground state energy,
(7.10) 

the total number of pairons, and (0) the density of states (DOS) per spin at the Fermi energy. In the
variational calculation of the ground state energy, BCS found that the unpaired electrons, often called
the quasielectrons1), not joining the ground pairons that form the supercondensate, have the energy

(7.11) 
where εk is the kinetic energy of a free “electron” relative to the Fermi energy.

The energy constant Δ, called the quasielectron energy gap, in (7.11) is greatest at 0 K and
decreases to zero as the temperature is raised to the critical temperature Tc. BCS further showed that
the energy gap at 0 K, Δ(T = 0) = Δ0 and the critical temperature Tc are related (in the weak coupling
limit) by

(7.12) 
These findings of (7.8)–(7.12) are among the most important results obtained in the BCS theory. A

large body of theoretical and experimental work followed several years after the BCS theory. By
1964 the general consensus was that the BCS theory is an essentially correct theory of
superconductivity.

BCS assumed the Hamiltonian (7.5) containing “electron” and “hole” kinetic energies. They also
assumed a spherical Fermi surface. However, these two assumptions contradict each other. If a Fermi
sphere whose inside (outside) is filled with electrons is assumed, then there are “electrons” (“holes”)
only (see Chapter 3, Section 3.5). Besides this logical inconsistency, if a free electron model having a
spherical Fermi surface is assumed, then the question of why metals such as sodium (Na) and
potassium (K) remain normal to the lowest temperatures cannot be answered. We must incorporate
the band structures of electrons more explicitly. We shall discuss a generalization of the BCS
Hamiltonian in Sections 7.4 and 7.7.

7.3.3 Quantum Statistical Theory
In a quantum statistical theory one starts with a reasonable Hamiltonian and derives everything from
this, following step-by-step calculations. Only Heisenberg’s equation of motion (quantum mechanics),
Pauli’s exclusion principle (quantum statistics), and Boltzmann’s statistical principle (grand
canonical ensemble theory) are assumed.

The major superconducting properties were enumerated in Section 7.1. The purpose of a
microscopic theory is to explain all of these from first principles, starting with a reasonable
Hamiltonian. Besides, one must answer basic questions such as:

What causes superconductivity? The answer is the phonon-exchange attraction. We have already
discussed this interaction in Chapter 4. It generates Cooper pairs [18], called pairons for short,
under certain conditions.
Why do impurities that must exist in any superconductor not hinder the supercurrent? Why is the
supercurrent stable against an applied voltage? Why does increasing the magnetic field destroy
the superconducting state?



Why does the supercurrent dominate the normal current in the steady state?
What is the supercondensate whose motion generates the supercurrent? How does magnetic-flux
quantization arise? Josephson interference indicates that two supercurrents can interfere
macroscopically just as two lasers from the same source. Where does this property come from?
Below the critical temperature Tc, there is a profound change in the behavior of the electrons as
shown by Bardeen, Cooper, and Schrieffer in their classical work [19]. What is the cause of the
energy gap? Why does the energy gap depend on the temperature? Can the gap Δ(T) be observed
directly?
Phonons can be exchanged between any electrons at all times and at all temperatures. The
phonon-exchange attraction can bind a pair of quasielectrons to form moving (or excited)
pairons. What is the energy of excited pairons? How do the moving pairons affect the low-
temperature behavior of the superconductor?
All superconductors behave alike below Tc. Why does the law of corresponding states work
here? Why is the supercurrent temperature- and material-independent?
What is the nature of the superconducting transition? Does the transition depend on
dimensionality?
About half of all elemental metals are superconductors. Why does Na remain normal down to 0
K? What is the criterion for superconductivity? What is the connection between
superconductivity and band structures?
Compound, organic, and high-T superconductors in general show type II magnetic behaviors.
Why do they behave differently compared with type I elemental superconductors?
All superconductors exhibit six basic properties: (1) zero resistance, (2) Meissner effects, (3)
flux quantization, (4) Josephson effects, (5) gaps in the elementary excitation energy spectra, and
(6) sharp phase change. Can a quantum statistical theory explain all types of superconductors in a
unified manner?
Below 2.2 K, liquid He4 exhibits a superfluid phase in which the superfluid can flow without a
viscous resistance, the flow property remarkably similar to the supercurrent. Why and how does
this similarity arise?

We shall discuss a generalization of the BCS Hamiltonian incorporating the band structures of
electrons more explicitly in the following sections.

7.4 Quantum Statistical Theory of
Superconductivity
Fujita and his group developed a quantum statistical theory of superconductivity in a series of papers
[22–26]. We present this theory in the following sections.

We construct a generalized BCS Hamiltonian which contains the kinetic energies of “electrons” and
“holes,” and the pairing Hamiltonian arising from phonon-exchange attraction and Coulomb
repulsion. We follow the original BCS theory to construct a many-pairon ground state and find a
ground state energy.



7.4.1 The Generalized BCS Hamiltonian
BCS assumed a Hamiltonian containing “electron” and “hole” kinetic energies and a pairing
interaction, see (7.5). They also assumed a spherical Fermi surface. But if we assume a free electron
model, we cannot explain why only some, and not all, metals are superconductors. We must
incorporate the band structures of electrons explicitly. In this section we set up and discuss a
generalized BCS Hamiltonian developed by Fujita and his group [22–26].

We assume that
In spite of the Coulomb interaction, there exists a sharp Fermi surface at 0 K for the normal state
of a conductor (the Fermi liquid model, see Chapter 3).
The phonon exchange attraction can bind Cooper pairs near the Fermi surface within a distance
(energy) equal to the Planck’s Constance ħ times the Debye frequency ωD.
“Electrons” and “holes” have different effective masses (magnitude). Thus εk

(1) ≠ εk
(2).

The pairing interaction strengths Vij among and between “electron” (1) and “hole” (2) pairons are
different so that

(7.13) 
We note that “electrons” and “holes” are different quasiparticles, which will be denoted distinctly.

In the ground state there are no currents for any system. To describe a ring supercurrent that can run
indefinitely at 0 K, we must introduce moving pairons, that is, pairons with finite center of mass (CM)
momenta. Creation (annihilation) operators for “electron” (1) and “hole” (2) pairons are respectively
defined by2)

(7.14) 
The pairon operators are denoted by B’s, which should not be confused with the magnetic field B (=
|B|). Odd-numbered “electrons” carry up-spin ↑ and even-numbered “electrons” carry down-spin ↓.
By using the Fermi anticommutation rules for c’s and c†’s, the commutators among B’s and B†’s are
given by (Problem 7.4.1)

(7.15) 

(7.16) 
Pairon operators of different types j always commute:

(7.17) 
Here

(7.18) 
represent the number operators for “electrons” (j = 1) and “holes” (j = 2).

Let us now introduce the relative and net (or CM) momenta (k, q) such that



(7.19) 
The pairon annihilation operators are then alternatively represented by

(7.20) 
The prime on B’s will be dropped hereafter. In the k-q representation the commutation relations
(7.15) and (7.16) are re-expressed as (Problem 7.4.2)

(7.21) 

(7.22) 
Using the new notation for pairons, we now write the generalized BCS Hamiltonian  (Problem
7.4.3):

(7.23) 
where vij (≡ V−1

ij) is the pairing interaction strengths3) per volume among and between “electron” (1)
and “hole” (2) pairons. nk,s

(1) and nk,s
(2) are the number operators for “electrons” and “holes”

respectively, defined by (7.18). It should be noted that the q-summation is taken over all momenta
including the zero momentum. The Hamiltonian (7.23), called the generalized BCS Hamiltonian,
expresses the complete Hamiltonian for the system, which can describe moving pairons as well as
stationary pairons. Here, the primes on the summation symbols indicate the restriction arising from
the phonon-exchange attraction.
Problem 7.4.1. Verify (7.15) and (7.16).
Problem 7.4.2. Verify (7.21) and (7.22).
Problem 7.4.3. Derive (7.23).

7.5 The Cooper Pair Problem
In 1956 Cooper demonstrated [13] that, however weak the attraction may be, two electrons just above
the Fermi sea can be bound. The binding energy is greater if the two electrons have opposite momenta
(p, − p) and antiparallel spins (↑, ↓). The lowest bound energy w0 is found to be

(7.24) 



where ωD is the Debye frequency, v0 a positive constant characterizing the attraction, and (0) the
electron density of states per spin at the Fermi energy. If electrons having energy nearly opposite
momenta (p, −p + q) are paired, the binding energy is less than |w0|. For small q, which represents the
net momentum (magnitude) of a pairon, the energy-momentum relation, also called the dispersion
relation, is given in the form:

(7.25) 
where c/vF = 1/2 (2/π) for 3D (2D) and vF ≡ (2εF/m*)1/2 is the Fermi speed. Equations (7.24) and
(7.25) play very important roles in the theory of superconductivity. We shall derive these equations in
this and the next sections.

Two electrons near the Fermi surface can gain attraction by exchanging a phonon. This attraction
can generate a bound electron pair. We shall look for the ground state energy of the Cooper pair
(pairon). We anticipate that the energy is lowest for the pairon with zero net momentum. Moving
pairons will be considered in the following section.

We consider a 2D system. This will simplify the concept and calculations. The 3D case can be
treated similarly. Let us take two electrons just above the Fermi surface (circle), one electron having
momentum k and up-spin ↑ and the other having momentum −k and down-spin ↓, see Figure 7.14. We
measure the energy relative to the Fermi energy εF:

Figure 7.14 A stationary Cooper pair having zero net momentum.

(7.26) 
The sum of the kinetic energies of the two electrons is 2εk. By exchanging a phonon, the pair’s

momenta change from (k, −k) to (k’, −k’). This process lowers the energy of the pair.
The energy-eigenvalue equation for the 2D case is obtained from [13]:

(7.27) 
where w0 is the pairon ground state energy, and A(k) the wavefunction; the prime on the integral sign
means the restriction:

(7.28) 
Equation (7.27) can be solved simply as follows. Consider the integral:

(7.29) 
which is a constant. Assume that the energy w0 is negative:

(7.30) 



Then, 2εk − w0 = 2εk + |w0| > 0. After rearranging the terms in (7.27) and dividing the result by 2εk +
|w0|, we obtain

(7.31) 
Substituting this expression into (7.29) and dropping the common factor C, we obtain

(7.32) 
By introducing the density of states at the Fermi energy, (0), we can evaluate the k-integral as

follows:

Solving this equation, we obtain (Problem 7.5.1)

(7.33) 
We thus find a negative energy for the stationary pairon. The v0-dependence of the energy w0 is
noteworthy. Since exp(2/x) cannot be expanded in powers of x = v0 (0), the energy w0 cannot be
obtained by a perturbation (v0-expansion) method. We note that formula (7.33) also holds for the 3D
case with a 3D density of states.4)

Problem 7.5.1. Verify (7.33).

7.6 Moving Pairons
The phonon-exchange attraction is in action for any pair of electrons near the Fermi surface. In
general the bound pair has a net momentum, and hence, it moves. Such a pair is called a moving
pairon. The energy wq of a moving pairon for the 2D case can be obtained from a generalization of
(7.27):

(7.34) 
which is Cooper’s equation, Eq. (1) of his 1956 Physical Review [18]. The prime on the k’-integral
means the resrtiction on the integration domain arising from the phonon-exchange attraction, see
below. We note that the net momentum q is a constant of motion, which arises from the fact that the
phonon exchange is an internal process, and hence cannot change the net momentum. The pair
wavefunctions a(k, q) are coupled with respect to the other variable k, meaning that the exact (or
energy-eigenstate) pairon wavefunctions are superpositions of the pair wavefunctions a(k, q).

The Cooper eigenvalue equation (7.34) can be derived, starting with a many-body Hamiltonian. A
derivation of Cooper’s equation (7.34) is given in Appendix A.3. We note that (7.34) is reduced to
(7.27) in the small q-limit. The latter equation was solved in the previous section.

Let us solve (7.34) for wq by using the same technique to obtain the pairon ground state energy (that



is, the energy of a stationary pairon). We assume that the energy wq is negative: wq < 0. Then, ε(|k +
q/2|) + ε(| − k + q/2|) − wq > 0. Rearranging the terms in (7.34) and dividing by ε(k + q/2|) + ε(|k +
q/2|) − wq, we obtain

(7.35) 
where

(7.36) 
which is k-independent.

Introducing (7.35) in (7.34), and dropping the common factor C(q), we obtain

(7.37) 
We now assume a 2D free electron model. The Fermi surface is a circle of the radius (momentum):
(7.38) 

where m1 represents the effective mass of an “electron.” The energy ε(|k|) is given by

(7.39) 
The prime on the k-integral means the restriction:

(7.40) 
We may choose the z-axis along q as shown in Figure 7.15. We assume a small q and keep terms up

to the first order in q. The k-integral can then be expressed by (Problem 7.6.1)

Figure 7.15 The range of the interaction variables (k, θ) is restricted to the circular shell of thickness
kD.



(7.41) 
(7.42) 

where we retained the linear term in kD/kF only since kD  kF. After performing the θ-integration, we
obtain (Problem 7.6.2)

(7.43) 
where w0 is given by (7.33). A similar result for a 3D case,

(7.44) 
was first obtained by Cooper (but unpublished). It is recorded in Schrieffer’s book [27], (2.15). It
should be noted that the lowest bound energies w0 in (7.44) for 2D and in (7.44) for 3D are of the
same form:

It depends, however, on the specific form of the density of states (0) at the Fermi momenta for 2D
and 3D, respectively. As expected, we can see that the zero-momentum pairon has the lowest energy.
The excitation energy is continuous with no energy gap. The energy wq increases linearly with
momentum q for small q, rather than quadratically. This arises since the pairon density of states is
strongly reduced with increasing momentum q, and this behavior dominates the q2-increase of the
kinetic energy. Pairons move like massless particles with a common speed 2/π vF for two dimensions
and vF/2 for three dimensions. The linear dispersion relation5) plays a vital role in the Bose–Einstein
condensation (BEC) of pairons (see Section 7.9).
Problem 7.6.1. Verify (7.41). Hint: Use the diagram in Figure 7.15.
Problem 7.6.2. Derive an energy-momentum relation (7.43) for 2D.

7.7 The BCS Ground State
7.7.1 The Reduced Generalized BCS Hamiltonian
At 0 K there are only ±ground state pairons, that is, pairons having the lowest energies. The ground
state |Ψ  for the system may then be constructed based on the reduced Hamiltonian red, which can be
represented in terms of pairon operators, b’s, only6) (Problem 7.7.1):



(7.45) 
where vij ≡ V−1 ij and b(j) are pair annihilation operators. The primes (’) on the summation symbols
indicate the restriction7) arising from the phonon-exchange attraction. The reduced Hamiltonian red is
bilinear in pairon operators (b, b†), and can be diagonalized exactly. Note that corresponding to
(7.21) and (7.22), the commutation relations for pair operators, b’s, are given by (Problem 7.7.2)

(7.46) 
For the sake of argument, let us drop the interaction Hamiltonian altogether in (7.45). We then have

the first two sums representing the kinetic energies of “electrons” and “holes.” We note that these
energies (εk

(1), εk
(2)) are positive by definition. Then the lowest energy of this system, called the

Block system, is zero, and the corresponding ground state is characterized by zero-momentum
“electrons” and “holes.” This state will be called the physical vacuum state. In the theoretical
developments in this section, we look for the ground state of the generalized BCS system whose
energy is negative.

We now examine the physical meaning of the interaction strengths vij (≡ V−1
ij). Noting that the

exchange of a phonon can pair-create to pair-annihilate “electron” (“hole”) pairons, let us examine
parts of the interaction terms in (7.45):

(7.47) 
The first term generates a transition of the electron pair from (k↑, −k↓) to (k’↑, − k’↓). This transition
is presented by the k-space diagram in Figure 7.14. Such a transition may be generated by the
emission of a virtual phonon with momentum q = k’ − k(−q) by the down(up)-spin “electron” and
subsequent absorption by the up(down)-spin “electron” as shown in Figure 7.16a,b. These two
processes are distinct, but yield the same net transition. As we saw earlier the phonon exchange
generates an attractive change of states between two “electrons” whose energies are nearly the same.
The Coulomb interaction generates a repulsive correlation. The effect of this interaction is included
in the strength v11. Similarly, the exchange of a phonon induces a change of states between two
“holes,” and it is represented by the second term in (7.47). The exchange of a phonon can also pair-
create or pair-annihilate “electron” (“hole”) pairons, called −(+) pairons, and the effects of these
processes are represented by

Figure 7.16 (a,b) Two Feynman diagrams representing a phonon exchange between two electrons.



(7.48) 
These two processes are indicated by k-space diagrams in Figure 7.17. The same processes can be
represented by Feynman diagrams in Figure 7.18, where the time flows upwards by convention.
Accordingly, “electrons” (“holes”) proceed in the positive (negative) time directions. A phonon is
electrically neutral; hence the total charge before and after the phonon exchange must be the same.
The interaction Hamiltonians in (7.47) and (7.48) all conserve charge.

Figure 7.17 k-space diagrams representing (a) pair creation of ground pairons and (b) pair
annihilation.

Figure 7.18 Feynmann diagrams representing (a) pair-creation of ±ground pairons from the physical
vacuum, and (b) pair annihilation.

For type I elemental superconductors, the interaction strengths are all equal to each other;
(7.49) 

In high- Tc superconductors, the interaction strengths vij are not equal because the Coulomb repulsion
is not negligible and inequalities

(7.50) 
hold. For further discussion of the generalized BCS Hamiltonian, see original papers [22–26].

7.7.2 The Ground State



We now look for the ground state of the generalized BCS system. At 0 K there are only ± ground
pairons. The ground state |Ψ  for the system may then be constructed based on the reduced
Hamiltonian red in (7.45). Following BCS [12], we assume that the normalized ground state ket |Ψ
can be written as

(7.51) 
Here the ket |0  by definition satisfies

(7.52) 
It represents the physical vacuum state for “electrons” (1) and “holes” (2), that is, the ket |0  ≡ |ϕ1 ϕ2
represents the ground state of the Block system with no “electrons” and no “holes” present. In (7.51)
the product variables k (and k’) extend over the region of the momenta whose associate energies are
bounded: 0 < εk

(1), εk
(2) < ħωD, and this limitation is indicated by the primes on the product symbols.

The k-space shell in which pairons are generated and intercorrelated are shown in Figure 7.19.

Figure 7.19 The k-space shell in 2D where pairons of both charge types are generated and
intercorrelated.

Since [bk
(j)†]2 = 0 [see (7.46)], only two terms appear for each k (or k’) in the ground state ket

(7.51). The quantity |gk
(j)†|2 represents the probability that the pair states (k↑, −k↓) are occupied. By

expanding the product, we can see that the BCS ground state |Ψ  contains the zero-pairon state |0 , one-
pairon states b(j)†|0 , two-pairon states b(i)†b(j)†|0 , … The ket |Ψ  is normalized such that

(7.53) 
In the case where there is only one state k in the product, we obtain

The general case can be worked out similarly (Problem 7.7.3).
Since the ground state wave function has no nodes, we may choose gk

(j) to be nonnegative with no
loss of rigor: gk

(j) ≥ 0. We now determine {gk
(j)} such that the ground state energy

(7.54) 



has a minimum value. This may be formulated by the extremum condition:
(7.55) 
The extremum problem meant by (7.55) with respect to the variation in g’s can more effectively be

solved by working with variations in the real probability amplitudes u’s and v’s defined by

(7.56) 
The normalized ket |Ψ  can then be expressed by

(7.57) 
The energy W can be written from (7.54) as (Problem 7.7.4)

(7.58) 
Taking the variations in v’s and u’s, and noting that uk

(j) δuk
(j) + vk

(j) δvk
(j) = 0, we obtain from (7.55)

and (7.58) (Problem 7.7.5)

(7.59) 
To simply treat these equations subject to the equations in (7.56), we introduce a set of energy

parameters:

(7.60) 
such that (Problem 7.7.6)

(7.61) 
Then, Equation (7.59) can be re-expressed as

(7.62) 
Since the rhs of (7.62) does not depend on k, the energy gaps

(7.63) 
are independent of k. Hence, we can simplify (7.62) to

(7.64) 
These are called generalized energy gap equations. As we shall see later, Ek

(i) is the energy of an
unpaired electron (or “electron”). These “electrons” have energy gaps Δ(j) relative to the Fermi
energy as shown in Figure 7.20. Notice that there are in general two types of energy gaps: “electron”
(j = 1) and “hole” (j = 2) energy gaps, (Δ1, Δ2).

Figure 7.20 Quasielectrons have an energy gap Δ relative to the Fermi energy.



Using (7.58) along with (7.61)–(7.64), we calculate the energy W and obtain (Problem 7.7.7)

(7.65) 
In the bulk limit the sums over k are converted into energy integrals, yielding

(7.66) 
The ground state |Ψ , from (7.51), is a superposition of many-pairon states. Each component state

can be obtained from the physical vacuum state |0  by pair-creation and/or pair-annihilation of
±pairons and pair states change through a succession of phonon exchanges. Since the phonon-
exchange processes, as represented by (7.48), can pair-create (or pair-annihilate) ±pairons
simultaneously from the physical vacuum, the supercondensate is composed of equal numbers of
±pairons. We can see from Figure 7.18 that the maximum numbers of +(−)pairons are given by
1/2ħωD 1(0) (1/2ħωD 2(0)). We must then have

(7.67) 
which will be justified by the assumption that the supercondensate is generated only on part of the
Fermi surface (see Section 7.8.8).

Using (7.67), we obtain from (7.66) (Problem 7.7.8)

(7.68) 
We thus find that the ground state energy of the generalized BCS system is negative, that is, the energy
is lower than that of the Bloch system. Further note that the binding energy |wi| per pairon may in
general be different for different charge types.

Let us now find Δj from the gap Equations (7.64). In the bulk limit, these equations are simplified to

(7.69) 
For type I elemental superconductors, we assume that the interaction strengths vij are all equal to



each other: v11 = v12 = v21 = v22 ≡ v0. We see from (7.69) that “electron” and “hole” energy gaps
coincide:

(7.70) 
The generalized gap Equations (7.64) are then reduced to a single equation:

which is called the BCS energy gap equation. After dropping the common factor Δ and taking the bulk
limit, we obtain (Problem 7.7.9)

(7.72) 
Solving this we obtain (Problem 7.7.10)

(7.73) 
We now substitute (7.73) into (7.68) and calculate the ground state energy. After straightforward
calculations, we obtain (Problem 7.7.11)

(7.74) 
Equations (7.73) and (7.74) are the famous BCS formulas for the energy gap and the ground state

energy, respectively. They correspond respectively to (2.40) and (2.42) of the original paper [19]. We
stress that these results are exact, obtained from the reduced BCS Hamiltonian red in (7.45) without
using weak coupling limit (v0 → 0).
Problem 7.7.1. Verify (7.45).
Problem 7.7.2. Verify the commutation relations (7.46) for pair operators.
Problem 7.7.3. Verify (7.53) for the general ket |Ψ . Hint: Assume that there are only two k-states in
the product. If successful, then treat the general case.
Problem 7.7.4. Derive (7.58).
Problem 7.7.5. Derive (7.59).
Problem 7.7.6. Check the consistency of (7.56) and (7.61). Hint: Use the identity: (u2 + v2)2 − (u2 −
v2)2 = 4u2v2.
Problem 7.7.7. Verify (7.65).
Problem 7.7.8. Verify (7.68).
Problem 7.7.9. Derive (7.72).
Problem 7.7.10. Verify (7.73)
Problem 7.7.11. Derive (7.74).

7.8 Remarks
We have uncovered several significant features of the ground state of the generalized BCS system.



7.8.1 The Nature of the Reduced Hamiltonian
The reduced Hamiltonian red in (7.45) has a different character from the normal starting Hamiltonian
for a metal, which is composed of interacting electrons and ions. BCS envisioned that there are only
zero-momentum pairons at 0 K. Only the basic ingredients to build up zero-momentum pairons are
incorporated in the BCS Hamiltonian, see (7.5). Bloch “electrons” and “holes” are introduced from
the outset. These particles are the elementary excitations in the normal state above the critical
temperature.

7.8.2 Binding Energy per Pairon
We may rewrite (7.74) for the ground state energy in the form:

(7.75) 
which can be interpreted as follows: the greatest total number of pairons generated consistent with the
BCS Hamiltonian is equal to ħωD (0) = N0. Each pairon contributes a binding energy |w0|. This
energy |w0| can be measured directly by quantum tunneling experiments. Our interpretation of the
ground state energy is quite natural, but it is distinct from that of the BCS theory, where the energy gap
Δ is regarded as a measure of the binding energy. Our calculations do not support this view, see
Section 7.8.4.

By the Meissner effect a superconductor expels a weak magnetic field B from its interior. The
magnetic energy stored is higher in proportion to B2 and the excluded volume than that for the uniform
B-flux configuration. The difference in the energy for a macroscopic superconductor is given by

(7.76) 
If this energy exceeds the difference of the energy between super and normal conductors, WS − WN,
which is equal to |W0|, the superconducting state should break down. The minimum magnetic field Bc
that destroys the superconducting state is the critical field at 0 K, Bc(0) ≡ B0. We therefore obtain
(Problem 7.8.1)

(7.77) 
which gives a rigorous relation between the binding energy |w0| and the critical field B0.

7.8.3 The Energy Cap
In the process of obtaining the ground state energy W by the variational calculation, we derived the
energy-gap equation (7.64), which contains the energy parameters (see (7.60))

(7.78) 
The fact that Ek

(j) represents the energy of a quasielectron, can be seen as follows [14]: the
quasiparticle energy is defined to be the total excitation energy of the system when an extra particle is
added to the system. From (7.58) we see that by negating the pair state (k↑, −k↓), the energy is



increased by (Problem 7.8.2)

(7.79) 
where we used (7.61) and (7.62). To this energy we must add the energy of εk

(1) of the added
“electron.” Thus, the total excitation energy Δε is (Problem 7.8.3)

(7.80) 
Thus, the unpaired electron (or “electron”) has the energy Ek

(1) as shown in Figure 7.20. Note that the
validity domain for the above statement is 0 < εk

(1) < ħωD.

7.8.4 The Energy Cap Equation
The reduced Hamiltonian red was expressed in terms of zero-momentum pairon operators, b’s, only
as in (7.45). The ground state ket |Ψ  in (7.51) contains b’s only. Yet in the energy-gap equations,
which follow from the extremum condition for the ground state energy, the energies of the
quasielectron, Ek

(j), appear unexpectedly. Generally speaking the physics is lost in the variational
calculation. We shall derive the gap equation from a different angle by using the equation-of-motion
method (see Appendix A.2).

Let us rederive the gap Equations (7.64) by using the equation-of-motion method.
The supercondensate is made up of ground pairons, which can be described in terms of the pairon

operators, b’s. We calculate [ red, bk
(1)†] and [ red, bk

(2)] to obtain (Problem 7.8.4)

(7.81) 

(7.82) 
where red is the reduced Hamiltonian (7.45). Equations (7.81) and (7.82) indicate that the dynamics
of ground pairons depends on the presence of “electrons” (quasielectrons) describable in terms of
n(j). We now multiply (7.81) from the right by ϕ1ρ0, where ϕ1 is the electron pairon energy-state
annihilation operator, and take a grand ensemble trace. From the first term on the rhs, we obtain

(7.83) 
where

(7.84) 
From the first and second sums, we obtain (Problem 7.8.5)



(7.85) 
Since we are looking for the ground state energy, the eigenvalues E1 and E2 are zero:

(7.86) 
Collecting all contributions, we obtain

(7.87) 
where we used (Problem 7.8.6)

(7.88) 
Since F1 ≡ Ψ|ϕ1|Ψ  ≠ 0, we obtain from (7.87)

(7.89) 
which is just one of the equations in (7.59), the equations equivalent to the energy gap equations
(7.64).

The ground state of |Ψ  of the BCS system is a superposition of many-pairon states and therefore
quantities like Ψ|bk

(j)†|Ψ , Ψ|bk
(j)†bk′

(j)†|Ψ , …, that connect states of different particle numbers do not
vanish. In this sense the state |Ψ  can be defined in a grand ensemble.

We emphasize that the supercondensate state is made up of equal numbers of ±pairons, and this state
is reachable from the physical vacuum by a succession of phonon exchanges. Since pair creation and
pair annihilation of pairons actually lower the system energy [see (7.48)] and since pairons are
bosons, all pairons available in the system are condensed into the zero-momentum state; the maximum
number of pairons is ħωD (0). The number of condensed pairons at any one instant may fluctuate
around the equilibrium value; such fluctuations are in fact more favorable.

7.8.5 Neutral Supercondensate
The supercondensate composed of equal numbers of ±pairons is electrically neutral. This neutrality
explains the stability of the superconducting state against a weak electric field because no Lorentz
electric force can be exerted on the supercondensate. The stability is analogous to that of a stationary
excited atomic state, say, the 2p-state of a neutral hydrogen atom.

A neutral supercondensate is supported by experiments. If a superconducting wire S is used as part
of a circuit connected to a battery, as shown in Figure 7.21, then the wire S, having no resistance,
generates no potential drop. If a low-frequency AC voltage is applied to it, its response becomes
more complicated. But the behavior can be accounted for if we assume that it has a normal component
with a finite resistance and a super part. This is the two fluid model [28, 29]. Super part or
supercondensate, decreases with rising temperature and vanishes at Tc. The normal part may be
composed of any charged elementary excitations including quasielectrons and excited pairons. At any
rate, analysis of all experiments indicate that the supercondensate is not accelerated by the electric
force. This must be so. Otherwise the supercondensate would gain energy without limit since the
supercurrent is slowed down by neither impurities nor phonons, and a stationary state would never



have been observed in the circuit.

Figure 7.21 A circuit containing a superconductor (S), battery, and resistance.

7.8.6 Cooper Pairs (Pairons)
The concept of pairons is inherent in the BCS theory, which is most clearly seen in the reduced
Hamiltonian red, expressed in terms of pairon operators, b’s, only. The direct evidence for the fact
that a Cooper pair is a bound quasiparticle having charge (magnitude) 2e comes from flux
quantization experiments, see Figures 7.5 and 7.6.

7.8.7 Formation of a Supercondensate and Occurrence of
Superconductors
We discuss the formation of a supercondensate based on the band structures of electrons and phonons.
Let us first take Pb, which forms a face-centered cubic (fcc) lattice and which is a superconductor.
This metal is known to have a neck-like hyperboloidal Fermi surface represented by

(7.90) 
where m is the electron mass. See, for example, [30], Section 13.4.

We postulate that the supercondensate composed of ±ground pairons is generated near the “necks.”
The electron transitions are subject to Pauli’s exclusion principle, and hence creating pairons
requires a high degree of symmetry in the Fermi surface. A typical way of generating pairons of both
charge types by one phonon exchange near the neck is shown in Figure 7.18. Only parts of “electrons”
and “holes” near the specific part of the Fermi surface are involved in the formation of the
supercondensate. The numbers of ±pairons, which are mutually equal by construction, may both then
be represented by ħωD (0)/2, which justifies (7.67). Next take aluminum (Al), which is also a known
fcc superconductor. Its Fermi surface contains inverted double caps. Acoustic phonons with small
momenta may generate a supercondensate near the inverted double caps. Supercondensation occurs
independently of the lattice structure as long as “electrons” and “holes” are present in the system.
Beryllium (Be) forms a hexagonal closed packed (hcp) crystal. Its Fermi surface in the second zone
has necks. Thus, Be is a superconductor. Tungsten (W) is a body-centered cubic (bcc) metal, and its
Fermi surface has necks. This metal also is a superconductor. In summary, type I elemental
superconductors should have hyperboloidal Fermi surfaces favorable for the creation of ±pairons
mediated by small-momentum phonons. All of the elemental superconductors whose Fermi surface is
known appear to satisfy this condition.

