


W



W





Preface

Tsunamis and hurricanes are natural catastrophes which can make consid-
erable material damage and personal harm to humans. Any possibility to
describe these phenomena and to find methods of predictability of any kind
seem therefore to be of interest not only for meteorologists, but also for
governments, evacuation plans or the insurance industry etc. There may
now exist a chance to satisfy these needs, if a tsunami wave equation could
be found and solved. Seismic waves in the Earth’s crust propagate faster
(4–6 km/sec) than tsunamis (100–900 km/h). This speed difference allows
an early warning time of up to a few hours, depending on the location of
the earthquake or underwater explosion. If a tsunami wave equation and
its solutions were known, even a guess of the tsunami crest height might be
possible and useful.

In this book a mathematical approach to tsunami wave equations is pre-
sented. To the author’s knowledge some of the tools and computer codes
presented here have never been applied on tsunamis and hurricanes. Some of
the calculations in this book are based on the Preiswerk-Landau equiv-
alence principle between gasdynamics and hydrodynamics as well on the
Bechert-Marx linearization method using the mass variable transforma-
tion. Other tools used here are similarity transformations and the program
packet Mathematica by Wolfram. Although knowledge of these codes is
not necessary for the use of this book, it may however help to understand
some calculations and the reader may acquire some knowledge of this pro-
gram.

The Lie-series method to solve differential equations are also mentioned
or Codes developed by NOAA and other organisations.

The author thanks his colleague H. Pichler of the Meteorology Depart-
ment of Innsbruck University for a critical reading of the manuscript and for
many useful suggestions. The author thanks also his son Clemens of the In-
stitute for Informatics, University of Rostock, for some hints and especially
his wife Theresia for providing the typed version of this book. With endless
patience, interest and engagement she brought the countless different ver-
sions of the often poorly handwritten manuscript into professional format
using the computer program LATEX.

Innsbruck, Austria, September 2006



Contents

1 Introduction to wave physics 1
1.1 Types of waves . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Linear wave equations . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Solutions of linear wave equations . . . . . . . . . . . . . . . . 12
1.4 Nonlinear wave equations . . . . . . . . . . . . . . . . . . . . 20
1.5 Physics of nonlinear wave equations . . . . . . . . . . . . . . 25

2 Basic flow equations 31
2.1 Units and properties of substances . . . . . . . . . . . . . . . 31
2.2 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 The equation of motion . . . . . . . . . . . . . . . . . . . . . 38
2.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Vorticity theorems . . . . . . . . . . . . . . . . . . . . . . . . 57
2.7 Potential flow in incompressible fluids . . . . . . . . . . . . . 60
2.8 Potential flow in compressible fluids . . . . . . . . . . . . . . 64
2.9 The Darboux solution of plane waves in non-dissipative gases 72
2.10 The equivalence theorem . . . . . . . . . . . . . . . . . . . . . 80

3 Water waves 91
3.1 The variety of water waves . . . . . . . . . . . . . . . . . . . 91
3.2 Gravity water waves . . . . . . . . . . . . . . . . . . . . . . . 99
3.3 Capillarity waves . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.5 Dissipationless tsunamis . . . . . . . . . . . . . . . . . . . . . 122
3.6 Wave equation for dissipative tsunamis . . . . . . . . . . . . . 143
3.7 The tsunami wave equations . . . . . . . . . . . . . . . . . . . 154

4. Hurricanes 163
4.1 Terminology and basics . . . . . . . . . . . . . . . . . . . . . 163
4.2 The excitation of vorticity in cyclones . . . . . . . . . . . . . 166
4.3 Mathematical modelling of cyclones . . . . . . . . . . . . . . 172
4.4 Multifluid cyclone modelling . . . . . . . . . . . . . . . . . . . 177

References 181

Index 193



1. Introduction to wave physics

1.1 Types of waves

A wave is a disturbance of a physical quantity which propagates from one
location in space to another point. Mathematically a wave is described in
terms of its strength, called amplitude, and how the amplitude varies with
both space and time. The description of the wave amplitude is given by
the general solution of the appropriate wave equation. These equations are
linear or nonlinear partial differential equations, depending on the type of
the physical quantity. The perturbed physical quantity may be a property
of a medium like a fluid, a gas or an electromagnetic or another field. In
quantum mechanics complex waves are described by the Schroedinger
wave equation. The appropriate wave equation is defined by the physical
phenomenon, be it a displacement in a medium like water or a physical field
or quantity.

If the solution of a wave equation satisfies the equation and some bound-
ary and/or initial condition it is called a partial solution. Exterior forces
like gravity, wind or earthquakes have a decisive influence on the solutions,
whereas intrinsic properties of the medium like surface tension (capillarity),
elasticity, inertia or viscosity are taken into account by the appropriate wave
equation.

The various types of waves in water may be classified according to the
mechanism exciting the wave or according to the appearance and behavior
of the waves. Furthermore, linear waves may be classified according to their
wave length λ, the propagation speed c and their frequency ν. Linear waves
satisfy a linear wave equation. If the coefficients in the wave equation are
constants, then the wave equation reads

c2Δu(x, y, z, t) = utt, (1.1.1)

where Δ is the Laplace-operator uxx + uyy + uzz. If one considers a one-
dimensional problem, the general solution of (1.1.1) may be a travelling
wave

u(x, t) = f(x + ct) + g(x − ct), (1.1.2)

where f and g are arbitrary functions, or a sinusoidal oscillatory wave of the
form

u(x, t) = A sin 2π
(

t

τ
− x

λ

)
. (1.1.3)
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The wave length λ is the horizontal distance between successive crests of
the wave, the amplitude A is the distance from the wave surface at rest to
the crest and τ = 1/ν is the wave period. Then the relation holds

c = λ/τ = λν = λω/2π = ω/k. (1.1.4)

As we will see later, these equations (1.1.1)–(1.1.4) are valid for sinusoidal
(linear) waves only. Using the concept of the wave number k = 2πν/c =
2π/λ, one may write (1.1.3) in the form

u(x, t) = A cos(2πνt − kx + ϕ) = A cos(Φ), (1.1.5)

where ϕ is an arbitrary phase constant (phase angle Φ in radians). A group
of waves of various frequencies νn is described by

u(x, t) =
∑
n

An cos
[
ωn

(
t − x

c

)
+ ϕn

]
, (1.1.6)

where ωn = 2πνn. Here νn is the frequency of the n-th component of the
group of waves. The superposition of waves of different wave length with
phases such that the resultant amplitude is finite over a small region is called
a wave packet. The velocity of energy flow in a propagating wave packet is
called group velocity cg. The propagation speed c(ν) of a simple harmonic
(sinusoidal) wave is also called phase velocity. Waves exhibiting dispersion
show a dependence of the phase velocity c on the frequency or the wave
length.

A wave of frequency νn has a phase velocity c(νn) according to (1.1.4)
so that also the wave number k depends on the frequency. If the phase Φ
in (1.1.5) is constant then we find the locations with the phase for various
times. For constant = 0 one has

kdx − ωdt = 0, or
dx

dt
=

ω

k
= c. (1.1.7)

c is the phase velocity of a monochromatic wave of frequency ν. Considering
now a group of waves (1.1.6), we now may define a group velocity cg by

cg =
dω

dk
. (1.1.8)

If there is no dispersion, if thus the phase speed c does not depend on the
frequency (on the wave number), one obtains ω = ck or dω = cdk and the
phase velocity c is equal to the group velocity. The fact is however, that all
water waves exhibit dispersion (see chapter 3).

In the case of dispersion we have to expand

cg =
dω

dk
= c + k

dc

dk
= c − λ

dc

dλ
. (1.1.9)
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For normal dispersion defined by dc/dλ > 0 the group velocity cg is smaller
than the phase velocity c. For anomalous disperion (dc/dλ > 0) one has
cg > c. Both cases are realized by water waves.

Wave packets are defined by a group of waves of the type (1.1.6) with
continuously varying frequencies neighboring ν0 or wave numbers k0. Using
the well known expression exp(ip) = cos p + i sin p, we thus may replace
(1.1.6) by the Fourier integral

u(x, t) =
k0+ε∫

k0−ε

A(k) exp(i[kx − ωt])dk, (1.1.10)

which describes a wave packet. (ε is a very small constant quantity). Using
kx − ωt = k0x − ω0t + (k − k0)x − (ω − ω0)t one obtains

u(x, t) = exp(i[k0x − ω0t])
k0+ε∫

k0−ε

A(k) exp (i[k − k0]x − [ω − ω0]t) dk. (1.1.11)

To obtain the propagation speed of the phase, we find from (1.1.7)
dx

dt
=

ω − ω0

k − k0
=

Δω

Δk
≈ dω

dk
= cg. (1.1.12)

A wave packet propagates with the group velocity cg.
Considering now the mechanisms and forces exciting waves in media we

may mention:

1. tidal waves, excited by the tides and thus by the combined action of
the gravity of Earth and Moon,

2. surface waves due to the capillarity of water and excited by wind and
pressure differences, see section 3.3,

3. gravity waves due to gravity alone and appearing as breakers, surge
etc, section 3.2,

4. surface waves due to the combined action of surface tension (capillar-
ity) and gravity excited by wind, producing ripples,

5. wave packets like jumps, solitary waves, solitons, seiches, edge waves,
shallows, swells, tsunamis etc,

6. waves connected with the viscosity of water.

On the other hand, a classification due to the wave form is of interest. There
exist waves whose shape does not change like sinosoidal or cnoidal and
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snoidal waves (described by elliptic functions) and there exist waves which
change their shape slightly or enormously, for instance by compression or
expansion of the medium carrying the waves, by nonlinear effects etc. Wave
deformation may also depend on the depth of the lake or ocean. It may
also be due to the dependence of the wave velocity both on the amplitude
of the wave and/or the depth of the liquid. A special type of waves is given
by internal waves. These are particular waves in the ocean or in a lake
occurring at the interface of two layers of water of different temperature and
therefore density. Waves in the atmosphere consider special attention due to
the compressibility of the medium and of the effects of Coriolis force on the
rotating Earth. Periodic waves are defined by u(x, y, z, t) = u(x, y, z, t + τ)
and oscillatory waves have a change in sign after a half period.

2 4 6 8 10 12

-1

-0.5

0.5

1

Fig. 1.1. Oscillatory harmonic wave

Figure 1.1 has been produced by the program packet Mathematica [1.1]
using the command

Plot[Sin[x],{x,0,4*Pi}] (1.1.13)

5 10 15 20 25

-1

-0.5

0.5

1

Fig. 1.2. Nonlinear nonharmonic oscillatory periodic wave
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Although knowledge and use of the program packet Mathematica are not
necessary to fully understand all calculations presented in this book it might
help to execute some calculations. Equation (1.1.13) describes a sinusoidal
monochromatic wave (1.1.5). Here the replacements 2πνt−kx+ϕ → x,A =
1 have been made. This replacement corresponds to a translation to a co-
moving frame (wave frame). Figure 1.2 shows a stable nonlinear nonhar-
monic oscillatory periodic wave (snoidal or cnoidal wave) produced by

Plot[JacobiSN[t,0.996],{t,0,8*Pi}] (1.1.14)

Here the replacement has been 2πνt − kx + ϕ → t.
A periodic wave may be but must not be oscillatory. An example is

given in Fig. 1.3.

5 10 15 20 25

0.5

1

1.5

2

2.5

3

Fig. 1.3. Periodic nonoscillatory wave

This graph has been produced by plotting the Fourier series
y[t_]=Pi/2.-4*Sum[Cos[n*t]*n^(-2),{n,1,31,2}/Pi

y(t) =
π

2
− 4

π

(
cos t +

cos 3t
32

+
cos 5t

52
+

cos 7t
72

+ ...

)
(1.1.15)

and Plot[y[t],{t,0,8*Pi}] A periodic oscillatory wave may be repre-
sented by

y(t) =
4
π

(
sin t − sin 3t

32
+

sin 5t
52

− sin 7t
72

+ ...

)
, (1.1.16)

see Fig. 1.4.
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Fig. 1.4. Periodic nonharmonic oscillatory wave

There exist also nonperiodic nonoscillatory waves occurring in water, see
Fig. 1.5.
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Fig. 1.5. Nonperiodic nonoscillatory wave (a soliton)

Figure 1.5 has been produced by plotting

y(t) = sech2(t), (1.1.17)

where sech= 1/ cosh. An oscillatory soliton is depicted in Fig. 1.6 which is
represented by

y(t) = sech(t) · cos(t). (1.1.18)



1.1 Types of waves 7

-4 -2 2 4

0.2

0.4

0.6

0.8

1

Fig. 1.6. Oscillatory soliton

The propagation of a harmonic wave (1.1.5) in space and time is shown
in Fig. 1.7 by using the command

Plot3D[Cos[t-x],{x,-3*Pi,3*Pi},{t,0,3*Pi},Mesh->False,
PlotPoints->60,ColorOutput->GrayLevel] (1.1.19)
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Fig. 1.7. Propagation of a harmonic wave in space and time
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Problems

1. Verify the solution (1.1.2) of the Laplace equation (1.1.1).

2. Solve (1.1.1) by the setup u(x, y, z, t) = f(x)g(y)h(z)j(t).

3. Verify the solution (1.1.3) of (1.1.1) in two dimensions x, t.

4. Derive the formula (1.1.9).

1.2 Linear wave equations

The most general linear wave equation in two variables for a wave function
u(x, t) reads:

L(u) ≡ a(x, t)uxx + 2b(x, t)uxt+

c(x, t)ytt + d(x, t)ux + e(x, t)ut + g(x, t)u = h(x, t).
(1.2.1)

The coefficient functions a, b, . . . g describe the properties of the wave medium
and the inhomogeneous term h(x, t) describes exterior influences like forces.
It is a general property of all linear differential equations that two particular
solutions can be superposed, which means that the sum of two solutions is
again a (new) solution (superposition principle). For nonlinear differential
equations the superposition principle does however not hold. When writing
down equation (1.1.6) we have made use of the superposition principle.

In order to obtain a particular solution of (1.2.1) one needs boundary and
initial conditions. The problem of finding a solution to a given partial dif-
ferential equation which will meet certain specified requirements for a given
set of values of the independent local variables (xi, yi, zi - called boundary
points) describing a boundary curve or surface is called a boundary problem.
Since values u(xi, yi, zi, t) of the wave function are given, one uses the term
boundary value problem.

Three types of boundary value problems are considered.

1. first boundary value problem (Dirichlet problem): Given a domain
R and its boundary surface S and a function f defined and continuous
over S, then the Dirichlet condition reads u = f on the boundary
where u satisfies the three-dimensional wave equation for u(x, y, z, t)
and u(xi, yi, zi, t) = f(xi, yi, zi, t).
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2. second boundary value problem (Neumann problem). Here the normal
derivative of the function f is given on the boundary,

3. third boundary value problem: a linear combination

∂u

∂n
+ pu = m

is given.

Furthermore, an initial condition (Cauchy problem) is important for wave
equations. This condition fixes both value and normal derivative at exactly
the same place (or time).

If the value u or its derivatives or the function m vanishes, the boundary
value problem is called homogeneous. If the inhomogeneous term h in (1.2.1)
vanishes, the wave equation is termed homogeneous. If the differential equa-
tion or the boundary condition or both are inhomogeneous (they do not
vanish), then the boundary problem is said to be inhomogeneous. Boundary
curves or surfaces may be open or closed. A closed boundary surface (or
curve) is one surrounding the boundary domain everywhere, confining it to
a finite surface or volume. An open surface or curve does not completely
enclose the domain, but lets it extend to infinity in at least one direction
(open boundary).

Now we would like to classify linear partial differential equations of type
(1.2.1). If the coefficient functions a, b, c are constant but not equal (a �= b),
then the medium is anisotropic. If a, b, c depend on location the medium
is inhomogeneous. Since the inhomogeneous term h in (1.2.1) describes
external influences, it is sufficient to investigate the homogeneous equation.
We introduce the following abbreviation

ux = p, ut = q, uxx = r, uxt = s, utt = v, (1.2.2)

so that (1.2.1) reads

ar + 2bs + cv = F (u, p, q, x, t). (1.2.3)

We now are interested in the question if a solution of (1.2.3) exists that
satisfies the given Cauchy (initial) conditions on the boundary: both u
and its normal derivative ∂u/∂n are prescribed. Since u is given, then so is
∂u/∂s. From ∂u/∂s and ∂u/∂n one can calculate ux = p and ut = q. Thus
the following relations are valid in general and on the boundary

dp = dux = rdx + sdt = uxxdx + uxtdt

dq = dut = sdx + vdt = uxtdx + uttdt.
(1.2.4)
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These two expressions together with (1.2.3) constitute three linear equations
for the determination of the three variables r, s, v on the boundary. The
determinant of this linear systems reads∣∣∣∣∣∣∣

a 2b c
dx dt 0
0 dx dt

∣∣∣∣∣∣∣ = adt2 − 2bdxdt + cdx2. (1.2.5)

Only when this determinant vanishes, the system of equations has a solution.
This gives

(
dx

dt

)2

− 2b
c

dx

dt
+

a

c
= 0 (1.2.6)

and the solution is

dx

dt
=

b

c
± 1

c

√
b2 − ac. (1.2.7)

It clearly depends on the three functions a, b, c if one obtains one real, two
distinct real or two conjugate complex expressions for the curves x(t) or t(x)
which are called Monge characteristics.

1. If b2 − ac > 0, then the curves x(t) form two distinct families and the
partial differential equation (1.2.1) is called hyperbolic,

2. if b2 − ac < 0, then the characteristics are conjugate complex and
(1.2.1) is called elliptic,

3. if b2 − ac = 0 we have the parabolic type and only one real family of
characteristics exists.

Each of the three equations can be transformed into a normal form.
Introducing new coordinates called characteristics

ξ = ϕ(x, t), η = ψ(x, t) (1.2.8)

one obtains

ux = uξϕx + uηψx, ut = uξϕt + uηψt

uxx = uξξϕ
2
x + 2uξηϕxψx + uηηψ

2
x . . .

uxt = uξξϕxϕt + uξη(ϕxψt + ϕtψx) + uηηψxψt . . .

utt = uξξϕ
2
t + 2uξηϕtψt + uηηψ

2
t . . . ,
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where the dots only represent first derivatives. Insertion into (1.2.3) and use
of

aϕ2
x + 2bϕxϕt + cϕ2

t = 0 (1.2.9)

(valid also for ψ) yields the normal form (1.2.10). In the calculation the
coefficients of uξξ and uηη had vanished due to ϕ = const and ϕxdx+ϕtdt =
0. Then the normal form of the hyperbolic type reads

uξη = F (u, uξ , uη, ξ, η). (1.2.10)

For the normal form of the elliptic type one receives

uξξ + uηη = F (u, uξ , uη, ξ, η) (1.2.11)

when the transformation ξ + iη = ϕ(x, t), ξ − iη = ψ(x, t) is used. The
parabolic case is not of interest for tsunamis or hurricanes.

It is now possible to prove [1.2] the solvability of boundary value prob-
lems. We summarize the results in Table 1.1.

Table 1.1. Solvability

Boundary Equation

condition hyperbolic elliptic parabolic

Cauchy
open boundary solvable indeterminate overdeterminate
one closed boundary overdeterminate overdeterminate overdeterminate
Dirichlet
open boundary indeterminate indeterminate solvable
one closed boundary indeterminate solvable overdeterminate
Neumann
open boundary indeterminate indeterminate solvable
one closed boundary indeterminate solvable overdeterminate

In this connection the term solvable means solvable by an analytic function.

Problems

1. Show that uxx + uyy = 0 is an elliptic equation.

2. Show that uxx − utt = h(x, t) is a hyperbolic equation.
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3. Investigate the type of the Tricomi equation

uxx + xutt = 0. (1.2.12)

4. Derive the characteristics of (1.2.12).
Solution:

t ± 2
3
(−x)3/2 = const for x < 0 and t +

2
3
(ix)3/2 = const for x > 0.

(1.2.13)

5. Find the type of the Euler equation (a, b, c are constants.)

auxx + 2buxy + cuyy = 0. (1.2.14)

6. Find the type of uxx + 2uxy + uyy + x = 0 (parabolic).

7. Investigate utt = x2uxx + u/4. (u(x, t) =
√

xf(lnx − t)).

8. Prove that the superposition principle is valid for equations of type
(1.2.1).

1.3 Solutions of linear wave equations

Elliptic differential equations are not of interest in the discussion of tsunamis,
but play a certain role for hurricanes. We just want to mention that there
are some similarities to hyperbolic equations, see (1.1.1),

u(x, t) = f(x + ct) + g(x − ct) solves c2uxx = utt and
u(x, y) = f(x + iy) + g(x − iy) solves uxx + uyy = 0.

We now discuss solutions of linear partial differential equations of second
order of hyperbolic type. The normal form (1.2.10) of the most general ho-
mogeneous linear wave equation (1.2.1) can be obtained formally by setting
h = 0, a = 0, c = 0, b = 1/2:

L ≡ uxt + dux + eut + gu = 0. (1.3.1)

In order to be able to proceed we need a short mathematical excursion.
Let us consider two differential operators L like (1.2.1), (1.3.1) and another,
called adjoint operator M(v) defined by

P ≡ vL(u) − uM(v) =
∂X

∂x
+

∂Y

∂t
, (1.3.2)
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where X and Y are functions of v and u. Here M is defined by the require-
ment that the expression P be integrable and may be a kind of a divergence
of the pseudo-vector with the components X and Y . The problem is now
to find M,X,Y . As soon as v is known, we also know u. Using several
identities like

avuxx − u(av)xx =
∂

∂x

(
avux − u

∂av

∂x

)
,

bvuxt − u(bv)xt =
∂

∂x
(bvut) − ∂

∂t

(
u

∂bv

∂x

)
,

dvux − u
∂

∂x
(−dv) =

∂

∂x
(dvu) etc

one gets

M(v) =
∂2av

∂x2
+ 2

∂2bv

∂x∂t
+

∂2cv

∂t2
− ∂dv

∂x
− ∂ev

∂t
+ gv = 0, (1.3.3)

X = a(vux − uvx) + b(vut − uvt) + (d − ax − bt)uv,

Y = b(vux − uvx) + c(vut − uvt) + (e − bx − ct)uv.

M is the adjoint operator for L which we wanted to find. The expressions
X and Y are known as soon as v is found. The special case L(u) = M(v) is
called self-adjointness. L and M are called self-adjoint (and exhibit special
important properties in many other fields of physics). The condition of
self-adjointness may now be written in the form

ax + bt = d; bx + ct = e. (1.3.4)

With these concepts at hand we may start the integration of linear hy-
perbolic partial differential equations [1.3]. In order to obtain the normal
form (1.3.1), we again use a = 0, c = 0, b = 1/2 to obtain M from (1.3.3) in
the form

M(v) = vxt − ∂dv

∂x
− ∂ev

∂t
+ gv = 0, (1.3.5)

as well as

X =
1
2
(vut − uvt) + duv

Y =
1
2
(vux − uvx) + euv.

(1.3.6)
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Inserting now L from (1.3.1), M from (1.3.5) and (1.3.6) into Gauss theorem∫
div 
Adf =

∫
Ands or∫

S

[vL(u)−uM(v)]df =
∫ (

∂X

∂x
+

∂Y

∂t

)
df =

∫
C

[X cos(n, x) + Y cos(n, t)]ds.

We get∫
S

[vL(u) − uM(v)]df =
∫
C

[X cos(n, x) + Y cos(n, t)]ds. (1.3.7)

Here C is the boundary curve and S is the region. According to Table 1.1
the hyperbolic equation is solvable for an open boundary. Riemann has
therefore chosen the region S as given in Fig. 1.8. This figure has been
produced by the following Mathematica command:

Clear[l,G,r,Ci,GT0,GT1,GT2,GT3,GT4,GT5,GT6];
l=Line[{{1.,1.},{4.,1.},{4.,4.}}];
G=Graphics[l,Axes->True, AxesLabel->{’’x’’,’’t’’},
AspectRatio->1.];
r=3.; $DefaultFont={’’Courier-Bold’’,10};
Ci=Circle[{4.,1.},r];
G1=Graphics[Ci,AspectRatio->1.,
PlotRange->{{0,4.08},{0,4.08}}];
T0=Text[P,{4.095,1.}];
T1=Text[P1,{0.90,1.}];
T2=Text[P2,{4.,4.1}];
T3=Text[S,{3.,2.}];
T4=Text[C,{1.5,3.}];
T5=Text[eta,{-0.52,1.}];
T6=Text[xi,{1.,-0.37}];
GT0=Graphics[T0];
GT1=Graphics[T1];
GT2=Graphics[T2];
GT3=Graphics[T3];
GT4=Graphics[T4];
GT5=Graphics[T5];
GT6=Graphics[T6];

Show[G,G1,GT0,GT1,GT2,GT3,GT4,GT5,GT6,AspectRatio->1.,
PlotRange->{{-.9,4.5},{-0.6,4.5}}];
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xi

Fig. 1.8. Riemann integration (xi = ξ, eta = η)

To define the triangular region S of Fig. 1.8 we first define two points
P1(x1, t1) and P2(x2, t2) on the open (infinite) boundary curve C which is
situated in the t(x) plane. Then we draw two straight lines parallel to the x-
and t-axes, respectively. The lines start in P1 and in P2, respectively. They
meet each other in P (x = xi = ξ, t = η = eta). The hyperbolic equation
is only solvable for a Cauchy condition. That is that the values and the
normal derivative of u on C must be given, compare Table 1.1.

According to Riemann the following assumptions are made

1. M(v(x, t)) = 0 in S, (1.3.8)
2. v(P ) = v(x = ξ, t = η) = 1, (P is not on C), (1.3.9)
3. vt − dv = 0 for x = ξ, vx − ev = 0 for t = η. (1.3.10)

These three conditions determine the function v and its behavior along the
characteristics x = ξ and t = η. Apart from a factor, v is Riemann’s
hypergeometric function.

Specializing now d, e and g in the anisotropic equation (1.3.5) for hydro-
dynamics, we have [1.3]

d = − α

x + t
, e = − α

x + t
, g = 0. (1.3.11)
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Then (1.3.10) yields for v(x, t)

1
v
vt = − α

x + t
= − α

ξ + t
,

1
v
vx = − α

x + t
= − α

x + η
. (1.3.12)

Integration of (1.3.12) delivers

v = C1(ξ + t)−α, v = C2(ξ + η)−α. (1.3.13)

To obtain the solution of (1.3.5), (1.3.8) we take into account (1.3.9) which
gives

C1 = C2 = (ξ + η)α, v =
(

ξ + η

x + t

)α

, (1.3.14)

so that v(x = ξ, t = η) = 1 according to (1.3.9) is satisfied. Riemann has
modified the solution (1.3.14) by setting

v(x, t; ξ, η) =
(

ξ + η

x + t

)α

· F (z), z = − (x − ξ)(t − η)
(x + t)(ξ + η)

. (1.3.15)

Here F is a new function to be determined. It will turn out that it is the
hypergeometric function containing three parameters, all depending on α.
Taking into account a = 0, c = 0, g = 0, b = 1/2 and (1.3.11), the differential
equation (1.3.3), (1.3.5) assumes now the form

M(v) =
∂2v

∂x∂t
+

α

x + t

(
∂v

∂x
+

∂v

∂t

)
− 2α

v

(x + t)2
= 0. (1.3.16)

This equation is satisfied by v (1.3.14) but also by (1.3.15). We now will
find F [1.3]. Using (1.3.15) we obtain

vx =
(

ξ + η

x + t

)α ( −α

x + t
F (z) + F ′(z)

∂z

∂x

)
,

vt =
(

ξ + η

x + t

)α ( −α

x + t
F (z) + F ′(z)

∂z

∂y

)
.

(1.3.17)

Insertion into (1.3.16) delivers

F ′′(z)
∂z

∂x

∂z

∂t
+ F ′(z)

∂2z

∂x∂t
− α(α + 1)

x + t
F (z) = 0. (1.3.18)

Now the derivative of z(x, t; ξ, η) can be expressed in the form

∂z

∂x

∂z

∂t
=

1
(x + t)2

(z2 − z),

∂2z

∂x∂t
=

2z − 1
(x + t)2

.
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Using these expressions (1.3.18) becomes

z(1 − z)F ′′ + (1 − 2z)F ′ + α(α + 1)F = 0. (1.3.19)

This equation defines a hypergeometric function. It is usual to define a more
general hypergeometric function by the differential equation [1.1]

z(1 − z)F ′′ + [γ − (δ + β + 1)z]F ′ − δβF = 0. (1.3.20)

Comparison to (1.3.10) yields γ = 1, δ = 1 − β = 1 + α, β = −α. Since the
solution of (1.3.20) is usually designated by F (z; δ, β, γ) one has the solution
of (1.3.19) in the form

F (z; 1 + α,−α, 1). (1.3.21)

Series representation, the Mathematica expressions
DSolve[y’’[x]+(c-(a+b+1)*x)*y’[x]/(x*(1-x))
-a*b*y[x]/(x*(1-x))==0, y[x],x]
y[x]=C[1]*Hypergeometric2F1[a,b,c,x]+(-1)^(1-c)*x^(1-c)+
C[2]*Hypergeometric2F1[1+a-c,1+b-c,2-c,x] (1.3.22)
and details on the hypergeometric function family (Gauss function) may be
found in the specialized mathematical literature [1.1], [1.2], [1.4], [1.5].

We now have presented some tools to solve linear hyperbolic partial dif-
ferential equations of second order with variable (and constant) coefficients.
These tools will be used in some sections of chapter 3. Tsunamis are how-
ever nonlinear waves and when discussing nonlinear wave equations we will
find that some tools presented here will be useful.

To conclude this section we will solve a linear wave equation in an
isotropic inhomogeneous medium. We choose the Tricomi equation (1.2.12)

uxx + xutt = 0. (1.3.23)

From (1.2.1) we read a = 1, b = 0, c = x. Then (1.2.7) yields the differential
equation for the characteristics

dx

dt
= ±1

x

√−x. (1.3.24)

The solutions are

t(x) = const ± 2
3
(−x)3/2 for x < 0, hyperbolic, (1.3.25)

t(x) = const ± 2
3
(ix)3/2 for x > 0, elliptic. (1.3.26)
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A full solution of a boundary value problem shall be given for the following
equation

uxx + y2uyy = 0 in the domain S

{
0 ≤ x ≤ a

0 < b ≤ y ≤ c
(1.3.27)

where a, b, c are given constants. The boundary values should be

u(0, y) = u(a, y) = 0, (1.3.28)

u(x, b) = f(x), u(x, c) = g(x), (1.3.29)

where f(x) and g(x) are given functions.
The characteristics indicate the elliptic type for y �= 0 and the parabolic

type for y = 0. Setting up

u(x, y) =
∞∑

ν=1

ϕν(x)ψν(y), (1.3.30)

we try a direct solution. This must satisfy the boundary condition (1.3.28)
ϕν(0) = ϕν(a) = 0. The ansatz ϕ′′

ν(x) = −λνϕν(x) yields

ϕν = sin
νπx

a
, λν =

ν2π2

a2
, ν = 1, 2, 3 . . . . (1.3.31)

If one inserts (1.3.30) into (1.3.27) one obtains

uxx + y2uyy =
∞∑

ν=1

(
ϕ′′

νψν + y2ϕνψ
′′
ν

)
=

=
∞∑

ν=1

sin
νπx

a

[
y2ψ′′

ν (y) − ν2π2

a2
ψν(y)

]
= 0,

(1.3.32)

so that

y2ψ′′
ν − ν2π2

a2
ψν(x) = 0, ν = 1, 2, 3 . . . (1.3.33)

has to be solved together with the boundary conditions (1.3.29)

ψν(b) =
2
a

a∫
0

f(x) sin
νπx

a
dx = bν ,

ψν(c) =
2
a

a∫
0

g(x) sin
νπx

a
dx = cν .

(1.3.34)
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In order to solve this boundary value problem we make the setup

ψν(y) = eνyαν + fνy
−βν . (1.3.35)

This expression satisfies the differential equation (1.3.33), if

αν =
1
2

+

√
1
4

+
ν2π2

a2
, βν = −1

2
+

√
1
4

+
ν2π2

a2
. (1.3.36)

The new constants eν and fν in (1.3.35) are then given from the boundary
condition

eν =
cνc

βν − bνb
βν

cαν+βν − bαν+βν
,

fν =
(bc)βν (bνc

αν − cνbαν )
cαν+βν − bαν+βν

for b �= c.

(1.3.37)

Collecting all together one has the solution of (1.3.27) in the form

u(x, y) =
∞∑

ν=1

sin
νπx

a
cαν+βν − bαν+βν

·
[(

cνcβν − bνb
βν

)
yαν + (bc)βν (bνc

αν − cνbαν ) y−βν

] (1.3.38)

for 0 < b < c. If however b = 0, then the boundary condition u(x, 0) = f(x)
can no longer be given! The solution of (1.3.27) is then only determined by
u(x, c) = g(x) and reads

u(x, y) =
∞∑

ν=1

cν sin
νπx

a
·
(

y

c

)αν

. (1.3.39)

We thus see that even the solution of simple linear partial differential equa-
tions of second order is complicated, if the coefficients are variable.

Problems

1. Using (1.3.11) verify the solution (1.3.14) of (1.3.5).

2. Derive (1.3.18).
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1.4 Nonlinear wave equations

In chapters 2 and 3, it will turn out that many types of waves in water or
air have to be described by nonlinear partial differential equations of second
order.

In hydrodynamics we will have the situation that one starts with a sys-
tem of nonlinear partial differential equations of first order, see chapter 2.
One then has to derive wave equations from these equations of first order.
Therefore we will first discuss the characteristics of one and later of several
nonlinear partial differential equations of first order. In order to make clear
the terminology, we discuss some equations for u(x, t).

ux = ut first order linear,
x2ux = ut, uxa(x, t) = ut linear, but variable coefficients,

u2
x = ut nonlinear,

uux = ut quasilinear (derivatives are linear).

Fortunately, the hydrodynamic equations which we will discuss are quasi-
linear.

Lagrange has shown that the most general quasilinear partial differen-
tial equation of first order

P (x, y, u)ux(x, y) + Q(x, y, u)uy(x, y) = R(x, y, u), (1.4.1)

where P,Q,R are arbitrary in x and y but linear in u possesses an implicit
general solution in the form

F (ϕ(x, y, u), ψ(x, y, u)) = 0,

where F is an arbitrary differentiable function and where ϕ,ψ satisfy

ϕ(x, y, u) = const = a, ψ(x, y, u) = const = b (1.4.2)

and are two independent solutions of any combination of the differential
equations of the characteristics

dx

P
=

dy

Q
=

du

R
or

dx

ds
= P,

dy

ds
= Q,

du

ds
= R. (1.4.3)

Integration yields two surfaces (1.4.2). Their cut delivers curves in space.
s is the arc length along these curves. Let us consider an example u(x, t)
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satisfying
ut + uux = 0. (1.4.4)

We read from (1.4.1) that P = 1, Q = u,R = 0 and thus

dt

ds
= 1,

dx

ds
= u,

du

ds
= 0. (1.4.5)

Integration yields t = s + c,dt = ds, u = a. Due to

dx

ds
=

dx

dt

dt

ds
=

dx

dt
= u (1.4.6)

one obtains x = ut+b and the two characteristics ϕ = a = u, ψ = b = x = ut.
Here a, b are integration constants. The solution of (1.4.4) is then given by

F (a, b) = F (ϕ(x, t, u), ψ(x, t, u)) = F (u, x − ut) = 0. (1.4.7)

Now we are able to solve the Cauchy-problem

u(x, t = 0) = f(x). (1.4.8)

Replacement (“enlargement”) of the argument x → x−ut yields the solution
u(x, t) = f(x−ut). This expression satisfies the initial condition (1.4.8) and
the equation (1.4.4)

For an implicit nonlinear partial differential equation of first order

F (u(x, y), ux(x, y), uy(x, y), x, y) = 0, (1.4.9)

the procedure has to be modified and the derivatives ux and uy as well as u
itself have to be assumed as five independent variables. The characteristics
are then determined by

dx

Fux

=
dy

Fuy

=
du

uxFux + uyFuy

=
dux

−uxFu − Fx
=

duy

−uyFu − Fy
.

(1.4.10)

These five ordinary differential equations have to be solved. Let us consider
an example. We choose the following nonlinear partial differential equation
of first order

F ≡ 16u2
xu2 + 9u2

yu
2 + 4u2 − 4 = 0. (1.4.11)
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From (1.4.10) one gets

Fx = 0, Fy = 0, Fu = (32u2
x + 18u2

y)u + 8u,

Fux = 32uxu2, Fuy = 18uyu
2

(1.4.12)

and thus from (1.4.10)

dx

32uxu2
=

dy

18uyu2
=

du

32u2
xu2 + 18u2

yu
2

=
dux

−32u3
xu − 18u2

yuux − 8uux
=

duy

−32u2
xuuy − 18u3

yu − 8uuy
.

(1.4.13)

Multiplication of the five fractions by 1, 0, 4ux, 4u and 0, respectively, col-
lects the five fractions over a common denominator N into one fraction

N = 1 · (+32uxu2) + 4ux · (+32u2
xu2 + 18u2

yu
2)

−4u · (32u3
xu + 18uxu2

yu + 8uxu) = 0
(1.4.14)

and hence

dx + 4uxdu + 4udux = 0 or dx + 4d(uxu) = 0. (1.4.15)

Integration and inserting of ux yields

(x − a)2 + 9u2
yu + 4u2 − 4 = 0. (1.4.16)

a is the integration constant. ux has been calculated from (1.4.11). After
elimination of uy one obtains the solution of (1.4.11) in the implicit form

(x − a)2

4
+

4(y − b)2

9
+ u2 − 1 = 0. (1.4.17)

The basic hydrodynamic equations have the form of several quasilinear
partial differential equations of first order

a11ux + a12vx + b11uy + b12vy=h1(x, y),

a21ux + a22vx + b21uy + b22vy=h2(x, y).
(1.4.18)

Here u(x, y), v(x, y) are two dependent variables and the coefficients
aik(x, y, u, v), bik(x, y, u, v) are not constant, but only linear functions of
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u and v. Introducing the two vectors 
u = {u, v}, 
h = {h1, h2} and the
matrices A{aik} and B{bik} one may rewrite (1.4.18) in the form

A
ux + B
uy = 
h. (1.4.19)

Now we look for the characteristics of this system. They would probably be
of the form ψ(x, y) = const or possibly y = k(x) + const, dy/dx = k′(x).
Then the following two equations are valid along the characteristic curve

dv

dx
=

∂v

∂x
+

∂v

∂y
· dy

dx
= vx + vyk

′,

du

dx
=

∂u

∂x
+

∂u

∂y
· dy

dx
= ux + uyk

′.
(1.4.20)

Mathematica may help to obtain ux and vx. Introducing the notation
ux → ux, vx → vx, dv/dx → dvx, du/dx → dux, k′ → ks we may use

Solve[{vx+vy*ks==dvx,ux+uy*ks==dux},{ux,vx}] (1.4.21)

to solve (1.4.20) for vx, ux. Inserting the solutions vx = dvx/dx − vyk
′ and

ux = dux/dx − uyk
′ into (1.4.18) one obtains

uy(−a11k
′ + b11) + vy(−a12k

′ + b12) = h1 − a11
du

dx
− a12

dv

dx
,

uy(−a21k
′ + b21) + vy(−a22k

′ + b22) = h2 − a21
du

dx
− a22

dv

dx
.

(1.4.22)

If the values of u and v are given along the characteristic curves y(x),
then the system (1.4.22) allows the calculation of ux and vy according to the
Cramer rule. We define

R =

∣∣∣∣∣∣
a11k

′ − b11 a12k
′ − b12,

a21k
′ − b21 a22k

′ − b22

∣∣∣∣∣∣ =
∣∣Ay′ − B

∣∣ , (1.4.23)

V1 =

∣∣∣∣∣∣
a11k

′ − b11 h1 − a11du/dx − a12dv/dx

a21k
′ − b21 h2 − a21du/dx − a22dv/dx

∣∣∣∣∣∣ , (1.4.24)

V2 =

∣∣∣∣∣∣
a12k

′ − b12 h1 − a11du/dx − a12dv/dx

a22k
′ − b22 h2 − a21du/dx − a22dv/dx

∣∣∣∣∣∣ . (1.4.25)
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Three cases are possible:

1. R �= 0: one can calculate uy, vy and all first derivatives uk, vk are
determined along the characteristic curves,

2. R = 0, V1 or V2 = 0, the linear equations for uy, vy are linearly de-
pending and an infinite manifold of solutions uy, vy exists,

3. R = 0, V1 �= 0 or V2 �= 0: no solutions uy, vy exist.

Characteristics may also be derived for a system of quasilinear partial
differential equations of second order. For m independent variables xk, k =
1 . . . m, l = 1 . . . m and n depending variables uj , j = 1 . . . n, such a system
may be written as

n∑
j=1

m∑
k,l=1

A
(kl)
ij (xk, uj)

∂2uj

∂xk∂xl
+H

(
xk, uj ,

∂uj

∂xl

)
= 0, i = 1 . . . m. (1.4.26)

The characteristics of “second order” of this system obey a partial differen-
tial equation of first order and of degree n2, which reads∣∣∣∣∣∣

m∑
k,l=1

A
(kl)
ij

∂ϕ

∂xk

∂ϕ

∂xl

∣∣∣∣∣∣ = 0. (1.4.27)

This system has again to be solved using the characteristics of partial dif-
ferential equations of first order.

