

ffirs.indd ivffirs.indd iv 12/8/11 12:54:54 PM12/8/11 12:54:54 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

PROFESSIONAL

JAVASCRIPT® FOR WEB DEVELOPERS

FOREWORD . xxxi

INTRODUCTION . xxxiii

CHAPTER 1 What Is JavaScript? . 1

CHAPTER 2 JavaScript in HTML .13

CHAPTER 3 Language Basics . 25

CHAPTER 4 Variables, Scope, and Memory . 85

CHAPTER 5 Reference Types . 103

CHAPTER 6 Object-Oriented Programming . 173

CHAPTER 7 Function Expressions . 217

CHAPTER 8 The Browser Object Model . 239

CHAPTER 9 Client Detection . 271

CHAPTER 10 The Document Object Model . 309

CHAPTER 11 DOM Extensions . 357

CHAPTER 12 DOM Levels 2 and 3 . 381

CHAPTER 13 Events . 431

CHAPTER 14 Scripting Forms . 511

CHAPTER 15 Graphics with Canvas . 551

CHAPTER 16 HTML5 Scripting . 591

CHAPTER 17 Error Handling and Debugging . 607

CHAPTER 18 XML in JavaScript . 641

CHAPTER 19 ECMAScript for XML . 671

CHAPTER 20 JSON . 691

CHAPTER 21 Ajax and Comet . 701

CHAPTER 22 Advanced Techniques . 731

CHAPTER 23 Offl ine Applications and Client-Side Storage . 765

CHAPTER 24 Best Practices . 801

Continues

ffirs.indd iffirs.indd i 12/8/11 12:54:52 PM12/8/11 12:54:52 PM

CHAPTER 25 Emerging APIs . 835

APPENDIX A ECMAScript Harmony . 857

APPENDIX B Strict Mode . 877

APPENDIX C JavaScript Libraries . 885

APPENDIX D JavaScript Tools . 891

INDEX . 897

ffirs.indd iiffirs.indd ii 12/8/11 12:54:54 PM12/8/11 12:54:54 PM

PROFESSIONAL

JavaScript® for Web Developers

ffirs.indd iiiffirs.indd iii 12/8/11 12:54:54 PM12/8/11 12:54:54 PM

ffirs.indd ivffirs.indd iv 12/8/11 12:54:54 PM12/8/11 12:54:54 PM

John Wiley & Sons, Inc.

PROFESSIONAL

JavaScript® for Web Developers

Third Edition

Nicholas C. Zakas

ffirs.indd vffirs.indd v 12/8/11 12:54:54 PM12/8/11 12:54:54 PM

Professional JavaScript® for Web Developers, Third Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-02669-4
ISBN: 978-1-118-22219-5 (ebk)
ISBN: 978-1-118-23309-2 (ebk)
ISBN: 978-1-118-26080-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
 standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2011943911

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. JavaScript is a registered trademark of Oracle America, Inc.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any
product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 12/8/11 12:54:56 PM12/8/11 12:54:56 PM

http://www.wiley.com/go/permissions.
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com

To my parents, who never cease to support and inspire me.

ffirs.indd viiffirs.indd vii 12/8/11 12:54:56 PM12/8/11 12:54:56 PM

ffirs.indd viiiffirs.indd viii 12/8/11 12:54:56 PM12/8/11 12:54:56 PM

ABOUT THE AUTHOR

NICHOLAS C. ZAKAS has been working with the web for over a decade. During that
time, he has worked both on corporate intranet applications used by some of the
largest companies in the world and on large-scale consumer websites such as My
Yahoo! and the Yahoo! homepage. As a presentation architect at Yahoo!, Nicholas
guided front-end development and standards for some of the most-visited websites in
the world. Nicholas is an established speaker and regularly gives talks at companies,
conferences, and meetups regarding front-end best practices and new technology.

He has authored several books, including Professional Ajax and High Performance JavaScript,
and writes regularly on his blog at http://www.nczonline.net/. Nicholas’s Twitter handle is
@slicknet.

ABOUT THE TECHNICAL EDITOR

JOHN PELOQUIN is a front-end engineer with over ten years of JavaScript experience ranging across
applications of all sizes. John earned his B.A. in mathematics from the University of California at
Berkeley and is currently a lead developer for a health care startup where he makes use of the latest
in front-end technologies. Prior to editing this volume, John edited JavaScript 24-Hour Trainer
by Jeremy McPeak (Wiley, 2010). When he is not coding or collecting errata, John is often found
engaged in mathematics, philosophy, or juggling.

ffirs.indd ixffirs.indd ix 12/8/11 12:54:57 PM12/8/11 12:54:57 PM

ffirs.indd xffirs.indd x 12/8/11 12:54:57 PM12/8/11 12:54:57 PM

CREDITS

EXECUTIVE EDITOR

Carol Long

SENIOR PROJECT EDITOR

Kevin Kent

TECHNICAL EDITOR

John Peloquin

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

Katherine Burt

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nicole Hirschman

INDEXER

Robert Swanson

COVER DESIGNER

LeAndra Young

COVER IMAGE

© iStock/Andrew Rich

ffirs.indd xiffirs.indd xi 12/8/11 12:54:57 PM12/8/11 12:54:57 PM

ffirs.indd xiiffirs.indd xii 12/8/11 12:54:58 PM12/8/11 12:54:58 PM

ACKNOWLEDGMENTS

EVEN THOUGH THE AUTHOR’S NAME is the one that graces the cover of a book, no book is the result
of one person’s efforts, and I’d like to thank a few of the people involved in this one.

First and foremost, thanks to John Wiley & Sons for continuing to give me opportunities to write.
They were the only people willing to take a risk on an unknown author for the fi rst edition of
Professional JavaScript for Web Developers, and for that I will be forever grateful.

Thanks to the staff of John Wiley & Sons, specifi cally Kevin Kent and John Peloquin, who both
did an excellent job keeping me honest and dealing with my frequent changes to the book as I
was writing.

I’d also like to thank everyone who provided feedback on draft chapters of the book: Rob Friesel,
Sergey Ilinsky, Dan Kielp, Peter-Paul Koch, Jeremy McPeak, Alex Petrescu, Dmitry Soshnikov, and
Juriy “Kangax” Zaytsev. Your feedback made this book something that I’m extremely proud of.

A special thanks to Brendan Eich for his corrections to the history of JavaScript included in Chapter 1.

Last, but certainly not least, thanks to Rey Bango for writing the foreword of this book. I had the
pleasure of meeting Rey for the fi rst time in 2010 after conversing online for several years. He’s one
of the truly nice guys in the industry, and I’m honored that he agreed to lend his time to this book.

ffirs.indd xiiiffirs.indd xiii 12/8/11 12:54:58 PM12/8/11 12:54:58 PM

ffirs.indd xivffirs.indd xiv 12/8/11 12:54:58 PM12/8/11 12:54:58 PM

CONTENTS

FOREWORD xxxi

INTRODUCTION xxxiii

CHAPTER 1: WHAT IS JAVASCRIPT? 1

A Short History 2

JavaScript Implementations 3

ECMAScript 3

The Document Object Model (DOM) 6

The Browser Object Model (BOM) 9

JavaScript Versions 10

Summary 11

CHAPTER 2: JAVASCRIPT IN HTML 13

The <script> Element 13

Tag Placement 16

Deferred Scripts 16

Asynchronous Scripts 17

Changes in XHTML 18

Deprecated Syntax 20

Inline Code versus External Files 20

Document Modes 20

The <noscript> Element 22

Summary 22

CHAPTER 3: LANGUAGE BASICS 25

Syntax 25

Case-sensitivity 25

Identifi ers 26

Comments 26

Strict Mode 27

Statements 27

Keywords and Reserved Words 28

Variables 29

Data Types 31

The typeof Operator 31

ftoc.indd xvftoc.indd xv 12/8/11 12:56:22 PM12/8/11 12:56:22 PM

xvi

CONTENTS

The Undefi ned Type 32

The Null Type 33

The Boolean Type 34

The Number Type 35

The String Type 41

The Object Type 44

Operators 45

Unary Operators 46

Bitwise Operators 49

Boolean Operators 56

Multiplicative Operators 59

Additive Operators 61

Relational Operators 63

Equality Operators 65

Conditional Operator 67

Assignment Operators 67

Comma Operator 68

Statements 69

The if Statement 69

The do-while Statement 70

The while Statement 70

The for Statement 71

The for-in Statement 72

Labeled Statements 73

The break and continue Statements 73

The with Statement 75

The switch Statement 76

Functions 78

Understanding Arguments 80

No Overloading 83

Summary 83

CHAPTER 4: VARIABLES, SCOPE, AND MEMORY 85

Primitive and Reference Values 85

Dynamic Properties 86

Copying Values 86

Argument Passing 88

Determining Type 89

Execution Context and Scope 90

Scope Chain Augmentation 92

No Block-Level Scopes 93

ftoc.indd xviftoc.indd xvi 12/8/11 12:56:23 PM12/8/11 12:56:23 PM

xvii

CONTENTS

Garbage Collection 96

Mark-and-Sweep 96

Reference Counting 97

Performance 98

Managing Memory 99

Summary 100

CHAPTER 5: REFERENCE TYPES 103

The Object Type 104

The Array Type 106

Detecting Arrays 110

Conversion Methods 110

Stack Methods 112

Queue Methods 113

Reordering Methods 114

Manipulation Methods 116

Location Methods 118

Iterative Methods 119

Reduction Methods 121

The Date Type 122

Inherited Methods 124

Date-Formatting Methods 125

Date/Time Component Methods 126

The RegExp Type 128

RegExp Instance Properties 131

RegExp Instance Methods 132

RegExp Constructor Properties 134

Pattern Limitations 136

The Function Type 136

No Overloading (Revisited) 138

Function Declarations versus Function Expressions 138

Functions as Values 139

Function Internals 141

Function Properties and Methods 143

Primitive Wrapper Types 146

The Boolean Type 148

The Number Type 149

The String Type 151

Singleton Built-in Objects 161

The Global Object 162

The Math Object 166

Summary 170

ftoc.indd xviiftoc.indd xvii 12/8/11 12:56:23 PM12/8/11 12:56:23 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xviii

CONTENTS

CHAPTER 6: OBJECT-ORIENTED PROGRAMMING 173

Understanding Objects 173

Types of Properties 174

Defi ning Multiple Properties 178

Reading Property Attributes 179

Object Creation 180

The Factory Pattern 180

The Constructor Pattern 181

The Prototype Pattern 184

Combination Constructor/Prototype Pattern 197

Dynamic Prototype Pattern 198

Parasitic Constructor Pattern 199

Durable Constructor Pattern 200

Inheritance 201

Prototype Chaining 202

Constructor Stealing 207

Combination Inheritance 209

Prototypal Inheritance 210

Parasitic Inheritance 211

Parasitic Combination Inheritance 212

Summary 215

CHAPTER 7: FUNCTION EXPRESSIONS 217

Recursion 220

Closures 221

Closures and Variables 224

The this Object 225

Memory Leaks 227

Mimicking Block Scope 228

Private Variables 231

Static Private Variables 232

The Module Pattern 234

The Module-Augmentation Pattern 236

Summary 237

CHAPTER 8: THE BROWSER OBJECT MODEL 239

The window Object 239

The Global Scope 240

Window Relationships and Frames 241

Window Position 244

ftoc.indd xviiiftoc.indd xviii 12/8/11 12:56:23 PM12/8/11 12:56:23 PM

xix

CONTENTS

Window Size 245

Navigating and Opening Windows 247

Intervals and Timeouts 251

System Dialogs 253

The location Object 255

Query String Arguments 256

Manipulating the Location 257

The Navigator Object 259

Detecting Plug-ins 262

Registering Handlers 264

The screen Object 265

The history Object 267

Summary 268

CHAPTER 9: CLIENT DETECTION 271

Capability Detection 271

Safer Capability Detection 273

Capability Detection Is Not Browser Detection 274

Quirks Detection 275

User-Agent Detection 276

History 277

Working with User-Agent Detection 286

The Complete Script 303

Usage 306

Summary 306

CHAPTER 10: THE DOCUMENT OBJECT MODEL 309

Hierarchy of Nodes 310

The Node Type 310

The Document Type 316

The Element Type 326

The Text Type 337

The Comment Type 341

The CDATASection Type 342

The DocumentType Type 343

The DocumentFragment Type 344

The Attr Type 345

Working with the DOM 346

Dynamic Scripts 346

Dynamic Styles 348

ftoc.indd xixftoc.indd xix 12/8/11 12:56:24 PM12/8/11 12:56:24 PM

xx

CONTENTS

Manipulating Tables 350

Using NodeLists 353

Summary 354

CHAPTER 11: DOM EXTENSIONS 357

Selectors API 357

The querySelector() Method 358

The querySelectorAll() Method 358

The matchesSelector() Method 359

Element Traversal 360

HTML5 361

Class-Related Additions 361

Focus Management 364

Changes to HTMLDocument 364

Character Set Properties 366

Custom Data Attributes 366

Markup Insertion 367

The scrollIntoView() Method 372

Proprietary Extensions 372

Document Mode 373

The children Property 374

The contains() Method 374

Markup Insertion 376

Scrolling 379

Summary 379

CHAPTER 12: DOM LEVELS 2 AND 3 381

DOM Changes 382

XML Namespaces 382

Other Changes 386

Styles 390

Accessing Element Styles 391

Working with Style Sheets 396

Element Dimensions 401

Traversals 408

NodeIterator 410

TreeWalker 413

Ranges 415

Ranges in the DOM 415

Ranges in Internet Explorer 8 and Earlier 424

Summary 428

ftoc.indd xxftoc.indd xx 12/8/11 12:56:24 PM12/8/11 12:56:24 PM

xxi

CONTENTS

CHAPTER 13: EVENTS 431

Event Flow 432

Event Bubbling 432

Event Capturing 433

DOM Event Flow 433

Event Handlers 434

HTML Event Handlers 434

DOM Level 0 Event Handlers 437

DOM Level 2 Event Handlers 438

Internet Explorer Event Handlers 439

Cross-Browser Event Handlers 441

The Event Object 442

The DOM Event Object 442

The Internet Explorer Event Object 447

Cross-Browser Event Object 449

Event Types 451

UI Events 452

Focus Events 458

Mouse and Wheel Events 459

Keyboard and Text Events 471

Composition Events 478

Mutation Events 479

HTML5 Events 482

Device Events 490

Touch and Gesture Events 494

Memory and Performance 498

Event Delegation 498

Removing Event Handlers 500

Simulating Events 502

DOM Event Simulation 502

Internet Explorer Event Simulation 508

Summary 509

CHAPTER 14: SCRIPTING FORMS 511

Form Basics 511

Submitting Forms 512

Resetting Forms 513

Form Fields 514

Scripting Text Boxes 520

Text Selection 521

ftoc.indd xxiftoc.indd xxi 12/8/11 12:56:25 PM12/8/11 12:56:25 PM

xxii

CONTENTS

Input Filtering 524

Automatic Tab Forward 528

HTML5 Constraint Validation API 530

Scripting Select Boxes 534

Options Selection 536

Adding Options 537

Removing Options 538

Moving and Reordering Options 539

Form Serialization 540

Rich Text Editing 542

Using contenteditable 543

Interacting with Rich Text 543

Rich Text Selections 547

Rich Text in Forms 549

Summary 549

CHAPTER 15: GRAPHICS WITH CANVAS 551

Basic Usage 551

The 2D Context 553

Fills and Strokes 553

Drawing Rectangles 553

Drawing Paths 556

Drawing Text 557

Transformations 559

Drawing Images 563

Shadows 564

Gradients 565

Patterns 567

Working with Image Data 567

Compositing 569

WebGL 571

Typed Arrays 571

The WebGL Context 576

Support 588

Summary 588

CHAPTER 16: HTML5 SCRIPTING 591

Cross-Document Messaging 591

Native Drag and Drop 593

Drag-and-Drop Events 593

ftoc.indd xxiiftoc.indd xxii 12/8/11 12:56:25 PM12/8/11 12:56:25 PM

xxiii

CONTENTS

Custom Drop Targets 594

The dataTransfer Object 595

DropEff ect and eff ectAllowed 596

Draggability 597

Additional Members 598

Media Elements 598

Properties 599

Events 601

Custom Media Players 602

Codec Support Detection 603

The Audio Type 604

History State Management 605

Summary 606

CHAPTER 17: ERROR HANDLING AND DEBUGGING 607

Browser Error Reporting 607

Internet Explorer 608

Firefox 609

Safari 610

Opera 612

Chrome 613

Error Handling 614

The try-catch Statement 615

Throwing Errors 619

The error Event 622

Error-handling Strategies 623

Identify Where Errors Might Occur 623

Distinguishing between Fatal and Nonfatal Errors 628

Log Errors to the Server 629

Debugging Techniques 630

Logging Messages to a Console 631

Logging Messages to the Page 633

Throwing Errors 634

Common Internet Explorer Errors 635

Operation Aborted 635

Invalid Character 637

Member Not Found 637

Unknown Runtime Error 638

Syntax Error 638

The System Cannot Locate the Resource Specifi ed 639

Summary 639

ftoc.indd xxiiiftoc.indd xxiii 12/8/11 12:56:25 PM12/8/11 12:56:25 PM

xxiv

CONTENTS

CHAPTER 18: XML IN JAVASCRIPT 641

XML DOM Support in Browsers 641

DOM Level 2 Core 641

The DOMParser Type 642

The XMLSerializer Type 644

XML in Internet Explorer 8 and Earlier 644

Cross-Browser XML Processing 649

XPath Support in Browsers 651

DOM Level 3 XPath 651

XPath in Internet Explorer 656

Cross-Browser XPath 657

XSLT Support in Browsers 660

XSLT in Internet Explorer 660

The XSLTProcessor Type 665

Cross-Browser XSLT 667

Summary 668

CHAPTER 19: ECMASCRIPT FOR XML 671

E4X Types 671

The XML Type 672

The XMLList Type 673

The Namespace Type 674

The QName Type 675

General Usage 676

Accessing Attributes 678

Other Node Types 679

Querying 681

XML Construction and Manipulation 682

Parsing and Serialization Options 685

Namespaces 686

Other Changes 688

Enabling Full E4X 689

Summary 689

CHAPTER 20: JSON 691

Syntax 691

Simple Values 692

Objects 692

Arrays 693

Parsing and Serialization 694

ftoc.indd xxivftoc.indd xxiv 12/8/11 12:56:26 PM12/8/11 12:56:26 PM

xxv

CONTENTS

The JSON Object 695

Serialization Options 696

Parsing Options 699

Summary 700

CHAPTER 21: AJAX AND COMET 701

The XMLHttpRequest Object 702

XHR Usage 703

HTTP Headers 706

GET Requests 707

POST Requests 708

XMLHttpRequest Level 2 710

The FormData Type 710

Timeouts 711

The overrideMimeType() Method 711

Progress Events 712

The load Event 712

The progress Event 713

Cross-Origin Resource Sharing 714

CORS in Internet Explorer 714

CORS in Other Browsers 716

Prefl ighted Requests 717

Credentialed Requests 718

Cross-Browser CORS 718

Alternate Cross-Domain Techniques 719

Image Pings 719

Comet 721

Server-Sent Events 723

Web Sockets 725

SSE versus Web Sockets 727

Security 728

Summary 729

CHAPTER 22: ADVANCED TECHNIQUES 731

Advanced Functions 731

Safe Type Detection 731

Scope-Safe Constructors 733

Lazy Loading Functions 736

Function Binding 738

Function Currying 741

ftoc.indd xxvftoc.indd xxv 12/8/11 12:56:26 PM12/8/11 12:56:26 PM

xxvi

CONTENTS

Tamper-Proof Objects 743

Nonextensible Objects 744

Sealed Objects 744

Frozen Objects 745

Advanced Timers 746

Repeating Timers 748

Yielding Processes 750

Function Throttling 752

Custom Events 755

Drag and Drop 758

Fixing Drag Functionality 760

Adding Custom Events 762

Summary 764

CHAPTER 23: OFFLINE APPLICATIONS AND CLIENT-SIDE
STORAGE 765

Offl ine Detection 765

Application Cache 766

Data Storage 768

Cookies 768

Internet Explorer User Data 778

Web Storage 780

IndexedDB 786

Summary 799

CHAPTER 24: BEST PRACTICES 801

Maintainability 801

What Is Maintainable Code? 802

Code Conventions 802

Loose Coupling 805

Programming Practices 809

Performance 814

Be Scope-Aware 814

Choose the Right Approach 816

Minimize Statement Count 821

Optimize DOM Interactions 824

Deployment 827

Build Process 827

Validation 829

Compression 830

Summary 833

ftoc.indd xxviftoc.indd xxvi 12/8/11 12:56:27 PM12/8/11 12:56:27 PM

xxvii

CONTENTS

CHAPTER 25: EMERGING APIS 835

RequestAnimationFrame() 835

Early Animation Loops 836

Problems with Intervals 836

mozRequestAnimationFrame 837

webkitRequestAnimationFrame and msRequestAnimationFrame 838

Page Visibility API 839

Geolocation API 841

File API 843

The FileReader Type 844

Partial Reads 846

Object URLs 847

Drag-and-Drop File Reading 848

File Upload with XHR 849

Web Timing 851

Web Workers 852

Using a Worker 852

Worker Global Scope 853

Including Other Scripts 855

The Future of Web Workers 855

Summary 856

APPENDIX A: ECMASCRIPT HARMONY 857

General Changes 857

Constants 858

Block-Level and Other Scopes 858

Functions 859

Rest and Spread Arguments 859

Default Argument Values 860

Generators 861

Arrays and Other Structures 861

Iterators 862

Array Comprehensions 863

Destructuring Assignments 864

New Object Types 865

Proxy Objects 865

Proxy Functions 868

Map and Set 868

WeakMap 869

StructType 869

ftoc.indd xxviiftoc.indd xxvii 12/8/11 12:56:27 PM12/8/11 12:56:27 PM

xxviii

CONTENTS

ArrayType 870

Classes 871

Private Members 872

Getters/Setters 872

Inheritance 873

Modules 874

External Modules 875

APPENDIX B: STRICT MODE 877

Opting-in 877

Variables 878

Objects 878

Functions 879

eval() 880

eval and arguments 881

Coercion of this 882

Other Changes 882

APPENDIX C: JAVASCRIPT LIBRARIES 885

General Libraries 885

Yahoo! User Interface Library (YUI) 885

Prototype 886

The Dojo Toolkit 886

MooTools 886

jQuery 886

MochiKit 886

Underscore.js 887

Internet Applications 887

Backbone.js 887

Rico 887

qooxdoo 887

Animation and Eff ects 888

script.aculo.us 888

moo.fx 888

Lightbox 888

Cryptography 888

JavaScript MD5 889

JavaScrypt 889

ftoc.indd xxviiiftoc.indd xxviii 12/8/11 12:56:27 PM12/8/11 12:56:27 PM

xxix

CONTENTS

APPENDIX D: JAVASCRIPT TOOLS 891

Validators 891

JSLint 891

JSHint 892

JavaScript Lint 892

Minifi ers 892

JSMin 892

Dojo ShrinkSafe 892

YUI Compressor 893

Unit Testing 893

JsUnit 893

YUI Test 893

Dojo Object Harness (DOH) 894

qUnit 894

Documentation Generators 894

JsDoc Toolkit 894

YUI Doc 894

AjaxDoc 895

Secure Execution Environments 895

ADsafe 895

Caja 895

INDEX 897

ftoc.indd xxixftoc.indd xxix 12/8/11 12:56:28 PM12/8/11 12:56:28 PM

flast.indd xxxflast.indd xxx 12/8/11 12:55:25 PM12/8/11 12:55:25 PM

FOREWORD

I look back at my career (now 20+ years), and in between coming to the realization that my gray
hairs have really sprouted out, I refl ect on the technologies and people that have dramatically
affected my professional life and decisions. If I had to choose one technology, though, that has had
the single biggest positive infl uence on me, it would be JavaScript. Mind you, I wasn’t always a
JavaScript believer. Like many, I looked at it as a play language relegated to doing rotating banners
and sprinkling some interesting effects on pages. I was a server-side developer, and we didn’t play
with toy languages, damn it! But then something happened: Ajax.

I’ll never forget hearing the buzzword Ajax all over the place and thinking that it was some very
cool, new, and innovative technology. I had to check it out, and as I read about it, I was fl oored
when I realized that the toy language I had so readily dismissed was now the technology that was on
the lips of every professional web developer. And suddenly, my perception changed. As I continued
to explore past what Ajax was, I realized that JavaScript was incredibly powerful, and I wanted
in on all the goodness it had to offer. So I embraced it wholeheartedly, working to understand the
language, joining the jQuery project team, and focusing on client-side development. Life was good.

The deeper I became involved in JavaScript, the more developers I met, some whom to this day I
still see as rock stars and mentors. Nicholas Zakas is one of those developers. I remember reading
the second edition of this very book and feeling like, despite all of my years of tinkering, I had
learned so much from it. And the book felt genuine and thoughtful, as if Nicholas understood that
his audience’s experience level would vary and that he needed to manage the tone accordingly.
That really stood out in terms of technical books. Most authors try to go into the deep-dive
technobabble to impress. This was different, and it immediately became my go-to book and the one
I recommended to any developer who wanted to get a solid understanding of JavaScript. I wanted
everyone to feel the same way I felt and realize how valuable a resource it is.

And then, at a jQuery conference, I had the amazing fortune of actually meeting Nicholas in person.
Here was one of top JavaScript developers in the world working on one of the most important web
properties in the world (Yahoo!), and he was one of the nicest people I had ever met. I admit; I was
a bit starstruck when I met him. And the great thing was that he was just this incredibly down-to-
earth person who just wanted to help developers be great. So not only did his book change the way I
thought about JavaScript, but Nicholas himself was someone that I wanted to continue to work with
and get to know.

When Nicholas asked me to write this foreword, I can’t explain how fl attered I was. Here I am
being the opening act for the guru. It’s a testament to how cool of a person he is. Most important,
though, it gives me an opportunity to share with you why I feel this book is so important. I’ve read
many JavaScript books, and there are certainly awesome titles out there. This book, though, offers
in my opinion the total package to make you an incredibly profi cient and able JavaScript developer.

flast.indd xxxiflast.indd xxxi 12/8/11 12:55:26 PM12/8/11 12:55:26 PM

xxxii

The smooth and thoughtful transition from introductory topics such as expressions and variable
declarations to advanced topics such as closures and object-oriented development is what sets it
apart from other books that either are too introductory or expect that you’re already building
missile guidance systems with JavaScript. It’s the “everyman’s” book that will help you write code
that you’ll be proud of and build web site that will excite and delight.

—Rey Bango
Sr. Technical Evangelist, Microsoft Corporation

jQuery Project Team

FOREWORD

flast.indd xxxiiflast.indd xxxii 12/8/11 12:55:26 PM12/8/11 12:55:26 PM

INTRODUCTION

SOME CLAIM THAT JAVASCRIPT is now the most popular programming language in the world, running
any number of complex web applications that the world relies on to do business, make purchases,
manage processes, and more.

JavaScript is very loosely based on Java, an object-oriented programming language popularized
for use on the Web by way of embedded applets. Although JavaScript has a similar syntax and
programming methodology, it is not a “light” version of Java. Instead, JavaScript is its own
dynamic language, fi nding its home in web browsers around the world and enabling enhanced user
interaction on web sites and web applications alike.

In this book, JavaScript is covered from its very beginning in the earliest Netscape browsers to the
present-day incarnations fl ush with support for the DOM and Ajax. You learn how to extend the
language to suit specifi c needs and how to create seamless client-server communication without
intermediaries such as Java or hidden frames. In short, you learn how to apply JavaScript solutions
to business problems faced by web developers everywhere.

WHO THIS BOOK IS FOR

This book is aimed at three groups of readers:

Experienced developers familiar with object-oriented programming who are looking to
learn JavaScript as it relates to traditional OO languages such as Java and C++.

Web application developers attempting to enhance the usability of their web sites and web
applications.

Novice JavaScript developers aiming to better understand the language.

In addition, familiarity with the following related technologies is a strong indicator that this book is
for you:

Java

PHP

ASP.NET

HTML

CSS

XML

This book is not aimed at beginners lacking a basic computer science background or those looking
to add some simple user interactions to web sites. These readers should instead refer to Wrox’s
Beginning JavaScript, 4th Edition (Wiley, 2009).

➤

➤

➤

➤

➤

➤

➤

➤

➤

flast.indd xxxiiiflast.indd xxxiii 12/8/11 12:55:26 PM12/8/11 12:55:26 PM

xxxiv

INTRODUCTION

WHAT THIS BOOK COVERS

Professional JavaScript for Web Developers, 3rd Edition, provides a developer-level introduction,
along with the more advanced and useful features of JavaScript.

Starting at the beginning, the book explores how JavaScript originated and evolved into what it is
today. A detailed discussion of the components that make up a JavaScript implementation follows,
with specifi c focus on standards such as ECMAScript and the Document Object Model (DOM). The
differences in JavaScript implementations used in different popular web browsers are also discussed.

Building on that base, the book moves on to cover basic concepts of JavaScript including its version
of object-oriented programming, inheritance, and its use in HTML. An in-depth examination of
events and event handling is followed by an exploration of browser detection techniques. The book
then explores new APIs such as HTML5, the Selectors API, and the File API.

The last part of the book is focused on advanced topics including performance/memory
optimization, best practices, and a look at where JavaScript is going in the future.

HOW THIS BOOK IS STRUCTURED

This book comprises the following chapters:

 1. What Is JavaScript? — Explains the origins of JavaScript: where it came from, how it
evolved, and what it is today. Concepts introduced include the relationship between
JavaScript and ECMAScript, the Document Object Model (DOM), and the Browser
Object Model (BOM). A discussion of the relevant standards from the European Computer
Manufacturer’s Association (ECMA) and the World Wide Web Consortium (W3C) is also
included.

 2. JavaScript in HTML — Examines how JavaScript is used in conjunction with HTML to
create dynamic web pages. Introduces the various ways of embedding JavaScript into a page
including a discussion surrounding the JavaScript content-type and its relationship to the
<script> element.

 3. Language Basics — Introduces basic language concepts including syntax and fl ow control
statements. Explains the syntactic similarities of JavaScript and other C-based languages
and points out the differences. Type coercion is introduced as it relates to built-in operators.

 4. Variables, Scope, and Memory — Explores how variables are handled in JavaScript
given their loosely typed nature. A discussion about the differences between primitive
and reference values is included, as is information about execution context as it relates to
variables. Also, a discussion about garbage collection in JavaScript explains how memory is
reclaimed when variables go out of scope.

 5. Reference Types — Covers all of the details regarding JavaScript’s built-in reference types,
such as Object and Array. Each reference type described in ECMA-262 is discussed both in
theory and in how they relate to browser implementations.

flast.indd xxxivflast.indd xxxiv 12/8/11 12:55:27 PM12/8/11 12:55:27 PM

INTRODUCTION

xxxv

 6. Object-Oriented Programming — Explains how to use object-oriented programming
in JavaScript. Since JavaScript has no concept of classes, several popular techniques are
explored for object creation and inheritance. Also covered in this chapter is the concept of
function prototypes and how that relates to an overall OO approach.

 7. Function Expressions — Explores one of the most powerful aspects of JavaScript: function
expressions. Topics include closures, how the this object works, the module pattern, and
creating private object members.

 8. The Browser Object Model — Introduces the Browser Object Model (BOM), which is
responsible for objects allowing interaction with the browser itself. Each of the BOM
objects is covered, including window, document, location, navigator, and screen.

 9. Client Detection — Explains various approaches to detecting the client machine
and its capabilities. Different techniques include capability detection and user-agent
string detection. Each approach is discussed for pros and cons, as well as situational
appropriateness.

 10. The Document Object Model — Introduces the Document Object Model (DOM) objects
available in JavaScript as defi ned in DOM Level 1. A brief introduction to XML and its
relationship to the DOM gives way to an in-depth exploration of the entire DOM and how
it allows developers to manipulate a page.

 11. DOM Extensions — Explains how other APIs, as well as the browsers themselves, extend
the DOM with more functionality. Topics include the Selectors API, the Element Traversal
API, and HTML5 extensions.

 12. DOM Levels 2 and 3 — Builds on the previous two chapters, explaining how DOM Levels 2
and 3 augmented the DOM with additional properties, methods, and objects. Compatibility
issues between Internet Explorer and other browsers are discussed.

 13. Events — Explains the nature of events in JavaScript, where they originated, legacy support,
and how the DOM redefi ned how events should work. A variety of devices are covered
including the Wii and iPhone.

 14. Scripting Forms — Looks at using JavaScript to enhance form interactions and work around
browser limitations. Discussion focuses on individual form elements such as text boxes and
select boxes and on data validation and manipulation.

 15. Graphics with Canvas — Discusses the <canvas> tag and how to use it to create on-the-fl y
graphics. Both the 2D context and the WebGL (3D) context are covered, giving you a good
starting point for creating animations and games.

 16. HTML5 Scripting — Introduces JavaScript API changes as defi ned in HTML5. Topics
include cross-document messaging, the Drag-and-Drop API scripting <audio> and <video>
elements, as well as history state management.

 17. Error Handling and Debugging — Discusses how browsers handle errors in JavaScript code
and presents several ways to handle errors. Debugging tools and techniques are also discussed
for each browser, including recommendations for simplifying the debugging process.

flast.indd xxxvflast.indd xxxv 12/8/11 12:55:27 PM12/8/11 12:55:27 PM

xxxvi

INTRODUCTION

 18. XML in JavaScript — Presents the features of JavaScript used to read and manipulate
eXtensible Markup Language (XML) data. Explains the differences in support and objects
in various web browsers and offers suggestions for easier cross-browser coding. This
chapter also covers the use of eXtensible Stylesheet Language Transformations (XSLT) to
transform XML data on the client.

 19. ECMAScript for XML — Discusses the ECMAScript for XML (E4X) extension to
JavaScript, which is designed to simplify working with XML. Explains the advantages of
E4X over using the DOM for XML manipulation.

 20. JSON — Introduces the JSON data format as an alternative to XML. Browser-native JSON
parsing and serialization are discussed as are security considerations when using JSON.

 21. Ajax and Comet — Looks at common Ajax techniques including the use of the
XMLHttpRequest object and Cross-Origin Resource Sharing (CORS) for cross-domain
Ajax. Explains the differences in browser implementations and support and provides
recommendations for usage.

 22. Advanced Techniques — Dives into some of the more complex JavaScript patterns,
including function currying, partial function application, and dynamic functions. Also
covers creating a custom event framework to enable simple event support for custom objects
and creating tamper-proof objects using ECMAScript 5.

 23. Offl ine Applications and Client-Side Storage — Discusses how to detect when an application
is offl ine and provides various techniques for storing data on the client machine. Begins with
a discussion of the most commonly supported feature, cookies, and then discusses newer
functionality such as Web Storage and IndexedDB.

 24. Best Practices — Explores approaches to working with JavaScript in an enterprise
environment. Techniques for better maintainability are discussed, including coding
techniques, formatting, and general programming practices. Execution performance is
discussed, and several techniques for speed optimization are introduced. Last, deployment
issues are discussed, including how to create a build process.

 25. Emerging APIs — Introduces APIs being created to augment JavaScript in the browser. Even
though these APIs aren’t yet complete or fully implemented, they are on the horizon, and
browsers have already begun partially implementing their features. Includes discussion of
Web Timing, geolocation, and the File API.

WHAT YOU NEED TO USE THIS BOOK

To run the samples in the book, you need the following:

Windows XP, Windows 7, or Mac OS X

Internet Explorer 6 or higher, Firefox 2 or higher, Opera 9 or higher, Chrome, or Safari 2
or higher

The complete source code for the samples is available for download from the web site at www.wrox.com.

➤

➤

flast.indd xxxviflast.indd xxxvi 12/8/11 12:55:28 PM12/8/11 12:55:28 PM

http://www.wrox.com

INTRODUCTION

xxxvii

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be forgotten
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

As for styles in the text:

We highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.

We show fi le names, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that’s particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com. When at the site, simply locate the book’s title
(use the Search box or one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book. Code that is included on the web site is highlighted
by the following icon:

Listings include the fi le name in the title. If it is just a code snippet, you’ll fi nd the fi le name in a
code note such as this:

Code snippet fi le name

➤

➤

➤

➤

flast.indd xxxviiflast.indd xxxvii 12/8/11 12:55:29 PM12/8/11 12:55:29 PM

http://www.wrox.com

xxxviii

INTRODUCTION

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com you will fi nd a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-1-118-02669-4.

flast.indd xxxviiiflast.indd xxxviii 12/8/11 12:55:44 PM12/8/11 12:55:44 PM

http://www.wrox.com

INTRODUCTION

xxxix

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post your
own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxixflast.indd xxxix 12/8/11 12:55:49 PM12/8/11 12:55:49 PM

flast.indd xlflast.indd xl 12/8/11 12:55:54 PM12/8/11 12:55:54 PM

What Is JavaScript?

WHAT’S IN THIS CHAPTER?

Review of JavaScript history

What JavaScript is

How JavaScript and ECMAScript are related

The diff erent versions of JavaScript

When JavaScript fi rst appeared in 1995, its main purpose was to handle some of the input
validation that had previously been left to server-side languages such as Perl. Prior to that
time, a round-trip to the server was needed to determine if a required fi eld had been left
blank or an entered value was invalid. Netscape Navigator sought to change that with the
introduction of JavaScript. The capability to handle some basic validation on the client was an
exciting new feature at a time when use of telephone modems was widespread. The associated
slow speeds turned every trip to the server into an exercise in patience.

Since that time, JavaScript has grown into an important feature of every major web browser
on the market. No longer bound to simple data validation, JavaScript now interacts with
nearly all aspects of the browser window and its contents. JavaScript is recognized as a full
programming language, capable of complex calculations and interactions, including closures,
anonymous (lambda) functions, and even metaprogramming. JavaScript has become such an
important part of the Web that even alternative browsers, including those on mobile phones
and those designed for users with disabilities, support it. Even Microsoft, with its own client-
side scripting language called VBScript, ended up including its own JavaScript implementation
in Internet Explorer from its earliest version.

The rise of JavaScript from a simple input validator to a powerful programming language
could not have been predicted. JavaScript is at once a very simple and very complicated
language that takes minutes to learn but years to master. To begin down the path to using
JavaScript’s full potential, it is important to understand its nature, history, and limitations.

➤

➤

➤

➤

1

c01.indd 1c01.indd 1 12/8/11 9:23:11 AM12/8/11 9:23:11 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

2 ❘ CHAPTER 1 WHAT IS JAVASCRIPT?

A SHORT HISTORY

As the Web gained popularity, a gradual demand for client-side scripting languages developed. At
the time, most Internet users were connecting over a 28.8 kbps modem even though web pages were
growing in size and complexity. Adding to users’ pain was the large number of round-trips to the
server required for simple form validation. Imagine fi lling out a form, clicking the Submit button,
waiting 30 seconds for processing, and then being met with a message indicating that you forgot to
complete a required fi eld. Netscape, at that time on the cutting edge of technological innovation,
began seriously considering the development of a client-side scripting language to handle simple
processing.

Brendan Eich, who worked for Netscape at the time, began developing a scripting language called
Mocha, and later LiveScript, for the release of Netscape Navigator 2 in 1995, with the intention of
using it both in the browser and on the server (where it was to be called LiveWire). Netscape entered
into a development alliance with Sun Microsystems to complete the implementation of LiveScript
in time for release. Just before Netscape Navigator 2 was offi cially released, Netscape changed
LiveScript’s name to JavaScript to capitalize on the buzz that Java was receiving from the press.

Because JavaScript 1.0 was such a hit, Netscape released version 1.1 in Netscape Navigator 3. The
popularity of the fl edgling Web was reaching new heights, and Netscape had positioned itself to
be the leading company in the market. At this time, Microsoft decided to put more resources into
a competing browser named Internet Explorer. Shortly after Netscape Navigator 3 was released,
Microsoft introduced Internet Explorer 3 with a JavaScript implementation called JScript (so
called to avoid any possible licensing issues with Netscape). This major step for Microsoft into the
realm of web browsers in August 1996 is now a date that lives in infamy for Netscape, but it also
represented a major step forward in the development of JavaScript as a language.

Microsoft’s implementation of JavaScript meant that there were two different JavaScript versions
fl oating around: JavaScript in Netscape Navigator and JScript in Internet Explorer. Unlike C and
many other programming languages, JavaScript had no standards governing its syntax or features,
and the three different versions only highlighted this problem. With industry fears mounting, it was
decided that the language must be standardized.

In 1997, JavaScript 1.1 was submitted to the European Computer Manufacturers Association
(Ecma) as a proposal. Technical Committee #39 (TC39) was assigned to “standardize the
syntax and semantics of a general purpose, cross-platform, vendor-neutral scripting language”
(www.ecma-international.org/memento/TC39.htm). Made up of programmers from Netscape,
Sun, Microsoft, Borland, NOMBAS, and other companies with interest in the future of scripting,
TC39 met for months to hammer out ECMA-262, a standard defi ning a new scripting language
named ECMAScript (often pronounced as “ek-ma-script”).

The following year, the International Organization for Standardization and International
Electrotechnical Commission (ISO/IEC) also adopted ECMAScript as a standard (ISO/IEC-16262).
Since that time, browsers have tried, with varying degrees of success, to use ECMAScript as a basis
for their JavaScript implementations.

c01.indd 2c01.indd 2 12/8/11 9:23:16 AM12/8/11 9:23:16 AM

JavaScript Implementations ❘ 3

JAVASCRIPT IMPLEMENTATIONS

Though JavaScript and ECMAScript are often used
synonymously, JavaScript is much more than just
what is defi ned in ECMA-262. Indeed, a complete
JavaScript implementation is made up of the
following three distinct parts (see Figure 1-1):

The Core (ECMAScript)

The Document Object Model (DOM)

The Browser Object Model (BOM)

ECMAScript

ECMAScript, the language defi ned in ECMA-262, isn’t tied to web browsers. In fact, the language
has no methods for input or output whatsoever. ECMA-262 defi nes this language as a base upon
which more-robust scripting languages may be built. Web browsers are just one host environment
in which an ECMAScript implementation may exist. A host environment provides the base
implementation of ECMAScript and implementation extensions designed to interface with the
environment itself. Extensions, such as the Document Object Model (DOM), use ECMAScript’s
core types and syntax to provide additional functionality that’s more specifi c to the environment.
Other host environments include NodeJS, a server-side JavaScript platform, and Adobe Flash.

What exactly does ECMA-262 specify if it doesn’t reference web browsers? On a very basic level, it
describes the following parts of the language:

Syntax

Types

Statements

Keywords

Reserved words

Operators

Objects

ECMAScript is simply a description of a language implementing all of the facets described in the
specifi cation. JavaScript implements ECMAScript, but so does Adobe ActionScript.

ECMAScript Editions

The different versions of ECMAScript are defi ned as editions (referring to the edition of
ECMA-262 in which that particular implementation is described). The most recent edition
of ECMA-262 is edition 5, released in 2009. The fi rst edition of ECMA-262 was essentially the

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

FIGURE 1-1

JavaScript

ECMAScript DOM BOM

c01.indd 3c01.indd 3 12/8/11 9:23:16 AM12/8/11 9:23:16 AM

4 ❘ CHAPTER 1 WHAT IS JAVASCRIPT?

same as Netscape’s JavaScript 1.1 but with all references to browser-specifi c code removed and a
few minor changes: ECMA-262 required support for the Unicode standard (to support multiple
languages) and that objects be platform-independent (Netscape JavaScript 1.1 actually had different
implementations of objects, such as the Date object, depending on the platform). This was a major
reason why JavaScript 1.1 and 1.2 did not conform to the fi rst edition of ECMA-262.

The second edition of ECMA-262 was largely editorial. The standard was updated to get into
strict agreement with ISO/IEC-16262 and didn’t feature any additions, changes, or omissions.
ECMAScript implementations typically don’t use the second edition as a measure of conformance.

The third edition of ECMA-262 was the fi rst real update to the standard. It provided updates to
string handling, the defi nition of errors, and numeric outputs. It also added support for regular
expressions, new control statements, try-catch exception handling, and small changes to better
prepare the standard for internationalization. To many, this marked the arrival of ECMAScript as a
true programming language.

The fourth edition of ECMA-262 was a complete overhaul of the language. In response
to the popularity of JavaScript on the Web, developers began revising ECMAScript to meet the
growing demands of web development around the world. In response, Ecma TC39 reconvened
to decide the future of the language. The resulting specifi cation defi ned an almost completely
new language based on the third edition. The fourth edition includes strongly typed variables, new
statements and data structures, true classes and classical inheritance, and new ways to interact
with data.

As an alternate proposal, a specifi cation called “ECMAScript 3.1,” was developed as a smaller
evolution of the language by a subcommittee of TC39, who believed that the fourth edition was
too big of a jump for the language. The result was a smaller proposal with incremental changes to
ECMAScript that could be implemented on top of existing JavaScript engines. Ultimately, the ES3.1
subcommittee won over support from TC39, and the fourth edition of ECMA-262 was abandoned
before offi cially being published.

ECMAScript 3.1 became ECMA-262, fi fth edition, and was offi cially published on December 3,
2009. The fi fth edition sought to clarify perceived ambiguities of the third edition and introduce
additional functionality. The new functionality includes a native JSON object for parsing and
serializing JSON data, methods for inheritance and advanced property defi nition, and the inclusion
of a new strict mode that slightly augments how ECMAScript engines interpret and execute code.

What Does ECMAScript Conformance Mean?

ECMA-262 lays out the defi nition of ECMAScript conformance. To be considered an
implementation of ECMAScript, an implementation must do the following:

Support all “types, values, objects, properties, functions, and program syntax and
semantics” (ECMA-262, p. 1) as they are described in ECMA-262.

Support the Unicode character standard.

➤

➤

c01.indd 4c01.indd 4 12/8/11 9:23:17 AM12/8/11 9:23:17 AM

JavaScript Implementations ❘ 5

Additionally, a conforming implementation may do the following:

Add “additional types, values, objects, properties, and functions” that are not specifi ed
in ECMA-262. ECMA-262 describes these additions as primarily new objects or new
properties of objects not given in the specifi cation.

Support “program and regular expression syntax” that is not defi ned in ECMA-262
(meaning that the built-in regular-expression support is allowed to be altered and
extended).

These criteria give implementation developers a great amount of power and fl exibility for developing
new languages based on ECMAScript, which partly accounts for its popularity.

ECMAScript Support in Web Browsers

Netscape Navigator 3 shipped with JavaScript 1.1 in 1996. That same JavaScript 1.1 specifi cation
was then submitted to Ecma as a proposal for the new standard, ECMA-262. With JavaScript’s
explosive popularity, Netscape was very happy to start developing version 1.2. There was, however,
one problem: Ecma hadn’t yet accepted Netscape’s proposal.

A little after Netscape Navigator 3 was released, Microsoft introduced Internet Explorer 3. This
version of IE shipped with JScript 1.0, which was supposed to be equivalent to JavaScript 1.1.
However, because of undocumented and improperly replicated features, JScript 1.0 fell far short of
JavaScript 1.1.

Netscape Navigator 4 was shipped in 1997 with JavaScript 1.2 before the fi rst edition of ECMA-262
was accepted and standardized later that year. As a result, JavaScript 1.2 is not compliant with the
fi rst edition of ECMAScript even though ECMAScript was supposed to be based on JavaScript 1.1.

The next update to JScript occurred in Internet Explorer 4 with JScript version 3.0 (version 2.0
was released in Microsoft Internet Information Server version 3.0 but was never included in a
browser). Microsoft put out a press release touting JScript 3.0 as the fi rst truly Ecma-compliant
scripting language in the world. At that time, ECMA-262 hadn’t yet been fi nalized, so JScript 3.0
suffered the same fate as JavaScript 1.2: it did not comply with the fi nal ECMAScript standard.

Netscape opted to update its JavaScript implementation in Netscape Navigator 4.06 to JavaScript 1.3,
which brought Netscape into full compliance with the fi rst edition of ECMA-262. Netscape added
support for the Unicode standard and made all objects platform-independent while keeping the features
that were introduced in JavaScript 1.2.

When Netscape released its source code to the public as the Mozilla project, it was anticipated
that JavaScript 1.4 would be shipped with Netscape Navigator 5. However, a radical decision to
completely redesign the Netscape code from the bottom up derailed that effort. JavaScript 1.4 was
released only as a server-side language for Netscape Enterprise Server and never made it into a web
browser.

By 2008, the fi ve major web browsers (Internet Explorer, Firefox, Safari, Chrome, and Opera)
all complied with the third edition of ECMA-262. Internet Explorer 8 was the fi rst to start
implementing the fi fth edition of ECMA-262 specifi cation and delivered complete support in
Internet Explorer 9. Firefox 4 soon followed suit. The following table lists ECMAScript support in
the most popular web browsers.

➤

➤

c01.indd 5c01.indd 5 12/8/11 9:23:18 AM12/8/11 9:23:18 AM

6 ❘ CHAPTER 1 WHAT IS JAVASCRIPT?

BROWSER ECMASCRIPT COMPLIANCE

Netscape Navigator 2 —

Netscape Navigator 3 —

Netscape Navigator 4–4.05 —

Netscape Navigator 4.06–4.79 Edition 1

Netscape 6+ (Mozilla 0.6.0+) Edition 3

Internet Explorer 3 —

Internet Explorer 4 —

Internet Explorer 5 Edition 1

Internet Explorer 5.5–7 Edition 3

Internet Explorer 8 Edition 5*

Internet Explorer 9+ Edition 5

Opera 6–7.1 Edition 2

Opera 7.2+ Edition 3

Safari 1–2.0.x Edition 3*

Safari 3.x Edition 3

Safari 4.x–5.x Edition 5*

Chrome 1+ Edition 3

Firefox 1–2 Edition 3

Firefox 3.0.x Edition 3

Firefox 3.5–3.6 Edition 5*

Firefox 4+ Edition 5

*Incomplete implementations

The Document Object Model (DOM)

The Document Object Model (DOM) is an application programming interface (API) for XML that
was extended for use in HTML. The DOM maps out an entire page as a hierarchy of nodes. Each
part of an HTML or XML page is a type of a node containing different kinds of data. Consider the
following HTML page:

c01.indd 6c01.indd 6 12/8/11 9:23:18 AM12/8/11 9:23:18 AM

JavaScript Implementations ❘ 7

<html>
 <head>
 <title>Sample Page</title>
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

This code can be diagrammed into a hierarchy of nodes
using the DOM (see Figure 1-2).

By creating a tree to represent a document, the DOM
allows developers an unprecedented level of control over
its content and structure. Nodes can be removed, added,
replaced, and modifi ed easily by using the DOM API.

Why the DOM Is Necessary

With Internet Explorer 4 and Netscape Navigator 4 each
supporting different forms of Dynamic HTML (DHTML), developers for the fi rst time could alter
the appearance and content of a web page without reloading it. This represented a tremendous step
forward in web technology but also a huge problem. Netscape and Microsoft went separate ways in
developing DHTML, thus ending the period when developers could write a single HTML page that
could be accessed by any web browser.

It was decided that something had to be done to preserve the cross-platform nature of the Web.
The fear was that if someone didn’t rein in Netscape and Microsoft, the Web would develop into
two distinct factions that were exclusive to targeted browsers. It was then that the World Wide
Web Consortium (W3C), the body charged with creating standards for web communication, began
working on the DOM.

DOM Levels

DOM Level 1 became a W3C recommendation in October 1998. It consisted of two modules:
the DOM Core, which provided a way to map the structure of an XML-based document to allow
for easy access to and manipulation of any part of a document, and the DOM HTML, which
extended the DOM Core by adding HTML-specifi c objects and methods.

Sample Page

html

head

title

body

p

Hello World!