To test further let us consider a few more examples. A monovalent metal, such as Na, has a
spherical Fermi surface within the first Brillouin zone. Such a metal cannot become superconducting
at any temperature since it does not have “holes” to begin with; it cannot have +pairons and,



therefore, cannot form a neutral supercondensate. A monovalent fcc metal like Cu has a set of necks at
the Brillouin boundary. This neck is forced by the inversion symmetry of the lattice, see Figure 3.7,
Chapter 3. The region of the hyperboloidal Fermi surface may be more severely restricted than those
necks (unforced) in Pb. Thus, this metal may become superconducting at extremely low temperatures,
which is not ruled out.

7.8.8 Blurred Fermi Surface
A normal metal has a sharp Fermi surface at 0 K. This fact manifests itself in the T-linear heat
capacity generally observed at the lowest temperatures. The T-linear law is in fact the most important
support for the Fermi liquid model. For a superconductor the Fermi surface is not sharp everywhere.
To see this, let us solve (7.61) with respect to uk

2 and vk
2. We obtain

(7.91) 
Figure 7.22 shows a general behavior of vk

2 near the Fermi energy. For the normal state Δ = 0, there
is a sharp boundary at εk = 0; but for a finite Δ, the quantity vk

2 drops off to zero over a region of the
order (2 ~ 3)Δ. This vk

2 represents the probability that the virtual electron pair at (k↑, −k↓)
participates in the formation of the supercondensate. It is not the probability that either electron of the
pair occupies the state k. Still, the diagram indicates the nature of the changed electron distribution in
the ground state. The supercondensate is generated only near the necks and/or inverted double caps.
Hence, these parts of the Fermi surface are blurred or fuzzy.

Figure 7.22 The behavior vk
2 near the Fermi surface.

Problem 7.8.1. Derive (7.77).
Problem 7.8.2. Verify (7.79).
Problem 7.8.3. Verify (7.80).
Problem 7.8.4. Derive (7.81) and (7.82).
Problem 7.8.5. Verify (7.85).
Problem 7.8.6. Verify (7.88).



7.9 Bose–Einstein Condensation in 2D
BCS [19] introduced electron-pair operators:

(7.92) 
where (c, c†) are electron operators (spin indices omitted) satisfying the Fermi anticommutation rules.
They investigated the commutators among b and b†, which do not satisfy the usual Bose commutation
rules. On the basis of these commutators and bk

2 = 0, BCS did not consider the bosonic nature of the
pairons. But the eigenvalues for n12 ≡ ck1

† ck2
† ck2

 ck1
 ≡ c1

† c2
† c2 c1 in the pair states (k1, k2) are

limited to 0 or 1 (fermion property), while the eigenvalues of the total pair number operator

(7.93) 
have no upper limit (bosonic property):

(7.94) 
The proof of (7.94) is given in Appendix A.4. Both fermionic and bosonic natures of the pairons

must be used in the total description of superconductivity.
The most important signature of many bosons is the Bose–Einstein Condensation. Earlier we

showed that the pairon moves with the linear dispersion relation:8)

(7.95) 
where we designated the pairon net momentum by the more familiar p rather than q.

Let us consider a 2D system of free bosons having a linear dispersion relation: ε = cp, c = 2/πvF.
The total number of bosons, N, and the Bose distribution function,

(7.96) 
are related by

(7.97) 
where

(7.98) 
is the number of zero-momentum bosons. The prime on the summation in (7.97) indicates the omission
of the zero-momentum state. We note that α is defined by α ≡ βμ, where μ is the chemical potential
and β ≡ 1/(kBT). For notational convenience we write

(7.99) 
We divide (7.97) by the normalization area L2, and take the bulk limit:

(7.100) 
We then obtain

(7.101) 
where n0 = N0/L2 is the number density of zero-momentum bosons and n the total boson density. After



performing the angular integration and changing integration variables, we obtain from (7.101)
(Problem 7.9.1)

(7.102) 
The fugacity λ is less than unity for all temperatures. After expanding the integrand in (7.102) in
powers of λe−x(< 1), and carrying out the x-integration, we obtain

(7.103) 

(7.104) 
We need ϕ2(λ) here, but we introduced ϕm for later reference. Equation (7.103) gives a relation
among λ, n, and T.

The function ϕ2(λ) monotonically increases from zero to the maximum value ϕ2(1) = 1.645 as λ is
raised from zero to one. In the low-temperature limit, λ = 1, ϕ2(λ) = ϕ2(1) = 1.645, and the density of
excited bosons, nx, varies like T2 as seen in (7.103). This temperature behavior of nx persists as long
as the rhs of (7.103) is smaller than n; the critical temperature Tc occurs at n = kB

2Tc
2ϕ2(1)/2πħ2c2.

Solving this, we obtain
(7.105) 
If the temperature is raised beyond Tc, the density of zero-momentum bosons, n0, becomes

vanishingly small, and the fugacity λ can be determined from

(7.106) 
In summary, the fugacity λ is equal to unity in the condensed region: T < Tc, and it becomes smaller

than unity for T > Tc, where its value is determined from (7.106).
The internal energy density u, that is, the thermal average of the system energy per unit area, is

given by

(7.107) 
This u can be calculated in a similar manner. We obtain (Problem 7.9.2)

(7.108) 
The molar heat capacity at constant density (volume), Cn, is given by

(7.109) 
where R is the gas constant. The partial derivative ∂u/∂t may be calculated through (Problem 7.9.3)

(7.110) 
All quantities (n, u, C) can now be expressed in terms of ϕm(λ). After straightforward calculations,
the molar heat capacity C is given by (Problem 7.9.4)



(7.111) 
In the condensed region T < Tc, the fugacity λ is unity. We observe that as λ → 1,

(7.112) 
Using these, we obtain from (7.108) and (7.111)

(7.113) 

(7.114) 
Observe that the molar capacity C grows like T2. Also note that the molar heat capacity C at Tc is

given by

(7.115) 
For T > Tc, the temperature dependence of λ, given by Equation (7.106), is quite complicated. We

can numerically solve (7.111) for λ with a computer, and substitute the solution in (7.102) to obtain
the temperature behavior of C. The result is shown in Figure 7.23. Equations (7.110) and (7.111)
allow us not only to examine the analytical behavior of C near T = Tc but also to obtain C without
numerically computing the derivative ∂u(T, n)/∂T.

Figure 7.23 The molar heat capacity C for 2D massless bosons rises like T * 2, reaches 4.38 R at Tc,
and then decreases to 2 R in the high-temperature limit.

In summary, the molar heat capacity C for a 2D massless boson rises like T2 in the condensed
region, reaches 4.38 R at T = Tc, and then decreases to the high-temperature limit value 2 R. The heat
capacity changes continuously at T = Tc, but its temperature derivative ∂C(T, n)/∂T jumps at this
point. The order of phase transition is defined to be that order of the derivative of the free energy F
whose discontinuity appears for the first time. Since CV = T(∂S/∂T)V = − T(∂2F/∂T2), ∂CV/∂T =



−T(∂3F/∂T3) − (∂2F/∂T2), the BEC is a third-order phase transition. Note that the temperature
behavior of the heat capacity C resembles that observed in YBCO shown in Figure 7.12. The
condensation of massless bosons in 2D is noteworthy. This is not a violation of Hohenberg’s theorem
[31] that there can be no long range order in 2D, which is derived with the assumption of an f-sum
rule representing the mass conservation law. In fact no BEC occurs in 2D for finite-mass bosons.
Problem 7.9.1. Verify (7.102).
Problem 7.9.2. Verify (7.108).
Problem 7.9.3. Prove (7.110).
Problem 7.9.4. Verify (7.111).

7.10 Discussion
The idea that the superconductivity is a manifestation of the BEC has long been suspected. The
superconductivity in a metal and the superconductivity in liquid helium have many similarities. Both
involve dissipationless flows, and they occur at very low temperatures. In particular, F. London
treated superconductivity and superfluidity from the BEC point of view in his two-volume book [32].

The BEC temperature Tc in D dimensions can be found from

(7.116) 
Using (7.43) and (7.44) along with (7.107), we obtain (Problem 7.10.1)

(7.117) 
The 2D BEC is noteworthy since the BEC of massive bosons (ε = p2/(2m)) is known to occur in 3D

only. The interpairon distance r0 computed from (7.117) is

(7.118) 
The zero-temperature BCS pairon size [19] is given by

(7.119) 
From the last two equations we obtain

(7.120) 
indicating that the condensed pairons do not overlap in space. Hence, the free pairon model can be
used to evaluate Tc.

The similarity in 2D and 3D BEC is most remarkable. In particular the critical temperature Tc
depends on (vF, r0) nearly in the same manner. Now, the interpairon distance r0 is different by the
factor 102 ~ 103 between 3D and 2D superconductors. The Fermi velocity vF is different by the factor
10 ~ 102. Hence, the high critical temperature in 2D superconductors is explained by the very short
interpairon distance, partially compensated by a smaller Fermi velocity.



We stress that formulas (7.117) for the critical temperatures are distinct from the famous BCS
formula (in the weak coupling limit):

(7.121) 
where ωD is the Debye frequency, v0 the pairing strength, and (0) the DOS per spin at the Fermi
energy.

The pairon density n0 and the Fermi velocity vF appearing in formulas (7.117) can be determined
experimentally from the data of the resistivity, the Hall coefficient, the Hall angle, the specific heat,
and the superconducting temperature.

The linear dispersion relation can be probed by using Angle-Resolved Photoemission
Spectroscopy (ARPES). Lanzara el al. [33] studied the dispersions in three different families of hole-
doped copper oxides: Bi2Sr2CaCu2O8 (Bi2212), Pb-doped Bi2Sr2Cu6 (Pb-Bi2201), and La2-

xSrxCuO4 (LSCO). A summary of the data, reproduced from [33, Figure 1], is shown in Figure 7.24.
The energy is measured downwards and the reduced momentum k is in the abscissa. See more
detailed specification in the original reference. The data in Figure 7.24a,b are in the superconducting
states while those in Figure 7.24c are in the normal state. Note that in all three cases the dispersion
relation is linear for low k and quadratic for high k. The phonon energy has an upper limit of the order
ħωD (Debye energy) and hence, the quasiparticle (pairon) mediated by the phonon exchange must
have a finite energy. The change of the slopes, indicated by thick arrows, occurs around 50~80 meV,
which are distinct from the superconducting energy gaps (10~50meV). The energies 50~80 meV
appear to correspond to the energy of the in-plane oxygen-stretching (breathing) longitudinal optical
phonon.

Figure 7.24 The quasiparticle dispersion relations derived from the momentum distribution curves
along (0, 0)-(π, π) for (a) LSCO at 20 K, (b) Bi2212 at 20 K. Both materials are in superconducting
states with the doping δ indicated. (c) The dispersion relation for Bi2201 at 30 K (normal state). The
temperature dependence of the dispersion relation for LSCO at δ = 0.15 (d) and Bi2212 at δ = 0.16
(e). Note that the energy scale is measured downward. The arrows indicate slope changes in the
curves.
After Lanzara et. al. [33]



Figure 7.24d,e indicate that the dispersion relations do not change above and below Tc for LSCO
and Bi2212, respectively. The pairons have a linear dispersion relation with the same slope both
below and above Tc. Thus, the ARPES fully supports our BEC picture of superconductivity. We
stress that the pairons do not break up at Tc as thought in the original BCS theory.

Pairons can multiply occupy the same CM momentum state. They move freely as bosons via a linear
dispersion relation: ε = cp. The system of free pairons (bosons) undergoes a BEC transition of the
second (third) order in 3(2)D with the critical temperature

where n0 is the pairon density. In general the critical temperature Tc for free bosons moving in D
dimensions can be found from (7.116). The solutions for D = 2 and 3 are given in (7.118). For D = 1,
(7.116) has no solution (Problem 7.10.2). In other words, there is no BEC in 1D. To see this, let us
take a dispersion relation:

(7.122) 
where a and α are constants. If we substitute this ε in (7.116), we can find a solution if α < 1. The
index α, however, must be greater than, or equal to, unity; otherwise the boson has an infinite speed at
zero momentum.
Problem 7.10.1. Derive (7.117).
Problem 7.10.2. Prove that (7.116) has no solution (that is, no Tc) for D = 1.
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of the applied magnetic field vector B.

2) The second-quantized operators for a pair of “electrons” (1) and a pair of “holes” (2), called
respectively the −pairon and the +pairon operators, are denoted by B’s as defined in (7.14), where 

 denotes the creation (annihilation) operator for “electron” (“hole”), j = 1(2),
satisfying the Fermi anticommutation rules:

where s represents up (down)-spin ↑ (↓).

3) ij denotes the interaction strengths arising from the phonon-exchange attraction (that is, the
virtual exchange of a phonon and the Coulomb repulsion between “electrons”). The pairing
interaction strength vij (≡ ij/V) in the generalized BCS Hamiltonian (7.23) is reduced to v0 (=
V0/V) in the BCS Hamiltonian (7.5) when the spherical Fermi surface is assumed. Note that ij
should appear when the theory incorporates the band structures of electrons explicitly. The theory
can be applied to (3, 2)D systems in a similar way.

4) The density of states in the momentum k-space for D dimensions, (D)(k), is generally defined
through

where L and g (= 2s + 1) denote the normalization length and the spin degeneracy factor,
respectively. This formula is valid in the bulk limit for any shape of a box LD. For electrons, s =
1/2 and g is given by g = 2.

5) The linear dispersion relation of the form wq = w0 + cq, is given with the assumption of a Fermi
sphere, a Fermi circle, and a Fermi bar for 3, 2, and 1D, respectively. Here the speed c is given in
terms of the Fermi speed vF by c/vF = 1/2, 2/π and 1 for 3, 2 and 1D, respectively.

6) The reduced Hamiltonian red is reduced from the generalized BCS Hamiltonian (7.23), where
the pairon operators, B’s, are replaced in the following way:

since at 0 K, there are no phonons excited, meaning that the phonon momenta q = 0. Then, the pair
annihilation (creation) operators for “electrons” (1) and “holes” (2) are respectively expressed in
terms of c’s (c†’s).

7) The restrictions for the summation symbols in (7.45) are given by 0 < εk
(1) ≡ εk < ħωD for

“electrons” and 0 < εk
(2) ≡ |εk| < ħωD for “holes”, respectively.

8) See (7.43) and (7.44). The coefficient c in (7.95) is specifically given by (2/π)vF for a 2D
system and (1/2)vF for a 3D system, respectively.



Chapter 8

Metallic (or Superconducting) SWNTs

A metallic (semiconducting) single-wall nanotube (SWNT) contains an irrational (integral) number of
carbon hexagons in the pitch. The room-temperature conductivity is higher by two to three orders of
magnitude in metallic nanotubes than in semiconducting nanotubes. Tans el al. [5] measured the
electric currents in metallic single-wall carbon nanotubes under bias and gate voltages, and observed
various non-Ohmic behaviors. The original authors interpreted their data in terms of a ballistic
electron transport due to the Coulomb blockage on the electron carrier model. The mystery as to why
a ballistic electron is not scattered by impurities and phonons is unexplained, however. An alternate
interpretation is presented based on the Cooper pair (pairon) carrier model. Superconducting states
are generated by the Bose-Einstein condensation (BEC) of the ±pairons at momenta 2πħn/L, where L
is the tube length and n a small integer. As the gate voltage changes the charge state of the tube, the
superconducting states jump between different n. The normal current peak shapes appearing in the
transition are temperature-dependent, which is shown to be caused by the electron-optical phonon
interaction.

8.1 Introduction
Single-wall nanotubes (SWNTs) can be produced by rolling graphene sheets into circular cylinders of
about 1 nm in diameter and microns (μm) in length [1, 2]. Electrical conduction in SWNTs depends
on the pitch [3, 4] and can be classified into two groups: semiconducting or metallic [5, 6]. In our
previous work [7] we have shown that this division into two groups arises as follows. A SWNT is
likely to have an integral number of carbon hexagons around the circumference. If each pitch contains
an integral number of hexagons, then the system is periodic along the tube axis, and “holes” (and not
“electrons”) can move along the tube. The system is semiconducting and its conduction is
characterized by an activation energy ε3. The energy ε3 has a distribution since both pitch and
circumference have distributions. The pitch angle is not controlled in the fabrication process. There
are numerous other cases where the pitch contains an irrational number of hexagons. In these cases the
system shows a metallic behavior experimentally [5]. We primarily deal with these so-called metallic
SWNTs in this chapter.

Tans et al. [5] measured the electric currents in metallic SWNTs under bias and gate voltages. Their
data from [5, Figure 2], are reproduced in Figure 8.1. The currents versus the bias voltage are plotted
at three gate voltages: A (88.2 mV), B (104.1 mV), and C (120.0 mV) (shown in Figure 8.1). Some
significant features are:

a) A non-Ohmic behavior is observed for all, that is, the currents are not proportional to the bias
voltage except for high voltages. The gate voltage charges the tube. The Coulomb (charging)



energy of the charge Q of the system is represented by

(8.1) 
where C is the total capacitance of the tube.

b) The current near the origin appears to be constant for different gate voltages Vgate, traces A–C.
This feature was confirmed by later experiments [8, 9]. The current does not change for small
varying gate voltage in a metallic SWNT while the current (magnitude) decreases in a
semiconducting SWNT.
c) The current at gate voltage Vgate = 88.2 mV (trace A) reverts to the normal resistive behavior
after passing the critical bias voltages on both (positive and negative) sides. Similar behaviors
are observed for Vgate = 104.1 mV (trace B) and Vgate = 120.0 mV (trace C).
d) The flat current is destroyed for higher bias voltages (magnitude). The critical bias voltage
becomes smaller for higher gate voltages.
e) There is a restricted Vgate-range (view window in [5, Figure 3]) in which the horizontal stretch
can be observed.

Figure 8.1 Current-voltage curves for nanotubes at gate voltages of 88.2 mV (trace A), 104.1 mV
(trace B) and 120.0 mV (trace C) at T = 5 mK.
(After Tans et al. in [5, Figure 2].)

The original authors interpreted the flat currents near Vbias = 0 in Figure 8.1 in terms of ballistic
electron transport based on the electron carrier model.

We propose a different interpretation of the data in Figure 8.1 based on the pairon (Cooper pair)
carrier model. Pairons move as bosons, and hence they are generated with no activation energy factor
(the main characteristic of metallic conduction). All features a)-e) listed above can be explained
simply by the assumption that the tube is in the superconducting state as explained below.

The supercurrent runs without obeying Ohm’s law. This explains feature a) above. The
supercurrents can run without resistance due to phonon and impurity scattering and with no bias
voltage. Bachtold et al. [10] observed by scanned probe microscopy that the currents run with no
voltage change along the tube in metallic SWNTs. They also concluded that the currents run
ballistically.



We shall show later that the system may be in a superconducting ground state, whose energy −Eg is
negative relative to the ground state energy of the Fermi liquid (electron) state. If the total energy E of
the system is less than the condensation energy Eg:

(8.2) 
where K is the kinetic energy of the conduction electrons and the pairons, and

(8.3) 
is the Coulomb field energy, then the system is stable. The experiments shown in Figure 8.1 were
done at 5 mK. We drop the kinetic energy K hereafter. The superconducting state is maintained and the
currents run unchanged if the bias voltage Vbias is not too large so that the inequality (8.2) holds. This
explains the horizontal stretch feature b).

If the bias voltage is high enough so that the inequality symbol in (8.2) is reversed, then normal
currents revert and exhibit Ohmic behavior, which explains feature c).

Feature d) can be explained as follows. For higher Vgate there is more charge and hence the charges
QA, QB, QC for the three cases (A, B, C in Figure 8.1) satisfy the inequalities:

(8.4) 
The horizontal stretches are longer for smaller bias voltages. At the end of the stretch (Vbias,max) the
system energy equals the condensation energy Eg. We then obtain from (8.2), after dropping the kinetic
energy K,

(8.5) 
Using the inequalities (8.4), we then obtain

(8.6) 
which explains feature d) in the list above.

The horizontal stretch becomes shorter as the gate voltage Vgate is raised; it vanishes when Vgate is
a little over 120.0 mV. The limit is given by

(8.7) 
If the charging energy ECoul exceeds the condensation energy Eg, then there are no more supercurrents,
which explains feature e).

Clearly, the important physical property in our pairon model is the condensation energy Eg.
In the currently prevailing theory it is argued that the electron (fermion) becomes ballistic at a

certain quantum condition. But all fermions are known to be subject to scattering. It is difficult to
justify why the ballistic electron is not scattered by impurities and phonons, which naturally exist in
nanotubes. In contrast our theory is straightforward. We argue that the supercurrents, as is known, can
run with no resistance (due to impurities and phonons).

To test the validity of the present theory we simply need to find the superconducting temperature by
performing the conductivity measurements at higher temperatures.

Tans et al. [8, 11] noted that the measured currents are bistable at 0.1 and 0 nA. In our interpretation



these currents are simply the supercurrents that arise from the Bose-condensed states at a finite
momentum and zero momentum.

In Figure 8.2, current versus gate voltage at Vbias = 30 μV after Tans et al. [5] is shown. The delta
function-like peaks are quasiperiodic. The flat currents near the origin are caused by the
supercurrents due to the condensed pairons at a microscopic momentum

Figure 8.2 Current vs. gate voltage at Vbias = 30 μV.
(After Tans et al. in (5, Figure 2].)

(8.8) 
where L is the tube length. The peaks arise from the motion of noncondensed pairons. As the gate
voltage is varied, the charge density changes, which makes the superconducting states jump among the
different momenta

(8.9) 
where n is a small integer. In the transitions, the normal currents due to noncondensed pairons appear.

Tans et al. [5, 8] observed that the conductance G versus the gate voltage Vgate has peaks that are
temperature-dependent as shown in Figure 8.3, reproduced from [5, Figure 3]. These authors obtained
good fits with the assumption of the peak formula.

Figure 8.3 Conductance G = I/Vbias versus ΔVgate at low bias voltage Vbias = 10 μV and different
temperatures. Solid lines are fits of G ∝ cosh−2(eΔVgate/(α2kBT)), where ΔVgate is the gate voltage
difference. The factor α converts ΔVgate into the corresponding electrostatic potential shift of the tube.
(After Tans et al. in [5, Figure 3]).



(8.10) 
where factor α converts the gate voltage shift ΔVgate into the corresponding electrostatic potential
shift of the tube. See [5] for the definitions of ΔVgate and α. We may re-interpret the data as follows.

The carriers in the normal currents (peaks) observed are noncondensed pairons, each having
charges, +2e or −2e, which are subject to phonon scattering.

The phonon scattering rate Γ is calculated by the standard formula:
(8.11) 

where vpairon is the pairon speed and A the pairon-phonon scattering cross section, both of which are
temperature-independent. We assume that optical phonons at the energy ε0 with no dispersion are the
predominant scatterers. Then, the phonon density nphonon is given by the Planck distribution function:

(8.12) 
At the experimental temperatures (110, 390, and 830 mK) the Planck distribution function can be
approximated by the Boltzmann distribution function;

(8.13) 
In the experimental low-temperature range (110–830 mK) the peak-shape function (8.10) can be

approximated as

(8.14) 
This has the same exponential form as formula (8.13), suggesting that the cause of the temperature-
dependence is phonon scattering. This interpretation was also adopted by Saito, Dresselhaus, and
Dresselhaus [6].

In the inset of Figure 8.3, the current versus the gate voltage is plotted at bias voltage Vbias = 0.4,
0.8, 1.2, and 1.6 mV. At Vbias = 1.6 mV, we see three steps (plateaus) separated by about 0.04 nA. We
interpret these as three superconducting channels carried by the pairons condensed at three momenta.



The lowest step is formed between Vgate = 115 and 140 mV and has the current value 0.04 nA. This
step is also formed similarly at Vbias = 0.4, 0.8, and 1.2 mV. The second lowest step is formed
between Vgate = 115 and 132 mV, and the third (highest) step is formed between Vgate = 118 and 128
mV. The supercurrents are additive. We predict that if the bias voltage is raised, then there should be
more steps.

The center of mass (CM) of pairons move as bosons and their currents can be generated without
activation. There are ±pairons, each having charge ±2e. The energy of the moving pairon is given by

(8.15) 
where vF

(j), (j = 1 (electron), 2 (hole)), is the Fermi speed, which will be derived later in Section 8.4.
Since the momentum (magnitude) pn, see (8.9), is extremely small, the pairons in superconducting
channels have negligible energies.

If the SWNT is unrolled, then we have a graphene sheet, which can be superconducting at a finite
temperature. We first study the conductivity of graphene in Section 8.2, starting with the honeycomb
lattice structure and introducing “electrons” and “holes” based on the Cartesian unit cell as distinct
from the Wigner–Seitz (WS) unit cell (rhombus). Phonons are generated based on the same Cartesian
unit cell. In Section 8.3 we construct a Hamiltonian suitable for the formation of the Cooper pairs. A
linear energy-momentum (or dispersion) relation is derived in Section 8.4. The pairons moving with
a linear dispersion relation in two dimensions undergo a Bose-Einstein condensation (BEC), which is
shown in Section 8.5. Superconductivity in metallic SWNTs is discussed in Section 8.6. A summary
is given in the last section.

8.2 Graphene
Before dealing with a metallic SWNT, let us consider graphene, in which carbon ions (C+) occupy a
two-dimensional (2D) honeycomb crystal lattice. The normal carriers in the transport of electrical
charge are “electrons” and “holes.” The “electron” (“hole”) is a quasielectron that has an energy
higher (lower) than the Fermi energy εF and those electrons (holes) are excited on the positive
(negative) side of the Fermi surface with the convention that the positive normal vector at the surface
points in the energy-increasing direction. The applied gate voltage can control the carrier charge type,
j = 1, 2, electron (1) or hole (2), and the number density nj. The “electron” (“hole”) wavepacket is
assumed to have a charge −e (+e) and has the size of a unit hexagon formed by positively charged
carbon ions C+. The positively charged “hole” tends to stay away from the C+ ions. The center of
mass of the “hole” (wave packet) is at the center of the hexagon and hence its charge is concentrated
at the center of the hexagon. It moves easily with a small effective mass along the directions 100c-
axis  ≡ 100 , where we used the conventional Miller indices for the hexagonal lattice with the
omission of the c-axis index. The electron has a negative charge (−e) and a unit hexagon size. The
negatively charged electron tends to stay close to the C+ ions and the charge distribution is more
concentrated near the C+ hexagon. The CM of the “electrons” (wavepacket) is also at the center of the
hexagon. It moves easily with a small effective mass along the directions (110), see Figure 8.4 and
below.



Figure 8.4 A rectangular (dotted line) unit cell of graphene. An open circle (O) indicates the positive
ions, C+.

For a description of the electron motion in terms of the mass tensor, it is convenient to introduce
Cartesian coordinates, which do not necessarily match the crystal’s natural (triangular) axes. The
“electron” (wavepacket) may move up or down in (110) to the neighboring hexagon sites passing
over one C+. The positively charged C+ acts as a welcoming (favorable) potential valley for the
negatively charged “electron”, while the same C+ acts as a hindering potential hill for the positively
charged “hole”. The “hole”, however, can move on a series of vacant sites in [001], each surrounded
by six C+, thus never meeting the hindering potential hills. Thus, the easy channel directions for the
electrons and holes are 110  and 100 , respectively.

We may choose a unit cell with side-length pair (b, c) as shown in Figure 8.4. Then the Brillouin
zone in the k −space is unique: a rectangle with side lengths (2π/b, 2π/c). We note that the lattice has
inversion (mirror) symmetry with respect to the x- and y-axis.

Let us consider the system (graphene) at 0 K. If we put an electron in the crystal, then the electron
should occupy the center O of the Brillouin zone, where the lowest energy lies. Additional electrons
occupy the points neighboring O in consideration of Pauli’s exclusion principle. The electron
distribution is lattice periodic over the entire crystal in accordance with the Bloch theorem.

Graphene is a quadrivalent metal. The first few low-lying bands are completely filled. The
uppermost partially filled bands are important for discussion of the transport properties. We consider
such a band. The Fermi surface, which defines the boundary between the filled and unfilled k-spaces
(area) is not a circle since the x-y symmetry is broken. The electron effective mass is lighter in the
direction [110] than perpendicular to it. Hence, the electron motion is intrinsically anisotropic. If the
electron number is raised by the gate voltage, then the Fermi surface should grow more quickly in this
direction with increasing number of electrons. Because of the inversion symmetry of the crystal the
Fermi surface must approach perpendicular to the Brillouin boundary. As the gate voltage changed to
the charge-neutral point, the Fermi surface should go through a “neck” configuration, where the
density of states rapidly grows on both sides of the voltage, generating high densities of “electrons”
and “holes.” Experiments [12] indicate that (a) both electrons and holes are excited in graphene, (b)
at zero gate voltage, the electrons are dominant, and (c) the resistivity ρ exhibits a sharp maximum at
the electron density n1 − 2 × 1011 cm2. Feature (b) should arise as follows. The negatively charged
electron is close to the positive ions C+ and the hole is farther away from C+. Hence, the gain in the



Coulomb interaction is greater for the “electron.” That is, the “electron” is more easily activated.
Thus, the “electrons” are the majority carriers at zero gate voltage as observed. Feature (c) is related
to the fact that the conductivity

(8.16) 
where n is the carrier density and τ is the relaxation time, must decrease since the effective mass m*

shoots up to ∞ in the small neck limit.
We note that the “neck” Fermi surface was observed in copper, where densities of “electrons” and

“holes” are high [13]. Necks in the Fermi surface are known to cause the Hall (Seebeck) coefficient
to be negative (positive) [14]. It is interesting to see if graphene shows the same properties. The same
easy channels in which the electron runs with a small mass, may be assumed for other hexagonal
directions, [011] and [101]. The currents run in three channels 110  ≡ [110], [011], and [101] and
thus the system as a whole does not show anisotropy in transport properties.

The current band theory based on the WS cell model predicts a gapless semiconductor and cannot
explain this fact. The WS model is suited for the study of the ground state energy of a crystal. To treat
the electron dynamics for a noncubic lattice such as a honeycomb lattice, we must introduce a
Cartesian unit cell and use a mass tensor. We present a new theoretical model for electron dynamics.
In this model the electron (hole) has a size of a unit carbon hexagon.

We have seen that the “electron” and “hole” have different internal charge distributions, and they
are not point particles. Hence, they have different effective masses m1 and m2, which are different
from the gravitational mass m = 9.11 × 10−28 g. Which carriers are easier to activate or excite? This
question can be answered without considering channeling. The electron is near the positive ions and
the hole is farther away from the positive ions. Hence, the gain in the Coulomb interaction is greater
for the electron. That is, the electrons are more easily activated (or excited). The electrons move in
the welcoming potential well channels while the holes do not. This fact also leads to the smaller
activation energy for the electrons. We may represent the activation energy difference by [15]

(8.17) 
The thermally activated (or excited) electron densities are given by

(8.18) 
where j = 1 and 2 represent the electron and hole, respectively. The prefactor nj is the density at the
high-temperature limit. The “electron” can move easily with a smaller effective mass in the direction 
110  rather than perpendicular to it as we see presently.

8.3 The Full Hamiltonian
Fujita and his group developed a quantum statistical theory of superconductivity in a series of papers
[16–20]. We present this theory (see Section 8.4) here again in the present section.

In the ground state there are no currents for any system. To describe a supercurrent, we must
introduce moving pairons, that is, pairons with finite CM momenta. Creation operators for “electron”
(1) and “hole” (2) pairons are defined by



(8.19) 
We calculate the commutators among B and B†, and obtain

(8.20) 

(8.21) 
Pairon operators of different types j always commute:

(8.22) 

(8.23) 
represent the number operators for “electrons” (j = 1) and “holes” (j = 2).