Finally, we consider nonlinear partial differential equations of second
order. If such equation is implicit and of the form

F (x, y, z, p, q, r, s, t) = 0, (1.4.28)

where we used again the notation ux = p, uy = q, uxx = r, uxy = s, uyy = t,
then one can define

a =
∂F

∂zxx
, 2b = − ∂F

∂zxy
, c =

∂F

∂zyy
(1.4.29)

and insert into an equation dy/dx, analogous to (1.2.7). One then may
classify the equation according to its type. The physics of waves described by
nonlinear (quasilinear) wave equations will be discussed in the next section.

Problems

1. Verify the solution (1.4.17) of (1.4.11).
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2. Solve
aψxx + cψyy + ψx = 0 (1.4.30)

using the setup ψx = u, ψy = v or ψx = u, ψx + ψy = v. Solve the
resulting equations for u(x, y), v(x, y).

1.5 Physics of nonlinear wave equations

To understand the physics behind some mathematical terms in a wave equa-
tion we consider a weakly nonlinear wave equation [1.6] of the form

1
c2

Φtt − Φxx + bΦ + εg Φt = −V ′(Φ) + εN(Φt) + εΦtG(Φ). (1.5.1)

This equation exhibits frequency dispersion ω(k), amplitude dispersion ω(k,A),
dissipation, nonlinear effects and modulation of the amplitude and the phase
of a wave. Here V ′ = dV/dΦ, V (Φ), G(Φ) and the nonlinear dissipation
N = −Φ2n−1

t are given nonlinear functions, c, b and g are constants which
may depend on the frequency ω = 2πν. As usual, ε is a small parameter.
We now define a phase surface:

Θ(x, t) = const. (1.5.2)

This surface has the property that all points (x, t) on it have the same value
of the wave function Φ(x, t). We thus have

dΘ = Θxdx + Θtdt = 0, (1.5.3)

so that points moving with the speed

dx

dt
= −Θt

Θx
, (1.5.4)

see a constant phase Θ. Defining now a wave number k and a frequency ω
by

k = Θx, ω = −Θt = or
∂Θ
∂t

+ ω = 0, (1.5.5)

we find that (1.5.4) defines the phase speed. In three-dimensional notation
we have ∇Θ = 
k, which defines the wave vector satisfying

curl
k = 0, (1.5.6)
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which indicates that wave crests are neither vanishing nor splitting off. The
last two equations result in the conservation of wave crests

∂
k

∂t
+ ∇ω = 0. (1.5.7)

A point moving with the group velocity (1.1.12)

cg =
dω

dk
(1.5.8)

sees ω unchanged.
Looking up the different terms in (1.5.1), we may dress up the following

classification:

1. N = 0, G = 0, V ′ = 0: the equation is linear, k and ω are independent
of x und t.

1.1 b = 0, g = 0: no dispersion ω(k), no dissipation (no damping
effects). The solution is:

Φ(x, t) = A exp(ikx − iωt), ω = ck, (1.5.9)

see (1.1.6), (1.1.4).

1.2 b �= 0, g = 0, frequency dispersion ω(k), no dissipation, solution
and dispersion relation:

Φ(x, t) = A exp(ikx − iωt), ω(k) = ±c
√

k2 + b2. (1.5.10)

1.3 b = 0, g �= 0, dissipation, ω becomes complex

Φ(x, t) = A exp(ikx − iωt), ω =
1
2
ic2εg ± c

√
k2 − c2ε2g2/4.

(1.5.11)

1.4 b �= 0, g �= 0, dispersion and dissipation,

Φ(x, t) = A exp(ikx−iωt), D(ω, k) = ω2/c2−k2−b+iωεg = 0.
(1.5.12)

2. N �= 0, G �= 0, V ′ �= 0: the wave equation is nonlinear and dissipa-
tive. V ′ describes a strong nonlinearity, the terms containing Φt are
dissipative, εN(Φt) is a weak nonlinear dissipative term and the term
εΦt(Φ)G describes weak dissipation together with strong nonlinearity.
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Even for a weak nonlinearity one has frequency dispersion ω(k) and
amplitude dispersion ω(A, k). Using stretched variables X = εx, T = εt and
an adapted Krylov-Bogolyubov method two theorems can be derived
[1.6]:

1. For a nonlinear conservative (nondissipative) wave equation of the type
(1.5.1) the amplitude A is constant and not modulated. Then the
phase is given by

Θ(x, t) = k(x, t)x − ω(x, t)t, (1.5.13)

see (1.5.5).

2. For any nonlinear dissipative wave equation of the type (1.5.1) the
frequency ω is however not modified by the dissipation terms in first
order of ε.

Furthermore it can be shown that a stability theorem holds. Let ω0 = f(k)
be the dispersion relation of the linear equation according to (1.5.12) and
derive the quasilinear equation

Θtt + 2f ′Θxt + (f ′2 + f ′′t)Θxx = Q (1.5.14)

for the phase Θ(x, t), Θx = k(x, t), then the effect of nonlinear terms on
stability is described by f ′′(k) · [ω − f(k)]. The stability behavior of the
linear equation, described by ω0 = f(k) is not altered by nonlinear terms, if
f ′′(k) · [ω− f(k)] > 0. If, however, f ′′(k) · [ω − f(k)] < 0, then the nonlinear
terms may destabilize an otherwise stable solution of a linear equation. On
the other hand the inclusion of a dissipative term Q does not by itself modify
the character of the stability behavior, but the time behavior of unstable
and stable modes is modified.

Now we investigate a modulated wave. In first approximation we write
down a sinusoidal wave

A0 cos Θ0, Θ0 = k0x − ω0t, (1.5.15)

where A0, Θ0, k0 and ω0 are constants. Then we assume a slow amplitude
variation A(x, t) and a phase variation Θ(x, t)

Θ(x, t) = k0x − ω0t + ϕ(x, t) (1.5.16)

According to (1.5.5) we redefine

ω(x, t) = −Θt = ω0 − ϕt, k(x, t) = Θx = k0 + ϕ0. (1.5.17)
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For weak modulation one may expand [1.7]

ω = ω0 +
∂ω

∂A2
0

(
A2 − A2

0

)
+

∂ω

∂k0
(k − k0) +

∂2ω

∂k2
0

(k − k0)2 + . . . . (1.5.18)

Making the replacement

ω − ω0 → i
∂

∂t
, k − k0 → i

∂

∂x
(1.5.19)

one obtains the so-called nonlinear Schroedinger equation

i

[
∂A

∂t
+

∂ω

∂k0

∂A

∂x

]
+

1
2

∂2ω

∂k2
0

∂2A

∂x2
− ∂ω

∂A2
0

|A|2A = 0. (1.5.20)

This equation has nothing to do with the quantumtheoretical Schroedinger
equation.

In a frame of reference ξ, τ moving with the group velocity, equation
(1.5.20) becomes [1.7]

i
∂A

∂τ
+

1
2

∂2A

∂ξ2
+ α|A|2A = 0, α = − ∂ω/∂A2

0

∂2ω/∂k2
0

. (1.5.21)

If one inserts the setup

A(ξ, τ) = U(ξ − cτ) exp(ikξ − iωτ), |A|2 = U2 (1.5.22)

into (1.5.21) one gets as the real part

U ′′ + U(2ω − k2) + 2α|U |2U = 0. (1.5.23)

Multiplication of (1.5.23) by U ′ and two integrations yield

ξ − cτ =
∫ dU√

(2ω − k2)U2 − αU4 + C1
+ C2. (1.5.24)

The integral in (1.5.24) is an elliptic integral and U(ξ−cτ) becomes a Jacobi
elliptic function, see Fig. 1.2. The wave U(τ) is called a cnoidal wave. For
C1 = 0 one obtains an envelope soliton

U(ξ − cτ) = const · sech
[
(2ω − k2)(ξ − cτ)

]
. (1.5.25)

If one considers the real part of the solution of the nonlinear Schroedinger
equation (1.5.21), one gets [1.1]

A(ξ, τ) = const · sech
[
(2ω − k2)(ξ − cτ)

]
cos(kξ − ωτ) (1.5.26)
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which describes an oscillatory soliton, see Fig. 1.6. The function sech (secans
hyperbolicus) is defined by∫ dx

x
√

1 − x2
= −arsech x. (1.5.27)

A(ξ, τ) describes amplitude modulation.



2. Basic flow equations

2.1 Units and properties of substances

When deriving flow equations one has to have in mind that tsunamis and
hurricanes are quite intricate phenomena with an interplay of three media:
water, air and vapor (steam). Three factors play important roles. There are
first the properties of the media like density , surface tension, compressibility,
specific heat etc, which enter into the differential equations. Second there
are exterior factors like Earth’s rotation, gravity, Coriolis force etc, which
influence the motion and may enter into the equations. Third there are
boundary and initial conditions like pressure of wind, earthquakes or free
surfaces and the depth of the ocean or of a lake. Finally, thermodynamic
considerations like condensation, condensation nuclei, diameter of droplets
in vapor, evaporation and vaporization enter into the deliberations.

To describe all these factors one needs units. We will use the rules of the
International Union of Pure and Applied Physics (SI-system) [2.1]. Later
on we shall give some conversion factors for other (UK, US) units. The
most important units and properties to be considered are: (s = seconds, g
= gram, m = meters).

Forces, Weight: Newton N N = kg m s−2

or Kilopond kp = 9.80665 N and dyn= 10−5N
Energy, Heat Joule, J J = Nm kgm2 s−2

or erg = 10−7J and cal = 4.1868 J
Power Watt, W W=J s−1 107erg s−1

Mass Kilogramm kg, also g and mol
Density ρ kg m−3, g cm−3

Pressure: p Pascal, Pa Pa = N m−2 J m−3

= kg s−2m−1

or Torr or at (atmosphere) and bar= 105 Pa
= 1.333 mb at = 0.980665 bar = 98.07 kPa
1mbar = 100 Pa = 1hPa

Temperature: T, t in (K =Kelvin degree,
◦C, ◦K, ◦F, absolute temperature)
T[◦ K]= 273.15 + t◦C (Celsius), t◦C= 5

9(t◦F -32).

For the convenience of readers from the United Kingdom and the US we
now give some conversion factors to other units [2.2]. Units allow a critical
check on the validity of equations: all terms of an equation must have the
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same dimension in the kg-sec-meter SI system. Some conversion factors
[2.1], [2.2] are:

Length: 1 mile =1609.344 m, 1 yard =0.9144 m, 1 foot= 0.3048 m,
Volume: 1 UK gallon =0.0454609 m3, 1 US gallon = 0.003785 m3,

1 l (liter) = 10−3m3 =61.03 inch3 = 0.2642 US gallon,
Force: 1 pound-force (lbf) =4.44822 N,
Weight: 1 pound (lb) = 0.453592 kg,
Pressure: 1 pound-force per square inch = psi= 6.89474·103 Pa
Energy, Heat: 1 British Thermal Unit btu= 1059.52 J (at 4◦C)

Since we have to deal mainly with water (sea water) and air we will
collect the necessary properties [2.2], [2.3].

1. Density is usually measured in g cm−3 or kgm−3 or kg/l. The density
ρ of a medium depends on temperature and pressure and also on space
and time. Sea water density depends also on the salinity (depending
on temperature), i.e. the content of salts dissolved. Salinity ranges
between 3.4 to 3.7 %. The standard value of water density is 0.999973
kg m−3 at 4◦C, 20◦C: 0.99825, at 26◦C 0.996785. For sea water one
measures 1.02813 up to 1.03, depending on salinity. For standard air
one has 1.2928 kg m−3.

2. Specific heat capacity is measured in kJ kg−1 K−1 or kcal kg−1 K−1.
The heat capacity at constant pressure Cp is not equal to the capacity
at constant volume CV . The specific heat capacity per unit of mass
m is defined by cp = Cp/m and cV = CV /m. For water at 20◦C
one has cp 4.182 kJ kg−1 K−1 or 0.999 kcal kg−1 K−1. For sea water
the capacity depends on salinity and ranges from 0.926 to 0.982 or
4187 J kg−1 K−1. For air one has cV = 1.005 kJ kg−1 K−1 = 0.240
kcal kg−1 K−1 or 717 J kg−1 K−1.

3. Thermal conductivity λ plays an important role for the amplitude mod-
ification of tsunamis. For water at 20◦C one has 0.598 W m−1 K−1 or
0.514 kcal m−1 h−1 K (h = hour). For sea water at 20◦C one mea-
sures something like 0.596 Wm−1 K−1. For air one finds λ = 0.0026
W m−1 K−1 or 0.0022 kcal m−1 h−1 K−1. The quantity λ/ρCp is called
thermal diffusivity and is measured in cm2 s−1 (water: 0.0017).

4. Viscosity η has an even greater influence on tsunamisthan thermal con-
ductivity. It depends slightly on pressure and temperature. Viscosity,
also called dynamic viscosity (or absolute viscosity) , is measured in kg
m−1 s−1 or in poise (= 0.1 Pa·s or mN·s·m−2 or dyn·s·cm−2.) For water
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at 20◦C one has η = 1.002, at 30◦C 0.7995 cpoise, whereas for saltwa-
ter one has about 1.075 cpoise. For air viscosity is small: 1.813·10−5

cpoise. Kinematic viscosity ν is defined by η/ρ and is measured in
Stokes St= 10−4 m2 s−1. For water at 20◦C one has 0.01004 cm2 s−1,
and for salt water at 20◦C 0.01049, for air 0.143 cm2 s−1.

5. Surface tension (capillarity) σ of water has a decisive influence on
surface waves (ripples) on water. Water surface tension against air is
0.0727 Nm−1 (kg s−2) or 72.75 dyn cm−1 or J m−2 at 0◦C.

6. Thermal expansion coefficients of a volume V may be defined by(
1
V

)(
∂V

∂T

)
p

for constant pressure p (isobaric volume expansion) or by

−
(

V

p

)(
∂p

∂V

)
S

for constant entropy S. These values are not of great importance in
our calculations. They are very small: 20.7·10−5 K−1 for water at
20◦C and 367·10−5 K−1 for air. Compressibility defined for constant
temperature (isothermal compressibility) is given by −(∂V/∂p)T /V .

7. Evaporation heat of water will be important for hurricanes. For water
one measures 2256 kJ kg−1 or 538.9 kcal kg−1. Depending on the
actual saturation vapor pressure and the temperature the saturation
humidity (water in air) is given in Table 2.1.

Table 2.1. Saturation humidity of water in air

water temperature saturation pressure humidity
kPa Torr g m−3

20◦C 2.337 17.53 17.32
25◦C 3.168 23.76 23.07
26◦C 3.361 25.21 24.40
27◦C 3.565 26.74 25.79

Steam (also vapor) is vaporized water, a gas interspersed with water
droplets. These droplets have dimensions of 5 - 10 μ (microns) or
0.005 - 0.07 mm, in fog up to 0.1 mm. Hence steam has a white
cloudy appearance. Steam is a two-phase medium. Its temperature
has not to be so high as the boiling temperature of water. The boiling
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temperature depends on pressure. For water the boiling point is 100◦C
for normal pressure (1 at = 760 torr). But water boils at 0◦C if the
pressure is 4.6 Torr and it boils at 200◦C at 15 at. On the other
hand, evaporation takes place at temperatures lower than the boiling
point. Such a phase transition of one one-component system is very
well described by thermodynamics [2.4]. If one designates by V1, the
specific volume m3g−1 of steam and by V2 of gaseous water, then
V1 − V2 = ΔV > 0 is valid for nearly all temperatures. For 18 g
water (1 mol) one has approximately V1 = 30,000 cm3 and V2 =22,414
cm3. When the phase transition is carried out reversibly then the
heat L necessary for the phase transition of tepid water to the vapor
phase (steam) is called latent heat. Then the Clausius-Clapeyron
equation (vapor pressure equation) reads

dpsat
dT

=
L(T )
TΔV

. (2.1.1)

Here psat is the saturated vapor pressure (saturation pressure), partial
pressure of steam. Equation (2.1.1) describes the steam pressure curve
p(T ). In order to be able to integrate (2.1.1) it is necessary to know
the functions L(T ) and V (T ) or T (V ), respectively. Should it arrive
that L = 0 and ΔV = 0, then the concept of psat is meaningless. The
actual values of T and p determine the so called critical point.

For small pressures even steam may be regarded as an ideal gas and
ΔV may be replaced by V1 ≈ V so that

psat = RT/V (2.1.2)

may be assumed. R is the gas constant of the ideal gas, R = 2 cal K−1

or = 8.314510 J mol−1K−1, but actually there are derivations from
(2.1.2). This deviation is expressed by Z = pV/RT as a function of
temperature and pressure. For steam at 380◦K and 1 at, one finds
0.98591 [2.2]. Insertion into (2.1.1) yields

d ln psat
dT

=
L

RT 2
(2.1.3)

which is valid for evaporation. Here we have assumed that L is a
constant. Measurements of the evaporation heat L for water (and
sea water) give 539.1 cal g−1 at 100◦C and 760 Torr, but 595 cal/g
(2.49·106 J kg−1) at 0◦C. Measurements of the evaporation rate are
difficult, they are made by the Piche evaporimeter. It can be shown
that the variation of L with T is due to the temperature dependence
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of the specific heat Cp. This allows to write down the expansion

L(T ) = L(0◦K) + T · (Cpvapor(T ) − Cwater(T )
)
. (2.1.4)

If dL/dt for water is known (-0.64 cal K1 or 2680 JK−1g1) or if (2.1.4)
is generally accepted one may integrate (2.1.1). The result is

psat = const · exp
(
− L0

RT

)
TCpvap−Cpwater/R. (2.1.5)

The integration const depends on the substance and is sometimes
called the chemical constant. In meteorology one uses the formula

psat = 6.10 · 10(7.4475t/(234.67+t)) , (2.1.6)

where t = ◦C and psat mbar, or psat = 6.10 · 10(8.26(T−273)/T ) hPa,
where T in Kelvin.

8. Velocity of sound will be a critical speed. In air of 20◦C one has
344 m s−1, for 40◦C one has 355 m s−1 and for water 1531 m s−1.
The sonic speed depends on pressure and salinity. For sea water one
measures 1448 up to 1620 m s−1.

Problems

1. If one measures the saturation pressure at two temperatures, L can be
calculated.
Solution: for 760 Torr, 100◦C, 787.12 Torr, 101◦C, V1 = 1674 cm3,
V2 = 1 cm3, dp/dT = 27.12 Torr K−1, L = 538 cal g−1 or 2.26·106 J
kg−1.

2. Show how the saturation pressure of a spherical droplet of water at
25◦C depends on the radius of the droplet. Abbot [2.4] gives the
following data: at 25◦C the surface tension σ of water is 69.4 mN
m−2; for a droplet hemisphere of radius r the force acting as a result
of the internal pressure pi is piπr2 on the cut of the hemisphere. The
force on this cut as a result of the external pressure pe is peπr2. Hence
one has the force balance

piπr2 − peπr2 = σ2πr or pi − pe = 2σ/r. (2.1.7)

For a pressure difference Δp in Pa and r in m the solution is

Δp: 14 1390 138800
r: 0.01 0.0001 0.000001
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2.2 Conservation of mass

When dealing with tsunamis and hurricanes we actually are concerned with
three substances: air, water and vapor. The mass of air may stay outside
considerations, since it remains constant. Contrary to this we must take into
account a certain phase transition (evaporation, condensation) between the
two phases water and vapor. Large amounts of sea water will be available,
but the amount of vapor in hurricanes will change according to temperature
and other factors.

Let ρ(x, y, z, t) be the actual density of vapor, then the mass M of vapor
contained in the volume V will be given by

M =
∫
V

ρ(x, y, z, t) · dxdydz. (2.2.1)

Two phenomena may vary M :

1. Outflow (inflow) through the surface F enclosing the volume V and

2. additional production D of vapor within the domain V .

If one defines the outflow by
∫
F ρ
ud
f , then the mass conservation is defined

by [2.5]

− ∂

∂t

∫
V

ρ(x, y, z, t)dxdydz =
∫
F

ρ
ud
f +
∫
V

D(x, y, z, t)dxdydz. (2.2.2)

Using the Gauss theorem∫
F

ρ
ud
f =
∫
V

div(ρ
u)dxdydz (2.2.3)

one obtains the continuity equation

∂ρ

∂t
+ div(ρ
u) = D. (2.2.4)

D is to be measured in kg m−3s−1 and may be called evaporation rate, 
u is
the stream velocity and div 
A of a vector 
A(x, y, z, t) is defined by [2.6]

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
= ∇ 
A. (2.2.5)
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For our purposes the continuity equation is of interest in the one-dimensional
nonsteady case in Cartesian (and later in circular cylindrical) coordinates

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= D(x, t). (2.2.6)

The source term D depends on pressure p(x, t) and temperature T (x, t), but
it may be written as D(x, t). It can be expressed by the evaporation rate
depending on salinity, wind etc.

Whereas the source term is important for hurricanes it plays no role in
the investigation of tsunamis. These large nonlinear waves exhibit amplitude
modulation. Some calculations have indicated that new dependent variables
are of advantage. Hence the specific volume s has been used instead of the
density ρ. Insertion of

s(x, t) = 1/ρ(x, t) (2.2.7)

into the sourcefree continuity equation yields

−st + sux − usx = 0. (2.2.8)

This is a quasilinear partial differential equation of first order.
In a one-dimensional nonsteady flow problem of a compressible viscous

substance one has to determine the stream velocity u(x, t), the density
ρ(x, t) or the specific volume s(x, t), the pressure p(x, t) and the temper-
ature T (x, t). Hence one needs 5 partial differential equations of first order
or one partial differential equation of fifth order. The equation of motion,
the energy theorem and two thermodynamic relations, the general equation
of state F (p, ρ, T ) and a change of state are needed additionally. In principle,
such a state of change could be isobaric, isochoric, isentropic, isenthalpic,
isothermal and reversible adiabatic. In some cases (viscous substances) ir-
reversible thermodynamics has to be taken into account.

For a sourcefree incompressible fluid (ρ = const) the continuity equation
becomes div 
u = 0, so that the vector 
u may be represented by the curl
of another vector 
A, 
u = curl 
A, since by definition div curl 
A = 0 for any
vector. If curl 
A = 0, then 
A may be calculated from a scalar 
A = ∇U .

Problems

1. Transform (2.2.4) into cylindrical coordinates [2.6].

2. Calculate D for a cylinder of height 1000 m, if 7 mm water will be
evaporated per m2 during 24 hours.
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Solution: According to (2.2.6) D has the dimension of ∂ρ/∂t. We find
from table 2.2 that air at 26◦ C contains 24.4 g m−3 water-vapor. How
long would it take that the evaporation rate D = 0.814·10−10 g cm−3 s−1

produces this humidity? (30 · 104 s).

3. Derive (2.2.8) from (2.2.7) and (2.2.6) for D = 0,D �= 0.

2.3 The equation of motion

The linear momentum density of a liquid is given by ρv kg m−2 s−1. In a
closed system (no exterior forces) the momentum is conserved. Neglecting
at first all exterior influences, we consider possible changes δ
v of the vector
field 
v due to surface forces. We expand into four terms:


v = 
v0 + δ1
v + δ2
v + δ3
v. (2.3.1)

The designations of these four terms will be:

v0 = pure translation of small fluid volumes due to internal pressure,
δ1
v = rigid rotation of a fluid volume,
δ2
v = expansion or compression of a fluid element without modification

of its shape due to internal compressional forces,
δ3
v = deformation of the shape at constant volume (non-dilatational

strain) due to internal shear forces.
Collecting these terms, we may write


v = 
v0 + ∇;
v. (2.3.2)

Here ∇; v is the tensor product of the two vectors ∇ and 
v. The tensor in
(2.3.2) is called strain tensor. In Cartesian coordinates the tensor product
may be written

∇;
v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂vx

∂x

∂vy

∂x

∂vz

∂x

∂vx

∂y

∂vy

∂y

∂vz

∂y

∂vx

∂z

∂vy

∂z

∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3.3)

In order to identify the changes defined in (2.3.1) we first define the reverted
tensor
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∇∼
;
v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂vx

∂x

∂vx

∂y

∂vx

∂z

∂vy

∂x

∂vy

∂y

∂vy

∂z

∂vz

∂x

∂vz

∂y

∂vz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3.4)

Then we split (2.3.2) up


v = 
v0 + ∇; v = 
v0 +
1
2
(∇;
v −∇∼;
v )

+
1
2
(∇;
v + ∇∼

;
v ) − 1
3
div
v · 
E

+
1
3
div
v · 
E.

(2.3.5)

Here 
E is the unit tensor


E =

⎛
⎜⎝ 1 0 0

0 1 0
0 0 1

⎞
⎟⎠ = δik. (2.3.6)

It is easy to see that the second right-hand term in the first line of (2.3.5)
corresponds to a rigid rotation

δ1
v =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
∂vy

∂x
− ∂vx

∂y

∂vz

∂x
− ∂vx

∂z

∂vx

∂y
− ∂vy

∂x
0

∂vz

∂y
− ∂vy

∂z

∂vx

∂z
− ∂vz

∂x

∂vy

∂vz
− ∂z

∂y
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.3.7)

which may be written as

δ1
v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +
1
2
(curl
v )z −1

2
(curl
v )y

−1
2
(curl
v )z 0

1
2
(curl
v )x

1
2
(curl
v )y −1

2
(curl
v )x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3.8)
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The second line in (2.3.5) corresponds to a deformation of the shape

δ3
v=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3

∂vx

∂x
− 1

3
∂vy

∂y
− 1

3
∂vz

∂z

1
2

(
∂vy

∂x
+

∂vx

∂y

)
1
2

(
∂vz

∂x
+

∂vx

∂z

)

1
2

(
∂vy

∂x
+

∂vx

∂y

)
2
3

∂vy

∂y
− 1

3
∂vx

∂x
− 1

3
∂vz

∂z

1
2

(
∂vz

∂y
+

∂vy

∂z

)

1
2

(
∂vz

∂x
+

∂vx

∂z

)
1
2

(
∂vy

∂z
+

∂vz

∂y

)
2
3

∂vz

∂z
− 1

3
∂vx

∂x
− 1

3
∂vy

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.3.9)

The tensor (2.3.9) is called deformation tensor. The last line in (2.3.5)
describes δ2
v.

Now we consider the forces (stresses) acting upon the surface of a fluid
element. In first approximation strain and stress are proportional one to
each other. Due to the conservation of angular momentum the stress tensor
Π is symmetric, Πik = Πki. A further consequence is that no term of the
stress tensor appears which is proportional to δ1
v. We thus make the setup
[2.2], [2.6] (which can be proven by statistical physics [2.8])

Πik = −p · δik + 2η · 1
2

(
∂vi

∂xk
+

∂vk

∂xi

)
− 1

3
η′div
v · δik (2.3.10)

corresponding to: 
v0 δ3
v δ2
v.
This setup contains two parameters η and η′. Here η is again the abso-
lute (dynamic) viscosity and η′ is the dilatational viscosity (compressional
viscosity) .

As for the physical units we have

Π → p → kg m−1 s−2 → η
∂v

∂x
→ kg m−1 s−1 · m s−1 m−1.

Thus η′ is expressed in the same units as η.
The compressional viscosity η′ is very small for many substances and it

is thence very often neglected. In the past, the Stokes hypothesis for the
vanishing bulk viscosity

η′ +
2
3
η = 0 (also η′ − 2

3
η = 0) (2.3.11)

has been assumed. For monoatomic gases one has 2η = −3η′. In statistical
physics some arguments can be given for this assumption. For incompress-
ible substances one has div
v = 0 and no Stokes hypothesis is necessary to
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arrive at div
v = 0. In order to understand the consequence of (2.3.11) on
(2.3.10) we rewrite this equation

Πik = −pδik + η

(
∂vi

∂xk
+

∂vk

∂xi

)
. (2.3.12)

If i �= k the stress tensor Πik describes shearing stress and the diagonal
terms Πii represent compresssion.

We now may discuss the conservation of momentum and derive the equa-
tion of motion of a fluid volume element dτ . According to Newton’s law
one has

ρdτ
d
v

dt
= −∇pdτ + ρdτ
g + ηΔ
v · dτ,

∂
v

∂t
+ (
v∇)
v = −∇p

ρ
+ 
g + νΔ
v,

(2.3.13)

where ν is the kinematic viscosity η/ρ which depends on 
x and t due to
ρ(
x, t). We assume that η and ν are constant. (For water one has η =
0.010 g cm−1 s−1, ν = 0.010 cm2 s−1 and for air η = 1.8 · 10−4, ν = 0.150).

Equation (2.3.13) is called the Navier-Stokes equation. If bulk viscos-
ity is included, it reads

ρ

(
∂
v

∂t
+ ∇v2

2
− 
v × (∇× 
v )

)
= −∇p+ρ
g−∇×[η(∇×
v )]+∇((η′+2η)∇·
v ).

(2.3.14)

Here the identity (
v∇)
v = ∇(v2/2) − 
v × (∇× 
v ) has been used.
Exterior forces are gravity 
g and the Coriolis force . Assuming that a

potential V can represent the gravity forces we define


g = −∇V. (2.3.15)

If viscosity is neglected then (2.3.13) assumes the form

∂
v

∂t
+ (
v∇)
v = −∇P −∇V, (2.3.16)

where
P =

∫ dp

ρ(p)
,

∇p

ρ
= ∇P, (2.3.17)

where P is called pressure density integral. It can be calculated, if ρ(p) is
given, for instance for an ideal isothermal gas ρ = const p. In two cases

1. curl 
v = 0 (potential flow),
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2. 
v||curl
v, 
v × curl
v = 0 (Beltrami flow)

equation (2.3.14) may be written in the form

∂
v

∂t
= −∇

(

v 2

2
+ P + V

)
. (2.3.18)

For water one may assume ρ = const. Then one obtains

ρ
∂
v

∂t
= −∇

(
ρ
v 2

2
+ p + V ρ

)
. (2.3.19)

For a steady flow ∂/∂t = 0 and ρV = ρgh (hydrostatic pressure due to
gravity) one obtains after integration

ρ
v 2

2
+ p + ρgz = const =

ρ
v 2
1

2
+ p1 + ρgz1. (2.3.20)

Here z is the water depth and p is the pressure. The Coriolis force has not
been included. Equation (2.3.20) is called Bernoulli equation. Another
form of the Bernoulli equation will be discussed in section 2.7.

Now the speed of efflux from an opening in a reservoir equals the speed
v of the liquid would acquire if falling from rest v1 = 0 from the surface
p1 = p0 of the reservoir down to the opening p = p0 (Toricelli’s theorem).
Using z1 − z = h, the theorem reads

v =
√

2gh. (2.3.21)
This formula will be of value when we discuss the equivalence theorem in
section 2.10.

Problems

1. Calculate the pressure density integral (2.3.17) for isothermal condi-
tions p1/ρ1 = p2/ρ2 = const = RT and insert it into (2.3.21) for
steady flow (∂/∂t = 0).

Solution [2.7]:
p1

ρ1
ln p1 +

v2
1

2g
+ z1 =

p2

ρ2
ln p2 +

v2
2

2g
+ z2. (2.3.22)

2. Calculate the shape of the surface of water which is contained in a
rotating cylindrical container.

Solution: vx = −ωy, vy = ωx, vz = 0. The equation of motion yields

xω2 =
1
ρ

∂p

∂x
, yω2 =

1
ρ

∂p

∂y
,

1
ρ

∂p

∂z
+ g = 0. (2.3.23)
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Integration yields

p

ρ
=

ω2

2
(x2 + y2) − gz + constant. (2.3.24)

Since the free surface of water is defined by p = const, the shape of the
surface is described by the paraboloid

z =
ω2

2g
(x2 + y2). (2.3.25)

3. Derive the Navier-Stokes equation in circular cylinder coordinates
r, ϑ, z. Assume that the viscosity = η(r, z, ϑ).

Solution [2.6] (
F are the exterior body forces):

D

Dt
=

∂

∂t
+ vr

∂

∂r
+

vϑ

r

∂

∂ϑ
+ vz

∂

∂z
, (2.3.26)

∇ · 
v =
1
r

∂

∂r
(rvr) +

1
r

∂vϑ

∂ϑ
+

∂vz

∂z
=

∂vr

∂r
+

vr

r
+

1
r

∂vϑ

∂ϑ
+

∂vz

∂z
= div
v.

(2.3.27)

ρ

[
Dvr

Dt
− v2

ϑ

r

]
= Fr − ∂p

∂r
+

∂

∂r

[
2η

∂vr

∂r
+
(

η′ − 2
3
η

)
∇ · 
v

]

+
1
r

∂

∂ϑ

[
η

(
1
r

∂vr

∂ϑ
+

∂vϑ

∂r
− vϑ

r

)]
+

∂

∂z

[
η

(
∂vr

∂z
+

∂vz

∂r

)]
(2.3.28)

+
2η
r

(
∂vr

∂r
− 1

r

∂vϑ

∂ϑ
− vr

r

)
,

ρ

[
Dvϑ

Dt
+

vrvϑ

r

]
= Fϑ − 1

r

∂p

∂ϑ
+

1
r

∂

∂ϑ

[
2η
r

∂vϑ

∂ϑ
+
(

η′ − 2
3
η

)
∇ · 
v

]

+
∂

∂z

[
η

(
1
r

∂vz

∂ϑ
+

∂vϑ

∂z

)]
+

∂

∂r

[
η

(
1
r

∂vr

∂ϑ
+

∂vϑ

∂r
− vϑ

r

)]
(2.3.29)

+
2η
r

[
1
r

∂vr

∂ϑ
+

∂vϑ

∂r
− vϑ

r

]
,

ρ
Dvz

Dt
= Fz − ∂p

∂z
+

∂

∂z

[
2η

∂vz

∂z
+
(

η′ − 2
3
η

)
∇ · 
v

]

+
1
r

∂

∂r

[
ηr

(
∂vr

∂z
+

∂vz

∂r

)]
+

1
r

∂

∂ϑ

[
η

(
1
r

∂vz

∂ϑ
+

∂vϑ

∂z

)]
.

(2.3.30)

4. If there are sources of gas D, see (2.2.6), then it may be necessary
to modify the equation of motion. Evaporation of streaming droplets
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of water in a gas flow with velocity v will give rise to an equation of
motion [2.5] in the form

ρ
∂v

∂t
+ ρv

∂v

∂x
+

∂p

∂x
= −D(x, t)v. (2.3.31)

Assume that D does not depend on pressure and temperature and
derive a Bernoulli equation from (2.3.31) for a steady potential flow
of a compressible medium (v = −∂ϕ/∂x, V = 0).

Solution: v2/2 + P =
∫
(D/ρ)dx.

2.4 Conservation of energy

In point mechanics it is easy to derive the energy conservation from the
equation of motion. Multiplication of the equation of motion by 
v and
integration yields the conservation of the sum of kinetic and potential energy
of a mass point. In fluid mechanics the situation is more complicated since
viscosity, compression, heat conduction etc play a certain role. Actually the
Bernoulli equation (2.3.20) is an energy principle, but restricted to an
incompressible steady nonviscous flow. If the medium is compressible but
still nonviscous, then the Bernoulli equation (2.3.22) for a pure gravity
field in the z-direction reads∫ dp

ρ(p)
+

v2

2
+ gz = const. (2.4.1)

Due to ρ = ρ(p) either thermodynamics enters the system of equations
or isothermal processes must be assumed. If viscosity, heat conduction and
heat loss have to be taken into account, then the energy balance will be quite
complicated. We choose the following designations: internal energy per unit
mass U (which contains ρv2/2), the internal heat loss Q, for instance due to
evaporation, thermal conductivity λ which may be variable, Φ(x,y,z,t) is the
dissipation function expressing the energy dissipation rate per unit volume
(or unit mass) at point (x, y, z, t) and T is the temperature. The setup for
the thermodynamic energy balance, first law of thermodynamics (which can
be derived from statistical physics) is given [2.6] by

ρ

(
∂U

∂t
+ 
v · ∇U

)
+ p∇ · 
v =

∂Q

∂t
+ Φ + ∇(λ∇T ). (2.4.2)

Exterior forces and mechanical terms have not been taken into account. The
internal energy U will be discussed in the next section. With the help of the
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continuity equation (2.2.4) which we use in the form

∂ρ

∂t
+ ρ∇ · 
v + 
v∇ρ = D, (2.4.3)

the third left-hand side term of (2.4.2) may be written as

p∇ · v = p

(
D

ρ
− 
v

∇ρ

ρ
− 1

ρ

∂ρ

∂t

)
. (2.4.4)

Now a new variable namely T appears in the equations. The function
D(x, t) must be known or has to be calculated D(p, T ) from thermodynamic
considerations. It may be connected with Q which also depends on thermo-
dynamic considerations. The dissipation function Φ is determined by the
setup of the stress tensor (2.3.10). In the literature not only (2.3.10) but
also other setups are used. Thus the expression for Φ may vary a little.
Without use of the Stokes hypothesis (2.3.11) one obtains [2.6]

Φ = 2η

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2

+
1
2

(
∂u

∂y
+

∂v

∂x

)2

+
1
2

(
∂v

∂z
+

∂w

∂y

)2

+
1
2

(
∂w

∂x
+

∂u

∂z

)2
]

+ η′
(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)2

(2.4.5)

or [ ] using the Stokes hypothesis

Φ = 2η
[
u2

x + v2
y + w2

z

]
− 2

3
η (ux + vy + wz)

2

+η (uy + vx)2 + η (uz + wx)2 + η (vz + wy)
2 , (2.4.6)

where we used the designation u, v, w for the components of 
v. Another
setup of the stress tensor yields [2.9]

Φ = η
[
2
(
u2

x + v2
y + w2

z

)
+ (uy + vx)2 + (uz + wx)2 + (vz + wy)

2
]
, (2.4.7)

whereas other authors prefer for an incompressible fluid the simple expres-
sion [2.10]

Φ =
η

2

(
∂vi

∂xk
+

∂vk

∂xi

)2

. (2.4.8)

The dissipation reduces the kinetic energy of the fluid.
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For the evaporation E from free water surfaces measurements give 1000
up to 3000 mm per year, depending on the water temperature. The most
simple setup is given by an empirical formula by Dalton

E = (0.13 + 0.094v)(pSat − pact), (2.4.9)

where E in mm per year, v is the velocity of wind (m s−1) over the water
surface. The theoretical value of pSat may be calculated from (2.1.5) or
(2.1.6). pact is the actual vapor pressure. The pressures are given in hPa
(102 Pa). The heat consumption rate ∂Q/∂t may be calculated from the
evaporation rate, see problem 3.

A look on the basic equations shows the following situation: in sections
2.2 and 2.3 we were concerned with three basic equations: the continuity
equation (2.2.4), the equation of motion for a non-viscous, non-conducting
but compressible isothermal fluid satisfying (2.3.17) and the Bernoulli
equation or the equation of motion for a nonviscous non-conducting ideal
gas. We had to do with the equations of continuity, of motion and the energy
theorem, which described three physical quantities: velocity 
v, pressure p
and density ρ.

As soon as a fluid has to be regarded as compressible to be not isother-
mal, or if dissipation (due to viscosity, heat conduction etc) has to be taken
into account, thermodynamics comes into the play. Is a non-dissipative flow
isothermal? Is it possible to use the state equation for an ideal gas? How
does viscosity and/or heat conduction change the situation? We will discuss
these questions in the next section.

Problems

1. Transform the energy equation (2.4.2) into cylindrical coordinates
r, ϑ, z. Solution:

ρ

(
∂U

∂t
+ 
v∇U

)
+ p div
v =

∂Q

∂t
+ Φ +

1
r

∂

∂r

(
rλ

∂T

∂r

)
+

1
r2

∂

∂ϑ

(
λ

∂T

∂ϑ

)
+

∂

∂z

(
λ

∂T

∂z

)
.

(2.4.10)

Specify 
v∇U, p div
v and write (2.4.10) for constant λ and an incom-
pressible fluid.

2. Transform the dissipation function (2.4.5) into cylindrical coordinates.
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Solution:

Φ = η

[
2

{(
∂vr

∂r

)2

+
(

1
r

∂vϑ

∂ϑ
+

∂vr

r

)2

+
(

∂vz

∂z

)2
}

+
(

1
r

∂vz

∂ϑ
+

∂vz

∂z

)2

+
(

∂vr

∂z
+

∂vz

∂r

)2

+
(

1
r

∂vr

∂ϑ
+

∂vϑ

∂r
− vϑ

r

)2
]

+η′
[
∂vr

∂r
+

1
r

∂vϑ

∂ϑ
+

vr

r
+

∂vz

∂z

]2
. (2.4.11)

3. What evaporation energy rate (∂Q/∂t) is necessary to produce an
evaporation density rate D = 0.814 · 10−10 g cm −3 s−1, see problem
2 in section 2.2. The solution is simple, if the dependence of L(T )
on T is neglected. In this case one may assume that 2.49·106 J kg−1

are necessary to evaporate 1 kg water. If L(T ) has to be taken into
account, then (2.1.4) has to be used.

2.5 Thermodynamics

The three basic flow equations discussed in the last sections use four vari-
ables: velocity 
v, density ρ, pressure p, temperature T and a still unknown
relation ρ(p) and the explicit expression for the internal energy U . We thus
need two more equations.