FIGURE 1-2

Note that the DOM is not JavaScript-specifi c and indeed has been implemented in
numerous other languages. For web browsers, however, the DOM has been
implemented using ECMAScript and now makes up a large part of the JavaScript
language.

Whereas the goal of DOM Level 1 was to map out the structure of a document, the aims of DOM
Level 2 were much broader. This extension of the original DOM added support for mouse and
user-interface events (long supported by DHTML), ranges, traversals (methods to iterate over a DOM
document), and support for Cascading Style Sheets (CSS) through object interfaces. The original
DOM Core introduced in Level 1 was also extended to include support for XML namespaces.

c01.indd 7c01.indd 7 12/8/11 9:23:19 AM12/8/11 9:23:19 AM

8 ❘ CHAPTER 1 WHAT IS JAVASCRIPT?

DOM Level 2 introduced the following new modules of the DOM to deal with new types of
interfaces:

DOM Views — Describes interfaces to keep track of the various views of a document
(the document before and after CSS styling, for example)

DOM Events — Describes interfaces for events and event handling

DOM Style — Describes interfaces to deal with CSS-based styling of elements

DOM Traversal and Range — Describes interfaces to traverse and manipulate a document tree

DOM Level 3 further extends the DOM with the introduction of methods to load and save
documents in a uniform way (contained in a new module called DOM Load and Save) and methods
to validate a document (DOM Validation). In Level 3, the DOM Core is extended to support all of
XML 1.0, including XML Infoset, XPath, and XML Base.

➤

➤

➤

➤

When reading about the DOM, you may come across references to DOM Level 0.
Note that there is no standard called DOM Level 0; it is simply a reference point
in the history of the DOM. DOM Level 0 is considered to be the original
DHTML supported in Internet Explorer 4.0 and Netscape Navigator 4.0.

Other DOMs

Aside from the DOM Core and DOM HTML interfaces, several other languages have had their own
DOM standards published. The languages in the following list are XML-based, and each DOM
adds methods and interfaces unique to a particular language:

Scalable Vector Graphics (SVG) 1.0

Mathematical Markup Language (MathML) 1.0

Synchronized Multimedia Integration Language (SMIL)

Additionally, other languages have developed their own DOM implementations, such as Mozilla’s
XML User Interface Language (XUL). However, only the languages in the preceding list are
standard recommendations from W3C.

DOM Support in Web Browsers

The DOM had been a standard for some time before web browsers started implementing it. Internet
Explorer made its fi rst attempt with version 5, but it didn’t have any realistic DOM support until
version 5.5, when it implemented most of DOM Level 1. Internet Explorer didn’t introduce new
DOM functionality in versions 6 and 7, though version 8 introduced some bug fi xes.

For Netscape, no DOM support existed until Netscape 6 (Mozilla 0.6.0) was introduced. After
Netscape 7, Mozilla switched its development efforts to the Firefox browser. Firefox 3+ supports all
of Level 1, nearly all of Level 2, and some parts of Level 3. (The goal of the Mozilla development
team was to build a 100 percent standards-compliant browser, and their work paid off.)

➤

➤

➤

c01.indd 8c01.indd 8 12/8/11 9:23:36 AM12/8/11 9:23:36 AM

JavaScript Implementations ❘ 9

DOM support became a huge priority for most browser vendors, and efforts have been ongoing to
improve support with each release. The following table shows DOM support for popular browsers.

BROWSER DOM COMPLIANCE

Netscape Navigator 1.–4.x —

Netscape 6+ (Mozilla 0.6.0+) Level 1, Level 2 (almost all), Level 3 (partial)

Internet Explorer 2–4.x —

Internet Explorer 5 Level 1 (minimal)

Internet Explorer 5.5–8 Level 1 (almost all)

Internet Explorer 9+ Level 1, Level 2, Level 3

Opera 1–6 —

Opera 7–8.x Level 1 (almost all), Level 2 (partial)

Opera 9–9.9 Level 1, Level 2 (almost all), Level 3 (partial)

Opera 10+ Level 1, Level 2, Level 3 (partial)

Safari 1.0.x Level 1

Safari 2+ Level 1, Level 2 (partial)

Chrome 1+ Level 1, Level 2 (partial)

Firefox 1+ Level 1, Level 2 (almost all), Level 3 (partial)

The Browser Object Model (BOM)

The Internet Explorer 3 and Netscape Navigator 3 browsers featured a Browser Object Model
(BOM) that allowed access and manipulation of the browser window. Using the BOM, developers
can interact with the browser outside of the context of its displayed page. What made the BOM
truly unique, and often problematic, was that it was the only part of a JavaScript implementation that
had no related standard. This changed with the introduction of HTML5, which sought to codify
much of the BOM as part of a formal specifi cation. Thanks to HTML5, a lot of the confusion
surrounding the BOM has dissipated.

Primarily, the BOM deals with the browser window and frames, but generally any browser-specifi c
extension to JavaScript is considered to be a part of the BOM. The following are some such extensions:

The capability to pop up new browser windows

The capability to move, resize, and close browser windows

The navigator object, which provides detailed information about the browser

➤

➤

➤

c01.indd 9c01.indd 9 12/8/11 9:23:42 AM12/8/11 9:23:42 AM

10 ❘ CHAPTER 1 WHAT IS JAVASCRIPT?

The location object, which gives detailed information about the page loaded in the
browser

The screen object, which gives detailed information about the user’s screen resolution

Support for cookies

Custom objects such as XMLHttpRequest and Internet Explorer’s ActiveXObject

Because no standards existed for the BOM for a long time, each browser has its own
implementation. There are some de facto standards, such as having a window object and a
navigator object, but each browser defi nes its own properties and methods for these and other
objects. With HTML5 now available, the implementation details of the BOM are expected to grow
in a much more compatible way. A detailed discussion of the BOM is included in Chapter 8.

JAVASCRIPT VERSIONS

Mozilla, as a descendant from the original Netscape, is the only browser vendor that has continued
the original JavaScript version-numbering sequence. When the Netscape source code was spun off
into an open-source project (named the Mozilla Project), the last browser version of JavaScript
was 1.3. (As mentioned previously, version 1.4 was implemented on the server exclusively.) As the
Mozilla Foundation continued work on JavaScript, adding new features, keywords, and syntaxes,
the JavaScript version number was incremented. The following table shows the JavaScript version
progression in Netscape/Mozilla browsers.

BROWSER JAVASCRIPT VERSION

Netscape Navigator 2 1.0

Netscape Navigator 3 1.1

Netscape Navigator 4 1.2

Netscape Navigator 4.06 1.3

Netscape 6+ (Mozilla 0.6.0+) 1.5

Firefox 1 1.5

Firefox 1.5 1.6

Firefox 2 1.7

Firefox 3 1.8

Firefox 3.5 1.8.1

Firefox 3.6 1.8.2

➤

➤

➤

➤

c01.indd 10c01.indd 10 12/8/11 9:23:42 AM12/8/11 9:23:42 AM

Summary ❘ 11

The numbering scheme was based on the idea that Firefox 4 would feature JavaScript 2.0, and
each increment in the version number prior to that point indicates how close the JavaScript
implementation is to the 2.0 proposal. Though this was the original plan, the evolution of
JavaScript happened in such a way that this was no longer possible. There is currently no target
implementation for JavaScript 2.0.

It’s important to note that only the Netscape/Mozilla browsers follow this
versioning scheme. Internet Explorer, for example, has different version
numbers for JScript. These JScript versions don’t correspond whatsoever to the
JavaScript versions mentioned in the preceding table. Furthermore, most
browsers talk about JavaScript support in relation to their level of ECMAScript
compliance and DOM support.

SUMMARY

JavaScript is a scripting language designed to interact with web pages and is made up of the
following three distinct parts:

ECMAScript, which is defi ned in ECMA-262 and provides the core functionality

The Document Object Model (DOM), which provides methods and interfaces for working
with the content of a web page

The Browser Object Model (BOM), which provides methods and interfaces for interacting
with the browser

There are varying levels of support for the three parts of JavaScript across the fi ve major web
browsers (Internet Explorer, Firefox, Chrome, Safari, and Opera). Support for ECMAScript 3 is
generally good across all browsers, and support for ECMAScript 5 is growing, whereas support for
the DOM varies widely. The BOM, recently codifi ed in HTML5, can vary from browser to browser,
though there are some commonalities that are assumed to be available.

➤

➤

➤

c01.indd 11c01.indd 11 12/8/11 9:23:43 AM12/8/11 9:23:43 AM

c01.indd 12c01.indd 12 12/8/11 9:23:49 AM12/8/11 9:23:49 AM

JavaScript in HTML

WHAT’S IN THIS CHAPTER?

Using the <script> element

Comparing inline and external scripts

Examining how document modes aff ect JavaScript

Preparing for JavaScript-disabled experiences

The introduction of JavaScript into web pages immediately ran into the Web’s predominant
language, HTML. As part of its original work on JavaScript, Netscape tried to fi gure out
how to make JavaScript coexist in HTML pages without breaking those pages’ rendering in
other browsers. Through trial, error, and controversy, several decisions were fi nally made and
agreed upon to bring universal scripting support to the Web. Much of the work done in these
early days of the Web has survived and become formalized in the HTML specifi cation.

THE <SCRIPT> ELEMENT

The primary method of inserting JavaScript into an HTML page is via the <script> element.
This element was created by Netscape and fi rst implemented in Netscape Navigator 2. It was later
added to the formal HTML specifi cation. There are six attributes for the <script> element:

async — Optional. Indicates that the script should begin downloading immediately
but should not prevent other actions on the page such as downloading resources or
waiting for other scripts to load. Valid only for external script fi les.

charset — Optional. The character set of the code specifi ed using the src attribute.
This attribute is rarely used, because most browsers don’t honor its value.

defer — Optional. Indicates that the execution of the script can safely be deferred
until after the document’s content has been completely parsed and displayed. Valid
only for external scripts. Internet Explorer 7 and earlier also allow for inline scripts.

➤

➤

➤

➤

➤

➤

➤

2

c02.indd 13c02.indd 13 12/8/11 9:26:01 AM12/8/11 9:26:01 AM

14 ❘ CHAPTER 2 JAVASCRIPT IN HTML

language — Deprecated. Originally indicated the scripting language being used by the code
block (such as “JavaScript”, “JavaScript1.2”, or “VBScript”). Most browsers ignore
this attribute; it should not be used.

src — Optional. Indicates an external fi le that contains code to be executed.

type — Optional. Replaces language; indicates the content type (also called MIME type)
of the scripting language being used by the code block. Traditionally, this value has always
been “text/javascript”, though both “text/javascript” and “text/ecmascript” are
deprecated. JavaScript fi les are typically served with the “application/x-javascript”
MIME type even though setting this in the type attribute may cause the script to be
ignored. Other values that work in non–Internet Explorer browsers are “application/
javascript” and “application/ecmascript”. The type attribute is still typically set to
“text/javascript” by convention and for maximum browser compatibility. This attribute
is safe to omit, as “text/javascript” is assumed when missing.

There are two ways to use the <script> element: embed JavaScript code directly into the page or
include JavaScript from an external fi le.

To include inline JavaScript code, place JavaScript code inside the <script> element directly, as
follows:

<script type=”text/javascript”>
 function sayHi(){
 alert(“Hi!”);
 }
</script>

The JavaScript code contained inside a <script> element is interpreted from top to bottom.
In the case of this example, a function defi nition is interpreted and stored inside the interpreter
environment. The rest of the page content is not loaded and/or displayed until after all of the code
inside the <script> element has been evaluated.

When using inline JavaScript code, keep in mind that you cannot have the string “</script>” anywhere
in your code. For example, the following code causes an error when loaded into a browser:

<script type=”text/javascript”>
 function sayScript(){
 alert(“</script>”);
 }
</script>

Because of the way that inline scripts are parsed, the browser sees the string “</script>” as if it
were the closing </script> tag. This problem can be avoided easily by escaping the “/” character,
as in this example:

<script type=”text/javascript”>
 function sayScript(){
 alert(“<\/script>”);
 }
</script>

➤

➤

➤

c02.indd 14c02.indd 14 12/8/11 9:26:04 AM12/8/11 9:26:04 AM

The changes to this code make it acceptable to browsers and won’t cause any errors.

To include JavaScript from an external fi le, the src attribute is required. The value of src is a URL
linked to a fi le containing JavaScript code, like this:

<script type=”text/javascript” src=”example.js”></script>

In this example, an external fi le named example.js is loaded into the page. The fi le itself need
only contain the JavaScript code that would occur between the opening <script> and closing
</script> tags. As with inline JavaScript code, processing of the page is halted while the external
fi le is interpreted. (There is also some time taken to download the fi le.) In XHTML documents, you
can omit the closing tag, as in this example:

<script type=”text/javascript” src=”example.js” />

This syntax should not be used in HTML documents, because it is invalid HTML and won’t be
handled properly by some browsers, most notably Internet Explorer.

It’s important to note that a <script> element using the src attribute should not include additional
JavaScript code between the <script> and </script> tags. If both are provided, the script fi le is
downloaded and executed while the inline code is ignored.

One of the most powerful and most controversial parts of the <script> element is its ability to
include JavaScript fi les from outside domains. Much like an element, the <script> element’s
src attribute may be set to a full URL that exists outside the domain on which the HTML page
exists, as in this example:

<script type=”text/javascript” src=”http://www.somewhere.com/afile.js”></script>

Code from an external domain will be loaded and interpreted as if it were part of the page that is
loading it. This capability allows you to serve up JavaScript from various domains if necessary. Be
careful, however, if you are referencing JavaScript fi les located on a server that you don’t control. A
malicious programmer could, at any time, replace the fi le. When including JavaScript fi les from a
different domain, make sure you are the domain owner or the domain is owned by a trusted source.

Regardless of how the code is included, the <script> elements are interpreted in the order in
which they appear in the page so long as the defer and async attributes are not present. The fi rst

By convention, external JavaScript fi les have a .js extension. This is not a require-
ment, because browsers do not check the fi le extension of included JavaScript fi les.
This leaves open the possibility of dynamically generating JavaScript code using
JSP, PHP, or another server-side scripting language. Keep in mind, though, that
servers often use the fi le extension to determine the correct MIME type to apply
to the response. If you don’t use a .js extension, double-check that your server
is returning the correct MIME type.

The <script> Element ❘ 15

c02.indd 15c02.indd 15 12/8/11 9:26:05 AM12/8/11 9:26:05 AM

16 ❘ CHAPTER 2 JAVASCRIPT IN HTML

<script> element’s code must be completely interpreted before the second <script> element begins
interpretation, the second must be completed before the third, and so on.

Tag Placement

Traditionally, all <script> elements were placed within the <head> element on a page, such as in
this example:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 <script type=”text/javascript” src=”example1.js”></script>
 <script type=”text/javascript” src=”example2.js”></script>
 </head>
 <body>
 <!-- content here -->
 </body>
</html>

The main purpose of this format was to keep external fi le references, both CSS fi les and JavaScript
fi les, in the same area. However, including all JavaScript fi les in the <head> of a document means
that all of the JavaScript code must be downloaded, parsed, and interpreted before the page begins
rendering (rendering begins when the browser receives the opening <body> tag). For pages that
require a lot of JavaScript code, this can cause a noticeable delay in page rendering, during which
time the browser will be completely blank. For this reason, modern web applications typically include
all JavaScript references in the <body> element, after the page content, as shown in this example:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 </head>
 <body>
 <!-- content here -->
 <script type=”text/javascript” src=”example1.js”></script>
 <script type=”text/javascript” src=”example2.js”></script>
 </body>
</html>

Using this approach, the page is completely rendered in the browser before the JavaScript code is
processed. The resulting user experience is perceived as faster, because the amount of time spent on
a blank browser window is reduced.

Deferred Scripts

HTML 4.01 defi nes an attribute named defer for the <script> element. The purpose of defer is
to indicate that a script won’t be changing the structure of the page as it executes. As such, the script
can be run safely after the entire page has been parsed. Setting the defer attribute on a <script>

c02.indd 16c02.indd 16 12/8/11 9:26:16 AM12/8/11 9:26:16 AM

element signals to the browser that download should begin immediately but execution should be
deferred:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 <script type=”text/javascript” defer src=”example1.js”></script>
 <script type=”text/javascript” defer src=”example2.js”></script>
 </head>
 <body>
 <!-- content here -->
 </body>
</html>

Even though the <script> elements in this example are included in the document <head>, they
will not be executed until after the browser has received the closing </html> tag. The HTML5
specifi cation indicates that scripts will be executed in the order in which they appear, so the
fi rst deferred script executes before the second deferred script, and both will execute before the
DOMContentLoaded event (see Chapter 13 for more information). In reality, though, deferred scripts
don’t always execute in order or before the DOMContentLoaded event, so it’s best to include just one
when possible.

As mentioned previously, the defer attribute is supported only for external script fi les. This was a
clarifi cation made in HTML5, so browsers that support the HTML5 implementation will ignore
defer when set on an inline script. Internet Explorer 4–7 all exhibit the old behavior, while Internet
Explorer 8 and above support the HTML5 behavior.

Support for the defer attribute was added beginning with Internet Explorer 4, Firefox 3.5,
Safari 5, and Chrome 7. All other browsers simply ignore this attribute and treat the script as it
normally would. For this reason, it’s still best to put deferred scripts at the bottom of the page.

For XHTML documents, specify the defer attribute as defer=”defer”.

Asynchronous Scripts

HTML5 introduces the async attribute for <script> elements. The async attribute is similar to defer
in that it changes the way the script is processed. Also similar to defer, async applies only to external
scripts and signals the browser to begin downloading the fi le immediately. Unlike defer, scripts
marked as async are not guaranteed to execute in the order in which they are specifi ed. For example:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 <script type=”text/javascript” async src=”example1.js”></script>
 <script type=”text/javascript” async src=”example2.js”></script>

The <script> Element ❘ 17

c02.indd 17c02.indd 17 12/8/11 9:26:16 AM12/8/11 9:26:16 AM

18 ❘ CHAPTER 2 JAVASCRIPT IN HTML

 </head>
 <body>
 <!-- content here -->
 </body>
</html>

In this code, the second script fi le might execute before the fi rst, so it’s important that there are no
dependencies between the two. The purpose of specifying an async script is to indicate that the
page need not wait for the script to be downloaded and executed before continuing to load, and it
also need not wait for another script to load and execute before it can do the same. Because of this,
it’s recommended that asynchronous scripts not modify the DOM as they are loading.

Asynchronous scripts are guaranteed to execute before the page’s load event and may execute
before or after DOMContentLoaded (see Chapter 13 for details). Firefox 3.6, Safari 5, and Chrome 7
support asynchronous scripts.

For XHTML documents, specify the async attribute as async=”async”.

Changes in XHTML

Extensible HyperText Markup Language, or XHTML, is a reformulation of HTML as an
application of XML. The rules for writing code in XHTML are stricter than those for HTML,
which affects the <script> element when using embedded JavaScript code. Although valid in
HTML, the following code block is invalid in XHTML:

<script type=”text/javascript”>
 function compare(a, b) {
 if (a < b) {
 alert(“A is less than B”);
 } else if (a > b) {
 alert(“A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }
</script>

In HTML, the <script> element has special rules governing how its contents should be parsed; in
XHTML, these special rules don’t apply. This means that the less-than symbol (<) in the statement
a < b is interpreted as the beginning of a tag, which causes a syntax error because a less-than
symbol must not be followed by a space.

There are two options for fi xing the XHTML syntax error. The fi rst is to replace all occurrences of
the less-than symbol (<) with its HTML entity (<). The resulting code looks like this:

c02.indd 18c02.indd 18 12/8/11 9:26:22 AM12/8/11 9:26:22 AM

<script type=”text/javascript”>
 function compare(a, b) {
 if (a < b) {
 alert(“A is less than B”);
 } else if (a > b) {
 alert(“A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }
</script>

This code will now run in an XHTML page; however, the code is slightly less readable. Fortunately,
there is another approach.

The second option for turning this code into a valid XHTML version is to wrap the JavaScript
code in a CDATA section. In XHTML (and XML), CDATA sections are used to indicate areas of
the document that contain free-form text not intended to be parsed. This enables you to use any
character, including the less-than symbol, without incurring a syntax error. The format is as follows:

<script type=”text/javascript”><![CDATA[
 function compare(a, b) {
 if (a < b) {
 alert(“A is less than B”);
 } else if (a > b) {
 alert(“A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }
]]></script>

In XHTML-compliant web browsers, this solves the problem. However, many browsers are still
not XHTML-compliant and don’t support the CDATA section. To work around this, the CDATA
markup must be offset by JavaScript comments:

<script type=”text/javascript”>
//<![CDATA[
 function compare(a, b) {
 if (a < b) {
 alert(“A is less than B”);
 } else if (a > b) {
 alert(“A is greater than B”);
 } else {
 alert(“A is equal to B”);
 }
 }
//]]>
</script>

This format works in all modern browsers. Though a little bit of a hack, it validates as XHTML
and degrades gracefully for pre-XHTML browsers.

The <script> Element ❘ 19

c02.indd 19c02.indd 19 12/8/11 9:26:27 AM12/8/11 9:26:27 AM

20 ❘ CHAPTER 2 JAVASCRIPT IN HTML

Deprecated Syntax

When the <script> element was originally introduced, it marked a departure from traditional
HTML parsing. Special rules needed to be applied within this element, and that caused problems for
browsers that didn’t support JavaScript (the most notable being Mosaic). Nonsupporting browsers
would output the contents of the <script> element onto the page, effectively ruining the page’s
appearance.

Netscape worked with Mosaic to come up with a solution that would hide embedded JavaScript
code from browsers that didn’t support it. The fi nal solution was to enclose the script code in an
HTML comment, like this:

<script><!--
 function sayHi(){
 alert(“Hi!”);
 }
//--></script>

Using this format, browsers like Mosaic would safely ignore the content inside of the <script>
tag, and browsers that supported JavaScript had to look for this pattern to recognize that there was
indeed JavaScript content to be parsed.

Although this format is still recognized and interpreted correctly by all web browsers, it is no
longer necessary and should not be used. In XHTML mode, this also causes the script to be ignored
because it is inside a valid XML comment.

INLINE CODE VERSUS EXTERNAL FILES

Although it’s possible to embed JavaScript in HTML fi les directly, it’s generally considered a best
practice to include as much JavaScript as possible using external fi les. Keeping in mind that there are
no hard and fast rules regarding this practice, the arguments for using external fi les are as follows:

Maintainability — JavaScript code that is sprinkled throughout various HTML pages turns
code maintenance into a problem. It is much easier to have a directory for all JavaScript fi les
so that developers can edit JavaScript code independent of the markup in which it’s used.

Caching — Browsers cache all externally linked JavaScript fi les according to specifi c
settings, meaning that if two pages are using the same fi le, the fi le is downloaded only once.
This ultimately means faster page-load times.

Future-proof — By including JavaScript using external fi les, there’s no need to use the
XHTML or comment hacks mentioned previously. The syntax to include external fi les is the
same for both HTML and XHTML.

➤

➤

➤

XHTML mode is triggered when a page specifi es its MIME type as “application/
xhtml+xml”. Not all browsers offi cially support XHTML served in this manner.

c02.indd 20c02.indd 20 12/8/11 9:26:27 AM12/8/11 9:26:27 AM

DOCUMENT MODES

Internet Explorer 5.5 introduced the concept of document modes through the use of doctype
switching. The fi rst two document modes were quirks mode, which made Internet Explorer behave
as if it were version 5 (with several nonstandard features), and standards mode, which made
Internet Explorer behave in a more standards-compliant way. Though the primary difference
between these two modes is related to the rendering of content with regard to CSS, there are also
several side effects related to JavaScript. These side effects are discussed throughout the book.

Since Internet Explorer fi rst introduced the concept of document modes, other browsers have
followed suit. As this adoption happened, a third mode called almost standards mode arose. That
mode has a lot of the features of standards mode but isn’t as strict. The main difference is in the
treatment of spacing around images (most noticeable when images are used in tables).

Quirks mode is achieved in all browsers by omitting the doctype at the beginning of the document.
This is considered poor practice, because quirks mode is very different across all browsers, and no
level of true browser consistency can be achieved without hacks.

Standards mode is turned on when one of the following doctypes is used:

<!-- HTML 4.01 Strict -->
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<!-- XHTML 1.0 Strict -->
<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<!-- HTML5 -->
<!DOCTYPE html>

Almost standards mode is triggered by transitional and frameset doctypes, as follows:

<!-- HTML 4.01 Transitional -->
<!DOCTYPE HTML PUBLIC
“-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

<!-- HTML 4.01 Frameset -->
<!DOCTYPE HTML PUBLIC
“-//W3C//DTD HTML 4.01 Frameset//EN”
“http://www.w3.org/TR/html4/frameset.dtd”>

<!-- XHTML 1.0 Transitional -->
<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<!-- XHTML 1.0 Frameset -->
<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

Document Modes ❘ 21

c02.indd 21c02.indd 21 12/8/11 9:26:33 AM12/8/11 9:26:33 AM

22 ❘ CHAPTER 2 JAVASCRIPT IN HTML

Because almost standards mode is so close to standards mode, the distinction is rarely made. People
talking about “standards mode” may be talking about either, and detection for the document mode
(discussed later in this book) also doesn’t make the distinction. Throughout this book, the term
standards mode should be taken to mean any mode other than quirks.

THE <NOSCRIPT> ELEMENT

Of particular concern to early browsers was the graceful degradation of pages when the browser
didn’t support JavaScript. To that end, the <noscript> element was created to provide alternate
content for browsers without JavaScript. This element can contain any HTML elements, aside from
<script>, that can be included in the document <body>. Any content contained in a <noscript>
element will be displayed under only the following two circumstances:

The browser doesn’t support scripting.

The browser’s scripting support is turned off.

If either of these conditions is met, then the content inside the <noscript> element is rendered. In
all other cases, the browser does not render the content of <noscript>.

Here is a simple example:

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML Page</title>
 <script type=”text/javascript” defer=”defer” src=”example1.js”></script>
 <script type=”text/javascript” defer=”defer” src=”example2.js”></script>
 </head>
 <body>
 <noscript>
 <p>This page requires a JavaScript-enabled browser.</p>
 </noscript>
 </body>
</html>

In this example, a message is displayed to the user when the scripting is not available. For scripting-
enabled browsers, this message will never be seen even though it is still a part of the page.

SUMMARY

JavaScript is inserted into HTML pages by using the <script> element. This element can be used
to embed JavaScript into an HTML page, leaving it inline with the rest of the markup, or to include
JavaScript that exists in an external fi le. The following are key points:

To include external JavaScript fi les, the src attribute must be set to the URL of the fi le to
include, which may be a fi le on the same server as the containing page or one that exists on
a completely different domain.

➤

➤

➤

c02.indd 22c02.indd 22 12/8/11 9:26:33 AM12/8/11 9:26:33 AM

All <script> elements are interpreted in the order in which they occur on the page. The
code contained within a <script> element must be completely interpreted before code in
the next <script> element can begin so long as defer and async attributes are not used.

For nondeferred scripts, the browser must complete interpretation of the code inside
a <script> element before it can continue rendering the rest of the page. For this reason,
<script> elements are usually included toward the end of the page, after the main content
and just before the closing </body> tag.

You can defer a script’s execution until after the document has rendered by using the defer
attribute. Deferred scripts always execute in the order in which they are specifi ed.

You can indicate that a script need not wait for other scripts and also not block the
document rendering by using the async attribute. Asynchronous scripts are not guaranteed
to execute in the order in which they occur in the page.

By using the <noscript> element, you can specify that content is to be shown only if scripting
support isn’t available on the browser. Any content contained in the <noscript> element will not be
rendered if scripting is enabled on the browser.

➤

➤

➤

➤

Summary ❘ 23

c02.indd 23c02.indd 23 12/8/11 9:26:34 AM12/8/11 9:26:34 AM

c02.indd 24c02.indd 24 12/8/11 9:26:34 AM12/8/11 9:26:34 AM

Language Basics

WHAT’S IN THIS CHAPTER?

Reviewing syntax

Working with data types

Working with fl ow-control statements

Understanding functions

At the core of any language is a description of how it should work at the most basic level. This
description typically defi nes syntax, operators, data types, and built-in functionality upon
which complex solutions can be built. As previously mentioned, ECMA-262 defi nes all of this
information for JavaScript in the form of a pseudolanguage called ECMAScript.

ECMAScript as defi ned in ECMA-262, third edition, is the most-implemented version among
web browsers. The fi fth edition is the next to be implemented in browsers, though, as of the
end of 2011, no browser has fully implemented it. For this reason the following information
is based primarily on ECMAScript as defi ned in the third edition with changes in the fi fth
edition called out.

SYNTAX

ECMAScript’s syntax borrows heavily from C and other C-like languages such as Java
and Perl. Developers familiar with such languages should have an easy time picking up the
somewhat looser syntax of ECMAScript.

Case-sensitivity

The fi rst concept to understand is that everything is case-sensitive; variables, function names,
and operators are all case-sensitive, meaning that a variable named test is different from

➤

➤

➤

➤

3

c03.indd 25c03.indd 25 12/8/11 9:35:49 AM12/8/11 9:35:49 AM

26 ❘ CHAPTER 3 LANGUAGE BASICS

a variable named Test. Similarly, typeof can’t be the name of a function, because it’s a keyword
(described in the next section); however, typeOf is a perfectly valid function name.

Identifi ers

An identifi er is the name of a variable, function, property, or function argument. Identifi ers may be
one or more characters in the following format:

The fi rst character must be a letter, an underscore (_), or a dollar sign ($).

All other characters may be letters, underscores, dollar signs, or numbers.

Letters in an identifi er may include extended ASCII or Unicode letter characters such as À and Æ,
though this is not recommended.

By convention, ECMAScript identifi ers use camel case, meaning that the fi rst letter is lowercase and
each additional word is offset by a capital letter, like this:

firstSecond
myCar
doSomethingImportant

Although this is not strictly enforced, it is considered a best practice to adhere to the built-in
ECMAScript functions and objects that follow this format.

➤

➤

Keywords, reserved words, true, false, and null cannot be used as identifi ers. See
the section “Keywords and Reserved Words” coming up shortly for more detail.

Comments

ECMAScript uses C-style comments for both single-line and block comments. A single-line
comment begins with two forward-slash characters, such as this:

//single line comment

A block comment begins with a forward slash and asterisk (/*) and ends with the opposite (*/), as
in this example:

/*
 * This is a multi-line
 * Comment
 */

Note that even though the second and third lines contain an asterisk, these are not necessary and
are added purely for readability. (This is the format preferred in enterprise applications.)

c03.indd 26c03.indd 26 12/8/11 9:35:51 AM12/8/11 9:35:51 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Syntax ❘ 27

Strict Mode

ECMAScript 5 introduced the concept of strict mode. Strict mode is a different parsing and
execution model for JavaScript, where some of the erratic behavior of ECMAScript 3 is addressed
and errors are thrown for unsafe activities. To enable strict mode for an entire script, include the
following at the top:

“use strict”;

Although this may look like a string that isn’t assigned to a variable, this is a pragma that tells
supporting JavaScript engines to change into strict mode. The syntax was chosen specifi cally so as
not to break ECMAScript 3 syntax.

You may also specify just a function to execute in strict mode by including the pragma at the top of
the function body:

function doSomething(){
 “use strict”;
 //function body
}

Strict mode changes many parts of how JavaScript is executed, and as such, strict mode distinctions
are pointed out throughout the book. Internet Explorer 10+, Firefox 4+, Safari 5.1+, Opera 12+, and
Chrome support strict mode.

Statements

Statements in ECMAScript are terminated by a semicolon, though omitting the semicolon makes
the parser determine where the end of a statement occurs, as in the following examples:

var sum = a + b //valid even without a semicolon - not recommended
var diff = a - b; //valid - preferred

Even though a semicolon is not required at the end of statements, it is recommended to always
include one. Including semicolons helps prevent errors of omission, such as not fi nishing what you
were typing, and allows developers to compress ECMAScript code by removing extra white space
(such compression causes syntax errors when lines do not end in a semicolon). Including semicolons
also improves performance in certain situations, because parsers try to correct syntax errors by
inserting semicolons where they appear to belong.

Multiple statements can be combined into a code block by using C-style syntax, beginning with a
left curly brace ({) and ending with a right curly brace (}):

if (test){
 test = false;
 alert(test);
}

c03.indd 27c03.indd 27 12/8/11 9:36:02 AM12/8/11 9:36:02 AM

28 ❘ CHAPTER 3 LANGUAGE BASICS

Control statements, such as if, require code blocks only when executing multiple statements.
However, it is considered a best practice to always use code blocks with control statements, even if
there’s only one statement to be executed, as in the following examples:

if (test)
 alert(test); //valid, but error-prone and should be avoided

if (test){ //preferred
 alert(test);
}

Using code blocks for control statements makes the intent clearer, and there’s less chance for errors
when changes need to be made.

KEYWORDS AND RESERVED WORDS

ECMA-262 describes a set of keywords that have specifi c uses, such as indicating the beginning
or end of control statements or performing specifi c operations. By rule, keywords are reserved and
cannot be used as identifi ers or property names. The complete list of keywords is as follows (those
denoted with an asterisk were added in the fi fth edition):

break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger* function this with
default if throw
delete in try

The specifi cation also describes a set of reserved words that cannot be used as identifi ers or
property names. Though reserved words don’t have any specifi c usage in the language, they are
reserved for future use as keywords. The following is the complete list of reserved words defi ned in
ECMA-262, third edition:

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
debugger implements protected volatile
double import public

The fi fth edition shrinks down the list of reserved words when running in nonstrict mode to the
following:

class enum extends super
const export import

c03.indd 28c03.indd 28 12/8/11 9:36:03 AM12/8/11 9:36:03 AM

Variables ❘ 29

When running in strict mode, the fi fth edition also places reserved word restrictions on the
following:

implements package public
interface private static
let protected yield

Note that let and yield are introduced as reserved words in the fi fth edition; all other reserved
words come from the third edition. For best compatibility, it’s recommended to use the third edition
list as a guideline and add let and yield.

Attempting to use a keyword as an identifi er name will cause an “Identifi er Expected” error in
ECMAScript 3 JavaScript engines. Attempting to use a reserved word may or may not cause the
same error, depending on the particular engine being used.

The fi fth edition slightly changes the rules regarding keywords and reserved words. These may still
not be used as identifi ers but now can be used as property names in objects. Generally speaking,
it’s best to avoid using both keywords and reserved words as both identifi ers and property names to
ensure compatibility with past and future ECMAScript editions.

In addition to the list of keywords and reserved words, ECMA-262, fi fth edition, places restrictions
on the names eval and arguments. When running in strict mode, these two names may not be used
as identifi ers or property names and will throw errors when an attempt is made to do so.

VARIABLES

ECMAScript variables are loosely typed, meaning that a variable can hold any type of data. Every
variable is simply a named placeholder for a value. To defi ne a variable, use the var operator (note
that var is a keyword) followed by the variable name (an identifi er, as described earlier), like this:

var message;

This code defi nes a variable named message that can be used to hold any value. (Without
initialization, it holds the special value undefined, which is discussed in the next section.)
ECMAScript implements variable initialization, so it’s possible to defi ne the variable and set its
value at the same time, as in this example:

var message = “hi”;

Here, message is defi ned to hold a string value of “hi”. Doing this initialization doesn’t mark
the variable as being a string type; it is simply the assignment of a value to the variable. It is still
possible to not only change the value stored in the variable but also change the type of value, such
as this:

var message = “hi”;
message = 100; //legal, but not recommended

c03.indd 29c03.indd 29 12/8/11 9:36:03 AM12/8/11 9:36:03 AM

30 ❘ CHAPTER 3 LANGUAGE BASICS

In this example, the variable message is fi rst defi ned as having the string value “hi” and then
overwritten with the numeric value 100. Though it’s not recommended to switch the data type that
a variable contains, it is completely valid in ECMAScript.

It’s important to note that using the var operator to defi ne a variable makes it local to the scope in
which it was defi ned. For example, defi ning a variable inside of a function using var means that the
variable is destroyed as soon as the function exits, as shown here:

function test(){
 var message = “hi”; //local variable
}
test();
alert(message); //error!

Here, the message variable is defi ned within a function using var. The function is called test(),
which creates the variable and assigns its value. Immediately after that, the variable is destroyed so
the last line in this example causes an error. It is, however, possible to defi ne a variable globally by
simply omitting the var operator as follows:

function test(){
 message = “hi”; //global variable
}
test();
alert(message); //”hi”

By removing the var operator from the example, the message variable becomes global. As soon as
the function test() is called, the variable is defi ned and becomes accessible outside of the function
once it has been executed.

Although it’s possible to defi ne global variables by omitting the var operator, this
approach is not recommended. Global variables defi ned locally are hard to
maintain and cause confusion, because it’s not immediately apparent if the omission
of var was intentional. Strict mode throws a ReferenceError when an undeclared
variable is assigned a value.

If you need to defi ne more than one variable, you can do it using a single statement, separating each
variable (and optional initialization) with a comma like this:

var message = “hi”,
 found = false,
 age = 29;

Here, three variables are defi ned and initialized. Because ECMAScript is loosely typed, variable
initializations using different data types may be combined into a single statement. Though inserting
line breaks and indenting the variables isn’t necessary, it helps to improve readability.

When you are running in strict mode, you cannot defi ne variables named eval or arguments.
Doing so results in a syntax error.

c03.indd 30c03.indd 30 12/8/11 9:36:04 AM12/8/11 9:36:04 AM

Data Types ❘ 31

DATA TYPES

There are fi ve simple data types (also called primitive types) in ECMAScript: Undefi ned, Null,
Boolean, Number, and String. There is also one complex data type called Object, which is an
unordered list of name-value pairs. Because there is no way to defi ne your own data types in
ECMAScript, all values can be represented as one of these six. Having only six data types may seem
like too few to fully represent data; however, ECMAScript’s data types have dynamic aspects that
make each single data type behave like several.

The typeof Operator

Because ECMAScript is loosely typed, there needs to be a way to determine the data type of a given
variable. The typeof operator provides that information. Using the typeof operator on a value
returns one of the following strings:

“undefined” if the value is undefi ned

“boolean” if the value is a Boolean

“string” if the value is a string

“number” if the value is a number

“object” if the value is an object (other than a function) or null

“function” if the value is a function

The typeof operator is called like this:

var message = “some string”;
alert(typeof message); //”string”
alert(typeof(message)); //”string”
alert(typeof 95); //”number”

TypeofExample01.htm

In this example, both a variable (message) and a numeric literal are passed into the typeof operator.
Note that because typeof is an operator and not a function, no parentheses are required (although
they can be used).

Be aware there are a few cases where typeof seemingly returns a confusing but technically correct
value. Calling typeof null returns a value of “object”, as the special value null is considered to
be an empty object reference. Safari through version 5 and Chrome through version 7 have a quirk
where calling typeof on a regular expression returns “function” while all other browsers return
“object”.

➤

➤

➤

➤

➤

➤

Technically, functions are considered objects in ECMAScript and don’t represent
another data type. However, they do have some special properties, which necessitates
differentiating between functions and other objects via the typeof operator.

c03.indd 31c03.indd 31 12/8/11 9:36:10 AM12/8/11 9:36:10 AM

32 ❘ CHAPTER 3 LANGUAGE BASICS

The Undefi ned Type

The Undefi ned type has only one value, which is the special value undefined. When a variable is
declared using var but not initialized, it is assigned the value of undefined as follows:

var message;
alert(message == undefined); //true

Undefi nedExample01.htm

In this example, the variable message is declared without initializing it. When compared with the
literal value of undefined, the two are equal. This example is identical to the following:

var message = undefi ned;
alert(message == undefined); //true

Undefi nedExample02.htm

Here the variable message is explicitly initialized to be undefined. This is unnecessary because, by
default, any uninitialized variable gets the value of undefined.

Generally speaking, you should never explicitly set a variable to be undefi ned.
The literal undefi ned value is provided mainly for comparison and wasn’t added
until ECMA-262, third edition to help formalize the difference between an
empty object pointer (null) and an uninitialized variable.

Note that a variable containing the value of undefined is different from a variable that hasn’t been
defi ned at all. Consider the following:

var message; //this variable is declared but has a value of undefined

//make sure this variable isn’t declared
//var age

alert(message); //”undefined”
alert(age); //causes an error

Undefi nedExample03.htm

In this example, the fi rst alert displays the variable message, which is “undefined”. In the second
alert, an undeclared variable called age is passed into the alert() function, which causes an
error because the variable hasn’t been declared. Only one useful operation can be performed on
an undeclared variable: you can call typeof on it (calling delete on an undeclared variable won’t
cause an error, but this isn’t very useful and in fact throws an error in strict mode).

c03.indd 32c03.indd 32 12/8/11 9:36:16 AM12/8/11 9:36:16 AM

Data Types ❘ 33

The typeof operator returns “undefined” when called on an uninitialized variable, but it also
returns “undefined” when called on an undeclared variable, which can be a bit confusing.
Consider this example:

var message; //this variable is declared but has a value of undefined

//make sure this variable isn’t declared
//var age

alert(typeof message); //”undefi ned”
alert(typeof age); //”undefi ned”

Undefi nedExample04.htm

In both cases, calling typeof on the variable returns the string “undefined”. Logically, this
makes sense because no real operations can be performed with either variable even though they are
technically very different.

Even though uninitialized variables are automatically assigned a value of
undefi ned, it is advisable to always initialize variables. That way, when typeof
returns "undefi ned", you’ll know that it’s because a given variable hasn’t been
declared rather than was simply not initialized.

The Null Type

The Null type is the second data type that has only one value: the special value null. Logically,
a null value is an empty object pointer, which is why typeof returns “object” when it’s passed a
null value in the following example:

var car = null;
alert(typeof car); //”object”

NullExample01.htm

When defi ning a variable that is meant to later hold an object, it is advisable to initialize the variable to
null as opposed to anything else. That way, you can explicitly check for the value null to determine
if the variable has been fi lled with an object reference at a later time, such as in this example:

if (car != null){
 //do something with car
}

The value undefined is a derivative of null, so ECMA-262 defi nes them to be superfi cially equal as
follows:

alert(null == undefined); //true

NullExample02.htm

c03.indd 33c03.indd 33 12/8/11 9:36:22 AM12/8/11 9:36:22 AM

34 ❘ CHAPTER 3 LANGUAGE BASICS

Using the equality operator (==) between null and undefined always returns true, though keep
in mind that this operator converts its operands for comparison purposes (covered in detail later in
this chapter).

Even though null and undefined are related, they have very different uses. As mentioned
previously, you should never explicitly set the value of a variable to undefined, but the same
does not hold true for null. Any time an object is expected but is not available, null should be
used in its place. This helps to keep the paradigm of null as an empty object pointer and further
differentiates it from undefined.

The Boolean Type

The Boolean type is one of the most frequently used types in ECMAScript and has only two literal
values: true and false. These values are distinct from numeric values, so true is not equal to 1,
and false is not equal to 0. Assignment of Boolean values to variables is as follows:

var found = true;
var lost = false;

Note that the Boolean literals true and false are case-sensitive, so True and False (and other
mixings of uppercase and lowercase) are valid as identifi ers but not as Boolean values.

Though there are just two literal Boolean values, all types of values have Boolean equivalents in
ECMAScript. To convert a value into its Boolean equivalent, the special Boolean() casting function
is called, like this:

var message = “Hello world!”;
var messageAsBoolean = Boolean(message);

BooleanExample01.htm

In this example, the string message is converted into a Boolean value and stored in
messageAsBoolean. The Boolean() casting function can be called on any type of data and will
always return a Boolean value. The rules for when a value is converted to true or false depend on
the data type as much as the actual value. The following table outlines the various data types and
their specifi c conversions.

DATA TYPE VALUES CONVERTED TO TRUE VALUES CONVERTED TO FALSE

Boolean true false

String Any nonempty string “” (empty string)

Number Any nonzero number (including

infi nity)

0, NaN (See the “NaN” section later in

this chapter.)

Object Any object null

Undefi ned n/a undefined

c03.indd 34c03.indd 34 12/8/11 9:36:28 AM12/8/11 9:36:28 AM

Data Types ❘ 35

These conversions are important to understand because fl ow-control statements, such as the if
statement, automatically perform this Boolean conversion, as shown here:

var message = “Hello world!”;
if (message){
 alert(“Value is true”);
}

BooleanExample02.htm

In this example, the alert will be displayed because the string message is automatically converted
into its Boolean equivalent (true). It’s important to understand what variable you’re using in a fl ow-
control statement because of this automatic conversion. Mistakenly using an object instead of a
Boolean can drastically alter the fl ow of your application.

The Number Type

Perhaps the most interesting data type in ECMAScript is Number, which uses the IEEE-754 format
to represent both integers and fl oating-point values (also called double-precision values in some
languages). To support the various types of numbers, there are several different number literal formats.

The most basic number literal format is that of a decimal integer, which can be entered directly as
shown here:

var intNum = 55; //integer

Integers can also be represented as either octal (base 8) or hexadecimal (base 16) literals. For an
octal literal, the fi rst digit must be a zero (0) followed by a sequence of octal digits (numbers 0
through 7). If a number out of this range is detected in the literal, then the leading zero is ignored
and the number is treated as a decimal, as in the following examples:

var octalNum1 = 070; //octal for 56
var octalNum2 = 079; //invalid octal - interpreted as 79
var octalNum3 = 08; //invalid octal - interpreted as 8

Octal literals are invalid when running in strict mode and will cause the JavaScript engine to throw
a syntax error.

To create a hexadecimal literal, you must make the fi rst two characters 0x (case insensitive),
followed by any number of hexadecimal digits (0 through 9, and A through F). Letters may be in
uppercase or lowercase. Here’s an example:

var hexNum1 = 0xA; //hexadecimal for 10
var hexNum2 = 0x1f; //hexedecimal for 31

Numbers created using octal or hexadecimal format are treated as decimal numbers in all arithmetic
operations.

c03.indd 35c03.indd 35 12/8/11 9:36:28 AM12/8/11 9:36:28 AM

36 ❘ CHAPTER 3 LANGUAGE BASICS

Floating-Point Values

To defi ne a fl oating-point value, you must include a decimal point and at least one number after the
decimal point. Although an integer is not necessary before a decimal point, it is recommended. Here
are some examples:

var floatNum1 = 1.1;
var floatNum2 = 0.1;
var floatNum3 = .1; //valid, but not recommended

Because storing fl oating-point values uses twice as much memory as storing integer values,
ECMAScript always looks for ways to convert values into integers. When there is no digit after the
decimal point, the number becomes an integer. Likewise, if the number being represented is a whole
number (such as 1.0), it will be converted into an integer, as in this example:

var floatNum1 = 1.; //missing digit after decimal - interpreted as integer 1
var floatNum2 = 10.0; //whole number - interpreted as integer 10

For very large or very small numbers, fl oating-point values can be represented using e-notation.
E-notation is used to indicate a number that should be multiplied by 10 raised to a given power. The
format of e-notation in ECMAScript is to have a number (integer or fl oating-point) followed by an
uppercase or lowercase letter E, followed by the power of 10 to multiply by. Consider the following:

var floatNum = 3.125e7; //equal to 31250000

In this example, floatNum is equal to 31,250,000 even though it is represented in a more compact
form using e-notation. The notation essentially says, “Take 3.125 and multiply it by 107.”

E-notation can also be used to represent very small numbers, such as 0.00000000000000003,
which can be written more succinctly as 3e-17. By default, ECMAScript converts any fl oating-
point value with at least six zeros after the decimal point into e-notation (for example, 0.0000003
becomes 3e-7).

Floating-point values are accurate up to 17 decimal places but are far less accurate in arithmetic
computations than whole numbers. For instance, adding 0.1 and 0.2 yields 0.30000000000000004
instead of 0.3. These small rounding errors make it diffi cult to test for specifi c fl oating-point values.
Consider this example:

if (a + b == 0.3){ //avoid!
 alert(“You got 0.3.”);
}

Because of the way that numbers are stored in JavaScript, it is actually possible
to have a value of positive zero (+0) and negative zero (–0). Positive zero and
negative zero are considered equivalent in all cases but are noted in this text for
clarity.

c03.indd 36c03.indd 36 12/8/11 9:36:29 AM12/8/11 9:36:29 AM

Data Types ❘ 37

Here the sum of two numbers is tested to see if it’s equal to 0.3. This will work for 0.05 and 0.25
and for 0.15 and 0.15. But if applied to 0.1 and 0.2, as discussed previously, this test would fail.
Therefore you should never test for specifi c fl oating-point values.

It’s important to understand that rounding errors are a side effect of the way
fl oating-point arithmetic is done in IEEE-754–based numbers and is not unique to
ECMAScript. Other languages that use the same format have the same issues.

Range of Values

Not all numbers in the world can be represented in ECMAScript, because of memory constraints.
The smallest number that can be represented in ECMAScript is stored in Number.MIN_VALUE
and is 5e-324 on most browsers; the largest number is stored in Number.MAX_VALUE and is
1.7976931348623157e+308 on most browsers. If a calculation results in a number that cannot
be represented by JavaScript’s numeric range, the number automatically gets the special value of
Infinity. Any negative number that can’t be represented is –Infinity (negative infi nity), and any
positive number that can’t be represented is simply Infinity (positive infi nity).

If a calculation returns either positive or negative Infinity, that value cannot be used in any
further calculations, because Infinity has no numeric representation with which to calculate. To
determine if a value is fi nite (that is, it occurs between the minimum and the maximum), there is the
isFinite() function. This function returns true only if the argument is between the minimum
and the maximum values, as in this example:

var result = Number.MAX_VALUE + Number.MAX_VALUE;
alert(isFinite(result)); //false

Though it is rare to do calculations that take values outside of the range of fi nite numbers, it is
possible and should be monitored when doing very large or very small calculations.

You can also get the values of positive and negative Infi nity by accessing
Number.NEGATIVE_INFINITY and Number.POSITIVE_INFINITY. As you may
expect, these properties contain the values –Infi nity and Infi nity, respectively.

NaN

There is a special numeric value called NaN, short for Not a Number, which is used to indicate when
an operation intended to return a number has failed (as opposed to throwing an error). For example,
dividing any number by 0 typically causes an error in other programming languages, halting code
execution. In ECMAScript, dividing a number by 0 returns NaN, which allows other processing to
continue.

c03.indd 37c03.indd 37 12/8/11 9:36:35 AM12/8/11 9:36:35 AM

38 ❘ CHAPTER 3 LANGUAGE BASICS

The value NaN has a couple of unique properties. First, any operation involving NaN always returns
NaN (for instance, NaN /10), which can be problematic in the case of multistep computations. Second,
NaN is not equal to any value, including NaN. For example, the following returns false:

alert(NaN == NaN); //false

For this reason, ECMAScript provides the isNaN() function. This function accepts a single
argument, which can be of any data type, to determine if the value is “not a number.” When a value
is passed into isNaN(), an attempt is made to convert it into a number. Some nonnumber values
convert into numbers directly, such as the string “10” or a Boolean value. Any value that cannot
be converted into a number causes the function to return true. Consider the following:

alert(isNaN(NaN)); //true
alert(isNaN(10)); //false - 10 is a number
alert(isNaN(“10”)); //false - can be converted to number 10
alert(isNaN(“blue”)); //true - cannot be converted to a number
alert(isNaN(true)); //false - can be converted to number 1

NumberExample03.htm

This example tests fi ve different values. The fi rst test is on the value NaN itself, which, obviously,
returns true. The next two tests use numeric 10 and the string “10”, which both return false,
because the numeric value for each is 10. The string “blue”, however, cannot be converted into
a number, so the function returns false. The Boolean value of true can be converted into the
number 1, so the function returns false.