Let us now introduce the relative and net momenta (k, q) such that

(8.24) 
Alternatively we can represent pairon annihilation operators by

(8.25) 
The prime on B will be dropped hereafter. In the k-q representation the commutation relations are re-
expressed as

(8.26) 

(8.27) 
Using the new notation, we can rewrite the generalized Bardeen–Cooper–Schrieffer (BCS)
Hamiltonian (7.23) as1)

(8.28) 
where v0 is the pairing interaction strengths per volume among and between “electron” (1) and “hole”
(2) pairons. This is the full Hamiltonian for the system of graphene, which can describe moving
pairons as well as stationary pairons. Here, the prime on the summations indicates the restriction
arising from the phonon exchange, see below.



8.4 Moving Pairons
The phonon-exchange attraction is in action for any pair of electrons near the Fermi surface. In
general the bound pair has a net momentum, and hence, it moves. Such a pair is called a moving
pairon. The energy wq of a moving pairon for the 2D case can be obtained (see Section 7.6) from

(8.29) 
which is Cooper’s equation, Equation (1) of his 1956 Physical Review Letter [21]. The prime on the
k’-integral means the restriction on the integration domain arising from the phonon-exchange
attraction, see below. We note that the net momentum q is a constant of motion, which arises from the
fact that the phonon exchange is an internal process, and hence cannot change the net momentum. The
pair wavefunctions a(k, q) are coupled with respect to the other variable k, meaning that the exact (or
energy-eigenstate) pairon wavefunctions are superpositions of the pair wavefunctions a(k, q).

Equation (8.29) can be solved as follows. We assume that the energy wq is negative:

(8.30) 
Then,

Rearranging the terms in (8.29) and dividing by

we obtain

(8.31) 
where

(8.32) 
which is k-independent. Introducing (8.31) in (8.29), and dropping the common factor C(q), we
obtain

(8.33) 
We now assume a free electron model in 3D. The Fermi surface is a sphere of the radius

(momentum)
(8.34) 

where m1 represents the effective mass of an electron. The energy ε(|k|) is given by

(8.35) 
The prime on the k-integral in (8.33) means the restriction:

(8.36) 



We may choose the polar axis along q as shown in Figure 8.5. The integration with respect to the
azimuthal angle simply yields the factor 2π. The k-integral can then be expressed by (Problem 8.4.1)

Figure 8.5 The range of the interaction variables (k, θ) is limited to a circular shell of thickness kD.

(8.37) 
where kD is given by

(8.38) 
After performing the integration and taking the small-q and small-(kD/kF) limits, we obtain (Problem
8.4.2)

(8.39) 
where w0 is given by (Problem 8.4.3)

(8.40) 
As expected, the zero-momentum pairon has the lowest energy. The excitation energy is continuous
with no energy gap. Equation (8.39) was first obtained by Cooper (unpublished) and it is recorded in
Schrieffer’s book [22, Equation (2.15)]. The energy wq increases linearly with momentum q(= |q|) for
small q. This behavior arises from the fact that the density of states is strongly reduced with the
increasing momentum q and dominates the q2 increase of the kinetic energy. The linear dispersion
relation means that a pairon moves like a massless particle with a common speed vF/2. This relation
plays a vital role in the Bose–Einstein condensation (BEC) of pairons (see next section).

Such a linear energy-momentum relation is valid for pairons moving in any dimension. However,
the coefficients slightly depend on the dimensions; in fact

(8.41) 
where c = 1/2vF and 2/πvF for three and two dimensions, respectively.
Problem 8.4.1. Verify (8.37).
Problem 8.4.2. Derive an energy-momentum relation (8.39) for the 3D case with the assumption of a
Fermi sphere. Hint: Use the diagram in Figure 8.5.
Problem 8.4.3. Show that w0 for the 3D case is given by (8.40).



8.5 The Bose–Einstein Condensation of Pairons
In Section 8.3, we saw that the pair operators (B, B†) appearing in the full Hamiltonian  in (8.28)
satisfy rather complicated commutator relations (8.26) and (8.27). In particular part of (8.26)

(8.42) 
reflects the fermionic properties of the constituting electrons. Here, Bk0

† ≡ bk
† represents creation

operator for zero-momentum pairons. Bardeen, Cooper, and Schrieffer [23] studied the ground state
of a superconductor, starting with the reduced Hamiltonian 0, which is obtained from the
Hamiltonian  in (8.28) by retaining the zero-momentum pairons with q = 0 written in terms of b by
letting Bk0

(j) = bk
(j), that is,

(8.43) 
Here, we expressed the “electron” and “hole” kinetic energies in terms of pairon operators. The
reduced Hamiltonian 0 is bilinear in pairon operators (b, b†), and can be diagonalized exactly.
Bardeen, Cooper, and Schrieffer obtained the ground state energy E0 as

(8.44) 
where (0) is the density of states at the Fermi energy. The w0 is the ground state energy of the
pairon, see (8.40). Equation (8.44) means simply that the ground state energy equals the numbers of
pairons times the ground state energy of the pairon. In the ground state of any system there is no
current. To describe the supercurrent we must introduce moving pairons, that is, nonzero-momentum
pairons. We first show that the center of masses of the pairons move as bosons. That is, the number
operator of pairons having net momentum q

(8.45) 
have the eigenvalues

(8.46) 
The number operator for the pairons in the state (k, q) is

(8.47) 
where we omitted the spin indices. Its eigenvalues are limited to zero or one:

(8.48) 
To explicitly see (8.46), we introduce

(8.49) 
and obtain

(8.50) 



Although the occupation number nq is not connected with Bq as nq ≠ Bq
†Bq, the eigenvalues n′q of nq

satisfying (8.50) can be shown straightforwardly to yield [24] n′q = 0, 1, 2, … with the eigenstates

(8.51) 
This is important. We illustrate it by taking a one-dimensional motion. The pairon occupation-

number states may be represented by drawing quantum cells in the (k, q) space. From (8.48), the
number n′kq is limited to 0 or 1, see Figure 8.6. The number of pairons characterized by the net
momentum q only, n′q, is the sum of the numbers of pairs at column q, and clearly it is zero or a
positive integer.

Figure 8.6 The number representation of many electron pairs in the (k, q) space.

In summary, pairons with both k and q specified are subject to the Pauli exclusion principle, see
(8.48). Yet, the occupation numbers n′q of pairons having a CM momentum q are 0, 1, 2, …

The most important signature of many bosons is the Bose–Einstein Condensation. Earlier we
showed that the pairon moves with the linear dispersion relation, see (8.39):

(8.52) 
where we designated the pairon net momentum (magnitude) by the more familiar p rather than q.

Let us consider a 2D system of free bosons having a linear dispersion relation: ε = cp, where c = 2/
πvF. The number of bosons, N, and the Bose distribution function,

(8.53) 
are related by

(8.54) 
where μ is the chemical potential and

(8.55) 
is the number of zero-momentum bosons. Note that α ≡ βμ with β ≡ (kBT)−1. The prime on the
summation in (8.54) indicates the omission of the zero-momentum state. For notational convenience
we write



(8.56) 
We divide (8.54) by the normalization area L2, and take the bulk limit:
(8.57) 

We then obtain

(8.58) 
where n0 ≡ N0/L2 is the number density of zero-momentum bosons and n the total boson density. After
performing the angular integration and changing integration variables, we obtain from (8.58)

(8.59) 
Here λ is the fugacity defined by

(8.60) 
We note that the fugacity λ is less than unity for all temperatures. After expanding the integrand in
(8.59) in powers of λe−x(< 1), and carrying out the x-integration, we obtain (Problem 8.5.1)

(8.61) 
where ϕm(λ)is given by

(8.62) 
We need ϕ2(λ) here, but we introduced ϕm for later reference. Equation (8.61) gives a relation among
λ, n, and T.

The function ϕ2(λ) monotonically increases from zero to the maximum value ϕ2(1) = 1.645 as λ is
raised from zero to one. In the low-temperature limit, λ = 1, ϕ2(λ) = ϕ2(1) = 1.645, and the density of
excited bosons, nx, varies like T2 as seen in (8.61). This temperature behavior of nx persists as long
as the rhs of (8.61) is smaller than n; the critical temperature Tc occurs at n = kB

2Tc
2ϕ2(1)/2πħ2c2.

Solving this, we obtain
(8.63) 
If the temperature is raised beyond Tc, the density of zero-momentum bosons, n0, becomes

vanishingly small, and the fugacity λ can be determined from (Problem 8.5.2)

(8.64) 
In summary, the fugacity λ is equal to unity in the condensed region: T < Tc, and it becomes smaller

than unity for T > Tc, where its value is determined from (8.64). Formula (8.63) for the critical
temperature Tc is distinct from the famous BCS formula

(8.65) 
where Δ0 is the zero-temperature electron energy gap in the weak coupling limit. The electron energy
gap Δ(T) and the pairon ground state energy w0 depends on the phonon-exchange coupling energy



parameter v0, which appears in the starting Hamiltonian  in (8.28). The ground state energy w0 is
negative. Hence, this w0 cannot be obtained by the perturbation theory, and hence the connection
between w0 and v0 is very complicated. This makes it difficult to discuss the critical temperature Tc
based on the BCS formula (8.65).

Unlike the BCS formula, formula (8.63) is directly connected with the measurable quantities: the
pairon density n0 and the Fermi speed vF.

We emphasize here that both formulas (8.63) and (8.65) can be derived, starting with the
Hamiltonian (8.28) and following statistical mechanical calculations, see more details in reference
[25].
Problem 8.5.1. Verify (8.61).
Problem 8.5.2. Derive (8.64).

8.6 Superconductivity in Metallic SWNTs
The pitch in a metallic SWNT contains an irrational number of hexagons and there is no lattice k-
vector along the tube. The unrolled plane may extend along the tube axis (y-axis) and also along the
circumference (x-axis) just like a graphene sheet. But there is a significant difference. The true
graphene sheet has an inversion symmetry with respect to the plane. The rolled SWNT has an inside
and outside. If “holes” are excited on the inside, then they can move along the tube length, providing
an extra channel for the transport of charge. “Electrons,” which are negatively charged, cannot move
in a straight line along the tube since they are attracted by the positively charged wall. We may
assume a 1D k-vector along the tube length.

The contribution of the “hole” channel is significant. Transport experiments by Moriyama et al. [9]
show that the main charge carriers are “holes.” In contrast, “electrons” are the normal charge carriers
in graphene. Thermopower (Seebeck coefficient) measurements by Kong et al. [26] also provide
evidence that the charge carriers are “hole”-like.

Superconductivity occurs in a 2D (or 3D) crystal having “electrons” and “holes”. The unrolled
configuration of a SWNT clearly indicates a possible 2D superconductor. Phonons and electrons
share the same Brillouin zone. This affinity is important for the electron–phonon interaction. In fact
phonon exchange binds electron pairs, called Cooper pairs (pairons). Since the phonon does not carry
a charge, phonon exchange conserves the charge and can, and must, create (or annihilate) a pair of
positive (+) and negative (−) pairons simultaneously. Hence, the numbers of ±pairons created are
mutually equal. The -pairon, that is, the “electron” pair, moves with a higher speed 2/πv1 than the
+pairon (“hole” pair) since

(8.66) 
Hence, there should be a supercurrent if the pairons undergo a BEC. In the superconducting state
±pairons are condensed at the same momentum pn. The supercurrent density, calculated by (charge) ×
(density) × (speed), is

(8.67) 



where n0 is the (−pairon) density.
We have shown earlier in Section 8.2 that the “electron” and “hole” have different charge

distributions and have therefore different effective masses (m1, m2). Then, the Fermi speeds (v1, v2)
are different, and the supercurrent density is finite as seen in (8.67). It is noteworthy that the
supercurrent density j vanishes if we assume that the “hole” is an antielectron with the same mass.
The fermion–antifermion symmetry must be broken for superconductivity to occur.

The superconducting state becomes unstable if enough magnetic field is applied. This is so because
± pairon motion (currents) is affected differently by the field. If the condensation (Meissner) energy is
overcome by the magnetic field energy, the system reverts to the normal state. There is a critical field.
As long as the binding energy is greater than the magnetic energy the system stays in a
superconducting state by repelling the magnetic field, which is known as the Meissner effect.

The pairon moves with a linear dispersion relation, see (8.41). The BEC of the pairons occur in a
2D graphene plane with the critical temperature Tc, given by (8.63). We note that no BEC (and no
superconductivity) occurs in 1D.

8.7 High-Field Transport in Metallic SWNTs
In 2000, Yao, Kane, and Dekker [27] reported high-field transport in metallic SWNT. In Figure 8.7,
we reproduced their I–V curves, after [27, Figure 1]. At low fields (voltage ~ 30 mV), the currents
show temperature-dependent dips near the origin, exhibiting non-Ohmic behaviors while at high
fields (~ 5 V) the resistance R versus the bias voltage V shows the relation:

Figure 8.7 Typical current I and differential conductance dI/dV vs. voltage V obtained using (a) low-
resistance contacts (LRC) and (b) high-resistance contacts (HRC). The inset in (b) plots dI/dV vs. V
on a double-log scale for the HRC sample.
After Yao et al [27].



(8.68) 
where R0 and I0 are constants. The authors discussed this low-field behavior in terms of a 1D
Luttinger liquid model. Many experiments, however, indicate that electrical transport in SWNTs has a
two-dimensional (2D) character [6]. In fact, the conductivity in individual nanotubes depends on the
circumference and the pitch characterizing a space curve (2D). Hence, nanotube physics requires a
2D theory. In the present work, we present a unified microscopic theory of both low-and high-field
conductivities. Carbon nanotubes were discovered by Iijima [6]. The important questions are how the
electrons or other charged particles traverse the nanotubes and whether these particles are scattered
by impurities and phonons or not. To answer these questions, we need the electron energy band
structures. Wigner and Seitz [28] developed the WS cell model to study the ground state of a metal.
Starting with a given lattice, they obtain a Brillouin zone in the k-space and construct a Fermi surface.
This method has been successful for cubic crystals including the face-centered cubic (fcc), the body-
centered cubic (bcc), diamond (dia) and zincblende lattices. If we apply the WS cell model to
graphene, we then obtain a gapless semiconductor, which is not experimentally observed [6].

SWNTs can be produced by rolling graphene sheets into circular cylinders of about 1 nm diameter
and microns (urn) in length [1, 2]. Electrical conduction in SWNTs depends on the circumference and
pitch as shown in Figure 6.1, Chapter 6, and can be classified into two groups: semiconducting or
metallic [6]. In our previous work [29], we have shown that this division into two groups arises as
follows. A SWNT is likely to have an integral number of carbon hexagons around the circumference.
If each pitch contains an integral number of hexagons, then the system is periodic along the tube axis,
and “holes” (not “electrons”) can move along the tube. Such a system is semiconducting and its
electrical conductivity increases with temperature, and is characterized by an activation energy ε3
[30]. The energy ε3 has a distribution since both pitch and circumference have distributions. The pitch



angle is not controlled in the fabrication process. There are numerous other cases where the pitch
contains an irrational number of hexagons. In these cases, the system shows a metallic behavior which
has been experimentally observed [9].

We primarily deal with metallic SWNTs in the present work. Before dealing with high-field
transport, we briefly discuss low-field transport. Tans et al. [5] measured the electric currents in
metallic SWNTs under bias and gate voltages. Their data from [5, Figure 2], are reproduced in Figure
8.1, where the currents versus the bias voltage are plotted at three gate voltages: A (88.2 mV), B
(104.1 mV), and C (120.0 mV) (shown in Figure 8.1).

Significant features are listed in Section 8.1. Tan et al. [5] interpreted the flat currents near Vbias = 0
in Figure 8.1 in terms of a ballistic electron model [6]. We proposed a different interpretation of the
data in Figure 8.1 based on the Cooper pair [21] (pairon) carrier model. Pairons move as bosons, and
hence they are produced with no activation energy factor. All features (a)–(e) listed in Section 8.1
can be explained simply with the assumption that the nanotube wall is in a superconducting state (see
Section 8.1).

In the currently prevailing theory [6], it is argued that the electron (fermion) motion becomes
ballistic at a certain quantum condition. But all fermions are known to be subject to scattering. It is
difficult to justify why the ballistic electron is not scattered by impurities and phonons, which
naturally exist in nanotubes. Yao, Kane, and Dekker [27] emphasized the importance of phonon
scattering effects in their analysis of their data in Figure 8.7. The Cooper pairs [21] in supercurrents,
as is known, can run with no resistance (due to impurities and phonons). Clearly the experiments on
the currents shown in Figure 8.7 are temperature-dependent, indicating the importance of the
electron–phonon scattering effect If the ballistic electron model is adopted, then the phonon scattering
cannot be discussed within the model’s framework. We must go beyond the ballistic electron model.

If the SWNT is unrolled, then we have a graphene sheet, which can be superconducting at a finite
temperature. We studied, in Section 6.2, the conduction behavior of graphene, starting with the
honeycomb lattice and introducing “electrons” and “holes” based on the orthogonal unit cell. Phonons
are generated based on the same orthogonal unit cell. In Sections 4.3 and 4.4, we treated phonons and
phonon-exchange attraction. In Section 8.3, we constructed a Hamiltonian suitable for the formation
of the Cooper pairs and derived the linear dispersion relation for the center of mass motion of the
pairons (see Section 8.4). The pairons moving with a linear dispersion relation undergo a BEC in 2D
(see Section 8.5). In the next section we discuss the zero-bias anomaly (ZBA) observed in Figure 8.7.

8.8 Zero-Bias Anomaly
The unusual current dip at zero bias in Figure 8.7 is often called the zero-bias anomaly. This effect is
clearly seen in the low-resistance contacts (LRC) sample. The differential conductance dI/dV
increases with increasing bias, reaching a maximum at V ~ 100 mV. With a further bias increase,
dI/dV drops dramatically. See Figure 8.7a. We will show that the ZBA arises from a breakdown of
the superconducting state of the system.

With no bias, the nanotube’s wall below ~ 100 K is in a superconducting state. If a small bias is
applied, then the system is charged, positively or negatively depending on the polarity of the external
bias. The applied bias field will not affect the neutral supercurrent but can accelerate the charges at



the outer side of the carbon wall. The resulting normal currents carried by conduction electrons are
scattered by impurities and phonons. The phonon population changes with temperature, and hence the
phonon scattering is temperature-dependent. The normal electric currents along the tube length
generate circulating magnetic fields, which eventually destroy the supercurrent running in the wall at a
high enough bias. Thus, the current I (μA) versus the voltage V (mV) is nonlinear near the origin
because of the supercurrents running in the wall. The differential conductance dI/dV is very small and
nearly constant (superconducting) for V < 10 mV in the high-resistance contacts (HRC) sample, see
Figure 8.7b. We stress that if the ballistic electron model [6] is adopted, then the scattering by
phonons cannot be discussed. The nonlinear I–V curves below 150 K mean that the carbon wall is
superconducting. Thus, the clearly visible temperature effects for both LRC and HRC samples arise
from the phonon scattering. We assumed that the system is superconducting below ~ 150 K. The ZBA
arises only from the superconducting state. The superconducting critical temperature Tc must then be
higher than 150 K. An experimental check of Tc is highly desirable.

8.9 Temperature Behavior and Current
Saturation
Yao et al. [31] extend the I–V measurements up to 5 V as shown in Figure 8.8. Strikingly, the I–V
curves at great bias measured at different temperatures between 4 K and room temperature overlap
each other. This temperature behavior is consistent with our picture that the superconductivity state of
the metallic SWNT continued throughout the temperature range measured. Thus, the superconductivity
temperature Tc must be higher than room temperature.

Figure 8.8 Large-bias I–V characteristics at different temperatures using low-resistance contacts for
a sample with an electrode spacing of 1 μm. The inset plots R = V/I vs. V.
After Yao, et al. [31].

From the shape of the I–V curves in Figure 8.8, it is clear that the trend of decreasing conductances
continues to high bias. Extrapolating the measured I–V curves to higher voltage would lead to a



current saturation, that is, a vanishing conductance. The current saturation may arise as follows. When
the bias is raised from zero, the system will be charged with “holes.” The resulting “hole” currents
run along the outer side of the tube. There is an extra contribution to the current I. But these currents
must saturate since the maximum “hole” states are limited by the Pauli exclusion principle. The
maximum number of “holes” must be much smaller than the number of C’s.

8.10 Summary
Various non-Ohmic behaviors observed in metallic SWNTs under bias and gate voltages were
discussed based on the bosonic pairon model in this chapter. The ballistic electron model was
avoided since this model cannot explain by itself why the ballistic fermionic electrons are not
scattered by impurities and phonons. In our microscopic theory we start with a honeycomb lattice for
graphene, establish a Fermi surface, identify the charge carriers, and discuss the electrical transport
using kinetic theory.

We have uncovered a number of significant facts:
“Electrons” and “holes” move with different masses in anisotropic environments in graphene
(and graphite). In contrast “electrons” and “holes” in germanium (Ge) and silicon (Si) move in
isotropic environments.
For electron dynamics it is important to introduce a rectangular (non-WS) unit cell for the
honeycomb lattice. Only then can we establish that “electrons” and “holes” move with different
effective masses (m1, m2) and different activation energies (ε1, ε2). Graphene is intrinsically
anisotropic.
A metallic (semiconducting) SWNT contains an irrational (integral) number of carbon hexagons
in each pitch. The former case occurs more often.
The unrolled configuration of the metallic SWNT is a 2D graphene sheet indefinitely extending
over the tube length direction and the circumference direction. Electrical transport in the wall
occurs in 2D (not in 1D).
“Holes” (and not “electrons”) can move inside the tube, and this “hole” channel is significant as
observed in the thermopower experiments.
Electrons and phonons move in the same k-space within the (first) Brillouin zone. This affinity
makes the electron–phonon interaction important.
The phonon exchange between electrons binds Cooper pairs (pairons). Positively and negatively
charged (±)pairons are created (or annihilated) in pairs simultaneously. The number of ±pairons
are mutually equal at 0 K.
The pairons move with the linear dispersion relation.
The CM of the pairons move as bosons.
The system of the pairons moving in 2D with the linear dispersion relation undergoes a BEC
with the critical temperature Tc given in (8.63).
A superconducting state is generated by the BEC of ±pairons at the CM momentum pn = 2πħn/L.
The integer n is small and the tube length L is macroscopic.
The supercurrent density is given by (8.67). The current is finite only if the “electron” and the
“hole” have different masses.



The supercurrent is neutral, and hence it cannot be accelerated by a bias electric field.
The supercurrent is destroyed if a strong magnetic field is applied. There is a critical field.
A small magnetic field is repelled by the superconducting carbon tube.
The superconducting state is destroyed by raising the temperature. It is important to find the
critical temperature Tc above which the electrical conduction becomes normal (resistive).
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Chapter 9

Magnetic Susceptibility

The electron has mass m, charge −e, and a half-spin. Hence, it has a spin magnetic moment. Pauli
paramagnetism and Landau diamagnetism of the conduction electrons are discussed in this chapter.

9.1 Magnetogyric Ratio
Let us consider a classical electron’s motion in a circle in the x y-plane as shown in Figure 9.1. The
angular momentum l ≡ r × p points towards the positive z-axis and its magnitude is given by

Figure 9.1 An electron with a circular motion generates a magnetic moment μ proportional to its
angular momentum l = mr × v.

(9.1) 
According to the electromagnetism, a current loop generates a magnetic moment μ (vector) whose
magnitude equals the current times the area of the loop, and whose direction is specified by the right-
hand screw rule. The magnitude of the moment generated by the electron motion, therefore, is given
by

(9.2) 
and the direction is along the negative z-axis. We observe here that magnetic moment μ is
proportional to the angular momentum l. We may express this relation by

(9.3) 
This relation, in fact, holds not only for this circular motion but also in general. The proportionality
factor

(9.4) 
is called the magnetogyric or magnetomechanical ratio. We note that the ratio is proportional to the
charge −e and inversely proportional to the (electron) mass m.



We assume that a magnetic field B is applied along the positive z-axis. The potential field energy 
of a magnetic dipole is given by

(9.5) 
where θ is the angle between the vectors μ and B.

We may expect that a general relation such as (9.3) holds also in quantum theory. The angular
momentum (eigenvalues) is quantized in the units of ħ. The electron has a spin angular momentum s
whose z-component can assume either 1/2ħ or −1/2ħ. Let us write

(9.6) 
Analogous to (9.3) we assume that

(9.7) 
We shall write this quantum relation in the form

(9.8) 
where

(9.9) 
called the Bohr magneton,1) has the dimensions of the magnetic moment. The constant g in (9.8) is a
numerical factor of order 1, and is called a g-factor. If the magnetic moment of the electron is
accounted for by the “spinning” of the charge around the z-axis, then the g-factor should be exactly
one. However, the experiments show that this factor is 2. This phenomenon is known as the spin
anomaly, which is an important indication of the quantum nature of the spin.

In the presence of a magnetic field B the electron whose spin is directed along B, called the
electron with up-spin, will have a lower energy than the down-spin electron whose spin is directed
against B. The difference is, according to (9.5) and (9.8),

(9.10) 
For B = 7000 G and g = 2, we obtain the numerical estimate Δε/kB  1 K.

If an electromagnetic wave with the frequency v satisfying hv = Δε is applied, then the electron may
absorb a photon of the energy hv and jump to the upper energy level. Figure 9.2 illustrates this
phenomenon, which is known as the electron spin resonance (ESR). The frequency corresponding to
Δε/kB = 1 K is

Figure 9.2 Electron spin resonance (ESR). An electron with the up-spin may absorb a photon of the
energy hv and jump to the upper energy level by flipping its spin if Δε = hv.

(9.11) 
This frequency falls in the microwave region of the electromagnetic radiation spectrum.



9.2 Pauli Paramagnetism
Let us consider an electron moving in free space. The quantum states for the electron can be
characterized by momentum p and spin σ(= ±1). If a weak constant magnetic field B is applied along
the positive z-axis, then the energy ε associated with the quantum state (p, σ) is given by

(9.12) 
where the second term arises from the electromagnetic interaction (see (9.5) and (9.8)). Since g = 2
for the electron spin, we may simplify (9.12) to

(9.13) 
This expression shows that the electron with up-spin (σ = +1) has a lower energy than the electron
with down-spin (σ = −1). We say that the spin degeneracy is removed in the presence of a magnetic
field.

Let us now consider a collection of free electrons in equilibrium. At the absolute zero temperature,
the states with the lowest energies will be occupied by the electrons, the Fermi energy εF providing
the upper limit. This situation is schematically shown in Figure 9.3, where the density of states, + (ε)
and -(ε), for electrons with up- and down-spins are drawn against the energy ε. The density of states
for free electrons was discussed in Section 3.6. In the absence of the field, both +(ε) and -(ε) are
the same and are given by one-half of (3.63):

Figure 9.3 The density of states + and -, for the free electrons with up (↑) and down (↓) spins, are
drawn against the energy , which is measured upwards. (a) When B = 0 the two halves of the Fermi–
Dirac distribution are equal, and thus M = 0; (b) when a field B is applied, spins in the antiparallel
half flip into the parallel half, resulting in a net parallel magnetization.

(9.14) 
Because of the magnetic energy −μB B, the curve for the density of states, +(ε), for electrons with
up-spins will be displaced downward by μB B compared with that for zero field and will be given by

(9.15) 



Similarly the curve for the density of states, -(ε), for electrons with down-spins is displaced by

(9.16) 
From Figure 9.3, the numbers N± of the electrons with up- and down-spins are given by

(9.17) 
The difference N+ − N- generates a finite magnetic moment for the system. Each electron with up-spin
contributes μB, and each electron with down-spin contributes −μB. Therefore, the total magnetic
moment is N+μB − N-μB

. Dividing this by volume V, we obtain, for the magnetization,

(9.18) 
where we retain the term proportional to B only. Using (9.14), we can re-express this as follows:

(9.19) 
The last expression shows that the magnetization is positive, and proportional to the field B. That is,
the system is paramagnetic. The susceptibility χ defined through the relation

(9.20) 
is given by

(9.21) 
By using the relation

(9.22) 
we can rewrite (9.21) as (Problem 9.2.1)

(9.23) 
This result was first obtained by Pauli [1] and is often referred to as Pauli paramagnetism. We can
easily extend the theory to a finite temperature case (Problem 9.2.2).

We note that Pauli paramagnetism is weaker than the paramagnetism of isolated atoms
approximately by the factor kB T/εF (if this factor is small).
Problem 9.2.1. Derive (9.23).
Problem 9.2.2. Derive the magnetization at finite temperatures. Hint: The magnetization at a finite
temperature is given by

where fF is the Fermi distribution function and (ε) is the density of states in energy space.



9.3 The Landau States and Levels
A classical electron circulates around an applied magnetic field. This is often called cyclotron
motion. The important quantum effect is the quantization of the cyclotron motion. Let us calculate the
energy levels of an electron in a constant magnetic field B(= ∇ × A). We choose the vector potential

(9.24) 
which yields a constant field B in the z-direction (Problem 9.3.1). The Hamiltonian H is then given by
(Problem 9.3.2)

(9.25) 
By replacing the classical momentum p with the corresponding momentum operator −iħ∇ in (9.25),
the Schrödinger equation can now be written down as

(9.26) 
Since the Hamiltonian  contains neither y nor z explicitly, we assume a wavefunction of the form:
(9.27) 

Substituting this expression into (9.26) yields the following equation for ϕ(x) (Problem 9.3.3):

(9.28) 

(9.29) 
Equation (9.28) is the energy-eigenvalue equation for a harmonic oscillator with the cyclotron
frequency

(9.30) 
and the center of oscillation displaced from the origin by x0 = ħ ky/(eB). The energy eigenvalues are
given by

(9.31) 
Combining this with (9.29), we obtain

(9.32) 
These energy eigenvalues are called the Landau Levels (LL) [2]. The corresponding quantum states,

called the Landau states, are characterized by the quantum number (NL, ky, kz). We note that the
energies do not depend on ky, and they are therefore highly degenerate. The Landau states are quite
different from the momentum eigenstates. This has significant consequences on magnetization and
galvanomagnetic phenomena. An electron in a Landau state may be pictured as circulating with the
angular frequency ωc around the magnetic field. If radiation having a frequency equal to ωc is applied,
the electron may jump up from one Landau state to another by absorption of photon energy equal to
ħωc. This generates the phenomenon of cyclotron resonance.



Problem 9.3.1. Show that the vector potential given by (9.24) generates a magnetic field pointing in
the positive z-direction. For a constant magnetic field B we can choose the vector potential A =  B ×
r. Show this by explicitly calculating ∇ × A.
Problem 9.3.2. Derive the Hamiltonian (9.25).
Problem 9.3.3. Derive (9.28) from (9.26) and (9.27). Solving (9.28), obtain its energy eigenvalues
(9.31).

9.4 Landau Diamagnetism
The electron always circulates around the magnetic flux so as to reduce the magnetic field. This is
called the motional diamagnetism. If we calculate this effect classically by considering the system
confined to a closed volume, we obtain zero magnetic moments. This is known as van Leeuwen’s
theorem. We first demonstrate this theorem.