First of all we discuss equations of state

p = f(ρ, V ). (2.5.1)

For an ideal gas (defined by statistical physics) the Boyle-Mariott-Gay-
Lussac law is valid

pV = nRT. (2.5.2)

Here V is the volume of a mass M of gas consisting of n mol. In units we
have:

p · V = n · R · T
(2.5.3)

at = kg s−2 m−1 · m3 mol · kg s−2 m2 · mol−1 K−1 · K,

where kg s−2 m2 = J = N m. R = 8.3144 Jmol−1 K−1 is the universal gas con-
stant.
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Due to V ρ = M one has for one mol (n = 1) M = μ, where μ is the
molecular weight, for water 18 g, V = 22.414 l. Then (2.5.2) becomes

p = ρCT, (2.5.4)

where the specific gas constant C in m2 s−2 K−1 is given by

C =
R

M
=

R

μ
. (2.5.5)

For dry air one has 287 J kg−1 K−1.
The fluid in hurricanes is steam which is however not an ideal gas. For

low pressures steam may be described by the empirical Callendar equation

pV = RT +
(
b − a2/T n

)
p, (2.5.6)

where a, b, n are constants specific for the steam.
A more elaborate model for a real gas is given by the van der Waals

equation (
p + a/V 2

)
(V − b) = RT. (2.5.7)

The new parameters a (cohesion pressure) and b (covolume, excluded vol-
ume) are constants depending on the particular gas. The parameter a
describes an intermolecular attractive force and b accounts for the finite
moleculare size. The isotherms T = const are polynomials of third degree.
In order to be independent from the parameters a and b we first determine
the critical point of (2.5.7). This point is defined by

(
∂p

∂V

)
T

= 0,

(
∂2P

∂V 2

)
T

= 0. (2.5.8)

Solving (2.5.7) and (2.5.8) for p, V and T , the critical point gives

pc = a/27b2, Vc = 3b [= 3bm for (2.5.14)], Tc = 8a/27Rb. (2.5.9)

If the critical values have been measured, one may calculate the gas specific
values a and b. Equation (2.5.9) shows that the constants a and b are
overdetermined since there are three equations and only two unknowns. This
implies that all three critical properties cannot be satisfied by (2.5.7). It is
advantageous to express a and b in terms of two critical values. Elimination
of Vc from (2.5.7) and (2.5.9) yields

b = RTc/8pc, a = 27R2T 2
c /64pc. (2.5.10)
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Now the van der Waals equation (2.5.7) can be written in terms of reduced
variables defined by

p̄ = p/pc, (2.5.11)

V̄ = V/Vc, T̄ = T/Tc. (2.5.12)

We thus obtain
p̄ = 8T̄ /(3V̄ − 1) − 3/V̄ 2. (2.5.13)

Now the reduced van der Waals equation (2.5.13) may be plotted and
discussed without the knowledge of the specific values a and b.

For our problem to investigate the equation of state for steam, we rewrite
the van der Waals equation (2.5.7) in a form considering a steam mass
m kg (

p +
am2

V 2

)
(V − bm) = mCT. (2.5.14)

The pressure p is again measured in Nm−2 (= kg s−2 m−1), the gas constant
C is given in J kg−1 K−1 (= m2 s−2 K−1), a is measured in Nm4 kg−2 (=
m5 kg−1 s−2) and b in m3 kg−1, since V is measured in m3. One sees that
each term in (2.5.14) is measured in Joule. The critical values (2.5.9) for
steam are given by [2.3]

pc = 22.0 MPa (225 at), Tc = 374◦ C = 647K (2.5.15)

and the van der Waals parameters are [2.3]

a = 555 · 103 Nm4 kmol−2 = kg m5 s−2 kmol−2,

b = 0.0310m3 kmol−1, C = 461J kg−1 (m2 s−2 K−1).
(2.5.16)

We now use (2.5.13) to generate a plot of the pressure volume relation of
steam. We use the following Mathematica commands, which generate Fig.
2.1.

Clear[PP,GPP,T0,GT0,T1,GT1,T2,GT2]
$DefaultFont={’’Courier-Bold’’,10};
PP=Plot[8*0.6/(3*V-1)-3/V^2,{V,1,15}]
GPP=Graphics[PP];
T0=Text[A,{.8,0.05}];
GT0=Graphics[T0];
T1=Text[B,{4.,0.05}];
GT1=Graphics[T1];
T2=Text[C,{10.,0.2}];
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GT2=Graphics[T2];
Show[GT0,GT1,GT2,GPP,Axes->True,Ticks->False,
AxesLabel->{’’V’’,’’p’’}] (2.5.17)

V

p

A B

C

Fig. 2.1. Pressure volume relation of steam

In region A water is liquid, B is the two-phases region containing both
water and steam. C is the gaseous region. The part of the curve separating
A and B is called saturated liquid line and the part separating B and C is
called saturated vapor line.

In the energy balance (2.4.2) the internal energy U is still undefined. The
first law of thermodynamics states that the sum of the heat importation q
and the exterior work w done on the system must be equal to the change
of internal energy: dU = q + w. This implies that dU is a total differential.
Since we have three state variables p, V, T and one of those three may be
eliminated using one equation of state like (2.5.2), (2.5.6) or (2.5.7), the
internal energy may be written as U(V, T ), U(p, T ) or U(V, p). Thus one
may have

dU =
(

∂U

∂V

)
T

dV +
(

∂U

∂T

)
V

dT, (2.5.18)

dU =
(

∂U

∂p

)
T

dp +
(

∂U

∂T

)
p
dT, (2.5.19)

dU =
(

∂U

∂V

)
p
dV +

(
∂U

∂p

)
V

dp. (2.5.20)

The various partial derivatives have to be measured in experiments. For an
isolated system kept on constant temperature (dT = 0, isothermal change
of state ) the overflow experiment by Gay-Lussac and other measurements
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may determine the partial differential quotients. For q = 0, w = 0, thus
dU = 0, equation (2.5.18) yields(

∂U

∂V

)
T

= 0 (2.5.21)

for a perfect gas. If a thermodynamic system is kept at constant volume
dV = 0 (isochoric change of state) and heat q is imported, then

q =
(

∂U

∂T

)
V

dT = cV dT (2.5.22)

defines the specific heat cV for constant volume. For a mol one uses CV .
For the convenience of the reader we summarize some thermodynamic

formulae. For a perfect gas one has

U(T ) =
T∫

0

cV (T )dT ≈ cV T + const. (2.5.23)

Imported work is given by p · dV . We define enthalpy H by

H(p, T ) = U + pV (2.5.24)

and obtain for an isobaric change of state (dp = 0)

cp =
(

∂H

∂T

)
p

=
(

∂U

∂T

)
p
+
(

∂V

∂T

)
p

(2.5.25)

and

H(T ) =
T∫

0

cp(T )dT. (2.5.26)

Now let us consider more general changes of state. We call polytropic a
change of state if the imported heat q may be described by a polytropic
specific heat c. . If no heat is imported, c = 0, the change of state is called
adiabatic.

q = c · dT = dU + pdV =
[(

∂U

∂V

)
T

+ p

]
dV + cV dT. (2.5.27)

For an ideal gas pV = RT one obtains (see problem 4)

c − cp

c − cV

dV

V
+

dp

p
= 0. (2.5.28)

Integration yields the polytropic change of state

pV n = const, (2.5.29)
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where
n =

c − cp

c − cV
. (2.5.30)

We now return to Eq. (2.5.27) and ask the question, if q is an exact
differential and if (2.5.27) can be integrated. We thus check if the mixed
derivatives are equal:

∂

∂T

[(
∂U

∂V

)
T

+ p

]
=

∂

∂V

(
∂U

∂T

)
V

. (2.5.31)

We see that the term (∂p/∂V )V �= 0 indicates, that q is not integrable: we
need an integrating factor J . From

∂

∂T

[(
∂U

∂V

)
T

J + pJ

]
=

∂

∂V

[(
∂U

∂T

)
V

J

]
(2.5.32)

we obtain J = 1/T . Then (2.5.27) takes the form

q

T
= dS =

1
T

(
∂U

∂V

)
T

dV +
p

T
dV +

cv

T
dT (2.5.33)

which is integrable. The new function S(T, V ) or S(p, T ) or S(V, p) is called
entropy. It has the dimension J K−1. If (2.5.33) is valid, the thermodynamic
process is called reversible (no dissipative effects like viscosity etc), but for
TdS > qrev the process is called irreversible. qrev designates heat import
by a reversible process. Entropy increases and no potential flow (which is
isentropic and polytropic) is possible.

For later use and for the convenience of the reader we now summarize the
important five equations for the variables u, ρ, p, T, U , which will represent
the basis for tsunami research (D = 0). We specialize to a one-dimensional
problem (plane wave) and use the abbreviation d /dt = ∂ /∂t + 
v∇ or

d
dt

=
∂

∂t
+ u

∂

∂x
. (2.5.34)

Then we have from (2.2.6) or (2.4.3) the continuity equation

dρ

dt
+ ρux = 0. (2.5.35)

From (2.3.13) the equation of motion takes the form

ρ
du

dt
+ px = ρg + ηuxx. (2.5.36)

Instead of using the energy balance (2.4.2) for a flowing fluid for Q = 0, λ =
const we first derive the energy theorem from the equation of motion (2.5.36)
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by multiplication by u. We obtain the energy theorem for the purely me-
chanical terms in the form

ρu
du

dt
+ upx = ρug + ηuuxx. (2.5.37)

Now we have to add the thermodynamic terms ρ(dU/dt), λTxx and p div
v =
pux, see (2.4.2). Φ is now given by ηu2

x (or (4/3)u2
x). We thus have [2.18]

ρ
d
dt

(
U +

u2

2

)
+

∂

∂x
(pu) = η

∂

∂x
(uux) + λTxx + ρug. (2.5.38)

The fourth equation is given by the state equation of the fluid, may be (2.5.4)
or (2.5.6) or (2.5.7). For a tsunami, represented by a fictive gas, we choose
(2.5.4)

p = ρCT. (2.5.39)

The last equation stems from the definition of the internal energy U . From
(2.5.23) we get

U(T ) =
cV TC

C
= cV T, (2.5.40)

where C is defined by R/M according to (2.5.5). According to (2.5.43), see
problem 3, one has

C = cp − cV , (2.5.41)

so that from (2.5.40)

U =
cV TC

cp − cV
=

CT

(κ − 1)
. (2.5.42)

A constant may be added and κ = cp/cv.
The tsunami wave equation which is a nonlinear partial differential equa-

tion of fifth order depending on two independent variables will be derived
from the five equations (2.5.35), (2.5.36), (2.5.38), (2.5.39) and (2.5.42).

Problems

1. Are the values (2.5.15), (2.5.16) and (2.5.10) given in the literature
[2.3] consistent?

2. Derive some partial differential quotients for a gas defined by T =
pV/R.

Solutions:(
∂U

∂p

)
V

=
cV V

R
;
(

∂U

∂V

)
p

=
cV p

R
;
(

∂U

∂p

)
T

= 0.
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3. Derive a formula for cp − cV .

Solution:
cp − cV =

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p
. (2.5.43)

Specify for an ideal gas (2.5.4), observe (2.5.21) and receive cp − cV =
R/M = C.

4. Derive (2.5.28).

Solution for T = pV/R:(
∂T

∂V

)
p

=
p

R
; q = cV dT + (cp − cV )pdV/R = cdT,

(cp − cV )pdV = (c − cV )(V dp + pdV ),

RT = pdV + V dp,

cppdV = cV dp − cV V dp + cpdV,

which gives (2.5.28).

5. Show that polytropic changes pV n = const include isothermal, iso-
baric, isochoric and adiabatic changes of state.

Solution:

isothermal n = 1, c = ∞;
isobaric n = 0, c = cp;
isochoric n = ∞, c = cV ;
adiabatic n = κ = cp/cV , c = 0,

p/p0 = (ρ/ρ0)κ, ρ/ρ0 = (T/T0)

1
(κ − 1) , p/p0 = (T/T0)

κ

(κ − 1) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5.44)

6. Calculate the work w = pdV for isochoric, isothermal, isobaric and
adiabatic changes of state of an ideal gas p = RT/V .

Solution: isochoric: w = 0, isothermal: w = RT (lnV2−ln V1), isobaric:
p(V2 − V1), adiabatic: cV (T2 − T1).

7. Calculate (dp/dρ) for adiabatic, polytropic and isothermal changes of
state of an ideal gas.

Solution:
dp

dρ
=

np

ρ
,

dp

dρ
= pV. (2.5.45)
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Remark:
√

(dp/dρ) = c is a speed, for 0◦ C, 1 at, air one has 333 m s−1

for adiabatic and 280 ms−1 for isothermal change of state.

8. Calculate the adiabatic loss due to cooling of air (1 at, 293◦ K), if the
air ascends to a height 2000 m (pressure 0.7 at).

Solution: cooling 27.3◦ C.

9. Calculate the entropy S for an ideal gas with constant specific heats
cV , cp.

Solutions:

S(T, V ) = cV ln T + R ln V + const
S(T, p) = cp ln T − R ln p + const (2.5.46)
S(p, V ) = cV ln (pV κ) + const.

Thus adiabatic processes are isentropic.

10. Discuss the entropy production rate per unit volume [2.6]

Φ
T

+
λ

T 2
[(∇T ) · (∇T )] +

1
T

δq. (2.5.47)

Here Φ is the mechanical dissipation function and δq is the rate of
internal dissipation e.g. such as Joule heat of an electric conductive
medium. Some authors [2.13] use

ρT
dS

dt
= ηu2

x +
∂

∂x
λ

(
∂T

∂x

)
. (2.5.48)

11. Calculate the pressure density integral (2.3.17) from p0 to p for adia-
batic behaviour (2.5.44).

Solution:
P =

κ

κ − 1

(
p

ρ
− p0

ρ0

)
. (2.5.49)

12. Using (2.4.1) in the form

v2

2
+ P = 0,

derive v2 using (2.5.49).

Solution (Venant-Wantzel outflow formula):

v2 =
2κ

κ − 1
p0

ρ0

[
1 −

(
p

p0

)(κ−1)/κ
]

. (2.5.50)



56 2 Basic flow equations

If the outflow streams in the vacuum, p = 0 one obtains the maximum
speed

v2
m =

2κp0

(κ − 1)ρ0
. (2.5.51)

This means that the total energy available is transformed into kinetic
energy.

13. Equation (2.5.45) defines a speed. For adiabatic behavior of a gas, c
is the sonic speed. Using (2.5.50) and (2.5.45) derive a formula for the
sonic speed.

Solution:

c2 =
κp0

ρ0
− κ − 1

2
v2. (2.5.52)

Using the sonic speed c0 of the gas at rest

c2
0 = κp0/ρ0 (2.5.53)

one obtains

c2 = c2
0 −

κ − 1
2

v2. (2.5.54)

Observe that the sonic speed in a gas flow depends on the velocity v
of the streaming gas.

14. Investigate (2.5.50) and plot the pressure-curve p(v).
Hints: Use (2.5.51) and designate v/vm by x and p/p0 by y. Use
κ = 1.401 and κ = 2 (for later use in section 2.10). Plot y(x) and
investigate if this curve has a point of inflection:
Solution:

y = (1 − x2)

κ

κ − 1 (2.5.55)

and use the Mathematica command k=1.401;k/(k-1);
y[x_]=(1-x^2)^(k/(k-1));
Plot[y[x],{x,0.001,1.}]
f[x]=InputForm[D[y[x],{x,2}]]
The inflection point may be found by plotting f [x] from x = 0.1− 0.8.
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Fig. 2.2. Pressure-curve p(v)

2.6 Vorticity theorems

Since the rotary flow in hurricanes is the source of their destruction power
it is important to investigate rotational motions and vortices in fluids. For
this purpose we first derive the Crocco theorem connecting vorticity and
entropy. Vorticity is expressed by curl
v.

Neglecting external heat import ∂Q/∂t and taking the gravity potential
V into account, the energy balance (2.4.2) may be written

ρ
dU

dt
+ p∇
v = Φ + λΔT = q = TdS. (2.6.1)

Here we used (2.5.33) and (2.5.34). With the help of (2.4.4) the Eq. (2.6.1)
may be transformed into

ρ
dU

dt
+

p

ρ
D + pρ

d(1/ρ)
dt

= Φ + λΔT = q = TdS. (2.6.2)

Thus one has the first law of thermodynamics in the form

dU +
p

ρ2
D + p

d(1/ρ)
dt

= TdS/ρ

∇U +
p

ρ2
D + p∇1

ρ
= T∇S/ρ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.6.3)

since dU = d
x · ∇U . Now we would like to consider the mechanical terms.
The equation of motion (2.3.14) reads

∂
v

∂t
+ ∇
v 2

2
− 
v curl
v = −1

ρ
∇p −∇V +

1
ρ


F . (2.6.4)
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Here 
F are the friction forces due to the viscosity of the fluid. Now we define
a generalized enthalpy by modifying (2.5.24)

H = U +
p

ρ
+ V +


v 2

2
. (2.6.5)

By using this H and adding the mechanical energy terms (2.6.4) and the
thermodynamic terms (2.6.3) we obtain the Crocco theorem:

∂
v

∂t
+ ∇H +

p

ρ2
D − 
v × curl
v −


F

ρ
= T∇S/ρ. (2.6.6)

The theorem connects vorticity curl 
v with an increase of entropy [2.11]. The
heat conduction term does not appear explicitly. We obtain the following
conclusions:

For an isentropic flow S = const, q = 0 (adiabatic change of state, there
must be no heat conduction, no other dissipative (viscous) effects) the flow
must be irrotational (curl
v = 0) or a Beltrami flow 
v × curl
v = 0, the
flow must be stationary (∂
v/∂t = 0) and no source D can be present. A
potential flow (
v = ∇ϕ) is always isentropic and polytropic.

In view of hurricanes we now investigate the possible mechanisms of
vortex generation. First we define circulation by

Γ =
∮


vd
s =
∫
F

curl
vd
f. (2.6.7)

Here d
s is a line element and Stokes theorem has been used. Then the rate
of change for Γ is given by

dΓ
dt

=
d
dt

∮

vd
s =

∮ d
v

dt
d
s +

∮

vd

d
s

dt
=
∮ d
v

dt
d
s +

∮

vd
v. (2.6.8)

Since
∮


vd
v =
∮

d(
v 2/2) =
∮ ∇(
v 2/2) = 0, we have only one nonvanishing

term. Using the dissipationless Newton’s law (2.3.13) we obtain (for η = 0)

dΓ
dt

=
∮ d
v

dt
d
s =

∮ (
−∇p

ρ
− 
g

)
d
s. (2.6.9)

Since the “solenoidal term” ∇p/ρ may be replaced by ∇P according to
(2.3.17), this means, if a polytropic change of state occurs (2.5.44), then∮
(∇P ) = 0. Since gravity 
g may be represented by a scalar potential, also

the term
∮


gd
s vanishes. This proves Thomsons circulation theorem:
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If the exterior forces 
g are conservative and if the fluid is polytropic and
thus inviscid the circulation Γ is conserved. (Circulation along a closed curve
does not change in time). It is however no longer constant, if the force 
g ′ as
e.g. the Coriolis force has to be taken into account. A hurricane which is
a circular vortex gains circulation from the Coriolis force 
g ′, see later. If
heat is added to the system then it is no longer polytropic and convection
destroys the conservation of the circulation.

Vorticity of a fluid is described by the vorticity vector 
w


w = (curl
v)/2. (2.6.10)

Since (dΓ/dt) = 0 in an inertial coordinate system (no Coriolis-, no cen-
trifugal forces) one has

d
dt

∮

vd
s = 0 =

d
dt

∫
F

2
wd
f = 0. (2.6.11)

This means that the vortex flow
∫


wd
f is conserved. Helmholtz stated
this as follows: No fluid particles can have a rotation if it did not originally
rotate (Helmholtz first vorticity theorem). Since 
w is proportional to the
angular frequency ω of rotation, one may say that ω · F = const: a smaller
cross section F rotates faster. This is valid in dissipative free systems. If
viscosity is taken into account, then we have to start from (2.3.13), (2.3.18)

d
v

dt
=

∂
v

∂t
+ (
v∇) · 
v =

∂
v

∂t
+ ∇
v 2

2
− 
v × curl
v =

−∇p

ρ
−∇V +

η

ρ
Δ
v.

(2.6.12)

For an incompressible fluid (ρ = const) curl ∇p = 0, and for conservative
forces curl ∇V = 0. Furthermore, curl grad (v2/2) = 0. Then the applica-
tion of curl on (2.6.12) yields (μ = η/ρ)

d
w

dt
=

∂ 
w

∂t
+ (
v∇)
w = μΔ
w + (
w∇)
v + curl
g ′. (2.6.13)

This equation (vorticity transfer equation) describes vorticity transport in
incompressible viscous fluid in a non-inertial coordinate system. If 
g ′ = 0,
the equation states that viscous effects do NOT generate new vortices. One
may also say that fluid particles which are at any time part of a vortex
filament always belong to that same vortex filament (Helmholtz second
vorticity theorem). An analysis of (2.6.13) shows that viscosity damps and
non-conservative forces induce vortices.
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Problems

1. Derive (2.6.13).

2. The one-dimensional vorticity transfer equation for w(x, t) reads

∂w

∂t
=

dw

dt
= μ

∂2w

∂x2
. (2.6.14)

Solve this equation.

Solution:
const√

4μt
exp

(
− x2

4μt

)
.

3. A polytropic atmosphere may be defined by

p = p0

(
ρ

ρ0

)n

, ρ = ρ0

(
p

p0

)1/n

. (2.6.15)

For the static equilibrium on Earth assume

gz +
p
1/n
0

ρ0
· n

n − 1
p1−1/n = const.

Assume p(h) = 0, where h is the height of the atmosphere. Calculate
p(z).

Solution:

p(z) = p0(1 − z/h)n/(n−1), ρ(z) = ρ0(1 − z/h)n/(n+1)

(p0 = 1 at = 1033.00981 g’ cm−1 s−2, ρ = 0.0013 g cm−3, g = 981 cm s−2.)
The usual barometric formula is however

p = p0 exp(−Mgz/RT ). (2.6.16)

Here p0 is the pressure at z = 0, M is the molecular weight of air and
R is the universal gas constant. The formula is valid for an isothermal
gas of constant temperature.

2.7 Potential flow in incompressible fluids

For an incompressible fluid the basic equations are now modified due to
ρ = const. With some exceptions one may assume that water is practically
incompressible. Thus the continuity equation (2.2.4) now reads

div
v = D/ρ (2.7.1)
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and the equation of motion (2.3.13) yields

∂
v

∂t
+ (
v∇)
v = −∇p

ρ
+ 
g + νΔ
v. (2.7.2)

The last rhs term in this equation describes dissipation due to viscosity.
Since any dissipative effect increases entropy and since we want to investigate
potential flow, one has curl
v = 0 and the Crocco theorem (2.6.6) takes the
form

∂
v

∂t
+ ∇H +

p

ρ2
D = 0. (2.7.3)

Neglecting exterior forces 
g,
g ′ and using the definition for H (2.6.5) one
obtains

ρ
∂
v

∂t
+ ρ∇U + ρ∇
v 2

2
+ ∇p +

pD

ρ
= 0, (2.7.4)

which may be called a time dependent Bernoulli equation, compare (2.3.20).
In view of the coming sections we will investigate two special cases:

1. steady potential flow with D = 0 in two dimensions,

2. time-dependent flow.

For time-independent flow with D = 0, one may forget (2.7.2)–(2.7.4) and
start with


v = ∇ϕ. (2.7.5)

Inserting into (2.7.1) we obtain the elliptic potential equation (Laplace
equation)

Δϕ = 0. (2.7.6)

If D �= 0, one obtains a Poisson equation

Δϕ = D/ρ. (2.7.7)

This is an inhomogeneous and elliptic equation and may be reduced to
(2.7.6), see p 141 in [1.1]. In two dimensions (2.7.6) is reduced to conformal
mapping. For conformal mapping in three dimensions see p 165 in [1.1]. A
special solution of (2.7.6) is of importance with respect to hurricanes: the
two-dimensional circular vortex.

In conformal mapping the two-dimensional Laplace equation (2.7.6) is
usually replaced by the Cauchy-Riemann equations

vx = −∂ϕ

∂x
= −∂ψ

∂y
, vy = −∂ϕ

∂y
=

∂ψ

∂x
. (2.7.8)
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Now introducing a complexe coordinate z and a complexe potential ζ

z = x + iy = r exp(iχ), ζ(x, y) = ϕ(x, y) + iψ(x, y) (2.7.9)

one may again define circulation

Γ =
∮

ζ(z)dz =
∮

(ϕ(x, y) + iψ(x, y))(dx + idy). (2.7.10)

If no singularities are present within the domain, then one has the Cauchy
integral formula ∮

ζ(z) · dz = 0. (2.7.11)

If the integration path in the complexe plane x, iy encloses a singularity,
then ∮

ζ(z)dz = 2πiRes,

where Res is the so-called residuum of the singularity. An example may be
given by

ζ(z) = − iΓ
2π

ln z =
−iΓ
2π

ln r +
Γ
2π

arctan
y

x
, (2.7.12)

where Γ is a constant. Splitting up into real and imaginary parts one has

ϕ =
Γ
π

arctan
y

x
, ψ = − Γ

2π
ln
√

x2 + y2. (2.7.13)
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Fig. 2.3. Circular vortex



2.7 Potential flow in incompressible fluids 63

Mathematica may again help. To generate Fig. 2.3 one uses the com-
mands

Clear[psi];psi[x_,y_]=-Log[Sqrt[x^2+y^2]];
C1=ContourPlot[psi[x,y],{x,-4.,4.},{y,-4.,4.}, (2.7.14)
ContourShading->False,ContourSmoothing->2,
PlotPoints->80]

Next we consider time dependent potential solutions. From (2.7.3),
(2.7.5) we have for D = 0

∇
(

∂ϕ

∂t
+

v2

2
+

p

ρ
+ gz

)
= 0. (2.7.15)

Here we assumed constant temperature (∇U = 0), 
v = ∇ϕ and gravity in
the z-direction as external force. Putting p0/ρ0 into an integration constant
C, we may write

Δϕ = 0, (2.7.16)

∂ϕ

∂t
+

(∇ϕ)2

2
+ gz = C. (2.7.17)

Here we assumed that z = 0 indicates a free water surface, for instance of
a lake or ocean, with constant depth z = −h. At the ocean bottom we
have to assume that the vertical motion vanishes. Thus we have the bottom
boundary condition (

∂ϕ

∂z

)
z=−h

= 0. (2.7.18)

On the other hand, at the free surface z = 0 the pressure p is constant
so that (

∂ϕ

∂t

)
z=0

+ (∇ϕ)2 = C. (2.7.19)

A liquid particle at the location z will have a vertical velocity given by
dz

dt
= vz =

∂ϕ

∂z
. (2.7.20)

These equations will play an important role in the investigation of water
waves in chapter 3.

Problems

1. Derive (2.7.6) from (2.7.8).

2. Prove that (2.7.13) is a solution of (2.7.8).
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3. Neglect (∇ϕ)2 in (2.7.17) and derive a wave equation for ϕ(x, y, z, t).

Solution:
∂2ϕ

∂t2
= ±g

∂ϕ

∂z
. (2.7.21)

4. Solve (2.7.18) by the setup

ϕ(x, y, z, t) = ψ(x, y) · U(z) · exp(iωt). (2.7.22)

5. Describe the two-dimensional steady incompressible potential flow a-
round a cylinder by conformal mapping using Mathematica.

Solution [1.1]
giza1[z_]=z/(2*V0)+Sqrt[z^2/(4*V0^2)-R^2];
<<Graphics‘ComplexMap‘
echo $Packages
Clear[R,VO,P1];R=1.;V0=1.;
P1=CartesianMap[giza1,{-6.,6.},{-6.,6.}];
Clear[giza2,P2];giza2[z_]=z/(2*V0)-Sqrt[z^2/(4*V0^2)-R^2];
P2=CartesianMap[giza2,{-6.,6.},{-6.,6.}];
Show[P1,P2,PlotRange->All]

2.8 Potential flow in compressible fluids

Due to the equivalence theorem stating that solutions of compressible fluid
equations are equivalent to solutions of nonlinear water wave equations,
we have a need to investigate gasdynamics. We assume D = 0, U =
const, curl
v = 0, 
v = −∇ϕ. We first rewrite the continuity equation (2.2.4)
in the form

1
ρ

∂ρ

∂t
− Δϕ −∇ϕ · ∇ρ

ρ
= 0. (2.8.1)

The time dependent Bernoulli equation (2.7.4) reads now

−∇∂ϕ

∂t
+

1
2
∇(∇ϕ)2 + ∇P = 0. (2.8.2)

P is defined by (2.3.17), (2.5.49). No heat exchange or dissipative effects
occur in a potential flow, it is adiabatic. Thus (2.5.45) may read

c2∇ρ = ∇p; ∇P = c2 · ∇ρ

ρ
; dP = c2 dρ

ρ
. (2.8.3)
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Integration over space of (2.8.2) yields

−∂ϕ

∂t
+

1
2

(∇ϕ)2 + P = const = F (t) → 0. (2.8.4)

Derivation with respect to time gives

−∂2ϕ

∂t2
+

1
2

∂

∂t
(∇ϕ)2 +

∂P

∂t
= 0. (2.8.5)

Using (2.8.3) one has
∂P

∂t
=

c2

ρ

∂ρ

∂t
, (2.8.6)

so that (2.8.5) reads

1
ρ

∂ρ

∂t
=

1
c2

∂P

∂t
=

1
c2

[
∂2ϕ

∂t2
− 1

2
∂

∂t
(∇ϕ)2

]
. (2.8.7)

Now we can insert
1
ρ

∂ρ

∂t
and from (2.8.2) and (2.8.3) we insert

∇ρ

ρ
=

1
c2
∇P =

1
c2

[
∇∂ϕ

∂t
− 1

2
∇ (∇ϕ)2

]
(2.8.8)

into the continuity equation (2.8.1) obtaining the potential equation for com-
pressible fluids

1
c2

[
∂2ϕ

∂t2
− 1

2
∂

∂t
(∇ϕ)2

]
− Δϕ − ∇ϕ

c2

[
∇∂ϕ

∂t
− 1

2
∇(∇ϕ)2

]
= 0. (2.8.9)

We will treat tsunamis as nonlinear water waves. Thus we are interested into
the potential ϕ(x, t). For small wave amplitudes the nonlinear terms (∇ϕ)2

may be neglected and (2.8.9) yields the hyperbolic acoustic wave equation

1
c2

∂2ϕ

∂t2
= Δϕ. (2.8.10)

If the fluid is incompressible, ρ = const, then according to (2.8.3) dρ/dp =
1/c2 or c → ∞. Elastic waves propagate faster in nearly incompressible
media far faster than in water. For steel one has c = 5100 m s−1, for water
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at 0◦ one has 1403 m s−1, at 20◦ however 1483 m s−1 and for air 332 m s−1

at 0◦ C. Thus we may use Δϕ = 0. The equation for ϕ(x, t) is received from
(2.8.9). It reads

F (x, t, ϕx, ϕt, ϕxx, ϕxt, ϕtt) = ϕxx

(
c2 − ϕ2

x

)
− 2ϕxϕxt − ϕtt = 0, (2.8.11)

where now

c2 = c2
0 −

(κ − 1)
2

ϕ2
x − (κ − 1)ϕt, (2.8.12)

compare (2.5.52) and problem 1. Now we use the mathematics developed
in section (1.2) and (1.4) to classify the new nonlinear partial differential
equation (2.8.11). From (1.4.29) and (2.8.11) we have

a = (c2 − ϕ2
x), b = ϕx, c = −1, (2.8.13)

where c should not be confused with the sonic speed c defined by (2.8.12). If
we insert (2.8.13) into the criterion (1.2.7), we find

√
b2 − ac > 0 so that we

conclude that (2.8.11) is a hyperbolic nonlinear partial differential equation.
This is true for c > ϕx = v. Since in this case the sonic speed is larger than
the flow speed, one speaks of supersonic flow. If c < v one uses the term
subsonic flow and (2.8.11) is elliptic and the characteristics (2.8.14) become
complex. The characteristics

w =
dx

dt
= ϕx ±

√
c2
0 −

(κ − 1)
2

ϕ2
x − (κ − 1)ϕt = u ± c(u) (2.8.14)

depend on the still unknown solution itself and are hence of no value. If our
equation would not be nonlinear, but linear, the characteristics would be of
great value. Actually we can exactly linearize (2.8.11) using a Legendre
transformation. For this purpose we define [1.1]

q = −ϕt, u = −ϕx, −ux = ϕxx, −qt = ϕtt. (2.8.15)

Then
dϕ = ϕxdx + ϕtdt = −udx − qdy. (2.8.16)

Next we define a new potential

Ψ(u, q) = ux + qt + ϕ(x, t), (2.8.17)
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dΨ = Ψudu + Ψqdq = xdu + tdq, (2.8.18)

where

Ψu = x, Ψq = t, Ψuu = xu, Ψuq = tq. (2.8.19)

We now solve for ϕ

ϕxx = −Ψqq/D, ϕxt = Ψqv/D, ϕtt = −Ψuu/D, (2.8.20)

where

D =

∣∣∣∣∣∣
Ψuu Ψuq

Ψuq Ψqq

∣∣∣∣∣∣ . (2.8.21)

Inserting into (2.8.11) we obtain the new linear potential equation

F = Ψqq

(
c2 − u2

)
+ 2uΨuq − Ψuu = 0, (2.8.22)

c2 = c2
0 −

(κ − 1)
2

u2 + (κ − 1)q. (2.8.23)

Now we consider again the criterion (1.2.7). From (2.8.22) we recognize
that (2.8.22) is of hyperbolic type and the characteristics in the u, q plane
are

dq

du
= (u ± c). (2.8.24)

This is independent from q. The wave propagation speed w depends on u
according to (2.8.14). This means that a wave propagates faster in relation
to the speed of flow velocity u. Therefor a pressure wave amplitude will
steepen up during propagation. This continual steepening up of the wave
front can no longer be described by single-valued functions of location. One
has to introduce a discontinuity into the flow to get over this difficulty. This
discontinuity is called a shock wave, across which the flow variables change
discontinuously. The discontinuity vanishes if the basic fluid equations are
modified to contain viscosity and heat conduction. Figures 2.4 and 2.5 depict
the steepening up of a large amplitude gas wave.
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Fig. 2.4. Large wave travelling to left at time t0
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Fig. 2.5. Steepening up at time t > t0
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The high-pressure region of the travelling wave progresses more quickly
than the low-pressure region. Then the former overtakes the latter, and the
pressure rise associated with the wave then occurs discontinuously through
a very (even infinitely) steep front. Thus the wave becomes a shock wave.
The flowing gas is rapidly compressed by its passage through the shock. If
steepening of the shock would continue, topple over would appear and an un-
physical double-valued function would describe the phenomenon. Anyway,
conservation of mass, momentum and energy must be valid over a shock.
If subscript 1 designates the situation in front of the shock and subscript 2
after the shock, then conservation of mass is given by

ρ1u1 = ρ2u2, (2.8.25)

momentum conservation is expressed by

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (2.8.26)

and energy conservation yields

U1 +
u2

1

2
+

p1

ρ1
= U2 +

u2
2

2
+

p2

ρ2
. (2.8.27)

Using
U = cV T (2.8.28)

and
p

ρ
= RT = (cp − cV )T, κ = cp/cV (2.8.29)

one can derive the Hugeniot state equation

p2

p1
− ρ2

ρ1
=

κ − 1
2

(
1 +

p2

p1

)(
ρ2

ρ1
− 1
)

. (2.8.30)

p2/p1 as a function of ρ2/ρ1 is steeper than the adiabatic curve and reaches

p2

p1
→ ∞ at

ρ2

ρ1
=

κ + 1
κ − 1

(for air
ρ2

ρ1
≈ 6).

It is clear that entropy is increased in a shock.
Behind a shock wave a rarefaction wave is to be expected due to (2.8.25).

This again might excite a second but weaker large amplitude wave.
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Equations (2.8.25)–(2.8.27) are valid only for a stationary flow. For a
time-dependent flow, these equations have to be modified. If we designate
by w the propagation speed of a travelling shock wave, then (2.8.25)–(2.8.27)
assume the following form [2.12], [2.19]

(w − u1) ρ1 = (w − u2) ρ2, (2.8.31)

(w − u1)2 ρ1 + p1 = (w − u2)2 ρ2 + p2, (2.8.32)

a2
1

κ − 1
+

(w − u1)2

2
=

a2
2

κ − 1
+

(w − u2)2

2
. (2.8.33)

Here we had used the expressions

a2
1 =

κp1

ρ1
, a2

2 =
κp2

ρ2
(2.8.34)

for the sonic speeds a1 and a2. The solution for w yields (see problem 4)

w =
a2

1 − a2
2

κ − 1
· 1
u1 − u2

+
u1 + u2

2
. (2.8.35)

If one inserts this result into (2.8.31) and (2.8.32) one obtains the unsteady
shock polar [2.12]

u2 = u1±

√√√√√1
κ

⎡
⎣− (a2

1 + a2
2

)
+

√(
a2

1 + a2
2

)2 − 4κ2

κ − 1

[
1
κ
− 1

κ − 1

] (
a2

1 − a2
2

)2⎤⎦
(2.8.36)

All this mathematics is of no interest for hurricanes, but it allows insight
into the mechanism of large amplitude water waves like solitons, tsunamis,
water jumps, swells, water hammer etc.

Problems

1. Use (2.5.48), (2.5.51) and integrate (2.8.8) to derive (2.8.12).

Solution:

1
c2

P =
1
c2

[
∂ϕ

∂t
− 1

2
(∇ρ)2

]
; P =

1
κ − 1

(
κp

ρ
− κp0

ρ0

)
;

κp0

ρ0
= c2

0.
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2. Derive (2.8.24) and prove that (2.8.22) is hyperbolic.

Solution: From (1.4.29) and (2.8.22) one obtains

a =
(
c2 − u2

)
, b = −u, c = −1; b2 − ac > 0.

3. Derive (2.8.30).

4. Derive (2.8.35). Hints: divide (2.8.32) by (2.8.31) and use (2.8.34),
then use (2.8.33).

5. Derive (2.8.36).

6. Is the linear equation (2.8.22) separable into two ordinary differential
equations by Ψ(u, q) = U(u)Q(q)?

Solution: No.

7. What do the following equations describe [2.13]?

Solution:

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p − 4

3
ηux

)
= 0,

∂

∂t

(
ρU + ρ

u2

2

)
+

∂

∂x

(
ρuU + ρ

u2

2
u + u

(
p − 4

3
ηux

)
− λTx

)
= 0,

ρT

(
∂S

∂t
+ u

∂S

∂x

)
=

4
3
ηu2

x +
∂

∂x
(x, Tx) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8.37)

8. Derive the characteristics of an unsteady one-dimensional compressible
flow described by

ρt + uρx + ρux = 0

ut + uux +
1
ρ
px = 0,

St + uSx = 0,
p = p(ρ, S), px = pρρS + pSSx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8.38)

Hint: Write the system in the form

Ut + AUx = 0, (2.8.39)



72 2 Basic flow equations

where

U =

⎛
⎜⎝ ρ

u
S

⎞
⎟⎠ , A =

⎛
⎜⎝ u ρ 0

pρ/ρ u pS/ρ
0 0 u

⎞
⎟⎠ (2.8.40)

and calculate the eigenvalues λ from |A − λE| = 0.

Solution: λ = u, u + √
pρ, u −√

pρ.

2.9 The Darboux solution of plane waves
in non-dissipative gases

The equations describing plane waves in non-viscous gases can be solved
by several methods. In order to understand the equivalence principle and
the methods to solve wave equations for dissipative fluids (gas or water)
it is of advantage to first understand the solutions for non-dissipative flu-
ids. There are several methods available: solutions using the Darboux
equation, a linear partial differential equation of second order, and the Rie-
mann invariants [1.1], on which graphic-numerical characteristics methods
are based. Another method is a similarity transformation.