Although typically not done, isNaN() can be applied to objects. In that case, the
object’s valueOf() method is fi rst called to determine if the returned value can
be converted into a number. If not, the toString() method is called and its
returned value is tested as well. This is the general way that built-in functions
and operators work in ECMAScript and is discussed more in the “Operators”
section later in this chapter.

Number Conversions

There are three functions to convert nonnumeric values into numbers: the Number() casting
function, the parseInt() function, and the parseFloat() function. The fi rst function, Number(),
can be used on any data type; the other two functions are used specifi cally for converting strings to
numbers. Each of these functions reacts differently to the same input.

The Number() function performs conversions based on these rules:

When applied to Boolean values, true and false get converted into 1 and 0, respectively.

When applied to numbers, the value is simply passed through and returned.

➤

➤

c03.indd 38c03.indd 38 12/8/11 9:36:45 AM12/8/11 9:36:45 AM

Data Types ❘ 39

When applied to null, Number() returns 0.

When applied to undefined, Number() returns NaN.

When applied to strings, the following rules are applied:

If the string contains only numbers, optionally preceded by a plus or minus sign, it
is always converted to a decimal number, so “1” becomes 1, “123” becomes 123,
and “011” becomes 11 (note: leading zeros are ignored).

If the string contains a valid fl oating-point format, such as “1.1”, it is converted
into the appropriate fl oating-point numeric value (once again, leading zeros are
ignored).

If the string contains a valid hexadecimal format, such as “0xf”, it is converted into
an integer that matches the hexadecimal value.

If the string is empty (contains no characters), it is converted to 0.

If the string contains anything other than these previous formats, it is converted
into NaN.

When applied to objects, the valueOf() method is called and the returned value is
converted based on the previously described rules. If that conversion results in NaN, the
toString() method is called and the rules for converting strings are applied.

Converting to numbers from various data types can get complicated, as indicated by the number of
rules there are for Number(). Here are some concrete examples:

var num1 = Number(“Hello world!”); //NaN
var num2 = Number(“”); //0
var num3 = Number(“000011”); //11
var num4 = Number(true); //1

NumberExample04.htm

In these examples, the string “Hello world” is converted into NaN because it has no corresponding
numeric value, and the empty string is converted into 0. The string “000011” is converted to the
number 11 because the initial zeros are ignored. Last, the value true is converted to 1.

➤

➤

➤

➤

➤

➤

➤

➤

➤

The unary plus operator, discussed in the “Operators” section later in this
chapter, works the same as the Number() function.

Because of the complexities and oddities of the Number() function when converting strings, the
parseInt() function is usually a better option when you are dealing with integers. The parseInt()
function examines the string much more closely to see if it matches a number pattern. Leading white
space in the string is ignored until the fi rst non–white space character is found. If this fi rst character
isn’t a number, the minus sign, or the plus sign, parseInt() always returns NaN, which means the
empty string returns NaN (unlike with Number(), which returns 0). If the fi rst character is a number,
plus, or minus, then the conversion goes on to the second character and continues on until either

c03.indd 39c03.indd 39 12/8/11 9:36:51 AM12/8/11 9:36:51 AM

40 ❘ CHAPTER 3 LANGUAGE BASICS

the end of the string is reached or a nonnumeric character is found. For instance, “1234blue” is
converted to 1234 because “blue” is completely ignored. Similarly, “22.5” will be converted to 22
because the decimal is not a valid integer character.

Assuming that the fi rst character in the string is a number, the parseInt() function also recognizes
the various integer formats (decimal, octal, and hexadecimal, as discussed previously). This means
when the string begins with “0x”, it is interpreted as a hexadecimal integer; if it begins with “0”
followed by a number, it is interpreted as an octal value.

Here are some conversion examples to better illustrate what happens:

var num1 = parseInt(“1234blue”); //1234
var num2 = parseInt(“”); //NaN
var num3 = parseInt(“0xA”); //10 - hexadecimal
var num4 = parseInt(22.5); //22
var num5 = parseInt(“70”); //70 - decimal
var num6 = parseInt(“0xf”); //15 - hexadecimal

NumberExample05.htm

There is a discrepancy between ECMAScript 3 and 5 in regard to using parseInt() with a string
that looks like an octal literal. For example:

//56 (octal) in ECMAScript 3, 0 (decimal) in ECMAScript 5
var num = parseInt(“070”);

In ECMAScript 3 JavaScript engines, the value “070” is treated as an octal literal and becomes the
decimal value 56. In ECMAScript 5 JavaScript engines, the ability to parse octal values has been
removed from parseInt(), so the leading zero is considered invalid and the value is treated the
same as “0”, resulting in the decimal value 0. This is true even when running ECMAScript 5 in non-
strict mode.

All of the different numeric formats can be confusing to keep track of, so parseInt() provides a
second argument: the radix (number of digits) to use. If you know that the value you’re parsing is in
hexadecimal format, you can pass in the radix 16 as a second argument and ensure that the correct
parsing will occur, as shown here:

var num = parseInt(“0xAF”, 16); //175

In fact, by providing the hexadecimal radix, you can leave off the leading “0x” and the conversion
will work as follows:

var num1 = parseInt(”AF”, 16); //175
var num2 = parseInt(”AF”); //NaN

NumberExample06.htm

In this example, the fi rst conversion occurs correctly, but the second conversion fails. The difference
is that the radix is passed in on the fi rst line, telling parseInt() that it will be passed a hexadecimal
string; the second line sees that the fi rst character is not a number and stops automatically.

c03.indd 40c03.indd 40 12/8/11 9:36:57 AM12/8/11 9:36:57 AM

Data Types ❘ 41

Passing in a radix can greatly change the outcome of the conversion. Consider the following:

var num1 = parseInt(“10”, 2); //2 - parsed as binary
var num2 = parseInt(“10”, 8); //8 - parsed as octal
var num3 = parseInt(“10”, 10); //10 - parsed as decimal
var num4 = parseInt(“10”, 16); //16 - parsed as hexadecimal

NumberExample07.htm

Because leaving off the radix allows parseInt() to choose how to interpret the input, it’s advisable
to always include a radix to avoid errors.

Most of the time you’ll be parsing decimal numbers, so it’s good to always
include 10 as the second argument.

The parseFloat() function works in a similar way to parseInt(), looking at each character
starting in position 0. It also continues to parse the string until it reaches either the end of the string
or a character that is invalid in a fl oating-point number. This means that a decimal point is valid
the fi rst time it appears, but a second decimal point is invalid and the rest of the string is ignored,
resulting in “22.34.5” being converted to 22.34.

Another difference in parseFloat() is that initial zeros are always ignored. This function will
recognize any of the fl oating-point formats discussed earlier, as well as the decimal format (leading
zeros are always ignored). Hexadecimal numbers always become 0. Because parseFloat() parses
only decimal values, there is no radix mode. A fi nal note: if the string represents a whole number
(no decimal point or only a zero after the decimal point), parseFloat() returns an integer. Here are
some examples:

var num1 = parseFloat(“1234blue”); //1234 - integer
var num2 = parseFloat(“0xA”); //0
var num3 = parseFloat(“22.5”); //22.5
var num4 = parseFloat(“22.34.5”); //22.34
var num5 = parseFloat(“0908.5”); //908.5
var num6 = parseFloat(“3.125e7”); //31250000

NumberExample08.htm

The String Type

The String data type represents a sequence of zero or more 16-bit Unicode characters. Strings can be
delineated by either double quotes (“) or single quotes (‘), so both of the following are legal:

var firstName = “Nicholas”;
var lastName = ‘Zakas’;

c03.indd 41c03.indd 41 12/8/11 9:36:57 AM12/8/11 9:36:57 AM

42 ❘ CHAPTER 3 LANGUAGE BASICS

Unlike PHP, for which using double or single quotes changes how the string is interpreted, there is
no difference in the two syntaxes in ECMAScript. A string using double quotes is exactly the same
as a string using single quotes. Note, however, that a string beginning with a double quote must end
with a double quote, and a string beginning with a single quote must end with a single quote. For
example, the following will cause a syntax error:

var firstName = ‘Nicholas”; //syntax error - quotes must match

Character Literals

The String data type includes several character literals to represent nonprintable or otherwise useful
characters, as listed in the following table:

LITERAL MEANING

\n New line

\t Tab

\b Backspace

\r Carriage return

\f Form feed

\\ Backslash (\)

\’ Single quote (‘) — used when the string is delineated by single quotes. Example:

‘He said, \’hey.\’’.

\” Double quote (“) — used when the string is delineated by double quotes. Example:

“He said, \”hey.\””.

\xnn A character represented by hexadecimal code nn (where n is a hexadecimal digit 0-F).

Example: \x41 is equivalent to “A”.

\unnnn A Unicode character represented by the hexadecimal code nnnn (where n is a

hexadecimal digit 0-F). Example: \u03a3 is equivalent to the Greek character Σ.

These character literals can be included anywhere with a string and will be interpreted as if they
were a single character, as shown here:

var text = “This is the letter sigma: \u03a3.”;

In this example, the variable text is 28 characters long even though the escape sequence is 6
characters long. The entire escape sequence represents a single character, so it is counted as such.

The length of any string can be returned by using the length property as follows:

alert(text.length); //outputs 28

c03.indd 42c03.indd 42 12/8/11 9:37:03 AM12/8/11 9:37:03 AM

Data Types ❘ 43

This property returns the number of 16-bit characters in the string. If a string contains double-byte
characters, the length property may not accurately return the number of characters in the string.

The Nature of Strings

Strings are immutable in ECMAScript, meaning that once they are created, their values cannot
change. To change the string held by a variable, the original string must be destroyed and the
variable fi lled with another string containing a new value, like this:

var lang = “Java”;
lang = lang + “Script”;

Here, the variable lang is defi ned to contain the string “Java”. On the next line, lang is redefi ned
to combined “Java” with “Script”, making its value “JavaScript”. This happens by creating
a new string with enough space for 10 characters and then fi lling that string with “Java”
and “Script”. The last step in the process is to destroy the original string “Java” and the string
“Script”, because neither is necessary anymore. All of this happens behind the scenes, which is
why older browsers (such as pre-1.0 versions of Firefox and Internet Explorer 6.0) had very slow
string concatenation. These ineffi ciencies were addressed in later versions of these browsers.

Converting to a String

There are two ways to convert a value into a string. The fi rst is to use the toString() method that
almost every value has. (The nature of this method is discussed in Chapter 5.) This method’s only
job is to return the string equivalent of the value. Consider this example:

var age = 11;
var ageAsString = age.toString(); //the string “11”
var found = true;
var foundAsString = found.toString(); //the string “true”

StringExample01.htm

The toString() method is available on values that are numbers, Booleans, objects, and strings.
(Yes, each string has a toString() method that simply returns a copy of itself.) If a value is null or
undefined, this method is not available.

In most cases, toString() doesn’t have any arguments. However, when used on a number value,
toString() actually accepts a single argument: the radix in which to output the number. By
default, toString() always returns a string that represents the number as a decimal, but by passing
in a radix, toString() can output the value in binary, octal, hexadecimal, or any other valid base,
as in this example:

var num = 10;
alert(num.toString()); //”10”
alert(num.toString(2)); //”1010”
alert(num.toString(8)); //”12”
alert(num.toString(10)); //”10”
alert(num.toString(16)); //”a”

StringExample02.htm

c03.indd 43c03.indd 43 12/8/11 9:37:04 AM12/8/11 9:37:04 AM

44 ❘ CHAPTER 3 LANGUAGE BASICS

This example shows how the output of toString() can change for numbers when providing a
radix. The value 10 can be output into any number of numeric formats. Note that the default (with
no argument) is the same as providing a radix of 10.

If you’re not sure that a value isn’t null or undefined, you can use the String() casting function,
which always returns a string regardless of the value type. The String() function follows these rules:

If the value has a toString() method, it is called (with no arguments) and the result is
returned.

If the value is null, “null” is returned.

If the value is undefined, “undefined” is returned.

Consider the following:

var value1 = 10;
var value2 = true;
var value3 = null;
var value4;

alert(String(value1)); //”10”
alert(String(value2)); //”true”
alert(String(value3)); //”null”
alert(String(value4)); //”undefined”

StringExample03.htm

Here, four values are converted into strings: a number, a Boolean, null, and undefined. The result
for the number and the Boolean are the same as if toString() were called. Because toString()
isn’t available on “null” and “undefined”, the String() method simply returns literal text for
those values.

➤

➤

➤

You can also convert a value to a string by adding an empty string (“”) to that
value using the plus operator (discussed in the “Operators” section later in this
chapter).

The Object Type

Objects in ECMAScript start out as nonspecifi c groups of data and functionality. Objects are
created by using the new operator followed by the name of the object type to create. Developers
create their own objects by creating instances of the Object type and adding properties and/or
methods to it, as shown here:

var o = new Object();

c03.indd 44c03.indd 44 12/8/11 9:37:04 AM12/8/11 9:37:04 AM

Operators ❘ 45

This syntax is similar to Java, although ECMAScript requires parentheses to be used only when
providing arguments to the constructor. If there are no arguments, as in the following example, then
the parentheses can be omitted safely (though that’s not recommended):

var o = new Object; //legal, but not recommended

Instances of Object aren’t very useful on their own, but the concepts are important to understand,
because, similar to java.lang.Object in Java, the Object type in ECMAScript is the base from
which all other objects are derived. All of the properties and methods of the Object type are also
present on other, more specifi c objects.

Each Object instance has the following properties and methods:

constructor — The function that was used to create the object. In the previous example,
the constructor is the Object() function.

hasOwnProperty(propertyName) — Indicates if the given property exists on the object
instance (not on the prototype). The property name must be specifi ed as a string (for
example, o.hasOwnProperty(“name”)).

isPrototypeOf(object) — Determines if the object is a prototype of another object.
(Prototypes are discussed in Chapter 5.)

propertyIsEnumerable(propertyName) — Indicates if the given property can be
enumerated using the for-in statement (discussed later in this chapter). As with
hasOwnProperty(), the property name must be a string.

toLocaleString() — Returns a string representation of the object that is appropriate for
the locale of execution environment.

toString() — Returns a string representation of the object.

valueOf() — Returns a string, number, or Boolean equivalent of the object. It often
returns the same value as toString().

Since Object is the base for all objects in ECMAScript, every object has these base properties and
methods. Chapters 5 and 6 cover the specifi cs of how this occurs.

➤

➤

➤

➤

➤

➤

➤

Technically speaking, the behavior of objects in ECMA-262 need not necessarily
apply to other objects in JavaScript. Objects that exist in the browser
environment, such as those in the Browser Object Model (BOM) and Document
Object Model (DOM), are considered host objects since they are provided and
defi ned by the host implementation. Host objects aren’t governed by ECMA-262
and, as such, may or may not directly inherit from Object.

OPERATORS

ECMA-262 describes a set of operators that can be used to manipulate data values. The operators
range from mathematical operations (such as addition and subtraction) and bitwise operators to
relational operators and equality operators. Operators are unique in ECMAScript in that they can

c03.indd 45c03.indd 45 12/8/11 9:37:11 AM12/8/11 9:37:11 AM

46 ❘ CHAPTER 3 LANGUAGE BASICS

be used on a wide range of values, including strings, numbers, Booleans, and even objects. When
used on objects, operators typically call the valueOf() and/or toString() method to retrieve a
value they can work with.

Unary Operators

Operators that work on only one value are called unary operators. They are the simplest operators
in ECMAScript.

Increment/Decrement

The increment and decrement operators are taken directly from C and come in two versions: prefi x
and postfi x. The prefi x versions of the operators are placed before the variable they work on; the
postfi x ones are placed after the variable. To use a prefi x increment, which adds 1 to a numeric
value, you place two plus signs (++) in front of a variable like this:

var age = 29;
++age;

In this example, the prefi x increment changes the value of age to 30 (adding 1 to its previous value
of 29). This is effectively equal to the following:

var age = 29;
age = age + 1;

The prefi x decrement acts in a similar manner, subtracting 1 from a numeric value. To use a prefi x
decrement, place two minus signs (--) before a variable, as shown here:

var age = 29;
--age;

Here the age variable is decremented to 28 (subtracting 1 from 29).

When using either a prefi x increment or a prefi x decrement, the variable’s value is changed before
the statement is evaluated. (In computer science, this is usually referred to as having a side effect.)
Consider the following:

var age = 29;
var anotherAge = --age + 2;

alert(age); //outputs 28
alert(anotherAge); //outputs 30

IncrementDecrementExample01.htm

In this example, the variable anotherAge is initialized with the decremented value of age plus 2.
Because the decrement happens fi rst, age is set to 28, and then 2 is added, resulting in 30.

The prefi x increment and decrement are equal in terms of order of precedence in a statement and are
therefore evaluated left to right. Consider this example:

c03.indd 46c03.indd 46 12/8/11 9:37:16 AM12/8/11 9:37:16 AM

Operators ❘ 47

var num1 = 2;
var num2 = 20;
var num3 = --num1 + num2; //equals 21
var num4 = num1 + num2; //equals 21

IncrementDecrementExample02.htm

Here, num3 is equal to 21 because num1 is decremented to 1 before the addition occurs. The variable
num4 also contains 21, because the addition is also done using the changed values.

The postfi x versions of increment and decrement use the same syntax (++ and --, respectively)
but are placed after the variable instead of before it. Postfi x increment and decrement differ from
the prefi x versions in one important way: the increment or decrement doesn’t occur until after the
containing statement has been evaluated. In certain circumstances, this difference doesn’t matter, as
in this example:

var age = 29;
age++;

Moving the increment operator after the variable doesn’t change what these statements do,
because the increment is the only operation occurring. However, when mixed together with other
operations, the difference becomes apparent, as in the following example:

var num1 = 2;
var num2 = 20;
var num3 = num1-- + num2; //equals 22
var num4 = num1 + num2; //equals 21

IncrementDecrementExample03.htm

With just one simple change in this example, using postfi x decrement instead of prefi x, you can
see the difference. In the prefi x example, num3 and num4 both ended up equal to 21, whereas this
example ends with num3 equal to 22 and num4 equal to 21. The difference is that the calculation
for num3 uses the original value of num1 (2) to complete the addition, whereas num4 is using the
decremented value (1).

All four of these operators work on any values, meaning not just integers but strings, Booleans,
fl oating-point values, and objects. The increment and decrement operators follow these rules
regarding values:

When used on a string that is a valid representation of a number, convert to a number and
apply the change. The variable is changed from a string to a number.

When used on a string that is not a valid number, the variable’s value is set to NaN (discussed
in Chapter 4). The variable is changed from a string to a number.

When used on a Boolean value that is false, convert to 0 and apply the change. The
variable is changed from a Boolean to a number.

When used on a Boolean value that is true, convert to 1 and apply the change. The variable
is changed from a Boolean to a number.

➤

➤

➤

➤

c03.indd 47c03.indd 47 12/8/11 9:37:17 AM12/8/11 9:37:17 AM

48 ❘ CHAPTER 3 LANGUAGE BASICS

When used on a fl oating-point value, apply the change by adding or subtracting 1.

When used on an object, call its valueOf() method (discussed more in Chapter 5) to get
a value to work with. Apply the other rules. If the result is NaN, then call toString() and
apply the other rules again. The variable is changed from an object to a number.

The following example demonstrates some of these rules:

var s1 = “2”;
var s2 = “z”;
var b = false;
var f = 1.1;
var o = {
 valueOf: function() {
 return -1;
 }
};

s1++; //value becomes numeric 3
s2++; //value becomes NaN
b++; //value becomes numeric 1
f--; //value becomes 0.10000000000000009 (due to floating-point inaccuracies)
o--; //value becomes numeric -2

IncrementDecrementExample04.htm

Unary Plus and Minus

The unary plus and minus operators are familiar symbols to most developers and operate the same
way in ECMAScript as they do in high-school math. The unary plus is represented by a single plus
sign (+) placed before a variable and does nothing to a numeric value, as shown in this example:

var num = 25;
num = +num; //still 25

When the unary plus is applied to a nonnumeric value, it performs the same conversion as the
Number() casting function: the Boolean values of false and true are converted to 0 and 1, string
values are parsed according to a set of specifi c rules, and objects have their valueOf() and/or
toString() method called to get a value to convert.

The following example demonstrates the behavior of the unary plus when acting on different
data types:

var s1 = “01”;
var s2 = “1.1”;
var s3 = “z”;
var b = false;
var f = 1.1;
var o = {
 valueOf: function() {
 return -1;

➤

➤

c03.indd 48c03.indd 48 12/8/11 9:37:17 AM12/8/11 9:37:17 AM

Operators ❘ 49

 }
};

s1 = +s1; //value becomes numeric 1
s2 = +s2; //value becomes numeric 1.1
s3 = +s3; //value becomes NaN
b = +b; //value becomes numeric 0
f = +f; //no change, still 1.1
o = +o; //value becomes numeric -1

UnaryPlusMinusExample01.htm

The unary minus operator’s primary use is to negate a numeric value, such as converting 1 into –1.
The simple case is illustrated here:

var num = 25;
num = -num; //becomes -25

When used on a numeric value, the unary minus simply negates the value (as in this example).
When used on nonnumeric values, unary minus applies all of the same rules as unary plus and then
negates the result, as shown here:

var s1 = “01”;
var s2 = “1.1”;
var s3 = “z”;
var b = false;
var f = 1.1;
var o = {
 valueOf: function() {
 return -1;
 }
};

s1 = -s1; //value becomes numeric -1
s2 = -s2; //value becomes numeric -1.1
s3 = -s3; //value becomes NaN
b = -b; //value becomes numeric 0
f = -f; //change to -1.1
o = -o; //value becomes numeric 1

UnaryPlusMinusExample02.htm

The unary plus and minus operators are used primarily for basic arithmetic but can also be useful
for conversion purposes, as illustrated in the previous example.

Bitwise Operators

The next set of operators works with numbers at their very base level, with the bits that represent
them in memory. All numbers in ECMAScript are stored in IEEE-754 64-bit format, but the
bitwise operations do not work directly on the 64-bit representation. Instead, the value is converted

c03.indd 49c03.indd 49 12/8/11 9:37:18 AM12/8/11 9:37:18 AM

50 ❘ CHAPTER 3 LANGUAGE BASICS

into a 32-bit integer, the operation takes place, and the result is converted back into 64 bits. To
the developer, it appears that only the 32-bit integer exists, because the 64-bit storage format is
transparent. With that in mind, consider how 32-bit integers work.

Signed integers use the fi rst 31 of the 32 bits to represent the numeric value of the integer. The 32nd
bit represents the sign of the number: 0 for positive or 1 for negative. Depending on the value of
that bit, called the sign bit, the format of the rest of the
number is determined. Positive numbers are stored in true
binary format, with each of the 31 bits representing a power
of 2, starting with the fi rst bit (called bit 0), representing
20, the second bit represents 21, and so on. If any bits are
unused, they are fi lled with 0 and essentially ignored. For
example, the number 18 is represented as 00000000000
000000000000000010010, or more succinctly as 10010.
These are the fi ve most signifi cant bits and can be used, by
themselves, to determine the actual value (see Figure 3-1).

Negative numbers are also stored in binary code but in a format called two’s complement. The
two’s complement of a number is calculated in three steps:

 1. Determine the binary representation of the absolute value (for example, to fi nd –18, fi rst
determine the binary representation of 18).

 2. Find the one’s complement of the number, which essentially means that every 0 must be
replaced with a 1 and vice versa.

 3. Add 1 to the result.

Using this process to determine the binary representation –18, start with the binary representation
of 18, which is the following:

0000 0000 0000 0000 0000 0000 0001 0010

Next, take the one’s complement, which is the inverse of this number:

1111 1111 1111 1111 1111 1111 1110 1101

Finally, add 1 to the one’s complement as follows:

1111 1111 1111 1111 1111 1111 1110 1101
 1

1111 1111 1111 1111 1111 1111 1110 1110

So the binary equivalent of –18 is 11111111111111111111111111101110. Keep in mind that you have
no access to bit 31 when dealing with signed integers.

ECMAScript does its best to keep all of this information from you. When outputting a negative
number as a binary string, you get the binary code of the absolute value preceded by a minus sign,
as in this example:

FIGURE 3-1

1 0 0 1 0
(24x1) + (23x0) + (22x0) + (21x1) + (20x0)

16 + 0 0 02+ + +

18

c03.indd 50c03.indd 50 12/8/11 9:37:19 AM12/8/11 9:37:19 AM

Operators ❘ 51

var num = -18;
alert(num.toString(2)); //”-10010”

When you convert the number –18 to a binary string, the result is –10010. The conversion process
interprets the two’s complement and represents it in an arguably more logical form.

By default, all integers are represented as signed in ECMAScript. There is,
however, such a thing as an unsigned integer. In an unsigned integer, the 32nd
bit doesn’t represent the sign, because there are only positive numbers. Unsigned
integers also can be larger, because the extra bit becomes part of the number
instead of an indicator of the sign.

When you apply bitwise operators to numbers in ECMAScript, a conversion takes place behind the
scenes: the 64-bit number is converted into a 32-bit number, the operation is performed, and then
the 32-bit result is stored back into a 64-bit number. This gives the illusion that you’re dealing with
true 32-bit numbers, which makes the binary operations work in a way similar to the operations of
other languages. A curious side effect of this conversion is that the special values NaN and Infinity
both are treated as equivalent to 0 when used in bitwise operations.

If a bitwise operator is applied to a nonnumeric value, the value is fi rst converted into a number
using the Number() function (this is done automatically) and then the bitwise operation is applied.
The resulting value is a number.

Bitwise NOT

The bitwise NOT is represented by a tilde (~) and simply returns the one’s complement of the
number. Bitwise NOT is one of just a few ECMAScript operators related to binary mathematics.
Consider this example:

var num1 = 25; //binary 00000000000000000000000000011001
var num2 = ~num1; //binary 11111111111111111111111111100110
alert(num2); //-26

BitwiseNotExample01.htm

Here, the bitwise NOT operator is used on 25, producing –26 as the result. This is the end effect of
the bitwise NOT: it negates the number and subtracts 1. The same outcome is produced with the
following code:

var num1 = 25;
var num2 = -num1 - 1;
alert(num2); //”-26”

Realistically, though this returns the same result, the bitwise operation is much faster, because it
works at the very lowest level of numeric representation.

c03.indd 51c03.indd 51 12/8/11 9:37:19 AM12/8/11 9:37:19 AM

52 ❘ CHAPTER 3 LANGUAGE BASICS

Bitwise AND

The bitwise AND operator is indicated by the ampersand character (&) and works on two values.
Essentially, bitwise AND lines up the bits in each number and then, using the rules in the following
truth table, performs an AND operation between the two bits in the same position.

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT

1 1 1

1 0 0

0 1 0

0 0 0

The short description of a bitwise AND is that the result will be 1 only if both bits are 1. If either
bit is 0, then the result is 0.

As an example, to AND the numbers 25 and 3 together, use the following code:

var result = 25 & 3;
alert(result); //1

BitwiseAndExample01.htm

The result of a bitwise AND between 25 and 3 is 1. Why is that? Take a look:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

AND = 0000 0000 0000 0000 0000 0000 0000 0001

As you can see, only one bit (bit 0) contains a 1 in both 25 and 3. Because of this, every other bit of
the resulting number is set to 0, making the result equal to 1.

Bitwise OR

The bitwise OR operator is represented by a single pipe character (|) and also works on two
numbers. Bitwise OR follows the rules in this truth table:

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT

1 1 1

1 0 1

0 1 1

0 0 0

c03.indd 52c03.indd 52 12/8/11 9:37:30 AM12/8/11 9:37:30 AM

Operators ❘ 53

A bitwise OR operation returns 1 if at least one bit is 1. It returns 0 only if both bits are 0.

Using the same example as for bitwise AND, if you want to OR the numbers 25 and 3 together, the
code looks like this:

var result = 25 | 3;
alert(result); //27

BitwiseOrExample01.htm

The result of a bitwise OR between 25 and 3 is 27:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

 OR = 0000 0000 0000 0000 0000 0000 0001 1011

In each number, four bits are set to 1, so these are passed through to the result. The binary code
11011 is equal to 27.

Bitwise XOR

The bitwise XOR operator is represented by a caret (̂) and also works on two values. Here is the
truth table for bitwise XOR:

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT

1 1 0

1 0 1

0 1 1

0 0 0

Bitwise XOR is different from bitwise OR in that it returns 1 only when exactly one bit has a value
of 1 (if both bits contain 1, it returns 0).

To XOR the numbers 25 and 3 together, use the following code:

var result = 25 ^ 3;
alert(result); //26

BitwiseXorExample01.htm

The result of a bitwise XOR between 25 and 3 is 26, as shown here:

 25 = 0000 0000 0000 0000 0000 0000 0001 1001
 3 = 0000 0000 0000 0000 0000 0000 0000 0011

XOR = 0000 0000 0000 0000 0000 0000 0001 1010

c03.indd 53c03.indd 53 12/8/11 9:37:31 AM12/8/11 9:37:31 AM

54 ❘ CHAPTER 3 LANGUAGE BASICS

Four bits in each number are set to 1; however, the fi rst bit in both numbers is 1, so that becomes
0 in the result. All of the other 1s have no corresponding 1 in the other number, so they are passed
directly through to the result. The binary code 11010 is equal to 26. (Note that this is one less than
when performing bitwise OR on these numbers.)

Left Shift

The left shift is represented by two less-than signs (<<) and shifts all bits in a number to the left
by the number of positions given. For example, if the number 2 (which is equal to 10 in binary) is
shifted 5 bits to the left, the result is 64 (which is equal to 1000000 in binary), as shown here:

var oldValue = 2; //equal to binary 10
var newValue = oldValue << 5; //equal to binary 1000000 which is decimal 64

LeftShiftExample01.htm

Note that when the bits are shifted, fi ve empty bits remain to the right of the number. The left shift
fi lls these bits with 0s to make the result a complete 32-bit number (see Figure 3-2).

FIGURE 3-2

0 1 0

The number 2"Secret" sign bit

0 1 0 0 0 0 0 0

The number 2 shifted to the left five bits (the number 64)

Padded with zeros

Note that left shift preserves the sign of the number it’s operating on. For instance, if –2 is shifted to
the left by fi ve spaces, it becomes –64, not positive 64.

Signed Right Shift

The signed right shift is represented by two greater-than signs (>>) and shifts all bits in a 32-bit
number to the right while preserving the sign (positive or negative). A signed right shift is the exact
opposite of a left shift. For example, if 64 is shifted to the right fi ve bits, it becomes 2:

var oldValue = 64; //equal to binary 1000000
var newValue = oldValue >> 5; //equal to binary 10 which is decimal 2

SignedRightShiftExample01.htm

c03.indd 54c03.indd 54 12/8/11 9:37:31 AM12/8/11 9:37:31 AM

Operators ❘ 55

Once again, when bits are shifted, the shift creates empty bits. This time, the empty bits occur at the
left of the number but after the sign bit (see Figure 3-3). Once again, ECMAScript fi lls these empty
bits with the value in the sign bit to create a complete number.

FIGURE 3-3

0 1 0 0 0 0 0 0

The number 64"Secret" sign bit

0 1 0

The number 64 shifted to the right five bits (the number 2)

Padded with zeros

Unsigned Right Shift

The unsigned right shift is represented by three greater-than signs (>>>) and shifts all bits in a
32-bit number to the right. For numbers that are positive, the effect is the same as a signed right
shift. Using the same example as for the signed-right-shift example, if 64 is shifted to the right fi ve
bits, it becomes 2:

var oldValue = 64; //equal to binary 1000000
var newValue = oldValue >>> 5; //equal to binary 10 which is decimal 2

UnsignedRightShiftExample01.htm

For numbers that are negative, however, something quite different happens. Unlike signed right
shift, the empty bits get fi lled with zeros regardless of the sign of the number. For positive numbers,
it has the same effect as a signed right shift; for negative numbers, the result is quite different. The
unsigned-right-shift operator considers the binary representation of the negative number to be
representative of a positive number instead. Because the negative number is the two’s complement of
its absolute value, the number becomes very large, as you can see in the following example:

var oldValue = -64; //equal to binary 111111111111111111111111110
00000
var newValue = oldValue >>> 5; //equal to decimal 134217726

UnsignedRightShiftExample02.htm

When an unsigned right shift is used to shift –64 to the right by fi ve bits, the result is 134217726.
This happens because the binary representation of –64 is 11111111111111111111111111000000,

c03.indd 55c03.indd 55 12/8/11 9:37:32 AM12/8/11 9:37:32 AM

56 ❘ CHAPTER 3 LANGUAGE BASICS

but because the unsigned right shift treats this as a positive number, it considers the value to be
4294967232. When this value is shifted to the right by fi ve bits, it becomes 00000111111111111111
111111111110, which is 134217726.

Boolean Operators

Almost as important as equality operators, Boolean operators are what make a programming
language function. Without the capability to test relationships between two values, statements such
as if...else and loops wouldn’t be useful. There are three Boolean operators: NOT, AND, and OR.

Logical NOT

The logical NOT operator is represented by an exclamation point (!) and may be applied to any
value in ECMAScript. This operator always returns a Boolean value, regardless of the data type it’s
used on. The logical NOT operator fi rst converts the operand to a Boolean value and then negates
it, meaning that the logical NOT behaves in the following ways:

If the operand is an object, false is returned.

If the operand is an empty string, true is returned.

If the operand is a nonempty string, false is returned.

If the operand is the number 0, true is returned.

If the operand is any number other than 0 (including Infinity), false is returned.

If the operand is null, true is returned.

If the operand is NaN, true is returned.

If the operand is undefined, true is returned.

The following example illustrates this behavior:

alert(!false); //true
alert(!”blue”); //false
alert(!0); //true
alert(!NaN); //true
alert(!””); //true
alert(!12345); //false

LogicalNotExample01.htm

The logical NOT operator can also be used to convert a value into its Boolean equivalent. By using
two NOT operators in a row, you can effectively simulate the behavior of the Boolean() casting
function. The fi rst NOT returns a Boolean value no matter what operand it is given. The second
NOT negates that Boolean value and so gives the true Boolean value of a variable. The end result is
the same as using the Boolean() function on a value, as shown here:

➤

➤

➤

➤

➤

➤

➤

➤

c03.indd 56c03.indd 56 12/8/11 9:37:32 AM12/8/11 9:37:32 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Operators ❘ 57

alert(!!”blue”); //true
alert(!!0); //false
alert(!!NaN); //false
alert(!!””); //false
alert(!!12345); //true

LogicalNotExample02.htm

Logical AND

The logical AND operator is represented by the double ampersand (&&) and is applied to two values,
such as in this example:

var result = true && false;

Logical AND behaves as described in the following truth table:

OPERAND 1 OPERAND 2 RESULT

true true true

true false false

false true false

false false false

Logical AND can be used with any type of operand, not just Boolean values. When either operand
is not a primitive Boolean, logical AND does not always return a Boolean value; instead, it does one
of the following:

If the fi rst operand is an object, then the second operand is always returned.

If the second operand is an object, then the object is returned only if the fi rst operand
evaluates to true.

If both operands are objects, then the second operand is returned.

If either operand is null, then null is returned.

If either operand is NaN, then NaN is returned.

If either operand is undefined, then undefined is returned.

The logical AND operator is a short-circuited operation, meaning that if the fi rst operand
determines the result, the second operand is never evaluated. In the case of logical AND, if the fi rst
operand is false, no matter what the value of the second operand, the result can’t be equal to true.
Consider the following example:

➤

➤

➤

➤

➤

➤

c03.indd 57c03.indd 57 12/8/11 9:37:33 AM12/8/11 9:37:33 AM

58 ❘ CHAPTER 3 LANGUAGE BASICS

var found = true;
var result = (found && someUndeclaredVariable); //error occurs here
alert(result); //this line never executes

LogicalAndExample01.htm

This code causes an error when the logical AND is evaluated, because the variable
someUndeclaredVariable isn’t declared. The value of the variable found is true, so the logical
AND operator continued to evaluate the variable someUndeclaredVariable. When it did, an error
occurred because someUndeclaredVariable is not declared and therefore cannot be used in a logical
AND operation. If found is instead set to false, as in the following example, the error won’t occur:

var found = false;
var result = (found && someUndeclaredVariable); //no error
alert(result); //works

LogicalAndExample02.htm

In this code, the alert is displayed successfully. Even though the variable someUndeclaredVariable
is undefi ned, it is never evaluated, because the fi rst operand is false. This means that the result of
the operation must be false, so there is no reason to evaluate what’s to the right of the &&. Always
keep in mind short-circuiting when using logical AND.

Logical OR

The logical OR operator is represented by the double pipe (||) in ECMAScript, like this:

var result = true || false;

Logical OR behaves as described in the following truth table:

OPERAND 1 OPERAND 2 RESULT

true true true

true false true

false true true

false false false

Just like logical AND, if either operand is not a Boolean, logical OR will not always return a
Boolean value; instead, it does one of the following:

If the fi rst operand is an object, then the fi rst operand is returned.

If the fi rst operand evaluates to false, then the second operand is returned.

If both operands are objects, then the fi rst operand is returned.

If both operands are null, then null is returned.

➤

➤

➤

➤

c03.indd 58c03.indd 58 12/8/11 9:37:34 AM12/8/11 9:37:34 AM

Operators ❘ 59

If both operands are NaN, then NaN is returned.

If both operands are undefined, then undefined is returned.

Also like the logical AND operator, the logical OR operator is short-circuited. In this case, if the
fi rst operand evaluates to true, the second operand is not evaluated. Consider this example:

var found = true;
var result = (found || someUndeclaredVariable); //no error
alert(result); //works

LogicalOrExample01.htm

As with the previous example, the variable someUndefinedVariable is undefi ned. However,
because the variable found is set to true, the variable someUndefinedVariable is never evaluated
and thus the output is “true”. If the value of found is changed to false, an error occurs, as in the
following example:

var found = false;
var result = (found || someUndeclaredVariable); //error occurs here
alert(result); //this line never executes

LogicalOrExample02.htm

You can also use this behavior to avoid assigning a null or undefi ned value to a variable. Consider
the following:

var myObject = preferredObject || backupObject;

In this example, the variable myObject will be assigned one of two values. The preferredObject
variable contains the value that is preferred if it’s available, whereas the backupObject variable
contains the backup value if the preferred one isn’t available. If preferredObject isn’t null, then
it’s assigned to myObject; if it is null, then backupObject is assigned to myObject. This pattern is
used very frequently in ECMAScript for variable assignment and is used throughout this book.

Multiplicative Operators

There are three multiplicative operators in ECMAScript: multiply, divide, and modulus. These
operators work in a manner similar to their counterparts in languages such as Java, C, and Perl, but
they also include some automatic type conversions when dealing with nonnumeric values. If either
of the operands for a multiplication operation isn’t a number, it is converted to a number behind
the scenes using the Number() casting function. This means that an empty string is treated as 0,
and the Boolean value of true is treated as 1.

Multiply

The multiply operator is represented by an asterisk (*) and is used, as one might suspect, to multiply
two numbers. The syntax is the same as in C, as shown here:

var result = 34 * 56;

➤

➤

c03.indd 59c03.indd 59 12/8/11 9:37:35 AM12/8/11 9:37:35 AM

60 ❘ CHAPTER 3 LANGUAGE BASICS

However, the multiply operator also has the following unique behaviors when dealing with
special values:

If the operands are numbers, regular arithmetic multiplication is performed, meaning that
two positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result cannot be represented by ECMAScript, either Infinity or –Infinity
is returned.

If either operand is NaN, the result is NaN.

If Infinity is multiplied by 0, the result is NaN.

If Infinity is multiplied by any fi nite number other than 0, the result is either Infinity or
–Infinity, depending on the sign of the second operand.

If Infinity is multiplied by Infinity, the result is Infinity.

If either operand isn’t a number, it is converted to a number behind the scenes using
Number() and then the other rules are applied.

Divide

The divide operator is represented by a slash (/) and divides the fi rst operand by the second operand,
as shown here:

var result = 66 / 11;

The divide operator, like the multiply operator, has special behaviors for special values. They are as
follows:

If the operands are numbers, regular arithmetic division is performed, meaning that two
positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result can’t be represented in ECMAScript, it returns either Infinity or
–Infinity.

If either operand is NaN, the result is NaN.

If Infinity is divided by Infinity, the result is NaN.

If zero is divided by zero, the result is NaN.

If a nonzero fi nite number is divided by zero, the result is either Infinity or –Infinity,
depending on the sign of the fi rst operand.

If Infinity is divided by any number, the result is either Infinity or –Infinity,
depending on the sign of the second operand.

If either operand isn’t a number, it is converted to a number behind the scenes using
Number() and then the other rules are applied.

Modulus

The modulus (remainder) operator is represented by a percent sign (%) and is used in the following way:

var result = 26 % 5; //equal to 1

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c03.indd 60c03.indd 60 12/8/11 9:37:35 AM12/8/11 9:37:35 AM

Operators ❘ 61

Just like the other multiplicative operators, the modulus operator behaves differently for special
values, as follows:

If the operands are numbers, regular arithmetic division is performed, and the remainder of
that division is returned.

If the dividend is an infi nite number and the divisor is a fi nite number, the result is NaN.

If the dividend is a fi nite number and the divisor is 0, the result is NaN.

If Infinity is divided by Infinity, the result is NaN.

If the dividend is a fi nite number and the divisor is an infi nite number, then the result is the
dividend.

If the dividend is zero and the divisor is nonzero, the result is zero.

If either operand isn’t a number, it is converted to a number behind the scenes using
Number() and then the other rules are applied.

Additive Operators

The additive operators, add and subtract, are typically the simplest mathematical operators in
programming languages. In ECMAScript, however, a number of special behaviors are associated
with each operator. As with the multiplicative operators, conversions occur behind the scenes for
different data types. For these operators, however, the rules aren’t as straightforward.

Add

The add operator (+) is used just as one would expect, as shown in the following example:

var result = 1 + 2;

If the two operands are numbers, they perform an arithmetic add and return the result according to
the following rules:

If either operand is NaN, the result is NaN.

If Infinity is added to Infinity, the result is Infinity.

If –Infinity is added to –Infinity, the result is –Infinity.

If Infinity is added to –Infinity, the result is NaN.

If +0 is added to +0, the result is +0.

If –0 is added to +0, the result is +0.

If –0 is added to –0, the result is –0.

If, however, one of the operands is a string, then the following rules apply:

If both operands are strings, the second string is concatenated to the fi rst.

If only one operand is a string, the other operand is converted to a string and the result is
the concatenation of the two strings.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c03.indd 61c03.indd 61 12/8/11 9:37:36 AM12/8/11 9:37:36 AM

62 ❘ CHAPTER 3 LANGUAGE BASICS

If either operand is an object, number, or Boolean, its toString() method is called to get a string
value and then the previous rules regarding strings are applied. For undefined and null, the
String() function is called to retrieve the values “undefined” and “null”, respectively.

Consider the following:

var result1 = 5 + 5; //two numbers
alert(result1); //10
var result2 = 5 + “5”; //a number and a string
alert(result2); //”55”

AddExample01.htm

This code illustrates the difference between the two modes for the add operator. Normally, 5 +
5 equals 10 (a number value), as illustrated by the fi rst two lines of code. However, if one of the
operands is changed to a string, “5”, the result becomes “55” (which is a primitive string value),
because the fi rst operand gets converted to “5” as well.

One of the most common mistakes in ECMAScript is being unaware of the data types involved with
an addition operation. Consider the following:

var num1 = 5;
var num2 = 10;
var message = “The sum of 5 and 10 is “ + num1 + num2;
alert(message); //”The sum of 5 and 10 is 510”

AddExample02.htm

In this example, the message variable is fi lled with a string that is the result of two addition
operations. One might expect the fi nal string to be “The sum of 5 and 10 is 15”; however, it
actually ends up as “The sum of 5 and 10 is 510”. This happens because each addition is done
separately. The fi rst combines a string with a number (5), which results in a string. The second
takes that result (a string) and adds a number (10), which also results in a string. To perform the
arithmetic calculation and then append that to the string, just add some parentheses like this:

var num1 = 5;
var num2 = 10;
var message = “The sum of 5 and 10 is “ + (num1 + num2);
alert(message); //”The sum of 5 and 10 is 15”

AddExample03.htm

Here, the two number variables are surrounded by parentheses, which instruct the interpreter to calculate
its result before adding it to the string. The resulting string is “The sum of 5 and 10 is 15”.

Subtract

The subtract operator (-) is another that is used quite frequently. Here’s an example:

var result = 2 - 1;

c03.indd 62c03.indd 62 12/8/11 9:37:37 AM12/8/11 9:37:37 AM

Operators ❘ 63

Just like the add operator, the subtract operator has special rules to deal with the variety of type
conversions present in ECMAScript. They are as follows:

If the two operands are numbers, perform arithmetic subtract and return the result.

If either operand is NaN, the result is NaN.

If Infinity is subtracted from Infinity, the result is NaN.

If –Infinity is subtracted from –Infinity, the result is NaN.

If –Infinity is subtracted from Infinity, the result is Infinity.

If Infinity is subtracted from –Infinity, the result is –Infinity.

If +0 is subtracted from +0, the result is +0.

If –0 is subtracted from +0, the result is –0.

If –0 is subtracted from –0, the result is +0.

If either operand is a string, a Boolean, null, or undefined, it is converted to a number
(using Number() behind the scenes) and the arithmetic is calculated using the previous rules.
If that conversion results in NaN, then the result of the subtraction is NaN.

If either operand is an object, its valueOf() method is called to retrieve a numeric value
to represent it. If that value is NaN, then the result of the subtraction is NaN. If the object
doesn’t have valueOf() defi ned, then toString() is called and the resulting string is
converted into a number.

The following are some examples of these behaviors:

var result1 = 5 - true; //4 because true is converted to 1
var result2 = NaN - 1; //NaN
var result3 = 5 - 3; //2
var result4 = 5 - “”; //5 because “” is converted to 0
var result5 = 5 - “2”; //3 because “2” is converted to 2
var result6 = 5 - null; //5 because null is converted to 0

SubtractExample01.htm

Relational Operators

The less-than (<), greater-than (>), less-than-or-equal-to (<=), and greater-than-or-equal-to (>=)
relational operators perform comparisons between values in the same way that you learned in math
class. Each of these operators returns a Boolean value, as in this example:

var result1 = 5 > 3; //true
var result2 = 5 < 3; //false

All snippets in this section can be found in RelationalOperatorsExample01.htm

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c03.indd 63c03.indd 63 12/8/11 9:37:37 AM12/8/11 9:37:37 AM

64 ❘ CHAPTER 3 LANGUAGE BASICS

As with other operators in ECMAScript, there are some conversions and other oddities that happen
when using different data types. They are as follows:

If the operands are numbers, perform a numeric comparison.

If the operands are strings, compare the character codes of each corresponding character in
the string.

If one operand is a number, convert the other operand to a number and perform a numeric
comparison.

If an operand is an object, call valueOf() and use its result to perform the comparison
according to the previous rules. If valueOf() is not available, call toString() and use that
value according to the previous rules.

If an operand is a Boolean, convert it to a number and perform the comparison.

When a relational operator is used on two strings, an interesting behavior occurs. Many expect
that less-than means “alphabetically before” and greater-than means “alphabetically after,” but
this is not the case. For strings, each of the fi rst string’s character codes is numerically compared
against the character codes in a corresponding location in the second string. After this comparison
is complete, a Boolean value is returned. The problem here is that the character codes of uppercase
letters are all lower than the character codes of lowercase letters, meaning that you can run into
situations like this:

var result = “Brick” < “alphabet”; //true

In this example, the string “Brick” is considered to be less than the string “alphabet”, because
the letter B has a character code of 66 and the letter a has a character code of 97. To force a true
alphabetic result, you must convert both operands into a common case (upper or lower) and then
compare like this:

var result = “Brick”.toLowerCase() < “alphabet”.toLowerCase(); //false

Converting both operands to lowercase ensures that “alphabet” is correctly identifi ed as
alphabetically before “Brick”.

Another sticky situation occurs when comparing numbers that are strings, such as in this example:

var result = “23” < “3”; //true

This code returns true when comparing the string “23” to “3”. Because both operands are strings,
they are compared by their character codes (the character code for “2” is 50; the character code for
“3” is 51). If, however, one of the operands is changed to a number as in the following example, the
result makes more sense:

var result = “23” < 3; //false

Here, the string “23” is converted into the number 23 and then compared to 3, giving the expected
result. Whenever a number is compared to a string, the string is converted into a number and then

➤

➤

➤

➤

➤

c03.indd 64c03.indd 64 12/8/11 9:37:38 AM12/8/11 9:37:38 AM

Operators ❘ 65

numerically compared to the other number. This works well for cases like the previous example, but
what if the string can’t be converted into a number? Consider this example:

var result = “a” < 3; //false because “a” becomes NaN

The letter “a” can’t be meaningfully converted into a number, so it becomes NaN. As a rule, the
result of any relational operation with NaN is false, which is interesting when considering the
following:

var result1 = NaN < 3; //false
var result2 = NaN >= 3; //false

In most comparisons, if a value is not less than another, it is always greater than or equal to it.
When using NaN, however, both comparisons return false.

Equality Operators

Determining whether two variables are equivalent is one of the most important operations in
programming. This is fairly straightforward when dealing with strings, numbers, and Boolean
values, but the task gets a little complicated when you take objects into account. Originally
ECMAScript’s equal and not-equal operators performed conversions into like types before doing
a comparison. The question of whether these conversions should, in fact, take place was then
raised. The end result was for ECMAScript to provide two sets of operators: equal and not equal to
perform conversion before comparison, and identically equal and not identically equal to perform
comparison without conversion.

Equal and Not Equal

The equal operator in ECMAScript is the double equal sign (==), and it returns true if the operands
are equal. The not-equal operator is the exclamation point followed by an equal sign (!=), and it
returns true if two operands are not equal. Both operators do conversions to determine if two
operands are equal (often called type coercion).

When performing conversions, the equal and not-equal operators follow these basic rules:

If an operand is a Boolean value, convert it into a numeric value before checking for
equality. A value of false converts to 0, whereas a value of true converts to 1.

If one operand is a string and the other is a number, attempt to convert the string into a
number before checking for equality.

If one of the operands is an object and the other is not, the valueOf() method is called on
the object to retrieve a primitive value to compare according to the previous rules.

The operators also follow these rules when making comparisons:

Values of null and undefined are equal.

Values of null and undefined cannot be converted into any other values for equality
checking.

➤

➤

➤

➤

➤

c03.indd 65c03.indd 65 12/8/11 9:37:39 AM12/8/11 9:37:39 AM

66 ❘ CHAPTER 3 LANGUAGE BASICS

If either operand is NaN, the equal operator returns false and the not-equal operator
returns true. Important note: even if both operands are NaN, the equal operator returns
false because, by rule, NaN is not equal to NaN.

If both operands are objects, then they are compared to see if they are the same object. If
both operands point to the same object, then the equal operator returns true. Otherwise,
the two are not equal.

The following table lists some special cases and their results:

EXPRESSION VALUE

null == undefined true

“NaN” == NaN false

5 == NaN false

NaN == NaN false

NaN != NaN true

false == 0 true

true == 1 true

true == 2 false

undefined == 0 false

null == 0 false

“5” == 5 true

EqualityOperatorsExample01.htm

Identically Equal and Not Identically Equal

The identically equal and not identically equal operators do the same thing as equal and not equal,
except that they do not convert operands before testing for equality. The identically equal operator
is represented by three equal signs (===) and returns true only if the operands are equal without
conversion, as in this example:

var result1 = (“55” == 55); //true - equal because of conversion
var result2 = (“55” === 55); //false - not equal because different data types

EqualityOperatorsExample02.htm

In this code, the fi rst comparison uses the equal operator to compare the string “55” and the
number 55, which returns true. As mentioned previously, this happens because the string “55” is
converted to the number 55 and then compared with the other number 55. The second comparison
uses the identically equal operator to compare the string and the number without conversion, and of
course, a string isn’t equal to a number, so this outputs false.