Let us take a system of free electrons confined in a volume V. The partition function per electron is

(9.33) 
We introduce kinetic momentum Π:

(9.34) 
After simple calculations, we obtain

(9.35) 
Using the last three equations, we can show that Z(B) is equal to the electron partition function with
no field;

(9.36) 
In 1930, L.D. Landau [2] showed that quantization of electron circulation yields a diamagnetic

moment. We shall demonstrate this below.
Electrons obey Fermi–Dirac statistics. Considering a system of free electrons, we define the free

energy F as (Problems 9.4.1 and 9.4.2)

(9.37) 
where the factor 2 arises from the spin degeneracy and εi is the Landau energy given by (9.32). The
chemical potential μ is determined from the condition:

(9.38) 
The total magnetic moment M for the system can be found from

(9.39) 
Equation (9.38) is equivalent to the usual condition (Problem 9.4.3) that the total number of electrons,
N, can be obtained in terms of the Fermi distribution

(9.40) 



from

(9.41) 
The Landau energy εi is characterized by the Landau oscillator quantum number NL and the z-

component momentum pz(= ħkz). The energy E becomes continuous in the bulk limit. Let us introduce
the density of states (ε) (= d /dε) such that

(9.42) 
We now write (9.37) in the form

(9.43) 
The statistical weight (number)  is the total number of states having energy less than

(9.44) 
Conversely, the allowed values of pz are distributed over the range in which |px| does not exceed

(9.45) 
For a fixed pair (ε, NL) the increment in the weight, d , is given by

(9.46) 
where V = L1L2L3 is the volume of the container. After summing (9.46) with respect to NL, we obtain

(9.47) 
where

(9.48) 
We assume high Fermi degeneracy such that

(9.49) 
The sum over NL in (9.47) converges slowly. We use Poisson’s summation formula [3, 4] and, after
mathematical manipulations, obtain

(9.50) 
where

(9.51) 

(9.52) 



(9.53) 
The detailed steps leading to (9.50) through (9.53) are given in the Appendix A.5. The term 0,
which is independent of B, gives the weight equal to that for a free electron system with no field. The
term L is negative (diamagnetic) and can generate a diamagnetic moment. We start with (9.43),
integrate by parts, and obtain

(9.54) 
The −df/dε, which can be expressed as (Problem 9.4.2)

(9.55) 
has a peak near ε = μ if kB T  μ, and

(9.56) 
For a smoothly changing integrand in the last member of (9.54) −d f/dε can be regarded as a Dirac
delta function:

(9.57) 
Using this property and (9.54) and (9.39), we obtain (Problem 9.4.4)

(9.58) 
Here we set μ = εF. This is justified since the corrections to μ(B, T) start with the B4 term and with a
T2 term. Using (9.58) and (9.49), we obtain

(9.59) 
where n is the free electron density.

Comparing this result with (9.23), we observe that Landau diamagnetism is one third of the Pauli
paramagnetism in magnitude: χLandau = − χPauli. But the calculations in this section are done with the
assumption of the free electron model. If the effective mass (m*) approximation is used, formula
(9.59) is corrected by the factor (m*/m)2 as we can see from (9.58). Hence, the diamagnetic
susceptibility for a metal is

(9.60) 
We note that the Landau susceptibility is spin-independent. For a metal having a small effective mass,
the Landau susceptibility χL

metal can be greater in magnitude than the Pauli paramagnetic
susceptibility χPauli. Then the total magnetic susceptibility expressed as



(9.61) 
can be negative (diamagnetic). This is observed for GaAs (m* = 0.07m).

The oscillatory term osc in (9.53) yields the de Haas–van Alphen oscillations, which will be
discussed in Section 10.1.
Problem 9.4.1. The grand partition function Ξ is defined by

where HN is the Hamiltonian of the N-particle system and Tr stands for the trace (diagonal sum).
The symbol TR means a grand ensemble trace. We assume that the internal energy E, the number
density n, and the entropy S are respectively given by

Show that

where μ ≡ kBTα is Gibbs free energy per particle: G ≡ E − TS + PV = μ N .
Problem 9.4.2.

1. Evaluate the grand partition function Ξ for a free electron system characterized by H = ∑j=1
N

pj
2/(2m).

2. Show that

where 2 is the spin degeneracy factor, εp and f(ε) are respectively given by

Problem 9.4.3. Using the free energy F in (9.37), obtain (9.40) and (9.41).
Problem 9.4.4. Verify (9.58).
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Chapter 10

Magnetic Oscillations

The de Haas–van Alphen oscillations in susceptibility are often analyzed using Onsager’s formula,
which is derived. The statistical mechanical theory of the oscillations for the quasifree electron
moving in 3D and 2D is developed in this chapter.

10.1 Onsager’s Formula
A metal is a system in which the conduction electrons, either “electrons” or “holes,” move without
much resistance. “Electrons” (“holes”) are fermions having negative (positive) charge q = − (+)e and
positive effective masses m*, which respond to the Lorentz force F = q(E + v × B). These conduction
electrons are generated in a metal, depending on the curvature sign of the metal’s Fermi surface. Their
existence can be checked by the linear heat capacity at the lowest temperatures. As we saw in
Chapter 3, each metal has a Fermi surface, often quite complicated.

The most frequently used means to probe the Fermi surface is to observe de Haas–van Alphen
(dHvA) oscillations and analyze the data using Onsager’s formula (10.2). A magnetic field of the
order 1 T = 104 G is applied in a special lattice direction. The experiments are normally carried out
using pure samples at the liquid helium temperatures to reduce the impurity and phonon scattering
effects.

The magnetic susceptibility χ is defined by
(10.1) 

where I is the magnetization (magnetic moment per unit volume) and B the applied magnetic field
(magnitude). When the experiments are done on pure samples and at very low temperatures, the
susceptibility χ in some metals is found to exhibit oscillations with varying magnetic field strength B.
This phenomenon was first discovered in 1930 by de Haas and van Alphen [1, 2] in their study of
bismuth (Bi), and it is called de Haas–van Alphen oscillations. Magnetic oscillations in
magnetoresistance (MR) similar to the dHvA oscillations are called Shubnikov–de Haas (SdH)
oscillations, which is discussed in Section 10.5. As we shall show, these oscillations have a quantum
mechanical origin. Currently, analyses of dHvA oscillations are done routinely in terms of Onsager’s
formula (10.2). According to Onsager’s theory [3], the nth maximum (counted from 1/B = 0) occurs
for a field B given by the relation

(10.2) 
where A is any extremal area of intersections between the Fermi surface and the family of planes B ·
p ≡ B · (ħk) = constant, and γ is a phase (number) less than unity. The constant



(10.3) 
is called the electron flux quantum.

As an example, consider an ellipsoidal Fermi surface, as shown in Figure 10.1a:

Figure 10.1 Fermi surfaces: (a) ellipsoid, (b) hyperboloid (neck), (c) cylinder.

(10.4) 
The subscript “F” on ε will be omitted hereafter in this section. Assume that the field B is applied
along the p3-axis. All the intersections are ellipses represented by

(10.5) 
The maximum area A of the intersection occurs at p3 = 0 (the “belly”; see Figure 10.1a), and its area
A is

(10.6) 
Using (10.2) and solving for ε, we obtain

(10.7) 
which indicates that the energy ε is quantized as the energy of the simple harmonic oscillator with the
angular frequency

(10.8) 
As a second example, we take a hyperboloidal Fermi surface that can be represented by (10.4) with

m1, m2 > 0 and m3 < 0. Assume the same orientation of B. Equations (10.5) and (10.6) then hold,
where the area A represents the minimal area of the intersection at p3 = 0 (the “neck”; see Figure
10.1b). As a third example, assume that m3 = ∞ in (10.4), which represents a Fermi cylinder (see
Figure 10.1c). In this case the area A is given by (10.6) for the same orientation of B.

All three geometrical shapes are discussed by Onsager in his correspondence [3]. At the time of
writing in 1952, only the ellipsoidal Fermi surface was known in experiments. Today we know that
all three cases occur in reality. When tested by experiments, the agreements between theory and
experiment are excellent. The cases of ellipsoidal and hyperboloidal surfaces were found in noble
metals such as copper (Cu), silver (Ag), and gold (Au). The dHvA oscillations in Ag are shown in
Figure 10.2, where the susceptibility χ is plotted against B−1 in arbitrary units, after Schönberg and
Gold [4, 5]. The magnetic field is along a 111  direction. The two distinct periods are due to the
“neck’ and “belly” orbits indicated, the high-frequency oscillation coming from the larger belly orbit.
By counting the number of high-frequency periods in a single low-frequency period, for example,



between the two arrows, we can deduce directly that A111 (belly)/A111 (neck) = 51, which is most
remarkable.

Figure 10.2 The dHvA oscillations in silver with the magnetic field along a 111  direction, after
Schönberg and Gold [4, 5]. The two distinct periods are due to the neck and belly orbits indicated in
the inset.

Onsager’s derivation of (10.2) in his original paper [3] is quite illuminating. Let us follow his
arguments. For any closed k-orbit, there should be a closed orbit in the position space, called a
closed r-orbit. The periodic component of the motion, which involves the components of p ≡ ħk and r
perpendicular to B, is quantized. We apply the Bohr–Sommerfeld quantization rule

(10.9) 
to the r-orbit. The magnetic moment μ is proportional to the angular momentum j:

(10.10) 
The cross section Ω of the r-orbit is determined such that the enclosed magnetic flux Φ, given by B Ω,
equals (n + γ) times the flux quantum Φ0 ≡ h/e:

(10.11) 
This is Onsager’s magnetic flux quantization.

For a free electron the closed circular path in the k-space perpendicular to the field becomes a
similar path in the r-space, turned through a right angle, and with the linear dimension changed in the
ratio (eB)−1 (Problem 10.1.1). This may hold for a nearly circular closed orbit. If we assume this
relation for the Bloch electron, the area enclosed by the closed k-orbit, A, is proportional to that
enclosed by the closed r-orbit, Ω:

(10.12) 
Combining the last two equations, we obtain (10.2).



The most remarkable argument advanced by Onsager is that an electron in a closed r-orbit may
move, keeping a finite number n of flux quanta, each carrying Φ0 ≡ h/e, within the orbit. This comes
from the physical principle that the magnetic field B does not work on the electron and, therefore, the
field does not change the electron’s kinetic energy. This property should hold for any charged
particle. The flux quantization for the Cooper pair in a superconductor was observed in 1961 by
Deaver and Fairbank [6] and Doll and Näbauer [7]. Because the Cooper pair has charge (magnitude)
2e, the observed flux quantum is found to be − h/(2 e), that is, half the electron flux quantum Φ0
defined in (10.3). The phase γ in (10.9) can be set equal to 1/2. This can be deduced by taking the
case of a free electron for which quantum calculations are carried out exactly. The quantum number n
can arbitrarily be large. Hence, Onsager’s formula can be applied for any strength of field (Problem
10.1.1).

However, (10.2) turns out to contain a limitation. The curvatures along the closed k-orbit must
either be entirely positive or negative. The k-orbit cannot have a mixture of a positive-curvature
section and a negative-curvature section.
Problem 10.1.1. Consider a free electron having mass m and charge q, subject to a constant magnetic
field B.

1. Write down Newton’s equation of motion.
2. Show thatthe magnetic force qv × B does not work on the electron; that is, the kinetic energy E
≡ mv2/2 does not change with time.
3. Show that the component of v parallel to B is a constant.
4. Show that the electron spirals about the field B with the angular frequency ω = eB/m.
5. Show that the orbit projected on a plane perpendicular to the field B is a circle of radius R = p

/ω = mv /eB, where v  represents the speed of the circular motion. Find the maximum radius
Rmax.
6. Define the kinetic momentum Π ≡ mv and express the energy ε in terms of Πj.
7. Choose the x3(=z)-axis along B. Show that the curve represented by E(p1, p2, 0) = ε is a circle
of radius (2 mε)1/2 = Π.
8. Show that the areas of the circles obtained in parts 5 and 7 differ by the factor (eB)2.

10.2 Statistical Mechanical Calculations: 3D
Susceptibility is an equilibrium property and, therefore, can be calculated by using standard
statistical mechanics. Here, we demonstrate Onsager’s formula (10.2) using a free electron model.

The free energy F is, from (9.43),

(10.13) 
The oscillatory statistical weight osc is, from (9.53),

(10.14) 



We note that osc oscillates with alternating signs. In fact the relevant energy ε is of the order of the
Fermi energy εF, which is much greater than the cyclotron frequency ωc times the Planck constant ħ.
Hence, if there are many oscillations within the width of df/dε of the order kBT, then the contribution
to F must vanish. This condition is shown in Figure 10.3. Let us study this behavior in detail. Using
(9.54), we obtain

Figure 10.3 Numerous oscillations in Wosc within the width of −df/dε cancel out the contribution to
the free energy F.

(10.15) 
The critical temperature Tc below which the oscillations can be observed is

(10.16) 
Below this critical temperature (T < Tc), we cannot replace −df/dε by δ(ε − μ) since the integrand
varies violently. The integral in (10.15),

(10.17) 
must be calculated with care. We introduce a new variable ζ = β(ε − μ) and extend the lower limit to
−∞(βμ → ∞) and obtain

(10.18) 
Using sin(A + B) = sin A cos B + cos A sin B and

(10.19) 
(Problem 10.2.1), we obtain from (10.15) (Problem 10.2.2)

(10.20) 
Although (10.20) contains an infinite sum with respect to v just as the infinite sum in (9.47), its

summation character is quite different. Only the first term with v = 1 in the sum is important in
practice because (sinh(2π2vkBT/(ħωc)))−1  1. Thus, we obtain



(10.21) 
Using this equation we calculate the magnetization I = − V−1∂F/∂B and obtain

(10.22) 
The neglected terms are exponentially smaller than those in (10.22) since exp(kBT/(ħωc))  1. In the
low field limit, the oscillation number in the range kBT becomes great, and hence, the contribution of
the sinusoidal oscillations to the free energy must cancel out. This effect is represented by the factor

We define the susceptibility χ by

(10.23) 
Note that the magnetization I is not necessarily proportional to the field B. Using Equations (9.23),
(9.58), (10.22), and (10.23), we obtain (Problem 10.2.3)

(10.24) 
where

(10.25) 
Our calculations indicate that

(a) The oscillation period is εF/(ħωc). This result confirms Onsager’s formula (10.2). In fact the
maximum area of πpF

2 occurs at pz = 0. Hence,

if the quadratic dispersion relation ε = p2/(2 m*) holds. We note that all electrons participate
in the cyclotronic motion with the same frequency ωc, and the signal is substantial.

(b) The envelope of the oscillations exponentially decreases in B−1 as

(10.26) 
Thus, if the “decay rate” δ in B−1 is measured carefully, the effective mass m* may be obtained
directly through

(10.27) 
The calculations in this section were carried out by assuming a quasifree electron model. The

actual physical condition in solids is more complicated. We cannot use the quasifree particle model
alone to explain the experimental data.
Problem 10.2.1. Verify (10.19). Hint: Consider an integral on the real axis



We add an integral over a semicircle of the radius R in the upper z-plane to form an integral over a
closed contour. We then take the limit as R → ∞. Note that the integral over the semicircle vanishes in
this limit if α > 0. The integral on the real axis, I(α, ∞), becomes the desired integral in (10.19).
Evaluate the integral over the closed contour by using the residue theorem.
Problem 10.2.2. Derive (10.20).
Problem 10.2.3. Verify (10.24).

10.3 Statistical Mechanical Calculations: 2D
The dHvA oscillations occur in 2D and 3D. The 2D system is intrinsically paramagnetic since
Landau’s diamagnetism is absent, which is shown here.

Let us take a dilute system of quasifree electrons moving in a plane. Applying a magnetic field B
perpendicular to the plane, each electron will be in the Landau state with the energy

(10.28) 
where m* is the cyclotron effective mass. We introduce kinetic momenta:

(10.29) 
The Hamiltonian  for the quasifree electron is then

(10.30) 
After simple calculations, we obtain

(10.31) 
We can then represent quantum states by the small quasiphase space elements dxdΠxdydΠy. The
Hamiltonian  in (10.30) does not depend on the position (x, y). Assuming large normalization
lengths (Lx, Ly), we can represent the Landau states by the concentric shells having the statistical
weight

(10.32) 
with A = LxLy and ħωc = Δ(Π2/(2m*)) = ΠΔΠ/m* in the ΠxΠy-space as shown in Figure 10.4. As the
field B is raised the separation ħωc grows, and the quantum states are collected or bunched together.
As a result of the bunching, the density of states, (ε), should change periodically since the Landau
levels (LLs) are equally spaced. The statistical weight  is the total number of states having energies
less than

Figure 10.4 Quantization scheme for free electrons: without magnetic field (dots) and in a magnetic
field (circles) perpendicular to the paper.



From Figure 10.4, this  is given by

(10.33) 
where Θ(x) is the Heaviside step function:

(10.34) 
We introduce the dimensionless variable ε* ≡ 2πε/(ħc), and rewrite  as

(10.35) 
We assume a high Fermi degeneracy such that
(10.36) 

The sum in (10.35) can be computed by using Poisson’s summation formula [8]:

(10.37) 
After the mathematical steps detailed in Appendix A.5, we obtain [9]

(10.38) 

(10.39) 

(10.40) 
The B-independent term W0 is the statistical weight for the system with no fields. The oscillatory
term osc contains an infinite sum with respect to v, but only the first term v = 1 is important in
practice. The term osc can generate magnetic oscillations. There is no term proportional to B2

generating the Landau diamagnetism.
We calculate the free energy F in (10.15) using the statistical weight  in (10.38) through (10.40),

and obtain (Problem 10.3.1)



(10.41) 
where we used the integration formulas in (10.20). We took the low-temperature limit except for the
oscillatory terms. The magnetization I, the total magnetic moment per unit area, can be obtained from

(10.42) 
Thus far, we did not consider the Pauli magnetization IPauli due to the electron spin (see (9.18)):

(10.43) 
Using (10.41) through (10.43), we obtain the total magnetization:

(10.44) 
In this calculation, we neglected the spurious contribution of the B-derivatives of the quantities inside
the cos(2π εF/(ħc)). This condition is absent when we calculate the magnetization I through (10.42)
directly. The magnetic susceptibility χ is defined by the ratio

(10.45) 
Only the first oscillatory term, v = 1, is important and kept in (10.44) since sinh(2π2m* kB T/(ħeB)) 
1. The negative sign indicates a diamagnetic nature.

Figure 10.4 clearly shows that all electrons, not just those excited electrons near the Fermi surface,
are subject to the magnetic field and all are in the Landau states. This is reflected by the fact that the
Pauli magnetization IPauli is proportional to the electron density n, as seen in (10.43). The oscillatory
magnetization is also proportional to the density n. At a finite temperature T, −df/dε has a width. In
this range of the order of kBT many oscillations occur if the field B is lowered. Assuming this
condition, we obtained (10.44), and hence, this equation is valid for any finite T. At T = 0, the width
vanishes and the oscillatory terms also vanish.

When the system is subjected to an external electric field, all electrons will respond, and hence, the
magnetoconductivity σ should be proportional to the electron density n. The oscillatory statistical
weight generates a SdH oscillation [1, 2] with the factor smaller by the factor kB T/εF in σ. Hence, the
dHvA and SdH oscillations should be similar.

Störmer et al. [9] measured the SdH oscillations at 1.5 K in GaAs/AlGaAs, by stacking 4000 layers
equivalent to the area of 240 cm2. (Without stacking the signal is too small to observe.) Their data are
shown in Figure 10.5. We see here that

Figure 10.5 Experimental results on a stack of 4000 layers of 2D electron systems equivalent to an
area of 240 cm2 after Störmer et al. [9]. μ is the magnetic moment, and χ is the susceptibility. The
trace denoted SdH is Shubnikov–de Haas data on a separate specimen of the same sample.



(a) the oscillation periods εF/ħωc match,
(b) the magnetization (− I) rather than the susceptibility χ behaves more similarly to the diagonal
resistance ρxx,
(c) the central line of the oscillation (background) is roughly independent of the field, and
(d) the envelopes for −I and ρxx are similar.

Feature (a) means that both oscillations arise from the same cause, the periodic oscillation of the
statistical weight . Feature (b) simply comes from the same field dependence (the B-independence)
of the background (central line) of the oscillations. The density of states for a 2D quasifree electron
system with no field is independent of the energy. The behavior (c) means that GaAs/AlGaAs is
described adequately by this quasifree electron model. Feature (d) requires further discussion. Our
formula (10.44) indicates that the period of the oscillations, εF/(ħωc) = m*εF(ħeB), and the
exponential decay rate, πkBT/(ħωc) = πkB Tm* /(ħe), of the envelope (sinh(2π2kB Tm*/(ħeB)))−1 are
both controlled by the effective mass m*. This feature is found not to be supported by the observed
experiments. We shall discuss this point later in Chapter 11.

In conclusion, the 2D quasifree electron system is intrinsically paramagnetic, since there is no



Landau diamagnetism. However, there are magnetic oscillations. The GaAs/AlGaAs heterostructure
is often used for the study of the Quantum Hall Effect (QHE). The parental 3D GaAs is diamagnetic,
and hence, the magnetic behavior is greatly different in 2D and 3D.
Problem 10.3.1. Verify (10.41).

10.4 Anisotropic Magnetoresistance in Copper
10.4.1 Introduction
If the Fermi surface is nonspherical, the MR becomes anisotropic. Cu has open orbits in k-space as
represented by trace b in Figure 10.6 [10]. This open orbit contains positive and negative curvatures
along the contour of equal energy. No physical electron can move along the orbit as we see presently.
An “electron” (“hole”) is an elementary excitation which is generated on the positive (negative) side
of the Fermi surface with the convention that the positive side contains the positive normal vector at
the surface point, pointing in the energy-increasing direction. Thus, the “electron” (“hole”) has an
energy higher (lower) than the Fermi energy and circulates counterclockwise (clockwise) when
viewed from the tip of the applied magnetic field vector (a standard definition). Since the static
magnetic field cannot supply energy, no physical electron can travel electron-like in one section of the
energy contour and hole-like in another. Klauder and Kunzler [11] observed a striking anisotropic
MR as reproduced in Figure 10.7. The MR is over 400 times the zero-field resistance in some
directions. We study an isotropic MR, applying kinetic theory and using the Fermi surface.

Figure 10.6 The figure shows a closed orbit “a” in k-space that can be traced by the electron, and an
open orbit “b” that extends over the two Brillouin zones and that cannot be traveled by an electron.



Figure 10.7 The striking anisotropy of the MR in Cu after Klauder and Kunzler [11]. The [001] and
[010] directions of the Cu crystal are shown. The current flows in the [100] direction. The magnetic
field is in the plane (100); its magnitude is fixed at 1.8T~(=18kG), and its direction varies
continuously from [001] to [010] as shown in the inset.

Electron transport has traditionally been dealt with using kinetic theory or the Boltzmann equation
method. In the presence of a static magnetic field, the classical electron orbit is curved. Then, the
basic kinetic theoretical model in which the electron moves on a straight line, breaks down.
Furthermore, the collision term of the Boltzmann equation containing the scattering cross section
cannot be written down. Fortunately, quantum theory can save the situation. If the magnetic field is
applied, then the classical electron continuously changes from straight line motion at zero field to
curved motion at a finite magnetic field. When the magnetic field is gradually applied, the energy of
the electron does not change, but the resulting spiral motion always acts so as to reduce the magnetic
fields. Hence, the total energy of the electron with its surrounding fields is less than the sum of the
electron energy and the unperturbed field energy. The electron dressed with the fields is in a bound
(negative energy) state, and it can resist the break-up. The guiding center of the circulation can move
in all directions in the absence of the electric field. If a weak electric field is applied in a direction,
the dressed electron whose position is the guiding center, preferentially jumps in the field direction,
and generates a current. We can apply kinetic theory to the guiding center motion, and obtain a
formula for the electrical conductivity [12, 13]:

(10.46) 
where nc is the density of the dressed electrons, e the charge, M* the magnetotransport (effective)
mass, and τ the relaxation time. The magneto trans port mass M* is distinct from the cyclotron mass



m*. Equation (10.46) can also be obtained by the Boltzmann equation method as shown earlier by
Fujita et al. [12, 13]. In [12, 13], the dressed electron is identical to the composite fermion [14–17]
used in the theory of the QHE [18, 19]. Briefly, the electron circulates around a finite number of flux
quanta (fluxons) that are intact according to Onsager’s flux quantization hypothesis [20]. Applying
relativity, we may see that the fluxons move around the electron. From this viewpoint, the dressed
electron is considered to carry a number of fluxons. Thus, the dressed electron is composed of an
electron and fluxons. The composite particle moves as a fermion (boson) if it carries an even (odd)
number of fluxons [21–23]. The free-energy minimum consideration favors a population dominance of
c-fermions, each with two fluxons, over c-bosons, each with one fluxon, in the experimental
conditions at liquid helium temperatures. The entropy is much higher for the c-fermions than for the c-
bosons. The magnetic oscillation, which occurs only with Fermionic carriers, is observed in Cu. This
experimental fact also supports the idea that the carriers in the magnetotransport are c-fermions.

Pippard in his book, Magnetoresistance in Metal, [24], argued that the MR for the quasifree particle
system vanishes after using the relaxation time approximation in the Boltzmann equation method. The
MR in actual experimental conditions is found to be always finite. Equation (10.46), in fact, contains
the magnetotransport mass M* distinct from the electron mass m*. This fact alone makes the MR
nonzero.

The MR is defined by

(10.47) 
where ρ(B) is the magnetoresistivity at the field magnitude B and ρ0 ≡ ρ(0), the resistivity at zero
field.

First, we regard the small necks on the Fermi surface as singular points (see Figure 10.7). There
are eight singular points in total on it. If the magnetic field B is along the direction [001], then there
are two planes (parallel to the plane that the two vectors [010] and [100] make) containing four
singular points each. The same condition also holds when the field B is along the direction [010].
These conditions correspond to the major minima of MR in Figure 10.7. Next, we consider the case
in which the field B is along [011]. There are three planes perpendicular to [011] which contain two,
four, and two singular points. This case corresponds to the second deepest minimum of MR. Lastly,
the broad minima in data of MR correspond to the case where the field B is such that there are four
planes perpendicular to B, each containing two singular points. In this case, there is a range of angles
in which this condition holds. Hence, these minima should be broad. This singular-points model can
explain the presence of these minima in MR. We propose a more realistic model in the following
section.

10.4.2 Theory
We shall introduce the following theoretical model:

(i) We assume that the magnetoconductivity σ can be calculated based on (10.46). The effective
mass M* and the relaxation time τ are unlikely to depend on the direction of the field B. Only the
conduction electron density nc depends on the B-direction relative to the lattice.
(ii) We assume that each neck (bad point) is represented by a sphere of radius a centered at the



eight singular points on the ideal Fermi surface. When the magnetic field B is applied, the
electron, then, circulates perpendicular to B in the k-space. If it hits the bad sphere, then it cannot
complete the orbit, and cannot contribute to the conduction.

In Figure 10.7, we see the following five main features as the magnetic field B is rotated in the
(100) plane from [001] to [011]. The MR has a deepest minimum (labeled a in Figure 10.7), a
greatest maximum (b), a broad and flat minimum (c), a second greatest maximum (d), and a second
deepest minimum (e). These features are repeated in the reversed order as the field is rotated from
[011] to [010] due to the symmetry of the Fermi surface. We note that the three minima, a, c, and e
were qualitatively explained earlier based on the singular-points model. There are eight bad spheres
located on the Fermi surface in the direction 111  from the center O.

We first consider case c. In Figure 10.8, the Fermi surface viewed from [100] is shown. The four
dark parts represent the nonconducting k-space volumes (bad volumes). The bad volume contains
balls. There are four bad volumes here, and all the centers of the balls in the projected plane
perpendicular to [100] lie on the circle of the radius R. This result is connected with the Fermi
momentum pF = ħk by

Figure 10.8 The electron circulates perpendicular to the magnetic field B in the k-space. If the
electron hits the bad ball of radius a, it will not complete circulation, and it does not contribute to the
conduction. The four dark slices viewed from [100], each a width of 2a, contain nonconducting
electrons.

(10.48) 
Each bad volume can be calculated by using the integration formulas (Problem 10.4.1):



(10.49) 
where x0 = R cos θ is the x-component of the ball center, and θ is the angle shown in Figure 10.8. The
four centers of the balls lie on the circle, separated by π/2 in angle. We consider the sum of a pair of
two bad volumes associated with the centers at θ and θ + π/2. Using (10.49), cos(θ + π/2) = − sin θ,
and sin2 θ + cos2 θ = 1, we obtain

(10.50) 
The volume of the other pair with the centers at θ + π and θ + 3π/2 contributes the same amount.
Therefore, using (10.48), the total bad volume is

(10.51) 
The volume Vc does not depend on the angle θ, supporting the broad minimum c observed in the
experimental data.

Similarly, we can calculate the bad volumes for the other cases, a and c, and the resultant volumes
are

(10.52) 

(10.53) 
Going from c to e, the four-slice volume monotonically changes to the three-slice volume. This

means that the MR changes smoothly without taking a maximum. From c to a, the four-slice volume
changes monotonically to the two-slice volume. Thus, the present model generates no MR maxima.
We shall give an explanation for the observed MR maxima in the next section.

The conducting (good) volume is equal to the total ideal Fermi sphere volume πk3 subtracted by
the bad volume. The conduction electron density nc is given by the ideal density n multiplied by the
ratio of the good volume over the ideal Fermi sphere volume:

(10.54) 
We call the inverse of the magnetoresistivity ρ(B) the magnetoconductivity σ(B). Rewriting Δρ/ρ0

in terms of σ, we obtain

(10.55) 
where σ0 ≡ 1/ρ0 is the zero-field conductivity, which can be calculated with the following formula:

(10.56) 
where m* is the cyclotron mass, and the suffix 0 denotes the zero-field quantities.



Since in the experiments, the MR is very large, ~ 100, compared with unity, we may ignore −1 in
(10.55). Using (10.46) and (10.56), we obtain

(10.57) 
This indicates that the lower the magneto conduction electron density nc, the higher becomes the MR.

10.4.3 Discussion
In Figure 10.7, we observe a MR maximum near [011]. The calculation using our model shows a
mono tonic change of MR from the four-slice configuration c to the three-slice configuration e. We
propose the following explanation. In going from c to e, an overlap of the bad volumes must occur,
and the overlapping should not be line-sharp, as assumed in our model. Then the fluctuations, which
must occur, generate dissipation. This results in a resistivity maximum in d. In going from the four-
slice configuration c to the two-slice configuration a, an overlapping must also occur. Since, in this
case, the two overlaps take place simultaneously, the fluctuations and the resultant resistivity increase
should be greater, generating a MR maximum higher in b than that in d.

In Figure 10.7, we observe that the MR minimum varies from 80 to 340 (from e to c). This arises
from the change in the conduction electron density nc. Now, we estimate the ratio of the bad ball
diameter a over the Fermi momentum k, using the two MR values. With (10.51), (10.53), (10.54), and
(10.57) we obtain

(10.58) 
This yields the ratio:

(10.59) 
which is reasonable.

We see in Figure 10.7 that the MR rises quadratically with the field angle away from the minimum
at e. Our model explains this behavior as follows.

The center of one of the balls lies at θ = π/2 for case e. We introduce a small deviation angle ϕ such
that

(10.60) 
Then, we have

(10.61) 
Using this and (10.49), we calculate the bad volume near e and obtain

(10.62) 
Thus, this shows that the MR rises quadratically in the deviation angle ϕ on the positive and negative
sides. This is in agreement with the MR data as shown in Figure 10.7. This quadratic behavior holds
true for the regions between a and b.

In our model a spherical ball was used for a bad volume. We may consider an ellipsoidal (two



parameters) model for the improvement.
Other noble metals such as Ag and Au are known to have the Fermi surface with necks. If the bad

balls are greater in relative size (a/k), our theory predicts more prominent MR. Experimental
confirmation of this behavior is highly desirable. We suggest that the experiments be done below 1 K,
where the phonon scattering is negligible and the MR minima become more visible. Only the minima,
and not the maxima, contain important information about the Fermi surface.

In conclusion, the spectacular angular dependence of the magnetoresistance in Cu can be explained
by using the Drude formula based on the “neck” Fermi surface. The resistance minima can be used to
estimate the “neck” size. The resistance (dissipation) maxima arise from the density fluctuations.
Problem 10.4.1. Verify (10.49).

10.5 Shubnikov–de Haas Oscillations
Oscillations in magnetoresistance, similar to the dHvA oscillation in the magnetic susceptibility, were
first observed by Shubnikov and de Haas in 1930 [25]. These oscillations are often called the
Shubnikov–de Haas oscillations. The susceptibility is an equilibrium property and can therefore be
calculated by standard statistical mechanical methods. The MR is a nonequilibrium property, and its
treatment requires a kinetic theory. The magnetic oscillations in both cases arise from the periodically
varying density of states. We shall see that the observation of the oscillations gives a direct
measurement of the magnetotransport mass M*. The observation also gives quantitative information
on the cyclotron mass m*.