We consider [2.15] the equations

ρt + uρx + ρux = 0, (2.9.1)

ut + uux +
1
ρ
px = 0, (2.9.2)

p =
ρn

n
a2, (2.9.3)

compare (2.5.29), (2.5.44), (2.5.45); a is a positive constant. These three
equations for ρ, u and p can be transformed into the Darboux equation,
if n �= 1. According to (2.5.44), the condition n �= 1 excludes isothermal
waves. Solutions of (2.9.1)–(2.9.3) in cylindrical and spherical coordinates
are given in [2.7]. Using the setup

σ =
a2ρn−1

n − 1
=

n

n − 1
p

ρ
(2.9.4)

and multiplying (2.9.1) by a2ρn−2 one can derive

σt + uσx + (n − 1)σux = 0, (2.9.5)
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ut + uux + σx = 0. (2.9.6)

Here σ and u depend on x and t. We assume that functions x(u, σ) and
t(u, σ) exist. We thus write

du = uxdx + utdt (2.9.7)

and
du = ux (xudu + xσdσ) + ut (tudu + tσdσ) . (2.9.8)

This gives the equations
uxxu + uttu = 1, (2.9.9)

uxxσ + uttσ = 0. (2.9.10)

Since
dσ = σxdx + σtdt, (2.9.11)

one obtains
σxxu + σttu = 0, (2.9.12)

σxxσ + σttσ = 1. (2.9.13)

Assuming that u and σ are independent of each other, so that the determi-
nant

Δ

∣∣∣∣∣= xu tu
xσ tσ

∣∣∣∣∣ �= 0 (2.9.14)

does not vanish, we can solve

ux = tσ/Δ, ut = −xσ/Δ, σx = −tu/Δ, σt = xu/Δ. (2.9.15)

Then (2.9.5) and (2.9.6) become

xu − utu + (n − 1)σtσ = 0, (2.9.16)

xσ − utσ + tu = 0. (2.9.17)

This is a linear system and admits superposition. We now introduce a new
function V (u, σ) defined by

Vu = x − ut, Vσ = −t. (2.9.18)
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One sees immediately that (2.9.17) is identical with Vuσ = Vσu. Thus the
partial differential equation for V is integrable. The differential equation for
V now reads

Vuu = Vσ + (n − 1)σVσσ . (2.9.19)

Using new variables ξ and η and the substitution

σ = ξ2/4, → ξ = 2
√

σ, u =
η√

n − 1
, (2.9.20)

one obtains the Darboux equation in the form

Vξξ +
k

ξ
Vξ = Vηη , k =

3 − n

n − 1
. (2.9.21)

If V (ξ, η) is known, then the solution of (2.9.5) and (2.9.6) is given by

x√
n − 1

− ηt

n − 1
= Vη, −ξt

2
= Vξ, (2.9.22)

where (2.9.18) has been used. From (2.9.20) and (2.9.4) one obtains

ξ =
2aρ(n−1/2)

√
n − 1

, η = u
√

n − 1. (2.9.23)

According to (2.8.3) the adiabatic sonic speed is given by

c =
√

κp

ρ
=

√
κ − 1
2

ξ = aρ(κ−1)/2. (2.9.24)

Then ξ ± η becomes

c ± κ − 1
2

u = const. (2.9.25)

Now we start considerations concerning the solution of the Darboux
equation. It can be shown that a general solution of it can be found, if the
polytropic coefficient n is given by [2.15]

n = 1 +
2

2m + 1
, m = 0, 1, 2, . . . , (2.9.26)

where m is an integer. For adiabatic changes one has

κ = n or κ =
2m + 3
2m + 1

, m =
1
2
· 3 − κ

κ − 1
. (2.9.27)
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It is well known from statistical physics that a gas with f degrees of freedom
has an adiabatic exponent κ = (f + 2)/f . This gives Table 2.2.

Table 2.2. Adiabatic exponents

fluid f κ = n m k
model liquid – – = −1 1 −2
model gas 1 3 = 3.0 0 0
one-atomic gas 3 5/3 = 1.667 1 2
two-atomic gas 5 7/5 = 1.400 2 4
air ∼ 5 – 1.405 ∼ 2 ∼ 4
water equivalence – 2 = 2.00 0.5 1

Since the equivalence theorem for the solutions of gas waves and water waves
states that tsunamis have n = 2, m = 0.5, then solutions of the Darboux
equations can NOT give solutions of the tsunami wave equation. Thus the
paper [2.15] will not help to solve the tsunami wave problem. Solutions of
the Darboux equation may be found in [2.14], [2.15].

For gases, the Riemann invariants (Riemann transformation) [1.1],
[2.16] lead to the solutions of the Darboux equation, but for large am-
plitude water waves they produce new solutions. One of these will be dis-
cussed in section 2.10. Similarity transformations will be used in section 3.4
(solitons) and later. In [2.18] they again reproduce results offered by the
Darboux equation.

Although the results obtained in this section seem to be of no interest for
the tsunami problem, we will discuss some of the results, because they open
some understanding of the effect of rarefaction waves. This type of waves
occurs also in the tsunami problem. Conclusions about the development
in time are possible without the knowledge of solutions of the Darboux
equation.

We first write the equations (2.9.5) and (2.9.6) in another form using
(2.9.23):

ξt +
ηξx√
n − 1

+
√

n − 1
2

ξηx = 0, ηt +
ηηx√
n − 1

+
√

n − 1
2

ξξx = 0. (2.9.28)

To be able to discuss properties of the solutions of (2.9.1), (2.9.2) and (2.9.3)
without having a solution of (2.9.21), we now rewrite (2.9.28) in the form

dξ

dt
= ξx

(
dx

dt
− η√

n − 1

)
−

√
n − 1
2

ξηx,
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dη

dt
= ηx

(
dx

dt
− η√

n − 1

)
−

√
n − 1
2

ξξx. (2.9.29)

This system can again be transformed using two new variables v and w (of
the type of Riemann invariants, see [1.1])

v = ξ + η, w = ξ − η. (2.9.30)

The result is

dv

dt
= vx

(
dx

dt
− η√

n − 1
−

√
n − 1
2

ξ

)
,

dw

dt
= wx

(
dx

dt
− η√

n − 1
+

√
n − 1
2

ξ

)
. (2.9.31)

To find an extremum, we assume dv/dt = 0 and dw/dt = 0. We then obtain
from (2.9.31)

dx

dt
=

2η ± (n − 1)ξ
2
√

n − 1
= u ± aρ(n−1)/2. (2.9.32)

Now we consider a special constant value A of v and B of w. Then according
to (2.9.32) the value v = A propagates with the wave speed to the right

dx

dt
=

2A + (n − 3)ξ
2
√

n − 1
(2.9.33)

and the value w = B propagates with

dx

dt
= −2B + (n − 3)ξ

2
√

n − 1
(2.9.34)

to the left. We remark that both propagation speeds are constant for n = 3.
For adiabatic behavior n = κ one obtains with (2.9.24)

dx

dt
= u + c, for v = A = const, (2.9.35)

dx

dt
= u − c, for w = B = const. (2.9.36)

Here u and c are not constants, but depend on x and t. Of great interest
is now the fact that the waves steepen up, that means that greater v-values
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(greater densities) propagate faster than smaller v-values: a shock wave
develops. On the other hand waves producing a density decrease (rarefaction
wave) become more smooth – no rarefaction shock wave is possible.

A shock is a discontinuity described by equations (2.8.31)–(2.8.33). At
such discontinuities the differential equations no longer have meaning. In
reality the shock is however not a discontinuity at all but a narrow zone, a few
mean free paths in thickness through which the variables change very steeply
but continuously. In the theory presented here up to now heat conduction
and viscosity effects have been neglected. They produce an entropy increase
across the shock (S2 > S1). Then (2.9.1)–(2.9.3) has to be replaced by the
system (2.8.37)

ρt + ρxu + uxρ = 0, (2.9.37)

ρtu + uρx +
∂

∂x

(
ρu2 + p − 4

3
ηux

)
= 0, (2.9.38)

∂

∂t

(
ρ

(
U +

1
2
u2
))

+
∂

∂x

(
ρu

(
U +

1
2
u2
)

+ u

(
p − 4

3
ηux

)
− λTx

)
= 0,

(2.9.39)
or

ρT (St + uSx) − 4
3
ηu2

x − ∂

∂x
(λTx) = 0, (2.9.40)

compare another formulation (2.5.35)–(2.5.39) and (2.5.48).
In order to be able to treat shocks by numerical methods, an artificial

viscosity has been introduced (Lax viscosity) [2.20] [2.13].
We now give solutions to the Darboux equation. Thus we have to

assume that (2.9.26) is valid [2.15]. For m = 0 one has k = 0, n = 3 (Table
2.2) and (2.9.21) has the solution

V = f(ξ + η) + g(ξ − η), (2.9.41)

where f and g are arbitrary functions. They are determined by the initial
conditions for ρ and u. (2.9.41) is a solution of the linear D’Alembert
equation of acoustics. We see that the values k = 0, n = 3 initiate a quasi-
linearization.

For k = 2m various solutions have been given in [2.15]. Some of them
are identical with the Riemann solutions [2.16]. For general m solutions
may be found in [2.13].
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Problems

1. Determine the type of the Darboux equation.

Solution: use (1.2.1), (1.2.7). The equation is parabolic.

2. Is it possible to solve (2.9.21) by using V (ξ, η) = X(ξ) · E(η)?

3. Is it possible to solve (2.9.21) by a similarity setup V (ξ, η) = ξαηβ

(Boltzmann transformation)?

4. Instead of the pressure p(x, t), given by (2.9.3), Riemann in [2.16] uses
a function ϕ(ρ) = p(ρ), so that

ϕ′(ρ)
∂ρ

∂x
=

∂p

∂x
. (2.9.42)

Write (2.9.1) and (2.9.2) in a new form using (2.9.42).

Solution:
∂u

∂t
+ u

∂u

∂x
= −ϕ′(ρ)

∂ log ρ

∂x
, (2.9.43)

∂ log ρ

∂t
+ u

∂ log ρ

∂x
= −∂u

∂x
. (2.9.44)

5. Multiply (2.9.44) by ±√ϕ′(ρ) and add it to (2.9.43), then

f(ρ) =
∫ √

ϕ′(ρ)d log ρ, (2.9.45)

f(ρ) + u = 2r, f(ρ) − u = 2s (2.9.46)

transforms the equations. Hint: calculate ∂r/∂t and ∂s/∂t.

Solution [2.16]:

dr =
∂r

∂x

(
dx − (u +

√
ϕ′(ρ) )dt

)
, (2.9.47)

ds =
∂s

∂x

(
dx − (u −

√
ϕ′(ρ) )dt

)
. (2.9.48)

The quantities r, s are often called Riemann invariants.
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6. Riemann transforms the equations (2.9.47) and (2.9.48) into the form

dr =
∂r

∂x

{
d
(

x −
(

u +
√

ϕ′(ρ)
)

t

)

+

[
dr

(
d log

√
ϕ′(ρ)

d log ρ
+ 1

)
+ ds

(
d log

√
ϕ′(ρ)

d log ρ
− 1

)]
t

}
, (2.9.49)

ds =
∂s

∂x

{
d
(

x −
(

u −
√

ϕ′(ρ)
)

t

)

−
[
ds

(
d log

√
ϕ′(ρ)

d log ρ
+ 1

)
+ dr

(
d log

√
ϕ′(ρ)

d log ρ
− 1

)]
t

}
. (2.9.50)

Assume that r and s are independent variables and derive linear dif-
ferential equations for x and t.

Solution:

∂
(
x −

(
u +

√
ϕ′(ρ)

)
t
)

∂s
= −t

(
d log

√
ϕ′(ρ)

d log ρ
− 1

)
, (2.9.51)

∂
(
x −

(
u −√ϕ′(ρ)

)
t
)

∂r
= t

(
d log

√
ϕ′(ρ)

d log ρ
− 1

)
(2.9.52)

and receive the total differential

(
x −

(
u +

√
ϕ′(ρ)

)
t

)
dr −

(
x −

(
u −

√
ϕ′(ρ)

)
t

)
ds. (2.9.53)

The solution of this differential now satisfies the partial differential
equation for w(r, s)

∂2w

∂r∂s
= m

(
∂w

∂r
+

∂w

∂s

)
= −t

(
d log

√
ϕ′(ρ)

d log ρ
− 1

)
, (2.9.54)

where

m =
1

2
√

ϕ′(ρ)

(
d log

√
ϕ′(ρ)

d log ρ
− 1

)
. (2.9.55)
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7. Assume adiabatic behavior ϕ(ρ) = aρκ and calculate
√

ϕ′(ρ) and m.

Solution: √
ϕ′(ρ) + u =

κ + 1
2

r +
κ − 3

2
s, (2.9.56)

√
ϕ′(ρ) − u =

κ − 3
2

r +
κ + 1

2
s, (2.9.57)

m =
κ − 3

2(κ − 1)(r + s)
=
(

1
2
− 1

(κ − 1)

)
1
σ

, (2.9.58)

where

σ = r + s =
2a

√
κ

κ − 1
ρ(κ−1)/2. (2.9.59)

8. Using

λ =
1
2
− 1

κ − 1
, (2.9.60)

gives a solution of (2.9.54) in the form of a hypergeometric function
[1.1]

y(z) = F (1 + λ,−λ, 1, z). (2.9.61)

Plot this function using Mathematica.

2.10 The equivalence theorem

This theorem states that solutions for waves in gases can be reinterpreted
as solutions for large water waves. To prove this for a compressible flow
we establish the basic equations for water. We first consider a steady two-
dimensional flow bounded by two vertical walls. For a water prism with a
base dxdy and a varying height 0 ≤ h ≤ h0 in the z-direction, the water
mass contained within the prism is given by dxdyhρ0, where ρ0 is the (con-
stant) water density. Here h(x, y) designates the location of a water layer
in the z-direction. z = 0 designates the water surface and h0 describes the
distance between the unperturbed surface and the plane buttom of the chan-
nel. If we designate by u and v the outflow velocity in the x- and y-direction
respectively, then the total inflow dqe must be equal to the total outflow
dqa to conserve the mass in the prism. The total inflow in two directions is
given by

dqe = uhdy + vhdx. (2.10.1)
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Since u and h depend on space, the outflow at another location is

dqa =
(

u +
∂u

∂x
dx

)(
h +

∂h

∂x
dx

)
dy +

(
v +

∂v

∂y
dy

)(
h +

∂h

∂y
dy

)
dx.

(2.10.2)
Neglecting higher terms like (dx)2 etc, one obtains the balance dqa−dqe = 0
in the form of a continuity equation [2.21]

∂(hu)
∂x

+
∂(hv)

∂y
= 0. (2.10.3)

Compare with the gasdynamic equation (2.2.4)

∂(ρu)
∂x

+
∂(ρv)
∂y

= 0. (2.10.4)

One sees immediately that the water continuity equation has exactly the
same form as the continuity equation for a fictive gas with density ρ̂ = ρ0h,
where ρ0 is the (constant) water density. Inserting h = ρ̂/ρ0 into (2.10.3)
yields

∂(ρ̂u)
∂x

+
∂(ρ̂v)
∂y

= 0. (2.10.5)

Now we consider the Bernoulli equation (2.3.20) which reads

ρ0w
2

2
+ p + ρ0gz = const =

ρ0w
2
1

2
+ p1 + ρ0gz1, (2.10.6)

where w2 = u2+v2. It expresses that the sum of potential plus kinetic energy
is constant. The values w1, p1 are arbitrary values valid at z = z1. Now we
specify this point. For z = z0 the water depth h is equal to the largest depth
h0, where w = w0 = 0. We thus replace p1 → p0, z1 → z0, w1 → w0 = 0.
Then (2.10.6) yields

ρ0w
2

2
+ p + ρ0gz = p0 + ρ0gz0. (2.10.7)

This yields
w2 = 2g(z0 − z) + 2(p0 − p)/ρ0. (2.10.8)

Now the pressure p in streaming water may be assumed to be a linear func-
tion of the distance between the actual position z and the free water surface:

p = ρ0g(h − z), p0 = ρ0g(ho − z0). (2.10.9)
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Inserting these expressions into (2.10.8) yields

w2 = 2g(h0 − h). (2.10.10)

Since the maximum height difference h0 − h is given by h0, one has

wmax =
√

2gh0, (2.10.11)

compare with (2.3.21)! Let us compare (2.10.11) with vmax for gases. Ac-
cording to (2.5.51) one has

vmax =

√
2κp0

(κ − 1)ρ0
. (2.10.12)

Here p0 and ρ0 are pressure and density of an ideal gas at rest. Now we
specialize the equation of motion (2.3.13) for a gas which is free from exterior
forces (
g = 
g ′ = 0), which is conservative-adiabatic (ν = 0). The flow
considered should be steady (∂/∂t = 0) and one-dimensional. Then (2.3.13)
reads for the fictive gas streaming in the x-direction

v
∂v

∂x
= −1

ρ̂

∂ρ̂

∂x
. (2.10.13)

Defining a pressure

p̂ =
h∫

0

pdz =
ρ0gh2

2
=

gρ̂2

2ρ0
(2.10.14)

for the fictive gas ρ̂ = ρ0h, we obtain from (2.10.13) the equation of motion
for water (ρ0)

v
∂v

∂x
= −g

∂h

∂x
. (2.10.15)

The fictive gas ρ̂, p̂ described by (2.10.5) and (2.10.13) is adiabatic. Hence
the adiabatic equation (2.5.42) is valid and one has

p =
p0

ρκ
0

ρκ = const · ρκ. (2.10.16)

For the fictive gas representing water, (2.10.14) yields the “equation of state”

p̂ =
g

2ρ0
ρ̂2 = const · ρ̂2 =

ρ0gh2

2
. (2.10.17)

Thus we find that the fictive gas representing water has

κ = 2. (2.10.18)
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We derived this result for a steady two-dimensional flow. The same result
can also be obtained for an unsteady (time dependent) one-dimensional flow
[2.10], see for instance problem 4.

Thus the equivalence theorem may be formulated as follows:

1. Write down the gasdynamic equations (2.5.34), (2.5.35) and (2.5.38)
and replace ρ → ρ̂, p → p̂ to obtain modified equations like (2.10.41)
etc.

2. Use ρ̂ = ρ0h, p̂ = ρ0gh2/2 from (2.10.14) and insert into the modified
equations, see problem 5 in this section.

For a streaming compressible fluid subsonic flow (c < v) and supersonic flow
(c > v) have been discussed in section 2.8 and shock waves appeared. For a
fictive gas the same phenomena have to be expected. We may rewrite the
shock equations (2.8.25), (2.8.26) in the form

h1u1 = h2u2, (2.10.19)

gh2
1

2
+ u2

1h1 =
gh2

2

2
+ u2

2h2. (2.10.20)

Expressing u1 and u2 by h1 and h2 we have

u2
1 =

gh2(h1 + h2)
2h1

, u2
2 =

gh1(h1 + h2)
2h2

. (2.10.21)

Since u2
1 �= u2

2 the kinetic energy is not conserved over the shock. The
difference has been dissipated in the shock. If the fluid flows from the
location 1 with lower height h1 to the location of greater height, if

h2 > h1, (2.10.22)

then (2.10.21) yields

u1 >
√

gh1, u2 <
√

gh2. (2.10.23)

The subsonic (subcritical) flow u2 <
√

gh2 corresponds to water streaming
and the supersonic (supercritical) flow u1 >

√
gh1 to shooting flow (super-

critical flow). For the shock the Hugonot state equation (2.8.30) becomes(
h2

h1

)3

− 3
(

h2

h1

)2

+ 3
h2

h1
− 1 = 0. (2.10.24)

As will be shown in problem 2, this indicates that (2.8.30) is not valid for
water jump.
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Now we investigate the equivalence theorem for one-dimensional un-
steady dissipative flow. The equations (2.9.37) - (2.9.40) describe such a
gas flow. (2.9.40) describes entropy increase, so that the flow is no longer
polytropic. The initial state ρ1, u1, T1, S1 and the final state ρ2, u2, T2, S2 are
connected by an increase S2 − S1 > 0 of entropy. State 1 goes over in state
2 by an irreversible process. But it is always possible to setup a polytropic
replacement process described by p1V

n
1 = p2V

n
2 . We therefore assume that

n = κ = 2 is still valid for a dissipative process too.
We now solve a one-dimensional unsteady flow of water using directly

the hydrodynamic equations but the gasdynamic characteristics method.
We investigate the sudden rapture of an embankment dam.

At the occasion of a rupture, a water surge shall propagate into the chan-
nel downstream of the dam. Such surge may generate heavy destructions
along the channel or river. The bottom of the channel is a horizontal plane.
Let us assume that the channel has a width B and extends in the direction of
the x-axis. Let the water depth H in the storage lake be H = 2.2 m and the
water depth h in the channel is assumed to be h0 = 1.2 m. The water level
after a dam rupture will be designated by h(x, t). Thus the local water mass
is given by ρ0Bh(x, t) = q(x, t)ρ0, where ρ0 is the (constant) water density.
Let the storage lake have an extension of 5000 m in the x-direction. The
dam itself may be situated at x = 5000 m and rupture may occur suddenly
at t = 0. Then we have the initial conditions for h and the stream velocity
u(x, t) at t = 0:

h(x, 0) = H = 2.2 m, u(x, 0) = 0, 0 ≤ x ≤ 5000 m,

h(x, 0) = h0 = 1.2 m, u(x, 0) = 0, 5 000 ≤ x ≤ ∞. (2.10.25)

This indicates that at t = 0 and x = 5000 m a vertical water wall of a height
H −h0 = 1 m exists. At the other end of the lake (x = 0) no flow is present.
The relevant equations describing the evolution in time of these nonlinear
one-dimensional phenomena are:

the continuity equation

∂

∂t
(ρ0q(x, t)) +

∂

∂x
(ρ0u(x, t)q(x, t)) = 0, qt + uxq + qxu = 0, (2.10.26)

and the equation of motion

ρ0ut + ρ0uux + px = 0. (2.10.27)

The local hydrostatic pressure p(x, t) per unit length is given by

p(x, t) = ρ0gq(x, t)/B. (2.10.28)
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Then we can now write for (6.4.3)

ut + uux +
g

B
qx = 0. (2.10.29)

We thus have two quasilinear partial differential equations (2.10.26) and
(2.10.29) for the two unknown functions u(x, t) and q(x, t). We use the
method of characteristics developed in section 1.4 for such a system of two
partial differential equations of first order. We compare our system of two
partial equations with (1.4.18) and read off

a11 = 1, a12 = 0, a21 = 0, a22 = 1,

b11 = u, b12 = g/B, b21 = q, b22 = u. (2.10.30)

Here we have used the following substitutions in (1.4.18) x → t, y → x, v →
q to obtain (2.10.26) and (2.10.29). Then (1.4.23) yields the propagation
speed of small amplitude waves

dx

dt
= u +

√
gq

B
= u +

√
gh (downstream),

dx

dt
= u −

√
gq

B
= u −√

gh (upstream)

(2.10.31)

and equations (1.4.24) and (1.4.25) result in

±
√

gq

B
du +

g

B
dq = 0. (2.10.32)

To obtain this result observe the substitutions and use equation (1.4.25)
for V2. Insert for k′ = dx/dt from (2.10.31). The two equations describe
the modification of the state variables u, q along the characteristics (2.10.31).
The problem is now that we cannot use or integrate the characteristics equa-
tion because they contain the still unknown solutions u(x, t) and q(x, t). We
first make a transformation to a new variable λ [ms−1]. We define

dλ =
√

g

B

dq√
q
, λ(q) =

q∫
0

dq√
q

√
g

B
=

h∫
0

√
g

h
dh = 2

√
gh. (2.10.33)

Then we use the Riemann invariants defined by

r = u + λ s = u − λ, u = (r + s)/2, λ = (r − s)/2, (2.10.34)

du ± dλ = 0, u ± λ = const =
{

r

s
. (2.10.35)
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The r, s or u, q plane is called state plane by some authors. We now consider
a mapping between the “linear” state plane r, s and the nonlinear physical
plane described by x, t. Let us discuss the correspondence between the
two planes. We allocate the point P (r1, s1) of the state plane to the dam
location point P̄ (5000,0) of the physical plane. This expresses the fact
that in the point P̄ (x = 5000, t = 0) a local water wall of absolute height
h(5000, 0) = H = h1 or relative height 1 m above the normal water level in
the channel exists with streaming velocity u(5000, 0) = u1 = 0. According
to (2.10.33) the height h1 = H = 2.2 m corresponds to r1 = u1 + λ1 =
λ1, s1 = −λ1, λ1 = 2

√
gh1. At the other end of the lake x = 0, one has

u(0, 0) = 0 and h(0, 0) = H = 2.2 m. The point Q̄(0, 0) corresponds to
Q(rQsQ), where uQ = 0, λQ = 2

√
gH, rQ = λQ, sQ = −λQ, rQ = −sQ.

Inserting numbers for h,H and g (9.81 ms−2) we receive for the point P̄

λ1 = 2
√

2.2 · 9.81 = 9.291, u1 = 0, r1 = 9.291, s1 = −9.291, (2.10.36)

all measured in [ms−1]. On the other end of the lake we have for Q̄(0, 0)

λQ = 9.291, uQ = 0, rQ = 9.291, sQ = −9.291. (2.10.37)

At the time t = 0 of the rupture of the dam the same physical states exist
at x = 5000 and x = 0. But, at this time, the dam breaks down and
elementary waves (composing later on a steepening surge downstream and
a rarefaction wave upstream) start at x = 5000. Replacing in (2.10.31) the
dx → Δx, dt → Δt we can write for the wave speeds

Δx

Δt
= u ±√gh = u ± λ

2
. (2.10.38)

Thus, the first elementary wave running to the left to x = 0 and upstream
reduces the water level H in the lake. It has a wave speed Δx/Δt = 0 −
λ1/2 = −4.646[ms−1] and s1 = −9.291 = const, r1 = +9.291. The wave
running to the right (downstream) increases the water level h(x, t) in the
channel from h0 = h1 to h2 and has a wave speed Δx/Δt = 0 + λ1/2 =
+4.646[ms−1] and s1 = −9.291, r1 = +9.291 = const. Waves running to
the left from P to Q transfer their s-value to Q, since s = const is valid for
waves running to the left: sQ = s1. Waves running to the right, downstream
from P to x → ∞ transfer their r-value, so that the whole domain right-
hand of the dam (x > 5000) always has the same r-value. At the time
t = 0 + Δt the next two elementary waves start. Both waves now run into
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domains where the states had been modified by the first two waves. The
upstream wave enters an area where the water level had been reduced from
H to H − h1 and might be reflected at the lake end x = 0. It will no longer
return with 4.646 [ms−1], because water level and driving pressure had been
lowered. The second elementary downstream wave starting at t = Δt will
be faster than the first one because in the channel the water level had been
increased by the first downstream wave and the water had started to stream
to x → ∞. In order to be able to calculate the Δu,Δλ, etc., we need to
have some knowledge about the final state, t → ∞, x → ∞. For an infinitely
long channel we define the point R(rN , sN ) in the state plane. Apparently
the final conditions will read for R: q(x, t → ∞) = h0 = 1.2m, λN =
2 · √1.2 · 9.81 = 6.862, and for R̄(∞,∞) uN = 0, rN = 6.862, sN = −6.862.
The whole phenomenon of the break-down of the dam occupies a square
in the s, r plane. The four corners are given by R(sN = −6.862, rN =
+6.862), (sN = −6.862, r1 = 9.291), (s1 = −9.291, rN = 6.862) and P =
Q(s1 = −9.291, r1 = 9.291). Now it is the accuracy and our will that have
to decide how many steps i = 1 . . . N we will calculate. For this decision
we consider the pressure difference from p1 = ρ0gq(x, 0) = ρ0gBh(x, 0) =
ρ0Bλ2

1/4 = ρ0Br2
1/4 down to pN = Br2

N/4. This concerns the variation
λ1 → λN , r1 → rN etc. If we choose N = 10 pressure steps, then each
elementary wave carries Δr = (9.921 − 6.862)/10 = 0.243 = |Δs|. This
corresponds to an accuracy of 2.6 % (0.243:9.291). Table 2.3 describes the
situation in detail.

Table 2.3. Pressure steps (for a downstream wave)

in front of the wave behind the wave
Nr s λ u Δx/Δt s λ u

1 −9.291 +9.291 0 4.646 −9.048 +9.170 +0.122
2 −9.048 +9.170 +0.122 4.707 −8.805 +9.048 +0.243
3 −8.805 +9.048 +0.243 4.767 −8.562 +8.927 +0.365
4 −8.562 +8.927 +0.365 4.829 −8.319 +8.805 +0.486
5 −8.319 +8.805 +0.486 4.889 −8.076 +8.684 +0.608
6 −8.076 +8.684 +0.608 4.950 −7.833 +8.562 +0.729
7 −7.833 +8.562 +0.729 5.010 −7.590 +8.441 +0.851
8 −7.590 +8.441 +0.851 5.072 −7.347 +8.319 +0.936
9 −7.347 +8.319 +0.936 5.096 −7.104 +8.198 +1.094

10 −7.104 +8.198 +1.094 5.193 −6.862 +8.077 +1.215
11 −6.862 +8.007 +1.215 5.254 [−6.619 +7.955 +1.336]
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The grid of points within the square in the r, s plane can be mapped into
the x, t plane: for every point in the r, s plane the values u(x, t), q(x, t) in the
x, t plane are defined by the equations (2.10.31) to (2.10.35). Interpolation
within the grid delivers any wanted u(x, t), q(x, t) and thus the solution of
equations (2.10.26)–(2.10.29).

This example demonstrates the solution of a nonlinear hyperbolic prob-
lem of water flow. Similar methods can be used to solve the tsunami prob-
lem.

Problems

1. Derive (2.10.15) from (2.10.13). Hint: use ρ̂ = ρ0 · h, ρo (water) =
const.

2. Derive (2.10.19).
Hint: use the formal replacement p → p̂ = gρ̂2/2ρ0, ρ → ρ̂=ρ0h, κ=2
and insert into (2.8.30). Use h2/h1 → x. The Mathematica command:

Solve[x^3-3*x^2+3*x-1==0,x]

yields the result x1 = 1 = x2 = x3, h1 = h2.

3. Write (2.9.40) in the form

T
dS

dt
=

1
ρ

(
4
3
ηu2

x + λTxx

)
= Q

and integrate.

Solution: t = exp ((S − S0)/Q).

4. Derive the water wave equations for an unsteady one-dimensional flow
[2.10].

Solution:

water

∂h

∂t
+

∂(vh)
∂x

= 0 (2.10.39)

∂v

∂t
+ v

∂v

∂x
= −g

∂h

∂x
(2.10.40)

fictive gas

∂ρ̂

∂t
+

∂vρ̂

∂x
= 0 (2.10.41)

∂v

∂t
+ v

∂v

∂x
= −1

ρ̂

∂p̂

∂x
. (2.10.42)

Here ρ̂ = ρ0h, p̂ = (ρ0gh2)/2 have been used.
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5. Derive the equivalent equations for water under the assumption of
dissipation due to viscosity and heat conduction. Neglect exterior
forces and obtain the partial differential equations for an unsteady
one-dimensional flow in the x-direction over a channel with constant
depth.

Solution:
dh

dt
+ h

∂v

∂x
= 0, (2.10.43)

compare (2.5.35);

h
dv

dt
= −gh

∂h

∂x
+

η

ρ0
vxx, (2.10.44)

compare (2.5.36);

h
d
dt

(
αT +

v2

2

)
+ vx

g

2
h2 + vghhx =

η

ρ0

∂

∂x
(vvx) +

λ

ρ0
Txx, (2.10.45)

compare (2.5.28). Here we used

α =
C

κ − 1
= C, κ = 2.

The thermodynamic equation of state is given by the two definitions
for ρ̂ and p̂ above and κ = 2.

Finally we consider a replacement adiabatic (κ = 2) for the initial and
final states describing the irreversible process 1 → 2

p1

p2
=
(

ρ1

ρ2

)κ

→ p̂1

p̂2
=
(

ρ̂1

ρ̂2

)κ

→ h2
1

h2
2

=
(

h1

h2

)κ

, → κ = 2. (2.10.46)

We thus have three equations (2.10.43), (2.10.44) and (2.10.45) for the
three variables h, v, T to describe the flow.

6. Derive the characteristics for the two quasilinear equations (2.10.39)
and (2.10.40). Use (1.4.18) and read the aik, bik from (2.10.39) and
(2.10.40).

7. Derive the characteristics for the system of the three quasilinear partial
differential equations (2.10.43), (2.10.44) and (2.10.45). Use (1.4.26).

8. In problem 14 of section 2.5 we investigated the pressure-curve p(v)
for a compressible gas flow. Using nondimensional quantities y =
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v/vm, x = p/p0 we derived the pressure-curve p(v), see Fig. 2.4. Re-
placing again v/vm = y, but now h/h0 = x one may derive the
pressure-curve h(v) for water.

Solution: Use (2.5.55) for κ = 2 which gives y = (1 − x2)2. Plot this
function, investigate the inflection point and compare with Fig. 2.4 in
section 2.5.

9. Derive a potential equation ϕ(x, y) from (2.10.10) and (2.10.3).

Solution: w2 = u2 + v2 and (2.10.10) yields

hx = −1
g

(uux + vvx) , hy = −1
g

(uuy) + vvy) . (2.10.47)

Insert into (2.10.3) to obtain after division by h

ux

(
1 − u2

hg

)
+ vy

(
1 − v2

hg

)
− uv

hg
(uy + vx) = 0. (2.10.48)

Using (2.7.5) one obtains the potential equation

ϕxx

(
1 − ϕ2

x

gh

)
+ ϕyy

(
1 − ϕ2

y

gh

)
− 2ϕxy

ϕxϕy

gh
= 0, (2.10.49)

compare with (2.8.9)!

10. Derive the characteristics of (2.10.49):
Hint: Using (1.2.1) one may read off a, b, c from (1.2.7) and (2.10.49).



3. Water waves

3.1 The variety of water waves

There exist many causes exciting waves in water: gravity, tide, wind, cap-
illarity, earthquakes, underwater explosions, launching of rockets from sub-
marines etc. Since wave propagation depends on the depth of the lake or
ocean and on shore formation, there exist many words to describe the var-
ious wave types. We offer an alphabetic listing of wave names and give a
short description of the phenomenon. (Please have in mind that terminol-
ogy changes locally!) For the convenience of German speaking readers we
include the German word [3.1]

1. breaker (Brecher, Brandungswelle), also waves of translation, form
when waves enter shallow water. The rate of forward movement de-
creases and the wave height increases. Later on the wave falls back and
becomes a breaker. Then a part of the water is thrown forward and
does not return. Breaking especially occurs if the waves run against
a submerged ridge. Breaking occurs when the wave amplitude is in-
creased beyond a certain limit depending on the wave length and on
the depth of water. The ratio wave height divided by water depth is
the more important parameter in determining the non-breaking limit
than the ratio height : length of the wave. See also short crested waves
below.

2. capillary waves, surface tension waves, ripples (Oberflächenwelle, Rif-
fel) are waves at the interface between two fluids or between air and
fluid. Such ripples are generated by wind. They are of importance to
the friction of air blowing over water. The wave height is a function
of wind velocities. Ripples can be produced in a tank of water by a
vibrating rod dipped just below the surface. If the water depth is more
than half a ripple wave length the surface waves present a perfect anal-
ogy with a three-dimensional sound wave. Reducing the depth h of the
tank reduces the velocity of the ripples, giving the effect of a denser
medium. This is an observational proof of the equivalence theorem,
see also section 3.3.

3. gravity waves (Schwerewelle) are wind excited or due to tides. They
are strongly dependent on the water depth, see section 3.2. They show
dispersion: the wave propagation speed depends on the wave length λ.
Waves with greater λ propagate faster. If the water depth is very small
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then there is no dispersion. If gravity waves and capillarity waves are
considered together, the dispersion is more complicated, see section
3.3.

4. internal waves, interfacial waves (Raumwelle) are waves at the in-
terface of two layers of water of different temperature and therefore
density. The restoring force is mainly due to gravity. When light
fluid from upper layers is depressed into the heavy lower layer, buoy-
ance forces tend to return the layers to their equilibrium position.
Observed internal waves can be analyzed into a spectrum with the
shortest wave periods of a few minutes and longer periods up to many
days. Internal waves have their maximum amplitude at the interface
and diminish with distances above and below. Due to the small den-
sity difference of the two layers quite large amplitudes and instabilities
(Kelvin-Helmholtz instability) [2.8] may appear. The wave propa-
gation speed is determined by gravity g, the density difference of the
two layers and the thickness of the layers.

5. jump, hydraulic jump, standing wave (Wassersprung, Wasserstoß, ste-
hende Welle). A wave that occurs where a stream of water changes
from a supercritical condition to a subcritical condition is termed a
hydraulic jump. It comprises an abrupt rise in water level through a
region of intense turbulence. Standing jumps appear behind a local-
ized irregularity (ridges etc) in an otherwise uniform flow channel.

6. long water waves (lange Welle, seichte Welle). These waves especially
occur on the water surface with wave periods longer than 30 sec. There
have been observed wave periods extending to about 120 minutes.
These long waves are caused by many different effects. Those in the
range 2–10 minutes are associated with the onset of heavy surf (see
below) and are called surf beats. When the wave reaches the shore
it is reflected back as a wave whose amplitude varies with the water
depth. At any point some distance from the shore, the reflected wave
which decreases in height only slowly with increasing water depth, is
greater than the incident forced wave which increases more rapidly
with decreasing depth. Long waves of periods 2–10 minutes can also
be caused by wind and atmospheric disturbances but the period of
waves caused by these effects are mainly greater and can be as 120
minutes.

7. plumes, water columns (Wasserfahne, Wassersäule) are not waves in
the proper sense but effluents from a source. They are dispersed in
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the atmosphere by the wind and stirring motions produced in clouds
by the latent heat of vapor condensation. The energy of motion of a
plume may be due to gravity or the Coriolis force.

8. roll waves (Roller, Rollwelle) occur in streams mainly very fast down a
narrow channel like the spillway (Überlauf) of a dam, see also section
2.10. In the relevant literature [3.6] roll waves are defined as a type
of water flow, which occurs in turbulent flows down inclined open
channels, like spillways of dams, run-off channels etc. They have to be
described by a nonlinear shallow water wave theory. The phenomenon
is a two-dimensional irrotational flow of water over a rigid variable
bottom of depth −h(x), where the x-axis is taken horizontally and
is identical with the direction of propagation. Gravity acts in the z-
direction. If one designates by η the vertical distance from the x-axis
to the water surface, then z = η + h > 0 will measure the vertical
height of the water surface above the inclined channel bottom. The
equation describing these waves over a channel bed which is linear and
inclined at an angle ϑ > 0 below the horizontal then includes the given
h(x) and

∂h(x)
∂x

= tan ϑ. (3.1.1)

Assuming (“shallow water approximation”) that the z-component of
the water particle acceleration may be neglected, then the hydrostatic
pressure is assumed to be given by

p = gρ0(η − z), (3.1.2)

where ρ0 is the constant water density. Then the equation of motion
reads

ut + uux = −gηx (3.1.3)

and the continuity equation becomes

ηt +
∂

∂x
(u[η + h]) = 0

or
uxη + ηxu + uxh + hxu = −ηt. (3.1.4)

Resisting forces may be added. Progressing waves like

u(x, t) = U(x − ct) = U(ξ) (3.1.5)

offer solutions for waves and shocks [3.6].
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9. seiches (Seiche, Binnenwasserwelle) are periodic fluctuations of the
water level caused by disturbances similar to the sloshing back and
forth of water in a large diskpan. In the ocean seiches occur in bays
and lagoons, but also along the open coast. Their wave period may
vary from minutes to hours and depends on the dimensions of the
moving water masses. They may also be explained as lower frequency
surface gravity waves. Some authors call long water waves of periods 15
- 35 minutes seiches. Seiches are commonly generated by wind, tides
or oscillations of adjacent water bodies. Seiches may form standing
waves in basins.

10. shallow-water waves, Lagrangian waves (Seichtwasserwelle) are long
water waves. They are both dispersive and refractive and are pure
gravity waves in water with small depth h. The wave propagation
velocity depends on both on the wave length λ and the position in
space. If the wave length is much less than the water depth h the
wave velocity becomes independent of position and dependent only on
the wave length. No refraction occurs. In the extreme, if λ >> h,
the velocity becomes independent of λ (no dispersion). Then the wave
speed is given by

√
gh. This formula defines shallow-water waves, see

section 3.2. If the variation of water depth is dominant, if it is a func-
tion of the horizontal coordinates x, y, then the wave speed depends
on x, y. Characteristics and other graphical methods can describe the
propagation. As the wave-fronts advance they always swing toward
shallower water and away from deeper.
In the literature [3.7] shallow water waves are defined by the following
hyperbolic partial differential equation of second order

∂

∂x
(ghϕx) +

∂

∂y
(ghϕy) = ϕtt, (3.1.6)

where ϕ(x, y, t) is the wave amplitude potential, g is the gravity ac-
celeration and h(x, y) is the variable water depth measured from the
free water surface at rest. The wave amplitudes are very small (ϕ2

x ≈
0, ϕ2

y ≈ 0).

11. short crested waves (kurzkämmige Welle). As deep ocean long waves
enter shallow water, the wave length decreases and the wave becomes
peaked or crested. For a critical height to wave length ratio, the water
crest at the top moves faster than the crest. Thus the crest curls over
and water flows on to the lower wave surface. Thus a doubly modulated
wave appears. It is called a breaker.
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12. snoidal (cnoidal) waves (Flachwasserwelle) are nonlinear periodic waves
in shallow water. If they are symmetric around x = 0, they are cnoidal
waves described by a Jacobi function. Cnoidal waves are also solu-
tions of the nonlinear Schrödinger equation (1.5.20) and are dscribed
by (1.5.24) [1.1]. In shallow water the ratio wave height divided by
fluid depth is the more important parameter in determining the non-
breaking limit than the ratio length to wave length. If the depth is
constant and uniform the only possible periodic wave is the cnoidal
wave.

13. solitary waves, simple waves (Einzelwelle) are the limits of cnoidal
waves for infinite wave length. They travel at a speed

√
gh. They

propagate without change of form with the amplitude depending on
the velocity. Solitons adhere to this type of waves, see section 3.4.

14. surf (Brandung) is an expression for the piling up of waves entering
into shallow water. The distortion of the water movement is associated
with a decease of wave velocity and of wave length. Finally breakers
appear.