➤

➤

c03.indd 66c03.indd 66 12/8/11 9:37:39 AM12/8/11 9:37:39 AM

Operators ❘ 67

The not identically equal operator is represented by an exclamation point followed by two equal
signs (!==) and returns true only if the operands are not equal without conversion. For example:

var result1 = (“55” != 55); //false - equal because of conversion
var result2 = (“55” !== 55); //true - not equal because different data types

EqualityOperatorsExample03.htm

Here, the fi rst comparison uses the not-equal operator, which converts the string “55” to the
number 55, making it equal to the second operand, also the number 55. Therefore, this evaluates to
false because the two are considered equal. The second comparison uses the not identically equal
operator. It helps to think of this operation as saying, “Is the string 55 different from the number
55?” The answer to this is yes (true).

Keep in mind that while null == undefined is true because they are similar values, null ===
undefined is false because they are not the same type.

Because of the type conversion issues with the equal and not-equal operators, it
is recommended to use identically equal and not identically equal instead. This
helps to maintain data type integrity throughout your code.

Conditional Operator

The conditional operator is one of the most versatile in ECMAScript, and it takes on the same form
as in Java, which is as follows:

variable = boolean_expression ? true_value : false_value;

This basically allows a conditional assignment to a variable depending on the evaluation of the
boolean_expression. If it’s true, then true_value is assigned to the variable; if it’s false, then
false_value is assigned to the variable, as in this instance:

var max = (num1 > num2) ? num1 : num2;

In this example, max is to be assigned the number with the highest value. The expression states
that if num1 is greater than num2, then num1 is assigned to max. If, however, the expression is false
(meaning that num1 is less than or equal to num2), then num2 is assigned to max.

Assignment Operators

Simple assignment is done with the equal sign (=) and simply assigns the value on the right to the
variable on the left, as shown in the following example:

var num = 10;

c03.indd 67c03.indd 67 12/8/11 9:37:40 AM12/8/11 9:37:40 AM

68 ❘ CHAPTER 3 LANGUAGE BASICS

Compound assignment is done with one of the multiplicative, additive, or bitwise-shift operators
followed by an equal sign (=). These assignments are designed as shorthand for such common
situations as this:

var num = 10;
num = num + 10;

The second line of code can be replaced with a compound assignment:

var num = 10;
num += 10;

Compound-assignment operators exist for each of the major mathematical operations and a few
others as well. They are as follows:

Multiply/assign (*=)

Divide/assign (/=)

Modulus/assign (%=)

Add/assign (+=)

Subtract/assign (-=)

Left shift/assign (<<=)

Signed right shift/assign (>>=)

Unsigned right shift/assign (>>>=)

These operators are designed specifi cally as shorthand ways of achieving operations. They do not
represent any performance improvement.

Comma Operator

The comma operator allows execution of more than one operation in a single statement, as
illustrated here:

var num1=1, num2=2, num3=3;

Most often, the comma operator is used in the declaration of variables; however, it can also be used
to assign values. When used in this way, the comma operator always returns the last item in the
expression, as in the following example:

var num = (5, 1, 4, 8, 0); //num becomes 0

In this example, num is assigned the value of 0 because it is the last item in the expression. There
aren’t many times when commas are used in this way; however, it is helpful to understand that this
behavior exists.

➤

➤

➤

➤

➤

➤

➤

➤

c03.indd 68c03.indd 68 12/8/11 9:37:46 AM12/8/11 9:37:46 AM

Statements ❘ 69

STATEMENTS

ECMA-262 describes several statements (also called fl ow-control statements). Essentially,
statements defi ne most of the syntax of ECMAScript and typically use one or more keywords to
accomplish a given task. Statements can be simple, such as telling a function to exit, or complicated,
such as specifying a number of commands to be executed repeatedly.

The if Statement

One of the most frequently used statements in most programming languages is the if statement.
The if statement has the following syntax:

if (condition) statement1 else statement2

The condition can be any expression; it doesn’t even have to evaluate to an actual Boolean value.
ECMAScript automatically converts the result of the expression into a Boolean by calling the
Boolean() casting function on it. If the condition evaluates to true, statement1 is executed; if the
condition evaluates to false, statement2 is executed. Each of the statements can be either a single
line or a code block (a group of code lines enclosed within braces). Consider this example:

if (i > 25)
 alert(“Greater than 25.”); //one-line statement
else {
 alert(“Less than or equal to 25.”); //block statement
}

IfStatementExample01.htm

It’s considered best coding practice to always use block statements, even if only one line of code is to
be executed. Doing so can avoid confusion about what should be executed for each condition.

You can also chain if statements together like so:

if (condition1) statement1 else if (condition2) statement2 else statement3

Here’s an example:

if (i > 25) {
 alert(“Greater than 25.”);
} else if (i < 0) {
 alert(“Less than 0.”);
} else {
 alert(“Between 0 and 25, inclusive.”);
}

IfStatementExample02.htm

c03.indd 69c03.indd 69 12/8/11 9:37:46 AM12/8/11 9:37:46 AM

70 ❘ CHAPTER 3 LANGUAGE BASICS

The do-while Statement

The do-while statement is a post-test loop, meaning that the escape condition is evaluated only
after the code inside the loop has been executed. The body of the loop is always executed at least
once before the expression is evaluated. Here’s the syntax:

do {
 statement
} while (expression);

And here’s an example of its usage:

var i = 0;
do {
 i += 2;
} while (i < 10);

DoWhileStatementExample01.htm

In this example, the loop continues as long as i is less than 10. The variable starts at 0 and is
incremented by two each time through the loop.

Post-test loops such as this are most often used when the body of the loop should
be executed at least once before exiting.

The while Statement

The while statement is a pretest loop. This means the escape condition is evaluated before the code
inside the loop has been executed. Because of this, it is possible that the body of the loop is never
executed. Here’s the syntax:

while(expression) statement

And here’s an example of its usage:

var i = 0;
while (i < 10) {
 i += 2;
}

WhileStatementExample01.htm

In this example, the variable i starts out equal to 0 and is incremented by two each time through
the loop. As long as the variable is less than 10, the loop will continue.

c03.indd 70c03.indd 70 12/8/11 9:37:47 AM12/8/11 9:37:47 AM

Statements ❘ 71

The for Statement

The for statement is also a pretest loop with the added capabilities of variable initialization before
entering the loop and defi ning postloop code to be executed. Here’s the syntax:

for (initialization; expression; post-loop-expression) statement

And here’s an example of its usage:

var count = 10;
for (var i=0; i < count; i++){
 alert(i);
}

ForStatementExample01.htm

This code defi nes a variable i that begins with the value 0. The for loop is entered only if the
conditional expression (i < count) evaluates to true, making it possible that the body of the code
might not be executed. If the body is executed, the postloop expression is also executed, iterating
the variable i. This for loop is the same as the following:

var count = 10;
var i = 0;
while (i < count){
 alert(i);
 i++;
}

Nothing can be done with a for loop that can’t be done using a while loop. The for loop simply
encapsulates the loop-related code into a single location.

It’s important to note that there’s no need to use the var keyword inside the for loop initialization.
It can be done outside the initialization as well, such as the following:

var count = 10;
var i;
for (i=0; i < count; i++){
 alert(i);
}

ForStatementExample02.htm

This code has the same affect as having the declaration of the variable inside the loop initialization.
There are no block-level variables in ECMAScript (discussed further in Chapter 4), so a variable
defi ned inside the loop is accessible outside the loop as well. For example:

var count = 10;
for (var i=0; i < count; i++){
 alert(i);
}
alert(i); //10

ForStatementExample03.htm

c03.indd 71c03.indd 71 12/8/11 9:37:53 AM12/8/11 9:37:53 AM

72 ❘ CHAPTER 3 LANGUAGE BASICS

In this example, an alert displays the fi nal value of the variable i after the loop has completed. This
displays the number 10, because the variable i is still accessible even though it was defi ned inside
the loop.

The initialization, control expression, and postloop expression are all optional. You can create an
infi nite loop by omitting all three, like this:

for (;;) { //infinite loop
 doSomething();
}

Including only the control expression effectively turns a for loop into a while loop, as shown here:

var count = 10;
var i = 0;
for (; i < count;){
 alert(i);
 i++;
}

ForStatementExample04.htm

This versatility makes the for statement one of the most used in the language.

The for-in Statement

The for-in statement is a strict iterative statement. It is used to enumerate the properties of an
object. Here’s the syntax:

for (property in expression) statement

And here’s an example of its usage:

for (var propName in window) {
 document.write(propName);
}

ForInStatementExample01.htm

Here, the for-in statement is used to display all the properties of the BOM window object. Each
time through the loop, the propName variable is fi lled with the name of a property that exists
on the window object. This continues until all of the available properties have been enumerated
over. As with the for statement, the var operator in the control statement is not necessary but is
recommended for ensuring the use of a local variable.

Object properties in ECMAScript are unordered, so the order in which property names are returned
in a for-in statement cannot necessarily be predicted. All enumerable properties will be returned
once, but the order may differ across browsers.

c03.indd 72c03.indd 72 12/8/11 9:37:53 AM12/8/11 9:37:53 AM

Statements ❘ 73

Note that the for-in statement will throw an error if the variable representing the object to iterate
over is null or undefined. ECMAScript 5 updates this behavior to not throw an error and simply
doesn’t execute the body of the loop. For best cross-browser compatibility, it’s recommended to
check that the object value isn’t null or undefined before attempting to use a for-in loop.

In versions of Safari earlier than 3, the for-in statement had a bug in which
some properties were returned twice.

Labeled Statements

It is possible to label statements for later use with the following syntax:

label: statement

Here’s an example:

start: for (var i=0; i < count; i++) {
 alert(i);
}

In this example, the label start can be referenced later by using the break or continue statement.
Labeled statements are typically used with nested loops.

The break and continue Statements

The break and continue statements provide stricter control over the execution of code in a loop. The
break statement exits the loop immediately, forcing execution to continue with the next statement
after the loop. The continue statement, on the other hand, exits the loop immediately, but
execution continues from the top of the loop. Here’s an example:

var num = 0;

for (var i=1; i < 10; i++) {
 if (i % 5 == 0) {
 break;
 }
 num++;
}

alert(num); //4

BreakStatementExample01.htm

In this code, the for loop increments the variable i from 1 to 10. In the body of loop, an if
statement checks to see if the value of i is evenly divisible by 5 (using the modulus operator). If so,
the break statement is executed and the loop is exited. The num variable starts out at 0 and indicates

c03.indd 73c03.indd 73 12/8/11 9:37:54 AM12/8/11 9:37:54 AM

74 ❘ CHAPTER 3 LANGUAGE BASICS

the number of times the loop has been executed. After the break statement has been hit, the next
line of code to be executed is the alert, which displays 4. So the number of times the loop has been
executed is four because when i equals 5, the break statement causes the loop to be exited before
num can be incremented. A different effect can be seen if break is replaced with continue like this:

var num = 0;

for (var i=1; i < 10; i++) {
 if (i % 5 == 0) {
 continue;
 }
 num++;
}

alert(num); //8

ContinueStatementExample01.htm

Here, the alert displays 8, the number of times the loop has been executed. When i reaches a value
of 5, the loop is exited before num is incremented, but execution continues with the next iteration,
when the value is 6. The loop then continues until its natural completion, when i is 10. The
fi nal value of num is 8 instead of 9, because one increment didn’t occur because of the continue
statement.

Both the break and continue statements can be used in conjunction with labeled statements to
return to a particular location in the code. This is typically used when there are loops inside of
loops, as in the following example:

var num = 0;

outermost:
for (var i=0; i < 10; i++) {
 for (var j=0; j < 10; j++) {
 if (i == 5 && j == 5) {
 break outermost;
 }
 num++;
 }
}

alert(num); //55

BreakStatementExample02.htm

In this example, the outermost label indicates the fi rst for statement. Each loop normally executes
10 times, meaning that the num++ statement is normally executed 100 times and, consequently,
num should be equal to 100 when the execution is complete. The break statement here is given
one argument: the label to break to. Adding the label allows the break statement to break not just
out of the inner for statement (using the variable j) but also out of the outer for statement (using
the variable i). Because of this, num ends up with a value of 55, because execution is halted when

c03.indd 74c03.indd 74 12/8/11 9:38:00 AM12/8/11 9:38:00 AM

Statements ❘ 75

both i and j are equal to 5. The continue statement can be used in the same way, as shown in the
following example:

var num = 0;

outermost:
for (var i=0; i < 10; i++) {
 for (var j=0; j < 10; j++) {
 if (i == 5 && j == 5) {
 continue outermost;
 }
 num++;
 }
}

alert(num); //95

ContinueStatementExample02.htm

In this case, the continue statement forces execution to continue — not in the inner loop but in
the outer loop. When j is equal to 5, continue is executed, which means that the inner loop misses
fi ve iterations, leaving num equal to 95.

Using labeled statements in conjunction with break and continue can be very powerful but can
cause debugging problems if overused. Always use descriptive labels and try not to nest more than a
few loops.

The with Statement

The with statement sets the scope of the code within a particular object. The syntax is as follows:

with (expression) statement;

The with statement was created as a convenience for times when a single object was being coded to
over and over again, such as in this example:

var qs = location.search.substring(1);
var hostName = location.hostname;
var url = location.href;

Here, the location object is used on every line. This code can be rewritten using the with
statement as follows:

with(location){
 var qs = search.substring(1);
 var hostName = hostname;
 var url = href;
}

WithStatementExample01.htm

c03.indd 75c03.indd 75 12/8/11 9:38:00 AM12/8/11 9:38:00 AM

76 ❘ CHAPTER 3 LANGUAGE BASICS

In this rewritten version of the code, the with statement is used in conjunction with the location
object. This means that each variable inside the statement is fi rst considered to be a local variable. If
it’s not found to be a local variable, the location object is searched to see if it has a property of the
same name. If so, then the variable is evaluated as a property of location.

In strict mode, the with statement is not allowed and is considered a syntax error.

It is widely considered a poor practice to use the with statement in production
code because of its negative performance impact and the diffi culty in debugging
code contained in the with statement.

The switch Statement

Closely related to the if statement is the switch statement, another fl ow-control statement adopted
from other languages. The syntax for the switch statement in ECMAScript closely resembles the
syntax in other C-based languages, as you can see here:

switch (expression) {
 case value: statement
 break;
 case value: statement
 break;
 case value: statement
 break;
 case value: statement
 break;
 default: statement
}

Each case in a switch statement says, “If the expression is equal to the value, execute the
statement.” The break keyword causes code execution to jump out of the switch statement.
Without the break keyword, code execution falls through the original case into the following one.
The default keyword indicates what is to be done if the expression does not evaluate to one of the
cases. (In effect, it is an else statement.)

Essentially, the switch statement prevents a developer from having to write something like this:

if (i == 25){
 alert(“25”);
} else if (i == 35) {
 alert(“35”);
} else if (i == 45) {
 alert(“45”);
} else {
 alert(“Other”);
}

c03.indd 76c03.indd 76 12/8/11 9:38:01 AM12/8/11 9:38:01 AM

Statements ❘ 77

The equivalent switch statement is as follows:

switch (i) {
 case 25:
 alert(“25”);
 break;
 case 35:
 alert(“35”);
 break;
 case 45:
 alert(“45”);
 break;
 default:
 alert(“Other”);
}

SwitchStatementExample01.htm

It’s best to always put a break statement after each case to avoid having cases fall through into
the next one. If you need a case statement to fall through, include a comment indicating that the
omission of the break statement is intentional, such as this:

switch (i) {
 case 25:
 /* falls through */
 case 35:
 alert(“25 or 35”);
 break;
 case 45:
 alert(“45”);
 break;
 default:
 alert(“Other”);
}

SwitchStatementExample02.htm

Although the switch statement was borrowed from other languages, it has some unique characteristics
in ECMAScript. First, the switch statement works with all data types (in many languages it works
only with numbers), so it can be used with strings and even with objects. Second, the case values need
not be constants; they can be variables and even expressions. Consider the following example:

switch (“hello world”) {
 case “hello” + “ world”:
 alert(“Greeting was found.”);
 break;
 case “goodbye”:
 alert(“Closing was found.”);
 break;
 default:
 alert(“Unexpected message was found.”);
}

SwitchStatementExample03.htm

c03.indd 77c03.indd 77 12/8/11 9:38:06 AM12/8/11 9:38:06 AM

78 ❘ CHAPTER 3 LANGUAGE BASICS

In this example, a string value is used in a switch statement. The fi rst case is actually an expression
that evaluates a string concatenation. Because the result of this concatenation is equal to the switch
argument, the alert displays “Greeting was found.” The ability to have case expressions also
allows you to do things like this:

var num = 25;
switch (true) {
 case num < 0:
 alert(“Less than 0.”);
 break;
 case num >= 0 && num <= 10:
 alert(“Between 0 and 10.”);
 break;
 case num > 10 && num <= 20:
 alert(“Between 10 and 20.”);
 break;
 default:
 alert(“More than 20.”);
}

SwitchStatementExample04.htm

Here, a variable num is defi ned outside the switch statement. The expression passed into the switch
statement is true, because each case is a conditional that will return a Boolean value. Each case is
evaluated, in order, until a match is found or until the default statement is encountered (which is
the case here).

The switch statement compares values using the identically equal operator, so no
type coercion occurs (for example, the string "10" is not equal to the number 10).

FUNCTIONS

Functions are the core of any language, because they allow the encapsulation of statements that
can be run anywhere and at any time. Functions in ECMAScript are declared using the function
keyword, followed by a set of arguments and then the body of the function. The basic syntax is as
follows:

function functionName(arg0, arg1,...,argN) {
 statements
}

Here’s an example:

function sayHi(name, message) {
 alert(“Hello “ + name + “, “ + message);
}

FunctionExample01.htm

c03.indd 78c03.indd 78 12/8/11 9:38:06 AM12/8/11 9:38:06 AM

Functions ❘ 79

This function can then be called by using the function name, followed by the function arguments
enclosed in parentheses (and separated by commas, if there are multiple arguments). The code to
call the sayHi() function looks like this:

sayHi(“Nicholas”, “how are you today?”);

The output of this function call is, “Hello Nicholas, how are you today?” The named
arguments name and message are used as part of a string concatenation that is ultimately displayed
in an alert.

Functions in ECMAScript need not specify whether they return a value. Any function can return
a value at any time by using the return statement followed by the value to return. Consider this
example:

function sum(num1, num2) {
 return num1 + num2;
}

FunctionExample02.htm

The sum() function adds two values together and returns the result. Note that aside from the
return statement, there is no special declaration indicating that the function returns a value. This
function can be called using the following:

var result = sum(5, 10);

Keep in mind that a function stops executing and exits immediately when it encounters the return
statement. Therefore, any code that comes after a return statement will never be executed. For
example:

function sum(num1, num2) {
 return num1 + num2;
 alert(“Hello world”); //never executed
}

In this example, the alert will never be displayed because it appears after the return statement.

It’s also possible to have more than one return statement in a function, like this:

function diff(num1, num2) {
 if (num1 < num2) {
 return num2 - num1;
 } else {
 return num1 - num2;
 }
}

FunctionExample03.htm

c03.indd 79c03.indd 79 12/8/11 9:38:12 AM12/8/11 9:38:12 AM

80 ❘ CHAPTER 3 LANGUAGE BASICS

Here, the diff() function determines the difference between two numbers. If the fi rst number is
less than the second, it subtracts the fi rst from the second; otherwise it subtracts the second from
the fi rst. Each branch of the code has its own return statement that does the correct calculation.

The return statement can also be used without specifying a return value. When used in this way,
the function stops executing immediately and returns undefined as its value. This is typically used
in functions that don’t return a value to stop function execution early, as in the following example,
where the alert won’t be displayed:

function sayHi(name, message) {
 return;
 alert(“Hello “ + name + “, “ + message); //never called
}

FunctionExample04.htm

It’s recommended that a function either always return a value or never return a
value. Writing a function that sometimes returns a value causes confusion,
especially during debugging.

Strict mode places several restrictions on functions:

No function can be named eval or arguments.

No named parameter can be named eval or arguments.

No two named parameters can have the same name.

If these occur, it’s considered a syntax error and the code will not execute.

Understanding Arguments

Function arguments in ECMAScript don’t behave in the same way as function arguments in most
other languages. An ECMAScript function doesn’t care how many arguments are passed in, nor
does it care about the data types of those arguments. Just because you defi ne a function to accept
two arguments doesn’t mean you can pass in only two arguments. You could pass in one or three
or none, and the interpreter won’t complain. This happens because arguments in ECMAScript
are represented as an array internally. The array is always passed to the function, but the function
doesn’t care what (if anything) is in the array. If the array arrives with zero items, that’s fi ne; if
it arrives with more, that’s okay too. In fact, there actually is an arguments object that can be
accessed while inside a function to retrieve the values of each argument that was passed in.

The arguments object acts like an array (though it isn’t an instance of Array) in that you can
access each argument using bracket notation (the fi rst argument is arguments[0], the second is
arguments[1], and so on) and determine how many arguments were passed in by using the length
property. In the previous example, the sayHi() function’s fi rst argument is named name. The same

➤

➤

➤

c03.indd 80c03.indd 80 12/8/11 9:38:12 AM12/8/11 9:38:12 AM

Functions ❘ 81

value can be accessed by referencing arguments[0]. Therefore, the function can be rewritten
without naming the arguments explicitly, like this:

function sayHi() {
 alert(“Hello “ + arguments[0] + “, “ + arguments[1]);
}

FunctionExample05.htm

In this rewritten version of the function, there are no named arguments. The name and message
arguments have been removed, yet the function will behave appropriately. This illustrates an
important point about functions in ECMAScript: named arguments are a convenience, not a
necessity. Unlike in other languages, naming your arguments in ECMAScript does not create a
function signature that must be matched later on; there is no validation against named arguments.

The arguments object can also be used to check the number of arguments passed into the function
via the length property. The following example outputs the number of arguments passed into the
function each time it is called:

function howManyArgs() {
 alert(arguments.length);
}

howManyArgs(“string”, 45); //2
howManyArgs(); //0
howManyArgs(12); //1

FunctionExample06.htm

This example shows alerts displaying 2, 0, and 1 (in that order). In this way, developers have the
freedom to let functions accept any number of arguments and behave appropriately. Consider the
following:

function doAdd() {
 if(arguments.length == 1) {
 alert(arguments[0] + 10);
 } else if (arguments.length == 2) {
 alert(arguments[0] + arguments[1]);
 }
}

doAdd(10); //20
doAdd(30, 20); //50

FunctionExample07.htm

The function doAdd() adds 10 to a number only if there is one argument; if there are two
arguments, they are simply added together and returned. So doAdd(10) returns 20, whereas

c03.indd 81c03.indd 81 12/8/11 9:38:18 AM12/8/11 9:38:18 AM

82 ❘ CHAPTER 3 LANGUAGE BASICS

doAdd(30,20) returns 50. It’s not quite as good as overloading, but it is a suffi cient workaround for
this ECMAScript limitation.

Another important thing to understand about arguments is that the arguments object can be used
in conjunction with named arguments, such as the following:

function doAdd(num1, num2) {
 if(arguments.length == 1) {
 alert(num1 + 10);
 } else if (arguments.length == 2) {
 alert(arguments[0] + num2);
 }
}

FunctionExample08.htm

In this rewrite of the doAdd() function, two-named arguments are used in conjunction with the
arguments object. The named argument num1 holds the same value as arguments[0], so they can
be used interchangeably (the same is true for num2 and arguments[1]).

Another interesting behavior of arguments is that its values always stay in sync with the values of
the corresponding named parameters. For example:

function doAdd(num1, num2) {
 arguments[1] = 10;
 alert(arguments[0] + num2);
}

FunctionExample09.htm

This version of doAdd() always overwrites the second argument with a value of 10. Because values
in the arguments object are automatically refl ected by the corresponding named arguments, the
change to arguments[1] also changes the value of num2, so both have a value of 10. This doesn’t
mean that both access the same memory space, though; their memory spaces are separate but
happen to be kept in sync. This effect goes only one way: changing the named argument does not
result in a change to the corresponding value in arguments. Another thing to keep in mind: if
only one argument is passed in, then setting arguments[1] to a value will not be refl ected by the
named argument. This is because the length of the arguments object is set based on the number of
arguments passed in, not the number of named arguments listed for the function.

Any named argument that is not passed into the function is automatically assigned the value
undefined. This is akin to defi ning a variable without initializing it. For example, if only one
argument is passed into the doAdd() function, then num2 has a value of undefined.

Strict mode makes several changes to how the arguments object can be used. First, assignment,
as in the previous example, no longer works. The value of num2 remains undefined even though
arguments[1] has been assigned to 10. Second, trying to overwrite the value of arguments is a
syntax error. (The code will not execute.)

c03.indd 82c03.indd 82 12/8/11 9:38:19 AM12/8/11 9:38:19 AM

Summary ❘ 83

No Overloading

ECMAScript functions cannot be overloaded in the traditional sense. In other languages, such as
Java, it is possible to write two defi nitions of a function so long as their signatures (the type and
number of arguments accepted) are different. As just covered, functions in ECMAScript don’t have
signatures, because the arguments are represented as an array containing zero or more values.
Without function signatures, true overloading is not possible.

If two functions are defi ned to have the same name in ECMAScript, it is the last function that
becomes the owner of that name. Consider the following example:

function addSomeNumber(num){
 return num + 100;
}

function addSomeNumber(num) {
 return num + 200;
}

var result = addSomeNumber(100); //300

FunctionExample10.htm

Here, the function addSomeNumber() is defi ned twice. The fi rst version of the function adds 100
to the argument, and the second adds 200. When the last line is called, it returns 300 because the
second function has overwritten the fi rst.

As mentioned previously, it’s possible to simulate overloading of methods by checking the type and
number of arguments that have been passed into a function and then reacting accordingly.

SUMMARY

The core language features of JavaScript are defi ned in ECMA-262 as a pseudolanguage named
ECMAScript. ECMAScript contains all of the basic syntax, operators, data types, and objects
necessary to complete basic computing tasks, though it provides no way to get input or to produce
output. Understanding ECMAScript and its intricacies is vital to a complete understanding of
JavaScript as implemented in web browsers. The most widely implemented version of ECMAScript
is the one defi ned in ECMA-262, third edition, though many are starting to implement the fi fth
edition. The following are some of the basic elements of ECMAScript:

The basic data types in ECMAScript are Undefi ned, Null, Boolean, Number, and String.

Unlike other languages, there’s no separate data type for integers versus fl oating-point
values; the Number type represents all numbers.

➤

➤

All arguments in ECMAScript are passed by value. It is not possible to pass
arguments by reference.

c03.indd 83c03.indd 83 12/8/11 9:38:20 AM12/8/11 9:38:20 AM

84 ❘ CHAPTER 3 LANGUAGE BASICS

There is also a complex data type, Object, that is the base type for all objects in the
language.

A strict mode places restrictions on certain error-prone parts of the language.

ECMAScript provides a lot of the basic operators available in C and other C-like languages,
including arithmetic operators, Boolean operators, relational operators, equality operators,
and assignment operators.

The language features fl ow-control statements borrowed heavily from other languages, such
as the if statement, the for statement, and the switch statement.

Functions in ECMAScript behave differently than functions in other languages:

There is no need to specify the return value of the function since any function can return
any value at any time.

Functions that don’t specify a return value actually return the special value undefined.

There is no such thing as a function signature, because arguments are passed as an array
containing zero or more values.

Any number of arguments can be passed into a function and are accessible through the
arguments object.

Function overloading is not possible because of the lack of function signatures.

➤

➤

➤

➤

➤

➤

➤

➤

➤

c03.indd 84c03.indd 84 12/8/11 9:38:25 AM12/8/11 9:38:25 AM

Variables, Scope, and Memory

WHAT’S IN THIS CHAPTER?

Working with primitive and reference values in variables

Understanding execution context

Understanding garbage collection

The nature of variables in JavaScript, as defi ned in ECMA-262, is quite unique compared to
that of other languages. Being loosely typed, a variable is literally just a name for a particular
value at a particular time. Because there are no rules defi ning the type of data that a variable
must hold, a variable’s value and data type can change during the lifetime of a script. Though
this is an interesting, powerful, and problematic feature, there are many more complexities
related to variables.

PRIMITIVE AND REFERENCE VALUES

ECMAScript variables may contain two different types of data: primitive values and reference
values. Primitive values are simple atomic pieces of data, while reference values are objects
that may be made up of multiple values.

When a value is assigned to a variable, the JavaScript engine must determine if it’s a primitive
or a reference. The fi ve primitive types were discussed in the previous chapter: Undefi ned,
Null, Boolean, Number, and String. These variables are said to be accessed by value, because
you are manipulating the actual value stored in the variable.

Reference values are objects stored in memory. Unlike other languages, JavaScript does not permit
direct access of memory locations, so direct manipulation of the object’s memory space is not
allowed. When you manipulate an object, you’re really working on a reference to that object rather
than the actual object itself. For this reason, such values are said to be accessed by reference.

➤

➤

➤

4

c04.indd 85c04.indd 85 12/8/11 9:54:38 AM12/8/11 9:54:38 AM

86 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

Dynamic Properties

Primitive and reference values are defi ned similarly: a variable is created and assigned a value. What you
can do with those values once they’re stored in a variable, however, is quite different. When you work
with reference values, you can add, change, or delete properties and methods at any time. Consider
this example:

var person = new Object();
person.name = “Nicholas”;
alert(person.name); //”Nicholas”

DynamicPropertiesExample01.htm

Here, an object is created and stored in the variable person. Next, a property called name is added
and assigned the string value of “Nicholas”. The new property is then accessible from that point
on, until the object is destroyed or the property is explicitly removed.

Primitive values can’t have properties added to them even though attempting to do so won’t cause an
error. Here’s an example:

var name = “Nicholas”;
name.age = 27;
alert(name.age); //undefined

DynamicPropertiesExample02.htm

Here, a property called age is defi ned on the string name and assigned a value of 27. On the
very next line, however, the property is gone. Only reference values can have properties defi ned
dynamically for later use.

Copying Values

Aside from differences in how they are stored, primitive and reference values act differently when
copied from one variable to another. When a primitive value is assigned from one variable to
another, the value stored on the variable object is created and copied into the location for the new
variable. Consider the following example:

var num1 = 5;
var num2 = num1;

Here, num1 contains the value of 5. When num2 is initialized to num1, it also gets the value of 5. This
value is completely separate from the one that is stored in num1, because it’s a copy of that value.

In many languages, strings are represented by objects and are therefore considered
to be reference types. ECMAScript breaks away from this tradition.

c04.indd 86c04.indd 86 12/8/11 9:54:41 AM12/8/11 9:54:41 AM

Each of these variables can now be used separately with no
side effects. This process is diagrammed in Figure 4-1.

When a reference value is assigned from one variable to
another, the value stored on the variable object is also
copied into the location for the new variable. The
difference is that this value is actually a pointer to an
object stored on the heap. Once the operation is complete,
two variables point to exactly the same object, so
changes to one are refl ected on the other, as in the
following example:

var obj1 = new Object();
var obj2 = obj1;
obj1.name = “Nicholas”;
alert(obj2.name); //”Nicholas”

In this example, the variable obj1 is fi lled with a new
instance of an object. This value is then copied into obj2,
meaning that both variables are now pointing to the same
object. When the property name is set on obj1, it can later
be accessed from obj2 because they both point to the same
object. Figure 4-2 shows the relationship between the variables on the variable object and the object
on the heap.

Variable object before copy

num1
5

(Number type)

Variable object after copy

num1
5

(Number type)

num2
5

(Number type)

FIGURE 4-1

Variable object before copy

Heap

obj1

Variable object after copy

obj1 (Object type)

obj2

object

object

object

object

(Object type)

(Object type)

FIGURE 4-2

Primitive and Reference Values ❘ 87

c04.indd 87c04.indd 87 12/8/11 9:54:51 AM12/8/11 9:54:51 AM

88 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

Argument Passing

All function arguments in ECMAScript are passed by value. This means that the value outside of
the function is copied into an argument on the inside of the function the same way a value is copied
from one variable to another. If the value is primitive, then it acts just like a primitive variable
copy, and if the value is a reference, it acts just like a reference variable copy. This is often a point
of confusion for developers, because variables are accessed both by value and by reference, but
arguments are passed only by value.

When an argument is passed by value, the value is copied into a local variable (a named argument
and, in ECMAScript, a slot in the arguments object). When an argument is passed by reference, the
location of the value in memory is stored into a local variable, which means that changes to the local
variable are refl ected outside of the function. (This is not possible in ECMAScript.) Consider the
following example:

function addTen(num) {
 num += 10;
 return num;
}

var count = 20;
var result = addTen(count);
alert(count); //20 - no change
alert(result); //30

FunctionArgumentsExample01.htm

Here, the function addTen() has an argument num, which is essentially a local variable. When called,
the variable count is passed in as an argument. This variable has a value of 20, which is copied
into the argument num for use inside of addTen(). Within the function, the argument num has its
value changed by adding 10, but this doesn’t change the original variable count that exists outside
of the function. The argument num and the variable count do not recognize each other; they only
happen to have the same value. If num had been passed by reference, then the value of count would
have changed to 30 to refl ect the change made inside the function. This fact is obvious when using
primitive values such as numbers, but things aren’t as clear when using objects. Take this for example:

function setName(obj) {
 obj.name = “Nicholas”;
}

var person = new Object();
setName(person);
alert(person.name); //”Nicholas”

FunctionArgumentsExample02.htm

In this code, an object is created and stored in the variable person. This object is then passed into
the setName() method, where it is copied into obj. Inside the function, obj and person both
point to the same object. The result is that obj is accessing an object by reference, even though it

c04.indd 88c04.indd 88 12/8/11 9:54:52 AM12/8/11 9:54:52 AM

was passed into the function by value. When the name property is set on obj inside the function,
this change is refl ected outside the function, because the object that it points to exists globally on
the heap. Many developers incorrectly assume that when a local change to an object is refl ected
globally, that means an argument was passed by reference. To prove that objects are passed by
value, consider the following modifi ed code:

function setName(obj) {
 obj.name = “Nicholas”;
 obj = new Object();
 obj.name = “Greg”;
}

var person = new Object();
setName(person);
alert(person.name); //”Nicholas”

The only change between this example and the previous one are two lines added to setName() that
redefi ne obj as a new object with a different name. When person is passed into setName(), its name
property is set to “Nicholas”. Then the variable obj is set to be a new object and its name property
is set to “Greg”. If person were passed by reference, then person would automatically be changed to
point to the object whose name is “Greg”. However, when person.name is accessed again, its value
is “Nicholas”, indicating that the original reference remained intact even though the argument’s
value changed inside the function. When obj is overwritten inside the function, it becomes a pointer
to a local object. That local object is destroyed as soon as the function fi nishes executing.

Think of function arguments in ECMAScript as nothing more than local variables.

Determining Type

The typeof operator, introduced in the previous chapter, is the best way to determine if a variable is a
primitive type. More specifi cally, it’s the best way to determine if a variable is a string, number, Boolean,
or undefined. If the value is an object or null, then typeof returns “object”, as in this example:

var s = “Nicholas”;
var b = true;
var i = 22;
var u;
var n = null;
var o = new Object();

alert(typeof s); //string
alert(typeof i); //number
alert(typeof b); //boolean
alert(typeof u); //undefined
alert(typeof n); //object
alert(typeof o); //object

DeterminingTypeExample01.htm

Primitive and Reference Values ❘ 89

c04.indd 89c04.indd 89 12/8/11 9:54:52 AM12/8/11 9:54:52 AM

90 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

Although typeof works well for primitive values, it’s of little use for reference values. Typically, you
don’t care that a value is an object — what you really want to know is what type of object it is. To
aid in this identifi cation, ECMAScript provides the instanceof operator, which is used with the
following syntax:

result = variable instanceof constructor

The instanceof operator returns true if the variable is an instance of the given reference type
(identifi ed by its prototype chain, as discussed in Chapter 6). Consider this example:

alert(person instanceof Object); //is the variable person an Object?
alert(colors instanceof Array); //is the variable colors an Array?
alert(pattern instanceof RegExp); //is the variable pattern a RegExp?

All reference values, by defi nition, are instances of Object, so the instanceof operator always
returns true when used with a reference value and the Object constructor. Similarly, if instanceof
is used with a primitive value, it will always return false, because primitives aren’t objects.

The typeof operator also returns “function” when used on a function. When
used on a regular expression in Safari (through version 5) and Chrome (through
version 7), typeof returns “function” because of an implementation detail.
ECMA-262 specifi es that any object implementing the internal [[Call]] method
should return “function” from typeof. Since regular expressions implement this
method in these browsers, typeof returns “function”. In Internet Explorer and
Firefox, typeof returns “object” for regular expressions.

EXECUTION CONTEXT AND SCOPE

The concept of execution context, referred to as context for simplicity, is of the utmost importance
in JavaScript. The execution context of a variable or function defi nes what other data it has access
to, as well as how it should behave. Each execution context has an associated variable object upon
which all of its defi ned variables and functions exist. This object is not accessible by code but is used
behind the scenes to handle data.

The global execution context is the outermost one. Depending on the host environment for an
ECMAScript implementation, the object representing this context may differ. In web browsers, the
global context is said to be that of the window object (discussed in Chapter 8), so all global variables
and functions are created as properties and methods on the window object. When an execution
context has executed all of its code, it is destroyed, taking with it all of the variables and functions
defi ned within it (the global context isn’t destroyed until the application exits, such as when a web
page is closed or a web browser is shut down).

Each function call has its own execution context. Whenever code execution fl ows into a function,
the function’s context is pushed onto a context stack. After the function has fi nished executing,

c04.indd 90c04.indd 90 12/8/11 9:54:58 AM12/8/11 9:54:58 AM

the stack is popped, returning control to the previously executing context. This facility controls
execution fl ow throughout an ECMAScript program.

When code is executed in a context, a scope chain of variable objects is created. The purpose of the
scope chain is to provide ordered access to all variables and functions that an execution context has
access to. The front of the scope chain is always the variable object of the context whose code is
executing. If the context is a function, then the activation object is used as the variable object. An
activation object starts with a single defi ned variable called arguments. (This doesn’t exist for the
global context.) The next variable object in the chain is from the containing context, and the next
after that is from the next containing context. This pattern continues until the global context is
reached; the global context’s variable object is always the last of the scope chain.

Identifi ers are resolved by navigating the scope chain in search of the identifi er name. The search
always begins at the front of the chain and proceeds to the back until the identifi er is found. (If the
identifi er isn’t found, typically an error occurs.)

Consider the following code:

var color = “blue”;

function changeColor(){
 if (color === “blue”){
 color = “red”;
 } else {
 color = “blue”;
 }
}

changeColor();

ExecutionContextExample01.htm

In this simple example, the function changeColor() has a scope chain with two objects in it: its own
variable object (upon which the arguments object is defi ned) and the global context’s variable object.
The variable color is therefore accessible inside the function, because it can be found in the scope chain.

Additionally, locally defi ned variables can be used interchangeably with global variables in a local
context. Here’s an example:

var color = “blue”;

function changeColor(){
 var anotherColor = “red”;

 function swapColors(){
 var tempColor = anotherColor;
 anotherColor = color;
 color = tempColor;

 //color, anotherColor, and tempColor are all accessible here
 }

 //color and anotherColor are accessible here, but not tempColor

Execution Context and Scope ❘ 91

c04.indd 91c04.indd 91 12/8/11 9:55:03 AM12/8/11 9:55:03 AM

92 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

 swapColors();
}

//only color is accessible here
changeColor();

There are three execution contexts in this code: global context,
the local context of changeColor(), and the local context of
swapColors(). The global context has one variable, color,
and one function, changeColor(). The local context of
changeColor() has one variable named anotherColor and one
function named swapColors(), but it can also access the variable
color from the global context. The local context of swapColors()
has one variable, named tempColor, that is accessible only within
that context. Neither the global context nor the local context of
swapColors() has access to tempColor. Within swapColors(),
though, the variables of the other two contexts are fully accessible,
because they are parent execution contexts. Figure 4-3 represents
the scope chain for the previous example.

In this fi gure, the rectangles represent specifi c execution contexts.
An inner context can access everything from all outer contexts through the scope chain, but
the outer contexts cannot access anything within an inner context. The connection between the
contexts is linear and ordered. Each context can search up the scope chain for variables and
functions, but no context can search down the scope chain into another execution context. There
are three objects in the scope chain for the local context of swapColors(): the swapColors()
variable object, the variable object from changeColor(), and the global variable object. The local
context of swapColors() begins its search for variable and function names in its own variable
object before moving along the chain. The scope chain for the changeColor() context has only two
objects: its own variable object and the global variable object. This means that it cannot access the
context of swapColors().

window

color

changeColor()

anotherColor

swapColors()

tempColor

FIGURE 4-3

Function arguments are considered to be variables and follow the same access rules
as any other variable in the execution context.

Scope Chain Augmentation

Even though there are only two primary types of execution contexts, global and function (the
third exists inside of a call to eval()), there are other ways to augment the scope chain. Certain
statements cause a temporary addition to the front of the scope chain that is later removed after
code execution. There are two times when this occurs, specifi cally when execution enters either of
the following:

The catch block in a try-catch statement

A with statement

➤

➤

c04.indd 92c04.indd 92 12/8/11 9:55:04 AM12/8/11 9:55:04 AM

Both of these statements add a variable object to the front of the scope chain. For the with
statement, the specifi ed object is added to the scope chain; for the catch statement, a new variable
object is created and contains a declaration for the thrown error object. Consider the following:

function buildUrl() {
 var qs = “?debug=true”;

 with(location){
 var url = href + qs;
 }

 return url;
}

ExecutionContextExample03.htm

In this example, the with statement is acting on the location object, so location itself is added to
the front of the scope chain. There is one variable, qs, defi ned in the buildUrl() function. When
the variable href is referenced, it’s actually referring to location.href, which is in its own variable
object. When the variable qs is referenced, it’s referring to the variable defi ned in buildUrl(),
which is in the function context’s variable object. Inside the with statement is a variable declaration
for url, which becomes part of the function’s context and can, therefore, be returned as the
function value.

There is a deviation in the Internet Explorer implementation of JavaScript through
Internet Explorer 8, where the error caught in a catch statement is added to the
execution context’s variable object rather than the catch statement’s variable
object, making it accessible even outside the catch block. This was fi xed in Internet
Explorer 9.

No Block-Level Scopes

JavaScript’s lack of block-level scopes is a common source of confusion. In other C-like languages,
code blocks enclosed by brackets have their own scope (more accurately described as their own
execution context in ECMAScript), allowing conditional defi nition of variables. For example, the
following code may not act as expected:

if (true) {
 var color = “blue”;
}

alert(color); //”blue”

Here, the variable color is defi ned inside an if statement. In languages such as C, C++, and
Java, that variable would be destroyed after the if statement is executed. In JavaScript, however,
the variable declaration adds a variable into the current execution context (the global context, in

Execution Context and Scope ❘ 93

c04.indd 93c04.indd 93 12/8/11 9:55:09 AM12/8/11 9:55:09 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

94 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

this case). This is important to keep in mind when dealing with the for statement, which is typically
written like this:

for (var i=0; i < 10; i++){
 doSomething(i);
}

alert(i); //10

In languages with block-level scoping, the initialization part of the for statement defi nes variables
that exist only within the context of the loop. In JavaScript, the i variable is created by the for
statement and continues to exist outside the loop after the statement executes.

Variable Declaration

When a variable is declared using var, it is automatically added to the most immediate context
available. In a function, the most immediate one is the function’s local context; in a with statement,
the most immediate is the function context. If a variable is initialized without fi rst being declared, it
gets added to the global context automatically, as in this example:

function add(num1, num2) {
 var sum = num1 + num2;
 return sum;
}

var result = add(10, 20); //30
alert(sum); //causes an error since sum is not a valid variable

ExecutionContextExample04.htm

Here, the function add() defi nes a local variable named sum that contains the result of an addition
operation. This value is returned as the function value, but the variable sum isn’t accessible outside
the function. If the var keyword is omitted from this example, sum becomes accessible after add()
has been called, as shown here:

function add(num1, num2) {
 sum = num1 + num2;
 return sum;
}

var result = add(10, 20); //30
alert(sum); //30

ExecutionContextExample05.htm

Here, the variable sum is initialized to a value without ever having been declared using var. When
add() is called, sum is created in the global context and continues to exist even after the function
has completed, allowing you to access it later.

c04.indd 94c04.indd 94 12/8/11 9:55:14 AM12/8/11 9:55:14 AM

Identifi er Lookup

When an identifi er is referenced for either reading or writing within a particular context, a search
must take place to determine what identifi er it represents. The search starts at the front of the scope
chain, looking for an identifi er with the given name. If it fi nds that identifi er name in the local context,
then the search stops and the variable is set; if the search doesn’t fi nd the variable name, it continues
along the scope chain (note that objects in the scope chain also have a prototype chain, so searching
may include each object’s prototype chain). This process continues until the search reaches the
global context’s variable object. If the identifi er isn’t found there, it hasn’t been declared.

To better illustrate how identifi er lookup occurs, consider the following example:

var color = “blue”;

function getColor(){
 return color;
}

alert(getColor()); //”blue”

ExecutionContextExample06.htm

When the function getColor() is called in this example, the
variable color is referenced. At that point, a two-step search begins.
First getColor()’s variable object is searched for an identifi er named
color. When it isn’t found, the search goes to the next variable
object (from the global context) and then searches for an identifi er
named color. Because that variable object is where the variable is
defi ned, the search ends. Figure 4-4 illustrates this search process.

Given this search process, referencing local variables automatically
stops the search from going into another variable object. This means
that identifi ers in a parent context cannot be referenced if an identifi er
in the local context has the same name, as in this example:

var color = “blue”;

function getColor(){
 var color = “red”;
 return color;
}

alert(getColor()); //”red”

ExecutionContextExample07.htm

Initializing variables without declaring them is a very common mistake in JavaScript
programming and can lead to errors. It’s advisable to always declare variables
before initializing them to avoid such issues. In strict mode, initializing variables
without declaration causes an error.

window 2

color

getColor 1

return color

FIGURE 4-4

Execution Context and Scope ❘ 95

c04.indd 95c04.indd 95 12/8/11 9:55:15 AM12/8/11 9:55:15 AM

96 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

In this modifi ed code, a local variable named color is declared inside the getColor() function.
When the function is called, the variable is declared. When the second line of the function is
executed, it knows that a variable named color must be used. The search begins in the local
context, where it fi nds a variable named color with a value of “red”. Because the variable was
found, the search stops and the local variable is used, meaning that the function returns “red”. Any
lines of code appearing after the declaration of color as a local variable cannot access the global
color variable without qualifying it as window.color. If one of the operands is an object and the
other is not, the valueOf() method is called on the object to retrieve a primitive value to compare
according to the previous rules.

GARBAGE COLLECTION

JavaScript is a garbage-collected language, meaning that the execution environment is responsible
for managing the memory required during code execution. In languages like C and C++, keeping
track of memory usage is a principle concern and the source of many issues for developers.
JavaScript frees developers from worrying about memory management by automatically allocating
what is needed and reclaiming memory that is no longer being used. The basic idea is simple: fi gure
out which variables aren’t going to be used and free the memory associated with them. This process
is periodic, with the garbage collector running at specifi ed intervals (or at predefi ned collection
moments in code execution).

Consider the normal life cycle of a local variable in a function. The variable comes into existence
during the execution of the function. At that time, memory is allocated on the stack (and possibly
on the heap) to provide storage space for the value. The variable is used inside the function and then
the function ends. At that point this variable is no longer needed, so its memory can be reclaimed
for later use. In this situation, it’s obvious that the variable isn’t needed, but not all situations are
as obvious. The garbage collector must keep track of which variables can and can’t be used so it
can identify likely candidates for memory reclamation. The strategy for identifying the unused
variables may differ on an implementation basis, though two strategies have traditionally been used
in browsers.

Mark-and-Sweep

The most popular form of garbage collection for JavaScript is called mark-and-sweep. When a
variable comes into context, such as when a variable is declared inside a function, it is fl agged as
being in context. Variables that are in context, logically, should never have their memory freed,
because they may be used as long as execution continues in that context. When a variable goes out
of context, it is also fl agged as being out of context.

Variable lookup doesn’t come without a price. It’s faster to access local variables
than global variables because there’s no search up the scope chain. JavaScript
engines are getting better at optimizing identifi er lookup, though, so this difference
may end up negligible in the future.

c04.indd 96c04.indd 96 12/8/11 9:55:20 AM12/8/11 9:55:20 AM

Variables can be fl agged in any number of ways. There may be a specifi c bit that is fl ipped when a
variable is in context, or there may be an “in-context” variable list and an “out-of-context” variable
list between which variables are moved. The implementation of the fl agging is unimportant; it’s
really the theory that is key.

When the garbage collector runs, it marks all variables stored in memory (once again, in any number
of ways). It then clears its mark off of variables that are in context and variables that are referenced
by in-context variables. The variables that are marked after that are considered ready for deletion,
because they can’t be reached by any in-context variables. The garbage collector then does a memory
sweep, destroying each of the marked values and reclaiming the memory associated with them.

As of 2008, Internet Explorer, Firefox, Opera, Chrome, and Safari all use mark-and-sweep garbage
collection (or variations thereof) in their JavaScript implementations, though the timing of
garbage collection differs.

Reference Counting

A second, less-popular type of garbage collection is reference counting. The idea is that every value
keeps track of how many references are made to it. When a variable is declared and a reference value
is assigned, the reference count is one. If another variable is then assigned to the same value, the
reference count is incremented. Likewise, if a variable with a reference to that value is overwritten
with another value, then the reference count is decremented. When the reference count of a value
reaches zero, there is no way to reach that value and it is safe to reclaim the associated memory. The
garbage collector frees the memory for values with a reference count of zero the next time it runs.

Reference counting was initially used by Netscape Navigator 3.0 and was immediately met with a
serious issue: circular references. A circular reference occurs when object A has a pointer to object B
and object B has a reference to object A, such as in the following example:

function problem(){
 var objectA = new Object();
 var objectB = new Object();

 objectA.someOtherObject = objectB;
 objectB.anotherObject = objectA;
}

In this example, objectA and objectB reference each other through their properties, meaning that
each has a reference count of two. In a mark-and-sweep system, this wouldn’t be a problem because
both objects go out of scope after the function has completed. In a reference-counting system,
though, objectA and objectB will continue to exist after the function has exited, because their
reference counts will never reach zero. If this function were called repeatedly, it would lead to a
large amount of memory never being reclaimed. For this reason, Netscape abandoned a reference-
counting garbage-collection routine in favor of a mark-and-sweep implementation in version 4.0.
Unfortunately, that’s not where the reference-counting problem ended.

Not all objects in Internet Explorer 8 and earlier are native JavaScript objects. Objects in the
Browser Object Model (BOM) and Document Object Model (DOM) are implemented as COM
(Component Object Model) objects in C++, and COM objects use reference counting for garbage

Garbage Collection ❘ 97

c04.indd 97c04.indd 97 12/8/11 9:55:26 AM12/8/11 9:55:26 AM

98 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

collection. So even though the Internet Explorer JavaScript engine uses a mark-and-sweep
implementation, any COM objects that are accessed in JavaScript still use reference counting,
meaning circular references are still a problem when COM objects are involved. The following
simple example demonstrates a circular reference with a COM object:

var element = document.getElementById(“some_element”);
var myObject = new Object();
myObject.element = element;
element.someObject = myObject;

This example sets up a circular reference between a DOM element (element) and a native JavaScript
object (myObject). The myObject variable has a property called element that points to element,
and the element variable has a property called someObject that points back to myObject. Because
of this circular reference, the memory for the DOM element will never be reclaimed even if it is
removed from the page.