Let us take a dilute system of electrons moving in a plane. Applying a magnetic field B
perpendicular to the plane, each electron will be in the Landau state with the energy (see Section
9.3):

(10.63) 
where m* is the cyclotron mass. The degeneracy of the LL is given by (Problem 10.5.1)

(10.64) 
The weaker is the field, the more LLs, separated by ħωc, are occupied by the electrons. In this Landau
state the electron can be viewed as circulating around a guiding center. The radius of circulation l ≡
(ħ/(eB))1/2 for the Landau ground state is about 250 Å at a field B = 1.0T. If we now apply a weak
electric field E in the x-direction, then the guiding center jumps and generates a current.

Let us first consider the case with no magnetic field. We assume a uniform distribution of impurities
with the density n1. Solving the Boltzmann equation, we obtain the conductivity (Problem 10.5.2):

(10.65) 
where Γ is the energy (ε)-dependent relaxation rate,

(10.66) 
where θ = scattering angle and I(p, θ) = scattering cross section, and the Fermi distribution function



(10.67) 
with β ≡ (kB T)−1 and μ = chemical potential is normalized such that

(10.68) 
where the factor 2 is due to the spin degeneracy. We introduce the density of states, (ε), such that

(10.69) 
We can then rewrite (10.65) as

(10.70) 
The Fermi distribution function f(ε) drops steeply near ε = μ at low temperatures:
(10.71) 

The density of states, (ε), is a slowly varying function of the energy ε. For a 2D quasifree electron
system, the density of states is independent of the energy ε. Then the Dirac delta-function replacement
formula

(10.72) 
can be used. Assuming this formula, using

(10.73) 
and comparing (10.65) and (10.70), we obtain

(10.74) 
Note that the temperature dependence of the relaxation time τ is introduced through the Fermi
distribution function f(ε).

Next we consider the case with a magnetic field. We assume that a dressed electron is a fermion
with magnetotransport mass M* and charge e. Applying kinetic theory to the dressed electrons, we
obtain the standard formula for the conductivity: σ = n e2 τ/M*. As discussed earlier, the dressed
electrons move in all directions (isotropically) in the absence of the electric field.

We introduce kinetic momenta:
(10.75) 

The quasifree electron Hamiltonian  is

(10.76) 
The variables (Πx, Πy) are the same kinetic momenta introduced earlier in (9.34). Only we are
dealing with a 2D system here. After simple calculations, we obtain

(10.77) 
We can represent the quantum states by quasiphase space element dxd/IIxdyd/Πy. The Hamiltonian 



in (10.76) does not depend on the position (x, y). Assuming large normalization lengths (Lx, Ly), A =
LxLy, we can then represent the Landau states by the concentric shells in the ΠxΠy-space (see Figure
10.9), having the statistical weight

Figure 10.9 The circulation part of the Landau states is represented by the circular shell in ΠxΠy-
space.

(10.78) 
with the energy separation ħωc = Δ(Π2/(2m*)) = Π Δ Π/m*. Equation (10.78) confirms that the LL
degeneracy is eBA/(2πħ), as stated in (10.64).

Let us consider the motion of the field-dressed electrons (guiding center). We assume that the
dressed electron is a fermion with magnetotransport mass M* and charge e. The kinetic energy is
represented by

(10.79) 
According to Onsager’s flux quantization represented by (10.11), the magnetic fluxes can be counted
in units of Φ0 = e/h. The dressed electron is composed of an electron and two elementary fluxes
(fluxons). A further explanation of the present model will be given later.

Let us introduce a distribution function φ(Π, t) in the Πx Πy-space normalized such that

(10.80) 
The Boltzmann equation for a homogeneous stationary system is

(10.81) 
where θ is the angle of deflection, that is, the angle between the initial and final kinetic momenta (Π,
Π’). In the actual experimental condition the magnetic force term can be neglected. Assuming this
condition for now, we obtain the Boltzmann equation for a field-free system.1) Hence, we obtain the
same conductivity formula (10.65) with m* replaced by M*, yielding (10.46).

As the field B is raised, the separation ħωc becomes greater and the quantum states are bunched
together. The density of states should contain an oscillatory part:

(10.82) 



where ϕ0 is a phase. Since

(10.83) 
the phase ϕ0 will be dropped hereafter. Physically, the sinusoidal variations in (10.82) arise as
follows. From the Heisenberg uncertainty principle (phase space consideration) and the Pauli
exclusion principle, the Fermi energy εF remains approximately constant as the field B varies. The
density of states is high when εF matches the NLth level, while it is small when εF falls between
neighboring LLs.

If the density of states, (ε), oscillates violently in the drop of the Fermi distribution function f(ε) ≡
(eβ(ε-μ) + 1)−1, one cannot use the delta-function replacement formula. The use of (10.72) is limited to
the case in which the integrand is a smooth function near ε = μ. The width of df/dε is of the order kB
T. The critical temperature Tc below which the oscillations can be observed is

(10.84) 
Below the critical temperature T < Tc, we may proceed as follows. Let us consider the integral

(10.85) 
For the temperature satisfying βε = ε/(kBT)  1, we can use the same mathematical steps as going
from (10.17) to (10.20) and obtain

(10.86) 
Here we used

(10.87) 
which follows from the fact that the Fermi momentum pF is the same for both dressed and undressed
electrons.

In summary, (i) the SdH oscillation period is εF/(ħωc), which is the same for the dHvA oscillations.
This arises from the bunching of the quantum states. (ii) The envelope of the oscillations
exponentially decreases like [sinh(2π2 M*kBT/(ħeB))]−1. Thus, if the “decay rate” δ defined through

(10.88) 
is measured carefully, the magnetotransport mass M* can be obtained directly through M* =
eħδ/(2π2kBT). This finding is quite remarkable. For example, the relaxation rate τ−1 can now be
obtained through (10.46) with the measured magnetoconductivity. All electrons, not just those excited
electrons near the Fermi surface, are subject to the E-field. Hence, the carrier density nc appearing in
(10.46) is the total density of the dressed electrons. This nc also appears in the Hall resistivity
expression:

(10.89) 



where the Hall effect condition EH = vdB, vd = drift velocity, was used.
In cyclotron motion the electron with the effective mass m* circulates around the magnetic fluxes.

Hence, the cyclotron frequency ωc is given by eB/m*. The guiding center (dressed electron) moves
with the magnetotransport mass M*, and therefore, this M* appears in the hyperbolic sine term in
(10.86).

In 1952 Dingle [26] developed a theory for the dHvA oscillations. He proposed to explain the
envelope behavior in terms of a Dingle temperature TD such that the exponential decay factor be

(10.90) 
Instead of the modification in the temperature, we introduced the magnetotransport mass M* to explain
the envelope behavior. The susceptibility ξ is an equilibrium property, and hence, ξ should be
calculated without considering the relaxation mechanism. In our theory, the envelope of the
oscillations is obtained by taking the average of the sinusoidal density of states with the Fermi
distribution of the dressed electrons. There is no place where the impurities come into play. The
theory may be checked by varying the impurity density. Our theory predicts little change in the clearly
defined envelope. The scattering will change the relaxation rate τ−1 and the magnetoconductivity for
the center of the oscillations though (10.46).

In the present theory, the two masses m* and M* were introduced corresponding to two physical
processes: the cyclotron motion of the electron and the magnetotransport motion of the dressed
electron. The dressed electrons are present whether the system is probed in equilibrium or in
nonequilibrium as long as the system is subjected to a magnetic field. The presence of the c-particles
can be checked by measuring the susceptibility or the heat capacity of the system. All dressed
electrons are subject to the magnetic field, and hence, the magnetic susceptibility χ is proportional to
the carrier density nc, although the χ depends critically on the Fermi surface. This explains why the
magnetic oscillations in the conductivity and the susceptibility are similar.
Problem 10.5.1. The Landau levels are highly degenerate. Derive that the degeneracy, that is, the
number of electrons that can occupy each Landau level, is given by eBA/(2πħ), where A is the sample
area perpendicular to the magnetic field B.
Problem 10.5.2. Derive the conductivity formula (10.65).
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1) The Boltzmann equation for a magnetic field-free system, where a small constant electric field E
is applied to the positive x-axis, is given by



Chapter 11

Quantum Hall Effect

Major experimental facts associated with the Quantum Hall Effect (QHE) and a brief theoretical
survey are given in this chapter. A theory of treating integer and fractional QHE is developed in a
unified manner based on the model, in which the phonon exchange between the electron and the
elementary magnetic flux (fluxon, half-spin fermion) binds an electron–fluxon composite. The center
of mass of the composit boson moves with the linear dispersion relation: ε = (2/π)vFq, vF = Fermi
speed, q = momentum. The 2D system of free composite bosons undergoes a Bose–Einstein
condensation at kB Tc = 1.241 ħvFn0

1/2, where n0 is the density. The QHE state at the Landau-level
occupation ratio v = P/Q, integer P, odd integer Q, is shown to be the superconducting state with an
energy gap generated by the condensed composite (c-)bosons, each containing one electron and Q
fluxons and carrying the fractional charge e/Q. This state is formed by phonon exchange from the c-
fermions, each with Q − 1 fluxons, occupying the lowest P Landau states. The c-boson density n0 is
one Pth the electron density ne, making the QHE state less stable with increasing P. In Jain’s theory of
fractional hierarchy, the effective magnetic field for the c-fermion vanishes at the sermonic fraction
P/Q, even Q. This idea is extended to the c-particle (boson, fermion) which moves field-free in 2D at
v = P/Q. The plateau value (Q/P)(h/e2) at the fractional ratio v = P/Q, odd Q, directly indicates the
fractional charge (magnitude) e/Q for the composite with Q fluxons.

11.1 Experimental Facts
In 1980 von Klitzing et al. [1] reported the discovery of the integer Quantum Hall Effect (QHE). In
1982 Tsui et al. [2] discovered the fractional QHE. The GaAs/AlGaAs heterojunction is shown in
Figure 11.1. The electrons are trapped in GaAs near the interface within a distance of the order of
100 Å. The QHE measurements are normally carried out in the geometry shown in Figure 11.2. The
Hall field EH is the Hall voltage VH divided by the sample width W. The Hall resistivity ρH is
defined by the ratio:

Figure 11.1 The GaAs/AlGaAs heterojunction. The electrons are localized within less than 100 Å of
the interface. The shaded area represents the electron distribution.



Figure 11.2 Hall effect measurements. The Hall voltage VH is generated perpendicular to the current
J and the magnetic field B.

(11.1) 
where

(11.2) 
is the current density defined as the current J over the sample length L. The external electric field E is
defined as the voltage V over the length L. Equation (11.2) defines the resistivity ρ according to
Ohm’s law. Figure 11.3 represents the data reported by Tsui [3] for the Hall resistivity ρH and the
resistivity ρ in GaAs/AlGaAs at 60 mK. The Quantum Hall (QH) states at the Landau-Level (LL)
occupation ratio, also called the filling factor, v = 1, 2, …, 6 are visible in Figure 11.3. Clearly, each
QH state with a Hall resistivity plateau (horizontal stretch) is superconducting (zero resistance). In
the normal metal the Hall resistivity ρH is linear in the applied magnetic field B (Problem 11.1.1).
The Hall coefficient RH is defined as the ratio EH/jB:

Figure 11.3 Observed QHE in the GaAs/AlGaAs heterojunction at 60 mK, after Tsui [3]. The Hall
resistivity ρH and the resistance ρ are shown as a function of the magnetic field B in tesla.



(11.3) 
The plateau stability arises from the Meissner effect, which expels the excess weak magnetic field

measured relative to the center position (field) of the Hall resistivity plateau from the
superconducting body. The stability against the electric field arises from the gap in the elementary
excitation energy spectrum, which will be explained later. The superconducting state with an energy
gap is sometimes referred to as the incompressible quantum fluid state in the literature [4–9]. We
avoid this characterization in the present text since no pressure is applied to the sys-tem. Besides,
some research groups have investigated the pressure dependence of the QH state. In such a case the
term incompressible quantum fluid becomes confusing. The superconducting state (no resistance)
characterizes the state more directly. The plateau heights are quantized in units of h/e2, h = planck
constant, e = electron charge (magnitude), see Figure 11.3. Each plateau height is material- and
shape-independent, indicating the fundamental quantum nature, the boundary-condition independence,
and the stability of the QH state.

Figure 11.4 represents the QHE data reproduced after Willett et al. [10]. The data indicate a
remarkable similarity among and between the integer QHE at v = P, P = 1, 2, 3, …, and the fractional
QHE at v = P/Q, positive integer (numerator) P, P = 1, 2, … and odd integer (denominator) Q, Q = 1,
3, … Compare in particular the QH state at v = 2 and 2/3, suggesting a single cause for both integer
and fractional QHE. The QHE is temperature-dependent, including the superconducting transition at a
critical temperature Tc, see below.

Figure 11.4 The Hall resistivity ρH(≡ ρxy) in h/e2 and the resistivity ρ(≡ ρxx) in GaAs/AlGaAs at 85,
150 mK are plotted as a function of the magnetic field B in tesla, reproduced after Willett et al. [10].
The high-field ρ trace is reduced in amplitude by a factor of 2.5. The upper numbers indicate the
Landau-level occupation ratio v.



The resistivity data under fields of up to 50 T from Leadley et al. [11] are shown in Figure 11.5.
The QH state below Tc is recognized by the Hall resistivity plateau and zero resistivity. We see that
the critical temperature Tc at v = 1/3 is higher than 0.59 K and lower than 1.40 K. The Tc at v = 2/7 is
lower than 0.59 since the resistivity ρ is finite.

Figure 11.5 Resistivity ρ in GaAs/AlGaAs as a function of magnetic field B in the units of tesla, after
Leadley et al. [11].

In 2007 Novoselov et al. [12, 13] discovered room-temperature QHE in graphene, T = 300 K, B =
29 T. It is a theoretical challenge to explain the superconductivity and QHE at such high temperatures.
Problem 11.1.1. Prove that ρH in (11.1) is linear in B.



11.2 Theoretical Developments
The 1985 Nobel Prize was awarded to von Klitzing, the discoverer of the integer QHE. The 1998
Nobel Prizes were shared to Tsui, Störmer (experimental discovery) and Laughlin (theory) for their
contribution to the fractional QHE.

The prevalent theories [4, 14, 18, 20–23] based on the Laughlin wavefunction in the Schrödinger
picture deal with the QHE at 0 K and immediately above [18, 19]. The system ground state, however,
does not carry a current. To interpret the experimental data it is convenient to introduce composite (c-
) particles (bosons, fermions). The c-bosons (fermions), each containing an electron and an odd
(even) number of fluxons were introduced by Zhang et al. [20] and others (Jain [14–17]) for the
description of the fractional QHE (Fermi liquid). All QH states with distinctive plateaus in ρH are
observed below around 0.5 K. It is desirable to treat the QHE below and above Tc in a unified
manner. The extreme accuracy (precision ~ 10−8), in which each plateau is observed, means that the
current density j must be computed exactly with no averaging. In the prevalent theories [4–9] the
electron–electron interaction and Pauli’s exclusion principle are regarded as the cause for the QHE.
Both are essentially repulsive and cannot account for the fact that the c-particles are bound, that is,
they are in negative-energy states. Besides, the prevalent theories have limitations:

The zero temperature limit is taken at the outset. Then the question why QHE is observed below
0.5 K and not at higher temperatures in GaAs/AlGaAs cannot be answered. We should have a
theory for all temperatures. We should find the critical temperature Tc, below which the
superconducting state appears.
The high field limit is taken at the outset. The integer QHE is observed for small integer P only.
The question why the QHE is not observed for large P (weak field) cannot be answered. We
better describe the phenomena for all fields.
The ρH value (Q/P)(h/e2) is obtained in a single stroke. To obtain the Hall resistivity ρH we need
two separate measurements of the Hall field EH and the current density j. We must calculate (EH>
j) and take the ratio: ρH = EH/J.

There is a remarkable similarity between the QHE and the High-Temperature Superconductivity
(HTSC), both occurring in 2D systems. The major superconducting properties observed in the HTSC
are (a) zero resistance, (b) a sharp phase change, (c) the energy gap below Tc, (d) the flux
quantization, (e) Meissner effect, and (f) Josephson effects. All of these have been observed in the
GaAs/AlGaAs interface. We regard phonon-exchange attraction as the cause of both QHE and
superconductivity. Starting with a reasonable Hamiltonian, we calculate everything using standard
statistical mechanics. We develop a unified theory of the integer and fractional quantum Hall effects
in Sections 11.3.3 and 11.3.4.

11.3 Theory of the Quantum Hall Effect
11.3.1 Introduction



Experimental data by Willett et al. [10], reproduced in Figure 11.4, show that the Hall resistivity ρH ≡
EH/j (EH: Hall field, j: current density) in the GaAs/AlGaAs heterojunction at extremely low
temperatures (85–150 mK) has plateaus at various fractional LL occupation ratios (filling factor) v =
P/Q with positive integer P and odd integer Q, where the resistivity ρ ≡ E/j (E: applied field)
vanishes. In particular at v = 1/3, the plateau in ρH and the drop in ρ (not shown) are as distinctive as
the integer QHE plateau and zero resistivity at v = 1, indicating the superconducting state with an
energy gap. The plateau heights are quantized in units of h/e2 (h: Plank constant, e: electron charge
{magnitude}). The ground state of the GaAs/AlGaAs hetero junction at v = 1/Q, can be described in
terms of the Laughlin wavefunction [4, 18]. Laughlin [18, 19] pointed out a remarkable similarity
between the QHE and the cuprate superconductivity, both occurring in 2D. Zhang et al. [20] discussed
the fractional QHE in terms of the c-bosons, each made up of an electron and an odd number of
fluxons. The fermionic nature of the fluxon will be discussed below.

The data shown in Figure 11.4 indicate that the Hall resistivity ρH is linear in B at v = 1/2,
exhibiting a Fermi-liquid state. Jain [14–17] discussed this state and the QHE in terms of the c-
fermions, each made up of an electron and two fluxons. The c-particle appearing at 0 K must have a
lower energy than the constituents (electrons, fluxons), which requires an attractive interaction
Hamiltonian. Following the Bardeen–Cooper–Schriefer (BCS) theory of superconductivity [24],
where the Cooper pair [25] is formed by the phonon-exchange attraction, we regard phonon-exchange
attraction as the cause of the QHE. The most remarkable feature of Laughlin’s theory is his
introduction of the fractional charge for the elementary excitation. The particle-number nonconserving
processes, such as the phonon exchange and the formation of the c-particle, can best be treated using
the second-quantization (field-theoretical) formulation [26]. The Fermi statistics of the electrons
concisely in terms of the anticommutation rules for the creation and annihilation operators.

All QHE states with distinctive plateaus in ρH in GaAs/AlGaAs are observed below around 0.5 K
[18, 19]. We regard this temperature as the critical temperature Tc for the QHE. The Tc can be
recognized by the Hall resistivity plateau. It is desirable to treat both quantum and classical Hall
effects below and above Tc in a unified manner. We shall develop a finite temperature theory, starting
with a reasonable model Hamiltonian and calculating everything using standard quantum statistical
methods. The extreme accuracy (precision ~10−8), in which each plateau value is observed, means
that the current density j must be computed without averaging. We accomplish this using simple
kinetic theory and calculating j in terms of the condensed c-bosons.

The countability concept of the fluxons, known as the flux quantization:

(11.4) 
where A = sample area, N = integer, Φ0 ≡ h/e = flux quantum, was originally due to Onsager [27].
This idea and Onsager’s formula are routinely used in the analysis of the de Haas–van Alphen effect
and the determination of the Fermi surface.

We now discuss the quantum statistics of the fluxons. The magnetic (electric) field is an axial
(polar) vector and the associated fluxon (photon) is a half-spin fermion (full-spin boson), which is in
line with Dirac’s theory [26] that every quantum particle having the position of an observable is a
half-spin fermion. The magnetic (electric) field is an axial (polar) vector and the associated fluxon



(photon) is a half-spin fermion (full-spin boson). The magnetic (electric) flux line cannot (can)
terminate at a sink, which also supports the fermionic (bosonic) nature of the associated fluxon
(photon). No half-spin fermion can annihilate by itself because of angular momentum conservation.
The electron spin originates in the relativistic quantum equation (Dirac’s theory of electron) [26]. The
discrete (two) quantum numbers (σz = ±1) cannot change in the continuous nonrelativistic limit, and
hence the spin must be conserved. The countability and statistics of the fluxon are the fundamental
particle properties, and hence they cannot be derived starting with a Hamiltonian. We postulate that
the fluxon is a half-spin fermion with zero mass and zero charge. Only half-spin fermions can form
composites of definite quantum statistics.

We assume that the magnetic field B is applied perpendicular to the interface. The 2D Landau level
energy:

(11.5) 
with the states (NL, ky), NL = 0, 1, 2, …, have a great degeneracy (hidden variable ky).

We shall develop a microscopic theory of the QHE in analogy with the theory of the cuprate
superconductivity [28].

11.3.2 The Model
The center of mass (CM) of any composite particle (c-particle) moves as a fermion (boson). The
eigenvalues of the CM momentum are limited to 0 or 1 (unlimited) if it contains an odd (even) number
of elementary fermions. This rule is known as the Ehrenfest–Oppenheimer–Bethe (EOB) rule [29,
30]. This rule states that a c-particle with respect to the center of mass motion moves as a fermion
(boson) if it contains an odd (even) number of elementary fermions. Hence, the CM motion of the
composite containing an electron and Q fluxons is bosonic (fermionic) if Q is odd (even). The system
of c-bosons condenses below some critical temperature Tc and exhibits a superconducting state while
the system of c-fermions shows a Fermi liquid behavior.

A longitudinal phonon, acoustic or optical, generates a density wave, which affects electron
(fluxon) motion through charge displacement (current). The exchange of a phonon between electron
and fluxon generates an attractive transition. The phonon exchange between two electrons generates a
transition in the electron states with the effective (attractive) interaction, see (4.94):

(11.6) 
where εk is the electron energy, ħωq the phonon energy, and Vq the electron–phonon interaction
strength. Let us assume an interface formed in (001). The planar arrays of Ga3+(A) and As3-(B) are
located alternately in equilibrium along 100  as ABA’B’AB. A longitudinal phonon, acoustic or
optical, running in 100  can generate a density wave which affects the electron (fluxon) motion by the
ionic charge displacement (current). The same condition also holds in 010 . The lattice wave
proceeding in the (001) plane can be regarded as a superposition of the waves proceeding in 100
and 010 , and hence the associated phonon can generate a 2D charge-density wave, and the electron
(fluxon)–phonon interaction.

The exchange of a phonon between an electron and a fluxon also generates a transition in the



electron states with the effective (attractive) interaction:

(11.7) 
where V′q(Vq) is the fluxon–phonon (electron–phonon) interaction strength. The Landau oscillator
quantum number NL is omitted; the bold k denotes the momentum (ky) and the italic k(= |k|) the
magnitude. There are two processes, one with the absorption of a phonon with momentum q and the
other with the emission of a phonon with momentum −q, see Figure 11.6a and b, which contribute to
the effective interaction with the energy denominators (ε|k+q| − εk − ħωq)−1 and (ε|k+q| − εk − ħωq)−1,
generating (11.7). The interaction is attractive (negative) and most effective when the states before
and after the exchange have the same energy (ε|k+q| − εk = 0) as in the degenerate LL.

Figure 11.6 (a,b) Two phonon (wavy line) exchange processes, which contribute to the effective
interaction in (11.7).

BCS [24] assumed the existence of Cooper pairs [25] in a superconductor, and wrote down a
Hamiltonian containing the “electron” and “hole” kinetic energies and the pairing interaction
Hamiltonian with the phonon variables eliminated, see Section 7.4. We start with a BCS-like
Hamiltonian  for the present model system:

(11.8) 
where nks

(j) = cks
(j)†cks

(j) is the number operator for the “electron” (1) (“hole” (2), fluxon(3)) at
momentum k and spin s with the energy εk,s

(j), with annihilation (creation) operators c(c†) satisfying
the Fermi anticommutation rules:

(11.9) 
The fluxon number operator nks

(3) is represented by aks
†aks with a(a†) satisfying the anticommutation

rules:

(11.10) 
The phonon exchange can create electron–fluxon composites, bosonic or fermionic, depending on

the number of fluxons. The center of mass of any composite moves as a fermion (boson) if it contains
odd (even) numbers of elementary fermions. We call the conduction-electron composite with an odd
(even) number of fluxons the composite (c-) boson (c-fermion). The electron (hole)-type c-particles



carry negative (positive) charge. We expect that electron (hole)-type Cooper-pair-like c-bosons are
generated by the phonon-exchange attraction from a pair of electron (hole)-type c-fermions. The pair
operators B are defined by

(11.11) 
The prime on the summation in (11.8) means the restriction: 0 < εks

(j) < ħωD, ΩD = Debye frequency.
The pairing interaction terms in (11.8) conserve the charge. The term −v0Bk’qs

(1)†Bkqs
(1), where v0 ≡

|VqV′q|(ħω0A)−1, A = sample area, is the pairing strength, generates a transition in the electron-type c-
fermion states, see Figure 7.16a. Similarly, the exchange of a phonon generates a transition between
the hole-type c-fermion states, see Figure 7.16b, represented by −v0Bk’qs

(2)†Bkqs
(2)†. The phonon

exchange can also pair-create (pair-annihilate) electron (hole)-type c-boson pairs, and the effects of
these processes are represented by −v0Bk’qs

(1)†Bkqs
(2)† (−v0Bkqs

(1)Bkqs
(2)), see Figure 7.18a,b.

The pairing interaction terms in (11.8) are formally identical to those in (7.23). Only we deal here
with c-fermions instead of conduction electrons. We denote creation and annihilation operators by the
same symbols c.

We now extend our theory to include elementary fermions (electron, fluxon) as members of the c-
fermion set. The Cooper pair (electron, electron) is regarded as the c-boson. We can then treat the
superconductivity and the QHE in a unified manner. The c-boson containing one electron and one
fluxon can be used to describe the integer QHE as we see later in this chapter.

We shall use the Hamiltonian  in (11.8) and discuss both integer and fractional QHE. We also use
the same Hamiltonian to describe the QHE in graphene in the following chapter.

11.3.3 The Integer QHE
We start with the Hamiltonian  in (11.8). We regard conduction electrons and fluxons as c-fermions
(building blocks). The pair operators,

(11.12) 
are introduced, where we drop the spin indices. The upper indices j = 1(2) mean “electron” (“hole”).
The interaction Hamiltonians

pair-create (pair-annihilate) electron-type c-bosons and hole-type c-bosons. The c-bosons containing
one electron and one fluxon, formed at v = 1, will be called the fundamental (f) c-bosons. See Figure
7.18a,b. The c-bosons can be bound and stabilized by the interaction Hamiltonians −v0Bk’q

(j)†Bkq
(j).

The fc-bosons (fundamental c-bosons) can undergo the Bose–Einstein condensation (BEC) below the
critical temperature Tc. The fc-bosons condensed at a momentum along the sample length are shown
in Figure 11.7a. Above Tc, they can move in all directions in the plane as shown in Figure 11.7b.

Figure 11.7 ±fc-bosons at 0 K (or below Tc) (a) and noncondensed fc-bosons above Tc (b).



First take the -fc-boson. The ground state energy w0 can be calculated by solving the Cooper-like
equation [25]:

(11.13) 
where Ψ is the reduced wavefunction for the stationary fc-bosons; we neglected the fluxon energy. We
obtain after simple calculations

(11.14) 
where 0 ≡ (εF) is the density of states per spin. Note that the binding energy |w0| does not depend on
the “electron” mass. Hence, the ±fc-bosons have the same energy w0.

At 0 K only stationary fc-bosons are generated. The ground state energy W0 of the system of fc-
bosons is

(11.15) 
where N0 is the −(or+) fc-boson number.

At a finite T there are moving (noncondensed) fc-bosons, whose energies wq
(j) are obtained from

[25, 32]

(11.16) 
which is reduced to (11.12) in the small momentum (magnitude) q limit (Problem 11.3.1). For small
q, we obtain

(11.17) 
where vF

(j) ≡ (2εF/mj)1/2 is the Fermi speed. The brief derivation of the formulas (11.16) and (11.17)
is given in Appendix A.6. The energy wq

(j) depends linearly on the momentum q. The linear
dispersion relation for the 3D Cooper pair was obtained by Cooper (unpublished), and was recorded
in Schrieffer’s book [31]. By the way, the same linear dispersion relation (11.22) also holds for the
2D Cooper pair in high Tc cuprate superconductors [28]. This relation was clearly observed in the
lowest energy region by Lanzara et al. [33] with Angle-Resolved Photoemission (ARPS)
Spectroscopy. Formula (11.19) for the critical temperature, see below, also holds for the cuprates
[28].



The system offree massless bosons undergoes a BEC in 2D at the critical temperature [28]:
(11.18) 

where c is the boson speed, and n the density. The brief derivation is given in Appendix A.6. This is
not a violation of Hohenberg’s theorem that there be no long-range order in 2D, which is obtained
using an f-sum rule (mass conservation). The theorem does not hold for massless bosons. Substituting
c = 2/πvF in (11.18), we obtain [32] (Problem 11.3.2)

(11.19) 
The interboson distance R0 ≡  calculated from this equation is 1.24ħvF/(kBTc). The boson size r0
calculated from (11.18), using the uncertainty relation (qmaxr0 ~ ħ) and |w0| ~ kBTc, is r0 = (2/π)ħvF(kB

Tc)−1, which is a few times smaller than R0. Thus, the bosons do not overlap in space, and the free
boson model is justified.

Let us take GaAs/AlGaAs. We assume m* = 0.067 me, me = electron mass. For the electron density
1011 cm−2, we have vF = 1.36 × 106 cm s−1. Not all electrons are bound with fluxons since the
simultaneous generation of ± fc-bosons is required. If we assume n0 = 1010 cm−2, we obtain Tc = 1.29
K which is reasonable. The precise measurement of Tc may be made in a sample of constricted
geometry. The plateau width should vanish at Tc since εg = 0.

In the presence of the Bose condensate below Tc the unfluxed electron carries the energy 
, where the quasielectron energy gap Δ is the solution of

(11.20) 
where β ≡ (kBT)−1 and 0 ≡ (εF) is the density of states per spin. Note that the gap Δ depends on T.
At Tc there is no condensate and hence Δ vanishes. The moving fc-boson below Tc with the
condensate background has the energy q, obtained from

(11.21) 
where E(j) replaced ε(j) in (11.16). We obtain

(11.22) 
where 0(T) is determined from

(11.23) 
The energy difference,

(11.24) 
represents the T-dependent gap between the moving and stationary fc-bosons. The energy q is



negative. Otherwise, the fc-boson should break up. This limits εg(T) to be less than |w0|. Hence, the
energy gap εg(T) is |w0| at 0 K. It declines to zero as the temperature approaches Tc from below.

The fc-boson, having the linear dispersion relation (11.17) or (11.22), can move in all directions in
the plane with the constant speed (2/π)vF

(j). The supercurrent is generated by fc-bosons
monochromatically condensed, running along the sample length, see Figure 11.7a. The supercurrent
density (magnitude) j, calculated by the rule: j = (charge) × (carrier density) × (drift velocity), is
given by

(11.25) 
where e* is the effective charge. The induced Hall field (magnitude) EH equals vdB. The magnetic
flux is quantized:

(11.26) 
Hence we obtain

(11.27) 
For e* = e, nϕ = n0, ρH = h/e2, explaining the plateau value observed.

The supercurrent generated by equal numbers of fc-bosons condensed monochromatically is
neutral. This is reflected in the calculations in (11.25). The supercondensate whose motion generates
the supercurrent must be neutral. If it has a charge, it would be accelerated indefinitely by the external
field because the impurities and phonons cannot stop the supercurrent growing. That is, the circuit
containing a superconducting sample and a battery must be burnt out if the supercondensate is not
neutral. In the calculation of ρH in (11.27), we used the unaveraged drift velocity difference (2/π)|vF

(1)

− vF
(2)|, which is significant. Only the unaveraged drift velocity cancels out exactly from

numerator/denominator, leading to an exceedingly accurate plateau value. Thus, we explained why the
precise plateau value in h/e2 can be observed in experiment.