15. surface waves, surface gravity waves (Oberflächenwelle, Schwerewelle)
are excited on the water surface by wind, gravity and surface tension
(capillarity). More details will be given in sections 3.2 and 3.3.

16. surge, storm surges, flood waves (Flutwelle, Sturzsee, Woge) is a sud-
den increase to an excessive or abnormal value of pressure or level in
a fluid.

17. swell (waves) (Schwall, Dünung) is an expression for waves leaving
their storm. Their wave length, velocity and period (≈ 10 s) increase
as the waves travel away from the stormarea while their height de-
creases because of the resistance offered by the air. It is thus possible
to judge the distance of a storm from the approaching swell. A short
and high swell comes from a nearby storm. Each ocean region has its
own characteristic swell related to the local atmospheric circulation.

18. swirl (Strudel, Wirbel) is the slow rotation of the flow of a fluid around
an axis, see Fig. 2.2.

19. tides (Gezeiten, Ebbe und Flut) are alternating relative motions of
water due to the gravitational forces of external bodies like the Moon
and the Sun. Tidal waves (Gezeitenwellen) are generated by these
astronomical bodies. A tidal bore (Springflutwelle) occurs if Moon
and Sun and Earth are situated along a straight line.
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20. translation waves, waves of translation (Transportwelle). If a wave
profile becomes progressively distorted, the height of the crests above
mean level becoming progressively larger than the depth of the troughs
below. In such a situation water is therefore carried forward and the
wave is called a translation wave. Due to velocity ∼ √

gh, the crests
travel faster than the troughs and so in several wave lengths gain on
them and the profile of the wave has sheer vertical forward face and
then starts to break.

21. trochoidal waves (Trochoidalwelle) are waves with a trochoidal profile.
In a gravity wave of finite amplitude the fluid elements (water parti-
cles) undergo a circular motion, provided the fluid is sufficiently deep
and no interference occurs from the bottom. The amplitude of such
rotational waves is equal to the diameter of the particles elementary
circular path, the shape of the wave is trochoidal having sharp crests
and smooth troughs,

22. tsunamis are large amplitude long nonlinear surface gravity waves of
shock character formed by sudden dislocations of the ocean floor. They
are NOT tidal waves or swells. Earthquakes of an intensity greater
than seven on the Richter earthquake scale or underwater explosions
may produce such shock waves in water. Their speed of propagation
varies locally depending on the local depth of the ocean. It may be up
to 900 km h−1. The Indonesian tsunami of December 26, 2004 attained
750 km h−1.decem The tsunami height in the open ocean is not very
large but when tsunamis approach the shore their height increases
with decreasing depth of the ocean and may reach a crest of 30 m. The
tsunami waves diverge from their source over a circular wave front and
due to spherical Earth surface, when they have traversed more than a
quarter of the Earth’s circumference, they tend to converge again to
the antipode point of their sources. Thus for a past Chilean earthquake
the tsunami effect on Japan has been many cases worse than that at
the nearer situated Hawaii. To accurately model tsunami propagation
over large distances, thus the Earth’s curvature should be taken into
account, including the Coriolis force and wave dispersion. The wave
period of tsunamis may be between some minutes and one hour, their
wave length may be up to hundreds of km. The rise of a tsunami
being a shock wave in water is followed by a trough, a rarefaction
wave. The arrival of a tsunami is first noticed by a fall in the ocean
water level for several minutes, as if there were an abnormally low tide,
but then followed by a rapid rise of the sea level by far exceeding the
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highest tide level. Whereas sea and swell normally break and produce
breakers, tsunamis come over the reefs and give rise to very turbulent
water conditions with a high destructive power.
Up to now attempts at an exact theoretical analysis of tsunamis have
met with only qualitatively success. The knowledge is more empirical.
The reason for this situation is that shock waves like tsunamis may
only be treated analytically, if two conditions are satisfied:

(a) inclusion of dissipative effects like viscosity which smooths the
steepening and avoids infinite or double values,

(b) derivation of a (nonlinear) tsunami wave equation based on an
equivalence principle as described in section 2.10.

The comparison of observed arrival time with model arrival time was
however quite sufficient in the case of the Indonesian 2004 tsunami
[3.3].
The life of a tsunami has been described in details by the Western
Coastal and Marine Geology Institute [3.4]:

(a) Groundshaking due to earthquakes pushes the entire water col-
umn up. The potential energy resulting from pushing water above
normal mean sea level is transferred to the kinetic energy of the
horizontal propagation of the tsunami.

(b) Within several minutes of the ground shaking the initial tsunami
is split into a tsunami that travels out to the deep ocean (“distant
tsunami”) and another tsunami that travels towards the nearby
coast (“local tsunami”). The height of the original first tsunami
is thus split into two halves. Since the tsunami propagation speed
depends on the local water depth, the distant tsunami (deep
ocean tsunami) travels faster than the local tsunami near shore.

(c) During propagation of the two tsunamis their amplitude increases
and the wave length decreases when approaching a shore. In both
cases a steepening of the wave occurs.

(d) As a tsunami wave travels from deep-water to a shore, runup
occurs. Runup is a measurement of the height of the water ashore
observed above the reference sea level. Tsunamis will often travel
much farther inland than normal waves.

(e) After runup, part of the tsunami energy is reflected back to the
open ocean. Additionally a tsunami can generate an edge wave
(Randwelle, Kantenwelle) that travels back and forth parallel to
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the shore. Many arrivals of a tsunami at a particular coast may
occur. Even the first runup of a tsunami is often not the largest
– several hours after the first arrival another tsunami may arrive
which is larger than the first one. Seen the influences of local pec-
ularities (“boundary conditions”) it is very doubtful if an exact
mathematical description of tsunamis is possible.

Problems

1. A trochoid is a curve defined by the parametric representation

x = a(t − λ sin t), y = a(1 − λ cos t). (3.1.7)

Here a is the radius of a rolling circle and λ a parameter. Hint: use
a = 0.8, λ = 1., and the commands

x[t_]=a*(t-λ*Sin[t];y[t_]=a*(1-λ*Cos[t]); a=0.8;λ=1.;
ParametricPlot[{x[t],y[t]},{t,0,4*Pi}]

to produce Fig. 3.1.
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Fig. 3.1. Trochoidal wave

2. Derive the characteristics for the system (3.1.3), (3.1.4). Hint: In-
sert η(x, t) = z(x, t) − h(x) into (3.1.3) and (3.1.4), use (1.4.18) and
(1.4.23). Remember: h(x) is a given function.

Solution: R = 0 gives
dx

dt
= u ±√gh. (3.1.8)
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3. Use progressing waves

u(x, t) = U(x − ct) = U(ζ), z(x, t) = Z(x − ct) = Z(ζ) (3.1.9)

to solve
ut + uux + gzx = ghx, (3.1.10)

zt + zux + uzx = 0, (3.1.11)

where h(x) is a given function and c is assumed to be const. Calculate
U ′ and Z ′. Explain the (fundamental!) difference between (3.1.10),
(3.1.11) and (2.10.39), (2.10.40). Is it possible to derive an ordinary
differential equation for U(ζ) or Z(ζ)?

4. Viscous waves in viscous gases or liquids are propagated by virtue of
the transverse shear reactions due to viscosity. They are thus trans-
verse waves. Study the relevant literature, [2.2, pp. 3–47].

3.2 Gravity water waves

Whereas vortices transport fluid elements, waves transport energy (and
phase). It is important to understand the influence of the actual ocean
depth h on the propagation of water waves. This point is fundamental for
a clear understanding of tsunamis. Gravity waves on the water surface are
excited by wind or other actions disturbing the water surface at rest. In this
section we assume that viscosity, heat conduction and capillarity effects may
be neglected. If the Coriolis force is not taken into account, then gravity
alone can propagate disturbances. Assuming that we consider a plane lake
and that gravity acts in the z-direction, then we may write

V = ρ0gz (3.2.1)

for the gravity potential energy V . ρ0 is the constant water density. As-
suming a three-dimensional potential flow (2.7.16), the equation of motion
(2.3.20) may be written

∇
(

∂ϕ

∂t
ρ0 + ρ0


v2

2
+ p + ρ0gz

)
= 0. (3.2.2)

Integration yields the time dependent Bernoulli equation

∂ϕ

∂t
+


v 2

2
+

p

ρ0
+ gz = F (t). (3.2.3)



100 3 Water waves

This is now the boundary condition for the potential equation (2.7.6). Ne-
glecting nonlinear terms and the integration constant F (t), one obtains

∂ϕ

∂t
+

p

ρ0
+ gz = 0. (3.2.4)

The potential ϕ depends on x, y, z, t. On the water surface defined by z = 0,
the pressure p0 is constant (1 at). Thus (3.2.4) may be written

∂ϕ

∂t
= −gz + const, for z = 0, (3.2.5)

where p0/ρ0 has been incorporated into const. The normal component vn of
the water particles must vanish on the bottom of the lake or ocean, defined
by −z = h

∂ϕ

∂z
= vn = 0 for z = −h, (3.2.6)

see (2.7.18). This equation is the bottom boundary condition.
Assuming again d/dt ≈ ∂/∂t, derivation of (3.2.5) with respect to time

yields
∂2ϕ

∂t2
= −g

∂z

∂t
= −gvz = −g

∂ϕ

∂z
. (3.2.7)

Additionally (2.7.6) holds. In order to solve these two equations we setup

ϕ(x, y, z, t) = ψ(x, y)U(z) exp(iωt). (3.2.8)

Insertion into (3.2.7) yields

ω2U = gUz, (3.2.9)

which plays the role of a boundary condition for the second equation (2.7.6)
Δϕ = 0 which now reads

1
ψ

(ψxx + ψyy) +
Uzz

U
= 0. (3.2.10)

Designating by k the separation constant, we obtain from (3.2.10) these two
equations

ψxx + ψyy + k2ψ = 0, (3.2.11)

Uzz − k2U = 0. (3.2.12)

The solution of (3.2.11) is

ψ(x, y) = A exp i(kxx + kyy), (3.2.13)
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where k2
x + k2

y = k2 designates the wave vector 
k. The solution of (3.2.12) is
given by

U(z) = cosh k(z + h), (3.2.14)

where h is an integration constant. Now (3.2.6) is satisfied for z = −h

Uz(−h) = k sinh k(z + h) = 0. (3.2.15)

The variable h designates now the variable lake or ocean depth. The solution
(3.2.14) has also to satisfy (3.2.9). Insertion of (3.2.14) and of Uz into (3.2.9)
gives

ω2 = gk tanh k(z + h), (3.2.16)

so that for the waves on the surface (z = 0) the dispersion relation

ω(k) =
√

gk tanh (kh) =

√
g
2π
λ

tanh
(

2π
h

λ

)
(3.2.17)

appears. Here k = 2π/λ has been used. One now can find the following
statements for these gravitational waves:

1. The surfaces of constant phase are given by the planes

kxx + kyy = const. (3.2.18)

2. The surfaces of constant amplitude are defined by the planes

z = const. (3.2.19)

3. If the surfaces of constant phase and of constant amplitude do not co-
incide, waves are called inhomogeneous. Thus the gravitational water
waves are inhomogeneous waves.

4. The wave propagation speed c depends on the wave length λ: waves
with larger λ propagate faster than waves with smaller λ (normal
dispersion, dc/dλ > 0). Thus a steepening up may occur, if various λ
are involved.

In order to prove this statement, we use (1.1.4) for the phase propagation
speed c giving now

c2 =
ω2(k)

k2
=

λ2ω2(k)
(2π)2

=
λg

2π
tanh

(
2π

h

λ

)
. (3.2.20)

Three cases are of interest:
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1. very deep water: h >> λ. Then one has

c =
√

(λg)/(2π), (3.2.21)

since tanh (∞) = 1. [1.4], [1.5]. This is a proof for statement 4. We
have normal dispersion according to (3.2.21).

2. shallow water: h << λ. Then one may approximate tanh by its argu-
ment, tanh(2π(h/λ)) ≈ 2π(h/λ). [1.4], [1.5]. Then (3.2.20) becomes

c =
√

gh, (3.2.22)

compare with (2.3.22), which however describes quite another situa-
tion. (3.2.22) states that in shallow water no dispersion occurs. Thus
the effect of steepening and turning over of the wave should take place
in a nonlinear wave.

3. deep water: h ≈ λ. Then we have dispersion according to (3.2.17) and
(3.2.20).

A plot of (3.2.20) generated by the Mathematica command

Clear[f,c];h=50000.0,c0=Sqrt[h]

c[λ_]=Sqrt[λ*Tanh[h/λ]];
Plot[c[λ],{λ,0,5.*h}]

may give a clear picture, see Fig. 3.2.
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Fig. 3.2. Dispersion relation of gravitational waves

If there is no dispersion then the propagation speed is equal to the phase
speed c. In the case of gravity water wave, the propagation speed of the wave
power is equal to the group velocity cg, since there is dispersion. The group
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velocity is given by (1.1.9). If we insert (3.2.17) into (1.1.9) one obtains

cg =
dω(k)

dk
=

ghk sech2(hk) + g tanh(hk)
2
√

gk tanh(hk)
. (3.2.23)

This result has been obtained by the Mathematica command

D[Sqrt[g*k*Tanh[k*h]],k]

Up to now we had assumed that the bottom of the ocean is plane, so
that the distance water surface to bottom is constant.

Now we consider the case of an ascending bottom as it is the case near
the shore. Then h is small and for a decrease of the water depth from ha

down to hb (3.2.22) yields

cb

ca
=

√
hb

ha
> 1. (3.2.24)

This indicates that the wave crest characterized by ha is propagating faster
(cb > ca) than the wave trough characterized by ha and the speed ca, see
also problem 2 in section 3.1.

The bottom boundary condition (3.2.6) forces fluid elements to oscillate
on the bottom within the x, y plane at z = −h. If the water is at rest,
the coordinates of such a fluid element are given by x, y, z = −h. If a
perturbation occurs due to a wave, the coordinates may be x′, y′, z = −h.
Thus then a displacement ξ, η occurs.

ξ = x′ − x, η = y′ − y. (3.2.25)

Since the particle speed is given by ∇ϕ, we may write

vx =
dξ

dt
=

∂ϕ

∂x
, vy =

dη

dt
=

∂ϕ

∂y
. (3.2.26)

The difference between ξ, η and x, y is of higher order and has been neglected.
Then we have after integration with respect to t

ξ = C
k

ω
exp(ikx − iωt) cosh k(z + h),

η = iC
k

ω
exp(ikx − iωt) sinh k(z + h). (3.2.27)

Now we use the abbreviations

a =
Ck

ω
cosh k(z + h), b =

Ck

ω
sinhk(z + h) (3.2.28)
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and rewrite (3.2.27)

ξ = a cos(kx − ωt), η = −b sin(kx − ωt). (3.2.29)

Elimination of t yields the equation of an ellipse

ξ2

a2
+

η2

b2
= 1. (3.2.30)

The ratio of the semiminor to the semimajor axes is given by

b

a
= tanh k(z + h) =

0 bottom z = −h

tanh kh surface z = 0.
(3.2.31)

For very deep water (h >> λ) one has b/a = tanh (∞) = 1 and the ellipse
becomes a circle which shrinks to a point at z = −h due to (3.2.15). For
shallow water (h << λ), the semiminor axis b shrinks to zero due to kh →
0, k(z + h) → 0 and b/a = tanh(0) = 0. Then the particles oscillate along a
line of the length 2a.

If the bottom is not a horizontal plane, then the bottom boundary condi-
tion depends on the solution ϕ(x, y, z, t). The actual location x, y of a wave
on the water surface z = 0 is described by this solution, but the solution
itself depends on the boundary condition: we have a nonlinear boundary
problem [1.1], because during the propagation of the wave the maximum
value of h, namely h0 is no longer constant but varies. It depends on x, y, t.
One has a moving boundary problem which may be solved using similarity
transformations.

A boundary problem of a linear differential equation may become non-
linear, if the boundary condition itself is nonlinear. If one does not neglect
the nonlinear terms in (3.2.3), then the Bernoulli equation reads

∂ϕ

∂t
+

(∇ϕ)2

2
+

p

ρ0
+ gz = 0. (3.2.32)

On the water surface z ≡ 0 one has

∂ϕ

∂t
+

(∇ϕ)2

2
+ gz = const, (3.2.33)

see (3.2.5), whereas on the bottom z = −h0 one has again
(

∂ϕ

∂z

)
z=−h

= vn = 0, (3.2.34)
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see (3.2.6). Integration of Δϕ = 0 together with the two boundary condi-
tions (3.2.33) and (3.2.34) results in cnoidal waves, see (1.5.24).

Moving boundaries are mainly nonlinear, although very often it is diffi-
cult to recognize the nonlinearity. Consider an infinite half-space orthogonal
to the x axis, which is filled with water. On the boundary plane x = 0 the
temperature is cooled down to T0 < 0◦ C. Thus the water will freeze there.
As time passes on, a freezing front will penetrate into the water and freeze
it. If we designate by T1(x, t) the temperature within the ice and by T2(x, t)
within the water and let Ts be the temperature within the front, then con-
tinuity demands

Ts = T1(x = X(t), t) = T2(x = X(t), t) or dT1 = dT2. (3.2.35)

Here X(t) designates the actual location of the freezing front. Now we
consider the two heat conduction equations. Subscript 1 refers to ice and
subscript 2 to water, respectively:

∂T1(x, t)
∂t

=
λ1

ρ1c1

∂2T1(x, t)
∂x2

,
∂T2(x, t)

∂t
=

λ2

ρ2c2

∂2T2(x, t)
∂x2

, (3.2.36)

where ρ [kg/dm3] and c [kJ/kg K] designate density and specific heat, K is the
thermodynamic temperature, λ [W/mK] is the thermal conductivity (heat
conductivity). Boundary conditions exist mainly within the freezing front.
Energy conservation demands that the relative rate of heat flow through the
front is equal to the melting heat L [kJ/kg] transported away [1.1]:

λ1
∂T1(x = X(t), t)

∂t
− λ2

∂T2(x = X(t), t)
∂t

= Lρ
dX

dt
, (3.2.37)

where ρ = (ρ1 + ρ2)/2 (Stefan boundary condition). Furthermore, the
conditions at x = 0 and x = ∞ have to be taken into account:

T1(0, t) = T0, T2(∞, t) = T ∗, (3.2.38)

where T ∗ is the initial water temperature:

T2(x, 0) = T ∗ for x ≥ 0. (3.2.39)

Having a short look at the foregoing equations, it is not immediately clear
that they represent a nonlinear problem. But using

dTi =
∂Ti

∂t
dt +

∂Ti

∂x
dx for i = 1, 2 (3.2.40)
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and
dx

dt
=

dX

dt
=
(

∂T1

∂t
− ∂T2

∂t

)
/
(

∂T2

∂X
− ∂T1

∂X

)
(3.2.41)

and insertion into (3.2.37) yields the nonlinear boundary condition(
∂T2

∂X
− ∂T1

∂X

) (
λ1

∂T1

∂X
− λ2

∂T2

∂X

)
= Lρ

(
∂T1

∂t
− ∂T2

∂t

)
. (3.2.42)

The nonlinearity is hidden in the fact that the moving front boundary X(t)
depends on the temperature T (x, t).

Problems

1. Solve the Stefan problem (3.2.36). Use the similarity transformation

η = x/2
√

τ , τ = λt/ρc, a = λ/ρc (3.2.43)

giving
d2T (η)

dη2
≡ −2η

dT (η)
dη

. (3.2.44)

Hints: T ′(η) = u(η) gives

T (η) = const
η∫

0

exp(−η2)dη = T0 + erf
(

x

2
√

at

)
.

Define the path of the freezing front X(t) = αt1/2, calculate dX/dt
and satisfy the interface conditions at X(t).

∂T1(x, t)
∂x

∣∣∣
x=X(t)

and
∂T2(x, t)

∂x

∣∣∣
x=X(t)

.

Solution [1.1]: (for erf and erfc, see (3.2.64) below)

T1(x, t) = T0 +
Ts − T0

erf
(
α/2

√
a1
)erf( x

2
√

a1t

)
, 0 ≤ x ≤ X(t),

T2(x, t) = T ∗ +
Ts − T ∗

erfc
(
α/2

√
a2
)erfc( x

2
√

a2t

)
, x ≥ X(t).

2. Prove that the shallow water wave equation (3.1.5) is a linear ap-
proximation (∇ϕ)2 ≈ 0. Hints: Write (2.10.39), (2.10.40) in three-
dimensional form, use 
v = −∇ϕ and (2.3.18) as well as curl
v = 0.
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Derive the potential equation for ϕ(x, y, z, t). The time dependent
Bernoulli equation

−∇∂ϕ

∂t
+

1
2
∇(∇ϕ)2 + ∇hg = 0 (3.2.45)

delivers h after integration over space

−∂ϕ

∂t
+

1
2
(∇ϕ)2 + hg = 0, (3.2.46)

and after derivation with respect to time one obtains (∂h)/(∂t) from

−∂2ϕ

∂t2
+

1
2

∂

∂t
(∇ϕ)2 +

∂hg

∂t
= 0. (3.2.47)

Inserting ght from (3.2.47) into the continuity equation

∂h

∂t
− div (h∇ϕ) = 0 (3.2.48)

yields

ϕtt = div (gh∇ϕ) +
1
2

∂

∂t
(∇ϕ)2. (3.2.49)

3. Investigate the effect of viscosity on the equation of motion. Use

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (3.2.50)

This equation (and also (3.2.52) [2.13]) is called Burgers equation.
This nonlinear equation may be linearized. For this purpose use a
Hopf transformation

u = −2ν
∂

∂x
ln ψ. (3.2.51)

Hint: transform u = vx to obtain

vxt + vxvxx = νvxxx (3.2.52)

and integrate with respect to x giving

vt +
1
2
v2
x = νvxx. (3.2.53)

Then apply the Hopf transformation in the form

v = −2ν ln ψ. (3.2.54)

This gives the solution νψxx = ψt.
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4. Investigate a two-dimensional steady water flow over a plane bottom
[2.21]. Let h(x, y) be the distance between the (variable) water surface
and the bottom z = 0. The local hydrostatic pressure z is determined
by the vertical distance h − z, compare (2.10.9)

p = ρ0g(h − z). (3.2.55)

Gravity acts in the vertical direction (z-direction). Neglecting vertical
acceleration of fluid elements in relation to gravity, one obtains

∂p

∂x
= ρ0g · ∂h

∂x
,

∂p

∂y
= ρ0g · ∂h

∂y
. (3.2.56)

Using the equivalence principle of section 2.10, the continuity equation
can be written

∂(hu)
∂x

+
∂(hv)

∂y
= 0. (3.2.57)

Using u = ϕx, v = ϕy derive the potential equation for this flow.

Solution:

ϕxx

(
1 − ϕ2

x/gh
)

+ ϕyy

(
1 − ϕ2

y/gh
)
− 2ϕxϕyϕxy/gh = 0. (3.2.58)

5. To investigate the Burgers equation, solve

νψxx = ψt. (3.2.59)

This may be done by a Laplace transformation according to p. 104
in [1.1] or by a separation setup

ψ(x, t) = X(x) · T (t) (3.2.60)

yielding two ordinary differential equations. This could be done by
the Mathematica command ([1.1, p. 99]):

ψ[x_,t_]=X[x]*T[t]
Expand[(ν*D[ψ[x,t],{x,2}]-D[ψ[x,t],t])/(X[x]*T[t])]

(3.2.61)

Another way to solve (3.2.59) would be by a similarity transformation
[1.1]

ψ(x, t) = F (η), η = xαtβ. (3.2.62)
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Inserting into (3.2.59) yields an ordinary differential equation for F (η)
which reads

νF ′′α2η2 + F ′α(α − 1)η + F ′βηx2/t = 0. (3.2.63)

Hint: assume x/
√

t = η which gives α = 1, β = −1/2. Remark: the
following designation is usual

2√
π

x∫
0

exp(−ξ2)dξ = erf (x), erfc (x) = 1 − erf (x). (3.2.64)

The function erf is called error function [1.4].

3.3 Capillarity waves

Surface tension or capillarity is the force acting in the surface of a liquid,
tending to minimize the surface area. Whereas within the body of the liquid
the time-averaged force exerted on any given molecule by its neighbors is
zero, molecules on the surface have no neighbors. Beyond the free surface,
there exist no molecules to counteract the forces of attraction exerted by
molecules in the interior. These effects generate a surface energy U defined
by

U = σF, (3.3.1)

where F is the area in cm2 and σ is the capillarity constant in erg cm−2.
The surface tension is not constant, it depends on temperature. For water
it varies between 75.6 at 0◦ C and 71.18 erg cm−2 at 30◦ C. For a local dis-
placement u(x, y, t) of the water surface due to perturbation by wind, one
finds the pressure [2.2], [2.10]

p = −σ

(
∂2u

∂x2
+

∂2u

∂y2

)
. (3.3.2)

Since equation (2.7.6) Δϕ = 0 is still valid for the potential ϕ(x, y, z, t) of
the water surface displacement, the solution given in section 3.2 is valid,
too:

ϕ(x, y, z, t) = A exp i(kxx + kyy) cosh k(z + h) exp(iωt). (3.3.3)

The boundary condition is again given by the time-dependent Bernoulli
equation (3.2.4). For g = 0, it reads

∂ϕ

∂t
− 1

ρ0
σ

(
∂2u

∂x2
+

∂2u

∂y2

)
= 0. (3.3.4)
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Derivation with respect to time and the replacement ut → ϕz yields [2.10]

∂2ϕ

∂t2
− σ

ρ0

∂

∂z

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= 0 for z = 0. (3.3.5)

This represents the boundary condition on the water surface for ϕ defined
by (2.7.6). A solution of (2.7.6) is given by

ϕ = A exp(kz) cos(kx − ωt). (3.3.6)

Insertion into the boundary condition delivers the dispersion relation

ω2 =
σ

ρ0
k3 (3.3.7)

or

c =

√
σk

ρ0
=

√
σ

ρ0

2π
λ

. (3.3.8)

Waves defined by (3.3.8) are called capillary waves or ripples (Riffeln, Kräu-
selwellen). Equation (3.3.8) indicates anomalous dispersion: waves with
small wave-lengths are faster (dc/dλ < 0).

In the foregoing calculations gravity has been neglected, but gravity is
always present. Thus we add the term g(∂ϕ/∂z) on the lhs of equation
(3.3.5), so that the boundary condition now reads

g
∂ϕ

∂z
+

∂2ϕ

∂t2
− σ

ρ0

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= 0 for z = 0. (3.3.9)

Repeating the calculation, one now gets the more complicated dispersion
relation

ω2 = gk +
σ

ρo
k3 = g

2π
λ

+
σ

ρ0

(
2π
λ

)3

. (3.3.10)

Thus the phase speed is given by

c =
ω

k
=

√
g

k
+

σk

ρ0
=

√
gλ

2π
+

σ

ρ0

2π
λ

. (3.3.11)

To investigate the combined effect of gravity and capillarity and the new dis-
persion relation we calculate the minimum of c(λ). The derivation dc/dλ = 0
yields the minimum of c at

λmin = 2π
√

σ

ρ0g
(3.3.12)
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and
c2
min = 2

√
σ

ρ0g
. (3.3.13)

These results have the following meaning:

1. No waves exist which propagate slower than with cmin.

2. All waves, λ > λmin, λ = λmin and λ < λmin propagate with a speed
larger than cmin.

Waves λ < λmin are usually called ripples and waves λ > λmin are gravita-
tional waves, sometimes accompanied by ripples on their flanks.

Problems

1. Calculate λmin and cmin.

Solution: λmin ≈ 0.017 m, cmin ≈ 23 cm s−1.

2. Show that the phase speed (propagation speed) is equal to the group
velocity if there is no dispersion. Show that the group velocity is
smaller than the phase speed if there is normal dispersion. For λ <
λmin one has anomalous dispersion. What happens for λ = λmin?

3. Calculate the group velocity from (3.3.11).

4. Anual waves are generated on the surface of a lake if a stone is thrown
into the water. Calculate the velocity potential ϕ(r, ϑ, z) in cylindrical
coordinates. Hint: Solve

ϕrr +
1
r
ϕr +

1
r2

ϕϑϑ + ϕzz = 0. (3.3.14)

Assume ∂/∂ϑ = 0.

Solution:
ϕ(r, z, t) = A exp(−kz) exp(−iωt)f(r).

Show that f(r) is given by Bessel functions and ω =
√

gh.

3.4 Solitons

A soliton wave or soliton is a nonlinear water wave which does not change its
shape during propagation. Such waves in channels are well known since long
time [3.8] [3.9]. The two effects: nonlinearity and dispersion seem to com-
pensate each other, so that no physical cause for steepening or modifying
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the shape of these nonlinear waves exists. Solitons are a typical nonlinear
phenomenon – linearized hydrodynamic equations never have soliton solu-
tions. Their stability can, to some extent, be understood as a consequence
of dispersion and nonlinearity. As we have seen in chapter 3.2, long water
waves travel faster than short waves. At the same time nonlinear effects
lead to a concentration of the original pulse.

It is usual to describe solitons as solutions of the Korteweg-de Vries
equation which we shall derive now [1.1]. The potential function ϕ(x, z, t)
satisfies

Δϕ = 0 (3.4.1)

even for a nonlinear but non dissipative wave like solitons. The nonlinearity
comes in from the boundary conditions. We consider a wave propagating
in the x-direction over a lake or channel surface of constant depth h0. Let
h(x, z, t) describe the disturbed water surface. The Bernoulli equation
(3.2.3) will be used in the form

ϕt +
1
2

(
ϕ2

x + ϕ2
z

)
+ g(h − h0) = 0. (3.4.2)

If z = 0 designates the bottom at the channel – in contradiction to previous
designations – the normal velocity component vn vanishes at z = 0

vn = −∂ϕ

∂z
= 0, for z = 0. (3.4.3)

This is now the bottom boundary condition. It is still linear. On the free
water surface now defined by z = h(x, z, t) the free boundary condition is
however nonlinear. It reads

−vn = ϕz =
dh

dt
= ht + ϕxhx, for z = h(x, z, t). (3.4.4)

Dissipation has been neglected. Some authors add terms describing wind
pressure or capillary tension.

We shall now solve the two differential equations (3.4.1) for ϕ(x, z, t) and
(3.4.2) for h(x, z, t) taking into consideration the two boundary conditions
(3.4.3) and (3.4.4). We introduce stretched variables ξ, τ, ψ by

ξ =
√

ε(x − c0t), τ = ε3/2t, ψ(ξ, z, τ) =
√

εϕ(x, z, t). (3.4.5)

Here c0 is an abbreviation and ε a small parameter.

c0 =
√

gh0, (3.4.6)
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compare (3.2.22)! Introduction of these variables into (3.4.1), (3.4.2), (3.4.3)
and (3.4.4) delivers

εψξξ + ψzz = 0, ψz = 0, for z = 0, (3.4.7)

ψz = ε2hτ + ε(ψξ − c0)hξ, for z = h, (3.4.8)

ε2ψτ − εc0ψξ +
1
2

(
εψ2

ξ + ψ2
z

)
+ εg(h − h0) = 0. (3.4.9)

Using ε we now write down a perturbation setup for the two unknown func-
tions

h = h0 + εh1 + ε2h2, ψ = εψ1 + ε2ψ2. (3.4.10)

Then one gets

ψ1zz = 0, ψnzz + ψn−1ξξ = 0,

ψ1 = ψ1(ξ, τ), ψ2 = −z2ψ1ξξ/2, ψ3 = z4ψ1ξξξξ/24,

ψ2z = −c0h1ξξ, for z = h0,

ψ3z + h1ψ2zz = h1τ − c0h2ξ + ψ1ξh1ξ, for z = h0,

−c0ψ1ξ + gh1 = 0, ψ1τ − c0ψ2ξ + ψ2
1ξ/2 + gh2 = 0.

(3.4.11)

Elimination results in

∂h1

∂τ
+

3c0

2h0
h1

∂h1

∂ξ
+

c0h
2
0

6
∂3h1

∂ξ3
= 0. (3.4.12)

We now use a simplified form

vt + αvvx + vxxx = 0. (3.4.13)

This is the Korteweg-deVries equation in its most usual form (α = −6).
This nonlinear partial differential equation of third order can be integrated
using the setup

v(x, t) = v(η), η = x − c0t. (3.4.14)

This corresponds to a transformation to a co-moving wave frame. One
obtains

vη(αv − c0) + vηηη = 0. (3.4.15)

Double integration with respect to η gives

vηη = c0v − α
v2

2
,

1
2
v2
η =

c0

2
v2 − α

6
v3, (3.4.16)
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and finally
v∫

vmax

dv√
c0v2/2 − αv3/6

=
√

2 η. (3.4.17)

This results in a soliton solution

v(x, t) =
3c0

α
sech2

(√
c0

2
(x − c0t)

)
, (3.4.18)

see Fig. 1.5 and Eq. (1.1.17). Other soliton solutions of (3.4.13) may be
found in the literature [3.9]

v(x, t) =
−2α2f(x, t)
(1 + f(x, t))2

, (3.4.19)

where
f(x, t) = exp(−α(x − x1) + α3t). (3.4.20)

Here x1 is an integration constant. The maximum absolute value of v(x, t),
its amplitude, is given by α2/2 and occurs when f = 1 or x = α2t + x1,
where x1 is now a phase shift. The propagation speed of the soliton (3.4.19)
is α2 and thus proportional to its amplitude. The parameters α and x1 are
determined by the initial conditions.

If the initial condition is in the form of the soliton, i.e.,

v(x, t = 0) = v0sech2
(

x − x0

Δ

)
, (3.4.21)

where Δ = 2
√

α/c is the width of the wave, then this initial perturbation
propagates unchanged like a soliton if its amplitude were connected with the
velocity by

v0Δ2 = 12α. (3.4.22)

Thus the larger the soliton amplitude v0, the larger its velocity c > c0, while
a wave packet which spreads in time and decreases in amplitude is slower.

If the initial condition does not coincide in profile with the soliton, but
has the form of a pulse of width and amplitude (earthquake, underwater
explosion), then the so called nonlinearity parameter σ, a dimensionless
quantity [3.10]

σ =
√

v0

c0
k0Δ = Δ

√
v0

α
(3.4.23)

is σ >
√

12 =
√

2/α. This is the value for a soliton. For σ <<
√

12 one deals
again with an almost linear perturbation. Great interest is however attached
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to the case of a strongly nonlinear perturbation characterized by σ >>
√

12,
when the width is large. During the first steps of the evolution of such a
strong perturbation, dispersion does not yet play an important role and the
development of the perturbation is determined by the nonlinearity: steepen-
ing occurs and the front has a tendency to break. Later on dispersion comes
into play and the perturbation may break up into individual waves. With
advancing time these individual waves become transformed into solitons. If
dissipation is relevant, the picture may change.

In order to investigate the effects of dissipation due to viscosity on soli-
tons, we first remember the Burgers equation (3.2.50). We then add the
dissipative term to the Korteweg-de Vries Burgers equation [3.10]

ut + uux + βuxxx = νuxx. (3.4.24)

This equation describes a dissipative soliton.
In the literature solitons are very often described by the Boussinesq

equations. There exist many different forms of these equations which were
derived by Boussinesq in the year 1870 to model the propagation of long
water waves with a small amplitude (– sign) and to describe the two-dimensi-
onal irrotational flow of an inviscid liquid in a uniform rectangular channel
(+ sign). The original equations are [3.21]

utt − uxx ± uxxxx − (u2)xx = 0. (3.4.25)

An improved modified version reads [3.22]

utt − uxx − uxxtt = (uk)xx, k = 2 or 3. (3.4.26)

The linear Boussinesq equation is defined by mathworld [3.21] as

utt − α2uxx = β2uxxtt, (3.4.27)

whereas the nonlinear one is assumed to be

utt − uxx − uxxxx − 3(u2)xx = 0. (3.4.28)

There is also a modified equation reading

1
3
utt − utuxx − 3

2
u2

xuxx + uxxxx = 0. (3.4.29)

Wolfram research [3.21] defines the Boussinesq approximation that density
variations are ignored, except insofar as they give rise to a gravitational
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force. This is also well known in plasma physics [2.8], [3.22]. Classical
Boussinesq equations are given by Dias [3.13]

ut + uux + gηx − 1
3
h2uxxt = 0, (3.4.30)

ηt + [u(h + η)]x = 0, (3.4.31)

where u had been replaced with the depth averaged velocity (1/h)
∫ η
−h udz, h

is the depth and z = η designates the water surface.
Similar equations may be found in [3.20]

∂
v

∂t
+ (
v∇)
v + ∇gH +

gh2

3
Δ∇H = 0, (3.4.32)

∂H

∂t
+ ∇(H
v) = 0. (3.4.33)

Here h is the depth of the fluid and H is the total height of the fluid above
bottom. Another form is [3.20]

∂ρ

∂t
+ ∇(ρ
v) = 0, (3.4.34)

∂
v

∂t
+ (
v∇)
v +

c2(ρ)
ρ

∇ρ +
2c0β

ρ0
∇Δρ = 0, (3.4.35)

where ρ is the fluid density, c(ρ) is the generalized sound velocity at the
density ρ, ρ0 is the unperturbed density, β is the dispersion parameter.
Following Karpman [3.20] one can show, that the dispersion belonging to
(3.4.35) is given by

ω = c0k − βk3. (3.4.36)

Using the adiabatic law

c2(ρ) = c2
0 ·
(

ρ

ρo

)κ−1

. (3.4.37)

Karpman derives the following potential equation

ϕtt − c2
0Δϕ + ∇ϕ · ∇ϕt + κΔϕ · ϕt − 2c0βΔ2ϕ = 0 (3.4.38)

for ϕ defined by 
v = ∇ϕ. Assuming a travelling wave

ϕ = ϕ(x − V t) (3.4.39)

the potential equation delivers a stationary solution(
v2 − c2

0

)
ϕ′′ − (κ + 1)V ϕ′′ϕ′ − 2c0βϕ′′′′ = 0. (3.4.40)



3.4 Solitons 117

If the wave amplitude is small, the propagation speed V would be close to
c0, so that V −c0 can be regarded as being small. Introducing a new variable

u =
κ + 1

2
ϕ′ (3.4.41)

one obtains
βu′′′ + uu′ − (V − c0)u′ = 0. (3.4.42)

This equation is invariant with respect to a translation

u → u + const, V → V + const. (3.4.43)

This signifies a transition to a new coordinate system. Integrating (3.4.42)
twice one obtains

3βu′2 = (b1 − u)(b2 − u)(b3 − u), (3.4.44)

where the three bi are constants consisting of the propagation speed V and
two integration constants. One has

V =
1
2

(b1 + b2 + b3) + c0. (3.4.45)

Now several cases will be discussed.

1. We assume β > 0, b1 ≥ b2 ≥ b3, b2 ≤ u ≤ b1 and b2 = b3. Then the
solution of (3.4.44) is a soliton

u(ξ) =
b1 − b2

cosh2
(√

(b1 − b2)/12βξ
) + b3. (3.4.46)

The form of this solution is shown in Fig. 1.5, since ch = cosh = csch =
1/sech [1.4] [2.1].

2. When b3 < b2, the solution of (3.4.44) is periodic and expressed by

u(ξ) =
b1 − b2

s2
dn2(z; s) + b3. (3.4.47)

Here s is the modulus and dn is the elliptic Jacobi function . Fur-
thermore

s2 =
b1 − b2

b1 − b3
, z =

√
b1 − b2

12β
ξ

s
. (3.4.48)
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The function dn2 is periodic with a period 2K(s), where K is the
complete elliptic integral of first order [1.1], [1.4]. The wave length λ
of (3.4.47) is then

λ = 2

√
12β

(b1 − b2)
sK(s). (3.4.49)

The Mathematica commands

U[x_]=(JacobiDN[x,s])^2;
Clear[s],s=0.9;
Plot[U[x],{x,-13.,13.}] (3.4.50)

produce Fig. 3.3, which shows the periodic solution (3.4.47). Compare
with Fig. 1.6.
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Fig. 3.3. Periodic soliton

3. For β < 0, and the substitutions ξ → −ξ, u → −u, V −c0 → −(V −c0)
one obtains a soliton showing the same form as in Fig. 1.5.

The phase portrait u′(u) [1.1] of the differential equation (3.4.44) exhibits
the special character of the soliton. Such a portrait can be created by the
Mathematica commands

<<Graphics’ImplicitPlot’
Clear[b1,b2,b3,β,p1]
b1=7.0;b2=1.5;b3=-1.8;β=11;
F[u_,v_]=3*β*v^2-(b1-u)*(b2-u)*(b3-u);
p1=ImplicitPlot[F[u,v]==0, {u,-5.,10.}]
<<Graphics’ImplicitPlot’
Clear[b1,b2,b3,β,p2]
b1=9.0;b2=0.;b3=0.;β=3;
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F[u_,v_]=3*β*v^2-(b1-u)*(b2-u)*(b3-u);
p2=ImplicitPlot[F[u,v]==0, {u,-5.,10.}]
<<Graphics’ImplicitPlot’
Clear[b1,b2,b3,β,p3]
b1=6.;b2=3.;b3=-0.8;β=6.5;
F[u_,v_]=3*β*v^2-(b1-u)*(b2-u)*(b3-u);
p3=ImplicitPlot[F[u,v]==0, {u,-5.,10.}]
Show[p1,p2,p3]

The last command combines the three plots p1, p2, p3 and creates Fig. 3.4.