To avoid circular reference problems such as this, you should break the connection between native
JavaScript objects and DOM elements when you’re fi nished using them. For example, the following
code cleans up the circular references in the previous example:

myObject.element = null;
element.someObject = null;

Setting a variable to null effectively severs the connection between the variable and the value it
previously referenced. The next time the garbage collector runs, these values will be deleted and the
memory will be reclaimed.

Internet Explorer 9 remedied some of these problems by making BOM and DOM objects into true
JavaScript objects, thus avoiding the problem of having two different garbage-collection algorithms
and eliminating common memory leak issues.

There are several other patterns that may cause circular references, which will be
covered throughout this book.

Performance

The garbage collector runs periodically and can potentially be an expensive process if there are a
large number of variable allocations in memory, so the timing of the garbage-collection process
is important. Internet Explorer was infamous for its performance issues related to how often
the garbage collector ran — it ran based on the number of allocations, specifi cally 256 variable
allocations, 4,096 object/array literals and array slots, or 64kb of strings. If any of these thresholds
were reached, the garbage collector would run. The problem with this implementation is that
a script with so many variables will probably continue to have that many variables throughout
its lifetime, meaning the garbage collector will run quite frequently. This issue caused serious
performance problems that led to changes in the garbage-collection routine in Internet Explorer 7.

c04.indd 98c04.indd 98 12/8/11 9:55:26 AM12/8/11 9:55:26 AM

With the release of Internet Explorer 7, the JavaScript engine’s garbage-collection routine was
tuned to dynamically change the allocation threshold of variables, literals, and/or array slots that
triggered garbage collection. The Internet Explorer 7 thresholds start out equal to those in Internet
Explorer 6. If the garbage-collection routine reclaims less than 15 percent of the allocations, the
threshold for variables, literals, and/or array slots doubles. If the routine ever reclaims 85 percent of
the allocations, then the threshold is reset to the default. This simple change greatly improved the
performance of the browser on JavaScript-heavy web pages.

It’s possible, though not recommended, to trigger the garbage-collection process
in some browsers. In Internet Explorer, the window.CollectGarbage() method
causes garbage collection to occur immediately. In Opera 7 and higher, calling
window.opera.collect() initiates the garbage-collection process.

Managing Memory

In a garbage-collected programming environment, developers typically don’t have to worry about
memory management. However, JavaScript runs in an environment where memory management and
garbage collection operate uniquely. The amount of memory available for use in web browsers is
typically much less than is available for desktop applications. This is more of a security feature than
anything else, ensuring that a web page running JavaScript can’t crash the operating system by using
up all the system memory. The memory limits affect not only variable allocation but also the call
stack and the number of statements that can be executed in a single thread.

Keeping the amount of used memory to a minimum leads to better page performance. The best way
to optimize memory usage is to ensure that you’re keeping around only data that is necessary for the
execution of your code. When data is no longer necessary, it’s best to set the value to null, freeing
up the reference — this is called dereferencing the value. This advice applies mostly to global values
and properties of global objects. Local variables are dereferenced automatically when they go out of
context, as in this example:

function createPerson(name){
 var localPerson = new Object();
 localPerson.name = name;
 return localPerson;
}

var globalPerson = createPerson(“Nicholas”);

//do something with globalPerson

globalPerson = null;

In this code, the variable globalPerson is fi lled with a value returned from the createPerson()
function. Inside createPerson(), localPerson creates an object and adds a name property to it.
The variable localPerson is returned as the function value and assigned to globalPerson. Because
localPerson goes out of context after createPerson() has fi nished executing, it doesn’t need to be

Garbage Collection ❘ 99

c04.indd 99c04.indd 99 12/8/11 9:55:31 AM12/8/11 9:55:31 AM

100 ❘ CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

dereferenced explicitly. Because globalPerson is a global variable, it should be dereferenced when
it’s no longer needed, which is what happens in the last line.

Keep in mind that dereferencing a value doesn’t automatically reclaim the memory associated with
it. The point of dereferencing is to make sure the value is out of context and will be reclaimed the
next time garbage collection occurs.

SUMMARY

Two types of values can be stored in JavaScript variables: primitive values and reference values.
Primitive values have one of the fi ve primitive data types: Undefi ned, Null, Boolean, Number, and
String. Primitive and reference values have the following characteristics:

Primitive values are of a fi xed size and so are stored in memory on the stack.

Copying primitive values from one variable to another creates a second copy of the value.

Reference values are objects and are stored in memory on the heap.

A variable containing a reference value actually contains just a pointer to the object, not the
object itself.

Copying a reference value to another variable copies just the pointer, so both variables end
up referencing the same object.

The typeof operator determines a value’s primitive type, whereas the instanceof operator
is used to determine the reference type of a value.

All variables, primitive and reference, exist within an execution context (also called a scope) that
determines the lifetime of the variable and which parts of the code can access it. Execution context
can be summarized as follows:

Execution contexts exist globally (called the global context) and within functions.

Each time a new execution context is entered, it creates a scope chain to search for variables
and functions.

Contexts that are local to a function have access not only to variables in that scope but also
to variables in any containing contexts and the global context.

The global context has access only to variables and functions in the global context and
cannot directly access any data inside local contexts.

The execution context of variables helps to determine when memory will be freed.

JavaScript is a garbage-collected programming environment where the developer need not be
concerned with memory allocation or reclamation. JavaScript’s garbage-collection routine can be
summarized as follows:

Values that go out of scope will automatically be marked for reclamation and will be deleted
during the garbage-collection process.

The predominant garbage-collection algorithm is called mark-and-sweep, which marks
values that aren’t currently being used and then goes back to reclaim that memory.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c04.indd 100c04.indd 100 12/8/11 9:55:36 AM12/8/11 9:55:36 AM

Another algorithm is reference counting, which keeps track of how many references there
are to a particular value. JavaScript engines no longer use this algorithm, but it still affects
Internet Explorer because of nonnative JavaScript objects (such as DOM elements) being
accessed in JavaScript.

Reference counting causes problems when circular references exist in code.

Dereferencing variables helps not only with circular references but also with garbage collec-
tion in general. To aid in memory reclamation, global objects, properties on global objects,
and circular references should all be dereferenced when no longer needed.

➤

➤

➤

Summary ❘ 101

c04.indd 101c04.indd 101 12/8/11 9:55:37 AM12/8/11 9:55:37 AM

c04.indd 102c04.indd 102 12/8/11 9:55:37 AM12/8/11 9:55:37 AM

Reference Types

WHAT’S IN THIS CHAPTER?

Working with objects

Creating and manipulating arrays

Understanding basic JavaScript data types

Working with primitives and primitive wrappers

A reference value (object) is an instance of a specifi c reference type. In ECMAScript, reference
types are structures used to group data and functionality together and are often incorrectly
called classes. Although technically an object-oriented language, ECMAScript lacks some
basic constructs that have traditionally been associated with object-oriented programming,
including classes and interfaces. Reference types are also sometimes called object defi nitions,
because they describe the properties and methods that objects should have.

➤

➤

➤

➤

5

Even though reference types are similar to classes, the two concepts are not
equivalent. To avoid any confusion, the term class is not used in the rest of this book.

Again, objects are considered to be instances of a particular reference type. New objects
are created by using the new operator followed by a constructor. A constructor is simply a
function whose purpose is to create a new object. Consider the following line of code:

var person = new Object();

This code creates a new instance of the Object reference type and stores it in the variable
person. The constructor being used is Object(), which creates a simple object with only the

c05.indd 103c05.indd 103 12/8/11 9:49:11 AM12/8/11 9:49:11 AM

104 ❘ CHAPTER 5 REFERENCE TYPES

default properties and methods. ECMAScript provides a number of native reference types, such as
Object, to help developers with common computing tasks.

THE OBJECT TYPE

Up to this point, most of the reference-value examples have used the Object type, which is one
of the most often-used types in ECMAScript. Although instances of Object don’t have much
functionality, they are ideally suited to storing and transmitting data around an application.

There are two ways to explicitly create an instance of Object. The fi rst is to use the new operator
with the Object constructor like this:

var person = new Object();
person.name = “Nicholas”;
person.age = 29;

ObjectTypeExample01.htm

The other way is to use object literal notation. Object literal notation is a shorthand form of object
defi nition designed to simplify creating an object with numerous properties. For example, the
following defi nes the same person object from the previous example using object literal notation:

var person = {
 name : “Nicholas”,
 age : 29
};

ObjectTypeExample02.htm

In this example, the left curly brace ({) signifi es the beginning of an object literal, because it occurs
in an expression context. An expression context in ECMAScript is a context in which a value
(expression) is expected. Assignment operators indicate that a value is expected next, so the left curly
brace indicates the beginning of an expression. The same curly brace, when appearing in a statement
context, such as follows an if statement condition, indicates the beginning of a block statement.

Next, the name property is specifi ed, followed by a colon, followed by the property’s value. A
comma is used to separate properties in an object literal, so there’s a comma after the string
“Nicholas” but not after the value 29, because age is the last property in the object. Including a
comma after the last property causes an error in Internet Explorer 7 and earlier and Opera.

Property names can also be specifi ed as strings or numbers when using object literal notation, such
as in this example:

var person = {
 “name” : “Nicholas”,
 “age” : 29,
 5: true
};

c05.indd 104c05.indd 104 12/8/11 9:49:23 AM12/8/11 9:49:23 AM

The Object Type ❘ 105

This example produces an object with a name property, an age property, and a property “5”. Note
that numeric property names are automatically converted to strings.

It’s also possible to create an object with only the default properties and methods using object literal
notation by leaving the space between the curly braces empty, such as this:

var person = {}; //same as new Object()
person.name = “Nicholas”;
person.age = 29;

This example is equivalent to the fi rst one in this section, though it looks a little strange. It’s
recommended to use object literal notation only when you’re going to specify properties for
readability.

When defi ning an object via object literal notation, the Object constructor is
never actually called (Firefox 2 and earlier did call the Object constructor; this
was changed in Firefox 3).

Though it’s acceptable to use either method of creating Object instances, developers tend to favor
object literal notation, because it requires less code and visually encapsulates all related data. In
fact, object literals have become a preferred way of passing a large number of optional arguments to
a function, such as in this example:

function displayInfo(args) {
 var output = “”;

 if (typeof args.name == “string”){
 output += “Name: “ + args.name + “\n”;
 }

 if (typeof args.age == “number”) {
 output += “Age: “ + args.age + “\n”;
 }

 alert(output);
}

displayInfo({
 name: “Nicholas”,
 age: 29
});

displayInfo({
 name: “Greg”
});

ObjectTypeExample04.htm

c05.indd 105c05.indd 105 12/8/11 9:49:24 AM12/8/11 9:49:24 AM

106 ❘ CHAPTER 5 REFERENCE TYPES

Here, the function displayInfo() accepts a single argument named args. The argument may come
in with a property called name or age or both or neither of those. The function is set up to test for
the existence of each property using the typeof operator and then to construct a message to display
based on availability. This function is then called twice, each time with different data specifi ed in an
object literal. The function works correctly in both cases.

This pattern for argument passing is best used when there is a large number of
optional arguments that can be passed into the function. Generally speaking,
named arguments are easier to work with but can get unwieldy when there are
numerous optional arguments. The best approach is to use named arguments for
those that are required and an object literal to encompass multiple optional
arguments.

Although object properties are typically accessed using dot notation, which is common to many
object-oriented languages, it’s also possible to access properties via bracket notation. When you use
bracket notation, a string containing the property name is placed between the brackets, as in this
example:

alert(person[“name”]); //”Nicholas”
alert(person.name); //”Nicholas”

Functionally, there is no difference between the two approaches. The main advantage of bracket
notation is that it allows you to use variables for property access, such as in this example:

var propertyName = “name”;
alert(person[propertyName]); //”Nicholas”

You can also use bracket notation when the property name contains characters that would be either
a syntax error or a keyword/reserved word. For example:

person[“first name”] = “Nicholas”;

Since the name “first name” contains a space, you can’t use dot notation to access it. However,
property names can contain nonalphanumeric characters, you just need to use bracket notation to
access them.

Generally speaking, dot notation is preferred unless variables are necessary to access properties
by name.

THE ARRAY TYPE

After the Object type, the Array type is probably the most used in ECMAScript. An ECMAScript
array is very different from arrays in most other programming languages. As in other languages,
ECMAScript arrays are ordered lists of data, but unlike in other languages, they can hold any type

c05.indd 106c05.indd 106 12/8/11 9:49:29 AM12/8/11 9:49:29 AM

The Array Type ❘ 107

of data in each slot. This means that it’s possible to create an array that has a string in the fi rst
position, a number in the second, an object in the third, and so on. ECMAScript arrays are also
dynamically sized, automatically growing to accommodate any data that is added to them.

Arrays can be created in two basic ways. The fi rst is to use the Array constructor, as in this line:

var colors = new Array();

If you know the number of items that will be in the array, you can pass the count into the
constructor, and the length property will automatically be created with that value. For example,
the following creates an array with an initial length value of 20:

var colors = new Array(20);

The Array constructor can also be passed items that should be included in the array. The following
creates an array with three string values:

var colors = new Array(“red”, “blue”, “green”);

An array can be created with a single value by passing it into the constructor. This gets a little bit
tricky, because providing a single argument that is a number always creates an array with the given
number of items, whereas an argument of any other type creates a one-item array that contains the
specifi ed value. Here’s an example:

var colors = new Array(3); //create an array with three items
var names = new Array(“Greg”); //create an array with one item, the string “Greg”

ArrayTypeExample01.htm

It’s possible to omit the new operator when using the Array constructor. It has the same result, as
you can see here:

var colors = Array(3); //create an array with three items
var names = Array(“Greg”); //create an array with one item, the string “Greg”

The second way to create an array is by using array literal notation. An array literal is specifi ed by
using square brackets and placing a comma-separated list of items between them, as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
var names = []; //creates an empty array
var values = [1,2,]; //AVOID! Creates an array with 2 or 3 items
var options = [,,,,,]; //AVOID! creates an array with 5 or 6 items

ArrayTypeExample02.htm

In this code, the fi rst line creates an array with three string values. The second line creates an empty
array by using empty square brackets. The third line shows the effects of leaving a comma after
the last value in an array literal: in Internet Explorer 8 and earlier, values becomes a three-item

c05.indd 107c05.indd 107 12/8/11 9:49:34 AM12/8/11 9:49:34 AM

108 ❘ CHAPTER 5 REFERENCE TYPES

array containing the values 1, 2, and undefined; in all other browsers, values is a two-item array
containing the values 1 and 2. This is due to a bug regarding array literals in the Internet Explorer
implementation of ECMAScript through version 8 of the browser. Another instance of this bug is
shown in the last line, which creates an array with either fi ve (in Internet Explorer 9+, Firefox, Opera,
Safari, and Chrome) or six (in Internet Explorer 8 and earlier) items. By omitting values between
the commas, each item gets a value of undefined, which is logically the same as calling the Array
constructor and passing in the number of items. However, because of the inconsistent implementation
of early versions of Internet Explorer, using this syntax is strongly discouraged.

As with objects, the Array constructor isn’t called when an array is created using
array literal notation (except in Firefox prior to version 3).

To get and set array values, you use square brackets and provide the zero-based numeric index of
the value, as shown here:

var colors = [“red”, “blue”, “green”]; //define an array of strings
alert(colors[0]); //display the first item
colors[2] = “black”; //change the third item
colors[3] = “brown”; //add a fourth item

The index provided within the square brackets indicates the value being accessed. If the index is less
than the number of items in the array, then it will return the value stored in the corresponding item,
as colors[0] displays “red” in this example. Setting a value works in the same way, replacing the
value in the designated position. If a value is set to an index that is past the end of the array, as with
colors[3] in this example, the array length is automatically expanded to be that index plus 1 (so
the length becomes 4 in this example because the index being used is 3).

The number of items in an array is stored in the length property, which always returns 0 or more,
as shown in the following example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
var names = []; //creates an empty array

alert(colors.length); //3
alert(names.length); //0

A unique characteristic of length is that it’s not read-only. By setting the length property, you can
easily remove items from or add items to the end of the array. Consider this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
colors.length = 2;
alert(colors[2]); //undefi ned

ArrayFilterExample03.htm

c05.indd 108c05.indd 108 12/8/11 9:49:34 AM12/8/11 9:49:34 AM

The Array Type ❘ 109

Here, the array colors starts out with three values. Setting the length to 2 removes the last item
(in position 2), making it no longer accessible using colors[2]. If the length were set to a number
greater than the number of items in the array, the new items would each get fi lled with the value of
undefined, such as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
colors.length = 4;
alert(colors[3]); //undefi ned

ArrayFilterExample04.htm

This code sets the length of the colors array to 4 even though it contains only three items. Position 3
does not exist in the array, so trying to access its value results in the special value undefined being
returned.

The length property can also be helpful in adding items to the end of an array, as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
colors[colors.length] = “black”; //add a color (position 3)
colors[colors.length] = “brown”; //add another color (position 4)

ArrayFilterExample05.htm

The last item in an array is always at position length – 1, so the next available open slot is at
position length. Each time an item is added after the last one in the array, the length property is
automatically updated to refl ect the change. That means colors[colors.length] assigns a value
to position 3 in the second line of this example and to position 4 in the last line. The new length is
automatically calculated when an item is placed into a position that’s outside of the current array
size, which is done by adding 1 to the position, as in this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
colors[99] = “black”; //add a color (position 99)
alert(colors.length); //100

ArrayFilterExample06.htm

In this code, the colors array has a value inserted into position 99, resulting in a new length of
100 (99 + 1). Each of the other items, positions 3 through 98, doesn’t actually exist and so returns
undefined when accessed.

Arrays can contain a maximum of 4,294,967,295 items, which should be plenty
for almost all programming needs. If you try to add more than that number, an
exception occurs. Trying to create an array with an initial size approaching this
maximum may cause a long-running script error.

c05.indd 109c05.indd 109 12/8/11 9:49:39 AM12/8/11 9:49:39 AM

110 ❘ CHAPTER 5 REFERENCE TYPES

Detecting Arrays

Ever since ECMAScript 3 was defi ned, one of the classic problems has been truly determining
whether a given object is an array. When dealing with a single web page, and therefore a single
global scope, the instanceof operator works well:

if (value instanceof Array){
 //do something on the array
}

The one problem with instanceof is that it assumes a single global execution context. If you are
dealing with multiple frames in a web page, you’re really dealing with two distinct global execution
contexts and therefore two versions of the Array constructor. If you were to pass an array from one
frame into a second frame, that array has a different constructor function than an array created
natively in the second frame.

To work around this problem, ECMAScript 5 introduced the Array.isArray() method. The
purpose of this method is to defi nitively determine if a given value is an array regardless of the
global execution context in which it was created. Example usage:

if (Array.isArray(value)){
 //do something on the array
}

Internet Explorer 9+, Firefox 4+, Safari 5+, Opera 10.5+, and Chrome have all implemented Array
.isArray(). For defi nitive array detection in browsers that haven’t yet implemented this method,
see the section titled “Safe Type Detection” in Chapter 22.

Conversion Methods

As mentioned previously, all objects have toLocaleString(), toString(), and valueOf()
methods. The toString() and valueOf() methods return the same value when called on an array.
The result is a comma-separated string that contains the string equivalents of each value in the
array, which is to say that each item has its toString() method called to create the fi nal string.
Take a look at this example:

var colors = [“red”, “blue”, “green”]; //creates an array with three strings
alert(colors.toString()); //red,blue,green
alert(colors.valueOf()); //red,blue,green
alert(colors); //red,blue,green

ArrayFilterExample07.htm

In this code, the toString() and valueOf() methods are fi rst called explicitly to return the string
representation of the array, which combines the strings, separating them by commas. The last
line passes the array directly into alert(). Because alert() expects a string, it calls toString()
behind the scenes to get the same result as when toString() is called directly.

c05.indd 110c05.indd 110 12/8/11 9:49:44 AM12/8/11 9:49:44 AM

The Array Type ❘ 111

The toLocaleString() method may end up returning the same value as toString() and
valueOf(), but not always. When toLocaleString() is called on an array, it creates a comma-
delimited string of the array values. The only difference between this and the two other methods is
that toLocaleString() calls each item’s toLocaleString() instead of toString() to get its string
value. Consider the following example:

var person1 = {
 toLocaleString : function () {
 return “Nikolaos”;
 },

 toString : function() {
 return “Nicholas”;
 }
};

var person2 = {
 toLocaleString : function () {
 return “Grigorios”;
 },

 toString : function() {
 return “Greg”;
 }
};

var people = [person1, person2];
alert(people); //Nicholas,Greg
alert(people.toString()); //Nicholas,Greg
alert(people.toLocaleString()); //Nikolaos,Grigorios

ArrayTypeExample08.htm

Here, two objects are defi ned, person1 and person2. Each object defi nes both a toString()
method and a toLocaleString() method that return different values. An array, people, is created
to contain both objects. When passed into alert(), the output is “Nicholas,Greg”, because
the toString() method is called on each item in the array (the same as when toString() is
called explicitly on the next line). When toLocaleString() is called on the array, the result is
“Nikolaos,Grigorios”, because this calls toLocaleString() on each array item.

The inherited methods toLocaleString(), toString(), and valueOf() each return the array
items as a comma-separated string. It’s possible to construct a string with a different separator using
the join() method. The join() method accepts one argument, which is the string separator to use,
and returns a string containing all items. Consider this example:

var colors = [“red”, “green”, “blue”];
alert(colors.join(“,”)); //red,green,blue
alert(colors.join(“||”)); //red||green||blue

ArrayTypeJoinExample01.htm

c05.indd 111c05.indd 111 12/8/11 9:49:45 AM12/8/11 9:49:45 AM

112 ❘ CHAPTER 5 REFERENCE TYPES

Here, the join() method is used on the colors array to duplicate the output of toString(). By
passing in a comma, the result is a comma-separated list of values. On the last line, double pipes are
passed in, resulting in the string “red||green||blue”. If no value or undefined is passed into the
join() method, then a comma is used as the separator. Internet Explorer 7 and earlier incorrectly
use the string “undefined” as the separator.

If an item in the array is null or undefined, it is represented by an empty string
in the result of join(), toLocaleString(), toString(), and valueOf().

Stack Methods

One of the interesting things about ECMAScript arrays is that they provide a method to make an
array behave like other data structures. An array object can act just like a stack, which is one of a
group of data structures that restrict the insertion and removal of items. A stack is referred to
as a last-in-fi rst-out (LIFO) structure, meaning that the most recently added item is the fi rst one
removed. The insertion (called a push) and removal (called a pop) of items in a stack occur at only
one point: the top of the stack. ECMAScript arrays provide push() and pop() specifi cally to allow
stack-like behavior.

The push() method accepts any number of arguments and adds them to the end of the array,
returning the array’s new length. The pop() method, on the other hand, removes the last item in the
array, decrements the array’s length, and returns that item. Consider this example:

var colors = new Array(); //create an array
var count = colors.push(“red”, “green”); //push two items
alert(count); //2

count = colors.push(“black”); //push another item on
alert(count); //3

var item = colors.pop(); //get the last item
alert(item); //”black”
alert(colors.length); //2

ArrayTypeExample09.htm

In this code, an array is created for use as a stack (note that there’s no special code required to make
this work; push() and pop() are default methods on arrays). First, two strings are pushed onto the
end of the array using push(), and the result is stored in the variable count (which gets the value of
2). Then, another value is pushed on, and the result is once again stored in count. Because there are
now three items in the array, push() returns 3. When pop() is called, it returns the last item in the
array, which is the string “black”. The array then has only two items left.

The stack methods may be used in combination with all of the other array methods as well, as in
this example:

c05.indd 112c05.indd 112 12/8/11 9:49:45 AM12/8/11 9:49:45 AM

The Array Type ❘ 113

var colors = [“red”, “blue”];
colors.push(“brown”); //add another item
colors[3] = “black”; //add an item
alert(colors.length); //4

var item = colors.pop(); //get the last item
alert(item); //”black”

ArrayTypeExample10.htm

Here, an array is initialized with two values. A third value is added via push(), and a fourth is
added by direct assignment into position 3. When pop() is called, it returns the string “black”,
which was the last value added to the array.

Queue Methods

Just as stacks restrict access in a LIFO data structure, queues restrict access in a fi rst-in-fi rst-out
(FIFO) data structure. A queue adds items to the end of a list and retrieves items from the front of
the list. Because the push() method adds items to the end of an array, all that is needed to emulate a
queue is a method to retrieve the fi rst item in the array. The array method for this is called shift(),
which removes the fi rst item in the array and returns it, decrementing the length of the array by one.
Using shift() in combination with push() allows arrays to be used as queues:

var colors = new Array(); //create an array
var count = colors.push(“red”, “green”); //push two items
alert(count); //2

count = colors.push(“black”); //push another item on
alert(count); //3

var item = colors.shift(); //get the fi rst item
alert(item); //”red”
alert(colors.length); //2

ArrayTypeExample11.htm

This example creates an array of three colors using the push() method. The highlighted line shows
the shift() method being used to retrieve the fi rst item in the array, which is “red”. With that item
removed, “green” is moved into the fi rst position and “black” is moved into the second, leaving the
array with two items.

ECMAScript also provides an unshift() method for arrays. As the name indicates, unshift()
does the opposite of shift(): it adds any number of items to the front of an array and returns
the new array length. By using unshift() in combination with pop(), it’s possible to emulate a
queue in the opposite direction, where new values are added to the front of the array and values are
retrieved off the back, as in this example:

var colors = new Array(); //create an array
var count = colors.unshift(“red”, “green”); //push two items
alert(count); //2

count = colors.unshift(“black”); //push another item on

c05.indd 113c05.indd 113 12/8/11 9:49:51 AM12/8/11 9:49:51 AM

114 ❘ CHAPTER 5 REFERENCE TYPES

alert(count); //3

var item = colors.pop(); //get the fi rst item
alert(item); //”green”
alert(colors.length); //2

ArrayTypeExample12.htm

In this code, an array is created and then populated by using unshift(). First “red” and “green”
are added to the array, and then “black” is added, resulting in an order of “black”, “red”,
“green”. When pop() is called, it removes the last item, “green”, and returns it.

Internet Explorer 7 and earlier always return undefined, instead of the new
length of the array, for unshift(). Internet Explorer 8 returns the length
correctly when not in compatibility mode.

Reordering Methods

Two methods deal directly with the reordering of items already in the array: reverse() and
sort(). As one might expect, the reverse() method simply reverses the order of items in an array.
Take this code for example:

var values = [1, 2, 3, 4, 5];
values.reverse();
alert(values); //5,4,3,2,1

ArrayTypeExample13.htm

Here, the array’s values are initially set to 1, 2, 3, 4, and 5, in that order. Calling reverse() on the
array reverses the order to 5, 4, 3, 2, 1. This method is fairly straightforward but doesn’t provide
much fl exibility, which is where the sort() method comes in.

By default, the sort() method puts the items in ascending order — with the smallest value fi rst and
the largest value last. To do this, the sort() method calls the String() casting function on every
item and then compares the strings to determine the correct order. This occurs even if all items in an
array are numbers, as in this example:

var values = [0, 1, 5, 10, 15];
values.sort();
alert(values); //0,1,10,15,5

ArrayTypeExample14.htm

Even though the values in this example begin in correct numeric order, the sort() method changes
that order based on their string equivalents. So even though 5 is less than 10, the string “10” comes

c05.indd 114c05.indd 114 12/8/11 9:49:51 AM12/8/11 9:49:51 AM

The Array Type ❘ 115

before “5” when doing a string comparison, so the array is updated accordingly. Clearly, this is
not an optimal solution in many cases, so the sort() method allows you to pass in a comparison
function that indicates which value should come before which.

A comparison function accepts two arguments and returns a negative number if the fi rst argument
should come before the second, a zero if the arguments are equal, or a positive number if the fi rst
argument should come after the second. Here’s an example of a simple comparison function:

function compare(value1, value2) {
 if (value1 < value2) {
 return -1;
 } else if (value1 > value2) {
 return 1;
 } else {
 return 0;
 }
}

ArrayTypeExample15.htm

This comparison function works for most data types and can be used by passing it as an argument
to the sort() method, as in the following example:

var values = [0, 1, 5, 10, 15];
values.sort(compare);
alert(values); //0,1,5,10,15

When the comparison function is passed to the sort() method, the numbers remain in the correct
order. Of course, the comparison function could produce results in descending order if you simply
switch the return values like this:

function compare(value1, value2) {
 if (value1 < value2) {
 return 1;
 } else if (value1 > value2) {
 return -1;
 } else {
 return 0;
 }
}

var values = [0, 1, 5, 10, 15];
values.sort(compare);
alert(values); //15,10,5,1,0

ArrayTypeExample16.htm

In this modifi ed example, the comparison function returns 1 if the fi rst value should come after the
second and –1 if the fi rst value should come before the second. Swapping these means the larger
value will come fi rst and the array will be sorted in descending order. Of course, if you just want to
reverse the order of the items in the array, reverse() is a much faster alternative than sorting.

c05.indd 115c05.indd 115 12/8/11 9:49:56 AM12/8/11 9:49:56 AM

116 ❘ CHAPTER 5 REFERENCE TYPES

A much simpler version of the comparison function can be used with numeric types, and objects
whose valueOf() method returns numeric values (such as the Date object). In either case, you can
simply subtract the second value from the fi rst as shown here:

function compare(value1, value2){
 return value2 - value1;
}

Because comparison functions work by returning a number less than zero, zero, or a number greater
than zero, the subtraction operation handles all of the cases appropriately.

Manipulation Methods

There are various ways to work with the items already contained in an array. The concat()
method, for instance, allows you to create a new array based on all of the items in the current array.
This method begins by creating a copy of the array and then appending the method arguments to
the end and returning the newly constructed array. When no arguments are passed in, concat()
simply clones the array and returns it. If one or more arrays are passed in, concat() appends each
item in these arrays to the end of the result. If the values are not arrays, they are simply appended to
the end of the resulting array. Consider this example:

var colors = [“red”, “green”, “blue”];
var colors2 = colors.concat(“yellow”, [“black”, “brown”]);

alert(colors); //red,green,blue
alert(colors2); //red,green,blue,yellow,black,brown

ArrayTypeConcatExample01.htm

This code begins with the colors array containing three values. The concat() method is called on
colors, passing in the string “yellow” and an array containing “black” and “brown”. The result,
stored in colors2, contains “red”, “green”, “blue”, “yellow”, “black”, and “brown”.
The original array, colors, remains unchanged.

The next method, slice(), creates an array that contains one or more items already
contained in an array. The slice() method may accept one or two arguments: the starting and
stopping positions of the items to return. If only one argument is present, the method returns
all items between that position and the end of the array. If there are two arguments, the method
returns all items between the start position and the end position, not including the item in the end
position. Keep in mind that this operation does not affect the original array in any way. Consider
the following:

Both reverse() and sort() return a reference to the array on which they
were applied.

c05.indd 116c05.indd 116 12/8/11 9:49:57 AM12/8/11 9:49:57 AM

The Array Type ❘ 117

var colors = [“red”, “green”, “blue”, “yellow”, “purple”];
var colors2 = colors.slice(1);
var colors3 = colors.slice(1,4);

alert(colors2); //green,blue,yellow,purple
alert(colors3); //green,blue,yellow

ArrayTypeSliceExample01.htm

In this example, the colors array starts out with fi ve items. Calling slice() and passing in 1 yields
an array with four items, omitting “red” because the operation began copying from position 1,
which contains “green”. The resulting colors2 array contains “green”, “blue”, “yellow”, and
“purple”. The colors3 array is constructed by calling slice() and passing in 1 and 4, meaning
that the method will begin copying from the item in position 1 and stop copying at the item in
position 3. As a result, colors3 contains “green”, “blue”, and “yellow”.

If either the start or end position of slice() is a negative number, then the
number is subtracted from the length of the array to determine the appropriate
locations. For example, calling slice(-2, -1) on an array with fi ve items is the
same as calling slice(3, 4). If the end position is smaller than the start, then
an empty array is returned.

Perhaps the most powerful array method is splice(), which can be used in a variety of ways. The
main purpose of splice() is to insert items into the middle of an array, but there are three distinct
ways of using this method. They are as follows:

Deletion — Any number of items can be deleted from the array by specifying just two
arguments: the position of the fi rst item to delete and the number of items to delete. For
example, splice(0, 2) deletes the fi rst two items.

Insertion — Items can be inserted into a specifi c position by providing three or more
arguments: the starting position, 0 (the number of items to delete), and the item to insert.
Optionally, you can specify a fourth parameter, fi fth parameter, or any number of other
parameters to insert. For example, splice(2, 0, “red”, “green”) inserts the strings
“red” and “green” into the array at position 2.

Replacement — Items can be inserted into a specifi c position while simultaneously
deleting items, if you specify three arguments: the starting position, the number of items
to delete, and any number of items to insert. The number of items to insert doesn’t have to
match the number of items to delete. For example, splice(2, 1, “red”, “green”)
deletes one item at position 2 and then inserts the strings “red” and “green” into the array
at position 2.

➤

➤

➤

c05.indd 117c05.indd 117 12/8/11 9:50:02 AM12/8/11 9:50:02 AM

118 ❘ CHAPTER 5 REFERENCE TYPES

The splice() method always returns an array that contains any items that were removed from
the array (or an empty array if no items were removed). These three uses are illustrated in the
following code:

var colors = [“red”, “green”, “blue”];
var removed = colors.splice(0,1); //remove the first item
alert(colors); //green,blue
alert(removed); //red - one item array

removed = colors.splice(1, 0, “yellow”, “orange”); //insert two items at position 1
alert(colors); //green,yellow,orange,blue
alert(removed); //empty array

removed = colors.splice(1, 1, “red”, “purple”); //insert two values, remove one
alert(colors); //green,red,purple,orange,blue
alert(removed); //yellow - one item array

ArrayTypeSpliceExample01.htm

This example begins with the colors array containing three items. When splice is called the fi rst
time, it simply removes the fi rst item, leaving colors with the items “green” and “blue”. The
second time splice() is called, it inserts two items at position 1, resulting in colors containing
“green”, “yellow”, “orange”, and “blue”. No items are removed at this point, so an empty array
is returned. The last time splice() is called, it removes one item, beginning in position 1, and
inserts “red” and “purple”. After all of this code has been executed, the colors array contains
“green”, “red”, “purple”, “orange”, and “blue”.

Location Methods

ECMAScript 5 adds two item location methods to array instances: indexOf() and lastIndexOf().
Each of these methods accepts two arguments: the item to look for and an optional index from which
to start looking. The indexOf() method starts searching from the front of the array (item 0) and
continues to the back, whereas lastIndexOf() starts from the last item in the array and continues to
the front.

The methods each return the position of the item in the array or –1 if the item isn’t in the array. An
identity comparison is used when comparing the fi rst argument to each item in the array, meaning
that the items must be strictly equal as if compared using ===. Here are some examples of this usage:

var numbers = [1,2,3,4,5,4,3,2,1];

alert(numbers.indexOf(4)); //3
alert(numbers.lastIndexOf(4)); //5

alert(numbers.indexOf(4, 4)); //5
alert(numbers.lastIndexOf(4, 4)); //3

var person = { name: “Nicholas” };
var people = [{ name: “Nicholas” }];

c05.indd 118c05.indd 118 12/8/11 9:50:07 AM12/8/11 9:50:07 AM

The Array Type ❘ 119

var morePeople = [person];

alert(people.indexOf(person)); //-1
alert(morePeople.indexOf(person)); //0

ArrayIndexOfExample01.htm

The indexOf() and lastIndexOf() methods make it trivial to locate specifi c items inside of an
array and are supported in Internet Explorer 9+, Firefox 2+, Safari 3+, Opera 9.5+, and Chrome.

Iterative Methods

ECMAScript 5 defi nes fi ve iterative methods for arrays. Each of the methods accepts two
arguments: a function to run on each item and an optional scope object in which to run the
function (affecting the value of this). The function passed into one of these methods will receive
three arguments: the array item value, the position of the item in the array, and the array object
itself. Depending on the method, the results of this function’s execution may or may not affect the
method’s return value. The iterative methods are as follows:

every() — Runs the given function on every item in the array and returns true if the
function returns true for every item.

filter() — Runs the given function on every item in the array and returns an array of all
items for which the function returns true.

forEach() — Runs the given function on every item in the array. This method has no
return value.

map() — Runs the given function on every item in the array and returns the result of each
function call in an array.

some() — Runs the given function on every item in the array and returns true if the
function returns true for any one item.

These methods do not change the values contained in the array.

Of these methods, the two most similar are every() and some(), which both query the array for
items matching some criteria. For every(), the passed-in function must return true for every item
in order for the method to return true; otherwise, it returns false. The some() method, on the
other hand, returns true if even one of the items causes the passed-in function to return true. Here
is an example:

var numbers = [1,2,3,4,5,4,3,2,1];

var everyResult = numbers.every(function(item, index, array){
 return (item > 2);
});

alert(everyResult); //false

var someResult = numbers.some(function(item, index, array){

➤

➤

➤

➤

➤

c05.indd 119c05.indd 119 12/8/11 9:50:08 AM12/8/11 9:50:08 AM

120 ❘ CHAPTER 5 REFERENCE TYPES

 return (item > 2);
});

alert(someResult); //true

ArrayEveryAndSomeExample01.htm

This code calls both every() and some() with a function that returns true if the given item is
greater than 2. For every(), the result is false, because only some of the items fi t the criteria. For
some(), the result is true, because at least one of the items is greater than 2.

The next method is filter(), which uses the given function to determine if an item should be
included in the array that it returns. For example, to return an array of all numbers greater than 2,
the following code can be used:

var numbers = [1,2,3,4,5,4,3,2,1];

var filterResult = numbers.filter(function(item, index, array){
 return (item > 2);
});

alert(filterResult); //[3,4,5,4,3]

ArrayFilterExample01.htm

Here, an array containing the values 3, 4, 5, 4, and 3 is created and returned by the call to
filter(), because the passed-in function returns true for each of those items. This method is very
helpful when querying an array for all items matching some criteria.

The map() method also returns an array. Each item in the array is the result of running the passed-
in function on the original array item in the same location. For example, you can multiply every
number in an array by two and are returned an array of those numbers, as shown here:

var numbers = [1,2,3,4,5,4,3,2,1];

var mapResult = numbers.map(function(item, index, array){
 return item * 2;
});

alert(mapResult); //[2,4,6,8,10,8,6,4,2]

ArrayMapExample01.htm

The code in this example returns an array containing the result of multiplying each number by two. This
method is helpful when creating arrays whose items correspond to one another.

The last method is forEach(), which simply runs the given function on every item in an array. There
is no return value and is essentially the same as iterating over an array using a for loop. Here’s
an example:

c05.indd 120c05.indd 120 12/8/11 9:50:08 AM12/8/11 9:50:08 AM

The Array Type ❘ 121

var numbers = [1,2,3,4,5,4,3,2,1];

numbers.forEach(function(item, index, array){
 //do something here
});

All of these array methods ease the processing of arrays by performing a number of different
operations. The iterative methods are supported in Internet Explorer 9+, Firefox 2+, Safari 3+,
Opera 9.5+, and Chrome.

Reduction Methods

ECMAScript 5 also introduced two reduction methods for arrays: reduce() and reduceRight().
Both methods iterate over all items in the array and build up a value that is ultimately returned.
The reduce() method does this starting at the fi rst item and traveling toward the last, whereas
reduceRight() starts at the last and travels toward the fi rst.

Both methods accept two arguments: a function to call on each item and an optional initial value
upon which the reduction is based. The function passed into reduce() or reduceRight() accepts
four arguments: the previous value, the current value, the item’s index, and the array object. Any
value returned from the function is automatically passed in as the fi rst argument for the next item.
The fi rst iteration occurs on the second item in the array, so the fi rst argument is the fi rst item in the
array and the second argument is the second item in the array.

You can use the reduce() method to perform operations such as adding all numbers in an array.
Here’s an example:

var values = [1,2,3,4,5];
var sum = values.reduce(function(prev, cur, index, array){
 return prev + cur;
});
alert(sum); //15

ArrayReductionExample01.htm

The fi rst time the callback function is executed, prev is 1 and cur is 2. The second time, prev is 3
(the result of adding 1 and 2), and cur is 3 (the third item in the array). This sequence continues until
all items have been visited and the result is returned.

The reduceRight() method works in the same way, just in the opposite direction. Consider the
following example:

var values = [1,2,3,4,5];
var sum = values.reduceRight(function(prev, cur, index, array){
 return prev + cur;
});
alert(sum); //15

In this version of the code, prev is 5 and cur is 4 the fi rst time the callback function is executed.
The result is the same, of course, since the operation is simple addition.

c05.indd 121c05.indd 121 12/8/11 9:50:09 AM12/8/11 9:50:09 AM

122 ❘ CHAPTER 5 REFERENCE TYPES

The decision to use reduce() or reduceRight() depends solely on the direction in which the items
in the array should be visited. They are exactly equal in every other way.

The reduction methods are supported in Internet Explorer 9+, Firefox 3+, Safari 4+, Opera 10.5,
and Chrome.

THE DATE TYPE

The ECMAScript Date type is based on an early version of java.util.Date from Java. As such,
the Date type stores dates as the number of milliseconds that have passed since midnight on
January 1, 1970 UTC (Universal Time Code). Using this data storage format, the Date type can
accurately represent dates 285,616 years before or after January 1, 1970.

To create a date object, use the new operator along with the Date constructor, like this:

var now = new Date();

DateTypeExample01.htm

When the Date constructor is used without any arguments, the created object is assigned the current
date and time. To create a date based on another date or time, you must pass in the millisecond
representation of the date (the number of milliseconds after midnight, January 1, 1970 UTC). To aid
in this process, ECMAScript provides two methods: Date.parse() and Date.UTC().

The Date.parse() method accepts a string argument representing a date. It attempts to convert
the string into a millisecond representation of a date. ECMA-262 fi fth edition defi nes which date
formats Date.parse() should support, fi lling in a void left by the third edition. All implementations
must now support the following date formats:

month/date/year (such as 6/13/2004)

month_name date, year (such as January 12, 2004)

day_of_week month_name date year hours:minutes:seconds time_zone (such as Tue May 25
2004 00:00:00 GMT-0700)

ISO 8601 extended format YYYY-MM-DDTHH:mm:ss.sssZ (such as 2004-05-
25T00:00:00). This works only in ECMAScript 5–compliant implementations.

For instance, to create a date object for May 25, 2004, you can use the following code:

var someDate = new Date(Date.parse(“May 25, 2004”));

DateTypeExample01.htm

If the string passed into Date.parse() doesn’t represent a date, then it returns NaN. The Date
constructor will call Date.parse() behind the scenes if a string is passed in directly, meaning that
the following code is identical to the previous example:

var someDate = new Date(“May 25, 2004”);

➤

➤

➤

➤

c05.indd 122c05.indd 122 12/8/11 9:50:09 AM12/8/11 9:50:09 AM

The Date Type ❘ 123

This code produces the same result as the previous example.

There are a lot of quirks surrounding the Date type and its implementation in
various browsers. There is a tendency to replace out-of-range values with the current
value to produce an output, so when trying to parse “January 32, 2007”, some
browsers will interpret it as “February 1, 2007”, whereas Opera tends to insert
the current day of the current month, returning “January current_day, 2007” .
This means running the code on September 21 returns “January 21, 2007”.

The Date.UTC() method also returns the millisecond representation of a date but constructs that
value using different information than Date.parse(). The arguments for Date.UTC() are the year,
the zero-based month (January is 0, February is 1, and so on), the day of the month (1 through 31),
and the hours (0 through 23), minutes, seconds, and milliseconds of the time. Of these arguments,
only the fi rst two (year and month) are required. If the day of the month isn’t supplied, it’s assumed
to be 1, while all other omitted arguments are assumed to be 0. Here are two examples of Date.
UTC() in action:

//January 1, 2000 at midnight GMT
var y2k = new Date(Date.UTC(2000, 0));

//May 5, 2005 at 5:55:55 PM GMT
var allFives = new Date(Date.UTC(2005, 4, 5, 17, 55, 55));

DateTypeUTCExample01.htm

Two dates are created in this example. The fi rst date is for midnight (GMT) on January 1, 2000,
which is represented by the year 2000 and the month 0 (which is January). Because the other
arguments are fi lled in (the day of the month as 1 and everything else as 0), the result is the fi rst
day of the month at midnight. The second date represents May 5, 2005, at 5:55:55 PM GMT. Even
though the date and time contain only fi ves, creating this date requires some different numbers:
the month must be set to 4 because months are zero-based, and the hour must be set to 17 because
hours are represented as 0 through 23. The rest of the arguments are as expected.

As with Date.parse(), Date.UTC() is mimicked by the Date constructor but with one major
difference: the date and time created are in the local time zone, not in GMT. However, the Date
constructor takes the same arguments as Date.UTC(), so if the fi rst argument is a number,
the constructor assumes that it is the year of a date, the second argument is the month, and so
on. The preceding example can then be rewritten as this:

//January 1, 2000 at midnight in local time
var y2k = new Date(2000, 0);

//May 5, 2005 at 5:55:55 PM local time
var allFives = new Date(2005, 4, 5, 17, 55, 55);

DateTypeConstructorExample01.htm

c05.indd 123c05.indd 123 12/8/11 9:50:10 AM12/8/11 9:50:10 AM

124 ❘ CHAPTER 5 REFERENCE TYPES

This code creates the same two dates as the previous example, but this time both dates are in the
local time zone as determined by the system settings.

ECMAScript 5 adds Date.now(), which returns the millisecond representation of the date and time
at which the method is executed. This method makes it trivial to use Date objects for code profi ling,
such as:

//get start time
var start = Date.now();

//call a function
doSomething();

//get stop time
var stop = Date.now(),
 result = stop – start;

The Date.now() method has been implemented in Internet Explorer 9+, Firefox 3+, Safari 3+,
Opera 10.5, and Chrome. For browsers that don’t yet support this method, you can simulate the
same behavior by using the + operator to convert a Date object into a number:

//get start time
var start = +new Date();

//call a function
doSomething();

//get stop time
var stop = +new Date(),
 result = stop – start;

Inherited Methods

As with the other reference types, the Date type overrides toLocaleString(), toString(), and
valueOf(), though unlike the previous types, each method returns something different. The Date
type’s toLocaleString() method returns the date and time in a format appropriate for the locale
in which the browser is being run. This often means that the format includes AM or PM for the
time and doesn’t include any time-zone information (the exact format varies from browser to
browser). The toString() method typically returns the date and time with time-zone information,
and the time is typically indicated in 24-hour notation (hours ranging from 0 to 23). The following
list displays the formats that various browsers use for toLocaleString() and toString() when
representing the date/time of February 1, 2007, at midnight PST (Pacifi c Standard Time) in the
“en-US” locale:

Internet Explorer 8

toLocaleString() — Thursday, February 01, 2007 12:00:00 AM

toString() — Thu Feb 1 00:00:00 PST 2007

c05.indd 124c05.indd 124 12/8/11 9:50:15 AM12/8/11 9:50:15 AM

The Date Type ❘ 125

Firefox 3.5

toLocaleString() — Thursday, February 01, 2007 12:00:00 AM

toString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

Safari 4

toLocaleString() — Thursday, February 01, 2007 00:00:00

toString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

Chrome 4

toLocaleString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

toString() — Thu Feb 01 2007 00:00:00 GMT-0800 (Pacific Standard Time)

Opera 10

toLocaleString() — 2/1/2007 12:00:00 AM

toString() — Thu, 01 Feb 2007 00:00:00 GMT-0800

As you can see, there are some pretty signifi cant differences between the formats that browsers
return for each method. These differences mean toLocaleString() and toString() are really
useful only for debugging purposes, not for display purposes.

The valueOf() method for the Date type doesn’t return a string at all, because it is overridden to
return the milliseconds representation of the date so that operators (such as less-than and greater-
than) will work appropriately for date values. Consider this example:

var date1 = new Date(2007, 0, 1); //”January 1, 2007”
var date2 = new Date(2007, 1, 1); //”February 1, 2007”

alert(date1 < date2); //true
alert(date1 > date2); //false

DateTypeValueOfExample01.htm

The date January 1, 2007, comes before February 1, 2007, so it would make sense to say that the
former is less than the latter. Because the milliseconds representation of January 1, 2007, is less
than that of February 1, 2007, the less-than operator returns true when the dates are compared,
providing an easy way to determine the order of dates.

Date-Formatting Methods

There are several Date type methods used specifi cally to format the date as a string. They are
as follows:

toDateString() — Displays the date’s day of the week, month, day of the month, and year
in an implementation-specifi c format.

➤

c05.indd 125c05.indd 125 12/8/11 9:50:15 AM12/8/11 9:50:15 AM

126 ❘ CHAPTER 5 REFERENCE TYPES

toTimeString() — Displays the date’s hours, minutes, seconds, and time zone in an
implementation-specifi c format.

toLocaleDateString() — Displays the date’s day of the week, month, day of the month,
and year in an implementation- and locale-specifi c format.

toLocaleTimeString() — Displays the date’s hours, minutes, and seconds in an
implementation-specifi c format.

toUTCString() — Displays the complete UTC date in an implementation-specifi c format.

The output of these methods, as with toLocaleString() and toString(), varies widely from
browser to browser and therefore can’t be employed in a user interface for consistent display of a date.

➤

➤

➤

➤

There is also a method called toGMTString(), which is equivalent to
toUTCString() and is provided for backwards compatibility. However, the
specifi cation recommends that new code use toUTCString() exclusively.

Date/Time Component Methods

The remaining methods of the Date type (listed in the following table) deal directly with getting and
setting specifi c parts of the date value. Note that references to a UTC date mean the date value when
interpreted without a time-zone offset (the date when converted to GMT).

METHOD DESCRIPTION

getTime() Returns the milliseconds representation of the date; same as

valueOf().

setTime(milliseconds) Sets the milliseconds representation of the date, thus changing the

entire date.

getFullYear() Returns the four-digit year (2007 instead of just 07).

getUTCFullYear() Returns the four-digit year of the UTC date value.

setFullYear(year) Sets the year of the date. The year must be given with four digits

(2007 instead of just 07).

setUTCFullYear(year) Sets the year of the UTC date. The year must be given with four

digits (2007 instead of just 07).

getMonth() Returns the month of the date, where 0 represents January and 11

represents December.

getUTCMonth() Returns the month of the UTC date, where 0 represents January and

11 represents December.

c05.indd 126c05.indd 126 12/8/11 9:50:16 AM12/8/11 9:50:16 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The Date Type ❘ 127

METHOD DESCRIPTION

setMonth(month) Sets the month of the date, which is any number 0 or greater.

Numbers greater than 11 add years.

setUTCMonth(month) Sets the month of the UTC date, which is any number 0 or greater.