The conduction electrons are scattered by phonons and impurities. The drift velocity vd depends on
the scattering rate, and ρH is proportional to the field B while ρ is finite. Immediately above Tc the
noncondensed fc-bosons moving in all directions, see Figure 11.7b, dominate the magnetotransport,
and should show a non-Fermi liquid behavior.

The resistivity ρ at v = 1 exponentially rises on both sides, see Figure 11.4. This can be explained
as follows. The excited fc-boson has an energy gap εg. Hence, its density has an Arrhenius-law
Boltzmann factor

(11.28) 
where εg(|Bc|, T) approaches zero at the super-to-normal boundary. After the field difference from the
center B1 ≡ ncΦ0 = nc(h/e), Bc, passes the boundary, ρ returns to normal since the carrier density loses
the Boltzmann factor.



In summary the moving fc-boson below Tc has an energy gap εg, generating the stable plateau. The
fc-bosons condensed at a finite momentum account for the supercurrent with no resistance and the
plateau value equal to h/e2.

The theory developed in Section 11.3 can simply be extended to the integer QHE. The field
magnitude is smaller at v = P = 2, 3, … The LL degeneracy is proportional to B, and hence P LLs
must be considered. First consider the case P = 2. Without the phonon-exchange attraction the
electrons occupy the lowest two LLs with spin. The electrons at each level form fc-bosons. See
Figure 11.8a and b. The fc-boson density n0 at each LL is one-half the density at v = 1, which is equal
to the electron density ne fixed for the sample. Extending the theory to a general integer, we have

Figure 11.8 (a) Landau levels for electron; (b) fc-boson energy bands. The c-fermions which fill up
the lowest two LLs, form the QH state at v = 2 after the phonon-exchange attraction and the BEC of
the fc-bosons.

(11.29) 
This means that both Tc(∝ n0

1/2) and εg are smaller, making the plateau width (a measure of εg)
smaller in agreement with experiments, see Figure 11.4. The fc-boson has a lower energy than the
conduction electron. Hence, at the extreme low temperatures the supercurrent due to the condensed fc-
bosons dominates the normal current due to the conduction electrons and noncondensed fc-bosons,
giving rise to the dip in ρ. All dips should reach zero if the temperature is further lowered, see Figure
11.3, where the data at 60 mK reported by Tsui [3] are shown. The QHE states with small integers (v
= 1, 2, …, 6) are clearly visible. Other QHE states with greater P are overshadowed by the
neighboring QHE states with small P.
Problem 11.3.1. Verify that (11.16) is reduced to (11.13) in the small q-limit.
Problem 11.3.2. Derive (11.19).

11.3.4 The Fractional QHE
Let us consider a general case v = P/Q, odd Q. Assume that there are P sets of c-fermions with Q − 1
fluxons, which occupy the lowest P LLs, see Figure 11.9a, where we choose Q = 3, P = 2. The c-
fermions subject to the available B-field form c-bosons with Q fluxons, see Figure 11.9b. Note the
similarity between Figures 11.8 and 11.9. In this configuration the c-boson density n0 is given by
(11.29) and the fluxon density nϕ is given by



Figure 11.9 The QHE state at v = 2/3. (a) The c-fermions, each with two fluxons, occupy fully the
lowest two LLs; (b) With the phonon exchange, c-bosons, each with three fluxons, are created and
occupy the energy bands with the energy gap εg.

(11.30) 
Using (11.27), (11.29), and (11.30), we obtain

(11.31) 
as observed. We see that the integer Q indicates the number of fluxons in the c-boson and the integer P
the number of LLs occupied by the parental c-fermions, each with Q − 1 fluxons. To derive the last
equality in (11.31), ρH = (Q/P)(h/e2), we assumed the fractional charge,

(11.32) 
following Laughlin [18, 19] and Haldane [34]. Equation (11.25) along with (11.29) and (11.30) yield
that Tc decreases as P−1/2 with increasing P. Jain’s hierarchy of fractionals can be obtained by
examining the fractional around 1/2, using (11.29) and (11.30).

11.4 Discussion
Jain’s unification scheme suggests that the fermion nature of electrons and c-fermions must be
considered in the formulation of the c-bosons, whose condensation was thought to generate the QHE.
We have incorporated this feature in our c-boson formation model, where the lowest P LLs are filled
by c-fermions with Q − 1 fluxons without the phonon exchange, while c-bosons with Q fluxons are
formed with it. In the course of the derivation of (11.31), we found (11.29), which allows us to
discuss the stability of the QHE states quantitatively. For example, the plateau width is almost the
same at v = 3/7 and 3/5 in Figure 11.4. The small difference can arise from the vF difference due to
the effective mass difference associated with the parental c-fermions with Q = 6 and 4. Equations
(11.6) and (11.19) indicate that both Tc and εg decrease as P−1/2 with increasing P. This trend is in
agreement with all of the plateaus and dips identified in Figure 11.4. Equation (11.6) also means that
no QHE is realized for very large P since Tc becomes less than the observation temperature. We
predict that many features appearing in Figure 11.4 are greatly reduced at the extremely low
temperatures, say 10 mK, so that the only remaining features are the broad plateaus in ρH and the
accompanying zero resistivity at v = 1/Q, odd Q separated by the drops in ρH and the sharply peaked
ρ at v = 1/Q, even Q similar to the behavior observed in Figure 11.4.

In summary the QHE state at v = P/Q odd Q is shown to be the superconducting state with an energy



gap generated by the condensed c-bosons, each with Q fluxons carrying the fractional charge e/Q. In
the present theory the effective field B* is defined in the form due to Jain [14–17]:

(11.33) 
with v being fermionic (bosonic) fractions P/Q, even (odd) Q. This means that the c-particles move
field-free at the exact fraction. For odd Q the c-bosons, if condensed, can move undisturbed due to the
Meissner effect under a small effective Note added in proof In this Chapter 11 the fractional quantum
Hall effect is treated by using Laughlins theory and results about the fractional charges carried by
composite bosons. It is found that the quantum statistical theory in terms of composite particles is
more comprehensive. All phenomena about the fractional quantum Hall effect can be described within
the frame work of our quantum statistical theory as given in our paper [35].
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Chapter 12

Quantum Hall Effect in Graphene

The unusual Quantum Hall Effect (QHE) in graphene is often discussed in terms of Dirac fermions
moving with a linear dispersion relation. The same phenomenon will be explained in terms of the
more traditional composite bosons, which move with a linear dispersion relation. The “electron”
(wavepacket) moves more easily in the direction [110c-axis] ≡ [110] of the honeycomb lattice than
perpendicular to it, while the “hole” moves more easily in [001]. Since “electrons” and “holes” move
in different channels, the number densities can be high especially when the Fermi surface has “necks.”
The strong QHE at filling factor v = 2 arises from the phonon-exchange attraction in the neighborhood
of the “neck” Fermi surfaces. The plateau observed for the Hall conductivity is due to the Bose–
Einstein condensation of the composite bosons, a pair of c-ferimons, each having one electron and
two fluxons.

12.1 Introduction
Experiments [1–3] indicate that there are two kinds of oscillations for the magnetoresistivity ρ in
graphene when plotted as a function of the external magnetic field (magnitude) B. Shubnikov–de Haas
(SdH) oscillations appear on the low-field side while Quantum Hall Effect (QHE) oscillations
appear on the high-field side. We present a microscopic theory. We start with the graphene
honeycomb crystal, construct a two-dimensional Fermi surface for the electron dynamics, develop a
Bardeen–Cooper–Schrieffer (BCS)-like theory [4] based on the phonon-exchange attraction between
the electron and the fluxon [5], and describe the QHE [6]. The 2D Landau Levels (LL) generate an
oscillatory density of states. If multiple oscillations occur within the drop of the Fermi distribution
function, then the SdH oscillation emerges for the magnetoconductivity. This means that the carriers in
the SdH oscillations must be fermions. The QHE arises from the condensed composite bosons.

In 2005 Novoselov et al. [1] discovered a QHE in graphene. The gate field effects in graphene are
reproduced in Figure 12.1 after [1, Figure 1]. The conductivity σ as a function of gate voltage Vg is
shown in Figure 12.1a while the Hall coefficient RH measured at magnetic field B = 2T is shown in
Figure 12.1b, where RH = 1/ne, with n being the conduction electron density, is inverted to show the
n-linear dependence:

Figure 12.1 The gate field effects in graphene. Graphene’s conductivity in (a) σ (a) and Hall
coefficient RH (b) as a function of gate voltage Vg. RH was measured in magnetic fields B of 2T. RH
= 1/ne is inverted to emphasize the linear dependence n ∝ Vg. The Hall coefficient changes its sign
near Vg = 0.
After [1, Figure 1].



(12.1) 
The 1/RH diverges near Vg = 0. The linear relation fit (12.1) yields

(12.2) 
The conductivity σ(a) rises linearly on both sides at high Vg:

(12.3) 
This behavior is similar to the case of a metallic single-wall nanotube (SWNT), see Figure 8.8
(inset), where the σ-V curve for a metallic SWNT is shown. Graphene and SWNTs have the same
configuration but they have different conformations; they have unrolled and rolled graphene sheets.
The gate voltage generates the mobile surface charges (“electrons,” “holes”). Upon application of a
bias voltage, the “holes” will move and generate additional charge currents:

(12.4) 
with vF being the Fermi speed. The mobility defined by

(12.5) 
reaches 15 000cm−2V−1s−1 in the experiments. This μ-behavior is observed independent of
temperature T between 10 and 100 K.

We offer a physical explanation of the σ-Vg curve in Figure 12.1a.
The currents near the origin are due to the supercurrents given by (see (8.67))

(12.6) 
where n0 is the condensed c-boson density, and v1 (v2) are Fermi speeds of the “electron” (“hole”).
The system is in a superconducting state in the experimental temperature range: 10–100 K. Thus, the
curve should be temperature-independent. It is very important to find the superconducting temperature
Tc for the system. We predict that the critical temperature Tc is essentially the same for both graphene



and metallic SWNT. The σ-Vg curve appears to have a perfect right–left symmetry. This indicates that
the carriers are only “holes”, and not “holes” and “electrons.” Only “holes” can move along the
surface boundary as explained earlier. This can be checked by Hall effect measurements.

Figure 12.2 is reproduced after [1, Figure 2]. The magnetoresistivity ρxx at T = 10 K and Vg = −60
V is plotted as a function of magnetic field B(T), exhibiting SdH oscillations. The ρxx-B curve is
remarkably similar to that in Figure 10.5, the lowest curve, where the SdH oscillations in the
GaAs/AlGaAs heterojunction are shown. We can interpret the data in the same manner.

Figure 12.2 The SdH oscillations in graphene at gate voltage Vg = −60V, temperature
T = 10 K. The longitudinal resistivity ρxx (kΩ) is plotted as a function of magnetic field B(T).

After [1, Figure 2].

The 2D SdH oscillations have the following features:
(a) The absence of the Landau diamagnetism. This appears as a flat background.
(b) The oscillation period is εF(ħωc), where ωc ≡ eB/m*, m* = cyclotron mass, is the cyclotron
frequency.
(c) The envelope of the oscillations decreases like [sinh(2π2 M*kBT/(ħB))]−1, where M* is the
magnetotransport mass distinct from the cyclotron mass m*.

The SdH oscillations in graphene are temperature-dependent. The features evident at 10 K nearly
disappear at 140 K in the experiments (not shown).

Figure 12.3 is reproduced after [1, Figure 4]. The longitudinal magnetoresistivity ρxx and the Hall
conductivity σxy in graphene at B = 14 T and T = 4 K are plotted as a function of the conduction
electron density n (~ 1012 cm−2).

Figure 12.3 QHE in graphene.
After Novoselov et al. [1].



The plateau values of the Hall conductivity σxy are quantized in the units of

(12.7) 
within experimental errors. The longitudinal resistivity ρxx reaches zero at the middle of the plateaus.
These two are the major signatures of the QHE. The strengths of the (superconducting) states decrease
with increasing filling factor v, see (11.29), as observed in this figure. We will further discuss the
features in Figure 12.3 later.

In 2007 Novoselov et al. [4] reported the discovery of a room-temperature QHE. We reproduced
their data in Figure 12.4 after [7, Figure 1]. The Hall resistivity ρxy for “electrons” and “holes”
indicates precise quantization within experimental errors in units of h/e2 at magnetic field 45 T and
temperature 300 K. This is an extraordinary jump in the observation temperatures since the QHE in
the GaAs/AlGaAs heterojunction was reported below 1 K. Figure 12.4 is similar to Figure 12.3
although the abscissas are different, one in gate voltage and the other in carrier density, and hence the
physical conditions are different. We give an explanation below.

Figure 12.4 Room-temperature QHE in graphene after Novoselov et al. [7]. Hall conductivity σxy

(e2/h) (dark) and resistance ρxx (light) as a function of gate voltage (Vg) at temperature 300 K and
magnetic field 29 T. Positive values of Vg induce “electrons,” and negative values of Vg induce
“holes,” in concentrations n = (7.2 × 1010cm−2V−1)Vg.



The QHE behavior observed for graphene is remarkably similar to that for the GaAs/AlGaAs. The
physical conditions are different, however, since the gate voltage and the applied magnetic field are
varied in the experiments. The present authors regard the QHE in GaAs/AlGaAs as the
superconductivity induced by the magnetic field. Briefly, the magnetoresistivity for a QHE system
reaches zero (superconducting) and the accompanying Hall resistivity reveals a plateau (Meissner
effect). The QHE state is not easy to destroy because of the superconductivity energy gap in the
composite boson (c-boson) excitation spectrum. If an extra magnetic field is applied to the system at
optimum QHE state (the center of the plateau), then the system remains in the same superconducting
state by expelling the extra field. If the field is reduced, then the system stays in the same state by
sucking in extra field fluxes, thus generating a Hall resistivity plateau. In the graphene experiments,
the gate voltage applied perpendicular to the plane is varied. A little extra voltage relative to the gate
voltage at the center of zero resistivity polarizes the system without changing the superconducting
state. Hence, the system remains in the same superconducting state, keeping zero resistivity and
constant (flat) Hall resistivity. This state has an extra electric field energy:

(12.8) 
where A is the sample area, ε0 the dielectric constant, and ΔE is the extra electric field, positive or
negative, generated by the sample charge. If the gate voltage is further increased (or decreased), then
it will eventually destroy the superconducting state, and the resistivity will rise from zero. This
explains the flat ρxy plateau and the rise in resistivity from zero.

The original authors found that the quantization in σxy is exact within experimental accuracy (0.2%)
as shown in Figure 12.5 which is reproduced after [7, Figure 1c], where the Hall resistance Rxy at
45T and 300 K is plotted as a function of the electron density. The quantization in Rxy appears at
h/(2e2), which is a little strange since the most visible quantization for GaAs/AlGaAs appears at h/e2.

Figure 12.5 Hail resistivity Rxy(h/e2) for “electrons” (dark circles) and “holes” (light circles) shows
the exact quantization within experimental errors at 45 T and 300 K, after Novoselov et al. [7].



From the QHE behaviors in Figures 12.3 and 12.5, we observe that the quantization occurs at a set
of points:

(12.9) 
Let us first consider the case: P = 0. The QHE requires a Bose–Einstein condensation (BEC) of c-
bosons. Its favorable environment is near the van Hove singularities, where the Fermi surface
changes its curvature sign. For graphene, this happens when the 2D Fermi surface just touches the
Brillouin zone boundary and “electrons” or “holes” are abundantly generated. Following our recent
work [8], we shall explain the quantization rule given by (12.9) with the assumption that the c-bosons
are formed from a pair of like charge c-fermions, each containing a conduction electron and two
fluxons.

We postulate that each and every c-fermion has the effective charge e:

(12.10) 
After studying the weak-field fermionic QH state we obtain

(12.11) 
for the density of the c-fermions with Q fluxons, where ne is the electron density. The points of QHE
lie on the straight line when ρH plotted as a function of the magnetic field as seen in Figure 12.4.
Physically when Q is high, the LL separation is great and the c-fermion formation is more difficult.
The c-boson contains two c-fermions. We calculate the Hall conductivity σH and obtain



(12.12) 
where n0 is the c-boson density and nϕ the fluxon density at v = 1/2.

The QHE states with integers P = 1, 2, ··· are generated on the weaker field side. Their strength
decreases with increasing P. Thus, we have obtained the rule (12.9) within the framework of the
traditional fractional QHE theory [4].

In summary, we have successfully described the QHE in graphene without introducing Dirac
fermions. In solid state physics we deal with “electrons” and “holes”, which move in crystals and
respond to the Lorentz force. These charged particles are considered as Bloch wave packets having
size and charges (not a point particle). The bare point-like Dirac particle, if it exists, would be
dressed with charge cloud, and it would then acquire a mass. It is very difficult to theoretically argue
that Dirac fermions appear only in graphene but nowhere. The relativistic Dirac electron moves at the
speed of light, c. The observed particle in graphene moves at a speed of the order of 108 ms−1, which
is much lower than the speed of light c = 3 × 108ms−1. It is difficult to explain this difference of two
orders of magnitude from first principles. The Dirac fermion model is inherently connected to the
Wigner-Seitz cell model, which is rejected in favor of the rectangular unit cell model in this book.
The plateau observed for the Hall conductivity σH is caused by the condensed c-bosons. The plateau
behavior arises from the superconducting state and hence it is unlikely to be explained based on the
Dirac fermion model.
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Chapter 13

Seebeck Coefficient in Multiwalled Carbon
Nanotubes

Strictly speaking, the Seebeck coefficient, S, also called the thermoelectric power, is not an electrical
transport property. But as we see below, the measurement of Seebeck coefficients gives important
information about the carriers in electrical transport. Because of this we discuss the Seebeck
coefficient in this chapter.

On the basis of the idea that different temperatures generate different carrier densities and the
resulting carrier diffusion generates a thermal electromotive force (emf), a new formula for the
Seebeck coefficient (thermopower) S is obtained:

where kB is the Boltzmann constant, q, n, εF, and 0 are charge, carrier density, Fermi energy, and the
density of states at εF, respectively. Ohmic and Seebeck currents are fundamentally different in nature,
and hence, cause significantly different transport behaviors. For example, the Seebeck coefficient S in
copper (Cu) is positive, while the Hall coefficient is negative. In general, the Einstein relation
between the conductivity and the diffusion coefficient does not hold for a multicarrier metal.
Multiwalled carbon nanotubes are superconductors. The Seebeck coefficient S in multiwalled carbon
nanotubes is shown to be proportional to the temperature T above the superconducting temperature Tc
based on the model of Cooper pairs as carriers. The S below Tc follows a temperature behavior:

where T′g is constant at the lowest temperatures.

13.1 Introduction
In 2003 Kang et al. [1] observed a logarithmic temperature (T)-dependence for the Seebeck
coefficient S in multiwalled carbon nanotubes (MWNTs) at low temperatures. Their data are
reproduced in Figure 13.1 after [1, Figure 2], where S/T are plotted on a logarithmic temperature
scale. Above 20 K S is proportional to T:

Figure 13.1 Low-temperature Seebeck coefficient S of MWNTs plotted as S/T on a logarithmic
temperature scale
(reproduced from [1, Figure 2]).



(13.1) 
Below 20 K the curves follow a logarithmic behavior:

(13.2) 
The data are shown for three samples with different doping levels: A, B, and C. If a system of free
electrons with a uniform distribution of impurities is considered, then the Seebeck coefficient, also
called the thermoelectric power, S is temperature-independent which will be shown in Section 13.6.
Hence, the behavior of T in both (13.1) and (13.2) is unusual. If the Cooper pairs (pairons) [2] are
charge carriers and other conditions are met, then both (13.1) and (13.2) are explained
microscopically, which is shown in this chapter.

The extended data up to 300 K obtained by Kang et al. [1] are shown in Figure 13.2, after [1,
Figure 1]. In Figure 13.2a the S of MWNTs is shown, indicating a clear suppression of S from
linearity below 20 K as seen in the lower-right inset. In Figure 13.2b, the Seebeck coefficient S of
highly oriented single-crystal pyrolytic graphite (HOPG) is shown. This S is negative (“electron”-
like) at low temperatures and become positive (“hole”-like) and constant above 150 K:

Figure 13.2 (a) The temperature dependence of thermoelectric power of MWNTs at several doping
levels. The suppression of TEP from linearity at low temperatures is clearly shown in the lower-right
inset (the line represents a linear T dependence). (b) The thermoelectric power of single-crystal
HOPG and glassy carbons. No suppression can be recognized for both as T → 0
(reproduced from [1, Figure 1]).



(13.3) 
The “electron” (“hole”) is a quasielectron which has an energy higher (lower) than the Fermi

energy and which circulates counterclockwise (clockwise) when viewed from the tip of the applied
magnetic field vector. “Electrons” (“holes”) are excited on the positive (negative) side of the Fermi
surface with the convention that the positive normal vector at the surface points in the energy-
increasing direction. Graphite is composed of ABAB-type graphene layers. The different T-behaviors
for graphite (3D) and MWNTs (2D) should arise from the different carriers. We will show that the
majority carriers in graphene and graphite are “electrons” while the majority carriers in MWNT are
“holes” based on the rectangular unit cell model, which is shown in Sections 13.5 and 13.6. Note that
conduction electrons are denoted by quotation marked “electrons” (“holes”) whereas generic
electrons are denoted without quotation marks.



13.2 Classical Theory of the Seebeck
Coefficient in a Metal
We now take a system of free electrons with mass m and charge −e with a uniform distribution of
impurities which act as scatterers. We assume that a free classical electron system in equilibrium is
characterized by the ideal gas condition so that the average electron energy ε depends on the
temperature T only:

(13.4) 
where n is the electron density. The electric current density j is given by

(13.5) 
where v is the average velocity. We assume that the density n is constant in space and time. If there is
a temperature gradient, then there will be a current as shown below. We assume first a one-
dimensional (1D) motion. The velocity field v depends on the temperature T, which varies in space.

Assume that the temperature T is higher at x + Δx than at x:
(13.6) 

Then

(13.7) 
The diffusion and heat conduction occur locally. We may choose Δx to be a mean free path:

(13.8) 
which is constant in our system. Then the current j is, from (13.5),

(13.9) 
When a metallic bar is subjected to a voltage (V) or temperature (T) difference, an electric current

is generated. For small voltage and temperature gradients we may assume a linear relation between
the electric current density j and the gradients:

(13.10) 
where E ≡ − ∇V is the electric field and σ the conductivity. If the ends of the conducting bar are
maintained at different temperatures, no electric current flows. Thus, from (13.10), we obtain

(13.11) 
where ES is the field generated by the Seebeck electromotive force (emf). The Seebeck coefficient S
is defined through

(13.12) 
The conductivity σ is positive, but the Seebeck coefficient S can be positive or negative. The
measured Seebeck coefficient S in Al at high temperatures (400–670°C) is negative, while the S in
noble metals (Copper (Cu), silver (Ag), and gold (Au)) are positive as shown in Figure 13.3.



Figure 13.3 High-temperature Seebeck coefficients above 400°C for Ag, Al, Au, and Cu. The solid
and dashed lines represent two experimental data sets. Taken from [3]. The discontinuities arise from
melting.

On the basis of the classical idea that different temperatures generate different electron drift
velocities, we obtain the Seebeck coefficient (Problem 13.3.1):

(13.13) 
where c  is the heat capacity per unit volume and n the electron density. Using (13.8)–(13.10), we
obtain

(13.14) 
The conductivity σ is given by the Drude formula:

(13.15) 
Thus, the Seebeck coefficient S is, using (13.14) and (13.15),

(13.16) 
where

(13.17) 
is the heat capacity per electron.

Our theory can be extended simply for 3D motion. The equipartition theorem holds for the classical
electrons:

(13.18) 
where the angular brackets mean the equilibrium averages. Hence, the average energy is



(13.19) 
We obtain

(13.20) 
Using this, we obtain the Seebeck coefficient for 3D motion as

(13.21) 
where

(13.22) 
is the heat capacity per electron. The heat capacity per unit volume, c , is related to the heat capacity
per electron, c, by

(13.23) 
Setting c  equal to 3nkB/2 in (13.13), we obtain the classical formula for S:

(13.24) 
Observed Seebeck coefficients in metals at room temperature are of the order of microvolts per

degree (see Figure 13.3), a factor of ten smaller than Sclassical. If we introduce the heat capacity
computed using Fermi statistics [4] (Problem 13.3.2)

(13.25) 
where TF(εF) is the Fermi temperature (energy), we obtain

(13.26) 
which is often quoted in materials handbook [3]. Formula (13.26) remedies the difficulty with respect
to the magnitude. But the correct theory must explain the two possible signs of S besides the
magnitude. Fujita, Ho, and Okamura [5] developed a quantum theory of the Seebeck coefficient. We
follow this theory below.

13.3 Quantum Theory of the Seebeck
Coefficient in a Metal
Let us recall that “electrons” (“holes”) are thermally excited above (below) the Fermi energy. This
means that the existence of “holes” by itself is a quantum effect.

We assume that the carriers are conduction electrons (“electron”, “hole”) with charge q (−e for
“electrons,” +e for “holes”) and effective mass m*. Assuming a one-component system, the Drude
conductivity σ is given by



(13.27) 
where n is the carrier density and τ the mean free time. We observe from (13.27) that σ is always
positive irrespective of whether q = −e or +e. The Fermi distribution function f is

(13.28) 
where μ is the chemical potential whose value at 0 K equals the Fermi energy εF. The voltage
difference ΔV = LE, with L being the sample length, generates the chemical potential difference Δμ,
the change in f, and consequently, the electric current. Similarly, the temperature difference ΔT
generates the change in f and the current.

At 0 K the Fermi surface is sharp and there are no conduction electrons (“electrons,” “holes”). At a
finite T, “electrons” (“holes”) are thermally excited near the Fermi surface if the curvature of the
surface is negative (positive), see Figures 13.4 and 13.5. We assume a high Fermi degeneracy:

(13.29) 

Figure 13.4 (a,b) More “electrons” (dots) are excited above the Fermi surface (solid line) at the
high-temperature end: T2(> T1). The shaded area denotes the electron-filled states. “Electrons”
diffuse from (b) to (a).

Figure 13.5 (a,b) More “holes” (open circles) are excited below the Fermi surface at the high-
temperature end: T2(> T1). “Holes” diffuse from (b) to (a).

Consider first the case of “electrons.” The number of thermally excited “electrons,” Nx, having
energies greater than the Fermi energy εF is defined and calculated as (Problem 13.3.3)



(13.30) 
where 0 ≡ (εF) is the density of states at ε = εF. The excited “electron” density n ≡ Nx/ , where 
is the sample volume, is higher at the high-temperature end, and the particle current runs from the
high- to the low-temperature end. This means that the electric current runs towards (away from) the
high-temperature end in an “electron” (“hole”)-rich material. After using formula (13.12), we find

(13.31) 
The Seebeck current arises from the thermal diffusion. We assume Fick’s law:

(13.32) 
where D is the diffusion constant, which is computed from the kinetic-theoretical formula:

(13.33) 
where d is the dimension in this chapter. The density gradient ∇n is generated by the temperature
gradient ∇T, and is given by

(13.34) 
where (13.30) is used. Using the last three equations and (13.10), we obtain

(13.35) 
Using (13.10), (13.27), and (13.35), we obtain (Problem 13.3.4)

(13.36) 
The mean free time τ cancels out from the numerator and denominator.

The derivation of our formula (13.36) for the Seebeck coefficient S was based on the idea that the
Seebeck emf arises from the thermal diffusion. We used the high Fermi degeneracy condition (13.29):
TF  T. The relative errors due to this approximation and due to the neglect of the T-dependence of μ
are both of the order (kBT/εF)2. Formula (13.36) can be negative or positive, while the materials
handbook formula (13.26) has a negative sign. The average speed v for highly degenerate electrons is
equal to the Fermi velocity vF (independent of T). In Ashcroft and Mermin’s book [4], the origin of a
positive S in terms of a mass tensor M = {mij} is discussed. This tensor M is real and symmetric, and
hence, it can be characterized by the principal masses {mj}. The formula for S obtained by Ashcroft
and Mermin [4, Equation (13.62)], can be positive or negative but is hard to apply in practice. In
contrast our formula (13.36) can be applied straightforwardly. Besides our formula for a one-carrier
system is T-independent, while Ashcroft and Mermin’s formula is linear in T.

Formula (13.36) is remarkably similar to the standard formula for the Hall coefficient of a one-
component system:



(13.37) 
Both Seebeck and Hall coefficients are inversely proportional to charge q, and hence, they give
important information about the sign of the carrier charge. In fact the measurement of the S of a
semiconductor can be used to see if the conductor is n-type or p-type (with no magnetic
measurements). If only one kind of carrier exists in a conductor, then the Seebeck and Hall
coefficients must have the same sign as observed in alkali metals.

Let us consider the electric current caused by a voltage difference. The current is generated by the
electric force that acts on all electrons. The electron’s response depends on its mass m*. The density
(n) dependence of σ can be understood by examining the current-carrying steady state in Figure 13.6b.
The electric field E displaces the electron distribution by a small amount ħ−1 q Eτ from the
equilibrium distribution in Figure 13.6a. Since all the conduction electrons are displaced, the
conductivity σ depends on the particle density n. The Seebeck current is caused by the density
difference in the thermally excited electrons near the Fermi surface, and hence, the thermal diffusion
coefficient A depends on the density of states at the Fermi energy, 0 (see (13.35)). We further note
that the diffusion coefficient D does not depend on m* directly (see (13.33)). Thus, the Ohmic and
Seebeck currents are fundamentally different in nature.

Figure 13.6 As the electric field E points in the positive x-direction, the steady-state electron
distribution in (b) is generated by a translation of the equilibrium distribution in (a) by the amount δk
= −eE τ/ħ.

For a single-carrier metal such as sodium which forms a body-centered cubic (bcc) lattice, where
only “electrons” exist, both RH and S are negative. The Einstein relation between the conductivity σ
and the diffusion coefficient D holds:

(13.38) 
Using (13.27) and (13.33), we obtain

(13.39) 
which is a material constant. The Einstein relation is valid for a single-carrier system.

The relation does not hold in general for multicarrier systems. The ratio D/σ for a two-carrier
system containing “electrons” (1) and “holes” (2) is given by (Problem 13.3.5)



(13.40) 
which is a complicated function of (m1

*/m2
*), (n1/n2), (v1/v2), and (τ1/τ2). In particular the mass ratio

m1
*/m2

* may vary significantly for a heavy fermion condition, which occurs whenever the Fermi
surface just touches the Brillouin boundary, see below. An experimental check on the violation of the
Einstein relation can be carried out by simply examining the T dependence of the ratio D/σ. This ratio
from (13.39) is constant for a single-carrier system, while from (13.40) it depends on T since the
generally T-dependent mean free times (τ1, τ2) arising from the electron–phonon scattering do not
cancel out from numerator and denominator. Conversely, if the Einstein relation holds for a metal, the
spherical Fermi surface approximation with a single effective mass m* is valid for this single-carrier
metal.
Problem 13.3.1. Derive (13.13) using kinetic theory.
Problem 13.3.2. Derive (13.25) applying the Fermi statistics for free carriers.
Problem 13.3.3. Verify (13.30). Hint:

Problem 13.3.4. Verify (13.36).
Problem 13.3.5. Derive (13.40).