-4 -2 2 4 6 8

-6

-4

-2

2

4

6

Fig. 3.4. Phase portrait of (3.4.44)

The soliton portrait is given by the curve with the branching point (cross-
over point), which is called a saddle point in a portrait ([1.1, p. 72]). The
closed curves in the phase portrait describing periodic waves are connected
with limit cycles and the Bendixon criterion [1.1].

Problems

1. Transform the partial differential equation (3.4.24) into an ordinary
differential equation using the setup for a travelling wave

u(x − ct) = u(ζ). (3.4.51)



120 3 Water waves

Solution: after integration with respect to ζ

−cu + u2/2 + βu′′ = νu′. (3.4.52)

This equation describes a damped nonlinear oscillator.

2. Is it possible to solve (3.4.24) by a similarity transformation?

u(x, t) = xαtγ . (3.4.53)

Solution: no. Why?

3. Verify (3.4.7) to (3.4.9). Hint: use ϕ(x, z, t) = ψ(ξ(x, t), z, τ(t))/
√

ε,
h(x, z, t) = h(ξ(x, t), z, τ(t)) and calculate ∂τ/∂t, ∂ξ/∂x, ∂ξ/∂τ and
insert ϕx, ϕz , hx, ht etc into the equations.

4. Introduce stretched variables

ξ = εn(x − cτ), τ = εmt, U = εpu. (3.4.54)

Which term of (3.4.24) prevents such a solution?

5. Introduce stretched variables

η = u/u0, ξ = x/l, τ = tu0/l (3.4.55)

into the Korteweg-de Vries equation (3.4.13) to read

ut + hux + βuxxx = 0 (3.4.56)

and the initial condition

u(x, 0) = u0ϕ(x/l). (3.4.57)

Solution:

ηt + ηηξ +
1
σ2

ηξξξ = 0, η(ξ, 0) = ϕ(ξ). (3.4.58)

The dimensionless parameter

σ = l
√

u0/β (3.4.59)

is now the nonlinearity parameter, compare with (3.4.23). This pa-
rameter determines the relation between nonlinearity and dispersion.
For the balancing of the two effects (no change of form of the soliton)
the condition σ = σs =

√
12 must be satisfied. But this value depends

on the form of the Korteweg-de Vries equation.
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6. Transform (3.4.56) using stretched variables and a similarity transfor-
mation

t → γt, x → γ1/3x, u → γ−2/3u, z = (3βt)−1/3x (3.4.60)

and
u(x, t) = β(3βt)−2/3ψ[(3βt)−1/3x]. (3.4.61)

Solution:
ψ′′′ − zψ′ + ψψ′ − 2ψ = 0. (3.4.62)

7. Neglect the nonlinear term in (3.4.62) and insert ψ(z) = f ′(z) into
(3.4.62).

Solution:
f ′′(z) − zf(z) = 0 (3.4.63)

which is the equation determining Airy functions. Solve (3.4.63).

Solution:
f(z) = Ai(z), (3.4.64)

see [1.4]. Plot f(z) using Mathematica.

8. The Korteweg-de Vries Burgers equation (3.4.24) may be re-
garded as the dissipative Korteweg-de Vries equation. What is
the effect of the damping term due to viscosity? Make a setup for a
travelling wave solution

u = u(x − Wt). (3.4.65)

Solution:
βu′′′ − νu′′ + u′(u − W ) = 0. (3.4.66)

Assume u(∞) = u′(∞) = u′′(∞) = 0 and integrate.

Solution:

βu′′ − νu′ +
1
2
u2 − Wu = 0. (3.4.67)

Now the structure of the solution u depends on the relation between
the dispersion parameter β and the dissipative parameter ν (viscosity).
The wave velocity W is not constant but depends on u.
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9. An analytic solution of the Korteweg-de Vries equation has been
found by the inverse scattering method. This method is an inge-
nious method to solve nonlinear partial differential equations. The
method does not directly solve the nonlinear equation, but instead,
it solves two linear equations. It considers the assumed solution v of
vt − 6vvx + vxxx = 0 to be the potential v(x, t) in a one-dimensional
Schroedinger equation ψxx + [E − v(x, t)]ψ = 0. Study the relevant
pages, e.g. in[1.1], [3.20].

3.5 Dissipationless tsunamis

A tsunami (“large wave in the harbour”) is a large amplitude (nonlinear)
gravitational wave excited by an earthquake or an underwater explosion.
Its local crest height and propagation speed depend strongly on the ocean
depth. The crest may vary between less than one m up to 30 m near cost
and the speed between several hundred to 1000 km h−1. As long as no
dissipative effects are included into the mathematical analysis it can be
assumed that the thermodynamic behavior is polytropic - entropy is constant
and a velocity potential exists. For water the polytropic exponent is equal
to two.

Tsunamis are not of the type of surf swells – they move the entire depth
of the ocean down to several km depth. There may be several hours time
passing between the creation and its impact on a far distant coast. The
seismic wave may arrive there faster than the tsunami itself. In open water
the wave period of a tsunami may range from minutes to hours and the
wavelengths may be up to several hundred km.

In order to derive equations for a one-dimensional tsunami wave in the
x-direction we define η(x, t) as the local distance between the horizontal
x-axis and the water surface, see Fig. 3.5.
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Fig. 3.5. Water surface (eta = η)
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This figure has been generated by the following Mathematica commands:

Clear[l1,l2,l3,l4,T1,T2,T3,G1,G2,G3,G4,G5,G6,G7];
l1=Line[{{0.,1.},{4.,1.}}];
l2=Line[{{0.,-1.5},{4.,-1.}}];
l3=Line[{{2.,0.},{2.,1.}}];
l4=Line[{{2.,-1.28},{2.,0.}}];
T1=Text[water,{1.8,1.2}];
T2=Text[eta,{1.9,-0.5}];
T3=Text[h{1.9,-0.7}];
$DefaultFont={’’Courier-Bold’’,10};
G1=Graphics[T1];
G2=Graphics[T2];
G3=Graphics[T3];
G4=Graphics[l1,Axes->True,AxesLabel->{’’x’’,’’z’’},
AspectRatio->0.5];
G5=Graphics[l2,Axes->True,AxesLabel->{’’x’’,’’z’’},
AspectRatio->0.5];
G6=Graphics[l3,Axes->True,AxesLabel->{’’x’’,’’z’’},
AspectRatio->0.5];
G7=Graphics[l4,Axes->True,AxesLabel->{’’x’’,’’z’’},
AspectRatio->0.5];
Show[G4,G5,G6,G7,G1,G2,G3]

The local distance between the variable ocean bottom and the x-axis
is designed by −h(x). This is a given quantity and describes a boundary
condition. Now the relation

z = −h(x, y) (3.5.1)

holds and the local hydrostastic pressure is given by

p(x, z, t) = ρ0g(η + h) = ρ0g(η − z), (3.5.2)

since gravity is assumed to act in the z-direction. On the water surface
z = η the hydrostatic pressure vanishes.

For a dissipationless tsunami one has curl
v = 0, so that (2.3.18) gives
the equation of motion in the form [3.11]

d
v

dt
=

∂
v

∂t
+ ∇
v 2

2
= −∇p

ρ0
= −g∇η. (3.5.3)

The Coriolis force has been neglected.



124 3 Water waves

If we assume a two-dimensional flow we write vx = u, vz = w. Then
(3.5.3) yields the components

du

dt
=

∂u

∂t
+

1
2

∂

∂x
(u2 + w2) = −g

∂η

∂x
(3.5.4)

and
dw

dt
=

∂w

∂t
+

1
2

∂

∂z
(u2 + w2) = −ρ0g − ∂p

∂z
. (3.5.5)

Here h(x, y) is given and u(x, z, t), w(x, z, t) and η(x, z, t) are the unknowns.
The third equation is given by the continuity equation

∇
v = div
v = 0. (3.5.6)

If the vertical water particle acceleration could be neglected (if px is
independent of z), then (3.5.5) breaks down and u is independent of z.
Then for shallow water (3.5.4) reads (w2 ≈ 0)

ut + uux = −gηx (3.5.7)

and (3.5.6) takes the form
ux = −wz. (3.5.8)

Integration with respect to z gives [3.11]

w(η) − w(−h) = −
η∫

−h

uxdz = −ux(η + h). (3.5.9)

Now we consider the boundary conditions. On the ocean bottom z = −h(x),
the normal component of the fluid velocity vanishes. Due to the inclination
of the bottom, the simple condition w = 0 for z = −h(x) is not valid. The
angle ϑ of the inclination is given by (3.1.1). Thus

tan ϑ =
∂h(x)

∂x
= −w

u
(3.5.10)

and the bottom boundary condition reads

hxu + w = 0, for z = −h(x). (3.5.11)

The boundary condition on the free water surface is given by

z = η(x, t). (3.5.12)
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This expresses the fact that a water particle residing on the surface will
remain there for all time (mass conservation). Thus for z − η = 0 one has
d/dt(z − η) = 0. Since ηz = 0, one obtains for the surface condition

ηt + uηx − w = 0, for z = η. (3.5.13)

Sometimes this condition is called kinematic condition. p = 0 at z = η is
called dynamic condition [3.13]. Using the Bernoulli equation on the free
surface z = η gives ϕt +(1/2)(∇ρ)2 +gη = 0 [3.13]. Using the two boundary
conditions (3.5.11) and (3.5.13) in the form

w(h) = −hxu (3.5.14)

and
w(η) = ηt + uηx (3.5.15)

we can insert two expressions into the continuity equation (3.5.9) to obtain

ηt + uηx + hxu = −ux(η + h),

ηt +
∂

∂x
((η + h)u) = 0. (3.5.16)

Based on the equivalence theorem of section 2.10, the equations (3.5.7) and
(3.5.16) may be rewritten in the form

ρ̂(ut + uux) = −p̂x, (3.5.17)

ρ̂t +
∂

∂x
(ρ̂u) = 0. (3.5.18)

For w ≈ 0 the equations (3.5.7) and (3.5.16) describe roll waves defined
by (3.1.3) and (3.1.4) and do not describe a tsunami.

To describe a tsunami the following items must be taken into account:
1. vertical motion of the water, is present, w �= 0,
2. the ocean bottom is neither a horizontal nor a declined plane, but it

has a topographic structure h(x, y),
3. the path of a tsunami over the surface of the rotating Earth is co-

determined by the Coriolis- and the centrifugal force,
4. dissipation due to the water viscosity and, if necessary, the thermal

conductivity has to be considered, so that real life tsunamis are no
longer polytropic,

5. wave steepening and modifications of wavelength (dispersion) etc have
to be considered,
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6. the theory must be able to reproduce observed tsunami data like

wave length 1 - 40 - 160 - 240 km
ocean depth 0.1 - 4 km
coastal depth 5 cm - 5 m
crest height 0.5 m in open ocean

up to 30 m on the coast (depth 0.5 m)
propagation speed 365 km h−1 at depth 1 km

750 - 900 km h−1 at depth 4 - 5 km

For h = 100, η = 10 one obtains from c =
√

g(h + η) 118 km h−1 and
for h = 50, η = 30 one obtains 100 kmh−1. One has, however, to
have in mind, that the observed wave propagation speed w is actually
defined by w = u + c.

These observed values coincide with the results given by (3.2.22). For
h = 4000 m one obtains 713 km h−1 and for h = 1000 m one obtains
357 km h−1. This seems to prove that the neglection of the vertical
velocity component w does not entail a large error.

In order to start a deeper investigation of the tsunami problem we now
first undertake to derive a potential equation for tsunamis. We use the
following equations which made use of the equivalence principle. We follow
the method used in [1.1]. Since the bottom h now depends on x and y,
(3.5.2) becomes

p(x, y, z, t) = ρ0g(η(x, y, t) − z) (3.5.19)

and η(x, y, t) = z − h(x, y). Furthermore the continuity equation now reads

1
η
ηt − Δϕ −∇ϕ

∇η

η
= 0, (3.5.20)

compare with (2.8.1). In the derivation we have used


v = −∇ϕ, ϕ = ϕ(x, y, z, t) (3.5.21)

and the replacement ρ → ρ̂ → ρ0η(x, y, t), div grad = Δ. The equation of
motion reads now

−∇∂ϕ

∂t
+

1
2
∇(∇ϕ)2 = −g∇η (3.5.22)

because ∇z = 0 and (
v∇)
v = (1/2)(∇ϕ)2 for a potential flow, compare with
(2.10.29)! Integration with respect to space yields an equation which may
also be called time dependent Bernoulli equation

−∂ϕ

∂t
+

1
2
(∇ϕ)2 = −gη, (3.5.23)
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compare with (2.8.4). See also [3.13]. Derivation with respect to time gives

−∂2ϕ

∂t2
+

1
2

∂

∂t
(∇ϕ)2 = −g

∂η

∂t
, (3.5.24)

compare with (2.8.5). Now we build

1
η
ηt =

1
gη

ϕtt − 1
gη

1
2

∂

∂t
(∇ϕ)2. (3.5.25)

From (3.5.24) and (3.5.22) we receive

∇η

η
=

1
gη

(
∇ϕt − 1

2
∇(∇ϕ)2

)
. (3.5.26)

Some remarks on units might be appropriate: pressure p has kg s−2 m s−1,
density ρ0 has kg m−3, η is measured in m and u in m s−1. Thus the potential
ϕ has m2 s−1.

Inserting from (3.5.25) and (3.5.36) into (3.5.20) we obtain the potential
equation

− 1
c2

1
2

∂

∂t
(∇ϕ)2 − 1

c2
∇ϕ · ∇ϕt +

1
c2
∇ϕ · 1

2
∇(∇ϕ)2 =

1
c2

ϕtt − Δϕ, (3.5.27)

compare (2.8.9). Here we used h → η and(3.5.29)

c2 = gη(x, y, t), (3.5.28)

compare with (3.2.22). In components (3.5.27) reads

ϕxx(c2 − ϕ2
x) + ϕyy(c2 − ϕ2

y) + ϕzz(c2 − ϕ2
z) − 2ϕxϕyϕxy

−2ϕyϕzϕyz − 2ϕxϕzϕxz − ϕtt − 2ϕxϕxt − 2ϕyϕyt − 2ϕzϕzt = 0. (3.5.29)

For only the two independent variables x, y this equation becomes identical
with the results by Presswerk of January 1938 [2.21]. It is a drawback of
equation (2.3.29) that it cannot be linearized by a Legendre transformation
because this works only for two independent variables x, y or x, t like in
[2.21].

The boundary conditions for the potential ϕ(x, y, z, t) for the bottom
z = −h(x, y) are ∇ϕ · ∇h = −ϕz or

∂h(x, y)
∂x

= −w

u
= −ϕz

ϕx
, (3.5.30)

∂h(x, y)
∂y

= −w

v
= −ϕz

ϕy
, (3.5.31)
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where the components of the vector 
v have been designated by u, v, w. On
the water surface z = η one has a free (moving) boundary. This condition
may be expressed in the three-dimensional form

ηt + ∇ϕ · ∇η − ϕz = 0, (3.5.32)

compare with (3.5.13) [3.13] and with the Bernoulli equation (3.5.23) as
well as for z = η. Some authors drop square terms and use linearized free-
surface conditions [3.14]. Additionally one has initial conditions at t = 0 for
ϕ (and η) needed to handle the tsunami problem.

Since more than 40 years numerical methods are available for the numeri-
cal solution of systems of quasilinear hyperbolic partial differential equations
[3.12], [3.15], [3.18]. The method of characteristics for two independent vari-
ables which we used in previous sections cannot be generalized because the
theory for characteristics in two variables is a very special case. In higher di-
mensions new types of characteristics like bicharacteristics and characteristic
cones appear. Since my small University does not have the necessary high
power computer facilities, we are looking for other possibilities to handle the
tsunami problem.

In order to derive a simple tsunami wave equation, we consider the case
of two independent variables x, t. Having confidence in the equivalence prin-
ciple we consider the one-dimensional time dependent flow of a compressible
gas [2.18] described by ρ(x, t) and u(x, t). The continuity equation (2.8.1)
takes the form

dρ

dt
+ ρux = 0, (3.5.33)

and the equation of motion (2.8.2) is

du

dt
+

1
ρ
px = 0. (3.5.34)

These two quasilinear partial differential equations of second order may be
transformed into a nonlinear partial differential equation of second order
with two independent variables (“wave equation”). The operator

d
dt

=
∂

∂t
+ u

∂

∂x
(3.5.35)

contains the nonlinearity. To transform away the nonlinearity we define a
mass variable m by

m(x, t) =
x∫

x0

ρ(x, t)dx. (3.5.36)
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Here we assumed that the volume which contains m has an extension of
1 cm in the y- and z-direction. Due to the continuity equation the mass
contained in this volume for x0 to x is constant. Thus dm/dt = 0. Then

dm(x, t)
dt

=
∂m

∂x

dx

dt
+

∂m

∂t
= 0. (3.5.37)

Now (3.5.36) has the consequence(
∂m

∂x

)
t
= ρ(x, t). (3.5.38)

Then (3.5.37) yields (
∂m

∂t

)
x

= −
(

∂m

∂x

)
t

dx

dt
= −ρu. (3.5.39)

As we will demonstrate, the transformation of the two independent variables
x, t into new variables m, t will allow the important transition (d/dt) →
(∂/∂t) and u(x, t) → û(m(x, t), t) as well as ρ(x, t) → ρ̂(m(x, t), t). We thus
have

ux = ûm · mx = ûmρ̂, ρx = ρ̂m · ρ̂, px = p̂m · ρ̂. (3.5.40)

The more interesting result is however given by

ut = ûm · mt + ût = −ûm · ρ̂û + ût,

ρt = ρ̂m · mt + ρ̂t = −ρ̂m · ρ̂û + ρ̂t. (3.5.41)

In fact, one has

du

dt
=

∂u

∂t
+ u

∂u

∂x
= −ûmρ̂û + ût + ûûmρ̂ = ut,

so that formally
du

dt
=

∂û

∂t
and

∂

∂x
= ρ̂

∂

∂m

are valid. Applying (3.5.35) on (3.5.33) and then inserting ρt = ρ̂t, û, ρ̂x and
ûx one obtains the continuity equation in the form

ρ̂t + ρ̂2ûm = 0. (3.5.42)

The equation of motion (3.5.34) now reads

ût + p̂m = 0 (3.5.43)
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after transformation. Here we had used

∂p(x, t)
∂x

=
∂p̂(m(x, t), t)

∂m
· ∂m

∂x
= p̂mρ̂. (3.5.44)

Equation (3.5.43) is a linear partial differential equation, but (3.5.42) is
not! But now we use the transformation (2.2.7) to linearize (3.5.42). Since
s(x, t) = 1/(ρ(x, t) and

ρ(x, t) = ρ̂(m(x, t), t) = 1/ŝ(m(x, t), t), (3.5.45)

and obtains from (3.5.42) the exactly linearized form of the continuity equa-
tion

ûm − ŝt = 0. (3.5.46)

Now the path to a wave equation for the compressible gas is wide open.

Method 1: We define a new function W (m, t) by

Wt(m, t) = û(m, t), Wm(m, t) = ŝ(m, t), (3.5.47)

which satisfies immediately (3.5.46) due to Wtm = Wmt. From (3.5.43) we
obtain

Wtt = −p̂m. (3.5.48)

Now we need the connection between p̂ and ŝ or Wm. For adiabatic change
of state of a gas one obtains from (2.5.44)

p̂ = p =
p0

ρκ
0

ρκ = p0s
κ
0s−κ = const · s−κ. (3.5.49)

Then (3.5.48) yields
const

W−κ−1
m

Wtt = Wmm. (3.5.50)

Using the formal abbreviation

const
W−κ−1

m
=

1
a2

, (3.5.51)

then (3.5.50) takes the form of a second order wave equation

1
a2

Wtt = Wmm. (3.5.52)

Method 2: One may define another W (m, t) by

û = Wmt, ŝ = Wmm. (3.5.53)
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This satisfies (3.5.43) and (3.5.46). Using (3.5.46) one obtains after integra-
tion with respect to m [2.18]

−Wtt = const · W−κ
mm, const = a2/κ. (3.5.54)

It is obvious, that the simple assumption κ = 2 would not help to solve
the tsunami problem, because the equation (3.5.54) has not yet been solved
for κ = 2 and the tsunami needs a three-dimensional treatment. Equation
(3.5.54) may be transformed into the Darboux equation which cannot be
solved for κ = 2. It may be of interest to repeat the previous procedure with
a mass variable for the tsunami equations, see problem 15 in this section!

Recently, an interesting set of equations describing tsunamis has been
published by Dias [3.13]. This three-dimensional formulation presents split-
ting up of the z-coordinate

∇ =
∂

∂x
,

∂

∂y
, 
u = u, v. (3.5.55)

The equation of continuity is given in the form

∇ · 
u +
∂w

∂z
= 0 (3.5.56)

and the equation of motion reads

ρ0
d
u

dt
= ρ0

∂
u

∂t
+ 
u(∇
u) + ∇p = 0, ρ0

dw

dt
+ ρ0g +

∂p

∂z
= 0. (3.5.57)

The water density ρ0 is assumed to be constant. Since the author assumes
a dissipationless tsunami, he uses a potential ϕ(x, y, z, t)


u = ∇ϕ, w =
∂ϕ

∂z
. (3.5.58)

The potential satisfies the Laplace equation in three dimensions Δϕ+ϕzz =
0. The integration of the equation of motion gives Bernoulli’s equation

ϕt +
1
2
(∇ϕ)2 +

1
2
ϕ2

z + gz + p/ρ0 = 0. (3.5.59)

Finally, the three boundary conditions have been used: the kinematic con-
ditions (3.5.32), the dynamic condition (3.5.23), both at the water surface
defined by z = η(x, y, t). The bottom boundary condition at z = −h(x, y)
is given in the form

∇ϕ · ∇h + ϕz = 0, (3.5.60)

compare with (3.5.30) and (3.5.31).
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The solution of these equations is found by series expansions of the form
ϕ = ϕ0 + βϕ1 + β2ϕ2. An interesting point of this paper is, that a solution
for ϕ is found without knowing the function p. Only at the end of all
calculations the equation of motion is again used to find the pressure from
η and ϕ. The equations (3.5.56) and (3.5.60) are the four basic tsunami
equations describing 
v(x, y, z, t) and η(x, y, t) together with boundary and
initial conditions.

It would be possible to derive again a potential equation for ϕ(x, y, z, t)
like (3.5.29), but an exact linearization seems not to be feasible since meth-
ods to linearize nonlinear partial differential equations work mainly for two
independent vriables only. Specializing for two independent variables we
loose the vertical motion vz. The problem of a multidimensional time de-
pendent water flow over a locally varying bottom h(x, y) is an extremely
difficult nonlinear mathematical problem. Many attempts to solve such
problems may be found in the literature. The problem to solve the ba-
sic nonlinear partial differential equations together with initial conditions is
furthermore connected with geophysics since the initial conditions are real-
ized by unpredictable earthquakes. Readers more interested in the tsunami
problem will find specialized publications in three different areas:

1. attempts to find mathematical tools [3.14], [3.16],

2. work related with earthquakes [3.17],

3. solution methods, linearization, series expansions [3.13], graphics etc
[3.18]

Research on tsunamis may also be found in the internet [3.19].
We now will derive the basic equations for a one-dimensional time de-

pendent tsunami described by the crest height η(x, t) and flow speed u(x, t),
which propagates into the x-direction. The reader should consider the figure
3.5. η(x, t) designates the local tsunami elevation over the x-axis defined by
z = 0. The local depth is again measured by h(x). Then the continuity
equation (3.5.16) reads

ηt + uηx + uxη + hxu + uxh = 0, (3.5.61)

compare with (3.1.4). This corresponds to the neglection of velocity com-
ponents in other directions than x. The hydrostatic pressure is now given
by (3.1.2)

p(x, t) = ρ0g(η(x, t) − z). (3.5.62)
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Then the equation of motion (3.5.7) reads

ut + uux + gηx = 0, (3.5.63)

compare with (3.3.1). The equations (3.5.61) and (3.5.63) represent a shal-
low water wave approximation for the tsunami [3.11]. The equations (3.5.61)
and (3.5.63) are two quasilinear partial differential equations of first order.
Reading off from (1.4.18) and substituting v → η, y → x, x → t we find the
following coefficients from (1.4.18)

a11 = 0, a12 = 1, b11 = η + h, b12 = u, h1 = −hxu,
a21 = 1, a22 = 0, b21 = u, b22 = g, h2 = 0.

(3.5.64)

Then the condition of the vanishing determinant R (1.4.23) yields

k′ =
dx

dt
= u ±

√
g(η + h) = u ± c, (3.5.65)

compare with (2.10.31), (3.5.28). Equation (3.5.65) describes the propaga-
tion speed of the tsunami. With increasing flow velocity u and the increasing
crest height η the tsunami propagation speed increases. Now we investigate
the compatibility conditions (1.4.24) and (1.4.25). Using (3.5.64) and in-
serting from (3.5.65) we obtain from (1.4.24) and (1.4.25)

V1 = ±
√

g(η + h) (hxu + ηt) − ut(h + η) (3.5.66)

and
V2 = ±

√
g(η + h)ut − ghxu − gηt, (3.5.67)

and integration of V2 = 0 yields (3.5.99). These two equations describe
the modification of the state variables u, η along the characteristics (3.5.65).
One now could think to use the compatibility condition (3.5.67) to again
establish Riemann invariants r, s, see (2.10.34). But there is fundamental
difference between the compatibility condition (2.10.32) and (3.5.67). The
latter contains a term (ghxu), which is not a differential. If we could define
Riemann invariants then the u, η or better r, s plane could be called the
principal plane or state plane, whereas the x, t plane is usually defined as
the physical plane. We cannot follow the method described in section 2.10.
The distinction is that the depth h(x) is no longer constant, but a given
variable and may describe e.g., an inclined ocean bottom line

h(x) = ax + b, h(0) = b = 4000m, (3.5.68)

or other functions. Now the initial conditions are very important. We might
assume that a local earthquake at x0 = 0 initiates at time t = 0 a sharp, but
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not very high elevation η(0, 0) in the form of a slender soliton or a Gaussian
error function with a crest height of 0.5 m. For the initial profile we could
use

η(x, t) = A · sech2 (B[x − cot]) (3.5.69)

and have the initial condition

η(x, 0) = Asech2(Bx) or η(0, 0) = A, (3.5.70)

which is shown in Fig. 3.6. We may assume η1 = η(0, 0) = A = 0.5 m.

-1 -0.5 0.5 1

0.1

0.2

0.3

0.4

0.5

Fig. 3.6. Initial condition

This figure has been produced by the Mathematica commands:

Clear[A,B,y];A=0.5;B=5.;
y[x_]=A*(Sech[B*x])^2; (3.5.71)
Plot[y[x],{x,-1.,1.}]

In order to use again Riemann invariants we now transform (3.5.61) and
(3.5.63). We use [3.11] the local propagation speed c according to (3.5.65)
in the form

c =
√

g(η(x, t) + h(x)), η =
c2 − hg

g
, (3.5.72)

compare with (3.2.22). Calculating

cx =
g

2c
(ηx + hx) , ct =

gηt

2c
(3.5.73)

we insert ηx + hx and ηt into the equation of continuity (3.5.61) to obtain

2cxu + 2ct + uxc = 0. (3.5.74)



3.5 Dissipationless tsunamis 135

The equation of motion (3.5.63) becomes

ut + uux + 2cxc − ghx = 0. (3.5.75)

Now we again use the equations (1.4.18) and (1.4.23) - (1.4.25). In order
to bring (3.5.74) and (3.5.75) into the form (1.4.18) we have to make the
following substitutions v → c, x → t, y → x which give

a11 = 1, a12 = 0, b11 = u, b12 = 2c, h1 = ghx,

a21 = 0, a22 = 1, b21 = c/2, b22 = u, h2 = 0,
(3.5.76)

which does not coincide with (3.5.64). Then R = 0 according to (1.4.23)
yields

k′ =
dx

dt
= u ± c, (3.5.77)

where c is defined by (3.5.72), compare (3.5.65). The two comparability
conditions (1.4.23) and (1.4.24) are then given by

2V1 = c(+2ct + ut − ghx), (3.5.78)

V2 = c(−2ct + ut − ghx). (3.5.79)

Since ghx = ag and (∂/∂t)(agt) = ag, one concludes that [3.11]

u + 2c − agt = r = const for
dx

dt
= u + c, (downstream), (3.5.80)

or

u − 2c − agt = s = const for
dx

dt
= u − c, (upstream) (3.5.81)

are constant along the two characteristics. For a downstream wave r is
constant, but s varies. In analogy to (2.10.34) we introduce the Riemann
invariants r and s so that

u =
r + s

2
+ agt, c =

r − s

4
. (3.5.82)

Now we assume the initial and final conditions

t = 0, x = 0, η0 = 0.5m, h0 = 4000m, c ≈ 198m s−1, u0 = 1,

t =?, x = 300 km, η = 30m, h = 5m, c ≈ 18m s−1, u =?.
(3.5.83)
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Assuming a distance Δx of 300 km between x = 0 (location of earthquake)
and the coast, (3.5.68) gives a = −0.0133167 and ag = −0.130637 m s−2.
Thus the initial values r0 and s0 are

r0 = 2
√

g(4000 + 0.5) + 1m s−1, s0 = −395.206537. (3.5.84)

The final state values rN and sN cannot be given, since r and s now depend
on t as a consequence of the varying ocean depth h(x). But a guess may be
allowed in order to find a final s. If the tsunami arrives the coast at an ocean
final depth hf = 5 m and the final crest height ηf is 30 m, then (3.5.65)
yields cf =

√
g(30 + 5) = 18.5, see (3.5.83). On the other hand (3.5.82) and

rf = r0 = 397.20 allow to calculate sf . This gives sf = +323.20. If one is
satisfied by N = 100 steps, then

Δs = s0 − sf = 718.40, δs = δs/N = 7.184. (3.5.85)

Finally, we need a step in time or location. Since we do not know the arrival
time tf of the tsunami at x = 300 km, we choose a step in x.

Δx = 300 000, δx = 3000m. (3.5.86)

Furthermore one has to observe stability criteria for the numerical procedure.
The Courant-Friedrichs-Lewy condition

Δt = 0.9
Δx

2(u + c)max

(3.5.87)

ensures stability of calculation [3.23], [2.20].
The various modern numerical methods are however outside of the scope

of this book. They should consider an arbitrary h(x) �= ax + b.
The continuity equation (3.5.16) and the equation of motion (3.5.7) are

two quasilinear partial differential equations of first order. We shall now
derive a second-order partial differential equation from these two equations.
The result may be termed as wave equation for a dissipationless tsunami.

To derive such a tsunami wave equation we again use a mass variable
transformation. We define

m(x, t) =
∫
j(x, t)dτ, j(x, t) = η(x, t) + h(x),

mx = j = η + h, mt = −uj.
(3.5.88)

Then the continuity equation (3.5.16) takes the form

jt + jxu + uxj = 0, (3.5.89)
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since ht = 0. Using the well known relations (see the analogous equations
(3.5.37) etc)

jt = −ĵmûĵ + ĵt, jx = ĵmĵ,

ut = −̂mûĵ + ût, ux = ûmĵ
(3.5.90)

we again obtain a new form for the continuity equation

ĵt + ĵ2ûm = 0. (3.5.91)

Using again a transformation

ĵ =
1
ŝ
, ĵt = − 1

ŝ2
ŝt, ĵm = − 1

ŝ2
ŝm (3.5.92)

one obtains

ûm − ŝt = 0,
∂

∂m
(û) =

∂

∂t
(ŝ), (3.5.93)

compare with (3.5.46). Defining again a function W (m, t) by

Wt(m, t) = û(m, t), Wm(m, t) = ŝ(m, t) = 1/ĵ (3.5.94)

the continuity equation is satisfied.
Now we consider the equation of motion which may now be written in

the form
ut + uux + gjx = 0. (3.5.95)

After the m-transformation it reads

ût + gĵmĵ = 0. (3.5.96)

The transformation (3.5.92) yields

ŝ3ût − gŝm = 0. (3.5.97)

Insertion of ŝ, ŝm and ût from (3.5.94) yields the tsunami wave equation

W 3
mWtt = gWmm, (3.5.98)

compare with (3.5.52) and (3.5.54).
If a numerical or analytical solution of this nonlinear wave equation were

available, all tsunami variables u(x, t), η(x, t) etc could be calculated.
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Problems

1. Follow calculations from (3.5.61) to (3.5.67) and form differentials us-
ing (3.5.68).

Solution:
±du +

√
g√

η + h
dη − a

√
g√

η + h
d(ut) = 0. (3.5.99)

What conclusions have we to draw from this result? (Formerly we
could make a transformation (2.10.33) η → q → λ → r, s, but instead
of the two leading variables r, s we now have a foreign variable t from
another plane!) This means that the method of section 2.10 can not
be used. (3.5.99) should be solved by numerical methods which are
not within the scope of this book.

2. Use the continuity equation to prove dm/dt = 0. Hint: for a channel
of width B of constant depth the water surface will be given by h(x, t).
Then

m = Bρ0

x+Δx∫
x

h(x, t)dx.

Use ρ = Bρ0h.

Solution [3.15]

d
dt

m(t) = Bρ0
d
dt

x+Δx∫
x

h(x, t)dx = Bρ0

x+Δx∫
x

(
ht +

∂

∂x
(uh)

)
dx = 0.

The integrand replaces the continuity equation.

3. The continuity equation (3.5.42) could be linearized using the transfor-
mation (3.5.45), see (3.5.46). What is the result of this transformation
for the equation of motion (3.5.43)? Hint: use (3.5.49) and (3.5.41).

Solution: the equation for û and ŝ becomes heavily nonlinear.

4. Use a similarity transformation

U(x, t) = xαtβ (3.5.100)

to solve the nonlinear partial differential equation
∂u

∂t
=

∂̇

∂x

(
f(u(x, t))

∂u

∂x

)
(3.5.101)

and to transform it into an ordinary differential equation for arbitrary
f(u). Hint:

ux =
du

dU

∂U

∂x
= u′αxα−1tβ etc, u′ =

du

dU
.
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Solution:

βx2

t
Uu′ = α(α − 1)Uf(u)u′ + α2U2 d

dU
(f(u)u′),

where you have the choice a) x2/t = U , b) x2/t = U2 or x/
√

t = U .

5. A polytropic spherical wave in a gas is described by

ρt + uρr + ρ

(
ur +

2u
r

)
= 0,

ut + uur +
1
ρ
pr = 0, (3.5.102)

∂

∂t

(
pρ−n)+ u

∂

∂r

(
pρ−n) = 0,

where ρ(r, t), u(r, t), p(r, t). Solve this system by similarity transfor-
mation

u(r, t) = αrt−1U(ξ), p(r, t) = α2rκ+2t−2P (ξ),

ρ = rκΩ(ξ), ξ = r−λt, λ = 1/α.
(3.5.103)

Derive the nonlinear ordinary differential equation for U(ξ), P (ξ) and
Ω(ξ).

Solution for the first equation in (3.5.102):

Ω′ξ − ξ(UΩ′ + U ′Ω) + UΩ(3α + ακ) = 0.

6. An unsteady, one-dimensional polytropic gas is represented by the
system of equations [2.13]

ρut + ρuux + px = 0, (3.5.104)

ρt + (ρu)x = 0, (3.5.105)

St + uSx = 0, (3.5.106)

S = S0 + cV ln(V ρ−κ), (3.5.107)

see also (2.5.46). Multiply (3.5.105) by u and add the result to (3.5.104).
This gives

ρtu + utρ + px + ρxu2 + 2ρuux = 0. (3.5.108)

Now satisfy (3.5.105) by the setup

ρ = ϕxx, ρu = −ϕxt (3.5.109)
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and receive from (3.5.108)

(p + ρu2) = ϕtt. (3.5.110)

Express u, p and entropy S by ϕ. Assume S = f(ϕx) and derive the
equation for ϕ(x, t).

Solution:
ϕxxϕtt − ϕ2

xt = ϕκ+1
xx · F (ϕx), (3.5.111)

where F (ϕx) = exp[(1/cV )f(ϕx)].

7. Solve (3.5.111) by the method of the unknown function making the
setup

ϕ(x, t) = xmH(t) (3.5.112)

and F (ϕx) = K ·ϕn
x , where K, m and n(n �= 1) are constants. Integrate

the second-order nonlinear ordinary differential equation for H(t).

Solution [2.13] after a first integration

H ′2 · H−2m/(m−1) =(
2Km(m+κ)/(m−1) · (m − 1)(κ+1)/(κ−1)

)
·
(
H(κ−1)/(m+−1) + β

)
and after a second integration

t
√

2Km(m+κ)/(m−1) · (m − 1)(κ+1)/(κ−1) =

(1 − m)
∫ (

g1−κ + β
)1/2

dg, g = H−1/(m−1).

β is an integration constant. Discuss the solution for β = 0 and β <
>0.

8. Although a soliton may not be adequate to calculate the tsunami en-
ergy density E, (3.4.18) may allow to give an estimate. Calculate ρv2.

Solution:

E = const ρ0c
2
0 · sech4

(√
c0

2
(x − c0t)

)
[kg m−1 s−2 or Jm−3].

(3.5.113)

9. The speed a in (3.5.51) and (3.5.52) has not yet been defined. Assume
(3.5.19), ρ̂ = ρ0η and

a2 =
dp̂

dρ̂
. (3.5.114)
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Calculate a.

Solution:
a2 = g(η + h), (3.5.115)

compare with (3.2.22).

10. Using an expression for a2, one may rewrite the equations for W (m, t).
Thus (3.5.52) reads

Wtt = Wmm · g(η + h) (3.5.116)

and (3.5.54) becomes for κ = 2

−Wtt = W−2
mm · g

2
(η + h). (3.5.117)

Eliminate η by expressing it by a derivation of W .

Solution: For (3.5.52), (3.5.116) one gets

Wtt + Wmm

(
1

Wmρ0
+ gh

)
. (3.5.118)

Here we used (3.5.47). The given boundary condition h(x) or h(m)
enters into the equation. If one would use

ρ̂ = ρ0(η + h) (3.5.119)

see (3.5.18), then (3.5.116) becomes

Wtt = Wmm · g
(

1
ρ0Wm

)
(3.5.120)

and h does not enter the wave equation. Now consider (3.5.117).

Solutions:
−Wtt = W−2

mm · 1
2

(
1

Wmρo
+ gh

)
(3.5.121)

and
−Wtt = W−2

mm · g

2
· 1
ρ0Wm

. (3.5.122)

11. Use (3.5.43), (3.5.46) and (3.5.2) to derive two partial differential equa-
tions for û and ŝ. Derive a second-order equation for ŝ alone.

Solution:

ûm − ŝt = 0, ût + ρ0g/ŝ = 0, ŝtt · ŝ2 = gρ0ŝm. (3.5.123)
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12. Solve the nonlinear second-order partial differential equation for ŝ(m, t)
by a similarity transformation.

Solution: ŝ = U(ζ), ζ = mαtβ, gives α = 1, β = 1 and

ζU ′′U2 = gρ0U
′. (3.5.124)

13. Differential equations of the type (3.5.52) may be solved by travelling
wave solutions. Prove that W = U(ζ), ζ = m−at is actually a solution
of (3.5.52).

14. Transform the equations (3.5.46) and (3.5.43) by using

p̂(m, t) = gρ0η̂(m.t), ŝ = 1/η̂ρ0 (3.5.125)

and choosing û(m, t) = K̂mt(m, t), ŝ(m, t) = K̂mm(m, t) into a partial
differential equation for K(m, t).

Solution: (3.5.46) is automatically satisfied and (3.5.43) together with
(3.5.125) yields

K̂mtt · K̂2
mm − gK̂mmm = 0. (3.5.126)

15. Apply the mass-transformation on the three-dimensional continuity
equation (3.5.20) in the form

ηt + 
v∇η + η∇
v = 0, ∇
v = div
v. (3.5.127)

Hint: use

m(x, y, z, t) =
∫
η(x, y, z, t)dτ, ∇m = 
η,

∂m

∂t
= −∂m

∂x

dx

dt
− ∂m

∂y

dy

dt
− ∂m

∂x

dz

dt
= −∇m
v.

(3.5.128)

Solution:

ηt + 
η2(∇
v) = 0. (3.5.129)

What would one get from (3.5.34) in the form

ρ
∂
v

∂t
+ ρ∇v2

2
+ ∇p = 0, p = ρ0g(η − z). (3.5.130)

Hint: ∇p = ∇p̂ · η̂.
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16. In this section we derived various tsunami wave equations (3.5.50),
(3.5.54), (3.5.98), (3.5.120), (3.5.122), (3.5.126). Test the possibility
to solve these equations by using similarity variables

W (m, t) = W (ζ), ζ = mαtβ.

3.6 Wave equation for dissipative tsunamis

It is well known that taking into account dissipative terms like viscosity or
heat conduction avoids the otherwise infinite steepness and multiple-valued
functions of hydrodynamics [2.16], [2.18], [3.5], [3.20]. Thus it seems to be
of interest to derive a wave equation for dissipative tsunamis. Due to dissi-
pative effects, entropy increases and no potential ϕ(x, y, z, t) describing the
flow velocity exists. Furthermore, a Bernoulli equation can no longer be
derived and the polytropic state equation is no longer valid. The calcula-
tions have to be based on an equation of continuity, an equation of motion
and on the energy theorem. Instead of a pressure-density relation p(ρ) an
expression for the hydrostatic pressure has to be used and it is doubtful if
the equivalence theorem will lead to useful results.