Numbers greater than 11 add years.

getDate() Returns the day of the month (1 through 31) for the date.

getUTCDate() Returns the day of the month (1 through 31) for the UTC date.

setDate(date) Sets the day of the month for the date. If the date is greater than the

number of days in the month, the month value also gets increased.

setUTCDate(date) Sets the day of the month for the UTC date. If the date is greater

than the number of days in the month, the month value also gets

increased.

getDay() Returns the date’s day of the week as a number (where 0 represents

Sunday and 6 represents Saturday).

getUTCDay() Returns the UTC date’s day of the week as a number (where 0

represents Sunday and 6 represents Saturday).

getHours() Returns the date’s hours as a number between 0 and 23.

getUTCHours() Returns the UTC date’s hours as a number between 0 and 23.

setHours(hours) Sets the date’s hours. Setting the hours to a number greater than 23

also increments the day of the month.

setUTCHours(hours) Sets the UTC date’s hours. Setting the hours to a number greater

than 23 also increments the day of the month.

getMinutes() Returns the date’s minutes as a number between 0 and 59.

getUTCMinutes() Returns the UTC date’s minutes as a number between 0 and 59.

setMinutes(minutes) Sets the date’s minutes. Setting the minutes to a number greater

than 59 also increments the hour.

setUTCMinutes(minutes) Sets the UTC date’s minutes. Setting the minutes to a number greater

than 59 also increments the hour.

getSeconds() Returns the date’s seconds as a number between 0 and 59.

getUTCSeconds() Returns the UTC date’s seconds as a number between 0 and 59.

setSeconds(seconds) Sets the date’s seconds. Setting the seconds to a number greater

than 59 also increments the minutes.

continues

c05.indd 127c05.indd 127 12/8/11 9:50:21 AM12/8/11 9:50:21 AM

128 ❘ CHAPTER 5 REFERENCE TYPES

METHOD DESCRIPTION

setUTCSeconds(seconds) Sets the UTC date’s seconds. Setting the seconds to a number

greater than 59 also increments the minutes.

getMilliseconds() Returns the date’s milliseconds.

getUTCMilliseconds() Returns the UTC date’s milliseconds.

setMilliseconds

(milliseconds)

Sets the date’s milliseconds.

setUTCMilliseconds

(milliseconds)

Sets the UTC date’s milliseconds.

getTimezoneOffset() Returns the number of minutes that the local time zone is off set from

UTC. For example, Eastern Standard Time returns 300. This value

changes when an area goes into Daylight Saving Time.

THE REGEXP TYPE

ECMAScript supports regular expressions through the RegExp type. Regular expressions are easy
to create using syntax similar to Perl, as shown here:

var expression = /pattern/flags;

The pattern part of the expression can be any simple or complicated regular expression, including
character classes, quantifi ers, grouping, lookaheads, and backreferences. Each expression can have
zero or more fl ags indicating how the expression should behave. Three supported fl ags represent
matching modes, as follows:

g — Indicates global mode, meaning the pattern will be applied to all of the string instead
of stopping after the fi rst match is found.

i — Indicates case-insensitive mode, meaning the case of the pattern and the string are
ignored when determining matches.

m — Indicates multiline mode, meaning the pattern will continue looking for matches after
reaching the end of one line of text.

A regular expression is created using a combination of a pattern and these fl ags to produce different
results, as in this example:

/*
 * Match all instances of “at” in a string.
 */
var pattern1 = /at/g;

/*

➤

➤

➤

 (continued)

c05.indd 128c05.indd 128 12/8/11 9:50:21 AM12/8/11 9:50:21 AM

The RegExp Type ❘ 129

 * Match the first instance of “bat” or “cat”, regardless of case.
 */
var pattern2 = /[bc]at/i;

/*
 * Match all three-character combinations ending with ”at”, regardless of case.
 */
var pattern3 = /.at/gi;

As with regular expressions in other languages, all metacharacters must be escaped when used as
part of the pattern. The metacharacters are as follows:

([{ \ ^ $ |)] } ? * + .

Each metacharacter has one or more uses in regular-expression syntax and so must be escaped by a
backslash when you want to match the character in a string. Here are some examples:

/*
 * Match the first instance of “bat” or “cat”, regardless of case.
 */
var pattern1 = /[bc]at/i;

/*
 * Match the first instance of ”[bc]at”, regardless of case.
 */
var pattern2 = /\[bc\]at/i;

/*
 * Match all three-character combinations ending with ”at”, regardless of case.
 */
var pattern3 = /.at/gi;

/*
 * Match all instances of ”.at”, regardless of case.
 */
var pattern4 = /\.at/gi;

In this code, pattern1 matches all instances of “bat” or “cat”, regardless of case. To match
“[bc]at” directly, both square brackets need to be escaped with a backslash, as in pattern2. In
pattern3, the dot indicates that any character can precede “at” to be a match. If you want to
match “.at”, then the dot needs to be escaped, as in pattern4.

The preceding examples all defi ne regular expressions using the literal form. Regular expressions
can also be created by using the RegExp constructor, which accepts two arguments: a string pattern
to match and an optional string of fl ags to apply. Any regular expression that can be defi ned using
literal syntax can also be defi ned using the constructor, as in this example:

/*
 * Match the first instance of “bat” or “cat”, regardless of case.
 */
var pattern1 = /[bc]at/i;

c05.indd 129c05.indd 129 12/8/11 9:50:22 AM12/8/11 9:50:22 AM

130 ❘ CHAPTER 5 REFERENCE TYPES

/*
 * Same as pattern1, just using the constructor.
 */
var pattern2 = new RegExp(“[bc]at”, “i”);

Here, pattern1 and pattern2 defi ne equivalent regular expressions. Note that both arguments of
the RegExp constructor are strings (regular-expression literals should not be passed into the RegExp
constructor). Because the pattern argument of the RegExp constructor is a string, there are some
instances in which you need to double-escape characters. All metacharacters must be double-escaped,
as must characters that are already escaped, such as \n (the \ character, which is normally escaped in
strings as \\ becomes \\\\ when used in a regular-expression string). The following table shows
some patterns in their literal form and the equivalent string that would be necessary to use the
RegExp constructor.

LITERAL PATTERN STRING EQUIVALENT

/\[bc\]at/ “\\[bc\\]at”

/\.at/ “\\.at”

/name\/age/ “name\\/age”

/\d.\d{1,2}/ “\\d.\\d{1,2}”

/\w\\hello\\123/ “\\w\\\\hello\\\\123”

Keep in mind that creating a regular expression using a literal is not exactly the same as creating
a regular expression using the RegExp constructor. In ECMAScript 3, regular-expression literals
always share the same RegExp instance, while creating a new RegExp via constructor always results
in a new instance. Consider the following:

var re = null,
 i;

for (i=0; i < 10; i++){
 re = /cat/g;
 re.test(“catastrophe”);
}

for (i=0; i < 10; i++){
 re = new RegExp(“cat”, “g”);
 re.test(“catastrophe”);
}

In the fi rst loop, there is only one instance of RegExp created for /cat/, even though it is specifi ed
in the body of the loop. Instance properties (mentioned in the next section) are not reset, so calling
test() fails every other time through the loop. This happens because the “cat” is found in the
fi rst call to test(), but the second call begins its search from index 3 (the end of the last match)
and can’t fi nd it. Since the end of the string is found, the subsequent call to test() starts at the
beginning again.

c05.indd 130c05.indd 130 12/8/11 9:50:22 AM12/8/11 9:50:22 AM

The RegExp Type ❘ 131

The second loop uses the RegExp constructor to create the regular expression each time through the
loop. Each call to test() returns true since a new instance of RegExp is created for each iteration.

ECMAScript 5 clarifi es the behavior of regular-expression literals by explicitly stating that
regular-expression literals must create new instances of RegExp as if the RegExp constructor were called
directly. This change was made in Internet Explorer 9+, Firefox 4+, and Chrome.

RegExp Instance Properties

Each instance of RegExp has the following properties that allow you to get information about
the pattern:

global — A Boolean value indicating whether the g fl ag has been set.

ignoreCase — A Boolean value indicating whether the i fl ag has been set.

lastIndex — An integer indicating the character position where the next match will be
attempted in the source string. This value always begins as 0.

multiline — A Boolean value indicating whether the m fl ag has been set.

source — The string source of the regular expression. This is always returned as if specifi ed
in literal form (without opening and closing slashes) rather than a string pattern as passed
into the constructor.

These properties are helpful in identifying aspects of a regular expression; however, they typically
don’t have much use, because the information is available in the pattern declaration. Here’s an
example:

var pattern1 = /\[bc\]at/i;

alert(pattern1.global); //false
alert(pattern1.ignoreCase); //true
alert(pattern1.multiline); //false
alert(pattern1.lastIndex); //0
alert(pattern1.source); //”\[bc\]at”

var pattern2 = new RegExp(“\\[bc\\]at”, “i”);

alert(pattern2.global); //false
alert(pattern2.ignoreCase); //true
alert(pattern2.multiline); //false
alert(pattern2.lastIndex); //0
alert(pattern2.source); //”\[bc\]at”

RegExpInstancePropertiesExample01.htm

Note that the source properties of each pattern are equivalent even though the fi rst pattern is in
literal form and the second uses the RegExp constructor. The source property normalizes the string
into the form you’d use in a literal.

➤

➤

➤

➤

➤

c05.indd 131c05.indd 131 12/8/11 9:50:23 AM12/8/11 9:50:23 AM

132 ❘ CHAPTER 5 REFERENCE TYPES

RegExp Instance Methods

The primary method of a RegExp object is exec(), which is intended for use with capturing groups.
This method accepts a single argument, which is the string on which to apply the pattern, and
returns an array of information about the fi rst match or null if no match was found. The returned
array, though an instance of Array, contains two additional properties: index, which is the location
in the string where the pattern was matched, and input, which is the string that the expression was
run against. In the array, the fi rst item is the string that matches the entire pattern. Any additional
items represent captured groups inside the expression (if there are no capturing groups in the
pattern, then the array has only one item). Consider the following:

var text = “mom and dad and baby”;
var pattern = /mom(and dad(and baby)?)?/gi;

var matches = pattern.exec(text);
alert(matches.index); //0
alert(matches.input); //”mom and dad and baby”
alert(matches[0]); //”mom and dad and baby”
alert(matches[1]); //” and dad and baby”
alert(matches[2]); //” and baby”

RegExpExecExample01.htm

In this example, the pattern has two capturing groups. The innermost one matches “ and baby”,
and its enclosing group matches “ and dad” or “ and dad and baby”. When exec() is called on
the string, a match is found. Because the entire string matches the pattern, the index property
on the matches array is set to 0. The fi rst item in the array is the entire matched string, the second
contains the contents of the fi rst capturing group, and the third contains the contents of the third
capturing group.

The exec() method returns information about one match at a time even if the pattern is global.
When the global fl ag is not specifi ed, calling exec() on the same string multiple times will always
return information about the fi rst match. With the g fl ag set on the pattern, each call to exec()
moves further into the string looking for matches, as in this example:

var text = “cat, bat, sat, fat”;
var pattern1 = /.at/;

var matches = pattern1.exec(text);
alert(matches.index); //0
alert(matches[0]); //cat
alert(pattern1.lastIndex); //0

matches = pattern1.exec(text);
alert(matches.index); //0
alert(matches[0]); //cat
alert(pattern1.lastIndex); //0

var pattern2 = /.at/g;

var matches = pattern2.exec(text);

c05.indd 132c05.indd 132 12/8/11 9:50:23 AM12/8/11 9:50:23 AM

The RegExp Type ❘ 133

alert(matches.index); //0
alert(matches[0]); //cat
alert(pattern2.lastIndex); //0

matches = pattern2.exec(text);
alert(matches.index); //5
alert(matches[0]); //bat
alert(pattern2.lastIndex); //8

RegExpExecExample02.htm

The fi rst pattern in this example, pattern1, is not global, so each call to exec() returns the
fi rst match only (“cat”). The second pattern, pattern2, is global, so each call to exec() returns
the next match in the string until the end of the string is reached. Note also how the pattern’s
lastIndex property is affected. In global matching mode, lastIndex is incremented after each call
to exec(), but it remains unchanged in nonglobal mode.

A deviation in the Internet Explorer implementation of JavaScript causes
lastIndex to always be updated, even in nonglobal mode.

Another method of regular expressions is test(), which accepts a string argument and returns
true if the pattern matches the argument and false if it does not. This method is useful when you
want to know if a pattern is matched, but you have no need for the actual matched text. The test()
method is often used in if statements, such as the following:

var text = “000-00-0000”;
var pattern = /\d{3}-\d{2}-\d{4}/;

if (pattern.test(text)){
 alert(”The pattern was matched.”);
}

In this example, the regular expression tests for a specifi c numeric sequence. If the input text
matches the pattern, then a message is displayed. This functionality is often used for validating user
input, when you care only if the input is valid, not necessarily why it’s invalid.

The inherited methods of toLocaleString() and toString() each return the literal representation
of the regular expression, regardless of how it was created. Consider this example:

var pattern = new RegExp(“\\[bc\\]at”, “gi”);
alert(pattern.toString()); // /\[bc\]at/gi
alert(pattern.toLocaleString()); // /\[bc\]at/gi

RegExpToStringExample01.htm

c05.indd 133c05.indd 133 12/8/11 9:50:24 AM12/8/11 9:50:24 AM

134 ❘ CHAPTER 5 REFERENCE TYPES

Even though the pattern in this example is created using the RegExp constructor, the toLocaleString()
and toString() methods return the pattern as if it were specifi ed in literal format.

The valueOf() method for a regular expression returns the regular expression itself.

RegExp Constructor Properties

The RegExp constructor function has several properties. (These would be considered static
properties in other languages.) These properties apply to all regular expressions that are in scope,
and they change based on the last regular-expression operation that was performed. Another unique
element of these properties is that they can be accessed in two different ways. Each property has a
verbose property name and a shorthand name (except in Opera, which doesn’t support the short
names). The RegExp constructor properties are listed in the following table.

VERBOSE NAME SHORT NAME DESCRIPTION

input $_ The last string matched against. This is not implemented

in Opera.

lastMatch $& The last matched text. This is not implemented in Opera.

lastParen $+ The last matched capturing group. This is not

implemented in Opera.

leftContext $` The text that appears in the input string prior to

lastMatch.

multiline $* A Boolean value specifying whether all expressions

should use multiline mode. This is not implemented in IE

or Opera.

rightContext $’ The text that appears in the input string after

lastMatch.

These properties can be used to extract specifi c information about the operation performed by
exec() or test(). Consider this example:

var text = “this has been a short summer”;
var pattern = /(.)hort/g;

/*
 * Note: Opera doesn’t support input, lastMatch, lastParen, or multiline.
 * Internet Explorer doesn’t support multiline.
 */
if (pattern.test(text)){

c05.indd 134c05.indd 134 12/8/11 9:50:29 AM12/8/11 9:50:29 AM

The RegExp Type ❘ 135

 alert(RegExp.input); //this has been a short summer
 alert(RegExp.leftContext); //this has been a
 alert(RegExp.rightContext); // summer
 alert(RegExp.lastMatch); //short
 alert(RegExp.lastParen); //s
 alert(RegExp.multiline); //false
}

RegExpConstructorPropertiesExample01.htm

This code creates a pattern that searches for any character followed by “hort” and puts a capturing
group around the fi rst letter. The various properties are used as follows:

The input property contains the original string.

The leftContext property contains the characters of the string before the word “short”,
and the rightContext property contains the characters after the word “short”.

The lastMatch property contains the last string that matches the entire regular expression,
which is “short”.

The lastParen property contains the last matched capturing group, which is “s” in this case.

These verbose property names can be replaced with the short property names, although you must
use bracket notation to access them, as shown in the following example, because most are illegal
identifi ers in ECMAScript:

var text = “this has been a short summer”;
var pattern = /(.)hort/g;

/*
 * Note: Opera doesn’t short property names.
 * Internet Explorer doesn’t support multiline.
 */
if (pattern.test(text)){
 alert(RegExp.$_); //this has been a short summer
 alert(RegExp[“$`”]); //this has been a
 alert(RegExp[“$’”]); // summer
 alert(RegExp[“$&”]); //short
 alert(RegExp[“$+”]); //s
 alert(RegExp[“$*”]); //false
}

RegExpConstructorPropertiesExample02.htm

There are also constructor properties that store up to nine capturing-group matches. These
properties are accessed via RegExp.$1, which contains the fi rst capturing-group match through

➤

➤

➤

➤

c05.indd 135c05.indd 135 12/8/11 9:50:35 AM12/8/11 9:50:35 AM

136 ❘ CHAPTER 5 REFERENCE TYPES

RegExp.$9, which contains the ninth capturing-group match. These properties are fi lled in when
calling either exec() or test(), allowing you to do things like this:

var text = “this has been a short summer”;
var pattern = /(..)or(.)/g;

if (pattern.test(text)){
 alert(RegExp.$1); //sh
 alert(RegExp.$2); //t
}

RegExpConstructorPropertiesExample03.htm

In this example, a pattern with two matching groups is created and tested against a string. Even
though test() simply returns a Boolean value, the properties $1 and $2 are fi lled in on the RegExp
constructor.

Pattern Limitations

Although ECMAScript’s regular-expression support is fully developed, it does lack some of the
advanced regular-expression features available in languages such as Perl. The following features
are not supported in ECMAScript regular expressions (for more information, see www.regular-
expressions.info):

The \A and \Z anchors (matching the start or end of a string, respectively)

Lookbehinds

Union and intersection classes

Atomic grouping

Unicode support (except for matching a single character at a time)

Named capturing groups

The s (single-line) and x (free-spacing) matching modes

Conditionals

Regular-expression comments

Despite these limitations, ECMAScript’s regular-expression support is powerful enough for doing
most pattern-matching tasks.

THE FUNCTION TYPE

Some of the most interesting parts of ECMAScript are its functions, primarily because functions
actually are objects. Each function is an instance of the Function type that has properties and
methods just like any other reference type. Because functions are objects, function names are simply
pointers to function objects and are not necessarily tied to the function itself. Functions are typically
defi ned using function-declaration syntax, as in this example:

➤

➤

➤

➤

➤

➤

➤

➤

➤

c05.indd 136c05.indd 136 12/8/11 9:50:35 AM12/8/11 9:50:35 AM

The Function Type ❘ 137

function sum (num1, num2) {
 return num1 + num2;
}

This is almost exactly equivalent to using a function expression, such as this:

var sum = function(num1, num2){
 return num1 + num2;
};

In this code, a variable sum is defi ned and initialized to be a function. Note that there is no name
included after the function keyword, because it’s not needed — the function can be referenced
by the variable sum. Also note that there is a semicolon after the end of the function, just as there
would be after any variable initialization.

The last way to defi ne functions is by using the Function constructor, which accepts any number
of arguments. The last argument is always considered to be the function body, and the previous
arguments enumerate the new function’s arguments. Take this for example:

var sum = new Function(“num1”, “num2”, “return num1 + num2”); //not recommended

This syntax is not recommended because it causes a double interpretation of the code (once for the
regular ECMAScript code and once for the strings that are passed into the constructor) and thus
can affect performance. However, it’s important to think of functions as objects and function names
as pointers — this syntax is great at representing that concept.

Because function names are simply pointers to functions, they act like any other variable containing
a pointer to an object. This means it’s possible to have multiple names for a single function, as in
this example:

function sum(num1, num2){
 return num1 + num2;
}
alert(sum(10,10)); //20

var anotherSum = sum;
alert(anotherSum(10,10)); //20

sum = null;
alert(anotherSum(10,10)); //20

FunctionTypeExample01.htm

This code defi nes a function named sum() that adds two numbers together. A variable, anotherSum,
is declared and set equal to sum. Note that using the function name without parentheses accesses the
function pointer instead of executing the function. At this point, both anotherSum and sum point
to the same function, meaning that anotherSum() can be called and a result returned. When sum
is set to null, it severs its relationship with the function, although anotherSum() can still be called
without any problems.

c05.indd 137c05.indd 137 12/8/11 9:50:36 AM12/8/11 9:50:36 AM

138 ❘ CHAPTER 5 REFERENCE TYPES

No Overloading (Revisited)

Thinking of function names as pointers also explains why there can be no function overloading in
ECMAScript. Recall the following example from Chapter 3:

function addSomeNumber(num){
 return num + 100;
}

function addSomeNumber(num) {
 return num + 200;
}

var result = addSomeNumber(100); //300

In this example, it’s clear that declaring two functions with the same name always results in the last
function overwriting the previous one. This code is almost exactly equivalent to the following:

var addSomeNumber = function (num){
 return num + 100;
};

addSomeNumber = function (num) {
 return num + 200;
};

var result = addSomeNumber(100); //300

In this rewritten code, it’s much easier to see exactly what is going on. The variable addSomeNumber
is simply being overwritten when the second function is created.

Function Declarations versus Function Expressions

Throughout this section, the function declaration and function expression are referred to as being
almost equivalent. This hedging is due to one major difference in the way that a JavaScript engine
loads data into the execution context. Function declarations are read and available in an execution
context before any code is executed, whereas function expressions aren’t complete until the
execution reaches that line of code. Consider the following:

alert(sum(10,10));
function sum(num1, num2){
 return num1 + num2;
}

FunctionDeclarationExample01.htm

This code runs perfectly, because function declarations are read and added to the execution context
before the code begins running through a process called function declaration hoisting. As the code
is being evaluated, the JavaScript engine does a fi rst pass for function declarations and pulls them
to the top of the source tree. So even though the function declaration appears after its usage in the

c05.indd 138c05.indd 138 12/8/11 9:50:36 AM12/8/11 9:50:36 AM

The Function Type ❘ 139

actual source code, the engine changes this to hoist the function declarations to the top. Changing
the function declaration to an equivalent function expression, as in the following example, will
cause an error during execution:

alert(sum(10,10));
var sum = function(num1, num2){
 return num1 + num2;
};

FunctionInitializationExample01.htm

This updated code will cause an error, because the function is part of an initialization statement,
not part of a function declaration. That means the function isn’t available in the variable sum
until the highlighted line has been executed, which won’t happen, because the fi rst line causes an
“unexpected identifi er” error.

Aside from this difference in when the function is available by the given name, the two syntaxes are
equivalent.

It is possible to have named function expressions that look like declarations,
such as var sum = function sum() {}. See Chapter 7 for a longer discussion
on function expressions.

Functions as Values

Because function names in ECMAScript are nothing more than variables, functions can be used any
place any other value can be used. This means it’s possible not only to pass a function into another
function as an argument but also to return a function as the result of another function. Consider the
following function:

function callSomeFunction(someFunction, someArgument){
 return someFunction(someArgument);
}

This function accepts two arguments. The fi rst argument should be a function, and the second
argument should be a value to pass to that function. Any function can then be passed in as follows:

function add10(num){
 return num + 10;
}

var result1 = callSomeFunction(add10, 10);
alert(result1); //20

function getGreeting(name){
 return “Hello, “ + name;

c05.indd 139c05.indd 139 12/8/11 9:50:36 AM12/8/11 9:50:36 AM

140 ❘ CHAPTER 5 REFERENCE TYPES

}

var result2 = callSomeFunction(getGreeting, “Nicholas”);
alert(result2); //”Hello, Nicholas”

FunctionAsAnArgumentExample01.htm

The callSomeFunction() function is generic, so it doesn’t matter what function is passed in as
the fi rst argument — the result will always be returned from the fi rst argument being executed.
Remember that to access a function pointer instead of executing the function, you must leave off the
parentheses, so the variables add10 and getGreeting are passed into callSomeFunction() instead
of their results being passed in.

Returning a function from a function is also possible and can be quite useful. For instance, suppose
that you have an array of objects and want to sort the array on an arbitrary object property. A
comparison function for the array’s sort() method accepts only two arguments, which are the
values to compare, but really you need a way to indicate which property to sort by. This problem
can be addressed by defi ning a function to create a comparison function based on a property name,
as in the following example:

function createComparisonFunction(propertyName) {

 return function(object1, object2){
 var value1 = object1[propertyName];
 var value2 = object2[propertyName];

 if (value1 < value2){
 return -1;
 } else if (value1 > value2){
 return 1;
 } else {
 return 0;
 }
 };
}

FunctionReturningFunctionExample01.htm

This function’s syntax may look complicated, but essentially it’s just a function inside of a function,
preceded by the return operator. The propertyName argument is accessible from the inner function
and is used with bracket notation to retrieve the value of the given property. Once the property
values are retrieved, a simple comparison can be done. This function can be used as in the following
example:

var data = [{name: “Zachary”, age: 28}, {name: “Nicholas”, age: 29}];

data.sort(createComparisonFunction(“name”));
alert(data[0].name); //Nicholas

data.sort(createComparisonFunction(“age”));
alert(data[0].name); //Zachary

c05.indd 140c05.indd 140 12/8/11 9:50:41 AM12/8/11 9:50:41 AM

The Function Type ❘ 141

In this code, an array called data is created with two objects. Each object has a name property and
an age property. By default, the sort() method would call toString() on each object to determine
the sort order, which wouldn’t give logical results in this case. Calling createComparisonFunction
(“name”) creates a comparison function that sorts based on the name property, which means the
fi rst item will have the name “Nicholas” and an age of 29. When createComparisonFunction
(“age”) is called, it creates a comparison function that sorts based on the age property, meaning
the fi rst item will be the one with its name equal to “Zachary” and age equal to 28.

Function Internals

Two special objects exist inside a function: arguments and this. The arguments object, as
discussed in Chapter 3, is an array-like object that contains all of the arguments that were passed
into the function. Though its primary use is to represent function arguments, the arguments object
also has a property named callee, which is a pointer to the function that owns the arguments
object. Consider the following classic factorial function:

function factorial(num){
 if (num <= 1) {
 return 1;
 } else {
 return num * factorial(num-1)
 }
}

Factorial functions are typically defi ned to be recursive, as in this example, which works fi ne
when the name of the function is set and won’t be changed. However, the proper execution of this
function is tightly coupled with the function name “factorial”. It can be decoupled by using
arguments.callee as follows:

function factorial(num){
 if (num <= 1) {
 return 1;
 } else {
 return num * arguments.callee(num-1)
 }
}

FunctionTypeArgumentsExample01.htm

In this rewritten version of the factorial() function, there is no longer a reference to the name
“factorial” in the function body, which ensures that the recursive call will happen on the correct
function no matter how the function is referenced. Consider the following:

var trueFactorial = factorial;

factorial = function(){
 return 0;
};

alert(trueFactorial(5)); //120
alert(factorial(5)); //0

c05.indd 141c05.indd 141 12/8/11 9:50:42 AM12/8/11 9:50:42 AM

142 ❘ CHAPTER 5 REFERENCE TYPES

Here, the variable trueFactorial is assigned the value of factorial, effectively storing the
function pointer in a second location. The factorial variable is then reassigned to a function that
simply returns 0. Without using arguments.callee in the original factorial() function’s body,
the call to trueFactorial() would return 0. However, with the function decoupled from
the function name, trueFactorial() correctly calculates the factorial, and factorial() is the
only function that returns 0.

The other special object is called this, which operates similar to the this object in Java and C# though
isn’t exactly the same. It is a reference to the context object that the function is operating on — often
called the this value (when a function is called in the global scope of a web page, the this object points
to window). Consider the following:

window.color = “red”;
var o = { color: “blue” };

function sayColor(){
 alert(this.color);
}

sayColor(); //”red”

o.sayColor = sayColor;
o.sayColor(); //”blue”

FunctionTypeThisExample01.htm

The function sayColor() is defi ned globally but references the this object. The value of this
is not determined until the function is called, so its value may not be consistent throughout the
code execution. When sayColor() is called in the global scope, it outputs “red” because this
is pointing to window, which means this.color evaluates to window.color. By assigning the
function to the object o and then calling o.sayColor(), the this object points to o, so this.color
evaluates to o.color and “blue” is displayed.

Remember that function names are simply variables containing pointers, so the
global sayColor() function and o.sayColor() point to the same function even
though they execute in different contexts.

ECMAScript 5 also formalizes an additional property on a function object: caller. Though not
defi ned in ECMAScript 3, all browsers except earlier versions of Opera supported this property,
which contains a reference to the function that called this function or null if the function was
called from the global scope. For example:

function outer(){
 inner();
}

function inner(){

c05.indd 142c05.indd 142 12/8/11 9:50:42 AM12/8/11 9:50:42 AM

The Function Type ❘ 143

 alert(inner.caller);
}

outer();

FunctionTypeArgumentsCallerExample01.htm

This code displays an alert with the source text of the outer() function. Because outer() calls
inner(), then inner.caller points back to outer(). For looser coupling, you can also access the
same information via arguments.callee.caller:

function outer(){
 inner();
}

function inner(){
 alert(arguments.callee.caller);
}

outer();

FunctionTypeArgumentsCallerExample02.htm

The caller property is supported in all versions of Internet Explorer, Firefox, Chrome, and Safari,
as well as Opera 9.6.

When function code executes in strict mode, attempting to access arguments.callee results in an
error. ECMAScript 5 also defi nes arguments.caller, which also results in an error in strict mode
and is always undefi ned outside of strict mode. This is to clear up confusion between arguments
.caller and the caller property of functions. These changes were made as security additions to
the language, so third-party code could not inspect other code running in the same context.

Strict mode places one additional restriction: you cannot assign a value to the caller property of a
function. Doing so results in an error.

Function Properties and Methods

Functions are objects in ECMAScript and, as mentioned previously, therefore have properties and
methods. Each function has two properties: length and prototype. The length property indicates
the number of named arguments that the function expects, as in this example:

function sayName(name){
 alert(name);
}

function sum(num1, num2){
 return num1 + num2;
}

function sayHi(){

c05.indd 143c05.indd 143 12/8/11 9:50:48 AM12/8/11 9:50:48 AM

144 ❘ CHAPTER 5 REFERENCE TYPES

 alert(“hi”);
}

alert(sayName.length); //1
alert(sum.length); //2
alert(sayHi.length); //0

FunctionTypeLengthPropertyExample01.htm

This code defi nes three functions, each with a different number of named arguments. The
sayName() function specifi es one argument, so its length property is set to 1. Similarly, the
sum() function specifi es two arguments, so its length property is 2, and sayHi() has no named
arguments, so its length is 0.

The prototype property is perhaps the most interesting part of the ECMAScript core. The
prototype is the actual location of all instance methods for reference types, meaning methods such
as toString() and valueOf() actually exist on the prototype and are then accessed from the
object instances. This property is very important in terms of defi ning your own reference types and
inheritance. (These topics are covered in Chapter 6.) In ECMAScript 5, the prototype property is
not enumerable and so will not be found using for-in.

There are two additional methods for functions: apply() and call(). These methods both call
the function with a specifi c this value, effectively setting the value of the this object inside the
function body. The apply() method accepts two arguments: the value of this inside the function
and an array of arguments. This second argument may be an instance of Array, but it can also be
the arguments object. Consider the following:

function sum(num1, num2){
 return num1 + num2;
}

function callSum1(num1, num2){
 return sum.apply(this, arguments); //passing in arguments object
}

function callSum2(num1, num2){
 return sum.apply(this, [num1, num2]); //passing in array
}

alert(callSum1(10,10)); //20
alert(callSum2(10,10)); //20

FunctionTypeApplyMethodExample01.htm

In this example, callSum1() executes the sum() method, passing in this as the this value (which
is equal to window because it’s being called in the global scope) and also passing in the arguments
object. The callSum2() method also calls sum(), but it passes in an array of the arguments instead.
Both functions will execute and return the correct result.

c05.indd 144c05.indd 144 12/8/11 9:50:48 AM12/8/11 9:50:48 AM

The Function Type ❘ 145

The call() method exhibits the same behavior as apply(), but arguments are passed to it
differently. The fi rst argument is the this value, but the remaining arguments are passed directly
into the function. Using call() arguments must be enumerated specifi cally, as in this example:

function sum(num1, num2){
 return num1 + num2;
}

function callSum(num1, num2){
 return sum.call(this, num1, num2);
}

alert(callSum(10,10)); //20

FunctionTypeCallMethodExample01.htm

Using the call() method, callSum() must pass in each of its arguments explicitly. The result is
the same as using apply(). The decision to use either apply() or call() depends solely on the
easiest way for you to pass arguments into the function. If you intend to pass in the arguments
object directly or if you already have an array of data to pass in, then apply() is the better choice;
otherwise, call() may be a more appropriate choice. (If there are no arguments to pass in, these
methods are identical.)

The true power of apply() and call() lies not in their ability to pass arguments but rather in their
ability to augment the this value inside of the function. Consider the following example:

window.color = “red”;
var o = { color: “blue” };

function sayColor(){
 alert(this.color);
}

sayColor(); //red

sayColor.call(this); //red
sayColor.call(window); //red
sayColor.call(o); //blue

FunctionTypeCallExample01.htm

This example is a modifi ed version of the one used to illustrate the this object. Once again,
sayColor() is defi ned as a global function, and when it’s called in the global scope, it displays

In strict mode, the this value of a function called without a context object is
not coerced to window. Instead, this becomes undefined unless explicitly set by
either attaching the function to an object or using apply() or call().

c05.indd 145c05.indd 145 12/8/11 9:50:49 AM12/8/11 9:50:49 AM

146 ❘ CHAPTER 5 REFERENCE TYPES

“red” because this.color evaluates to window.color. You can then call the function explicitly in
the global scope by using sayColor.call(this) and sayColor.call(window), which both display
“red”. Running sayColor.call(o) switches the context of the function such that this points to o,
resulting in a display of “blue”.

The advantage of using call() (or apply()) to augment the scope is that the object doesn’t need to
know anything about the method. In the fi rst version of this example, the sayColor() function was
placed directly on the object o before it was called; in the updated example, that step is no longer
necessary.

ECMAScript 5 defi nes an additional method called bind(). The bind() method creates a new
function instance whose this value is bound to the value that was passed into bind(). For example:

window.color = “red”;
var o = { color: “blue” };

function sayColor(){
 alert(this.color);
}
var objectSayColor = sayColor.bind(o);
objectSayColor(); //blue

FunctionTypeBindMethodExample01.htm

Here, a new function called objectSayColor() is created from sayColor() by calling bind() and
passing in the object o. The objectSayColor() function has a this value equivalent to o, so calling
the function, even as a global call, results in the string “blue” being displayed. The advantages of
this technique are discussed in Chapter 22.

The bind() method is supported in Internet Explorer 9+, Firefox 4+, Safari 5.1+, Opera 12+,
and Chrome.

For functions, the inherited methods toLocaleString() and toString() always return the
function’s code. The exact format of this code varies from browser to browser — some return your
code exactly as it appeared in the source code, including comments, whereas others return the
internal representation of your code, which has comments removed and possibly some code changes
that the interpreter made. Because of these differences, you can’t rely on what is returned for any
important functionality, though this information may be useful for debugging purposes. The
inherited method valueOf() simply returns the function itself.

PRIMITIVE WRAPPER TYPES

Three special reference types are designed to ease interaction with primitive values: the Boolean
type, the Number type, and the String type. These types can act like the other reference types
described in this chapter, but they also have a special behavior related to their primitive-type
equivalents. Every time a primitive value is read, an object of the corresponding primitive wrapper

c05.indd 146c05.indd 146 12/8/11 9:50:54 AM12/8/11 9:50:54 AM

Primitive Wrapper Types ❘ 147

type is created behind the scenes, allowing access to any number of methods for manipulating the
data. Consider the following example:

var s1 = “some text”;
var s2 = s1.substring(2);

In this code, s1 is a variable containing a string, which is a primitive value. On the next line, the
substring() method is called on s1 and stored in s2. Primitive values aren’t objects, so logically
they shouldn’t have methods, though this still works as you would expect. In truth, there is a lot
going on behind the scenes to allow this seamless operation. When s1 is accessed in the second line,
it is being accessed in read mode, which is to say that its value is being read from memory. Any time
a string value is accessed in read mode, the following three steps occur:

 1. Create an instance of the String type.

 2. Call the specifi ed method on the instance.

 3. Destroy the instance.

You can think of these three steps as they’re used in the following three lines of ECMAScript code:

var s1 = new String(“some text”);
var s2 = s1.substring(2);
s1 = null;

This behavior allows the primitive string value to act like an object. These same three steps are
repeated for Boolean and numeric values using the Boolean and Number types, respectively.

The major difference between reference types and primitive wrapper types is the lifetime of the
object. When you instantiate a reference type using the new operator, it stays in memory until it goes
out of scope, whereas automatically created primitive wrapper objects exist for only one line of code
before they are destroyed. This means that properties and methods cannot be added at runtime.
Take this for example:

var s1 = “some text”;
s1.color = “red”;
alert(s1.color); //undefined

Here, the second line attempts to add a color property to the string s1. However, when s1 is
accessed on the third line, the color property is gone. This happens because the String object
that was created in the second line is destroyed by the time the third line is executed. The third line
creates its own String object, which doesn’t have the color property.

It is possible to create the primitive wrapper objects explicitly using the Boolean, Number, and
String constructors. This should be done only when absolutely necessary, because it is often
confusing for developers as to whether they are dealing with a primitive or reference value. Calling
typeof on an instance of a primitive wrapper type returns “object”, and all primitive wrapper
objects convert to the Boolean value true.

c05.indd 147c05.indd 147 12/8/11 9:50:54 AM12/8/11 9:50:54 AM

148 ❘ CHAPTER 5 REFERENCE TYPES

The Object constructor also acts as a factory method and is capable of returning an instance of a
primitive wrapper based on the type of value passed into the constructor. For example:

var obj = new Object(“some text”);
alert(obj instanceof String); //true

When a string is passed into the Object constructor, an instance of String is created; a number
argument results in an instance of Number, while a Boolean argument returns an instance of Boolean.

Keep in mind that calling a primitive wrapper constructor using new is not the same as calling the
casting function of the same name. For example:

var value = “25”;
var number = Number(value); //casting function
alert(typeof number); //”number”

var obj = new Number(value); //constructor
alert(typeof obj); //”object”

In this example, the variable number is fi lled with a primitive number value of 25 while the variable
obj is fi lled with an instance of Number. For more on casting functions, see Chapter 3.

Even though it’s not recommended to create primitive wrapper objects explicitly, their functionality
is important in being able to manipulate primitive values. Each primitive wrapper type has methods
that make data manipulation easier.

The Boolean Type

The Boolean type is the reference type corresponding to the Boolean values. To create a Boolean
object, use the Boolean constructor and pass in either true or false, as in the following example:

var booleanObject = new Boolean(true);

Instances of Boolean override the valueOf() method to return a primitive value of either true or
false. The toString() method is also overridden to return a string of “true” or “false” when
called. Unfortunately, not only are Boolean objects of little use in ECMAScript, they can actually
be rather confusing. The problem typically occurs when trying to use Boolean objects in Boolean
expressions, as in this example:

var falseObject = new Boolean(false);
var result = falseObject && true;
alert(result); //true

var falseValue = false;
result = falseValue && true;
alert(result); //false

BooleanTypeExample01.htm

In this code, a Boolean object is created with a value of false. That same object is then ANDed with
the primitive value true. In Boolean math, false AND true is equal to false. However, in this

c05.indd 148c05.indd 148 12/8/11 9:50:55 AM12/8/11 9:50:55 AM

Primitive Wrapper Types ❘ 149

line of code, it is the object named falseObject being evaluated, not its value (false). As discussed
earlier, all objects are automatically converted to true in Boolean expressions, so falseObject
actually is given a value of true in the expression. Then, true ANDed with true is equal to true.

There are a couple of other differences between the primitive and the reference Boolean types.
The typeof operator returns “boolean” for the primitive but “object” for the reference. Also,
a Boolean object is an instance of the Boolean type and will return true when used with the
instanceof operator, whereas a primitive value returns false, as shown here:

alert(typeof falseObject); //object
alert(typeof falseValue); //boolean
alert(falseObject instanceof Boolean); //true
alert(falseValue instanceof Boolean); //false

It’s very important to understand the difference between a primitive Boolean value and a Boolean
object — it is recommended to never use the latter.

The Number Type

The Number type is the reference type for numeric values. To create a Number object, use the Number
constructor and pass in any number. Here’s an example:

var numberObject = new Number(10);

NumberTypeExample01.htm

As with the Boolean type, the Number type overrides valueOf(), toLocaleString(), and
toString(). The valueOf() method returns the primitive numeric value represented by the object,
whereas the other two methods return the number as a string. As mentioned in Chapter 3, the
toString() method optionally accepts a single argument indicating the radix in which to represent
the number, as shown in the following examples:

var num = 10;
alert(num.toString()); //”10”
alert(num.toString(2)); //”1010”
alert(num.toString(8)); //”12”
alert(num.toString(10)); //”10”
alert(num.toString(16)); //”a”

NumberTypeExample01.htm

Aside from the inherited methods, the Number type has several additional methods used to format
numbers as strings.

The toFixed() method returns a string representation of a number with a specifi ed number of
decimal points, as in this example:

var num = 10;
alert(num.toFixed(2)); //”10.00”

NumberTypeExample01.htm

c05.indd 149c05.indd 149 12/8/11 9:50:55 AM12/8/11 9:50:55 AM

150 ❘ CHAPTER 5 REFERENCE TYPES

Here, the toFixed() method is given an argument of 2, which indicates how many decimal places
should be displayed. As a result, the method returns the string “10.00”, fi lling out the empty
decimal places with zeros. If the number has more than the given number of decimal places, the
result is rounded to the nearest decimal place, as shown here:

var num = 10.005;
alert(num.toFixed(2)); //”10.01”

The rounding nature of toFixed() may be useful for applications dealing with currency, though
it’s worth noting that rounding using this method differs between browsers. Internet Explorer
through version 8 incorrectly rounds numbers in the range {(–0.94,–0.5], [0.5,0.94)} when zero is
passed to toFixed(). In these cases, Internet Explorer returns 0 when it should return either –1 or 1
(depending on the sign); other browsers behave as expected, and Internet Explorer 9 fi xes this issue.

The toFixed() method can represent numbers with 0 through 20 decimal
places. Some browsers may support larger ranges, but this is the typically
implemented range.

Another method related to formatting numbers is the toExponential() method, which returns a
string with the number formatted in exponential notation (aka e-notation). Just as with toFixed(),
toExponential() accepts one argument, which is the number of decimal places to output. Consider
this example:

var num = 10;
alert(num.toExponential(1)); //”1.0e+1”

This code outputs “1.0e+1” as the result. Typically, this small number wouldn’t be represented
using e-notation. If you want to have the most appropriate form of the number, the toPrecision()
method should be used instead.

The toPrecision() method returns either the fi xed or the exponential representation of a number,
depending on which makes the most sense. This method takes one argument, which is the total
number of digits to use to represent the number (not including exponents). Here’s an example:

var num = 99;
alert(num.toPrecision(1)); //”1e+2”
alert(num.toPrecision(2)); //”99”
alert(num.toPrecision(3)); //”99.0”

NumberTypeExample01.htm

In this example, the fi rst task is to represent the number 99 with a single digit, which results in
“1e+2”, otherwise known as 100. Because 99 cannot accurately be represented by just one digit,
the method rounded up to 100, which can be represented using just one digit. Representing 99
with two digits yields “99” and with three digits returns “99.0”. The toPrecision() method

c05.indd 150c05.indd 150 12/8/11 9:50:56 AM12/8/11 9:50:56 AM

Primitive Wrapper Types ❘ 151

essentially determines whether to call toFixed() or toExponential() based on the numeric value
you’re working with; all three methods round up or down to accurately represent a number with the
correct number of decimal places.

The toPrecision() method can represent numbers with 1 through 21 decimal
places. Some browsers may support larger ranges, but this is the typically
implemented range.

Similar to the Boolean object, the Number object gives important functionality to numeric values
but really should not be instantiated directly because of the same potential problems. The typeof
and instanceof operators work differently when dealing with primitive numbers versus reference
numbers, as shown in the following examples:

var numberObject = new Number(10);
var numberValue = 10;
alert(typeof numberObject); //”object”
alert(typeof numberValue); //”number”
alert(numberObject instanceof Number); //true
alert(numberValue instanceof Number); //false

Primitive numbers always return “number” when typeof is called on them, whereas Number objects
return “object”. Similarly, a Number object is an instance of Number, but a primitive number is not.

The String Type

The String type is the object representation for strings and is created using the String constructor
as follows:

var stringObject = new String(“hello world”);

StringTypeExample01.htm

The methods of a String object are available on all string primitives. All three of the inherited
methods — valueOf(), toLocaleString(), and toString() — return the object’s primitive
string value.

Each instance of String contains a single property, length, which indicates the number of
characters in the string. Consider the following example:

var stringValue = “hello world”;
alert(stringValue.length); //”11”

This example outputs “11”, the number of characters in “hello world”. Note that even if the
string contains a double-byte character (as opposed to an ASCII character, which uses just one
byte), each character is still counted as one.

c05.indd 151c05.indd 151 12/8/11 9:51:01 AM12/8/11 9:51:01 AM

152 ❘ CHAPTER 5 REFERENCE TYPES

The String type has a large number of methods to aid in the dissection and manipulation of strings
in ECMAScript.

Character Methods

Two methods access specifi c characters in the string: charAt() and charCodeAt(). These methods
each accept a single argument, which is the character’s zero-based position. The charAt() method
simply returns the character in the given position as a single-character string. (There is no character
type in ECMAScript.) For example:

var stringValue = “hello world”;
alert(stringValue.charAt(1)); //”e”

The character in position 1 of “hello world” is “e”, so calling charAt(1) returns “e”. If you want
the character’s character code instead of the actual character, then calling charCodeAt() is the
appropriate choice, as in the following example:

var stringValue = “hello world”;
alert(stringValue.charCodeAt(1)); //outputs “101”

This example outputs “101”, which is the character code for the lowercase “e” character.

ECMAScript 5 defi nes another way to access an individual character. Supporting browsers allow
you to use bracket notation with a numeric index to access a specifi c character in the string, as in
this example:

var stringValue = “hello world”;
alert(stringValue[1]); //”e”

Individual character access using bracket notation is supported in Internet Explorer 8 and all
current versions of Firefox, Safari, Chrome, and Opera. If this syntax is used in Internet Explorer 7
or earlier, the result is undefi ned (though not the special value undefined).

String-Manipulation Methods

Several methods manipulate the values of strings. The fi rst of these methods is concat(), which is
used to concatenate one or more strings to another, returning the concatenated string as the result.
Consider the following example:

var stringValue = “hello “;
var result = stringValue.concat(“world”);
alert(result); //”hello world”
alert(stringValue); //”hello”

The result of calling the concat() method on stringValue in this example is “hello world” — the
value of stringValue remains unchanged. The concat() method accepts any number of arguments,
so it can create a string from any number of other strings, as shown here:

var stringValue = “hello “;
var result = stringValue.concat(“world”, “!”);

c05.indd 152c05.indd 152 12/8/11 9:51:06 AM12/8/11 9:51:06 AM

Primitive Wrapper Types ❘ 153

alert(result); //”hello world!”
alert(stringValue); //”hello”

This modifi ed example concatenates “world” and “!” to the end of “hello “. Although the
concat() method is provided for string concatenation, the addition operator (+) is used more often
and, in most cases, actually performs better than the concat() method even when concatenating
multiple strings.

ECMAScript provides three methods for creating string values from a substring: slice(), substr(),
and substring(). All three methods return a substring of the string they act on, and all accept either
one or two arguments. The fi rst argument is the position where capture of the substring begins; the
second argument, if used, indicates where the operation should stop. For slice() and substring(),
this second argument is the position before which capture is stopped (all characters up to this point
are included except the character at that point). For substr(), the second argument is the number
of characters to return. If the second argument is omitted in any case, it is assumed that the ending
position is the length of the string. Just as with the concat() method, slice(), substr(), and
substring() do not alter the value of the string itself — they simply return a primitive string value
as the result, leaving the original unchanged. Consider this example:

var stringValue = “hello world”;
alert(stringValue.slice(3)); //”lo world”
alert(stringValue.substring(3)); //”lo world”
alert(stringValue.substr(3)); //”lo world”
alert(stringValue.slice(3, 7)); //”lo w”
alert(stringValue.substring(3,7)); //”lo w”
alert(stringValue.substr(3, 7)); //”lo worl”

StringTypeManipulationMethodsExample01.htm

In this example, slice(), substr(), and substring() are used in the same manner and, in
most cases, return the same value. When given just one argument, 3, all three methods return
“lo world”, because the second “l” in “hello” is in position 3. When given two arguments, 3 and 7,
slice() and substring() return “lo w” (the “o” in “world” is in position 7, so it is not included),
while substr() returns “lo worl”, because the second argument specifi es the number of characters
to return.

There are different behaviors for these methods when an argument is a negative number. For
the slice() method, a negative argument is treated as the length of the string plus the negative
argument.

For the substr() method, a negative fi rst argument is treated as the length of the string plus the
number, whereas a negative second number is converted to 0. For the substring() method, all
negative numbers are converted to 0. Consider this example:

var stringValue = “hello world”;
alert(stringValue.slice(-3)); //”rld”
alert(stringValue.substring(-3)); //”hello world”
alert(stringValue.substr(-3)); //”rld”

c05.indd 153c05.indd 153 12/8/11 9:51:07 AM12/8/11 9:51:07 AM

154 ❘ CHAPTER 5 REFERENCE TYPES

alert(stringValue.slice(3, -4)); //”lo w”
alert(stringValue.substring(3, -4)); //”hel”
alert(stringValue.substr(3, -4)); //”” (empty string)

StringTypeManipulationMethodsExample01.htm

This example clearly indicates the differences between three methods. When slice() and substr()
are called with a single negative argument, they act the same. This occurs because –3 is translated
into 7 (the length plus the argument), effectively making the calls slice(7) and substr(7). The
substring() method, on the other hand, returns the entire string, because –3 is translated to 0.

Because of a deviation in the Internet Explorer implementation of JavaScript,
passing in a negative number to substr() results in the original string being
returned. Internet Explorer 9 fi xes this issue.

When the second argument is negative, the three methods act differently from one another. The
slice() method translates the second argument to 7, making the call equivalent to slice(3, 7)
and so returning “lo w”. For the substring() method, the second argument gets translated to 0,
making the call equivalent to substring(3, 0), which is actually equivalent to substring(0,3),
because this method expects that the smaller number is the starting position and the larger one is the
ending position. For the substr() method, the second argument is also converted to 0, which means
there should be zero characters in the returned string, leading to the return value of an empty string.

String Location Methods

There are two methods for locating substrings within another string: indexOf() and
lastIndexOf(). Both methods search a string for a given substring and return the position (or –1
if the substring isn’t found). The difference between the two is that the indexOf() method begins
looking for the substring at the beginning of the string, whereas the lastIndexOf() method
begins looking from the end of the string. Consider this example:

var stringValue = “hello world”;
alert(stringValue.indexOf(“o”)); //4
alert(stringValue.lastIndexOf(“o”)); //7

StringTypeLocationMethodsExample01.htm

Here, the fi rst occurrence of the string “o” is at position 4, which is the “o” in “hello”. The last
occurrence of the string “o” is in the word “world”, at position 7. If there is only one occurrence of
“o” in the string, then indexOf() and lastIndexOf() return the same position.

Each method accepts an optional second argument that indicates the position to start searching
from within the string. This means that the indexOf() method will start searching from that
position and go toward the end of the string, ignoring everything before the start position, whereas

c05.indd 154c05.indd 154 12/8/11 9:51:07 AM12/8/11 9:51:07 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Primitive Wrapper Types ❘ 155

lastIndexOf() starts searching from the given position and continues searching toward the
beginning of the string, ignoring everything between the given position and the end of the string.
Here’s an example:

var stringValue = “hello world”;
alert(stringValue.indexOf(“o”, 6)); //7
alert(stringValue.lastIndexOf(“o”, 6)); //4

When the second argument of 6 is passed into each method, the results are the opposite from
the previous example. This time, indexOf() returns 7 because it starts searching the string from
position 6 (the letter “w”) and continues to position 7, where “o” is found. The lastIndexOf()
method returns 4 because the search starts from position 6 and continues back toward the
beginning of the string, where it encounters the “o” in “hello”. Using this second argument allows
you to locate all instances of a substring by looping callings to indexOf() or lastIndexOf(), as in
the following example:

var stringValue = “Lorem ipsum dolor sit amet, consectetur adipisicing elit”;
var positions = new Array();
var pos = stringValue.indexOf(“e”);

while(pos > -1){
 positions.push(pos);
 pos = stringValue.indexOf(“e”, pos + 1);
}

alert(positions); //”3,24,32,35,52”

StringTypeLocationMethodsExample02.htm

This example works through a string by constantly increasing the position at which indexOf()
should begin. It begins by getting the initial position of “e” in the string and then enters a loop that
continually passes in the last position plus one to indexOf(), ensuring that the search continues
after the last substring instance. Each position is stored in the positions array so the data can be
used later.