13.4 Simple Applications
We consider two-carrier metals (noble metals). Noble metals including Cu, Ag, and Au form face-
centered cubic (fcc) lattices. Each metal contains “electrons” and “holes.” The Seebeck coefficient S
for these metals are shown in Figure 13.3. The S is positive for all:

(13.41) 
indicating that the major carriers are “holes.” The Hall coefficient RH is known to be negative:

(13.42) 
Clearly the Einstein relation (13.38) does not hold since the charge sign is different for S and RH.
This complication was explained by Fujita, Ho, and Okamura [5] based on the Fermi surfaces having
“necks” (see Figure 13.7). The curvatures along the axes of each neck are positive, and hence, the
Fermi surface is “hole”-generating. Experiments [6–8] indicate that the minimum neck area A111
(neck) in the k-space is 1/51 of the maximum belly area A111 (belly), meaning that the Fermi surface
just touches the Brillouin boundary (Figure 13.7 exaggerates the neck area). The density of “hole”-
like states, nhole, associated with the 111  necks, having a heavy fermion character due to the rapidly
varying Fermi surface with energy, is much greater than that of “electron”-like states, nelectron,
associated with the 100  belly. The thermally excited “hole” density is higher than the “electron”
density, yielding a positive S. The principal mass m1

* along the axis of a small neck (m1
*−1 = ∂2 ε/

∂p1
2) is positive (“hole”-like) and extremely large. The contribution of the “hole” to the conduction is



small (σ ∝ m*-1). Then the “electrons” associated with the nonneck Fermi surface dominate and yield
a negative Hall coefficient RH.

Figure 13.7 The Fermi surface of silver (fcc) has “necks,” with the axes in the 111  direction, located
near the Brillouin boundary, reproduced after [6–8].

We note that the Einstein relation (13.38) does not hold in general for multicarrier systems. If the
Einstein relation holds for a metal, the spherical Fermi surface approximation with a single effective
mass m* is valid.

13.5 Graphene and Carbon Nanotubes
Graphite and diamond are both made of carbons. They have different lattice structures and different
properties. Diamond is brilliant and it is an insulator while graphite is black and is a good conductor.
In 1991 Iijima [9] discovered carbon nanotubes in the soot created in an electric discharge between
two carbon electrodes. These nanotubes ranging from 4 to 30 nm in diameter were found to have a
helical multiwalled structure. The tube length is about one micron (μm). Single-wall nanotubes
(SWNTs) were fabricated first by Iijima and Ichihashi [10] and by Bethune et al. [11] in 1993. The
tube size is about 1 nm in diameter and a few microns in length. The scroll-type tube is called a
multiwalled carbon nanotube (MWNT). The tube size is about 10 nm in diameter and a few microns
(μm) in length. An unrolled carbon sheet is called graphene, which has a honeycomb lattice structure
as shown in Figure 13.8.

Figure 13.8 A honeycomb lattice and the Cartesian (rectangular) unit cell (dotted line) of graphene.
The rectangular unit cell contains four C+ ions represented by open circles ( ).



We consider graphene which forms a 2D honeycomb lattice. The normal carriers in the transport of
electrical charge are “electrons” and “holes.” Following Ashcroft and Mermin [4], we assume the
semiclassical (wavepacket) model of a conduction electron. It is necessary to introduce a k-vector:

(13.43) 
since the k-vector is involved in the semiclassical equation of motion:

(13.44) 
where E and B are the electric and magnetic fields, respectively. The vector

(13.45) 
is the particle velocity, where ε is the particle energy. For some crystals such as simple cubic, face-
centered cubic, body-centered cubic, tetragonal, and orthorhombic crystals, the choice of the
orthogonal (x, y, z)-axes and the unit cells are obvious. Two-dimensional crystals such as graphene
can also be treated similarly, with only the z-component being dropped. We will show that graphene
has “electrons” and “holes” based on the rectangular unit cell model.

We assume that the “electron” (“hole”) wavepacket has a charge −e (+e) and the size of a unit
carbon hexagon, generated above (below) the Fermi energy εF. We will show that (a) the “electron”
and “hole” have different charge distributions and different effective masses, (b) that the “electrons”
and “holes” are thermally activated with different energy gaps (ε1, e2), and (c) that the “electrons”
and “holes” move in different easy channels along which they travel.

The positively charged “hole” tends to stay away from the positive C+ ions, and hence its charge is
concentrated at the center of the hexagon. The negatively charged electron tends to stay close to the C+

hexagon and its charge is therefore concentrated near the C+ hexagon. In our model, the “electron” and
“hole” both have sizes and charge distributions, and they are not point particles. Hence, their masses
m1 (“electron”) and m2 (“hole”) must be different from the gravitational mass m = 9.11 × 10−28g.
Because of the different internal charge distributions, the “electrons” and “holes” have different
effective masses m1 and m2. The “electron” may move easily with a smaller effective mass in the
direction [110 c-axis] ≡ [110] than perpendicular to it as we see presently. Here, we use the
conventional Miller indices for the hexagonal lattice with omission of the c-axis index. For the



description of the electron in terms of the mass tensor, it is necessary to introduce Cartesian
coordinates, which do not match with the crystal’s natural (triangular) axes. We may choose the unit
cell as shown in Figure 13.8. Then the Brillouin zone boundary in the k space is a rectangle with side
lengths (2π/b, 2π/c). The “electron” (wavepacket) may move up or down in [110] to the neighboring
hexagon sites passing over one C+. The positively charged C+ acts as a welcoming (favorable)
potential valley center for the negatively charged “electron,” while the same C+ acts as a hindering
potential hill for the positively charged “hole.” The “hole” can, however, move easily horizontally
without ever meeting the hindering potential hills. Then, the easy channel directions for the
“electrons” and “holes” are [110] and [001], respectively.

The thermally activated electron densities are then given by [13]

(13.46) 
where j = 1 and 2 represent the “electron” and “hole,” respectively. The prefactor nj is the density at
the high-temperature limit.

13.6 Conduction in Multiwalled Carbon
Nanotubes
MWNTs are open-ended. Hence, each pitch is likely to contain an irrational number of carbon
hexagons. Then, the electrical conduction of MWNTs is similar to that of metallic SWNTs [14].

Phonons are excited based on the same Cartesian unit cell as the conduction electrons in the carbon
wall. The phonon-exchange interaction binds Cooper pairs, also called pairons [2].

The conductivity σ based on the pairon carrier model is calculated as follows. The pairons move in
2D with the linear dispersion relation [2]:

(13.47) 

(13.48) 
where vF

(j) is the Fermi velocity of the “electron” (j = 1) (“hole” (j = 2)).
Consider first “electron”-pairs. The velocity v is given by (omitting superscript)

(13.49) 
where we used (13.47) for the pairon energy εp and the 2D momentum,

(13.50) 
The equation of motion along the electric field E in the x-direction is

(13.51) 
where q′ is the charge ±2e of a pairon. The solution of (13.51) is given by



(13.52) 
where px

(0) is the initial momentum component. The current density jp is calculated from (charge q′) ×
(number density np) × (average velocity ). The average velocity  is calculated by using (13.49) and
(13.52) with the assumption that the pairon is accelerated only for the mean free time τ and the initial-
momentum-dependent terms are averaged out to zero. We then obtain

(13.53) 
For stationary currents, the partial pairon density np is given by the Bose distribution function f(εp):

(13.54) 
where eα is the fugacity. Integrating the current jp over all 2D p-space, and using Ohm’s law j = σE,
we obtain for the conductivity σ:

(13.55) 
In the low temperatures we may assume the Boltzmann distribution function for f(εp):

(13.56) 
We assume that the relaxation time (inverse collision frequency) arises from the phonon scattering so
that

(13.57) 
After performing the p-integration we obtain from (13.55)

(13.58) 
which is temperature-independent. If there are “electron” and “hole” pairons, they contribute
additively to the conductivity. These pairons should undergo a Bose–Einstein condensation at lowest
temperatures.

13.7 Seebeck Coefficient in Multiwalled
Carbon Nanotubes
We are now ready to discuss the Seebeck coefficient S of MWNTs. First, we will show that the S is
proportional to the temperature T above the superconducting temperature Tc.

We start with the standard formula for the charge current density:

(13.59) 
where  is the average velocity, which is a function of temperature T and the particle density n:

(13.60) 
We assume a steady state of the system in which the temperature T varies only in the x-direction while
the density is kept constant. The temperature gradient ∂T/∂x generates a current (Problem 13.7.1):



(13.61) 
The thermal diffusion occurs locally. We may choose Δx to be a mean free path:

(13.62) 
The current density, jp, at the 2D pairon momentum p, which is generated by the temperature

gradient ∂T/∂x, is thus given by

(13.63) 
Integrating (13.63) over all 2D p-space and comparing with (13.10), we obtain (Problem 13.7.2)

(13.64) 
We compare this integral with the integral in (13.55). It has an extra factor in p and therefore
generates an extra factor T when the Boltzmann distribution function is adopted for f(εp). Thus, we
obtain (Problem 13.7.3), using (13.55) and (13.64),

(13.65) 
We next consider the system below the superconducting temperature Tc. The supercurrents arising

from the condensed pairons generate no thermal diffusion. But noncondensed pairons can be scattered
by impurities and phonons, and contribute to a thermal diffusion. Because of the zero-temperature
energy gap

(13.66) 
generated by the supercondensate, the population of the noncondensed pairons is reduced by the
Boltzmann–Arrhenius factor

(13.67) 
This reduction applies only for the conductivity (but not for the diffusion). Hence, we obtain the
Seebeck coefficient (Problem 13.7.4):

(13.68) 
In the experiment in [1] a MWNT bundle containing hundreds of individual nanotubes was used. Both
circumference and pitch have distributions. Hence, the energy gap εg(= kBTg) has a distribution.

Kang et al. [1] measured the conductance G, which is proportional to the conductivity σ, of the
MWNT samples. Their data are reproduced in Figure 13.9, after [1, Figure 3], where the conductance
G as a function of temperature is plotted on a logarithmic scale. The G arising from the conduction
electron in each MWNT carries an Arrhenius-type exponential

Figure 13.9 The conductance G of the multiwalled carbon nanotube samples as a function of
temperature
(after [1, Figure 3]).



(13.69) 
where εa is the activation energy. This energy εa has a distribution since the MWNTs have varied
circumferences and pitches. The temperature behavior of G for the bundle of MWNTs is seen to be
represented by

(13.70) 
in the range: 5–20 K. The electron-activation energy εa and the zero-temperature pairon energy gap εg
are different from each other. But they have the same orders of magnitude and both are temperature-
independent. We assume that the distributions are similar. We may then replace exp(−Tg/T) in (13.68)
by (T′g/T)1/2, obtaining the Seebeck coefficient for a bundle of MWNTs

(13.71) 
or

(13.72) 
which is observed in Figure 13.1.

The data in Figure 13.1 clearly indicates a phase change at the temperature
(13.73) 

We now discuss the connection between this T0 and the superconducting temperature Tc. We deal with
a thermal diffusion of the MWNT bundle. The diffusion occurs most effectively for the most
dissipative samples which correspond to those with the lowest superconducting temperatures. Hence,
the T0 observed can be interpreted as the superconducting temperature of the most dissipative
samples.

In contrast the conduction is dominated by the least dissipative samples having the highest Tc.
Figure 13.9 shows a clear deviation of G around 120 K from the experimental law: G ~ ln T. We may
interpret this as an indication of the limit of the superconducting states. We then obtain

(13.74) 



for the good samples.
By considering moving pairons we obtained the T-linear behavior of the Seebeck coefficient S

above the superconducting temperature Tc and the T ln T-behavior of S at the lowest temperatures.
The energy gap εg vanishes at Tc. Hence, the temperature behaviors should be smooth and monotonic
as observed in Figure 13.1. This supports our interpretation of the data based on the superconducting
phase transition. The doping changes the pairon density and the superconducting temperature. Hence,
the data for A, B, and C in Figure 13.1 are reasonable.
Problem 13.7.1. Assume that the temperature T is higher at x + Δx than at x: T(x + Δx) > T(x). Noting
that the velocity field (average velocity) v depends on the local temperature T(x), show that

holds for v = v(T(x)). Applying this formula, derive (13.61).
Problem 13.7.2. Derive (13.64).
Problem 13.7.3. Show (13.65) that the Seebeck coefficient is proportional to temperature T.
Problem 13.7.4. Derive (13.68).
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Chapter 14

Miscellaneous

14.1 Metal-Insulator Transition in Vanadium
Dioxide
Vanadium dioxide (VO2) undergoes a metal–insulator transition (M IT) at 340 K with the structural
change from a tetragonal (tet) to monoclinic (mcl) crystal as the temperature is lowered. The
conductivity σ drops at MIT by four orders of magnitude. The low-temperature monoclinic phase is
known to have a lower ground state energy. The existence of a k-vector k is a prerequisite for the
conduction since the k appears in the semiclassical equation of motion for the conduction electron
(wavepacket). Each wavepacket is, by assumption, composed of plane waves proceeding in a k
direction perpendicular to the plane. The tetragonal (VO2)3 unit cells are periodic along the crystal’s
x-, y-, and z-axes, and hence there are three-dimensional k-vectors. There are one-dimensional k
along the c-axis for a monoclinic crystal. We argue that this decrease in the dimensionality of the k-
vectors is the cause of the conductivity drop.

14.1.1 Introduction
In 1959 Morin reported his discovery of a metal-insulator transition in vanadium dioxide (VO2) [1].
The compound VO2 forms a monoclinic crystal on the low-temperature side and a tetragonal crystal
on the high-temperature side. When heated, VO2 undergoes an insulator-metal transition around 340
K, with resistivity drops by four orders of magnitude as T is raised. The phase change carries a
hysteresis similar to a ferro-paramagnetic phase change. The origin of the phase transition has been
attributed by some authors to Peierls instability driven by strong electron–phonon interaction [2], or
to Coulomb repulsion and electron localization due to the electron-electron interaction on a Mott–
Hubbard picture by other authors [3–5].

A simpler view on the MIT is presented here. We assume that the electron wavepacket is composed
of superposable plane waves characterized by the k-vectors. The superposability is a basic property
of the Schrödinger wavefunction in free space. A mcl crystal can be generated from an orthorhombic
crystal (orc) by distorting the rectangular faces perpendicular to the c-axis into parallelograms.
Material plane waves proceeding along the c-axis exist since the (x, y) planes containing materials
(atoms) perpendicular to the z-axis are periodic. It then has one-dimensional (1D) k-vectors along the
c-axis. In the x–y plane there is an oblique net whose corners are occupied by V’s for mcl VO2. The
position vector R of every V can be represented by integers (m, n), if we choose

(14.1) 



where a1 and a2 are nonorthogonal base vectors. In the field theoretical formulation the field point r
is given by

(14.2) 
where r’ is the point defined within the standard unit cell. Equation (14.2) describes the 2D lattice
periodicity but does not establish k-space as shown earlier, in Section 5.2, Chapter 5.

If we omit the kinetic energy term, then we can still use (14.1) and obtain the ground state energy
(except the zero-point energy). The reduction in the dimensionality of the k-vectors from 3D to 1D is
the cause of the conductivity drop in the MIT.

The MIT proceeds by domains since the insulator (mcl) phase has the lower degrees of symmetry.
Strictly speaking, the existence of 1D k-vectors allows the mcl material to have a small conductivity.
This happens for VO2, see below.

Wu et al. [6] measured the resistance R of individual nanowires WxV1-xO2 with tungsten (W)
concentration x ranging up to 1.14%. The nanowires are grown with the wire axis matching the c-axis
of the high-temperature rutile structure. The transition temperature T0 decreases from 340 K, passing
room temperature, to 296 K as the concentration x changes from 0 to 1.14%. The temperature
dependence of R for the low-temperature phase is semiconductor-like. That is, the resistance R
decreases with increasing temperature. The behavior can be fitted with the Arrhenius law:

(14.3) 
where εa is the activation energy. The activation energy εa is about 300 meV.

Whittaker et al. [7] measured the resistance R in a VO2 nanowire and observed that (a) the
resistance R for the low-temperature (mcl) phase shows an Arrhenius-type dependence as shown in
(14.3), while (b) the resistance R for the high-temperature (tet) phase appears to be T-independent.
These different behaviors may arise as follows. The currents in (a) run along the nanowire axis,
which is also the easy c-axis of the mcl crystal. Hence, Arrhenius behavior for the conductivity is
observed for case (a). For case (b), the currents run in three dimensions. Only those electrons near the
Fermi surface are excited and participate in the transport. Then, the density of excited electrons, nx, is
related to the total electron density n0 by

(14.4) 
where c is a number close to unity. The factor T cancels out with the T-linear phonon scattering rate
for the conductivity. The T-dependence of the exponential factor is small since the activation energy
εa is much greater than the observation temperature scale measured in units of 10°C. Thus, the
conductivity is nearly constant. There is a sudden drop of resistance around 300 K, when the two
phases separate.

In summary the MIT in VO2 directly arises from the lattice structure change between the tet and the
mcl crystal. The tet (mcl) crystal has 3D (1D) k-vectors. The reduction in the dimensionality of the k-
vectors is the cause of the conductivity drop.



14.2 Conduction Electrons in Graphite
Graphite is composed of graphene layers stacked in the manner ABAB··· along the c-axis. We may
choose a Cartesian unit cell as shown in Figure 14.1.

Figure 14.1 The Cartesian unit cell (white solid lines) viewed from the top for graphite. The unit cell
of graphite has two layers of graphene. The carbons (circles) in the A (B) planes are shown in black
(gray).

As Figure 14.1 shows the rectangle (solid line) in the A plane (black) contains six C’s wholly
within and four C’s at the sides. The side C’s are shared by neighbors. Hence, the total number of C’s
is 6 × 1 + 4 × 1/2 = 8. The rectangle in the B plane (gray) contains five C’s within, four C’s at the
sides, and four C’s at the corners. The total number of C’s is 5 × 1 + 4 × 1/2 + 4 × 1/4 = 8. The unit
cell therefore contains 16 C’s. The two rectangles are stacked vertically with the interlayer
separation, c0 = 3.35 Å much greater than the nearest-neighbor distance between two C’s, a0 = 1.42
Å. The unit cell has three side-lengths:

(14.5) 
The center of the unit cell is empty. Clearly, the system is periodic along the orthogonal directions
with the three periods (b1, b2, b3) given in (14.5). We may assume that both the “electron” and “hole”
have the same unit cell size. Thus, the system is orthorhombic with the sides (b1, b2, b3), b1 ≠ b2, b1 ≠
b3, b2 ≠ b3.

The negatively charged “electrons” (with charge −e) in graphite are welcomed by the positively
charged C+ when moving in a vertical direction just as in graphene. That is, the easy directions of
movement for the “electrons” are vertical. The easy directions for the “holes” are horizontal. There
are no hindering hills for “holes” moving horizontally. Hence, just as for graphene, the “electron” in
graphite has a lower activation energy ε than the “hole”:

(14.6) 
Because of this, the “electrons” are the majority carriers in graphite.

Graphite and graphene have very different unit cells including dimensionality. Thus, the electrical
transport behaviors must be significantly different. There are “electrons” and “holes” in graphite. We



predict that graphite is a superconductor with a superconducting temperature of the order of 1 K.

14.3 Coronet Fermi Surface in Beryllium
Divalent beryllium (Be) forms a hexagonal close packed (hcp) crystal. The Fermi surface in the
second zone constructed in the Nearly Free Electron Model (NFEM) is represented by the “monster”
(Figure 3.8a) and the actually observed “coronet” (Figure 3.8b) as shown in Figure 3.8. The figures
are drawn based on the Wigner–Seitz model. Part of the coronet Fermi surface can be fitted with the
quadratic-in-k dispersion relation:

(14.7) 
with two negative effective masses and one positive effective mass. The coronet encloses unoccupied
states. The effective masses (m1, m2, m3) may be directly obtained from the cyclotron resonance data,
using Shockley’s formula [8]:

(14.8) 
where cos(μ, xj) is the directional cosine between the field direction μ and the xj-direction. The
Cartesian coordinate system (x1, x2, x3) can be chosen along the orthogonal unit cells for the hcp
crystal. It is a challenge to obtain the values of (m1, m2, m3) after choosing the orthogonal axes
appropriately.

14.4 Magnetic Oscillations in Bismuth
Magnetic oscillations, de Haas–van Alphen and Shubnikov–de Haas oscillations, were discovered in
bismuth (Bi), which forms a rhombohedral (rhl) crystal. A rhl crystal can be obtained by stretching
the three body-diagonal distances from a simple cubic crystal as discussed in Sections 5.2 and 5.3. If
an orthogonal unit cell with the Cartesian axes along the body-diagonal passing six corner atoms is
chosen, then the system is periodic along the x-, y-, and z-axes passing the center. Thus, the system
can be regarded as an orc, which has a 3D k-space. It is a challenge to obtain the effective masses
(m1, m2, m3) in Bi from the cyclotron resonance and other measured data.
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Appendix

A.1 Second Quantization
The most remarkable fact about a system of fermions is that no more than one fermion can occupy a
quantum particle state (Pauli’s exclusion principle). For bosons no such restriction applies. That is,
any number of bosons can occupy the same state. We shall discuss the second-quantization formalism
in which creation and annihilation operators associated with each quantum state are used. This
formalism is extremely useful in treating many-boson and/or many-fermion systems. Zero-mass
bosons such as photons and phonons can be created or annihilated. These dynamical processes can
only be described in second quantization.

A.1.1 Boson Creation and Annihilation Operators
Use of creation and annihilation operators (a†, a) was demonstrated in Chapter 4, Section 4.3 for the
treatment of a harmonic oscillator. Second quantization can be used for a general many-body system,
as we see below.

The quantum state for a system of bosons (or fermions) can most conveniently be represented by a
set of occupation numbers {n′a}, where n′a are the numbers of bosons (or fermions) occupying the
quantum particle states a. This representation is called the occupation-number representation or
simply the number representation. For bosons, the possible values for n′a are zero, one, or any
positive integers:

(A1) 
The many-boson state can best be represented by the distribution of particles (balls) in the states
(boxes) as shown in Figures A.1, where we choose the 1D momentum states, pj = 2πħj/L, as
examples.

Figure A.1 A many-boson state is represented by a set of boson numbers {nj,} occupying the state
{pj}.

Let us introduce operators na, whose eigenvalues are given by 0, 1, 2, … Since (A1) is meant for
each and every state a independently, we assume that

(A2) 



It is convenient to introduce complex dynamic variables η and η† instead of directly dealing with
the number operators n. We attach labels a, b, … and assume that η and η† satisfy the following Bose
commutation rules:

(A3) 
Let us set

(A4) 
which is Hermitian. The eigenvalue equation is

(A5) 
where n′ is the eigenvalue of n. We showed earlier in Section 4.3 that the operator n has as
eigenvalues all nonnegative integers:

(A6) 
The corresponding normalized eigenkets are given by

(A7) 
Let |ϕa  be a normalized eigenket of na belonging to the eigenvalue 0 so that

(A8) 
By multiplying all these kets |ϕa  together, we construct a normalized eigenket:

(A9) 
which is a simultaneous eigenket of all n belonging to the eigenvalue zero. This ket is called the
vacuum ket. It has the following property:

(A10) 
From (A7) we see that if n′1, n′2, … are any nonnegative integers, then

(A11) 
is a normalized simultaneous eigenket of all n belonging to the eigenvalues n′1, n′2, … Various kets
obtained by taking different n′ form a complete set of kets all orthogonal to each other.

Following Dirac [1, 2], we postulate that the quantum states for N bosons can be represented by a
symmetric ket:

(A12) 
where S is the symmetrizing operator

(A13) 
and P′s are permutation operators for the particle indices (1, 2, …, N). The ket in (A12) is not
normalized but

(A14) 
is a normalized ket representing the same state. Comparing (A14) and Eq. (A11), we obtain

(A15) 
That is, unnormalized symmetric kets |αa αb … αg S for the system can be constructed by applying N



creation operators ηa
†ηb

† ··· ηg
† to the vacuum ket |Φ0 . So far we have tacitly assumed that the total

number of bosons is fixed at N′. If this number is not fixed but is variable, we can easily extend the
theory to this case.

Let us introduce a Hermitian operator N defined by

(A16) 
the summation extending over the whole set of boson states. Clearly, the operator N has eigenvalues
0, 1, 2, …, and the ket |αaαb ··· αg S is an eigenket of N belonging to the eigenvalue N′. We may
arrange kets in the order of N′, that is a zero-particle state, one-particle states, two-particle states, ···:

(A17) 
These kets are all orthogonal to each other, two kets referring to the same number of bosons are
orthogonal as before, and two referring to different numbers of bosons are orthogonal because they
have different eigenvalues N′. By normalizing the kets, we obtain a set of kets like (A14) with no
restriction on {n′}. These kets form the basic kets in a representation where {na} are diagonal.

A.1.2 Observables
We wish to express observable physical quantities (observables) for the system of identical bosons in
terms of η and η†. These observables are, by postulate, symmetric functions of the boson variables.

An observable can be written in the form:

(A18) 
where y(j) is a function of the dynamic variables of the jth boson, z(ij) that of the dynamic variables of
the ith and jth bosons, and so on.

We take

(A19) 
Since y(j) acts only on the ket |α(j)  of the jth boson, we have

(A20) 
The matrix element

(A21) 
does not depend on the particle index j. Summing (A20) over all j and applying operator S to the
result, we obtain

(A22) 
Since Y is symmetric, we can replace S Y by Y S for the lhs. After straightforward calculations, we
obtain, from (A22),



(A23) 
Using the commutation rules and the property (A10) we can show that (Problem A.1)

(A24) 
Using this relation, we obtain from (A23)

(A25) 
Since the kets ηx1

†ηx2
† … | Φ0  form a complete set, we obtain

(A26) 
In a similar manner, Z in (A18) can be expressed by (Problem A.2)

(A27) 
where αaαb|z|αcαd  is given by

(A28) 
Problem A.1. Prove (A24). Hint Start with cases of one- and two-particle state kets.
Problem A.2. Prove (A27) by following steps similar to (A22)–(A26).

A.1.3 Fermion Creation and Annihilation Operators
In this section we treat a system of identical fermions in a parallel manner.

The quantum states for fermions, by postulate, are represented by antisymmetric kets:

(A29) 
where

(A30) 
is the antisymmetrizing operator, with δP being +1 or −1, according to whether P is even or odd. Each
antisymmetric ket in (A29) is characterized such that it changes its sign if an odd permutation of
particle indices is applied to it, and the fermion states a, b, …, g are all different. Just as for a boson
system, we can introduce observables n1, n2, …, each with eigenvalues 0 or 1, representing the
number of fermions in the states α1, α2, …, respectively. The many-fermion occupation-number state
can be represented as shown in Figures A.2.

Figure A.2 A many-fermion state is represented by the set of fermion numbers {nj} occupying the
state pj ≡ 2πħj/L. Each nj is restricted to 0 or 1.



We can also introduce a set of linear operators (η, η†), one pair (ηa, ηa
†) for each state αa, satisfying

the Fermi anticommutation rules:

(A31) 
The number of fermions in the state αa is again represented by

(A32) 
Using (A31), we obtain
(A33) 

If an eigenket of na belonging to the eigenvalue n′a is denoted by |n′a , (A33) yields

(A34) 
Since the eigenket na is nonzero, we obtain n′a(n′a − 1) = 0, meaning that the eigenvalues n′a are either
0 or 1 as required:

(A35) 
Similarly to the case for bosons, we can show that (Problem A.3)
(A36) 

which is normalized to unity.
Observables describing the system of fermions can be expressed in terms of operators η and η†, and

the results have the same form (A26) and (A27) as for the case of bosons.
In summary, both states and observables for a system of identical particles can be expressed in

terms of creation and annihilation operators. This formalism, called the second quantization, has some
notable advantages over the usual Schrödinger formalism. First, the permutation-symmetry property
of the quantum particle is represented simply in the form of Bose commutation (or Fermi
anticommutation) rules. Second, observables in second quantization are defined for an arbitrary
number of particles so that the formalism may apply to systems in which the number of particles is not
fixed, but variable. Third, and most importantly, all relevant quantities (states and observables) can
be defined referring only to the single-particle states. This property allows one to describe the motion
of the many-body system in the 3D space. In fact, relativistic quantum field theory can be developed
only in second quantization. Furthermore, boson creation and annihilation can only be described in
second quantization.
Problem A.3. Show that (A36) is normalized.

A.1.4 Heisenberg Equation of Motion



In the Schrödinger picture (SP), the energy eigenvalue equation is
(A37) 

where  is the Hamiltonian and E the eigenvalue. In the position representation this equation is
written as

(A38) 
where Ψ is the wavefunction for the system. We consider one-dimensional motion for conceptional
and notational simplicity. (For three-dimensional motion, (x, p) should be replaced by (x, y, z, px, py,
pz) = (r, p).) If the number of electrons N is large, the wavefunction Ψ contains many particle
variables (x1, x2, …). This complexity needed in dealing with many particle variables can be avoided
if we use second quantization and the Heisenberg picture (HP), which will be shown in this section.

If the Hamiltonian  is the sum of single-particle Hamiltonians:

(A39) 
the Hamiltonian  can be represented by

(A40) 
where ηa(ηa

†) are annihilation (creation) operators associated with particle state a and satisfying the
Fermi anticommutation rules in (A31) or the Bose commutation rules in (A3).

In the Heisenberg picture a dynamical variable ξ(t) changes in time, following the Heisenberg
equation of motion:

(A41) 
Setting ξ = ηa

†, we obtain

(A42) 
whose Hermitian conjugate is given by

(A43) 
By the quantum postulate the observables ξ are Hermitian: ξ† = ξ. Variables ηa and ηa

† are not
Hermitian, but both obey the same Heisenberg equation of motion, see (A42) and (A43).

We introduce the Hamiltonian (A40) into (A42), and calculate the commutator [ , ηa
†]. In such a

commutator calculation, the following identities are very useful:
(A44) 
(A45) 

Note that the negative signs on the right-hand terms in (A45) occur when the cyclic order is destroyed
for the case of the anticommutaton {A, B} ≡ AB + BA. We obtain from (A42) and (A43) (Problem
A.4)



or

(A46) 
We take the Hermitian conjugation and obtain

(A47) 
Equation (A46) means that the change of the one-body operator ηa

† is determined by the one-body
Hamiltonian h. This is one of the major advantages of working in the HP. Equations (A46) and (A47)
are valid for any single-particle states {a}.

In the field operator language (A47) reads

(A48) 
which is formally identical to the Schrödinger equation of motion for a particle.

If the system Hamiltonian  contains an interparticle interaction

(A49) 
where v(r − r’) denotes the interparticle interaction potential, the evolution equation for ψ(r, t) is
nonlinear (Problem A.5):

(A50) 
In quantum field theory the basic dynamical variables are particle field operators. The quantum
statistics of the particles are given by the Bose commutation or the Fermi anticommutation rules
satisfied by the field operators. The evolution equations of the field operators are intrinsically
nonlinear when the interparticle interaction is present.
Problem A.4. Verify that the equation of motion (A46) and (A47), holds for bosons.
Problem A.5. Verify (A50). Hint: use (A46).

A.2 Eigenvalue Problem and Equation-of-
Motion Method
In this Appendix we set up the energy eigenvalue problem for a quasiparticle and illustrate the
equation-of-motion method to obtain the eigenvalue of a many-body Hamiltonian of quasiparticles.



A.2.1 Energy-Eigenvalue Problem in Second
Quantization
Here we consider as a preliminary an electron characterized by the Hamiltonian:

(A51) 
We may set up the eigenvalue equations for the position x, the momentum p, and the one-body
Hamiltonian h as follows:

(A52) 
(A53) 
(A54) 

where x’, p′, and εv are eigenvalues.
By multiplying (A54) from the left by x|, we obtain

(A55) 
(A56) 

Equation (A55) is just the Schrödinger energy-eigenvalue equation, and ϕv(x) is the familiar quantum
wavefunction. If we know with certainty that the system is in the energy eigenstate v, we can choose a
density operator ρ1 to be

(A57) 
This ρ1 is a one-body density operator for the system h in a pure state |v .