We now investigate the simple case of a one-dimensional dissipative wave
in an incompressible fluid of density ρ0. For a water prism with a base in the
bottom surface x, y and varying height η(x, t), see Fig. 3.5, the continuity
equation (3.5.16) reads

∂

∂t
(η) +

∂

∂x
((η + h)u) = 0, η + h = j,

∂

∂t
(j) +

∂

∂x
(ju) = 0, ht = 0.

(3.6.1)

A derivation has been given in (3.1.4). This equation mainly takes into
account the time variation of the height of the water column over the vary-
ing bottom z = −h(x). The one-dimensional equation of motion including
viscosity reads now

ut + uux + gjx − νuxx = 0, (3.6.2)

see (2.5.36). In the derivation we used p(x, t) = ρ0gj(x, t), ρ = ρ0j and ν is
the kinematic viscosity, see section 2.1. The energy theorem (2.5.38) takes
now the form

j
(
cV Tt + cV uTx + uut + u2ux

)
+ g(uxj + jxu)− νuuxx − νu2

x −
λ

ρ0
Txx = 0.

(3.6.3)
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Here we used U = cV T , see (2.5.40). We now have three nonlinear partial
differential equations for j(x, t), u(x, t) and T (x, t).

As a first step we again make a transformation using the mass variable
m(x, t). For the convenience of the reader we rewrite the formulae (3.5.36)
etc.

m(x, t) =
x∫

x0

j(x, t)dx, (3.6.4)

mx = j(x, t), mt = −ju. (3.6.5)

Functions depending on m and t take again a caret (^). We have for the
derivatives

jt = ĵm · mt + ĵt = −ĵmĵû + ĵt,

ut = ûm · mt + ût = −ûmĵû + ût,

Tt = T̂m · mt + T̂t = −T̂mĵû + T̂t,

(3.6.6)

and also

jx = ĵm · mx = ĵm · ĵ,
ux = ûm · mx = ûm · ĵ,
uxx = ûmm · m2

x + ûm · ĵm = ûmm · ĵ2 + ûmĵm · ĵ,
Tx = T̂m · mx = T̂m · ĵ,
Txx = T̂mm · m2

x + T̂m · ĵx = T̂mmĵ2 + T̂mĵmĵ.

(3.6.7)

Insertion into (3.6.1) gives the transformed continuity equation

ĵt + ĵ2ûm = 0 (3.6.8)

and the equation of motion (3.6.2) becomes

∂

∂t
û + ĵ

∂

∂m

(
gĵ − νûmĵ

)
= 0. (3.6.9)

Finally, the energy theorem (3.6.3) yields

∂

∂t

(
cV T̂ +

û2

2

)
+

∂

∂m

(
gûĵ − νûmûĵ − λ

ρ0
T̂mĵ

)
= 0. (3.6.10)

For water one may assume ρ0 = 1.
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The second step consists of the transformation (2.2.7) in the form

j(x, t) = 1/s(x, t), ĵ(m, t) = 1/ŝ(m, t),

ĵt = −ŝt/ŝ
2, ĵm = −ŝm/ŝ2.

(3.6.11)

This transforms the continuity equation (3.6.8) into a linear equation

ûm − ŝt = 0 (3.6.12)

and the equation of motion (3.6.9) yields

∂

∂t
(û) +

1
ŝ

∂

∂m

(
−νûm

1
ŝ

+
g

ŝ

)
= 0. (3.6.13)

The third step shall introduce a new function. We define S(m, t) by

Sm = ŝ(m, t) = 1/ĵ(m, t), St = û(m, t), (3.6.14)

so that ûm = Stm and ŝt = Smt satisfy the continuity equation (3.6.12).
Furthermore we have

ût = Stt, ûm = Stm, ûmm = Stmm, ŝm = Smm. (3.6.15)

Inserting into the equation of motion (3.6.13) one obtains a nonlinear partial
differential equation of third order for S(m, t)

S3
mStt + Smm (νStm − g) − νSmStmm = 0. (3.6.16)

For ν → 0, this equation is identical with (3.5.98). (3.6.16) replaces the
continuity equation which is of first order and the equation of motion which
is of second order. It may be called a tsunami wave function for a viscous,
but not heat conducting fluid.

The fourth step considers the full energy theorem (3.6.10). Introduc-
tion of a new function V (m, t)

Vm = cV T̂ +
û2

2
, Vt = gûĵ − νûmûĵ − λ

ρ0
T̂mĵ (3.6.17)

immediately satisfies (3.6.10) due to Vmt = Vtm. Since (3.6.10) is of second
order, a combination with (3.6.16) which is of third order should yield a
system of partial differential equations of fifth order describing a tsunami in
a viscous and heat-conducting fluid.
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From (3.6.17) we obtain

T̂ =

(
Vm − û2

2

)
1
cV

=
(

Vm − 1
2
S2

t

)
1
cV

,

T̂m =
1
cv

(Vmm − StStm) .

(3.6.18)

Insertion into (3.6.17) yields the partial differential equation for V (m, t) in
the form

SmVt = St

(
g + Stm

(
λ

ρ0cV
− ν

))
− λ

ρ0cV
Vmm. (3.6.19)

Having solved (3.6.16) for S(m, t) one may solve (3.6.19) for V (m, t). Since
(3.6.16) is of third order and (3.6.19) is of second order we have a system of
fifth order. If a solution of (3.6.16) has been found, it is necessary to find
the inverse functions. Since

dx̂

dt
= û, x̂(m, t) =

∫
ûdt + f(m), (3.6.20)

where f(m) is an arbitrary function to be determined by a boundary con-
dition. Due to (3.6.14) one also has

x̂ =
∫

ûdt =
∫

Stdt = S(m, t). (3.6.21)

On the other hand, (3.6.5) and (3.6.11) demonstrate

∂m

∂x
= ĵ(m, t),

∂x

∂m
= ŝ(m, t), (3.6.22)

which yields

x̂(m, t) =
∫

ŝ(m, t)dm =
∫

Smdm = S(m, t) + g(t), (3.6.23)

where we used (3.6.14) and where g(t) is an arbitrary function to be deter-
mined by an initial condition. The flow speed û(m, t) and the specific volume
ŝ(m, t) as well as the crest height ĵ(m, t) may be calculated by integrations
using (3.6.15). Thus one has

û(m, t) = St(m, t), ŝ(m, t) = Sm(m, t) = 1/ĵ(m, t). (3.6.24)
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Partial differential equations of higher order have a large solution manifold.
There are many solutions which do not describe tsunamis. To test solutions
of (3.6.16) we wrote the following Mathematica code:

(* Solve 3.6.16 *)Clear[EQ,S,a,b,c,d]
EQ=(D[s[m,t],{m,1}])^3*D[S[m,t],{t,2}]+
D[S[m,t],{m,2}]*ν*D[S[m,t],{t,1},{m,1}]-
g*D[S[m,t],{m,2}]-ν*D[S[m,t],{t,1},{m,2}]*D[S[m,t],{m,1}];

(* 1.solution *)Clear[S];b=1.;
S[m_,t_]=a*t^b+m;
Simplify[EQ];

(* 2.solution *)Clear[S,a,b,c];
S[m_,t_]=a*t*(Log[t]-1)+t^b;
Simplify[EQ];

(* 3.solution *)Clear[S,a,b,c];
S[m_,t_]=a*m+t;
Simplify[EQ]; (3.6.25)

These three solutions atb + m, at(log t− 1)+ tb and am+ t are primitive
and do not describe a tsunami. One also could play around with a program
using similarity transformations. Such a program reads:

(* Similarity solution of (3.6.16) =
EQ=(D[s[m,t],{m,1}])^3*D[S[m,t],{t,2}]+
D[S[m,t],{m,2}]*nu*D[S[m,t],{t,1},{m,1}]-
g*D[S[m,t],{m,2}]-nu*D[S[m,t],{t,1},{m,2}]*D[S[m,t],{m,1}] *)
Clear[a,b,S,Z,U,Zt,Zm,St,Stt,Stt1,Stt2,Sm,SmZ,Smm,Smm1,Smm2,
Stm1,Stm2,Stmm1,Stmm2,Stmm,ERG,AS,A1S,A2S,A3S,
ZERG,StZ,SttZ,SmmZ,StmZ,StmmZ,g,nu];
Off[General::spell1];Off[Set::write];Off[General::spell];
S[m_,t_]=U[Z];Z[m_,t_]=m^a*t^b;
Zt[m,t]=D[Z[m,t],t];
Zm[m,t]=D[Z[m,t],m];
Sm[m,t]=D[S[m,t],Z]*Zm[m,t] /. m^a*t^b->Z[m,t];
SmZ[m,z]=a*m^(-1)*Z*U′[Z];
St[m,t]=D[S[m,t],Z]*Zt[m,t];
StZ=b*Z*t^(-1)*U′[Z];
Stt1[m,t]=D[(St[m,t]*Zt[m,t]),Z];
Stt2[m,t]=D[St[m,t],t];
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Stt[m,t]=Stt1[m,t]+Stt2[m,t];
SttZ=(-1+b)*b*t^(-2)*Z*U′[Z]+b^2*t^(-2)*Z^2*U′′[Z];
Smm1[m,t]=D[Sm[m,t]*Zm[m,t],Z];
Smm2[m,t]=D[Sm[m,t],m];
Smm[m,t]=Smm1[m,t]+Smm2[m,t];
SmmZ=(-1+a)*a*m^(-2)*Z*U′[Z]+a^2*m^(-2)*Z^2*U′′[Z];
Stm1[m,t]=D[St[m,t]*Zm[m,t],Z];
Stm2[m,t]=D[St[m,t],m];
Stm[m,t]=Stm1[m,t]+Stm2[m,t];
StmZ=a*b*m^(-1)*t^(-1)*Z*U′[Z]+a*b*m^(-1)*t^(-1)*Z^2*U′′[Z];
Stmm1[m,t]=D[Stm[m,t]*Zm[m,t],Z];
Stmm2[m,t]=D[Stm[m,t],m];
Stmm[m,t]=Stmm1[m,t]+Stmm2[m,t];
Simplify[Stmm[m,t]];
StmmZ=a*b*m^(-2)*t^(-1)*Z*((-1+a)*U′[Z]+
Z*((-1+3*a)*U′′[Z]+a*Z*U′′′[Z]));
AS[m,t]=Simplify[-g*Smm[m,t]];
A1S[m,t]=Simplify[Stt[m,t]*Sm[m,t]^3];
Simplify[Stt[m,t]*Sm[m,t]^3];
A2S[m,t]=Simplify[-nu*Stmm[m,t]*Sm[m,t]];
A3S[m,t]=Simplify[nu*Stm[m,t]*Smm[m,t]];
ERG=Simplify[AS[m,t]+A1S[m,t]+A2S[m,t]+A3S[m,t]]; (3.6.26)

Here we used nu instead of the greek letter ν, since the TeX transforma-
tion of Mathematica codes does not like greek letters.

Another program assuming a travelling wave solution might also be of
theoretical interest, but does neither present tsunami solutions. Such a
program could read

(* Travelling wave solution of (3.6.16) *)
Clear[S,Sm,Smm,Smmt,St,Stt,Stm,Equ];Off[General::spell1];
S[m_,t_]=F[m-a*t] /. m-a*t-> w;
Sm=D[F[m-a*t],{m,1} ] /. m-a*t-> w;
Smm=D[F[m-a*t],{m,2}] /. m-a*t-> w;
Smmt=Simplify[D[F[m-a*t],{m,2},{t,1}] ] /. m-a*t-> w;
St=Simplify[D[F[m-a*t],{t,1}] ] /. m-a*t-> w;
Stt=D[F[m-a*t],{t,2}] /. m-a*t-> w;
Stm=Simplify[D[F[m-a*t],{m,1},{t,1}] ] /. m-a*t-> w;
Equ=Sm^3*Stt+Smm*(nu*Stm-g)-nu*Sm*Smmt

a2 F′ [w]3 F′′ [w] + F′′ [w] (-g - a nu F′′ [w]) + a nu F′ [w] F(3) [w]
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DSolve[Equ==0,F[w],w]

Solve::tdep :
The equations appear to involve the variables to be solved for in an essen-
tially non-algebraic way.

DSolve[a2 F′ [w]3 F′′ [w] + F′′ [w] (-g - a nu F′′ [w]) +
a nu F′ [w] F(3) [w] == 0, F[w], w] (3.6.27)

(* If the local speed of the wave is given, this equation can
be solved numerically. One may put the velocity a equal to a
given numerical value or equal to a function of the flow speed,
see (2.9.25) or similar *)

It seems that Mathematica is unable to solve such nonlinear ordinary
differential equation. Numerical methods should again be considered.

It is not asthonishing that the latest publications of the year 2006 concern
various numerical methods to handle similar problems. Dam-break wave-
fronts, especially propagating through a channel of varying depth exhibit
some similarity with shallow water tsunamis. But brand new and quite old
methods to solve numerically such problems are available [3.24].

Problems

1. Variational calculus can help to solve differential equations because
direct methods to solve the variational problem connected with a dif-
ferential equation may be easier (Gröbner [3.16], Holz [3.24]). If one
designates by η(x, t) the location of the water surface above a bottom
of varying profile h(x), then for a width equal to B = 1 of the fluid,
the potential energy U is given by

U =
1
2
gρ0

a∫
0

η2(x, t)dx (3.6.28)

and the kinetic energy T is given by

T =
ρ0

2

a∫
0

dx

h(x)∫
η

(
u2 + v2

)
dz =

ρ0

6

a∫
0

(h(x) − η(x, t)) · (3.6.29)

· [3u2 + h′2
2 u2 + h′u(ηxu + ηt) + (ηxu + η2

t )
]
dx.
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a is the length of the fluid mass in the x-direction. In the derivation of
(3.6.29) it has been assumed that the horizontal component u(x, t) of
the flow speed does not depend on the vertical coordinate z. Further-
more for v(x, z, t) it has been assumed that the vertical component
may be expressed by

v =
h(x + udt) − h(x)

dt
= h′(x)u(x, t), for z = h (3.6.30)

and by

v = ηx(x, t)u(x, t) + ηt(x, t), for z = η. (3.6.31)

Applying Hamilton’s principle

Ω =
t2∫

t1

(T − U)dt (3.6.32)

derive the appartaining differential equations for η(x, t) for h(x) =
h0 = const and for h(x) = h0 + αx, α < 0.

Hint: the introduction of a new function

w(x, t) =
x∫

0

η(x, t)dx (3.6.33)

may help but is not necessary.

Solutions (Gröbner):

Ω =
ρ0

6

t2∫
t1

dt

a∫
0

[
(3 + h′2)w2

t + h′wxxw2
t + w2

xxw2
t

h − wx
+

h′wtwxt + 2wtwxxwxt + (h − wx) w2
xt − 3gw2

x

]
dx,

(3.6.34)

where w(x, t) is subject to the two boundary conditions

w(0, t) = w(a, t) = 0. (3.6.35)

2. Now treat the case of a plane bottom h(x) = h0. Assume a shallow
water condition, that means that third powers of w may be neglected.
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Solution:

Ω =
ρ0

6

t2∫
t1

at

a∫
0

[
3
h0

w2
t + h0w

2
xt − 3gw2

x

]
dx (3.6.36)

and
3
h0

wtt − h0wxxtt − 3gwxx = 0 (3.6.37)

is the appartaining differential equation. If the shallow water approxi-
mation (v << u,w2

xt ≈ 0) is assumed, then the local wave propagation
speed is given by

√
gh0.

3. Now treat the case h(x) = h0+αx, α < 0 for shallow water conditions.
Neglecting the vertical component, the solution is

(3 + α2)wtt − 3gh(x)wxx = 0. (3.6.38)

4. For large depth one may assume that the horizontal component u
varies with depth z. Assume

u(x, z, t) =
h(x) − z

h(x)
u0(x, t), (3.6.39)

u0(x, t) =
2h(x)

(f(x) − η(x, t))2

x∫
0

ηt(x, t)dx. (3.6.40)

For the vertical componnent v one may assume

v(x, z, t) =
h′(z − η) + ηx(h − z)

h − η
u +

(h − z)2

(h − η)2
. (3.6.41)

Neglecting all higher powers and assuming h = h0 (α = 0) derive the
Euler equation of the variational principle.

Solution:
4
3
h0 − 1

5
h0wxxtt − gwxx = 0. (3.6.42)

5. To model tsunami propagation over large distances, the Earth’s cur-
vature must be taken into account. Titov and Gonzales (NOAA
Technical Memorandum ERL PMEL-112) proposed the MOST Model.
Discusss the nonlinear shallow-water wave equations in spherical co-
ordinates with a Coriolis term.
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Hint: λ is the geographical longitude, Φ is latitude, d(λ,Φ, t) is the
undisturbed water depth, h(λ,Φ, t) is the water surface perturbation
and u(λ,Φ, t) and v(λ,Φ, t) are the depth-averaged flow velocity com-
ponents. R is the Earth radius.

Solution:

ht +
(uh)λ + (vh cos Φ)Φ

R cos Φ
= 0, (3.6.43)

ut +
uuλ

R cos Φ
+

vuΦ

R
+

ghλ

R cos Φ
− gdλ

R cos Φ
− fv = 0,

vt +
uvλ

R cos Φ
+

vvΦ

R
+

ghΦ

R
− gdΦ

R
+ fu = 0.

(3.6.44)

f = 2ω sin Φ is the Coriolis parameter, see section 4.2.

6. As an exercise for similarity solutions and for Mathematica, solve
(3.6.43).

Solution:

(* MOST.nb [3.2] Spherical coordinates and
similarity transformations *)

Clear[ζ,a,b,c,d,e,f,g,U,V,H,ha,u,v,h,
ut,ul,uf,vl,vf,vt,ht,hl,hf,hat,hal,haf,Co];
ζ[t_λ_]=t^a*λ^b;g=f;g=d;e=-1;
u[ζ[t,λ],t]=U[ζ[t, λ],Φ]*t^c*λ^d;
v[ζ[t,λ],Φ]=V[ζ[t,λ], Φ]*t^e*λ^f;
h[ζ[t,λ],Φ]=H[ζ[t,λ], Φ]*λ^g;
ha[ζ[t,λ],Φ]=ha[ζ[t, λ],Φ];
ut=D[u[ζ[t,λ],Φ]*t^c*λ^d,t];
ul=D[u[ζ[t,λ],Φ]*t^c*λ^d,λ ];
uf=D[u[ζ[t,λ],Φ]*t^c*λ^d,Φ ];
vf=D[v[ζ[t,λ],Φ]*t^c*λ^d,Φ ];
vt=D[v[ζ[t,λ],Φ]*t^c*λ^d,t];
vl=D[v[ζ[t,λ],Φ]*t^c*λ^d,λ ];
ht=D[h[ζ[t,λ],Φ]*t^c*λ^d,t];
hl=D[h[ζ[t,λ],Φ]*t^c*λ^d,λ ];
hf=D[h[ζ[t,λ],Φ]*t^c*λ^d,Φ ];
hal=D[ha[ζ[t,λ],Φ],λ];
haf=D[ha[ζ[t,λ],Φ],Φ];
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Co=ht+(ul*h+hl*u+vf*h*Cos[Φ]+v*hf*Cos[Φ]-
v*h*Sin[Φ])/(R*Cos[Φ])

c t−1+c λ2 d H[ta λb,Φ] + a t−1+a+c λb+2d H(1,0) [ta λb, Φ] + 1
R

(Sec[Φ] (-h v Sin[Φ] + tc v λ2 d Cos[Φ] H(0,1) [ta λb,Φ] +
h t−1+c λd+f Cos[Φ] V(0,1) [ta λb, Φ] +
u (2 d tc λ−1+2d H[ta λb, Φ]+
b ta+c λ−1+b+2d H(1+0) [ta λb, Φ]) +
h (2 d t2 c λ−1+2 d U[ta λb, Φ] + b ta+2 c λ−1+b+2 d U(1,0) [ta λb, Φ])))

(* Change of similarity variable *)
Clear[ζ,a,b,c,d,e,f,g,U,V,H,u,v,h,ut,ul,uf,vl,
vf,vt,ht,hl,hf,Co];
ζ[Φ_,λ_]=Φ^a*λ^b;c=0;e=-1;
u[ζ[Φ, λ],t]=U[ζ[Φ, λ ],t]*t^c*λ^d;
v[ζ[Φ, λ],t]=V[ζ[Φ, λ],Φ]*t^e*λ^f;
h[ζ[Φ, λ],t]=H[ζ[Φ, λ],Φ]*λ^g;
ut=D[u[ζ[Φ, λ],t]*t^c*λ^d,t];
ul=D[u[ζ[Φ, λ],t]*t^c*λ^d,λ];
uf=D[u[ζ[Φ, λ],t]*t^c*λ^d,Φ];
vf=D[v[ζ[Φ, λ],t]*t^c*λ^d,Φ];
vt=D[v[ζ[Φ, λ],t]*t^c*λ^d,t];
vl=D[v[ζ[Φ, λ],t]*t^c*λ^d,λ];
ht=D[h[ζ[Φ, λ],t]*t^c*λ^d,t];
hl=D[h[ζ[Φ, λ],t]*t^c*λ^d,λ];
hf=D[h[ζ[Φ, λ],t]*t^c*λ^d,Φ];
Co=ht+(ul*h+hl*u+vf*h*Cos[Φ]+v*hf*Cos[Φ]-
v*h*Sin[Φ])/(R*Cos[Φ])
1
R

(
Sec[Φ] ( -h v Sin[Φ] + v λd+g Cos[Φ] (H(0,1) [λb Φa, Φ]) +

a λb Φ−1+a H(0,1) [λb Φa, Φ]) +
u ((d + g) λ−1+d+g H[λb Φa, Φ]+ bλ−1+b+d+g Φa H(0,1) [λb, Φa, Φ])+
h (2 d λ−1+2 d U[λb Φa, t] + b λ−1+b+2d Φa U(1,0) [λb Φa, t]) +
1
t
(hλd+f Cos [Φ] (V(0,1) [λb Φa, Φ] + a λb Φ−1+a V(1,0) [λb Φa, Φ]))

)
Remark: The first choice for ζ gives g = f = d, e = −1 and the
contradictions c− 1 = c = 2c and f = d− 1. The second choice yields
c = 0, e = −1, d+ g = d+ g− 1 = d+ f and t−1 as well Φ−1 remains.
We have to conclude that similarity solutions are not feasible.
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3.7 The tsunami wave equations

In sections 3.5 and 3.6 we derived several wave equations. Some of them
contained a const or a wave speed and were discussed in problem 16 of
section 3.5 with disappointing results. We now concentrate on a simple
wave equation in two dimensions, space m and time t. We start with the
continuity equation (3.5.46) which we rewrite as

ûm − ŝt = 0, (3.7.1)

where û(m, t), ŝ(m, t). u(x, t) = û(m, t) is the flow speed in the x-direction
and s(x, t) = ŝ(m, t) = 1/η̂ is defined by (3.5.125). η(x, t) = η̂(m, t) is the
local distance between the ocean bottom and the ocean surface defined by
h(x). This definition has the advantages, that the profile h(x) of the ocean
bottom does not enter into the wave equation, but has to be considered in
a boundary condition. The mass variable is again defined by (3.5.36) to
(3.5.39).

Now we consider the equation of motion for a dissipationless tsunami,
which is given by (3.5.43). We rewrite it as

ût + p̂m = 0 (3.7.2)

which is a partial differential equation of first order. p(x, t) = p̂(m, t) is the
hydrostatic pressure given by (3.5.125). With ρ0 = 1, one has

p̂(m, t) = gη̂(m, t) = g/ŝ(m, t). (3.7.3)

Insertion into (3.7.2) yields

ût +
∂

∂m
(gη̂) = ût +

∂

∂m
(g/ŝ) = ût − g

ŝ2
ŝm = 0, (3.7.4)

which is now a non-linear differential equation.
To solve the two equations (3.7.1) and (3.7.2), we make a similarity setup

z = matb, (3.7.5)

where we define the new wave function K(m, t) → K(z) by

∂2K(m, t)
∂m∂t

= Kmt(m, t) = û(m, t)

∂2K(m, t)
∂m2

= Kmm(m, t) = ŝ(m, t) = 1/η̂(m, t).

(3.7.6)
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Thus we have
ûm = Kmtm = ŝt = Kmmt (3.7.7)

which satisfies the continuity equation (3.7.1). The equation of motion
(3.7.4) now assumes the form

Kmtt − gKmmmK−2
mm = 0 (3.7.8)

which may be called a tsunami wave equation, compare with (3.5.126). In
order to transform this nonlinear partial differential equation of third order
into an ordinary differential equation for K(z) we use (3.7.5). Thus we have

Km =
∂K

∂m
=

dK

dz
· ∂z

∂m
= K ′ama−1tb = m−1aK ′z,

Kmm = ŝ = K ′′a2m2a−2t2b + K ′a(a − 1)ma−2tb =

m−2(K ′′a2z2 + K ′a(a − 1)z) = m−2A,

Kmt = û = K ′′ama−1tb · mabtb−1 + K ′ama−1mabtbb−1 =

m−1t−1(K ′′abz2 + K ′abz).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7.9)

To be able to insert into the two partial differential equations we need higher
derivatives of K(m, t) = K(z). One obtains

Kmmm = ŝm = m−3
(
K ′′′a3z3 + K ′′ (a2(2a − 2)z2+

a2(a − 1)z2
)
+ K ′a(a − 1)(a − 2)z

)
= m−3B,

Kmtt = ût = m−1t−2
(
K ′′′ab2z3 + K ′′ (a(2b − 1)z2+

ab2z2
)
+ K ′ab(b − 1)z

)
= m−1t−2C.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.7.10)

Inserting into (3.7.8) we obtain after multiplication by m3

m−2t−2A2C − gB = 0, (3.7.11)

which indicates that the choice a = −2, b = −2 produces an ordinary differ-
ential equation z2CA2 − gB = 0 or

z2
(
4K ′′z2 + 6K ′z

)2 (−8K ′′′z3 + 2K ′′z2 − 12K ′z
)−

g
(−8K ′′′z3 − 36K ′′z2 − 24K ′z

)
= 0, g = 9.81m s−2.

(3.7.12)

If initial conditions at z = c are given for K(c),K ′(c) and K ′′(c), equation
(3.7.12) can be integrated numerically using the Mathematica command
NDSolve.
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On the other hand, the equation (3.7.12) can be simplified by the mod-
ified setup defining U(m, t) = U(z)

Ut = û, Um = ŝ (3.7.13)

which replaces (3.7.6). It also satisfies (3.7.1). Instead of (3.7.8) we now
have

U2
mUtt − gUmm = 0. (3.7.14)

This corresponds to a formal integration of (3.7.8) with respect to m. But
whereas (3.7.8) could be transformed into an ordinary differential equation,
(3.7.14) seems to resist to a similarity transformation of the type (3.7.5).

Now we discuss dissipative tsunamis. The continuity equation (3.7.1)
does not change, but the equation of motion does. Neglecting heat conduc-
tion effects which do not enter into the equation of motion and which only
appear in the energy theorem we may use

ut + uux + px − νuxx = 0, (3.7.15)

which transforms into

ût − g

ŝ2
ŝm − νûmm

1
ŝ2

+ ν
ûmŝm

ŝ3
= 0. (3.7.16)

We now again define a function K(m, t) = K(z) by the similarity setup
(3.7.9) etc.. Then (3.7.16) yields

KmttK
3
mm − gKmmKmmm − νKmmKmtmm + νKmtmKmmm = 0. (3.7.17)

For ν = 0 one comes back to (3.7.8). It seems that (3.7.17) resists to a
similarity transformation of the type (3.7.5), as other equations exhibiting
a third power term do. The cause for this behavior seems to be the term
uxx.

We now consider a numerical solution of (3.7.12). If Kmt and Kmm are
known, then û(m, t) and η̂(m, t) are also known. Then u(x, t) and η(x, t)
can be calculated from the following considerations. According to (3.5.37)
one has

dm(x, t)
dt

=
∂m

∂x

dx

dt
+

∂m

∂t
= 0,

(
∂m

∂x

)
t = η(x, t), (3.7.18)

so that again
∂m

∂t
= −∂m

∂x

dx

dt
= −η(x, t)u(x, t) (3.7.19)

is valid. Now for any function F (x, t) = F̂ (m(x, t), t), be it
u(x, t) = û(m(x, t), t), η(x, t) or x = x̂(m, t), the following formulae are
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valid [2.18]:

∂F (x, t)
∂x

=
∂F̂ (m(x, t), t)

∂m

∂m

∂x
,

∂F

∂t
=

∂F̂

∂m

∂m

∂t
= −F̂mηu+

∂F̂

∂t
. (3.7.20)

Furthermore insertion into the total differential

dF/dt for F (x, t) = F̂ (m(x, t), t)

yields
dF

dt
=

(
∂F̂

∂t

)
m =

∂F

∂x
η +

∂F

∂t
. (3.7.21)

If one inserts x = x̂(m, t) into F , one obtains

F (x̂(m, t), t) = F̂ (m, t). (3.7.22)

This results in

F̂m = Fxx̂m = Fx/η, F̂t = Fxx̂t + Ft = Fxu + Ft. (3.7.23)

Then from (3.7.20) one has

∂m

∂x
= η =

1
x̂m

. (3.7.24)

Now let us assume that a solution

û = ϕ1(m, t), η̂ = ϕ2(m, t) (3.7.25)

is known and let the inverse functions be designated by f1 and f2, then

m = f1(û, η̂), t = f2(û, η̂). (3.7.26)

Due to x̂t = û, one has

x̂ =
∫

ϕ1(m, t)dt =
∫

ûdt,

x̂ =
∫

ϕ2(m, t)dt =
∫ dm

η̂
.

(3.7.27)

On the other hand, if f1 and f2 are known, then m = m(û, η̂), t = t(û, η̂).
Using

Δ =

∣∣∣∣∣ mu tu
mη tη

∣∣∣∣∣ (3.7.28)
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one may write [2.18]

ûm = tη/Δ, ût = −mη/Δ, η̂m = −tu/Δ, η̂t = mu/Δ. (3.7.29)

Considering that x and t are functions of u and η, one notes

ux = yη/D, ut = −xη/D, ηx = −tu/D, ηt = xu/D, (3.7.30)

where

D =

∣∣∣∣∣ xu tu
xη tη

∣∣∣∣∣ . (3.7.31)

The main problem is now, how to find the solutions from the ordinary differ-
ential equation (3.7.8). After neglection of integration constants (signifying
a translation on the x-axis) we obtain from (3.7.26) and (3.7.27)

x̂ =
∫

ûdt =
∫

Kmtdt = Km; x̂t = û,

x̂ =
∫ dm

η̂
=
∫

Kmmdm = Km; x̂m = 1/η̂.
(3.7.32)

The next necessary steps would be to solve first (3.7.8) and then transit

K(z(m, t)) → K(m, t) → Kmt(m, t) → û(m, t) → u(x, t).

We use the following Mathematica command to solve (3.7.8) numerically

(* K2 Solve (3.7.12)
Integration starts at z=c with initial conditions d,e,f
and ends at z=h *)

Clear[EQ,EQT,TA,z,K,K1,K2,K3,K4,KS1];
Off[NDSolve::ndnum];g=9.81;
EQ=z^2*(4*K’’[z]*z^2 + 6*K’[z]*z)^2*(-8*K’’’[z]*z^3+
2*K’’[z]*z^2 - 12*K’[z]*z) -
g*(-8*K’’’[z]*z^3 - 36*K’’[z]*z^2 - 24*K’[z]*z);
Clear[c,d,e,f,h,z];c=0.5;d=0.1;e=0.01;f=0.001;h=10.;
z[m_,t_]=m^(-2)*t^(-2);
EQT=NDSolve[{EQ==0, K[c]==d, K’[c]==e, K’’[c]==f}, K, {z,c,h}];
K1[z_]=Evaluate[K[z] /.%];
K2[z_]=Evaluate[K’[z] /.%%];
K3[z_]=Evaluate[K’’[z] /.%%%];
K4[z_]=Evaluate[K’’’[z] /.%%%%];

Plot3D[z[m,t],{m,c,h},{t,c,h},ColorOutput->None,PlotPoints->30]
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This command generates Fig. 3.7. It is interesting, that the solutions are
quite insensible to modifications of the initial conditions (c,d,e,f).
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Fig. 3.7. Plot of z(m, t)

The command Plot[Evaluate[K1{z],{z,c,h}] delivers Fig. 3.8.
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Fig. 3.8. Plot of K1(z)

Further work may concentrate on the definition of
KS1{x_,t_]=Evaluate[K[x^(-2)*t^(-2)]/. n%
on numerical integrations using the NIntegrate etc.

Problems

1. The wave equation for K(z) is based on the two equations (3.7.1) and
(3.7.2). Prior to the mass-variable transformation they may be written



160 3 Water waves

in the following form

ut + uux + gηx = 0, (3.7.33)

ηt + uxη + ηxu = 0. (3.7.34)

This system has the similarity solution

u(x, t) = u((xt−1), η(x, t) = η(xt−1). (3.7.35)

The Mathematica command Plot3D[u[xt],{x, },{t }] can pro-
duce a figure. Does u(x, t) describe a steepening wave?

Solution: No. Why?

2. Solve (3.7.34) and

ut + uux + gηx − νuxx = 0 (3.7.36)

by the setup

x̂ + amx, t̂ = art, û = apu, η̂ = asη.

Hint:

ut =
∂u

∂û

∂û

∂t̂

∂t̂

∂t
= ar−pût̂.

Solution: −p + r = −2p + m = s + m = 2m − 2p for p, r,m, s from
(3.3.36).

3. The Lie series method [1.1] is also able to solve initial value prob-
lems of ordinary differential equations. We present two examples. To
demonstrate the advantage of the method we choose examples with
known closed analytical solutions.
Solve

F ′′(r) +
1
r
F ′(r) − k2F (r) = 0. (3.7.37)

Define

Z =
dF

dr
, −1

r
− Z + k2F =

dZ

dr
(3.7.38)

and find

F (r) = Z1(r), Z =Z2(r)=ϑ1(Z0, Z1, Z2), r=Z0, ϑ2(r)=−1
r
Z + k2F,

dZ0

dr
= ϑ0 = 1,

dZ1

dr
= ϑ1(Z0, Z1, Z2),

dZ2

dr
= ϑ2(Z0, Z1, Z2).
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With the initial conditions r = 0, Z0(0) = 0, Z1(0) = x1, Z2(0) = x2

the solution is

Zi(r) =
∞∑

ν=0

rν

ν!
(DνZi)r=0 , (3.7.39)

where

D =
∞∑

ν=0

ϑν (Z0, Z1, . . . Zn)
∂

∂Zν
. (3.7.40)

The reader might ask why this complicated sorcery since the Bessel
functions as solutions are very well known and tabulated numerically.
There are, however, engineering problems exhibiting very large argu-
ments (∼ 50) so that even large mainframes have problems with the
numerical calculations. Now the Lie series method offers a way to
avoid the Bessel function by splitting the problem into

Fcyl = Fplane − Fcorrection. (3.7.41)

The functions ϑν must be holomorphic (no singularities). Now ϑ2 has a
pole at r = 1, so that a transformation is necessary. Let dμ = rμ−rμ−1

the thickness of the μ-th radial domain, one may put ξ = r − rμ−1,
where ξ and r are variables and rμ−1 is the radial distance of the μ-th
subdomain. Then

dZ0

dξ
= 1 = ϑ0,

dZ1

dξ
= Z2 = ϑ1,

dZ2

dξ
=

Z2

rμ−1 + ξ
+ k2Z1 = ϑ2

(3.7.42)

and the new operator reads

D =
∂

∂Z0
+ Z2

∂

∂Z1
+
{

k2Z1 − Z2

rμ−1 + Z0

}
∂

∂Z2
. (3.7.43)

The initial conditions are now F0 = F (ξ = 0), F ′(0) = dF (ξ = 0)/dξ,
so that the solution now reads

Z1 ≡ F (ξ) = F0 cosh kξ +
F ′

0

k
sinhkξ −

∞∑
ν=0

ξν fν

ν!
, (3.7.44)

= Fplane − Fcorr.

Here fν(Z0, Z1, Z2) is evaluated for Z0 = ξ = 0, Z1 = F0, Z2 = F ′
0 and

fν = k2fν−2 + Dν−2
[

Z2

rμ−1 + Z0

]
. (3.7.45)
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The operations can be calculated by recursion

Dk
[ Z2

rμ−1 + Z0

]
=

(l − 2)k2

rμ−1 + Z0
Dl−3

[ Z2

rμ−1 + Z2

]
+

k2Dl−2
[ Z2

rμ−1 + Z0

]
+

l + 1
rμ−1 + Z0

Dl−1
[ Z2

rμ−1 + Z0

]
.

(3.7.46)

Since the analytic solution is known, one can compare.
For F0 = F ′

o = 1, k = 0.1, rμ−1 = 100,d = 20 one has

Fcorrection = Fplane − Fanalytic =

= cosh 2 +
sinh 2
0.1

− 10K1(10)I0(12) + I1(10)K0(12) +

+100(K0(10)I0(12) − I0(10)K0(12) = 3.3 667,

whereas the Lie solution up to D4 gives 3.3 664, I and K are the
modified Bessel functions.

4. Investigate if t log m, mt2, t2/3m−1, m2t2/3, m2+amt2 satisfy (3.7.8).
For Km(−ct/m) one should obtain u = −c/m, x = −ct/m,K =
−ct log m, Kmt = −c/m.



4. Hurricanes

4.1 Terminology and basics

Various names are applied to rotating wind systems of a stormy charac-
ter. Basically in meteorology one uses the term cyclone for an area of
relatively low pressure which exhibits a revolving air circulation. In such
a low-pressure area the wind circulates counterclockwise on the northern
hemisphere and clockwise on the southern hemisphere. On the other hand,
an area with a pressure higher than in the surroundings is called an an-
ticyclone. The circulation of an anticyclone is clockwise in the northern
hemisphere and counterclockwise in the southern hemisphere. This behav-
ior will be explained in the next section.

Cyclones are connected with bad weather and rain. In meteorology cy-
clones are classified as tropical cyclones, also called typhoons or hurricanes
and extratropical cyclones. These cyclones are generated by a strong vertical
temperature gradient perpendicular to the wind flow speed. The Coriolis
force, see section 4.2, delivers the necessary instability at latitudes greater
than about 5 degrees. Tropical cyclones are caused by low air pressure areas
and the Coriolis force. The US Atlantic Oceanographic and Meteorological
Laboratory [4.1] defines some factors able to form a tropical hurricane:

1. Warm ocean water of at least 26.5◦ C. (Below this value the atmosphere
is too stable).

2. An atmosphere which cools such that an unstable convection occurs.
The thunderstorm itself allows the liberation of the heat stored in the
ocean water. Heating from below may be up to 250 Wm−2.

3. A minimum distance (> 500 km) from the equator, so that the Cori-
olis force is strong enough.

Hurricanes can produce tornadoes and waterspouts.
In the proper original sense, a hurricane is a tropical storm occurring

in the West Indies. These storms last roughly only in the months June
to October, but have been observed not only in the Caribbean, the Gulf of
Mexico or in the Pacific, but also on the northern coast of Australia (cyclone
Larry with 290 km h−1) or near Hamburg.

Hurricanes need a pre-existing weather condition to be generated. Such
conditions are mainly an ocean water surface temperature of about 26◦ C
and pre-existing convective wave perturbations (“easterly waves”). Such
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waves are commonly embedded into trade winds. A hurricane is a tropi-
cal cyclone generated by a low pressure system and is accompanied by a
thunderstorm. Severe cyclonic disturbances in low latitude are also called
tropical storm. Typhoon is a local name of a tropical storm in the western
North Pacific. Typhoons are distinguished from tropical storms in other
parts of the world by their large number (∼20 per year). They occur in
all months of the calendar year. Tropical cyclones in the gulf of Bengale
are called “Zyklon” and if occurring in Australia, the tropycal cyclone is
sometimes named “Willy-willy”.

If a tropical cyclone reaches winds of at least 17 m s−1 it is called a tropical
storm. If winds reach 33 m s−1, then they are called hurricanes in the North
Atlantic or Northeast Pacific, but typhoon in the Northwest Pacific Ocean,
severe tropical cyclone in the Southwest Pacific, severe cyclonic storm in
the North India Ocean and tropical cyclone in the Southwest Indian Ocean
[4.1], [2.9], [4.2].

Extratropical cyclones are generated, if the horizontal wind increases
with height due to a certain temperature gradient. In this case a baroclinic
instability occurs. Such an instability is generated if two air layers – hot and
cold – have a relative velocity, see section 4.4. In this situation, available
potential energy is transformed into kinetic energy of the pressure gradient
(Pichler [4.4], Charney 1947).

The factors exciting the baroclinic instability may be summarized:

1. meridional temperature gradients,

2. vertical shear of geostrophic wind,

3. variation of the Coriolis parameter with the geographic latitude.