The trim() Method

ECMAScript 5 introduces a trim() method on all strings. The trim() method creates a copy of the
string, removes all leading and trailing white space, and then returns the result. For example:

var stringValue = “ hello world “;
var trimmedStringValue = stringValue.trim();
alert(stringValue); //” hello world “
alert(trimmedStringValue); //”hello world”

Note that since trim() returns a copy of a string, the original string remains intact with leading
and trailing white space in place. This method has been implemented in Internet Explorer 9+,
Firefox 3.5+, Safari 5+, Opera 10.5+, and Chrome. Firefox 3.5+, Safari 5+, and Chrome 8+ also

c05.indd 155c05.indd 155 12/8/11 9:51:12 AM12/8/11 9:51:12 AM

156 ❘ CHAPTER 5 REFERENCE TYPES

support two nonstandard trimLeft() and trimRight() methods that remove white space only
from the beginning or end of the string, respectively.

String Case Methods

The next set of methods involves case conversion. Four methods perform case conversion:
toLowerCase(), toLocaleLowerCase(), toUpperCase(), and toLocaleUpperCase().
The toLowerCase() and toUpperCase() methods are the original methods, modeled after the
same methods in java.lang.String. The toLocaleLowerCase() and toLocaleUpperCase()
methods are intended to be implemented based on a particular locale. In many locales, the
locale-specifi c methods are identical to the generic ones; however, a few languages (such as Turkish)
apply special rules to Unicode case conversion, and this necessitates using the locale-specifi c
methods for proper conversion. Here are some examples:

var stringValue = “hello world”;
alert(stringValue.toLocaleUpperCase()); //”HELLO WORLD”
alert(stringValue.toUpperCase()); //”HELLO WORLD”
alert(stringValue.toLocaleLowerCase()); //”hello world”
alert(stringValue.toLowerCase()); //”hello world”

StringTypeCaseMethodExample01.htm

This code outputs “HELLO WORLD” for both toLocaleUpperCase() and toUpperCase(), just as
“hello world” is output for both toLocaleLowerCase() and toLowerCase(). Generally speaking,
if you do not know the language in which the code will be running, it is safer to use the locale-
specifi c methods.

String Pattern-Matching Methods

The String type has several methods designed to pattern-match within the string. The fi rst of these
methods is match() and is essentially the same as calling a RegExp object’s exec() method. The
match() method accepts a single argument, which is either a regular-expression string or a RegExp
object. Consider this example:

var text = “cat, bat, sat, fat”;
var pattern = /.at/;

//same as pattern.exec(text)
var matches = text.match(pattern);
alert(matches.index); //0
alert(matches[0]); //”cat”
alert(pattern.lastIndex); //0

StringTypePatternMatchingExample01.htm

The array returned from match() is the same array that is returned when the RegExp object’s
exec() method is called with the string as an argument: the fi rst item is the string that matches the
entire pattern, and each other item (if applicable) represents capturing groups in the expression.

c05.indd 156c05.indd 156 12/8/11 9:51:13 AM12/8/11 9:51:13 AM

Primitive Wrapper Types ❘ 157

Another method for fi nding patterns is search(). The only argument for this method is the same as
the argument for match(): a regular expression specifi ed by either a string or a RegExp object. The
search() method returns the index of the fi rst pattern occurrence in the string or –1 if it’s not
found. search() always begins looking for the pattern at the beginning of the string. Consider this
example:

var text = “cat, bat, sat, fat”;
var pos = text.search(/at/);
alert(pos); //1

StringTypePatternMatchingExample01.htm

Here, search(/at/) returns 1, which is the fi rst position of “at” in the string.

To simplify replacing substrings, ECMAScript provides the replace() method. This method
accepts two arguments. The fi rst argument can be a RegExp object or a string (the string is not
converted to a regular expression), and the second argument can be a string or a function. If the
fi rst argument is a string, then only the fi rst occurrence of the substring will be replaced. The only
way to replace all instances of a substring is to provide a regular expression with the global fl ag
specifi ed, as in this example:

var text = “cat, bat, sat, fat”;
var result = text.replace(“at”, “ond”);
alert(result); //”cond, bat, sat, fat”

result = text.replace(/at/g, “ond”);
alert(result); //”cond, bond, sond, fond”

StringTypePatternMatchingExample01.htm

In this example, the string “at” is fi rst passed into replace() with a replacement text of “ond”.
The result of the operation is that “cat” is changed to “cond”, but the rest of the string remains
intact. By changing the fi rst argument to a regular expression with the global fl ag set, each instance
of “at” is replaced with “ond”.

When the second argument is a string, there are several special character sequences that can be used to
insert values from the regular-expression operations. ECMA-262 specifi es the following table of values.

SEQUENCE REPLACEMENT TEXT

$$ $

$& The substring matching the entire pattern. Same as RegExp.lastMatch.

$’ The part of the string occurring before the matched substring. Same as RegExp

.rightContext.

$` The part of the string occurring after the matched substring. Same as RegExp

.leftContext.

continues

c05.indd 157c05.indd 157 12/8/11 9:51:13 AM12/8/11 9:51:13 AM

158 ❘ CHAPTER 5 REFERENCE TYPES

SEQUENCE REPLACEMENT TEXT

$n The nth capture, where n is a value 0–9. For instance, $1 is the fi rst capture, $2

is the second, etc. If there is no capture then the empty string is used.

$nn The nnth capture, where nn is a value 01–99. For instance, $01 is the fi rst capture,

$02 is the second, etc. If there is no capture then the empty string is used.

Using these special sequences allows replacement using information about the last match, such as in
this example:

var text = “cat, bat, sat, fat”;
result = text.replace(/(.at)/g, “word ($1)”);
alert(result); //word (cat), word (bat), word (sat), word (fat)

StringTypePatternMatchingExample01.htm

Here, each word ending with “at” is replaced with “word” followed in parentheses by what it
replaces by using the $1 sequence.

The second argument of replace() may also be a function. When there is a single match, the
function gets passed three arguments: the string match, the position of the match within the string,
and the whole string. When there are multiple capturing groups, each matched string is passed
in as an argument, with the last two arguments being the position of the pattern match in the
string and the original string. The function should return a string indicating what the match should
be replaced with. Using a function as the second argument allows more granular control over
replacement text, as in this example:

function htmlEscape(text){
 return text.replace(/[<>”&]/g, function(match, pos, originalText){
 switch(match){
 case “<”:
 return “<”;
 case “>”:
 return “>”;
 case “&”:
 return “&”;
 case “\””:
 return “"”;
 }
 });
}

alert(htmlEscape(“<p class=\”greeting\”>Hello world!</p>”));
//”<p class="greeting">Hello world!</p>”;

StringTypePatternMatchingExample01.htm

 (continued)

c05.indd 158c05.indd 158 12/8/11 9:51:14 AM12/8/11 9:51:14 AM

Primitive Wrapper Types ❘ 159

Here, the function htmlEscape() is defi ned to escape four characters for insertion into HTML: the
less-than, greater-than, ampersand, and double-quote characters all must be escaped. The easiest
way to accomplish this is to have a regular expression to look for those characters and then defi ne a
function that returns the specifi c HTML entities for each matched character.

The last string method for dealing with patterns is split(), which separates the string into an array
of substrings based on a separator. The separator may be a string or a RegExp object. (The string is
not considered a regular expression for this method.) An optional second argument, the array limit,
ensures that the returned array will be no larger than a certain size. Consider this example:

var colorText = “red,blue,green,yellow”;
var colors1 = colorText.split(“,”); //[“red”, “blue”, “green”, “yellow”]
var colors2 = colorText.split(“,”, 2); //[“red”, “blue”]
var colors3 = colorText.split(/[^\,]+/); //[“”, “,”, “,”, “,”, “”]

StringTypePatternMatchingExample01.htm

In this example, the string colorText is a comma-separated string of colors. The call to
split(“,”) retrieves an array of those colors, splitting the string on the comma character. To
truncate the results to only two items, a second argument of 2 is specifi ed. Last, using a regular
expression, it’s possible to get an array of the comma characters. Note that in this last call to
split(), the returned array has an empty string before and after the commas. This happens
because the separator specifi ed by the regular expression appears at the beginning of the string (the
substring “red”) and at the end (the substring “yellow”).

Browsers vary in their exact support for regular expressions in the split() method. While simple
patterns typically work the same way, patterns where no match is found and patterns with capturing
groups can behave wildly different across browsers. Some of the notable differences are as follows:

Internet Explorer through version 8 ignores capturing groups. ECMA-262 indicates that
the groups should be spliced into the result array. Internet Explorer 9 correctly includes the
capturing groups in the results.

Firefox through version 3.6 includes empty strings in the results array when a capturing
group has no match; ECMA-262 specifi es that capturing groups without a match should be
represented as undefined in the results array.

There are other, subtle differences when using capturing groups in regular expressions. When using
such regular expressions, make sure to test thoroughly across a host of browsers.

➤

➤

For a larger discussion about the cross-browser issues with split() and
capturing groups in regular expressions, please see “JavaScript split bugs:
Fixed!” by Steven Levithan at
http://blog.stevenlevithan.com/archives/cross-browser-split.

c05.indd 159c05.indd 159 12/8/11 9:51:14 AM12/8/11 9:51:14 AM

160 ❘ CHAPTER 5 REFERENCE TYPES

The localeCompare() Method

The last method is localeCompare(), which compares one string to another and returns one of
three values as follows:

If the string should come alphabetically before the string argument, a negative number is
returned. (Most often this is –1, but it is up to each implementation as to the actual value.)

If the string is equal to the string argument, 0 is returned.

If the string should come alphabetically after the string argument, a positive number is
returned. (Most often this is 1, but once again, this is implementation-specifi c.)

Here’s an example:

var stringValue = “yellow”;
alert(stringValue.localeCompare(“brick”)); //1
alert(stringValue.localeCompare(“yellow”)); //0
alert(stringValue.localeCompare(“zoo”)); //-1

StringTypeLocaleCompareExample01.htm

In this code, the string “yellow” is compared to three different values: “brick”, “yellow”, and
“zoo”. Because “brick” comes alphabetically before “yellow”, localeCompare() returns 1;
“yellow” is equal to “yellow”, so localeCompare() returns 0 for that line; and “zoo” comes
after “yellow”, so localeCompare() returns –1 for that line. Once again, because the values are
implementation-specifi c, it is best to use localeCompare() as shown in this example:

function determineOrder(value) {
 var result = stringValue.localeCompare(value);
 if (result < 0){
 alert(“The string ‘yellow’ comes before the string ‘” + value + “’.”);
 } else if (result > 0) {
 alert(“The string ‘yellow’ comes after the string ‘” + value + “’.”);
 } else {
 alert(“The string ‘yellow’ is equal to the string ‘” + value + “’.”);
 }
}

determineOrder(“brick”);
determineOrder(“yellow”);
determineOrder(“zoo”);

StringTypeLocaleCompareExample01.htm

By using this sort of construct, you can be sure that the code works correctly in all implementations.

The unique part of localeCompare() is that an implementation’s locale (country and language)
indicates exactly how this method operates. In the United States, where English is the standard
language for ECMAScript implementations, localeCompare() is case-sensitive, determining that
uppercase letters come alphabetically after lowercase letters. However, this may not be the case in
other locales.

➤

➤

➤

c05.indd 160c05.indd 160 12/8/11 9:51:20 AM12/8/11 9:51:20 AM

Singleton Built-in Objects ❘ 161

The fromCharCode() Method

There is one method on the String constructor: fromCharCode(). This method’s job is to take one
or more character codes and convert them into a string. Essentially, this is the reverse operation
from the charCodeAt() instance method. Consider this example:

alert(String.fromCharCode(104, 101, 108, 108, 111)); //”hello”

StringTypeFromCharCodeExample01.htm

In this code, fromCharCode() is called on a series of character codes from the letters in the word
“hello”.

HTML Methods

The web browser vendors recognized a need early on to format HTML dynamically using JavaScript.
As a result, they extended the specifi cation to include several methods specifi cally designed to aid in
common HTML formatting tasks. The following table enumerates the HTML methods. However, be
aware that typically these methods aren’t used, because they tend to create nonsemantic markup.

METHOD OUTPUT

anchor(name) string

big() <big>string</big>

bold() string

fixed() <tt>string</tt>

fontcolor(color) string

fontsize(size) string

italics() <i>string</i>

link(url) string

small() <small>string</small>

strike() <strike>string</strike>

sub() _{string}

sup() ^{string}

SINGLETON BUILT-IN OBJECTS

ECMA-262 defi nes a built-in object as “any object supplied by an ECMAScript implementation,
independent of the host environment, which is present at the start of the execution of an ECMAScript
program.” This means the developer does not need to explicitly instantiate a built-in object; it is

c05.indd 161c05.indd 161 12/8/11 9:51:20 AM12/8/11 9:51:20 AM

162 ❘ CHAPTER 5 REFERENCE TYPES

already instantiated. You have already learned about most of the built-in objects, such as Object,
Array, and String. There are two singleton built-in objects defi ned by ECMA-262: Global and Math.

The Global Object

The Global object is the most unique in ECMAScript, because it isn’t explicitly accessible. ECMA-262
specifi es the Global object as a sort of catchall for properties and methods that don’t otherwise have
an owning object. In truth, there is no such thing as a global variable or global function; all variables
and functions defi ned globally become properties of the Global object. Functions covered earlier in
this book, such as isNaN(), isFinite(), parseInt(), and parseFloat() are actually methods of
the Global object. In addition to these, there are several other methods available on the Global object.

URI-Encoding Methods

The encodeURI() and encodeURIComponent() methods are used to encode URIs (Uniform
Resource Identifi ers) to be passed to the browser. To be valid, a URI cannot contain certain
characters, such as spaces. The URI-encoding methods encode the URIs so that a browser can still
accept and understand them, replacing all invalid characters with a special UTF-8 encoding.

The encodeURI() method is designed to work on an entire URI (for instance, www.wrox.com/
illegal value.htm), whereas encodeURIComponent() is designed to work solely on a segment of
a URI (such as illegal value.htm from the previous URI). The main difference between the two
methods is that encodeURI() does not encode special characters that are part of a URI, such as the
colon, forward slash, question mark, and pound sign, whereas encodeURIComponent() encodes
every nonstandard character it fi nds. Consider this example:

var uri = “http://www.wrox.com/illegal value.htm#start”;

//”http://www.wrox.com/illegal%20value.htm#start”
alert(encodeURI(uri));

//”http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm%23start”
alert(encodeURIComponent(uri));

GlobalObjectURIEncodingExample01.htm

Here, using encodeURI() left the value completely intact except for the space, which was
replaced with %20. The encodeURIComponent() method replaced all nonalphanumeric characters
with their encoded equivalents. This is why encodeURI() can be used on full URIs, whereas
encodeURIComponent() can be used only on strings that are appended to the end of an existing URI.

Generally speaking, you’ll use encodeURIComponent() much more frequently
than encodeURI(), because it’s more common to encode query string arguments
separately from the base URI.

c05.indd 162c05.indd 162 12/8/11 9:51:21 AM12/8/11 9:51:21 AM

Singleton Built-in Objects ❘ 163

The two counterparts to encodeURI() and encodeURIComponent() are decodeURI() and
decodeURIComponent(). The decodeURI() method decodes only characters that would have
been replaced by using encodeURI(). For instance, %20 is replaced with a space, but %23 is not
replaced because it represents a pound sign (#), which encodeURI() does not replace. Likewise,
decodeURIComponent() decodes all characters encoded by encodeURIComponent(), essentially
meaning it decodes all special values. Consider this example:

var uri = “http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm%23start”;

//http%3A%2F%2Fwww.wrox.com%2Fillegal value.htm%23start
alert(decodeURI(uri));

//http://www.wrox.com/illegal value.htm#start
alert(decodeURIComponent(uri));

GlobalObjectURIDecodingExample01.htm

Here, the uri variable contains a string that is encoded using encodeURIComponent(). The fi rst value
output is the result of decodeURI(), which replaced only the %20 with a space. The second value is
the output of decodeURIComponent(), which replaces all the special characters and outputs a string
that has no escaping in it. (This string is not a valid URI.)

The URI methods encodeURI(), encodeURIComponent(), decodeURI(), and
decodeURIComponent() replace the escape() and unescape() methods, which
are deprecated in the ECMA-262 third edition. The URI methods are always
preferable, because they encode all Unicode characters, whereas the original
methods encode only ASCII characters correctly. Avoid using escape() and
unescape() in production code.

The eval() Method

The fi nal method is perhaps the most powerful in the entire ECMAScript language: the eval()
method. This method works like an entire ECMAScript interpreter and accepts one argument, a
string of ECMAScript (or JavaScript) to execute. Here’s an example:

eval(“alert(‘hi’)”);

This line is functionally equivalent to the following:

alert(“hi”);

When the interpreter fi nds an eval() call, it interprets the argument into actual ECMAScript
statements and then inserts it into place. Code executed by eval() is considered to be part of the
execution context in which the call is made, and the executed code has the same scope chain as that

c05.indd 163c05.indd 163 12/8/11 9:51:26 AM12/8/11 9:51:26 AM

164 ❘ CHAPTER 5 REFERENCE TYPES

context. This means variables that are defi ned in the containing context can be referenced inside an
eval() call, such as in this example:

var msg = “hello world”;
eval(“alert(msg)”); //”hello world”

Here, the variable msg is defi ned outside the context of the eval() call, yet the call to alert()
still displays the text “hello world”, because the second line is replaced with a real line of code.
Likewise, you can defi ne a function or variables inside an eval() call that can be referenced by the
code outside, as follows:

eval(“function sayHi() { alert(‘hi’); }”);
sayHi();

Here, the sayHi() function is defi ned inside an eval() call. Because that call is replaced with the
actual function, it is possible to call sayHi() on the following line. This works the same for variables:

eval(“var msg = ‘hello world’;”);
alert(msg); //”hello world”

Any variables or functions created inside of eval() will not be hoisted, as they are contained within
a string when the code is being parsed. They are created only at the time of eval() execution.

In strict mode, variables and functions created inside of eval() are not accessible outside, so these
last two examples would cause errors. Also, in strict mode, assigning a value to eval causes an error:

“use strict”;
eval = “hi”; //causes error

The capability to interpret strings of code is very powerful but also very
dangerous. Use extreme caution with eval(), especially when passing user-
entered data into it. A mischievous user could insert values that might
compromise your site or application security. (This is called code injection.)

Global Object Properties

The Global object has a number of properties, some of which have already been mentioned in this
book. The special values of undefined, NaN, and Infinity are all properties of the Global object.
Additionally, all native reference type constructors, such as Object and Function, are properties of
the Global object. The following table lists all of the properties.

PROPERTY DESCRIPTION

undefined The special value undefined

NaN The special value NaN

Infinity The special value Infinity

c05.indd 164c05.indd 164 12/8/11 9:51:31 AM12/8/11 9:51:31 AM

Singleton Built-in Objects ❘ 165

PROPERTY DESCRIPTION

Object Constructor for Object

Array Constructor for Array

Function Constructor for Function

Boolean Constructor for Boolean

String Constructor for String

Number Constructor for Number

Date Constructor for Date

RegExp Constructor for RegExp

Error Constructor for Error

EvalError Constructor for EvalError

RangeError Constructor for RangeError

ReferenceError Constructor for ReferenceError

SyntaxError Constructor for SyntaxError

TypeError Constructor for TypeError

URIError Constructor for URIError

In ECMAScript 5, it’s explicitly disallowed to assign values to undefined, NaN, and Infinity.
Doing so causes an error even in nonstrict mode.

The Window Object

Though ECMA-262 doesn’t indicate a way to access the Global object directly, web browsers
implement it such that the window is the Global object’s delegate. Therefore, all variables and functions
declared in the global scope become properties on window. Consider this example:

var color = “red”;

function sayColor(){
 alert(window.color);
}

window.sayColor(); //”red”

GlobalObjectWindowExample01.htm

c05.indd 165c05.indd 165 12/8/11 9:51:36 AM12/8/11 9:51:36 AM

166 ❘ CHAPTER 5 REFERENCE TYPES

Here, a global variable named color and a global function named sayColor() are defi ned. Inside
sayColor(), the color variable is accessed via window.color to show that the global variable
became a property of window. The function is then called directly off of the window object as
window.sayColor(), which pops up the alert.

Another way to retrieve the Global object is to use the following code:

var global = function(){
 return this;
}();

This code creates an immediately-invoked function expression that returns the value of this. As
mentioned previously, the this value is equivalent to the Global object when a function is executed
with no explicit this value specifi ed (either by being an object method or via call()/apply()).
Thus, calling a function that simply returns this is a consistent way to retrieve the Global object in
any execution environment. Function expressions are discussed further in Chapter 7.

The Math Object

ECMAScript provides the Math object as a common location for mathematical formulas and
information. The computations available on the Math object execute faster than if you were to write
the computations in JavaScript directly. There are a number of properties and methods to help these
computations.

Math Object Properties

The Math object has several properties, consisting mostly of special values in the world of
mathematics. The following table describes these properties.

PROPERTY DESCRIPTION

Math.E The value of e, the base of the natural logarithms

Math.LN10 The natural logarithm of 10

Math.LN2 The natural logarithm of 2

Math.LOG2E The base 2 logarithm of e

Math.LOG10E The base 10 logarithm of e

The window object does much more in JavaScript than just implement the
ECMAScript Global object. Details of the window object and the Browser
Object Model are discussed in Chapter 8.

c05.indd 166c05.indd 166 12/8/11 9:51:36 AM12/8/11 9:51:36 AM

Singleton Built-in Objects ❘ 167

PROPERTY DESCRIPTION

Math.PI The value of π

Math.SQRT1_2 The square root of ½

Math.SQRT2 The square root of 2

Although the meanings and uses of these values are outside the scope of this book, they are
available if and when you need them.

The min() and max() Methods

The Math object also contains many methods aimed at performing both simple and complex
mathematical calculations.

The min() and max() methods determine which number is the smallest or largest in a group of
numbers. These methods accept any number of parameters, as shown in the following example:

var max = Math.max(3, 54, 32, 16);
alert(max); //54

var min = Math.min(3, 54, 32, 16);
alert(min); //3

MathObjectMinMaxExample01.htm

Out of the numbers 3, 54, 32, and 16, Math.max() returns the number 54, whereas Math.min()
returns the number 3. These methods are useful for avoiding extra loops and if statements to
determine the maximum value out of a group of numbers.

To fi nd the maximum or the minimum value in an array, you can use the apply() method as follows:

var values = [1, 2, 3, 4, 5, 6, 7, 8];
var max = Math.max.apply(Math, values);

The key to this technique is to pass in the Math object as the fi rst argument of apply() so that the
this value is set appropriately. Then you can pass an array in as the second argument.

Rounding Methods

The next group of methods has to do with rounding decimal values into integers. Three methods —
Math.ceil(), Math.floor(), and Math.round() — handle rounding in different ways as
described here:

The Math.ceil() method represents the ceiling function, which always rounds numbers up
to the nearest integer value.

The Math.floor() method represents the fl oor function, which always rounds numbers
down to the nearest integer value.

➤

➤

c05.indd 167c05.indd 167 12/8/11 9:51:41 AM12/8/11 9:51:41 AM

168 ❘ CHAPTER 5 REFERENCE TYPES

The Math.round() method represents a standard round function, which rounds up if the
number is at least halfway to the next integer value (0.5 or higher) and rounds down if not.
This is the way you were taught to round in elementary school.

The following example illustrates how these methods work:

alert(Math.ceil(25.9)); //26
alert(Math.ceil(25.5)); //26
alert(Math.ceil(25.1)); //26

alert(Math.round(25.9)); //26
alert(Math.round(25.5)); //26
alert(Math.round(25.1)); //25

alert(Math.floor(25.9)); //25
alert(Math.floor(25.5)); //25
alert(Math.floor(25.1)); //25

MathObjectRoundingExample01.htm

For all values between 25 and 26 (exclusive), Math.ceil() always returns 26, because it
will always round up. The Math.round() method returns 26 only if the number is 25.5 or greater;
otherwise it returns 25. Last, Math.floor() returns 25 for all numbers between 25 and 26
(exclusive).

The random() Method

The Math.random() method returns a random number between the 0 and the 1, not including either
0 or 1. This is a favorite tool of web sites that are trying to display random quotes or random facts
upon entry of a web site. You can use Math.random() to select numbers within a certain integer
range by using the following formula:

number = Math.floor(Math.random() * total_number_of_choices + first_possible_value)

The Math.floor() method is used here because Math.random() always returns a decimal value,
meaning that multiplying it by a number and adding another still yields a decimal value. So, if you
wanted to select a number between 1 and 10, the code would look like this:

var num = Math.floor(Math.random() * 10 + 1);

MathObjectRandomExample01.htm

You see 10 possible values (1 through 10), with the fi rst possible value being 1. If you want to select
a number between 2 and 10, then the code would look like this:

var num = Math.floor(Math.random() * 9 + 2);

MathObjectRandomExample02.htm

➤

c05.indd 168c05.indd 168 12/8/11 9:51:42 AM12/8/11 9:51:42 AM

Singleton Built-in Objects ❘ 169

There are only nine numbers when counting from 2 to 10, so the total number of choices is nine,
with the fi rst possible value being 2. Many times, it’s just easier to use a function that handles the
calculation of the total number of choices and the fi rst possible value, as in this example:

function selectFrom(lowerValue, upperValue) {
 var choices = upperValue - lowerValue + 1;
 return Math.floor(Math.random() * choices + lowerValue);
}

var num = selectFrom(2,10);
alert(num); //number between 2 and 10, inclusive

MathObjectRandomExample03.htm

Here, the function selectFrom() accepts two arguments: the lowest value that should be returned
and the highest value that should be returned. The number of choices is calculated by subtracting
the two values and adding one and then applying the previous formula to those numbers. So it’s
possible to select a number between 2 and 10 (inclusive) by calling selectFrom(2,10). Using the
function, it’s easy to select a random item from an array, as shown here:

var colors = [“red”, “green”, “blue”, “yellow”, “black”, “purple”, “brown”];
var color = colors[selectFrom(0, colors.length-1)];

MathObjectRandomExample03.htm

In this example, the second argument to selectFrom() is the length of the array minus 1, which is
the last position in an array.

Other Methods

The Math object has a lot of methods related to various simple and higher-level mathematical
operations. It’s beyond the scope of this book to discuss the ins and outs of each or in what situations
they may be used, but the following table enumerates the remaining methods of the Math object.

METHOD DESCRIPTION

Math.abs(num) Returns the absolute value of (num)

Math.exp(num) Returns Math.E raised to the power of (num)

Math.log(num) Returns the natural logarithm of (num)

Math.pow(num, power) Returns num raised to the power of power

Math.sqrt(num) Returns the square root of (num)

Math.acos(x) Returns the arc cosine of x

continues

c05.indd 169c05.indd 169 12/8/11 9:51:42 AM12/8/11 9:51:42 AM

170 ❘ CHAPTER 5 REFERENCE TYPES

METHOD DESCRIPTION

Math.asin(x) Returns the arc sine of x

Math.atan(x) Returns the arc tangent of x

Math.atan2(y, x) Returns the arc tangent of y/x

Math.cos(x) Returns the cosine of x

Math.sin(x) Returns the sine of x

Math.tan(x) Returns the tangent of x

Even though these methods are defi ned by ECMA-262, the results are implementation-dependent
for those dealing with sines, cosines, and tangents, because you can calculate each value in many
different ways. Consequently, the precision of the results may vary from one implementation
to another.

SUMMARY

Objects in JavaScript are called reference values, and several built-in reference types can be used to
create specifi c types of objects, as follows:

Reference types are similar to classes in traditional object-oriented programming but are
implemented differently.

The Object type is the base from which all other reference types inherit basic behavior.

The Array type represents an ordered list of values and provides functionality for
manipulating and converting the values.

The Date type provides information about dates and times, including the current date and
time and calculations.

The RegExp type is an interface for regular-expression support in ECMAScript, providing
most basic and some advanced regular-expression functionality.

One of the unique aspects of JavaScript is that functions are actually instances of the Function
type, meaning functions are objects. Because functions are objects, functions have methods that can
be used to augment how they behave.

Because of the existence of primitive wrapper types, primitive values in JavaScript can be accessed
as if they were objects. There are three primitive wrapper types: Boolean, Number, and String.
They all have the following characteristics:

Each of the wrapper types maps to the primitive type of the same name.

➤

➤

➤

➤

➤

➤

 (continued)

c05.indd 170c05.indd 170 12/8/11 9:51:43 AM12/8/11 9:51:43 AM

Summary ❘ 171

When a primitive value is accessed in read mode, a primitive wrapper object is instantiated
so that it can be used to manipulate the data.

As soon as a statement involving a primitive value is executed, the wrapper object is
destroyed.

There are also two built-in objects that exist at the beginning of code execution: Global and Math.
The Global object isn’t accessible in most ECMAScript implementations; however, web browsers
implement it as the window object. The Global object contains all global variables and functions
as properties. The Math object contains properties and methods to aid in complex mathematical
calculations.

➤

➤

c05.indd 171c05.indd 171 12/8/11 9:51:43 AM12/8/11 9:51:43 AM

c05.indd 172c05.indd 172 12/8/11 9:51:43 AM12/8/11 9:51:43 AM

Object-Oriented Programming

WHAT’S IN THIS CHAPTER?

Understanding object properties

Understanding and creating objects

Understanding inheritance

Object-oriented (OO) languages typically are identifi ed through their use of classes to create
multiple objects that have the same properties and methods. As mentioned previously,
ECMAScript has no concept of classes, and therefore objects are different than in class-based
languages.

ECMA-262 defi nes an object as an “unordered collection of properties each of which contains
a primitive value, object, or function.” Strictly speaking, this means that an object is an
array of values in no particular order. Each property or method is identifi ed by a name that
is mapped to a value. For this reason (and others yet to be discussed), it helps to think of
ECMAScript objects as hash tables: nothing more than a grouping of name-value pairs where
the value may be data or a function.

Each object is created based on a reference type, either one of the native types discussed in the
previous chapter, or a developer-defi ned type.

UNDERSTANDING OBJECTS

As mentioned in the previous chapter, the simplest way to create a custom object is to create a
new instance of Object and add properties and methods to it, as in this example:

var person = new Object();
person.name = “Nicholas”;
person.age = 29;

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

6

c06.indd 173c06.indd 173 12/8/11 9:59:01 AM12/8/11 9:59:01 AM

174 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

person.job = “Software Engineer”;

person.sayName = function(){
 alert(this.name);
};

CreatingObjectsExample01.htm

This example creates an object called person that has three properties (name, age, and job) and
one method (sayName()). The sayName() method displays the value of this.name, which resolves
to person.name. Early JavaScript developers used this pattern frequently to create new objects. A
few years later, object literals became the preferred pattern for creating such objects. The previous
example can be rewritten using object literal notation as follows:

var person = {
 name: “Nicholas”,
 age: 29,
 job: “Software Engineer”,

 sayName: function(){
 alert(this.name);
 }
};

The person object in this example is equivalent to the person object in the prior example, with all
the same properties and methods. These properties are all created with certain characteristics that
defi ne their behavior in JavaScript.

Types of Properties

ECMA-262 fi fth edition describes characteristics of properties through the use of internal-only
attributes. These attributes are defi ned by the specifi cation for implementation in JavaScript engines,
and as such, these attributes are not directly accessible in JavaScript. To indicate that an attribute is
internal, surround the attribute name with two pairs of square brackets, such as [[Enumerable]].
Although ECMA-262 third edition had different defi nitions, this book refers only to the fi fth
edition descriptions.

There are two types of properties: data properties and accessor properties.

Data Properties

Data properties contain a single location for a data value. Values are read from and written to this
location. Data properties have four attributes describing their behavior:

[[Configurable]] — Indicates if the property may be redefi ned by removing the property
via delete, changing the property’s attributes, or changing the property into an accessor
property. By default, this is true for all properties defi ned directly on an object, as in the
previous example.

➤

c06.indd 174c06.indd 174 12/8/11 9:59:05 AM12/8/11 9:59:05 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Understanding Objects ❘ 175

[[Enumerable]] — Indicates if the property will be returned in a for-in loop. By default,
this is true for all properties defi ned directly on an object, as in the previous example.

[[Writable]] — Indicates if the property’s value can be changed. By default, this is true
for all properties defi ned directly on an object, as in the previous example.

[[Value]] — Contains the actual data value for the property. This is the location from
which the property’s value is read and the location to which new values are saved. The
default value for this attribute is undefined.

When a property is explicitly added to an object as in the previous examples, [[Configurable]],
[[Enumerable]], and [[Writable]] are all set to true while the [[Value]] attribute is set to the
assigned value. For example:

var person = {
 name: “Nicholas”
};

Here, the property called name is created and a value of “Nicholas” is assigned. That means
[[Value]] is set to “Nicholas”, and any changes to that value are stored in this location.

To change any of the default property attributes, you must use the ECMAScript 5 Object
.defineProperty() method. This method accepts three arguments: the object on which
the property should be added or modifi ed, the name of the property, and a descriptor object. The
properties on the descriptor object match the attribute names: configurable, enumerable,
writable, and value. You can set one or all of these values to change the corresponding attribute
values. For example:

var person = {};
Object.defineProperty(person, “name”, {
 writable: false,
 value: “Nicholas”
});

alert(person.name); //”Nicholas”
person.name = “Greg”;
alert(person.name); //”Nicholas”

DataPropertiesExample01.htm

This example creates a property called name with a value of “Nicholas” that is read-only. The
value of this property can’t be changed, and any attempts to assign a new value are ignored in
nonstrict mode. In strict mode, an error is thrown when an attempt is made to change the value of a
read-only property.

Similar rules apply to creating a nonconfi gurable property. For example:

var person = {};
Object.defineProperty(person, “name”, {
 configurable: false,
 value: “Nicholas”

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 175c06.indd 175 12/8/11 9:59:05 AM12/8/11 9:59:05 AM

176 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

});

alert(person.name); //”Nicholas”
delete person.name;
alert(person.name); //”Nicholas”

DataPropertiesExample02.htm

Here, setting configurable to false means that the property cannot be removed from the object.
Calling delete on the property has no effect in nonstrict mode and throws an error in strict mode.
Additionally, once a property has been defi ned as nonconfi gurable, it cannot become confi gurable
again. Any attempt to call Object.defineProperty() and change any attribute other than
writable causes an error:

var person = {};
Object.defineProperty(person, “name”, {
 configurable: false,
 value: “Nicholas”
});

//throws an error
Object.defineProperty(person, “name”, {
 confi gurable: true,
 value: “Nicholas”
});

DataPropertiesExample03.htm

So although you can call Object.defineProperty() multiple times for the same property, there are
limits once configurable has been set to false.

When you are using Object.defineProperty(), the values for configurable, enumerable, and
writable default to false unless otherwise specifi ed. In most cases, you likely won’t need the powerful
options provided by Object.defineProperty(), but it’s important to understand the concepts to
have a good understanding of JavaScript objects.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Internet Explorer 8 was the fi rst version to implement Object
.defineProperty(). Unfortunately, the implementation is extremely limited.
This method can be used only on DOM objects and can create only accessor
properties. It’s recommended you avoid using Object.defineProperty() in
Internet Explorer 8 because of its incomplete implementation.

Accessor Properties

Accessor properties do not contain a data value. Instead, they contain a combination of a getter
function and a setter function (though both are not necessary). When an accessor property is read
from, the getter function is called, and it’s the function’s responsibility to return a valid value; when

c06.indd 176c06.indd 176 12/8/11 9:59:06 AM12/8/11 9:59:06 AM

Understanding Objects ❘ 177

an accessor property is written to, a function is called with the new value, and that function must
decide how to react to the data. Accessor properties have four attributes:

[[Configurable]] — Indicates if the property may be redefi ned by removing the property
via delete, changing the property’s attributes, or changing the property into a data
property. By default, this is true for all properties defi ned directly on an object.

[[Enumerable]] — Indicates if the property will be returned in a for-in loop. By default,
this is true for all properties defi ned directly on an object.

[[Get]] — The function to call when the property is read from. The default value is
undefined.

[[Set]] — The function to call when the property is written to. The default value is
undefined.

It is not possible to defi ne an accessor property explicitly; you must use Object.defineProperty().
Here’s a simple example:

var book = {
 _year: 2004,
 edition: 1
};

Object.defineProperty(book, “year”, {
 get: function(){
 return this._year;
 },
 set: function(newValue){

 if (newValue > 2004) {
 this._year = newValue;
 this.edition += newValue - 2004;
 }
 }
});

book.year = 2005;
alert(book.edition); //2

AccessorPropertiesExample01.htm

In this code, an object book is created with two default properties: _year and edition. The
underscore on _year is a common notation to indicate that a property is not intended to be accessed
from outside of the object’s methods. The year property is defi ned to be an accessor property
where the getter function simply returns the value of _year and the setter does some calculation
to determine the correct edition. So changing the year property to 2005 results in both _year and
edition changing to 2. This is a typical use case for accessor properties, when setting a property
value results in some other changes to occur.

It’s not necessary to assign both a getter and a setter. Assigning just a getter means that the property
cannot be written to and attempts to do so will be ignored. In strict mode, trying to write to a

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 177c06.indd 177 12/8/11 9:59:17 AM12/8/11 9:59:17 AM

178 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

property with only a getter throws an error. Likewise, a property with only a setter cannot be read and
will return the value undefined in nonstrict mode, while doing so throws an error in strict mode.

Prior to the ECMAScript 5 method, which is available in Internet Explorer 9+ (Internet Explorer 8
had a partial implementation), Firefox 4+, Safari 5+, Opera 12+, and Chrome, two nonstandard
methods were used to create accessor properties: __defineGetter__() and __defineSetter__().
These were fi rst developed by Firefox and later copied by Safari 3, Chrome 1, and Opera 9.5. The
previous example can be rewritten using these legacy methods as follows:

var book = {
 _year: 2004,
 edition: 1
};

//legacy accessor support
book.__defi neGetter__(“year”, function(){
 return this._year;
});

book.__defi neSetter__(“year”, function(newValue){
 if (newValue > 2004) {
 this._year = newValue;
 this.edition += newValue - 2004;
 }
});

book.year = 2005;
alert(book.edition); //2

AccessorPropertiesExample02.htm

There is no way to modify [[Configurable]] or [[Enumerable]] in browsers that don’t support
Object.defineProperty().

Defi ning Multiple Properties

Since there’s a high likelihood that you’ll need to defi ne more than one property on an object,
ECMAScript 5 provides the Object.defineProperties() method. This method allows you to
defi ne multiple properties using descriptors at once. There are two arguments: the object on which
to add or modify the properties and an object whose property names correspond to the properties’
names to add or modify. For example:

var book = {};

Object.defineProperties(book, {
 _year: {
 value: 2004
 },

 edition: {
 value: 1

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 178c06.indd 178 12/8/11 9:59:17 AM12/8/11 9:59:17 AM

Understanding Objects ❘ 179

 },

 year: {
 get: function(){
 return this._year;
 },

 set: function(newValue){
 if (newValue > 2004) {
 this._year = newValue;
 this.edition += newValue - 2004;
 }
 }
 }
});

MultiplePropertiesExample01.htm

This code defi nes two data properties, _year and edition, and an accessor property called year
on the book object. The resulting object is identical to the example in the previous section. The only
difference is that all of these properties are created at the same time.

The Object.defineProperties() method is supported in Internet Explorer 9+, Firefox 4+, Safari
5+, Opera 12+, and Chrome.

Reading Property Attributes

It’s also possible to retrieve the property descriptor for a given property by using the ECMAScript 5
Object.getOwnPropertyDescriptor() method. This method accepts two arguments: the object on
which the property resides and the name of the property whose descriptor should be retrieved. The
return value is an object with properties for configurable, enumerable, get, and set for accessor
properties or configurable, enumerable, writable, and value for data properties. Example:

var book = {};

Object.defineProperties(book, {
 _year: {
 value: 2004
 },

 edition: {
 value: 1
 },

 year: {
 get: function(){
 return this._year;
 },

 set: function(newValue){
 if (newValue > 2004) {
 this._year = newValue;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 179c06.indd 179 12/8/11 9:59:18 AM12/8/11 9:59:18 AM

180 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

 this.edition += newValue - 2004;
 }
 }
 }
});

var descriptor = Object.getOwnPropertyDescriptor(book, “_year”);
alert(descriptor.value); //2004
alert(descriptor.confi gurable); //false
alert(typeof descriptor.get); //”undefi ned”

var descriptor = Object.getOwnPropertyDescriptor(book, “year”);
alert(descriptor.value); //undefi ned
alert(descriptor.enumerable); //false
alert(typeof descriptor.get); //”function”

GetPropertyDescriptorExample01.htm

For the data property _year, value is equal to the original value, configurable is false, and
get is undefined. For the accessor property year, value is undefined, enumerable is false,
and get is a pointer to the specifi ed getter function.

The Object.getOwnPropertyDescriptor() method can be used on any object in JavaScript,
including DOM and BOM objects. This method is supported in Internet Explorer 9+, Firefox 4+,
Safari 5+, Opera 12+, and Chrome.

OBJECT CREATION

Although using the Object constructor or an object literal are convenient ways to create single
objects, there is an obvious downside: creating multiple objects with the same interface requires a lot
of code duplication. To solve this problem, developers began using a variation of the factory pattern.

The Factory Pattern

The factory pattern is a well-known design pattern used in software engineering to abstract
away the process of creating specifi c objects. (Other design patterns and their implementation
in JavaScript are discussed later in the book.) With no way to defi ne classes in ECMAScript,
developers created functions to encapsulate the creation of objects with specifi c interfaces, such as in
this example:

function createPerson(name, age, job){
 var o = new Object();
 o.name = name;
 o.age = age;
 o.job = job;
 o.sayName = function(){
 alert(this.name);
 };
 return o;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 180c06.indd 180 12/8/11 9:59:19 AM12/8/11 9:59:19 AM

Object Creation ❘ 181

}

var person1 = createPerson(“Nicholas”, 29, “Software Engineer”);
var person2 = createPerson(“Greg”, 27, “Doctor”);

FactoryPatternExample01.htm

Here, the function createPerson() accepts arguments with which to build an object with all of the
necessary information to represent a Person object. The function can be called any number of times
with different arguments and will still return an object that has three properties and one method.
Though this solved the problem of creating multiple similar objects, the factory pattern didn’t
address the issue of object identifi cation (what type of object an object is). As JavaScript continued
to evolve, a new pattern emerged.

The Constructor Pattern

As mentioned in previous chapters, constructors in ECMAScript are used to create specifi c types of
objects. There are native constructors, such as Object and Array, which are available automatically
in the execution environment at runtime. It is also possible to defi ne custom constructors that defi ne
properties and methods for your own type of object. For instance, the previous example can be
rewritten using the constructor pattern as the following:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = function(){
 alert(this.name);
 };
}

var person1 = new Person(“Nicholas”, 29, “Software Engineer”);
var person2 = new Person(“Greg”, 27, “Doctor”);

ConstructorPatternExample01.htm

In this example, the Person() function takes the place of the factory createPerson() function.
Note that the code inside Person() is the same as the code inside createPerson(), with the
following exceptions:

There is no object being created explicitly.

The properties and method are assigned directly onto the this object.

There is no return statement.

Also note the name of the function is Person with an uppercase P. By convention, constructor
functions always begin with an uppercase letter, whereas nonconstructor functions begin with a

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 181c06.indd 181 12/8/11 9:59:19 AM12/8/11 9:59:19 AM

182 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

lowercase letter. This convention is borrowed from other OO languages and helps to distinguish
function use in ECMAScript, since constructors are simply functions that create objects.

To create a new instance of Person, use the new operator. Calling a constructor in this manner
essentially causes the following four steps to be taken:

 1. Create a new object.

 2. Assign the this value of the constructor to the new object (so this points to the new object).

 3. Execute the code inside the constructor (adds properties to the new object).

 4. Return the new object.

At the end of the preceding example, person1 and person2 are each fi lled with a different instance
of Person. Each of these objects has a constructor property that points back to Person, as follows:

alert(person1.constructor == Person); //true
alert(person2.constructor == Person); //true

The constructor property was originally intended for use in identifying the object type. However, the
instanceof operator is considered to be a safer way of determining type. Each of the objects in this
example is considered to be both an instance of Object and an instance of Person, as indicated by
using the instanceof operator like this:

alert(person1 instanceof Object); //true
alert(person1 instanceof Person); //true
alert(person2 instanceof Object); //true
alert(person2 instanceof Person); //true

Defi ning your own constructors ensures that instances can be identifi ed as a particular type later
on, which is a great advantage over the factory pattern. In this example, person1 and person2 are
considered to be instances of Object, because all custom objects inherit from Object (the specifi cs
of this are discussed later).

Constructors defi ned in this manner are defi ned on the Global object (the
window object in web browsers). The Browser Object Model (BOM) is discussed
further in Chapter 8.

Constructors as Functions

The only difference between constructor functions and other functions is the way in which they are
called. Constructors are, after all, just functions; there’s no special syntax to defi ne a constructor
that automatically makes it behave as such. Any function that is called with the new operator acts
as a constructor, whereas any function called without it acts just as you would expect a normal
function call to act. For instance, the Person() function from the previous example may be called
in any of the following ways:

c06.indd 182c06.indd 182 12/8/11 9:59:20 AM12/8/11 9:59:20 AM

Object Creation ❘ 183

//use as a constructor
var person = new Person(“Nicholas”, 29, “Software Engineer”);
person.sayName(); //”Nicholas”

//call as a function
Person(“Greg”, 27, “Doctor”); //adds to window
window.sayName(); //”Greg”

//call in the scope of another object
var o = new Object();
Person.call(o, “Kristen”, 25, “Nurse”);
o.sayName(); //”Kristen”

ConstructorPatternExample02.htm

The fi rst part of this example shows the typical use of a constructor, to create a new object via the
new operator. The second part shows what happens when the Person() function is called without
the new operator: the properties and methods get added to the window object. Remember that the
this object always points to the Global object (window in web browsers) when a function is called
without an explicitly set this value (by being an object method or through call()/apply()). So
after the function is called, the sayName() method can be called on the window object, and it will
return “Greg”. The Person() function can also be called within the scope of a particular object
using call() (or apply()). In this case, it’s called with a this value of the object o, which then gets
assigned all of the properties and the sayName() method.

Problems with Constructors

Though the constructor paradigm is useful, it is not without its faults. The major downside to
constructors is that methods are created once for each instance. So, in the previous example, both
person1 and person2 have a method called sayName(), but those methods are not the same
instance of Function. Remember, functions are objects in ECMAScript, so every time a function is
defi ned, it’s actually an object being instantiated. Logically, the constructor actually looks like this:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = new Function(“alert(this.name)”); //logical equivalent
}

Thinking about the constructor in this manner makes it clear that each instance of Person gets
its own instance of Function that happens to display the name property. To be clear, creating a
function in this manner is different with regard to scope chains and identifi er resolution, but the
mechanics of creating a new instance of Function remain the same. So, functions of the same name
on different instances are not equivalent, as the following code proves:

alert(person1.sayName == person2.sayName); //false

It doesn’t make sense to have two instances of Function that do the same thing, especially when
the this object makes it possible to avoid binding functions to particular objects until runtime.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 183c06.indd 183 12/8/11 9:59:25 AM12/8/11 9:59:25 AM

184 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

It’s possible to work around this limitation by moving the function defi nition outside of the constructor,
as follows:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
 this.sayName = sayName;
}

function sayName(){
 alert(this.name);
}

var person1 = new Person(“Nicholas”, 29, “Software Engineer”);
var person2 = new Person(“Greg”, 27, “Doctor”);

ConstructorPatternExample03.htm

In this example, the sayName() function is defi ned outside the constructor. Inside the constructor,
the sayName property is set equal to the global sayName() function. Since the sayName property
now contains just a pointer to a function, both person1 and person2 end up sharing the sayName()
function that is defi ned in the global scope. This solves the problem of having duplicate functions that
do the same thing but also creates some clutter in the global scope by introducing a function that can
realistically be used only in relation to an object. If the object needed multiple methods, that would
mean multiple global functions, and all of a sudden the custom reference type defi nition is no longer
nicely grouped in the code. These problems are addressed by using the prototype pattern.

The Prototype Pattern

Each function is created with a prototype property, which is an object containing properties and
methods that should be available to instances of a particular reference type. This object is literally
a prototype for the object to be created once the constructor is called. The benefi t of using the
prototype is that all of its properties and methods are shared among object instances. Instead of
assigning object information in the constructor, they can be assigned directly to the prototype, as in
this example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
person1.sayName(); //”Nicholas”

var person2 = new Person();

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 184c06.indd 184 12/8/11 9:59:26 AM12/8/11 9:59:26 AM

Object Creation ❘ 185

person2.sayName(); //”Nicholas”

alert(person1.sayName == person2.sayName); //true

PrototypePatternExample01.htm

Here, the properties and the sayName() method are added directly to the prototype property of
Person, leaving the constructor empty. However, it’s still possible to call the constructor to create
a new object and have the properties and methods present. Unlike the constructor pattern, the
properties and methods are all shared among instances, so person1 and person2 are both accessing
the same set of properties and the same sayName() function. To understand how this works, you
must understand the nature of prototypes in ECMAScript.

How Prototypes Work

Whenever a function is created, its prototype property is also created according to a specifi c set of
rules. By default, all prototypes automatically get a property called constructor that points back to
the function on which it is a property. In the previous example, for instance, Person.prototype
.constructor points to Person. Then, depending on the constructor, other properties and methods
may be added to the prototype.

When defi ning a custom constructor, the prototype gets the constructor property only by default;
all other methods are inherited from Object. Each time the constructor is called to create a new
instance, that instance has an internal pointer to the constructor’s prototype. In ECMA-262 fi fth
edition, this is called [[Prototype]]. There is no standard way to access [[Prototype]] from
script, but Firefox, Safari, and Chrome all support a property on every object called __proto__.;
in other implementations, this property is completely hidden from script. The important thing to
understand is that a direct link exists between the instance and the constructor’s prototype but not
between the instance and the constructor.

Consider the previous example using the Person constructor and Person.prototype. The
relationship between the objects in the example is shown in Figure 6-1.

Person

prototype

Person Prototype

constructor

name “Nicholas”

age 29

job “Software Engineer”

sayName (function)

person1

[[Prototype]]

person2

[[Prototype]]

FIGURE 6-1

c06.indd 185c06.indd 185 12/8/11 9:59:26 AM12/8/11 9:59:26 AM

186 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

Figure 6-1 shows the relationship between the Person constructor, the Person’s prototype, and the
two instances of Person that exist. Note that Person.prototype points to the prototype object but
Person.prototype.constructor points back to Person. The prototype contains the constructor
property and the other properties that were added. Each instance of Person, person1, and person2
has internal properties that point back to Person.prototype only; each has no direct relationship
with the constructor. Also note that even though neither of these instances have properties or methods,
person1.sayName() works. This is due to the lookup procedure for object properties.

Even though [[Prototype]] is not accessible in all implementations, the isPrototypeOf() method
can be used to determine if this relationship exists between objects. Essentially, isPrototypeOf()
returns true if [[Prototype]] points to the prototype on which the method is being called, as
shown here:

alert(Person.prototype.isPrototypeOf(person1)); //true
alert(Person.prototype.isPrototypeOf(person2)); //true

In this code, the prototype’s isPrototypeOf() method is called on both person1 and person2.
Since both instances have a link to Person.prototype, it returns true.