Let us now consider tr{|v x|ρ1}, which can be transformed as follows:

From this we can write the wavefunction ϕv(x) as follows:

(A58) 
where the symbol “tr” denotes a one-body trace. It can be seen from (A57) that the wavefunction
ϕv(x) can be regarded as a mixed representation of the density operator ρ1 in terms of the states (v, x).
In a parallel manner, we can show that the wavefunction in the momentum space ϕv(p) ≡ p|v  can be
regarded as a mixed representation of ρ1 in terms of energy state v and momentum state p (Problem
A.1):

(A59) 
In analogy with (A58) we introduce a quasiwavefunction Ψv(p) through

(A60) 
where ψv

† is the energy-state creation operator, ap the momentum-state annihilation operator, and ρ a
many-body-system density operator that commutes with the Hamiltonian :

(A61) 
In Equation (A60) the symbol “Tr” denotes a many-body trace. Equation (A61) is the necessary



condition that ρ be a stationary density operator, which is seen at once from the quantum Liouville
equation:

(A62) 
Let us consider a system for which the total Hamiltonian  is the sum of single-electron energies h:

(A63) 
For example, the single-electron Hamiltonian h may contain the kinetic energy and the lattice potential
energy. We assume that the Hamiltonian  does not depend on time explicitly.

In second quantization the Hamiltonian  can be represented by

(A64) 
where ηa(ηa

†) are annihilation (creation) operators, satisfying the Fermi anticommutation rules (A31).
We calculate the commutator [ , ψa

†]. After straightforward calculation we obtain (Problem A.2)

(A65) 
Multiplying Equation (A65) by apρ from the right and taking a many-body trace, we obtain

(A66) 
which is formally identical to the Schrödinger energy-eigenvalue equation for the one-body problem
(Problem A.3):

(A67) 
The quasiwavefunction Ψv(p) can be regarded as a mixed representation of the one-body density

operator n in terms of the states (v, p) (Problem A.4):
(A68) 

The operator n is defined through
(A69) 

These nba are called b–a elements of the one-body density matrix.
We reformulate (A66) for later use. Using (A61) and (A65), we can write (A66) as in the form

(Problem A.5):
(A70) 

where we used the invariance of cyclic permutation under the trace.1) The complex conjugate of
(A70) is similarly given by (Problem A.6)

(A71) 
Either (A70) or (A71) can be used to formulate the energy-eigenvalue problem. If we choose the

latter, we may proceed as follows:
1. Given  in the momentum space, compute [ , ap

†]; the result can be expressed as a linear
function of ap

†;
2. Multiply the result obtained in (1) by ψvρ from the right, and take a trace; the result is a linear



function of ψ*;
3. Use (A71) in the resulting equation obtained in (2), and we obtain a linear homogeneous
equation for ψ*, which is a standard form of the energy-eigenvalue equation.

The energy-eigenvalue problem developed here is often called the equation-of-motion method.
Problem A.1. Verify (A59).
Problem A.2. Derive (A65). Hint: Use identities (A49).
Problem A.3. Derive (A67) from (A54).
Problem A.4. Prove (A68).
Problem A.5. Derive (A70).
Problem A.6. Verify (A71).

A.2.2 Energies of Quasielectrons (or “Electrons”) at 0 K
We re-derive the energy gap equations, utilizing the equation-of-motion method [3]. Below the
critical temperature Tc, where the supercondensate is present, quasielectrons move differently from
those above Tc. Here we study the energies of quasielectrons at 0 K. This ground state is described in
terms of the original reduced Hamiltonian in (7.45), see below.

(A72) 
By using this red, we obtain (Problem A.7)

(A73) 

(A74) 
These two equations indicate that the dynamics of quasielectrons described in terms of c’s are
affected by stationary pairons described in terms of b’s.

Now let us find the energy of a quasielectron. We follow the equation-of-motion method. We
multiply (A73) from the right by ψv

(1) ρ0, where ψv
(1) is the “electron” energy-state annihilation

operator and

(A75) 
is the density operator describing the supercondensate, and take a grand ensemble trace denoted by
TR. After using (A70), the lhs can be written as

(A76) 
where we dropped the subscript v; the quasielectron is characterized by momentum p and energy
Ep

(1). The first term on the rhs simply yields εp(1)ψ↑
(1)*(p). Consider now

(A77) 
The state |Ψ  is normalized to unity, and it is the only system state at 0 K. Hence we obtain



(A78) 
We assume here that k ≠ p, since the state must change after a phonon exchange. We examine the
relevant matrix element and obtain (Problem A.8)

(A79) 
We can therefore write

(A80) 

(A81) 
Collecting all contributions, we obtain from (A73)

(A82) 
Using (7.62) and (7.63), we obtain

(A83) 
We can therefore simplify (A82) to

(A84) 
Similarly we obtain from (A74)

(A85) 
Energy Ep

(1) can be interpreted as the positive energy required to create an up-spin unpairing
electron at p in the presence of the supercondensate. The energy E-p

(1) can be regarded as the positive
energy required to remove a down-spin electron from the paired state (p↑, − p↓). These two energies
are equal to each other

(A86) 
In the stationary state (A84) and (A85) must hold simultaneously, thus yielding

(A87) 
whose solutions are Ep

(1) = ±(εp
(1)2 + Δ1

2)1/2. Since Ep
(1) > 0, we obtain

(A88) 
The theory developed here can be applied to the “hole” in a parallel manner. We included this case in
(A88). Our calculation confirms our earlier interpretation that Ep

(1) is the energy of the quasielectron.
In summary, unpaired electrons are affected by the presence of the supercondensate, and their
energies are given by (A88).
Problem A.7. Derive (A73) and (A74).
Problem A.8. Verify (A78).

A.3 Derivation of the Cooper Equation (7.34)



We derive the Cooper equation (7.34) in this Appendix.
Let us consider a Cooper pair. Second-quantized operators for a pair of “electrons” (i.e.,

“electron” pairons) are defined by

(A89) 
Odd-numbered “electrons” carry up-spins ↑ and even-numbered carry down-spins ↓. The
commutators among B and B† can be computed using the commutators among B and B† along with the
Fermi anticommutation rules, and they are given by (Problem A.1)

(A90) 
(A91) 

(A92) 
where

(A93) 
are the number operators for electrons.

Let us now introduce the relative and net (CM) momenta (k, q) such that

(A94) 
Alternatively we can represent pairon annihilation and creation operators by

(A95) 
The prime on B will be dropped hereafter. In the k–q representation the commutation relations are re-
expressed as

(A96) 

(A97) 
If we drop the “hole” contribution from the generalized BCS Hamiltonian in Equation (7.23), we

obtain the Cooper Hamiltonian C:

(A98) 
where the prime on the summation means the restriction:

(A99) 
The Hamiltonian C can be expressed in terms of pair operators (B, B†):



(A100) 
Using (A96) and (A97), we obtain (Problem A.2)

(A101) 
If we represent the energies of pairons by wv and the associated pair annihilation operator by ϕv, 

C can be expressed by

(A102) 
This equation is similar to (A45) in Appendix A.1 with the only difference that here we deal with
pair energies and pair-state operators. We multiply (A101) by ϕvρgc from the right and take a grand
ensemble trace:

(A103) 
where akq is defined by

(A104) 
The energy wv can be characterized by q, and we have wv ≡ wq. In other words, excited pairons have
net momentum q and energy wq. We shall omit the subscripts v in the pairon wavefunction: akq,v ≡ akq.
The angular brackets mean the grand canonical ensemble average of an observable :

(A105) 
where  and  represent the Hamiltonian and the number operator, respectively.

In the bulk limit: N → ∞, V → ∞ while n = N/V = finite, where N represents the number of
electrons, and k-vectors become continuous. Denoting the wavefunction in this limit by a(k, q) and
using a factorization approximation, we obtain from (A103)

(A106) 

(A107) 
where fF is the Fermi distribution function. The factorization is justified since the coupling between
electrons and pairons is weak.

In the low-temperature limit (T → 0 or β → ∞),
(A108) 

We then obtain



(A109) 
This equation is identical to Cooper’s equation, Eq. (1) of his 1956 Physical Review [4]. For a 2D
system, replacing d3k/(2πħ)3 in (A109) for the 3D case by d2k/(2πħ)2 we obtain the Cooper equation
(7.34) for the 2D case.

In the above derivation we obtained the Cooper equation in the zero-temperature limit. Hence, the
energy of the pairon, wq, is temperature-independent.
Problem A.1. Derive (A90), (A91) and (A92).
Problem A.2. Derive (A101).

A.4 Proof of (7.94)
The number operator for the pairons in the state (k, q) is

(A110) 
where we omitted the spin indices. We write nkq

2 explicitly, transform the middle factors and obtain

(A111) 
where we used (A36) (the Fermi commutation rules), and (A38) in Appendix A.1. Hence, we obtain

(A112) 
Since |n′kq  ≠ 0, we obtain

(A113) 
We now introduce

(A114) 
and obtain (Problem A.1)

(A115) 
Although the occupation number nq is not connected with Bq as nq ≠ Bq

† Bq, the eigenvalues n′q of nq
satisfying (A114) can be shown straightforwardly to yield

(A116) 
with the eigenstates

(A117) 
The derivation of the boson occupation numbers n′ = 0, 1, 2, ···, from [η, n] = η, n ≡ η† η, follows the
steps after (A10), and ending with (A17) in Appendix A.1. We may follow the same steps. By setting
q = 0 in this equation, we obtain (7.85).
Problem A.1. Prove (A115).



A.5 Statistical Weight for the Landau States
The statistical weight  for the Landau states in 3D and 2D are calculated in this appendix.

A.5.1 The Three-Dimensional Case
Poisson’s sum formula [5, 6] is

(A118) 
where F is the Fourier transform of f, and the sum ∑n=-∞

∞ f(2πn + t), 0 ≤ t < 2π, is periodic with the
period 1. The sum is by assumption uniformly convergent.

We write the sum in (9.47) as

(A119) 

(A120) 
Note that ϕ(ε; x) is periodic in x with the period 1, and it can, therefore, be expanded in a Fourier
series. After the Fourier series expansion, we set x = 0 and obtain (A119). By taking the real part ( )
of (A119) and using (A118) and (9.47), we obtain

(A121) 
where we assumed

(A122) 
and neglected π against ε. The integral in the first term in (A121) yields (2/3)ε3/2, leading to 0 in
(9.51). The integral in the second term can be written after integrating by parts, changing the variable
(mε − mτ = t), and using sin(A − B) = sin A cos B − cos A sin B as

(A123) 
We use asymptotic expansion for mε = x  1:

(A124) 

(A125) 
The second terms in the expansions lead to L in (9.52), where we used sin2 A + cos2 A = 1 and



(A126) 
The first terms lead to the oscillatory term osc in (9.53).

A.5.2 The Two-Dimensional Case
We write the sum in (10.35) as

(A127) 

(A128) 
Note that ψ (ε; x) is periodic in x and can therefore be expanded in a Fourier series. After the Fourier
expansion, we set x = 0 and obtain (A127). By taking the real part ( ) of (A127) and using (A118),
we obtain

(A129) 
where we assumed ε ≡ 2πE/ħωc  1 and neglected π against ε. The integral in the first term in (A129)
yields ε. The integral in the second term is

(A130) 
Thus, we obtain

(A131) 
Using (10.35) and (A131), we obtain

(A132) 
which establishes (10.38)–(10.40).

A.6 Derivation of Formulas (11.16)–(11.18)
Let us start with a BCS-like Hamiltonian (11.8). Dropping the “holes” from the Hamiltonian , we
obtain a Hamiltonian associated with “electrons” as

(A133) 
where  is the number operator for the “electron” (1) (fluxon (3)),  is the
pair operator for the “electron” and we suppressed the “electron.” Note that the prime on the
summation in (A133) means the restriction: 0 < εk < ħωD, ωD = Debye frequency. Using the



anticommutation rules (11.9) we obtain

(A134) 
The Hamiltonian e is bilinear in (B, B†), and can therefore be diagonalized: e = ∑μ wμϕμ

†ϕμ,
where wμ is the energy and ϕμ the annihilation operator. We multiply (A134) by ϕμ from the right,
take a grand canonical ensemble average,
denoted by angular brackets, and get

(A135) 
where np  = fF(εp) is the Fermi distribution function. The reduced wavefunction Ψμ(k, q) ≡ Bkq

†ϕμ  = 
μ|ň|k, q  can be regarded as the mixed representation of the reduced density operator ň defined
through k’, q’|ň|k, q  ≡ Bk,q

† Bk’,q′ . The fc-boson energy ωμ can be specified by (NL, q), and it will
be denoted by ω0 since it is NL-independent. As T → 0, fF(εp) → 0. Dropping the fluxon energy and
replacing q/2 by q, we obtain (11.16). We solve this equation, assuming εF  ħωD. Using a Taylor
series expansion, we obtain (11.17) to the linear in q.

Now we derive (11.18). The BEC occurs when the chemical potential μ vanishes at a finite T. The
critical temperature Tc can be determined from

(A136) 
After expanding the integrand in powers of e−βcε and using ε = cp, we obtain

(A137) 
yielding a general formula (11.18) for 2D BEC.
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Bose distribution function
Bose-condensed state
Bose–Einstein Condensation (BEC)
boson
boson occupation number
boson speed
bosonic pairon model
bosonic second-quantized operator
bound electron pair
Bravais lattice vector
Bravais vector
Bravais vector for the sq lattice
Brillouin boundary
Brillouin zone
Brillouin zone boundary
Brillouin zone of copper
bulk limit

C
canonical variables (Qκ, Pκ)
carbon
carbon hexagon
carbon nanotube
carrier charge
carrier density
carriers in the SdH oscillations
Cartesian axes
Cartesian coordinate system
Cartesian coordinates
Cartesian frame of coordinates
Cartesian unit cell
cause of both QHE and superconductivity
cause of superconductivity
cause of the QHE
center of mass (CM) momentum
center of mass (CM) of any composite
center of oscillation



changing potential field
channeling electrons
charge current density
charge distribution
charging energy
chemical potential
C-hexagon
classical electron
closed loop superconductor
closed orbit in k-space
closed k-orbit
closed r-orbit
CM momentum
CM of the holes (wavepacket)
CM of the pairons
CM of the “electrons”
collision rate
collision term
collision time
commutation relation in the k-q representation
commutation relations
commutation relations for pair operators
commutators among B and B†

complex dynamical variable
composite (c-) boson
composite (c-) boson (fermion)
composite (c-) fermion
composite boson excitation spectrum
composite particle
compound superconductor
condensation energy
condensation of massless bosons in 2D
condensed pairon
conduction electron
conduction electron density
conduction in graphene
conduction in the wall
conductivity
conductivity of a SWNT
conductivity of carbon NTs



constant-energy surface
Cooper Hamiltonian
Cooper pair
Cooper pair (pairon)
Cooper pair (pairon) carrier model
Cooper pair flux quantum
Cooper-like equation
Cooper’s equation
coronet Fermi Surface
Coulomb (charging) energy
Coulomb field energy
Coulomb force between a pair of electrons
Coulomb interaction
creation (annihilation) operator
creation electron field operator
creation operator for “electron” (1) and “hole” (2) pairon
creation operator for zero-momentum pairon Bk0

† ≡ bk
†

creation operators for “electron” (1) and “hole” (2) pairon
critical field
critical magnetic field
critical temperature
cross section of the r-orbit
crystal’s natural (triangular) axes
cuprate superconductor
current density
current density of patrons
current relaxation rate
curvature inversion
cyclotron frequency
cyclotron mass
cyclotron motion
cyclotron resonance

D
DC Josephson effect
de Haas–van Alphen (dHvA) oscillations
de Haas–van Alphen (dHvA) oscillations in silver
de Haas–van Alphen (dHvA) oscillations in susceptibility
Debye continuum model



Debye distribution
Debye energy
Debye frequency
decay rate
deformation potential approximation
delta-function replacement formula
density gradient
density of conduction electrons
density of excited bosons
density of normal modes
density of scatterers
density of state in the momentum space
density of states (DOS)
density of states at the Fermi energy
density of states for electrons with down-spins
density of states for electrons with up- and down-spins
density of states for electrons with up-spins
density of states in energy
density of states per spin at the Fermi energy
density of states per unit volume
density of zero-momentum bosons
density-wave mode
diamagnetic moment
diamagnetic susceptibility for a metal
diamond
differential conductance
differential cross section
diffusion coefficient
diffusion constant
Dingle temperature
Dirac delta function
Dirac fermion moving with a linear dispersion relation
Dirac picture (DP)
Dirac’s theory
directional cosine
dispersion relation
dissipationless flows
divalent metal
dominant carrier in graphene
down-spin



down-spin electron
dressed electron
drift velocity
Drude formula
Dulong-Petit’s law
dynamic response factor

E
effective charge
effective electron density
effective lattice potential
effective mass
effective mass m3

*

effective mass of an electron
effective masses (m1, m2)
effective masses (m1, m2, m3)
effective phonon-exchange interaction
effective potential field
Ehrenfest–Oppenheimer–Bethe (EOB) rule
eigenvalue equation
eigenvalue problem
Einstein relation
electric conduction in SWNT
electric current
electric current density
electrical conduction in SWNTs
electrical conductivity
electrical conductivity of NTs
electron
electron (fluxon)–phonon interaction
electron (hole) wavepacket
electron carrier model
electron density (field)
electron density deviation
electron density of states per spin at the Fermi energy
electron effective mass
electron energy
electron energy gap
electron flux quantum



electron in a Landau state
electron mass
electron pair (−pairon)
electron speed
electron spin resonance
electron variables
electron-gas system
electronic heat capacity
electron-pair operators (bk, bk

†)
electrons moving in graphene walls
electron’s response
electron–electron interaction
electron–fluxon composite
electron–impurity scattering
electron–phonon interaction
electron–phonon scattering
electron–transverse phonon interaction
electrostatic potential shift
elementary excitation
ellipsoidal constant-energy surface
ellipsoidal Fermi surface
ellipsoidal surface
enclosed magnetic flux
energy bands
energy gap
energy gap at 0 K
energy gap between the moving and the stationary fc-bosons
energy gap equation
energy of the moving pairon
energy of the pairon
energy of zero-point motion
energy-dependent current relaxation rate
energy-dependent relaxation rate
energy-eigenvalue equation for a harmonic oscillator
energy-momentum (or dispersion) relation
energy-state creation operator
envelope of the oscillations
equation of motion for a pairon
equation-of-motion method
equations of motion for a Bloch electron



equations of motion for a harmonic oscillator
equipartition theorem
exact pairon wavefunction
excited electrons near the Fermi surface
excited pairons
exponential decay rate
extremum condition for |ΨĂB

F
face-centered cubic (fcc) lattice
factorization approximation
fc-boson
fc-boson condensed at a finite momentum
fc-boson density
fc-boson energy
fc-boson number
fc-boson, having the linear dispersion relation
fcc lattice structure
Fermi anticommutation rules
Fermi degeneracy
Fermi distribution function
Fermi distribution function for free electrons
Fermi energy
Fermi liquid model
Fermi sea
Fermi speed
Fermi sphere
Fermi statistics of electrons
Fermi surface
Fermi surface for a superconductor
Fermi surface of Cu
Fermi surface of Na
Fermi velocity
Fermi-liquid state
fermion
fermion–antifermion symmetry
Fermi–Dirac statistic
Feynman diagram
Fick’s law
field effect (gate voltage) study



filling factor (Landau-level occupation ratio)
finite size effect
first Brillouin zone
flux quanta
flux quanta (fluxons)
flux quantization
flux quantization for the Cooper pair
fluxon
fluxon number operator nks

(3)

fluxon–phonon interaction strength
force term
Fourier’s law
four-valence electron conduction
fractional charge
fractional LL occupation ratio (filling factor)
fractional quantum Hall effect (QHE)
fractional ratio
free boson model
free electron model
free electron model in 3D
free electrons in equilibrium
free energy
free energy for a system of free electrons
free massless boson
free pairon model
free-electron Fermi sphere
frequency integral
Fröhlich interaction Hamiltonian
f-sum rule
fugacity
full-spin boson
fundamental (f) c-boson (fc-boson)
fundamental composite (c-) boson
fundamental quantum nature

G
galvanomagnetic phenomena
gapless semiconductor
gas constant



gate voltage effect
gate voltage shift
generalized BCS Hamiltonian
generalized energy gap equation
Ginzburg–Landau theory
grand canonical ensemble average
grand ensemble trace
graphene
graphene layer
graphene sheet
graphene wall
graphite
gravitational mass
ground pairon
ground state energy
ground state energy of the system of fc-bosons
ground state of the Bloch system
ground state wave function
group velocity
group velocity of the Bloch wavepacket

H
half-spin fermion
Hall coefficient
Hall effect
Hall effect measurements
Hall field
Hall resistivity
Hall resistivity in GaAs/AlGaAs
Hall resistivity plateau
Hall voltage
Hall’s experiment
Hamiltonian for an electron gas system
Hamiltonian for an electron–phonon system
Hamiltonian for moving pairons
Hamiltonian of a free electron in B
Hamiltonian of a simple harmonic oscillator
Hamilton’s equations of motion
harmonic approximation
harmonic equation of motion



Harrison’s model
heat capacity
heat capacity per electron
heat capacity per unit volume
Heaviside step function
Heisenberg equation of motion
Heisenberg picture (HP)
Heisenberg uncertainty relation
Heisenberg’s uncertainty principle
helical angle
helical line
helicity
hexagonal close packed (hcp) crystal
high-temperature superconductivity (HTSC)
Hohenberg’s theorem
hole
hole axial transport
hole channel current in a SWNT
hole current
hole mass
hole mass in the carbon wall
hole pair (+pairon)
holes
holes moving in graphene walls
homogeneous superconductor
honeycomb lattice for graphene
honeycomb lattice structure
hyperboloidal Fermi surface

I
impurity scattering rate
incompressible quantum fluid state
independent electron model
instantaneous Coulomb interaction
integer QHE
integer QHE plateau
integer quantum Hall effect (QHE)
integral number of carbon hexagons
interaction Hamiltonian
interboson distance



interelectronic Coulomb interaction
internal energy density
interpairon distance
interparticle interaction potential
inverse collision frequency
inversion (mirror) symmetry
inversion symmetry
ion contribution

J
Jain’s theory of fractional hierarchy
Josephson effects
Josephson interference
Josephson junction
Josephson tunneling

K
kinetic momentum
kinetic theory of gas dynamics
Kronig–Penney model

L
Lagrangian in the harmonic approximation
Landau diamagnetism
Landau energy
Landau Level (LL)
Landau Level (LL) degeneracy
Landau oscillator quantum number
Landau states
Landau susceptibility
Landau-level occupation ratio (filling factor)
lattice
lattice axes
lattice dynamics
lattice force
lattice momentum
lattice periodic potential
lattice vibration
lattice-ion mass
Laughlin wavefunction



linear dispersion relation
linear dispersion relation for the 3D Cooper pair
linear dispersion relation in two dimensions
linear energy-momentum (dispersion) relation
linear energy-momentum (dispersion) relation for the center of mass motion
linear heat capacity
linear operators (η, η†)
Liouville operator
LL degeneracy
localized Bloch wavepacket
longitudinal elastic wave
longitudinal phonon
longitudinal wave
longitudinal wave mode
long-range order
Lorentz force
lowest bound energy

M
magnetic energy
magnetic flux
magnetic flux line
magnetic moment
magnetic moment per unit area
magnetic oscillations
magnetic oscillations in bismuth (Bi)
magnetic pressure
magnetic susceptibility
magnetization
magnetoconductivity
magnetogyric ratio
magnetomechanical ratio
magnetoresistance (MR)
magnetoresistivity
magnetotransport mass
main characteristic of metallic conduction
major axes of the ellipsoid
majority carriers in graphite
majority carriers in nanotubes
many-body perturbation method



many-body trace
many-body-system density operator
Markovian approximation
mass conservation law
massless boson
Matthiessen’s rule
mcl crystal
mean free path
mean free time
Meissner effect
metallic (semiconducting) SWNT
metallic compound
metallic single-wall carbon nanotubes
metallic SWNT
metal–insulator transition (MIT)
Miller indices
MIT in VO2

mixed representation
mixed representation of one-body density operator
mixed state
mobility
mode index
molar heat capacity
molar heat capacity at constant density (volume)
molar heat capacity for a 2D massless boson
momentum distribution function
momentum-state annihilation operator
momentum-state electron operator
monoclinic phase
monovalent fcc metal
monovalent metal
motional diamagnetism
Mott’s vrh theory
Mott–Hubbard picture
moving (noncondensed) fc-boson
moving fc-boson
moving pairon
moving patron
multivalent metal
multiwalled carbon nanotube (MWNT)



MWNT bundle

N
nanotube
nearly free electron model (NFEM)
neck and belly orbits
neck Fermi surface
net (CM) momentum
net momentum of a pair of electrons
neutral supercondensate
new band model
Newton’s equation of motion
NFEM (Nearly Free Electron Model)
noble metal
noncondensed fc-boson
non-Ohmic behavior
normal coordinates
normal current
normal curvature
normal mode
normal modes of oscillations
normal modes of oscillations for a solid
normal momenta
normal Ohmic conduction
normal-mode frequencies
number density
number density of zero-momentum bosons
number of zero-momentum bosons
number operator
number operator for electron (1) (hole (2))
number operator for pairons having net momentum q
number operator for the pairons in the state (k, q)
number operators for electrons
number operators for electrons and holes
number representation
numbers of the electrons with up- and down-spins

O
observable
occupation number



occupation numbers of pairons having a CM momentum q
occupation-number representation
Ohmic behavior
Ohm’s law
one-body density operator
one-body Hamiltonian
one-body operator
one-body trace
one-electron-picture approximation
one-pairon states
one-phonon exchange process
Onsager’s flux quantization hypothesis
Onsager’s formula
Onsager’s magnetic flux quantization
open orbits in the k-space
orthogonal unit cell
orthorhombic (orc) crystal
oscillation period
oscillatory density of states
oscillatory magnetization
oscillatory statistical weight
oxide layer

P
pair annihilation operator
pair energies
pair operators
pair wavefunction
pair-annihilate hole-type c-boson pairs
pair-create electron-type c-boson pairs
pairon
pairon (Cooper pair)
pairon (Cooper pair) carrier model
pairon annihilation operator
pairon carrier model
pairon density
pairon density of states
pairon energy
pairon ground state energy
pairon momentum



pairon net momentum
pairon occupation-number states
pairon operator
pairon speed
pairon wavefunction
pairon–phonon scattering cross section
pair-state operators
particle density
partition function per electron
patron
Pauli exclusion principle
Pauli magnetization
Pauli paramagnetic susceptibility
Pauli paramagnetism
Pauli’s exclusion principle
Peierls instability
penetration depth
periodic boundary condition
periodic lattice potential
periodic oscillation of the statistical weight
permutation operator
permutation-symmetry property of the quantum particle
phase
phase change
phonon
phonon energy
phonon exchange
phonon momentum
phonon scattering
phonon scattering rate
phonon-exchange attraction
phonon-exchange attraction between the electron and the flux quantum (fluxon)
phonon-exchange effect
phonon-exchange interaction
physical vacuum state
pitch
pitch angle
pitch in a metallic SWNT
Planck constant
Planck distribution function



plane wave
plateau height
plateau stability
Poisson’s sum formula
position representation
potential energy
potential field energy of a magnetic dipole
primitive vectors
principal axes of curvatures
principal axis
principal mass
principal-axis transformation

Q
QH state
QHE at filling factor v = 2
QHE in GaAs/AlGaAs
QHE in graphene
QHE state
quadratic dispersion relation
quadrivalent metal
quantization of cyclotron motion
quantum Hall (QH) state
Quantum Hall Effect (QHE)
Quantum Hall Effect (QHE) oscillations
quantum Liouville equation
quantum Liouville operator
quantum number
quantum postulate
quantum statistical postulate
quantum statistical theory
quantum statistics of the particles
quantum wavepacket
quantum zero-point motion
quasielectron
quasielectron energy gap
quasifree electron
quasifree electron Hamiltonian
quasifree electron model
quasiparticle dispersion relations



quasiparticle energy
quasiwavefunction

R
radius of a MWNT tube
rectangular cell model
reduced density operator
reduced generalized BCS Hamiltonian
reduced Hamiltonian
reduced wavefunction for the stationary fc-bosons
reflection (mirror) symmetry
relative and net momenta
relative momentum
relaxation (collision) time
relaxation rate
relaxation time
resistance
resistivity
right-hand screw rule
rigidity (shear) modulus
ring supercurrent
room-temperature quantum Hall effect (QHE) in graphene
running wave

S
Sbunikov–de Haas (SdH) oscillation
Sbunikov–de Haas (SdH) oscillations in GaAs/AlGaAs
scanned probe microscopy (SPM)
scattering angle
scattering cross section
scattering rate
Schrödinger energy-eigenvalue equation
Schrödinger equation
Schrödinger equation for an electron
Schrödinger picture (SP)
SdH oscillation period
second quantization
second-quantization formalism
second-quantized operators for a pair of electrons
Seebeck coefficient



Seebeck coefficient (thermopower)
Seebeck coefficient for 3D motion
Seebeck coefficient for a bundle of MWNTs
Seebeck coefficient in multiwalled carbon nanotubes
Seebeck coefficient of highly oriented single-crystal pyrolytic graphite
Seebeck coefficient of MWNTs
Seebeck coefficient S in copper (Cu)
Seebeck current
Seebeck electromotive force
semiclassical (wavepacket) model of a conduction electron
semiclassical electron dynamics
semiclassical equation of motion
semiconducting SWNT
semiconductor-like T-behavior
shear modulus
Shockley’s formula
Shubnikov–de Haas (SdH) oscillations
simple cubic (sc) lattice
single-wall carbon nanotube (SWCN)
single-wall nanotube (SWNT)
sinusoidal oscillations to the free energy
six basic properties of superconductors
solid angle
speed of sound
spherical Fermi surface
spin angular momentum
spin anomaly
spin degeneracy
spin degeneracy factor
spin-statistics theorem
stationary density operator
stationary pairon
statistical weight
supercondensate
superconducting energy gap
superconducting ground state
superconducting properties
Superconducting Quantum Interference Device (SQUID)
superconducting state
superconducting state of HTSC



superconducting temperature
superconducting transition
superconductivity
superconductivity energy gap in the composite boson (c-boson) excitation spectrum
superconductors
supercurrent
supercurrent density
supercurrent ring experiment
superfluid phase
superposable plane waves
susceptibility
symmetric ket
symmetrizing operator

T
tcl crystal
temperature gradient
tet crystal
thermal activation
thermal conduction
thermal diffusion of the MWNT bundle
thermal electromotive force (emf)
thermal speed
thermally activated electron density
thermally activated process
thermally excited electron
thermoelectric power
third-order phase transition
time-dependent perturbation theory
total magnetic susceptibilitq
total number of pairons
transition between the hole-type c-fermion states
transverse elastic wave
transverse lattice normal mode
transverse wave mode
traveling normal mode
traveling wave
tunneling experiment
two-body density operator
two-electron density matrix



two-pairon states
type I elemental superconductor
type II magnetic behavior

U
unit hexagon
up-spin
up-spin electron

V
vacuum ket
vacuum-state ket for phonons
van Hove singularities
van Leeuwen’s theorem
vanadium dioxide (VO2)
variable range hopping (vrh) theoretical formula
variation
vector potential
vertices
virtqal electron pair
virtual exchange of phonon
virtual phonon

W
wave tbain
wavefunction
wavelength
wavepacket
wave-particle duality
weak-coupling approximation
WignerSeitz (WS) cell model
WignerSeitz (WS) cell model for graphene
WS model
WS unit cell for graphene

Y
Young modulus

Z



zero resistance
zero resistivity
zero-bias anomaly
zero-momentum bos on
zero-momentum pairon
zero-momentum pairon operator
zero-pairon state
zero-point energy
zero-temperature BCS pairon size
zero-temperature electron energy gap
zero-temperature energy gap
zone number
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