Tropical cyclones are however not generated by this mechanism. A baro-
clinic condition occurs if the fluid density is not a sole function of pressure –
no polytropic state exists and the solenoidal term in (2.6.9) does not vanish
[4.9].

For an intense rotary storm of small diameter the term tornado is used.
Such a tornado is always extended downward from the bottom of a convec-
tive heavy cloud like cumulonimbus. A broad funnel with small diameter
near ground forms a narrow rope-like vortex. Humid air spirals inward and
rises rapidly in the core, also called eye. An intensely whirling vortex ex-
tending from the cloud down to the water surface is called a waterspout
(“Wasserhose”, “Trombe”). The funnel consists of water vapor condensed
because of lower pressure within the vortex. Passing inland waterspouts
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dissipate rapidly due to friction on the ground. Requisite conditions for
tornado formation are thermodynamic instability and the occurrence of suf-
ficient amounts of water vapor to produce thunderstorms. These thunder-
storms are also connected with squalls (“Windstoß”, “Bö”), a strong wind
with sudden onset. Squall lines are lines along which a number of simul-
taneous squalls is generated. They form near cold fronts of extratropical
cyclones.

Tropical cyclones [4.3] are different from tornadoes. While both are at-
mospheric vortices, they have little in common. Tornadoes have diameters
of several hundred meters and are generated from a cumulonimbus cloud. A
tropical cyclone has a far larger diameter of up to several hundred kilome-
ters. Tornadoes require a vertical shear of horizontal winds and are mainly
an over-land phenomenon, but tropical cyclones are a purely oceanic phe-
nomenon.

Hurricanes have an eye, an inside circular area of relatively dry air which
the strongest winds circulate around [4.4]. There is nearly no precipitation
near the eye whose center represents the rotation axis of the hurricane,
compare Fig. 2.3 in section 2.7. A detailed description of eye formation may
be found in [4.4].

Two scales describe wind velocities. The Beaufort scale [4.5] connects
a descriptive term like calm (Beaufort number 0), strong breeze at ∼25
miles/hour (number 6), hurricane (number 12, more than 65 miles) and has
17 steps. Remark: 1 mile per hour = 1.609 km h−1 = 0.4470 m s−1. For
hurricanes there exists the Saffir-Simpson scale which has 5 categories.
Winds up to 39–73 miles per hour (mph) or 17–33 m s−1 are called a tropical
storm. To earn the name hurricane, the wind must blow faster, see Table 4.

Table 4.1. Saffir-Simpson hurricane scale

category 1 2 3 4 5

pressure in mb < 24 21–28.50 28.4–27.9 27.8–27.17 < 27.12
wind speed m s−1 32–42 42–49 50–57 58–68 > 61
water surge m 1.32 2.13 3.20 4.57 > 5.49
damages small building structural major complete

roofs damage erosion building

In a storm surge the water surface is set into circular motion by counter
clockwise winds. This motion pushes water inside the hurricane, inward
toward the eye. It generates a convergence of water masses in the surface
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layer: “The greatest potential for loss of life related to a hurricane is from
the storm surge” (B. Jarwinen, National Hurricane Center, [4.1]). By a
water surge the mean water level can increase by 5 m and more. A shallow
slope off the coast will thus allow a greater inundation land area.

Hurricanes may release much energy in two ways:

1. energy released by the condensation,

2. kinetic energy from the strong swirling.

On the other hand, there exist studies [4.6] establishing a quantitative upper
bound on hurricane power as measured by maximum surface wind speed.
Global climate models based on anthropogenetic warming show a substantial
increase in the hurricane power and frequency of occurrence [4.7]. Such con-
siderations are important since the actual money loss by storms is roughly
proportional to the third power of the wind speed. The total power dis-
sipated annually by tropical cyclones in the North Atlantic has doubled
between 1930 and 2003. An average hurricane produces 1.5 cm/day of rain
inside a circle of radius 665 km. This respresents about 2 · 1016 cm3/day
rain or a condensation heat of 5.2 ·1019 J/day or a power of 6 ·1014 W which
is about 200 times the world-wide electrical capacity [4.8]. After the 2004
Atlantic hurricane season the extent of devastation has been estimated to
be $ 40 billion (33 ·109 Euro). On the other hand the European Geophysical
Union in their April 2006 meeting in Vienna, Austria, discussed the idea
that the next ice-age would be due in the very near future [4.8]. It is a
fact that the ocean responds to a hurricane by cooling of the sea surface
temperature: Scientists of the University of Colorado predict an increase of
the hurricane frequency for the period June – November 2006. For the in-
surance industry and for governments weatherprediction, warning strategies
and evacuation plans are of considerable importance.

4.2 The excitation of vorticity in cyclones

In section 2.6 we discussed the vorticity theorems by Crocco, Helmholtz
and Thomson describing the conservation of vorticity. A similar circulation
theorem like Thomson’s is due to Bjerknes. It reads: “motions along
isentropic surfaces do not change the circulation Γ” [4.9]. Another vorticity
theorem is due to Ertel: the scalar product of vorticity and the gradient of
the potential temperature divided by the fluid density is constant (Ertel
vorticity theorem [4.14], [4.16]). The potential temperature is defined “as the
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temperature a fluid element would attain if it were brought to the surface of
the fluid adiabatically and without exchange of salt with the environment”
[4.9, p. 55].

To understand the Coriolis force mentioned several times earlier, we
first consider the motion of a mass point m in an accelerated frame of ref-
erence (like the surface of the rotating Earth). The angular velocity vector

ω of the Earth is parallel to its axis of rotation and has the rate

ω =
2π

24.3600
= 0.72722 · 10−4 s−1. (4.2.1)

Furthermore
ω2R = 3.388 cm s−2, (4.2.2)

where R is the radius of the Earth. In a rotating coordinate system, a time
dependent vector 
r(t) transforms as [4.10], [4.9]

d
r

dt
=

∂
r

∂t
+ [
ω × 
r ]. (4.2.3)

Here the first right-hand side term designates the change of 
r within the
rotating system and the left-hand side term describes the total change. Here

r is the radius vector (location vector). Then 
̇r = d
r/dt is the mass point
velocity 
v and the acceleration 
a is given by 
̇v


a = 
̇v =
d
v

dt
= [
ω × 
v ] +

∂
v

∂t
=

[
ω × [
ω × 
r ]] +
[

ω × ∂
r

∂t

]
+
[
d
ω

dt
× 
r

]
+
[

ω × ∂
r

∂t

]
+

∂
r

∂t
.

(4.2.4)

Here ∂
v/∂t is the acceleration 
a ′ within the rotating system and d
ω/dt is
the change of the angular (rotational) velocity 
ω. Summing up, the equation
of motion of a mass point m in a rotating system may be written

m
a = m
a ′ + 2m[
ω × 
v ′] + m[
ω × [
ω × 
r ]]. (4.2.5)

Here we assumed that the angular rate ω is constant and given by (4.2.1).
In order to obtain the additional forces in the rotating system we rewrite in
the form

m
a ′ = m
a − 2m[
ω × 
v ′] − m[
ω × [
ω × 
r ]], (4.2.6)

rel. accel. abs. accel. Coriolis force centrifugal force.
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The cross product [
ω × 
r ] on the surface of the Earth is given by

[
ω × 
r ] = |
ω| · |
r | sin(� 
ω,
r) = ωR cos Φ, (4.2.7)

where Φ is again the geographical latitude. Then the Coriolis acceleration
is defined by


g ′ = −2
ω × 
v, f = 2ω sin Φ and f∗ = 2ω cos Φ. (4.2.8)

f is the Coriolis parameter (= 1.03 ·10−4 s−1 for Φ = 45◦). At the equator
the Coriolis parameter f vanishes. A table for f(Φ) may be found on p
2-131 in [2.2].

The centrifugal acceleration is given by

[
ω × [
ω × 
r ]] = ω2R cos Φ, (4.2.9)
so that

g → g

(
1 − ω2

g
R cos2 Φ

)
≈ g

(
1 − 1

289
cos2 Φ

)

expresses the gravity reduction due to the centrifugal force on the surface
of the Earth. Here it has been assumed, that the Earth is an exact sphere.
In fact it is a geoid and the number 289 should be replaced by 191. Some
authors [4.9] define an apparent gravity 
g = −∇ψ or a geopotential by

ψ = ψ0 − 1
2
ω2R2 cos2 Φ. (4.2.10)

Now we are able to write down the fluid equations of motion in spherical
coordinates [4.9], [4.4] [4.11]. Taking into account the definitions for the
three Cartesian components

u = r cos Φ
dλ

dt
, v = r

dΦ
dt

, w =
dr

dt
, (4.2.11)

the Euler fluid equations then read on the Earth’s surface

ρ

(
du

dt
− uv

R
tan Φ +

uw

R
− fv + f∗w

)
= − 1

R cos Φ
∂p

∂λ
,

ρ

(
dv

dt
+

u2

R
tan Φ +

vw

R
+ fu

)
= − 1

R

∂p

∂Φ
,

ρ

(
dw

dt
− u2 + v2

R
− f∗u

)
= −∂p

∂r
− gρ.

(4.2.12)

Φ is the geographical latitude and λ is the longitude. Viscosity has been
neglected. The continuity equation is given by ∂ρ/∂t + div (ρ
v) = 0, 
v =
u, v, w or

∂ρ

∂t
+

1
R

∂(ρv)
∂Φ

+
1

R sin Φ
∂(ρu)
∂λ

+
ρv

R
cotg Φ = 0.
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The Coriolis force has two important consequences:

1. it increases the circulation Γ,

2. it induces the Buys-Ballot theorem on the rotation of cyclones.

According to (2.6.9) circulation generated by the Coriolis force is defined
by

dΓ
dt

=
∮


g ′d
s = 2
∮

[
v × 
ω]d
s = −2
∮


ω[
v × d
s ]. (4.2.13)

Here we used the formula for the scalar triple product [1.1]

[ 
A × 
B] · 
C = − 
B[ 
A × 
C]. (4.2.14)

Thus
dΓ
dt

= −2d
dt

∮

ω[
vdt × d
s ] = −2

d
dt

∫

ωd
f,

[
vdt × d
s ] = d
f, F =
∫

d
f.

(4.2.15)

Equation (4.2.15) has the following physical consequences:

1. If an air torus (air annulus) migrates towards north (increasing lati-
tude), the area F diminishes and circulation towards east increases,

2. if air rises (r increases) F diminishes and anticlockwise circulation
(cyclonic circulation) increases.

The Buys-Ballot theorem is another consequence of the Coriolis
force: wind blowing from an aera of higher pressure towards a lower pres-
sure region will be deflected to the right and imposes a cyclonic (counter-
clockwise) rotation on the northern hemisphere (clockwise on the southern
hemisphere).

When air moves without friction or acceleration there is a balance be-
tween the Coriolis force and the pressure gradient. Such a wind is called
geostrophic wind.

Several models have been developed to track the path of hurricanes like
CLIPER, BAM, NHC90, VICBAR, MRF etc [4.13]. The influence of friction
on cyclones have been studied very early [4.14]. It has been found that the
eye is strongly determined by friction. According to the Guldberg-Mohn
theorem [4.15] the inland friction force

F ∼ 10−4 v dyn g−1, (4.2.16)
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where v is measured in cm s−1, is capable to reduce the vorticity of a cyclone
to one tenth of its actual vorticity during 17 minutes.

Problems

1. Derive the equations of motion for a mass point in a spherical coordi-
nate system r latitude Φ and the longitude λ, which rotates with the
Earth.

Solution [4.12]:

r̈ − rΦ̇2 − r cos2 Φλ̇(λ̇ − 2ω) + g = 0,

rΦ̈ + 2ṙΦ̇ + r sin Φ cos Φλ̇(λ̇ − 2ω) = 0,

λ̈r cos Φ + 2
(
ṙ cos Φ − rΦ̇ sin Φ

)
(λ̇ − ω) = 0.

(4.2.17)

2. Derive the equations (4.2.11)–(4.2.12), [4.9], [4.11].

3. Discuss the extension of the equations (4.2.11)–(4.2.12) as given on p
59 in [4.9]. They are:

the equation of continuity:
(
v = u, v, w, u = R cos Φ · λt, v = RΦt, w = zt)

ρt + div(ρ
v) = 0, (4.2.18)

the equations of motion

1
ρ

∂ρu

∂t
= −1

ρ
div(ρu
v)+

tan Φ
R

uv−uw

R
+fv−f∗w− 1

ρ

1
R cos Φ

∂p

∂λ
+Fλ,

1
ρ

∂ρv

∂t
= −1

ρ
div(ρv
v) − tan Φ

R
u2 − vw

R
− fu − 1

ρ

1
R

∂p

∂Φ
+ FΦ,

1
ρ

∂ρw

∂t
= −1

ρ
div(ρw
v) +

u2

R
+

v2

R
+ f∗u − 1

ρ

∂p

∂z
− g + Fz,

(4.2.19)
where 
F describes friction forces which can be expressed by the stress
tensor (2.3.12). The energy theorem reads

1
ρ

∂ρT

∂t
= −1

ρ
div(ρT
v ) + Q/cp +

λ̄T

ρ

dp

dt
, (4.2.20)
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where Q equals the net heating rate per unit mass (solar radiation,
latent heating, frictional heating etc). λ̄ is again the thermal conduc-
tivity. The balance equation for water vapor reads

dq

dt
= s(q) + D, (4.2.21)

where q is the specific humidity, s(q) represents sources and sinks of
water vapor, compare [2.5], and D describes turbulent eddy diffusion
of water vapor into the volume. s(q) can be represented by the differ-
ence between the rate of evaporation plus sublimation and the rate of
condensation per unit mass. The balance may be written

1
ρ

∂ρq

∂t
= −1

ρ
div(ρq
v ) + s + D. (4.2.22)

The equation of state for moist air is given in the form

p = ρRT (1 + 0.61 q). (4.2.23)

The factor 0.61 is the result of a series expansion on p 53 and 275 in
[4.9]. Compare (4.2.19) with (4.2.12).

4. Derive the one-dimensional equations of continuity and of motion in
circular cylindrical coordinates [2.6], [1.1].

Hints: use (2.5.44), (2.9.3) and (2.3.26) to (2.3.30) with 
F = 0, η =
0, η′ = 0, κ for air from Table 2.2.

Solution:
∂ρ

∂t
+

1
r
ρu +

∂ρ

∂r
u + ρ

∂u

∂r
= 0, (4.2.24)

ρ
∂u

∂t
+ ρu

∂u

∂r
+

∂p

∂r
= 0, (4.2.25)

∂p

∂r
= ρn−1a2 ∂ρ

∂r
or

∂p

∂r
= κρκ−1 const. (4.2.26)

Solve the system by a similarity transformation ρ = R(η), u = U(η), p =
κ constRκ−1; η = rαtβ.

Hint: multiply the resulting two equations by r.

Solution: α = 1, β = −1;

−R′η2 + RU + R′ηU + RU ′η = 0,

−RU ′η + RUU ′ + κ · const · Rκ−1 = 0.
(4.2.27)
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4.3 Mathematical modelling of cyclones

Since cyclones and hurricanes are quite complex phenomena involving ex-
terior forces, friction, thermodynamic processes etc it is very difficult to
find appropriate mathematical models. Such numerical models have been
proposed recently, but we restrict ourselves to some remarks on similarity
variables and exercises of the Mathematica code. If appropriate equations
are given, the question arises, how to solve them. Several methods may be
used like similarity solutions, characteristics, a mass-variable transformation
etc and finally numerical methods like finite elements and other methods like
the Galerkin method, [1.1, p. 216] or finite differences [4.17], which are
however outside the scope of this book. Finally, the equations may be writ-
ten in various coordinate systems: Cartesian, cylindrical, spherical etc.

Two situations seem to be of interest:

1. investigation of a locally fixed cyclone in circular cylindrical or Carte-
sian coordinates,

2. the tracking of cyclones over the surface of the Earth.

We will start with a simple cylindrical model. We first choose the coor-
dinates t, r and Φ and assume independence on z. Here Φ is not the latitude
on Earth but a circular cylinder coordinate. We include a pseudo-Corolis
term. The equation of continuity should be

∂ρ

∂t
+

1
r

∂

∂r
(rρu) +

1
r

∂

∂Φ
(ρv) = 0 (4.3.1)

and the equations of motion are assumed to be [4.12]

ρ

(
∂u

∂t
+ u

∂u

∂r
+

v

r

∂u

∂Φ
− v2

r
+ fv

)
+

∂p

∂r
= 0, (4.3.2)

ρ

(
∂v

∂t
+ u

∂v

∂r
+

v

r

∂v

∂Φ
+

vu

r
− fu

)
+

1
r

∂p

∂Φ
= 0, (4.3.3)

where f is the Coriolis parameter.
A similarity setup ζ = rαtβ

ρ(r,Φ) = R(ζ), u(r,Φ) = U(ζ), v(r,Φ) = V (ζ),

p(r,Φ) = const · κρκ−1 = cRκ−1
(4.3.4)

yields satisfaction of (4.3.1), but problems arise even with the pressureless
equations of motion. This may be demonstrated by the following Mathe-
matica code
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(* Cyl simil Coriolis *)
Clear[p,Rt,Rr,Ur,Rf,Vf,Ut,Uf,Vt,a,b,Ko,Kof];
p[r_,t_]=r^a*t^b;(*a=1;b=-1;*)
Rt=D[R[p,fi],p]*D[p[r,t],t];
Rr=D[R[p,fi],p]*D[p[r,t],r];
Ur=D[U[p,fi],p]*D[p[r,t],r];
Rf=D[R[p,fi],fi];
Vf=D[V[p,fi],fi];
Ut=D[U[p,fi],p]*D[p[r,t],t]; (4.3.5)
Uf=D[U[p,fi],fi];
Vt=D[V[p,fi],p]*D[p[r,t],t];
Ko=(Rt+R*U/r+Rr*U+Ur*R+Rf*V/r+R*Vf/r)*r;
(* Ko = Continuity equation *)
Clear[Kof,p];Kof=R[p,fi]*U[p,fi]+V[p,fi]*D[R[p,fi],fi]+
R[p,fi]*D[V[p,fi],fi]+D[R[p,fi],p]*
(p[r,t]^2+U[p,fi]*p[r,t])+p[r,t]*R[p,fi]*D[U[p,fi],p]

R[p, fi] U[p, fi] + V[p, fi] R(0,1) [p, fi] + R[p, fi] V(0,1) [p, fi] +
(p[r, t]2 + p[r, t] U[p, fi]) R(1,0) [p, fi] + p[r, t] R[p, fi]U(1,0) [p, fi]

Clear[M1,p];
(* M1 = Equation of motion (4.3.2) without pressure *)
M1=(R[p,fi]*(Ut+U[p,fi]*Ur+V[p,fi]*Uf/r-V[p,fi]^2/r)+
f*V[p,fi])

f V[p, fi] + R[p, fi]
(
− V[p, fi]2

r
+

V[p, fi] U(0,1) [p, fi]
r

+

b ra t t−1+b U(1,0) [p, fi] + a r−1+a tb U[p, fi] U(1,0) [p, fi]
)

One finds that no combination of rt0, r0t−1 and r−1t0 can be reduced
to a power of p = r/t. An analogous result can be obtained from (4.3.1)
in Cartesian coordinates p = xatb, ρ(x, y, t) = R(p, y) etc. Characteristics
methods will not be used, since only two independent variables t, r or t, x
are not sufficient to describe a cyclone.

As next step we investigate a model in spherical coordinates as described
by (4.2.12). Since it seems to be easier to satisfy the continuity equation by a
similarity solution than an equation of motion, we investigate the possibility
to solve the Euler equation for the u-component of (4.2.12). Since we want
to investigate the tracking of a cyclone over the surface of Earth we assume
∂ /∂r = 0 and we replace r by the radius R of the Earth. The three
equations (4.2.12) may be found in the literature in two different versions.



174 4 Hurricanes

In [4.9] the pressure term in the w-component equation reads ∂p/∂z, but
in [4.11] one finds ∂p/∂r. When comparing equations given in spherical
coordinates by several authors, one has to be careful: some authors define
the equator of the sphere by the geographical latitude Φ = or ϑ = 0◦, but
others use Φ = 90◦. The geographical longitude is denoted by λ or Φ. The
u-component is identical with vΦ, v → vϑ, w → vr and cos Φ becomes sin ϑ
and tan Φ is replaced by cot ϑ.

We now consider the u-component of (4.2.12) in the form

∂u

∂t
+

u

R cos Φ
∂u

∂λ
+

v

R

∂u

∂Φ
− uv

R
tan Φ +

uw

R
− v2ω sinΦ+

w2ω cos Φ +
1
R

∂P

∂λ
= 0.

(4.3.6)

Here we used (2.3.17) to get rid of the density ρ. P is again the pressure-
density integral. We used the setup

ζ(t, λ) = taλb (4.3.7)

which eliminates one of the three independent variables t, λ,Φ of (4.3.6).
Furthermore

u(t, λ,Φ) = U(ζ(t, λ),Φ)tcλd, v(t, λ,Φ) = V (ζ(t, λ),Φ)teλf ,

w(t, λ,Φ) = W (ζ(t, λ),Φ), p → P (ζ(t, λ),Φ)λg.
(4.3.8)

Then we used the following definitions in the Mathematica code:

ut =
∂u

∂t
, ul =

∂u

∂λ
, uf =

∂u

∂ρ
, pl =

∂P

∂λ
. (4.3.9)

Inserting into (4.3.6) immediately yields g = 1. Then the code

(* sphericalsim.nb Spherical coordinates and
similarity transformations *)
Clear[ζ,a,b,c,d,e,f,g,U,V,W,u,v,w,ut,ul,uf,pl];
ζ[t_,λ_]=t^a*λ^b;d=1;
u[ζ[t,λ],Φ]=U[ζ[t,λ ],Φ]*t^c*λ^d;
v[ζ[t,λ],Φ]=V[ζ[t,λ ],Φ]*t^e*λ^f;
w[ζ[t,λ],Φ]=W[ζ[t,λ ],Φ];
ut=D[U[ζ[t,λ],Φ]*t^c*λ^d,t];
ul=D[U[ζ[t,λ],Φ]*t^c*λ ^d,λ];
uf=D[U[ζ[t,λ],Φ]*t^c*λ ^d,Φ];
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pl=D[P[ζ[t,λ],Φ],λ];
ut+u[ζ[t,λ],Φ]*ul/(R*Cos[Φ])+v[ζ [t,λ],Φ]*uf/R-
u[ζ[t,λ],Φ]*v[ζ[t,λ ],Φ]*Tan[Φ]/R+
u[ζ[t,λ],Φ]*w[ζ[t,λ ],Φ]/R-v[ζ[t,λ],Φ]*2*ω *Sin[Φ]+
w[ζ[t,λ],Φ]*2*ω*Cos[Φ ]+pl/(R*Cos[Φ])

c t−1+c λ U[ta λb, Φ] - 2 te λf ω Sin[Φ] V[ ta λb, Φ] -

tc+e λ1+f Tan[Φ] U[ta λb,Φ] V[ta λb, Φ]
R

+ 2 ω Cos[Φ] W[ta λb,Φ] +

tc λ U[ta λb, Φ] W[ta λb,Φ]
R

+
tc+e λ1+f V[ta λb, Φ] U(0,1) ta λb,Φ ]

R
+

b ta λ−1+b Sec[Φ] P(1,0) [ta λb, Φ]
R

+ a t−1+a+c λ1+b U(1,0) [ta λb, Φ] +

tc λ Sec[Φ] U[ta λb, Φ] (tc U[ta λb, Φ] + b ta+c λb U(1,0) [ta λb, Φ])
R

(4.3.10)

demonstrates that not all terms cancel. Collecting taλb into ζ, we have
additionally the terms

tc−1, teλf , tc+eλ1+f , tcλ, λ−1, t2cλ, t2c, (4.3.11)

if we choose d = 1. In order that these terms cancel, one has to assume

t : c − 1 = e = c + e = c = 2c,
λ : 1 = f = 1 + f = −1,

(4.3.12)

which gives contradictions. We thus have to conclude that a similarity so-
lution of (4.3.6) can not be found. Apparently only numerical methods can
solve the system (4.2.12).

Problems

1. Write down the equations of continuity and of motion in spherical
coordinates using symmetry ∂/∂Φ = 0, 
vΦ = 0. (Subscripts designate
components and not derivatives.)

∂ρ

∂t
+

1
r2

∂

∂r

(
r2ρvr

)
+

1
r sin ϑ

∂

∂ϑ
(sin ϑρvϑ) = 0, (4.3.13)
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radial momentum:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+

vϑ

r

∂vr

∂ϑ
− v2

ϑ

r

)
+

∂p

∂r
= 0, (4.3.14)

azimuthal momentum:

ρ

(
∂vϑ

∂t
+ vr

∂vϑ

∂r
+

vϑ

r

∂vϑ

∂ϑ
+

vϑvr

r

)
+

1
r

∂p

∂ϑ
= 0 (4.3.15)

and apply a similarity transformation [1.1]

η = rtα, ϑ = ϑ̄; ρ(r, t, ϑ) = ρ̄(η, ϑ), p(r, t, ϑ) = p̄(η, ϑ)t−2α,

vr(r, t, ϑ) = v̄r(η)t−α, vϑ(r, t, ϑ) = v̄ϑ(η)t−α

(4.3.16)
and transform these three equations into three partial differential equa-
tions for ρ̄, p̄, v̄r, v̄ϑ depending only on η and ϑ. The three indepen-
dent variables r, t, ϑ have been reduced to two: η, ϑ.

Solution: α = 1/2, η = rt−1/2 and for the continuity equation the
solution is

−η

2
∂ρ̄

∂η
+

2
η
ρ̄v̄r +

∂

∂η
(ρ̄v̄r) +

cotg ϑ

η
v̄ϑρ̄ +

1
η

∂

∂ϑ
(ρ̄v̄ϑ) = 0. (4.3.17)

2. After the elimination of r and t due to η, you may eliminate η or
ϑ from the partial differential equations for ρ̄(η, ϑ), v̄r(η, ϑ), v̄ϑ(η, ϑ).
Also p may be expressed by ρ due to the adiabatic law p = const · ρκ.
Ordinary differential equations may then be integrated by numerical
methods like NDSolve with Mathematica.

3. Solve the two equations (4.2.24) and (4.2.25) in cylindrical coordinates
by a similarity transformation using 
F = 0, η = 0, η′ = 0, see (2.3.26)
to (2.3.30). ρ = R(r, t) = R(ζ), ζ = rαtβ, u(r, t) = U(ζ), p(r, t) =
(ρn/n)a2, see (2.4.3), (4.2.26), n = κ = 1.405 (Table 2.2).

Solution:
−R′ζ2 + RU + R′ζU + RU ′ζ = 0,

−RU ′ζ + RUU ′ + Rκ−1a2R′ = 0,
(4.3.18)

compare with (4.2.27). A Mathematica code to solve these two ordi-
nary equations could be (4.3.19) (ζ replaced by z, κ by n). Give any
numerical value for a.
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Eq1=-R′[z]*z^2+R[z]*U[z]+R′[z]*U[z]*z+R[z]*U′[z]*z;
Eq2=-R[z]*U′[z]*z+R[z]*U[z]*U′[z]+R^(n-1)*a^2*R′[z];
NDSolve[{Eq1 == 0, Eq2 == 0, R[0] == 1.,
U[0] == 1.},{R[z],U[z]},{z,10.}] (4.3.19)

4. Transform the cylindrical coordinates equations (4.2.24), (4.2.25) using
the mass-variable transformation.

Hint:

m(r, t) =
∫
ρ(r, t)2πrdr,

∂m

∂r
= ρ2πr,

∂m

∂t
= −ρ2πrû,

dr

dt
= û.

(4.3.20)

Apply the transformation ρ̂ = 1/ŝ and find that now the continuity
equation becomes a nonlinear equation

−st + ûm2πr +
1
r

û

ŝ
= 0, (4.3.21)

compare with (3.6.12)!

4.4 Multifluid cyclone modelling

A plasma is an ionized gas consisting of electrons, ions and neutral particles
(atoms, molecules). It is described by a multifluid theory [2.8], [3.22]. Some
plasma properties may be found in strong electrolytes or even in semiconduc-
tors. A cyclone which contains liquid water condensate, dry air and water
vapor should also be described by a multifluid theory [4.18], [2.5] (1947) or
by a two-fluid model [4.4].

The eye wall separates an inner region of low humidity and the saturated
air outside. An interface between two fluids of different densities or stream-
ing with different speeds is unstable. A slight perturbation like exp(ikx−iωt)
of speed or pressure initiates a growing instability. A speed jump v between
two adjacent fluid layers gives rise to the Kelvin-Helmholtz instability
(velocity shear instability) and the Rayleigh-Taylor instability is caused
by a perturbation of the interface between a heavy fluid (¯̄ρ) supported by a
light fluid (ρ̄) in a gravitational field in z-direction [2.8], [3.22], [4.14].

The investigation if a flow process is stable should follow the following
scheme [2.10]: the unperturbed flow defined by ∂ /∂t = 0 and 
v0, p0 will
be superposed by small perturbations 
v1, p1, where 
v 2

1 ≈ 0 will be assumed.
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The unperturbed steady situation may be defined by

ρ0(
v0∇)
v0 = −∇p0, div
v0 = 0 (4.4.1)

and the time dependent perturbations are described by

ρ

(
∂
v1

∂t
+ (
v0∇)
v1

)
= −∇p1, div
v1 = 0. (4.4.2)

Applying the operator div on the first equation, one obtains

div∇p1 = Δp1 = 0. (4.4.3)

Assuming that the local displacement η(x, t) of the interface normal to the
z-direction is small, then its speed is for constant x given by

∂η

∂t
= v1z(interface) − v0x

∂η

∂x
. (4.4.4)

Assuming
p1 = f(z) exp(ikx − iωt) (4.4.5)

and inserting into (4.4.3) one obtains

d2f

dz2
− k2f = 0, f(z) = const exp(±kz). (4.4.6)

Then (4.4.2) yields

v1z =
kp̄1

iρ̄(kv0x − ω)
. (4.4.7)

The bar p̄1 indicates the side of the interface defined by z > 0 and two bars
¯̄p1 define quantities on the side z < 0. Assuming η ∼ exp(ikx − iωt) we
obtain from (4.4.4) the result

v1z = const exp(ikx − iωt) = iη(kv0x − ω), (4.4.8)

so that

p̄1 = −ηρ̄(kv0x − ω)2

k
. (4.4.9)

The assumption v0x = 0 for z < 0 (fluid at rest) yields

¯̄p1 =
η¯̄ρω2

k
. (4.4.10)
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Due to p̄1 = ¯̄p1 one has ρ̄(kv0x − ω)2 = −¯̄ρω2, which gives the dispersion
relation

ω = kv0x
ρ̄ ± i

√
ρ̄¯̄ρ

ρ̄ + ¯̄ρ
. (4.4.11)

Since ω is complex with a positive imaginary part, it indicates the instabil-
ity of an interface between two regions of different densities and/or different
velocities (Rayleight-Taylor resp. Kelvin-Helmholtz-instability). Ac-
cording to [4.14], cyclones are generated by the combined effects of such an
instability together with the Coriolis force. The discontinuity in v and
density is a main factor in cyclone generation [4.4]. Surface transfer of heat
from the ocean is another important factor.

Density differences may be due to temperature differences between the
warm surface of the ocean and a cold mass of air. The vertical component
r̈ in (4.2.17) of the Coriolis force may induce a deviation (“tracking of
cyclones”) to the west for rising masses of air. The problem of tropical
cyclone tracking is described by several mathematical models: CLIPER,
NOGAPS, MRF, LIBAR etc, see the reports of the National Hurricane
Center [4.19]. These model equations have to be solved numerically.

A three-fluid model may be found in [4.11], [4.18]. In this model con-
tributions to the mass flux across the ground surface due to precipitation,
evaporation and dew are taken into account. Thus boundary conditions are
only satisfied if these effects are considered. In describing mass balances one
uses the index 0 for dry air, the index 1 for water vapor and 2 for water
droplets. The three components satisfy three equations of continuity:

∂ρk

∂t
+ div (ρk
vk) = Dk, k = 1, 2, 3, (4.4.12)

where the local production rates Dk are defined in (2.2.2) [2.5]. Due to the
conservation of the total mass, one has

∑
k

Dk = 0. (4.4.13)

Such considerations may determine net mass transport from the ocean to
the atmosphere [4.18], [4.11].

Evaporation is determined by the actual saturation pressure psat (2.1.6),
it depends on temperature and humidity respectively, see Table 2.1. Precipi-
tation originates in the cold air above about 700 mb, droplets or ice particles
melt in the lower warm layer and may freeze upon contact with cold ground.
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Saturation pressures calculated according to the Magnus formula [4.11]
(2.6.1) coincide quite well with the values given in Table 2.1: (2.1.6) yields
psat (25◦ C) = 31.79 mb, whereas the Table gives 31.68 mb. (Remember: 1
kPa=103 ·10−5 bar = 10−2 bar = 10 mb; 1 mbar = 100 Pa). Evaporation E is
determined by (2.4.9) and is usually measured in mm/year or in kgm−2 s−1.
It may have a value 2·10−5 kgm−2 s−1 [4.18] and may reach an annual-mean
evaporation rate up to 2000 mm/year [4.9]. For a hurricane speed v =
50 m s−1, see Table 4.1, one may calculate E(pact, T ). For t = 25◦ C this
gives values between 1 to 160 and more mm/year.

Problems

1. On the line of reasoning of problem 2 in section 2.2, calculate evapo-
ration rates D and humidity for the values of E given above.

2. Calculate E(pact, T ) for various values of v (and T, pact).
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Gärtner, S.: Zur Berechnung von Flachwasserwellen und instationären
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circular vortex, 61
circulation, 58
Clausius-Clapeyron equation, 34
cnoidal wave, 5, 28, 95, 105
cohesion pressure, 48
compressibility, 31, 33
condensation, 31
conductivity, thermal, 32
conformal mapping, 61
continuity equation, 36, 52, 64, 81,

132, 143
Coriolis acceleration, 168
Coriolis force, 31, 41, 59, 93, 96,

123, 163, 167
Coriolis parameter, 168
Courant-Friedrichs-Lewy condition,

136
covolume, 48
Cramer rule, 23
critical point, 48
Crocco theorem, 57, 58, 61
cyclone, 163

– extratropical, 163
– tropical, 163, 164

D’Alembert equation, 77
Dalton, 46
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Darboux equation, 72, 74
deformation tensor, 40
density, 31, 32
depth, 31
Dias, 131
diffusivity, thermal, 32
dilatational, 40
Dirichlet problem, 8
dispersion, 2

– anomalous, 3, 110
– normal, 3, 101

dispersion relation, 26, 101, 179
dissipation, 25
dynamic condition, 125

Earth’s rotation, 31
earthquakes, 31
easterly waves, 163
edge wave, 3, 97
elliptic integral, 28, 118
elliptic Jacobi function, 117
energy balance, 44, 52
enthalpy, 51

– generalized, 58
entropy, 52
equation of motion, 52, 133, 143
equivalence theorem, 64, 75, 83
error function, 109
Ertel vorticity theorem, 166
Euler equation, 12
Euler fluid equations, 168
evaporation, 31, 180
evaporation heat, 33, 34
evaporation rate, 34, 36
extratropical cyclones, 164
eye, 165, 169, 177

finite elements, 172
first law, 57
first law, thermodynamics, 44

form, normal, 12
Fourier, 5
Fourier integral, 3
freezing front, 105
frequency, 25
frequency dispersion, 25

gas constant, specific, 48
Gauss theorem, 14, 36
general solution, 1
geopotential, 168
geostrophic wind, 169
gravity, 31
gravity waves, 3, 91
group velocity, 2, 26
Guldberg-Mohn theorem, 169

Hamilton’s principle, 150
heat

– latent, 34
– specific, 31

heat capacity, specific, 32
Helmholtz first vorticity theorem,

59
Helmholtz second vorticity theo-

rem, 59
homogeneous, 9
Hopf transformation, 107
Hugeniot state equation, 69
hurricane, 31, 33, 59, 163
hydrostatic pressure, 42
hyperbolic, 10, 12
hypergeometric function, 15, 80

inhomogeneous, 9
inhomogeneous waves, 101
initial condition, 9, 134
integrating factor, 52
interfacial waves, 92
internal energy, 50, 53
internal waves, 4, 92
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inverse scattering method, 122
irreversible, 52

Jacobi elliptic function, 28
Jacobi function, 95
jump, hydraulic jump, standing

wave, 3, 92

Kelvin-Helmholtz instability, 92,
177

kinematic condition, 125
Korteweg-de Vries Burgers equa-

tion, 115, 121
Korteweg-de Vries equation, 113

Lagrangian waves, 94
Laplace equation, 61, 131
Laplace operator, 1
Laplace transformation, 108
Lax viscosity, 77
Legendre transformation, 66, 127
Lie series method, 160
limit cycles, 119
linear waves, 1
long water wave, 92

Magnus formula, 180
mass variable, 128
method of the unknown function,

140
modulated wave, 27, 94
modulation, 25
moving boundary problem, 104
multifluid theory, 177

Navier-Stokes equation, 41
Neumann problem, 9
Newton’s law, 41, 58
nonlinear boundary condition, 106
nonlinear boundary problem, 104
nonlinear effects, 25

nonlinearity parameter, 114
normal form, 11

partial solution, 1
phase

– portrait, 118
– speed, 25
– surface, 25
– transition, 34
– velocity, 2

physical plane, 133
Piche evaporimeter, 34
plasma, 177
plume, water columns, 92
poise, 32
Poisson equation, 61
polytropic changes, 54
potential equation, 61, 65, 90, 116,

127
potential equation for tsunamis,

126
potential temperature, 166
pressure density integral, 41, 55,

174
progressing wave, 93
propagation speed, 1

rarefaction wave, 69, 77
Rayleigh-Taylor instability, 177
reversible, 52
Riemann, 14
Riemann invariants, 72, 75, 76, 78,

85, 133, 135
ripple, 3, 33, 110
roll waves, 93, 125
rotational waves, 96
runup, 97

saddle point, 119
Saffir-Simpson scale, 165
salinity, 32
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saturated liquid line, 50
saturated vapor line, 50
saturation humidity, 33
saturation pressure, 34, 35
Schroedinger equation, 122

– nonlinear, 28, 95
seiches, 3, 94
self-adjoint, 13
separation setup, 108
shallow water, 133
shallow water wave, 94, 107
shock wave, 67, 77, 83

– travelling, 70
shooting flow, 83
short crested waves, 94
similarity setup, 154, 156
similarity transformation, 72, 108,

120, 121, 139
snoidal (cnoidal) waves, 95
solenoidal term, 58, 164
solitary waves, simple waves, 3, 95
soliton, 3, 6, 95, 111, 114, 117, 134

– envelope, 28
– oscillatory, 29

solvability, 11
sonic speed, 56
specific heat, 51
squalls, 165
stability, 27
state, 47

– isobaric change, 51
– polytropic change, 51

state equation, 53
state plane, 86, 133
state variables, 85, 133
steam, 33
Stefan boundary condition, 105
Stokes hypothesis, 40, 45
Stokes theorem, 58
storm, tropical, 164

strain tensor, 38
stress tensor, 41
stretched variables, 112, 120, 121
subcritical, 92
subsonic (subcritical) flow, 66, 83
supercritical, 83, 92
superposition, 73
superposition principle, 8, 12
supersonic (supercritical), 83
supersonic flow, 66
surf, 95
surface condition, 125
surface energy, 109
surface tension, 31, 33
surface waves, 95
surge, storm surges, flood waves,

3, 95
swell, 3, 95
swirl, 95

thermal conductivity, 105
thermal expansion, 33
Thomson’s circulation theorem, 58
tidal bore, 95
tidal waves, 3, 95
Toricelli’s theorem, 42
tornado, 164
translation waves, 96
travelling wave, 116, 119, 121, 142
Tricomi equation, 12, 17
trochoidal waves, 96
tropical storm, 164, 165
tsunami, 3, 31, 32, 52, 65, 75, 96,

122
– dissipationless, 123
– distant, 97
– local, 97
– one-dimensional time depen-

dent, 132
– propagation speed of the, 133



Index 197

tsunami energy density, 140
tsunami equations

– basic, 132
tsunami wave equation, 128, 136,

137, 143, 155
tsunami wave function, 145
typhoon, 163, 164

units, 31
unsteady shock polar, 70

van der Waals equation, 48, 49
van der Waals parameter, 49
vapor, 33
vaporization, 31
velocity of sound, 35
velocity shear instability, 177
Venant-Wantzel outflow formu-

la, 55
viscosity, 32, 40

– absolute, 32
– artificial, 77
– bulk, 40
– compressional, 40
– dynamic, 32
– kinematic, 33, 41

vortex flow, 59

vorticity, 57
vorticity transfer equation, 59
vorticity vector, 59

wave
– modulated, 27, 94
– travelling, 1

wave crests, 26
wave number, 2, 25
wave packet, 2, 3
wave propagation speed, 67
wave vector, 25, 101
waves

– anual, 111
– cnoidal, 3, 105
– gravity, 3, 91
– internal, 4, 92
– oscillatory, 4
– periodic, 4
– rotational, 96
– sinosoidal, 3
– snoidal, 4, 95
– solitary, 3, 95
– surface, 3, 95
– tidal, 3, 95
– viscous, 99

wind, pressure of, 31
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