ECMAScript 5 adds a new method called Object.getPrototypeOf(), which returns the value of
[[Prototype]] in all supporting implementations. For example:

alert(Object.getPrototypeOf(person1) == Person.prototype); //true
alert(Object.getPrototypeOf(person1).name); //”Nicholas”

The fi rst line of this code simply confi rms that the object returned from Object.getPrototypeOf()
is actually the prototype of the object. The second line retrieves the value of the name property on
the prototype, which is “Nicholas”. Using Object.getPrototypeOf(), you are able to retrieve an
object’s prototype easily, which becomes important once you want to implement inheritance using
the prototype (discussed later in this chapter). This method is supported in Internet Explorer 9+,
Firefox 3.5+, Safari 5+, Opera 12+, and Chrome.

Whenever a property is accessed for reading on an object, a search is started to fi nd a property
with that name. The search begins on the object instance itself. If a property with the given name
is found on the instance, then that value is returned; if the property is not found, then the search
continues up the pointer to the prototype, and the prototype is searched for a property with
the same name. If the property is found on the prototype, then that value is returned. So, when
person1.sayName() is called, a two-step process happens. First, the JavaScript engine asks, “Does
the instance person1 have a property called sayName?” The answer is no, so it continues the search
and asks, “Does the person1 prototype have a property called sayName?” The answer is yes, so the
function stored on the prototype is accessed. When person2.sayName() is called, the same search
executes, ending with the same result. This is how prototypes are used to share properties and
methods among multiple object instances.

The constructor property mentioned earlier exists only on the prototype and
so is accessible from object instances.

c06.indd 186c06.indd 186 12/8/11 9:59:27 AM12/8/11 9:59:27 AM

Object Creation ❘ 187

Although it’s possible to read values on the prototype from object instances, it is not possible to
overwrite them. If you add a property to an instance that has the same name as a property on the
prototype, you create the property on the instance, which then masks the property on the prototype.
Here’s an example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

person1.name = “Greg”;
alert(person1.name); //”Greg” - from instance
alert(person2.name); //”Nicholas” - from prototype

PrototypePatternExample02.htm

In this example, the name property of person1 is shadowed by a new value. Both person1.name
and person2.name still function appropriately, returning “Greg” (from the object instance) and
“Nicholas” (from the prototype), respectively. When person1.name was accessed in the alert(),
its value was read, so the search began for a property called name on the instance. Since the property
exists, it is used without searching the prototype. When person2.name is accessed the same way,
the search doesn’t fi nd the property on the instance, so it continues to search on the prototype
where the name property is found.

Once a property is added to the object instance, it shadows any properties of the same name on
the prototype, which means that it blocks access to the property on the prototype without altering
it. Even setting the property to null only sets the property on the instance and doesn’t restore the
link to the prototype. The delete operator, however, completely removes the instance property and
allows the prototype property to be accessed again as follows:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

person1.name = “Greg”;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 187c06.indd 187 12/8/11 9:59:32 AM12/8/11 9:59:32 AM

188 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

alert(person1.name); //”Greg” - from instance
alert(person2.name); //”Nicholas” - from prototype

delete person1.name;
alert(person1.name); //”Nicholas” - from the prototype

PrototypePatternExample03.htm

In this modifi ed example, delete is called on person1.name, which previously had been shadowed
with the value “Greg”. This restores the link to the prototype’s name property, so the next time
person1.name is accessed, it’s the prototype property’s value that is returned.

The hasOwnProperty() method determines if a property exists on the instance or on the prototype.
This method, which is inherited from Object, returns true only if a property of the given name
exists on the object instance, as in this example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

alert(person1.hasOwnProperty(“name”)); //false

person1.name = “Greg”;
alert(person1.name); //”Greg” - from instance
alert(person1.hasOwnProperty(“name”)); //true

alert(person2.name); //”Nicholas” - from prototype
alert(person2.hasOwnProperty(“name”)); //false

delete person1.name;
alert(person1.name); //”Nicholas” - from the prototype
alert(person1.hasOwnProperty(“name”)); //false

By injecting calls to hasOwnProperty() in this example, it becomes clear when the instance’s
property is being accessed and when the prototype’s property is being accessed. Calling person1
.hasOwnProperty(“name”) returns true only after name has been overwritten on person1,
indicating that it now has an instance property instead of a prototype property. Figure 6-2
illustrates the various steps being taken in this example. (For simplicity, the relationship to the
Person constructor has been omitted.)

c06.indd 188c06.indd 188 12/8/11 9:59:33 AM12/8/11 9:59:33 AM

Object Creation ❘ 189

Prototypes and the in Operator

There are two ways to use the in operator: on its own or as a for-in loop. When used on its own, the
in operator returns true when a property of the given name is accessible by the object, which is to say
that the property may exist on the instance or on the prototype. Consider the following example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

person1

Initially

[[Prototype]]

Person Prototype

constructor

name “Nicholas”

age 29

job “Software Engineer”

sayName (function)

person2

[[Prototype]]

person1

person1.name � “Greg”

[[Prototype]]

name “Greg”

Person Prototype

constructor

name “Nicholas”

age 29

job “Software Engineer”

sayName (function)

person2

[[Prototype]]

person1

delete person1.name

[[Prototype]]

Person Prototype

constructor

name “Nicholas”

age 29

job “Software Engineer”

sayName (function)

person2

[[Prototype]]

FIGURE 6-2

The ECMAScript 5 Object.getOwnPropertyDescriptor() method works only
on instance properties; to retrieve the descriptor of a prototype property, you must
call Object.getOwnPropertyDescriptor() on the prototype object directly.

c06.indd 189c06.indd 189 12/8/11 9:59:33 AM12/8/11 9:59:33 AM

190 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var person1 = new Person();
var person2 = new Person();

alert(person1.hasOwnProperty(“name”)); //false
alert(“name” in person1); //true

person1.name = “Greg”;
alert(person1.name); //”Greg” - from instance
alert(person1.hasOwnProperty(“name”)); //true
alert(“name” in person1); //true

alert(person2.name); //”Nicholas” - from prototype
alert(person2.hasOwnProperty(“name”)); //false
alert(“name” in person2); //true

delete person1.name;
alert(person1.name); //”Nicholas” - from the prototype
alert(person1.hasOwnProperty(“name”)); //false
alert(“name” in person1); //true

PrototypePatternExample04.htm

Throughout the execution of this code, the property name is available on each object either directly
or from the prototype. Therefore, calling “name” in person1 always returns true, regardless
of whether the property exists on the instance. It’s possible to determine if the property of an object
exists on the prototype by combining a call to hasOwnProperty() with the in operator like this:

function hasPrototypeProperty(object, name){
 return !object.hasOwnProperty(name) && (name in object);
}

Since the in operator always returns true so long as the property is accessible by the object, and
hasOwnProperty() returns true only if the property exists on the instance, a prototype property
can be determined if the in operator returns true but hasOwnProperty() returns false. Consider
the following example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 190c06.indd 190 12/8/11 9:59:39 AM12/8/11 9:59:39 AM

Object Creation ❘ 191

};

var person = new Person();
alert(hasPrototypeProperty(person, “name”)); //true

person.name = “Greg”;
alert(hasPrototypeProperty(person, “name”)); //false

PrototypePatternExample05.htm

In this code, the name property fi rst exists on the prototype, so hasPrototypeProperty() returns
true. Once the name property is overwritten, it exists on the instance, so hasPrototypeProperty()
returns false. Even though the name property still exists on the prototype, it is no longer used
because the instance property now exists.

When using a for-in loop, all properties that are accessible by the object and can be enumerated
will be returned, which includes properties both on the instance and on the prototype.
Instance properties that shadow a non-enumerable prototype property (a property that has
[[Enumerable]] set to false) will be returned in the for-in loop, since all developer-defi ned
properties are enumerable by rule, except in Internet Explorer 8 and earlier.

The old Internet Explorer implementation has a bug where properties that shadow non-enumerable
properties will not show up in a for-in loop. Here’s an example:

var o = {
 toString : function(){
 return “My Object”;
 }
};

for (var prop in o){
 if (prop == “toString”){
 alert(“Found toString”); //won’t display in Internet Explorer
 }
}

PrototypePatternExample06.htm

When this code is run, a single alert should be displayed indicating that the toString()
method was found. The object o has an instance property called toString() that shadows
the prototype’s toString() method (which is not enumerable). In Internet Explorer, this alert is
never displayed because it skips over the property, honoring the [[Enumerable]] attribute
that was set on the prototype’s toString() method. This same bug affects all properties and
methods that aren’t enumerable by default: hasOwnProperty(), propertyIsEnumerable(),
toLocaleString(), toString(), and valueOf(). ECMAScript 5 sets [[Enumerable]]
to false on the constructor and prototype properties, but this is inconsistent across
implementations.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 191c06.indd 191 12/8/11 9:59:39 AM12/8/11 9:59:39 AM

192 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

To retrieve a list of all enumerable instance properties on an object, you can use the ECMAScript 5
Object.keys() method, which accepts an object as its argument and returns an array of strings
containing the names of all enumerable properties. For example:

function Person(){
}

Person.prototype.name = “Nicholas”;
Person.prototype.age = 29;
Person.prototype.job = “Software Engineer”;
Person.prototype.sayName = function(){
 alert(this.name);
};

var keys = Object.keys(Person.prototype);
alert(keys); //”name,age,job,sayName”

var p1 = new Person();
p1.name = “Rob”;
p1.age = 31;
var p1keys = Object.keys(p1);
alert(p1keys); //”name,age”

ObjectKeysExample01.htm

Here, the keys variable is fi lled with an array containing “name”, “age”, “job”, and “sayName”.
This is the order in which they would normally appear using for-in. When called on an instance of
Person, Object.keys() returns an array of name and age, the only two instance properties.

If you’d like a list of all instance properties, whether enumerable or not, you can use Object
.getOwnPropertyNames() in the same way:

var keys = Object.getOwnPropertyNames(Person.prototype);
alert(keys); //”constructor,name,age,job,sayName”

ObjectPropertyNamesExample01.htm

Note the inclusion of the non-enumerable constructor property in the list of results. Both Object
.keys() and Object.getOwnPropertyNames() may be suitable replacements for using for-in.
These methods are supported in Internet Explorer 9+, Firefox 4+, Safari 5+, Opera 12+, and
Chrome.

Alternate Prototype Syntax

You may have noticed in the previous example that Person.prototype had to be typed out for each
property and method. To limit this redundancy and to better visually encapsulate functionality on
the prototype, it has become more common to simply overwrite the prototype with an object literal
that contains all of the properties and methods, as in this example:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 192c06.indd 192 12/8/11 9:59:40 AM12/8/11 9:59:40 AM

Object Creation ❘ 193

function Person(){
}

Person.prototype = {
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 sayName : function () {
 alert(this.name);
 }
};

PrototypePatternExample07.htm

In this rewritten example, the Person.prototype property is set equal to a new object created
with an object literal. The end result is the same, with one exception: the constructor property
no longer points to Person. When a function is created, its prototype object is created and the
constructor is automatically assigned. Essentially, this syntax overwrites the default prototype
object completely, meaning that the constructor property is equal to that of a completely
new object (the Object constructor) instead of the function itself. Although the instanceof
operator still works reliably, you cannot rely on the constructor to indicate the type of object, as
this example shows:

var friend = new Person();
alert(friend instanceof Object); //true
alert(friend instanceof Person); //true
alert(friend.constructor == Person); //false
alert(friend.constructor == Object); //true

PrototypePatternExample07.htm

Here, instanceof still returns true for both Object and Person, but the constructor property is
now equal to Object instead of Person. If the constructor’s value is important, you can set it
specifi cally back to the appropriate value, as shown here:

function Person(){
}

Person.prototype = {
 constructor: Person,
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 sayName : function () {
 alert(this.name);
 }
};

PrototypePatternExample08.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 193c06.indd 193 12/8/11 9:59:41 AM12/8/11 9:59:41 AM

194 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

This code specifi cally includes a constructor property and sets it equal to Person, ensuring that
the property contains the appropriate value.

Keep in mind that restoring the constructor in this manner creates a property with [[Enumerable]]
set to true. Native constructor properties are not enumerable by default, so if you’re using an
ECMAScript 5–compliant JavaScript engine, you may wish to use Object.defineProperty() instead:

function Person(){
}

Person.prototype = {
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 sayName : function () {
 alert(this.name);
 }
};

//ECMAScript 5 only – restore the constructor
Object.defi neProperty(Person.prototype, “constructor”, {
 enumerable: false,
 value: Person
});

Dynamic Nature of Prototypes

Since the process of looking up values on a prototype is a search, changes made to the prototype at
any point are immediately refl ected on instances, even the instances that existed before the change
was made. Here’s an example:

var friend= new Person();

Person.prototype.sayHi = function(){
 alert(“hi”);
};

friend.sayHi(); //”hi” - works!

PrototypePatternExample09.htm

In this code, an instance of Person is created and stored in friend. The next statement adds a
method called sayHi() to Person.prototype. Even though the friend instance was created prior
to this change, it still has access to the new method. This happens because of the loose link between
the instance and the prototype. When friend.sayHi() is called, the instance is fi rst searched for
a property named sayHi; when it’s not found, the search continues to the prototype. Since the link
between the instance and the prototype is simply a pointer, not a copy, the search fi nds the new
sayHi property on the prototype and returns the function stored there.

Although properties and methods may be added to the prototype at any time, and they are refl ected
instantly by all object instances, you cannot overwrite the entire prototype and expect the same behavior.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 194c06.indd 194 12/8/11 9:59:41 AM12/8/11 9:59:41 AM

Object Creation ❘ 195

The [[Prototype]] pointer is assigned when the constructor is called, so changing the prototype to
a different object severs the tie between the constructor and the original prototype. Remember: the
instance has a pointer to only the prototype, not to the constructor. Consider the following:

function Person(){
}

var friend = new Person();

Person.prototype = {
 constructor: Person,
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 sayName : function () {
 alert(this.name);
 }
};

friend.sayName(); //error

PrototypePatternExample10.htm

In this example, a new instance of Person is created before the prototype object is overwritten.
When friend.sayName() is called, it causes an error, because the prototype that friend points to
doesn’t contain a property of that name. Figure 6-3 illustrates why this happens.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 6-3

Person

Before prototype assignment

prototype

Person Prototype

constructor

Person Prototype

constructor

friend

[[Prototype]]

Person

After prototype assignment

prototype

New Person Prototype

constructor

name “Nicholas”

age 29

job “Software Engineer”

sayName (function)

friend

[[Prototype]]

c06.indd 195c06.indd 195 12/8/11 9:59:42 AM12/8/11 9:59:42 AM

196 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

Overwriting the prototype on the constructor means that new instances will reference the new
prototype while any previously existing object instances still reference the old prototype.

Native Object Prototypes

The prototype pattern is important not just for defi ning custom types but also because it is the
pattern used to implement all of the native reference types. Each of these (including Object, Array,
String, and so on) has its methods defi ned on the constructor’s prototype. For instance, the sort()
method can be found on Array.prototype, and substring() can be found on String.prototype,
as shown here:

alert(typeof Array.prototype.sort); //”function”
alert(typeof String.prototype.substring); //”function”

Through native object prototypes, it’s possible to get references to all of the default methods and to
defi ne new methods. Native object prototypes can be modifi ed just like custom object prototypes,
so methods can be added at any time. For example, the following code adds a method called
startsWith() to the String primitive wrapper:

String.prototype.startsWith = function (text) {
 return this.indexOf(text) == 0;
};

var msg = “Hello world!”;
alert(msg.startsWith(“Hello”)); //true

PrototypePatternExample11.htm

The startsWith() method in this example returns true if some given text occurs at the beginning
of a string. The method is assigned to String.prototype, making it available to all strings in
the environment. Since msg is a string, the String primitive wrapper is created behind the scenes,
making startsWith() accessible.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Although possible, it is not recommended to modify native object prototypes in
a production environment. This can often cause confusion and create possible
name collisions if a method that didn’t exist natively in one browser is
implemented natively in another. It’s also possible to accidentally overwrite
native methods.

Problems with Prototypes

The prototype pattern isn’t without its faults. For one, it negates the ability to pass initialization
arguments into the constructor, meaning that all instances get the same property values by default.
Although this is an inconvenience, it isn’t the biggest problem with prototypes. The main problem
comes with their shared nature.

c06.indd 196c06.indd 196 12/8/11 9:59:42 AM12/8/11 9:59:42 AM

Object Creation ❘ 197

All properties on the prototype are shared among instances, which is ideal for functions. Properties
that contain primitive values also tend to work well, as shown in the previous example, where it’s
possible to hide the prototype property by assigning a property of the same name to the instance.
The real problem occurs when a property contains a reference value. Consider the following
example:

function Person(){
}

Person.prototype = {
 constructor: Person,
 name : “Nicholas”,
 age : 29,
 job : “Software Engineer”,
 friends : [“Shelby”, “Court”],
 sayName : function () {
 alert(this.name);
 }
};

var person1 = new Person();
var person2 = new Person();

person1.friends.push(“Van”);

alert(person1.friends); //”Shelby,Court,Van”
alert(person2.friends); //”Shelby,Court,Van”
alert(person1.friends === person2.friends); //true

PrototypePatternExample12.htm

Here, the Person.prototype object has a property called friends that contains an array of strings.
Two instances of Person are then created. The person1.friends array is altered by adding another
string. Because the friends array exists on Person.prototype, not on person1, the changes made
are also refl ected on person2.friends (which points to the same array). If the intention is to have
an array shared by all instances, then this outcome is okay. Typically, though, instances want to
have their own copies of all properties. This is why the prototype pattern is rarely used on its own.

Combination Constructor/Prototype Pattern

The most common way of defi ning custom types is to combine the constructor and prototype
patterns. The constructor pattern defi nes instance properties, whereas the prototype pattern defi nes
methods and shared properties. With this approach, each instance ends up with its own copy of
the instance properties, but they all share references to methods, conserving memory. This pattern
allows arguments to be passed into the constructor as well, effectively combining the best parts of
each pattern. The previous example can now be rewritten as follows:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 197c06.indd 197 12/8/11 9:59:48 AM12/8/11 9:59:48 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

198 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

 this.friends = [“Shelby”, “Court”];
}

Person.prototype = {
 constructor: Person,
 sayName : function () {
 alert(this.name);
 }
};

var person1 = new Person(“Nicholas”, 29, “Software Engineer”);
var person2 = new Person(“Greg”, 27, “Doctor”);

person1.friends.push(“Van”);

alert(person1.friends); //”Shelby,Court,Van”
alert(person2.friends); //”Shelby,Court”
alert(person1.friends === person2.friends); //false
alert(person1.sayName === person2.sayName); //true

HybridPatternExample01.htm

Note that the instance properties are now defi ned solely in the constructor, and the shared property
constructor and the method sayName() are defi ned on the prototype. When person1.friends
is augmented by adding a new string, person2.friends is not affected, because they each have
separate arrays.

The hybrid constructor/prototype pattern is the most widely used and accepted practice for defi ning
custom reference types in ECMAScript. Generally speaking, this is the default pattern to use for
defi ning reference types.

Dynamic Prototype Pattern

Developers coming from other OO languages may fi nd the visual separation between the
constructor and the prototype confusing. The dynamic prototype pattern seeks to solve this problem
by encapsulating all of the information within the constructor while maintaining the benefi ts of
using both a constructor and a prototype by initializing the prototype inside the constructor, but
only if it is needed. You can determine if the prototype needs to be initialized by checking for the
existence of a method that should be available. Consider this example:

function Person(name, age, job){

 //properties
 this.name = name;
 this.age = age;
 this.job = job;

 //methods
 if (typeof this.sayName != “function”){

 Person.prototype.sayName = function(){

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 198c06.indd 198 12/8/11 9:59:48 AM12/8/11 9:59:48 AM

Object Creation ❘ 199

 alert(this.name);
 };

 }
}

var friend = new Person(“Nicholas”, 29, “Software Engineer”);
friend.sayName();

DynamicPrototypeExample01.htm

The highlighted section of code inside the constructor adds the sayName() method if it doesn’t
already exist. This block of code is executed only the fi rst time the constructor is called. After
that, the prototype has been initialized and doesn’t need any further modifi cation. Remember that
changes to the prototype are refl ected immediately in all instances, so this approach works perfectly.
The if statement may check for any property or method that will be present once initialized —
there’s no need for multiple if statements to check each property or method; any one will do. This
pattern preserves the use of instanceof in determining what type of object was created.

You cannot overwrite the prototype using an object literal when using the
dynamic prototype pattern. As described previously, overwriting a prototype
when an instance already exists effectively cuts off that instance from the new
prototype.

Parasitic Constructor Pattern

The parasitic constructor pattern is typically a fallback when the other patterns fail. The basic idea
of this pattern is to create a constructor that simply wraps the creation and return of another object
while looking like a typical constructor. Here’s an example:

function Person(name, age, job){
 var o = new Object();
 o.name = name;
 o.age = age;
 o.job = job;
 o.sayName = function(){
 alert(this.name);
 };
 return o;
}

var friend = new Person(“Nicholas”, 29, “Software Engineer”);
friend.sayName(); //”Nicholas”

HybridFactoryPatternExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 199c06.indd 199 12/8/11 9:59:49 AM12/8/11 9:59:49 AM

200 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

In this example, the Person constructor creates a new object, initializes it with properties and
methods, and then returns the object. This is exactly the same as the factory pattern except that
the function is called as a constructor, using the new operator. When a constructor doesn’t return
a value, it returns the new object instance by default. Adding a return statement at the end of a
constructor allows you to override the value that is returned when the constructor is called.

This pattern allows you to create constructors for objects that may not be possible otherwise. For
example, you may want to create a special array that has an extra method. Since you don’t have
direct access to the Array constructor, this pattern works:

function SpecialArray(){

 //create the array
 var values = new Array();

 //add the values
 values.push.apply(values, arguments);

 //assign the method
 values.toPipedString = function(){
 return this.join(“|”);
 };

 //return it
 return values;
}

var colors = new SpecialArray(“red”, “blue”, “green”);
alert(colors.toPipedString()); //”red|blue|green”

HybridFactoryPatternExample02.htm

In this example, a constructor called SpecialArray is created. In the constructor, a new array is
created and initialized using the push() method (which has all of the constructor arguments passed
in). Then a method called toPipedString() is added to the instance, which simply outputs the
array values as a pipe-delimited list. The last step is to return the array as the function value. Once
that is complete, the SpecialArray constructor can be called, passing in the initial values for the
array, and toPipedString() can be called.

A few important things to note about this pattern: there is no relationship between the
returned object and the constructor or the constructor’s prototype; the object exists just as if it
were created outside of a constructor. Therefore, you cannot rely on the instanceof operator
to indicate the object type. Because of these issues, this pattern should not be used when other
patterns work.

Durable Constructor Pattern

Douglas Crockford coined the term durable objects in JavaScript to refer to objects that have no
public properties and whose methods don’t reference the this object. Durable objects are best used

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 200c06.indd 200 12/8/11 9:59:54 AM12/8/11 9:59:54 AM

Inheritance ❘ 201

in secure environments (those that forbid the use of this and new) or to protect data from the rest
of the application (as in mashups). A durable constructor is a constructor that follows a pattern
similar to the parasitic constructor pattern, with two differences: instance methods on the created
object don’t refer to this, and the constructor is never called using the new operator. The Person
constructor from the previous section can be rewritten as a durable constructor like this:

function Person(name, age, job){

 //create the object to return
 var o = new Object();

 //optional: define private variables/functions here

 //attach methods
 o.sayName = function(){
 alert(name);
 };

 //return the object
 return o;
}

Note that there is no way to access the value of name from the returned object. The sayName()
method has access to it, but nothing else does. The Person durable constructor is used as follows:

var friend = Person(“Nicholas”, 29, “Software Engineer”);
friend.sayName(); //”Nicholas”

The person variable is a durable object, and there is no way to access any of its data members
without calling a method. Even if some other code adds methods or data members to the object, there
is no way to access the original data that was passed into the constructor. Such security makes
the durable constructor pattern useful when dealing with secure execution environments such as
those provided by ADsafe (www.adsafe.org) or Caja (http://code.google.com/p/google-caja/).

As with the parasitic constructor pattern, there is no relationship between the
constructor and the object instance, so instanceof will not work.

INHERITANCE

The concept most often discussed in relation to OO programming is inheritance. Many OO
languages support two types of inheritance: interface inheritance, where only the method signatures
are inherited, and implementation inheritance, where actual methods are inherited. Interface
inheritance is not possible in ECMAScript, because, as mentioned previously, functions do not have

c06.indd 201c06.indd 201 12/8/11 9:59:55 AM12/8/11 9:59:55 AM

202 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

signatures. Implementation inheritance is the only type of inheritance supported by ECMAScript,
and this is done primarily through the use of prototype chaining.

Prototype Chaining

ECMA-262 describes prototype chaining as the primary method of inheritance in ECMAScript.
The basic idea is to use the concept of prototypes to inherit properties and methods between two
reference types. Recall the relationship between constructors, prototypes, and instances: each
constructor has a prototype object that points back to the constructor, and instances have an
internal pointer to the prototype. What if the prototype were actually an instance of another type?
That would mean the prototype itself would have a pointer to a different prototype that, in turn,
would have a pointer to another constructor. If that prototype were also an instance of another
type, then the pattern would continue, forming a chain between instances and prototypes. This is
the basic idea behind prototype chaining.

Implementing prototype chaining involves the following code pattern:

function SuperType(){
 this.property = true;
}

SuperType.prototype.getSuperValue = function(){
 return this.property;
};

function SubType(){
 this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType();

SubType.prototype.getSubValue = function (){
 return this.subproperty;
};

var instance = new SubType();
alert(instance.getSuperValue()); //true

PrototypeChainingExample01.htm

This code defi nes two types: SuperType and SubType. Each type has a single property and a
single method. The main difference between the two is that SubType inherits from SuperType by
creating a new instance of SuperType and assigning it to SubType.prototype. This overwrites the
original prototype and replaces it with a new object, which means that all properties and methods
that typically exist on an instance of SuperType now also exist on SubType.prototype. After the
inheritance takes place, a method is assigned to SubType.prototype, adding a new method on top
of what was inherited from SuperType. The relationship between the instance and both constructors
and prototypes is displayed in Figure 6-4.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 202c06.indd 202 12/8/11 10:00:00 AM12/8/11 10:00:00 AM

Inheritance ❘ 203

Instead of using the default prototype of SubType, a new prototype is assigned. That new prototype
happens to be an instance of SuperType, so it not only gets the properties and methods of a
SuperType instance but also points back to the SuperType’s prototype. So instance points to
SubType.prototype, and SubType.prototype points to SuperType.prototype. Note that the
getSuperValue() method remains on the SuperType.prototype object, but property ends up on
SubType.prototype. That’s because getSuperValue() is a prototype method, and property is
an instance property. SubType.prototype is now an instance of SuperType, so property is stored
there. Also note that instance.constructor points to SuperType, because the constructor
property on the SubType.prototype was overwritten.

Prototype chaining extends to the prototype search mechanism described earlier. As you may
recall, when a property is accessed in read mode on an instance, the property is fi rst searched for
on the instance. If the property is not found, then the search continues to the prototype. When
inheritance has been implemented via prototype chaining, that search can continue up the prototype
chain. In the previous example, for instance, a call to instance.getSuperValue() results in a
three-step search: 1) the instance, 2) SubType.prototype, and 3) SuperType.prototype, where
the method is found. The search for properties and methods always continues until the end of the
prototype chain is reached.

Default Prototypes

In reality, there is another step in the prototype chain. All reference types inherit from Object
by default, which is accomplished through prototype chaining. The default prototype for any
function is an instance of Object, meaning that its internal prototype pointer points to Object
.prototype. This is how custom types inherit all of the default methods such as toString()
and valueOf(). So the previous example has an extra layer of inheritance. Figure 6-5 shows the
complete prototype chain.

SuperType

prototype

SuperType Prototype

constructor

SubType

prototype

getSuperValue (function)

getSubValue (function)

subproperty false

SubType Prototype

[[Prototype]]

property true

instance

[[Prototype]]

FIGURE 6-4

c06.indd 203c06.indd 203 12/8/11 10:00:01 AM12/8/11 10:00:01 AM

204 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

SubType inherits from SuperType, and SuperType inherits from Object. When instance
.toString() is called, the method being called actually exists on Object.prototype.

Prototype and Instance Relationships

The relationship between prototypes and instances is discernible in two ways. The fi rst way is to use
the instanceof operator, which returns true whenever an instance is used with a constructor that
appears in its prototype chain, as in this example:

alert(instance instanceof Object); //true
alert(instance instanceof SuperType); //true
alert(instance instanceof SubType); //true

PrototypeChainingExample01.htm

Here, the instance object is technically an instance of Object, SuperType, and SubType because
of the prototype chain relationship. The result is that instanceof returns true for all of these
constructors.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Object

prototype

Object Prototype

constructor

SuperType

prototype

hasOwnProperty (function)

isPrototypeOf (function)

propertyIsEnumerable (function)

toLocaleString (function)

toString (function)

valueOf (function)

getSuperValue (function)

SuperType Prototype

[[Prototype]]

constructor

SubType

prototype

getSubValue (function)

subproperty false

SubType Prototype

[[Prototype]]

property true

instance

[[Prototype]]

FIGURE 6-5

c06.indd 204c06.indd 204 12/8/11 10:00:01 AM12/8/11 10:00:01 AM

Inheritance ❘ 205

The second way to determine this relationship is to use the isPrototypeOf() method. Each
prototype in the chain has access to this method, which returns true for an instance in the chain,
as in this example:

alert(Object.prototype.isPrototypeOf(instance)); //true
alert(SuperType.prototype.isPrototypeOf(instance)); //true
alert(SubType.prototype.isPrototypeOf(instance)); //true

PrototypeChainingExample01.htm

Working with Methods

Often a subtype will need to either override a supertype method or introduce new methods that
don’t exist on the supertype. To accomplish this, the methods must be added to the prototype after
the prototype has been assigned. Consider this example:

function SuperType(){
 this.property = true;
}

SuperType.prototype.getSuperValue = function(){
 return this.property;
};

function SubType(){
 this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType();

//new method
SubType.prototype.getSubValue = function (){
 return this.subproperty;
};

//override existing method
SubType.prototype.getSuperValue = function (){
 return false;
};

var instance = new SubType();
alert(instance.getSuperValue()); //false

PrototypeChainingExample02.htm

In this code, the highlighted area shows two methods. The fi rst is getSubValue(), which is a new
method on the SubType. The second is getSuperValue(), which already exists in the prototype
chain but is being shadowed here. When getSuperValue() is called on an instance of SubType, it
will call this one, but instances of SuperType will still call the original. The important thing to note

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 205c06.indd 205 12/8/11 10:00:02 AM12/8/11 10:00:02 AM

206 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

is that both of the methods are defi ned after the prototype has been assigned as an instance
of SuperType.

Another important thing to understand is that the object literal approach to creating prototype
methods cannot be used with prototype chaining, because you end up overwriting the chain. Here’s
an example:

function SuperType(){
 this.property = true;
}

SuperType.prototype.getSuperValue = function(){
 return this.property;
};

function SubType(){
 this.subproperty = false;
}

//inherit from SuperType
SubType.prototype = new SuperType();

//try to add new methods - this nullifi es the previous line
SubType.prototype = {
 getSubValue : function (){
 return this.subproperty;
 },

 someOtherMethod : function (){
 return false;
 }
};

var instance = new SubType();
alert(instance.getSuperValue()); //error!

PrototypeChainingExample03.htm

In this code, the prototype is reassigned to be an object literal after it was already assigned to be
an instance of SuperType. The prototype now contains a new instance of Object instead of an
instance of SuperType, so the prototype chain has been broken — there is no relationship between
SubType and SuperType.

Problems with Prototype Chaining

Even though prototype chaining is a powerful tool for inheritance, it is not without its issues.
The major issue revolves around prototypes that contain reference values. Recall from earlier that
prototype properties containing reference values are shared with all instances; this is why properties
are typically defi ned within the constructor instead of on the prototype. When implementing
inheritance using prototypes, the prototype actually becomes an instance of another type, meaning
that what once were instance properties are now prototype properties. The issue is highlighted by
the following example:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 206c06.indd 206 12/8/11 10:00:02 AM12/8/11 10:00:02 AM

Inheritance ❘ 207

function SuperType(){
 this.colors = [“red”, “blue”, “green”];
}

function SubType(){
}

//inherit from SuperType
SubType.prototype = new SuperType();

var instance1 = new SubType();
instance1.colors.push(“black”);
alert(instance1.colors); //”red,blue,green,black”

var instance2 = new SubType();
alert(instance2.colors); //”red,blue,green,black”

PrototypeChainingExample04.htm

In this example, the SuperType constructor defi nes a property colors that contains an array (a
reference value). Each instance of SuperType has its own colors property containing its own array.
When SubType inherits from SuperType via prototype chaining, SubType.prototype becomes an
instance of SuperType and so it gets its own colors property, which is akin to specifi cally creating
SubType.prototype.colors. The end result: all instances of SubType share a colors property.
This is indicated as the changes made to instance1.colors are refl ected on instance2.colors.

A second issue with prototype chaining is that you cannot pass arguments into the supertype
constructor when the subtype instance is being created. In fact, there is no way to pass arguments
into the supertype constructor without affecting all of the object instances. Because of this and the
aforementioned issue with reference values on the prototype, prototype chaining is rarely used alone.

Constructor Stealing

In an attempt to solve the inheritance problem with reference values on prototypes, developers
began using a technique called constructor stealing (also sometimes called object masquerading
or classical inheritance). The basic idea is quite simple: call the supertype constructor from within
the subtype constructor. Keeping in mind that functions are simply objects that execute code in a
particular context, the apply() and call() methods can be used to execute a constructor on the
newly created object, as in this example:

function SuperType(){
 this.colors = [“red”, “blue”, “green”];
}

function SubType(){
 //inherit from SuperType
 SuperType.call(this);
}

var instance1 = new SubType();
instance1.colors.push(“black”);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 207c06.indd 207 12/8/11 10:00:03 AM12/8/11 10:00:03 AM

208 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

alert(instance1.colors); //”red,blue,green,black”

var instance2 = new SubType();
alert(instance2.colors); //”red,blue,green”

ConstructorStealingExample01.htm

The highlighted lines in this example show the single call that is used in constructor stealing. By
using the call() method (or alternately, apply()), the SuperType constructor is called in the
context of the newly created instance of SubType. Doing this effectively runs all of the object-
initialization code in the SuperType() function on the new SubType object. The result is that each
instance has its own copy of the colors property.

Passing Arguments

One advantage that constructor stealing offers over prototype chaining is the ability to pass arguments
into the supertype constructor from within the subtype constructor. Consider the following:

function SuperType(name){
 this.name = name;
}

function SubType(){
 //inherit from SuperType passing in an argument
 SuperType.call(this, “Nicholas”);

 //instance property
 this.age = 29;
}

var instance = new SubType();
alert(instance.name); //”Nicholas”;
alert(instance.age); //29

ConstructorStealingExample02.htm

In this code, the SuperType constructor accepts a single argument, name, which is simply assigned
to a property. A value can be passed into the SuperType constructor when called from within the
SubType constructor, effectively setting the name property for the SubType instance. To ensure that
the SuperType constructor doesn’t overwrite those properties, you can defi ne additional properties
on the subtype after the call to the supertype constructor.

Problems with Constructor Stealing

The downside to using constructor stealing exclusively is that it introduces the same problems as the
constructor pattern for custom types: methods must be defi ned inside the constructor, so there’s no
function reuse. Furthermore, methods defi ned on the supertype’s prototype are not accessible on
the subtype, so all types can use only the constructor pattern. Because of these issues, constructor
stealing is rarely used on its own.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 208c06.indd 208 12/8/11 10:00:04 AM12/8/11 10:00:04 AM

Inheritance ❘ 209

Combination Inheritance

Combination inheritance (sometimes also called pseudoclassical inheritance) combines prototype
chaining and constructor stealing to get the best of each approach. The basic idea is to use
prototype chaining to inherit properties and methods on the prototype and to use constructor
stealing to inherit instance properties. This allows function reuse by defi ning methods on the
prototype and allows each instance to have its own properties. Consider the following:

function SuperType(name){
 this.name = name;
 this.colors = [“red”, “blue”, “green”];
}

SuperType.prototype.sayName = function(){
 alert(this.name);
};

function SubType(name, age){

 //inherit properties
 SuperType.call(this, name);

 this.age = age;
}

//inherit methods
SubType.prototype = new SuperType();

SubType.prototype.sayAge = function(){
 alert(this.age);
};

var instance1 = new SubType(“Nicholas”, 29);
instance1.colors.push(“black”);
alert(instance1.colors); //”red,blue,green,black”
instance1.sayName(); //”Nicholas”;
instance1.sayAge(); //29

var instance2 = new SubType(“Greg”, 27);
alert(instance2.colors); //”red,blue,green”
instance2.sayName(); //”Greg”;
instance2.sayAge(); //27

CombinationInheritanceExample01.htm

In this example, the SuperType constructor defi nes two properties, name and colors, and
the SuperType prototype has a single method called sayName(). The SubType constructor calls the
SuperType constructor, passing in the name argument, and defi nes its own property called age.
Additionally, the SubType prototype is assigned to be an instance of SuperType, and then a new
method called sayAge() is defi ned. With this code, it’s then possible to create two separate instances of
SubType that have their own properties, including the colors property, but all use the same methods.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 209c06.indd 209 12/8/11 10:00:04 AM12/8/11 10:00:04 AM

210 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

Addressing the downsides of both prototype chaining and constructor stealing, combination
inheritance is the most frequently used inheritance pattern in JavaScript. It also preserves the behavior
of instanceof and isPrototypeOf() for identifying the composition of objects.

Prototypal Inheritance

In 2006, Douglas Crockford wrote an article titled “Prototypal Inheritance in JavaScript” in which
he introduced a method of inheritance that didn’t involve the use of strictly defi ned constructors. His
premise was that prototypes allow you to create new objects based on existing objects without the
need for defi ning custom types. The function he introduced to this end is as follows:

function object(o){
 function F(){}
 F.prototype = o;
 return new F();
}

The object() function creates a temporary constructor, assigns a given object as the constructor’s
prototype, and returns a new instance of the temporary type. Essentially, object() performs a
shadow copy of any object that is passed into it. Consider the following:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = object(person);
anotherPerson.name = “Greg”;
anotherPerson.friends.push(“Rob”);

var yetAnotherPerson = object(person);
yetAnotherPerson.name = “Linda”;
yetAnotherPerson.friends.push(“Barbie”);

alert(person.friends); //”Shelby,Court,Van,Rob,Barbie”

PrototypalInheritanceExample01.htm

This is the way Crockford advocates using prototypal inheritance: you have an object that you want
to use as the base of another object. That object should be passed into object(), and the resulting
object should be modifi ed accordingly. In this example, the person object contains information that
should be available on another object, so it is passed into the object() function, which returns a
new object. The new object has person as its prototype, meaning that it has both a primitive value
property and a reference value property on its prototype. This also means that person.friends is
shared not only by person but also with anotherPerson and yetAnotherPerson. Effectively, this
code has created two clones of person.

ECMAScript 5 formalized the concept of prototypal inheritance by adding the Object.create()
method. This method accepts two arguments, an object to use as the prototype for a new object and

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 210c06.indd 210 12/8/11 10:00:05 AM12/8/11 10:00:05 AM

Inheritance ❘ 211

an optional object defi ning additional properties to apply to the new object. When used with one
argument, Object.create() behaves the same as the object() method:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = Object.create(person);
anotherPerson.name = “Greg”;
anotherPerson.friends.push(“Rob”);

var yetAnotherPerson = Object.create(person);
yetAnotherPerson.name = “Linda”;
yetAnotherPerson.friends.push(“Barbie”);

alert(person.friends); //”Shelby,Court,Van,Rob,Barbie”

PrototypalInheritanceExample02.htm

The second argument for Object.create() is in the same format as the second argument for
Object.defineProperties(): each additional property to defi ne is specifi ed along with its
descriptor. Any properties specifi ed in this manner will shadow properties of the same name on the
prototype object. For example:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = Object.create(person, {
 name: {
 value: “Greg”
 }
});

alert(anotherPerson.name); //”Greg”

PrototypalInheritanceExample03.htm

The Object.create() method is supported in Internet Explorer 9+, Firefox 4+, Safari 5+, Opera
12+, and Chrome.

Prototypal inheritance is useful when there is no need for the overhead of creating separate
constructors, but you still need an object to behave similarly to another. Keep in mind that properties
containing reference values will always share those values, similar to using the prototype pattern.

Parasitic Inheritance

Closely related to prototypal inheritance is the concept of parasitic inheritance, another pattern
popularized by Crockford. The idea behind parasitic inheritance is similar to that of the parasitic
constructor and factory patterns: create a function that does the inheritance, augments the object

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 211c06.indd 211 12/8/11 10:00:06 AM12/8/11 10:00:06 AM

212 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

in some way, and then returns the object as if it did all the work. The basic parasitic inheritance
pattern looks like this:

function createAnother(original){
 var clone = object(original); //create a new object by calling a function
 clone.sayHi = function(){ //augment the object in some way
 alert(“hi”);
 };
 return clone; //return the object
}

In this code, the createAnother() function accepts a single argument, which is the object to base
a new object on. This object, original, is passed into the object() function, and the result is
assigned to clone. Next, the clone object is changed to have a new method called sayHi(). The
last step is to return the object. The createAnother() function can be used in the following way:

var person = {
 name: “Nicholas”,
 friends: [“Shelby”, “Court”, “Van”]
};

var anotherPerson = createAnother(person);
anotherPerson.sayHi(); //”hi”

The code in this example returns a new object based on person. The anotherPerson object has all
of the properties and methods of person but adds a new method called sayHi().

Parasitic inheritance is another pattern to use when you are concerned primarily with objects
and not with custom types and constructors. The object() method is not required for parasitic
inheritance; any function that returns a new object fi ts the pattern.

Keep in mind that adding functions to objects using parasitic inheritance leads
to ineffi ciencies related to function reuse, similar to the constructor pattern.

Parasitic Combination Inheritance

Combination inheritance is the most often-used pattern for inheritance in JavaScript, though
it is not without its ineffi ciencies. The most ineffi cient part of the pattern is that the supertype
constructor is always called twice: once to create the subtype’s prototype, and once inside the
subtype constructor. Essentially, the subtype prototype ends up with all of the instance properties of
a supertype object, only to have it overwritten when the subtype constructor executes. Consider the
combination inheritance example again:

function SuperType(name){
 this.name = name;
 this.colors = [“red”, “blue”, “green”];
}

SuperType.prototype.sayName = function(){
 alert(this.name);

c06.indd 212c06.indd 212 12/8/11 10:00:06 AM12/8/11 10:00:06 AM

Inheritance ❘ 213

};

function SubType(name, age){
 SuperType.call(this, name); //second call to SuperType()

 this.age = age;
}

SubType.prototype = new SuperType(); //fi rst call to SuperType()
SubType.prototype.constructor = SubType;
SubType.prototype.sayAge = function(){
 alert(this.age);
};

The highlighted lines of code indicate when SuperType constructor is executed. When this code is
executed, SubType.prototype ends up with two properties: name and colors. These are instance
properties for SuperType, but they are now on the SubType’s prototype. When the SubType constructor
is called, the SuperType constructor is also called, which creates instance properties name and colors
on the new object that mask the properties on the prototype. Figure 6-6 illustrates this process.

FIGURE 6-6

SubType

Initially

prototype

SuperType

prototype

SubType Prototype

constructor

SuperType Prototype

constructor

SubType Prototype

[[Prototype]]

SuperType

prototype

SuperType Prototype

constructor

SubType.prototype � new SuperType()

SubType

prototype

var instance � new SubType(“Nicholas”, 29)

name (undefined)

colors (array)

SubType Prototype

[[Prototype]]

SubType

prototype

instance

[[Prototype]]

name (undefined)

colors (array)

name “Nicholas”

colors (array)

age 29

c06.indd 213c06.indd 213 12/8/11 10:00:11 AM12/8/11 10:00:11 AM

214 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

As you can see, there are two sets of name and colors properties: one on the instance and one on
the SubType prototype. This is the result of calling the SuperType constructor twice. Fortunately,
there is a way around this.

Parasitic combination inheritance uses constructor stealing to inherit properties but uses a hybrid
form of prototype chaining to inherit methods. The basic idea is this: instead of calling the
supertype constructor to assign the subtype’s prototype, all you need is a copy of the supertype’s
prototype. Essentially, use parasitic inheritance to inherit from the supertype’s prototype and then
assign the result to the subtype’s prototype. The basic pattern for parasitic combination inheritance
is as follows:

function inheritPrototype(subType, superType){
 var prototype = object(superType.prototype); //create object
 prototype.constructor = subType; //augment object
 subType.prototype = prototype; //assign object
}

The inheritPrototype() function implements very basic parasitic combination inheritance. This
function accepts two arguments: the subtype constructor and the supertype constructor. Inside
the function, the fi rst step is to create a clone of the supertype’s prototype. Next, the constructor
property is assigned onto prototype to account for losing the default constructor property when
the prototype is overwritten. Finally, the subtype’s prototype is assigned to the newly created object.
A call to inheritPrototype() can replace the subtype prototype assignment in the previous
example, as shown here:

function SuperType(name){
 this.name = name;
 this.colors = [“red”, “blue”, “green”];
}

SuperType.prototype.sayName = function(){
 alert(this.name);
};

function SubType(name, age){
 SuperType.call(this, name);

 this.age = age;
}

inheritPrototype(SubType, SuperType);

SubType.prototype.sayAge = function(){
 alert(this.age);
};

ParasiticCombinationInheritanceExample01.htm

This example is more effi cient in that the SuperType constructor is being called only one
time, avoiding having unnecessary and unused properties on SubType.prototype. Furthermore, the

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 214c06.indd 214 12/8/11 10:00:11 AM12/8/11 10:00:11 AM

Summary ❘ 215

prototype chain is kept intact, so both instanceof and isPrototypeOf() behave as they would
normally. Parasitic combination inheritance is considered the most optimal inheritance paradigm for
reference types.

The Yahoo! User Interface (YUI) library was the fi rst to include parasitic
combination inheritance in a widely distributed JavaScript library via the
Y.extend() method. For more information on YUI, visit
http://yuilibrary.com/.

SUMMARY

ECMAScript supports object-oriented (OO) programming without the use of classes or interfaces.
Objects are created and augmented at any point during code execution, making objects into
dynamic rather than strictly defi ned entities. In place of classes, the following patterns are used for
the creation of objects:

The factory pattern uses a simple function that creates an object, assigns properties and
methods, and then returns the object. This pattern fell out of favor when the constructor
pattern emerged.

Using the constructor pattern, it’s possible to defi ne custom reference types that can be
created using the new operator in the same way as built-in object instances are created. The
constructor pattern does have a downside, however, in that none of its members are reused,
including functions. Since functions can be written in a loosely typed manner, there’s no
reason they cannot be shared by multiple object instances.

The prototype pattern takes this into account, using the constructor’s prototype property
to assign properties and methods that should be shared. The combination constructor/
prototype pattern uses the constructor to defi ne instance properties and the prototype
pattern to defi ne shared properties and methods.

Inheritance in JavaScript is implemented primarily using the concept of prototype chaining.
Prototype chaining involves assigning a constructor’s prototype to be an instance of another type.
In doing so, the subtype assumes all of the properties and methods of the supertype in a manner
similar to class-based inheritance. The problem with prototype chaining is that all of the inherited
properties and methods are shared among object instances, making it ill-suited for use on its own.
The constructor stealing pattern avoids these issues, calling the supertype’s constructor from inside
of the subtype’s constructor. This allows each instance to have its own properties but forces the
types to be defi ned using only the constructor pattern. The most popular pattern of inheritance is
combination inheritance, which uses prototype chaining to inherit shared properties and methods
and uses constructor stealing to inherit instance properties.

➤

➤

➤

c06.indd 215c06.indd 215 12/8/11 10:00:12 AM12/8/11 10:00:12 AM

216 ❘ CHAPTER 6 OBJECT-ORIENTED PROGRAMMING

There are also the following alternate inheritance patterns:

Prototypal inheritance implements inheritance without the need for predefi ned constructors,
essentially performing a shallow clone operation on a given object. The result of the
operation then may be augmented further.

Closely related is parasitic inheritance, which is a pattern for creating an object based on
another object or some information, augmenting it, and returning it. This pattern has also
been repurposed for use with combination inheritance to remove the ineffi ciencies related to
the number of times the supertype constructor is called.

Parasitic combination inheritance is considered the most effi cient way to implement type-
based inheritance.

➤

➤

➤

c06.indd 216c06.indd 216 12/8/11 10:00:17 AM12/8/11 10:00:17 AM

Function Expressions

WHAT’S IN THIS CHAPTER?

Function expression characteristics

Recursion with functions

Private variables using closures

One of the more powerful, and often confusing, parts of JavaScript is function expressions.
As mentioned in Chapter 5, there are two ways to defi ne a function: by function declaration
and by function expression. The fi rst, function declaration, has the following form:

function functionName(arg0, arg1, arg2) {
 //function body
}

The name of the function follows the function keyword, and this is how the function’s name
is assigned. Firefox, Safari, Chrome, and Opera all feature a nonstandard name property on
functions exposing the assigned name. This value is always equivalent to the identifi er that
immediately follows the function keyword:

//works only in Firefox, Safari, Chrome, and Opera
alert(functionName.name); //”functionName”

FunctionNameExample01.htm

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

7

c07.indd 217c07.indd 217 12/8/11 10:02:48 AM12/8/11 10:02:48 AM

218 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

One of the key characteristics of function declarations is function declaration hoisting, whereby
function declarations are read before the code executes. That means a function declaration may
appear after code that calls it and still work:

sayHi();
function sayHi(){
 alert(“Hi!”);
}

FunctionDeclarationHoisting01.htm

This example doesn’t throw an error because the function declaration is read fi rst before the code
begins to execute.

The second way to create a function is by using a function expression. Function expressions have
several forms. The most common is as follows:

var functionName = function(arg0, arg1, arg2){
 //function body
};

This pattern of function expression looks like a normal variable assignment. A function is created
and assigned to the variable functionName. The created function is considered to be an anonymous
function, because it has no identifi er after the function keyword. (Anonymous functions are also
sometimes called lambda functions.) This means the name property is the empty string.

Function expressions act like other expressions and, therefore, must be assigned before usage. The
following causes an error:

sayHi(); //error – function doesn’t exist yet
var sayHi = function(){
 alert(“Hi!”);
};

Understanding function hoisting is key to understanding the differences between function
declarations and function expressions. For instance, the result of the following code may be
surprising:

//never do this!
if(condition){
 function sayHi(){
 alert(“Hi!”);
 }
} else {
 function sayHi(){
 alert(“Yo!”);
 }
}

FunctionDeclarationsErrorExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 218c07.indd 218 12/8/11 10:02:50 AM12/8/11 10:02:50 AM

Function Expressions ❘ 219

The code seems to indicate that if condition is true, use one defi nition for sayHi(); otherwise, use
a different defi nition. In fact, this is not valid syntax in ECMAScript, so JavaScript engines try to
error correct into an appropriate state. The problem is that browsers don’t consistently error correct
in this case. Most browsers return the second declaration regardless of condition; Firefox returns
the fi rst when condition is true. This pattern is dangerous and should not be used. It is perfectly
fi ne, however, to use function expressions in this way:

//this is okay
var sayHi;

if(condition){
 sayHi = function(){
 alert(“Hi!”);
 };
} else {
 sayHi = function(){
 alert(“Yo!”);
 };
}

This example behaves the way you would expect, assigning the correct function expression to the
variable sayHi based on condition.

The ability to create functions for assignment to variables also allows you to return functions as
the value of other functions. Recall the following createComparisonFunction() example from
Chapter 5:

function createComparisonFunction(propertyName) {

 return function(object1, object2){
 var value1 = object1[propertyName];
 var value2 = object2[propertyName];

 if (value1 < value2){
 return -1;
 } else if (value1 > value2){
 return 1;
 } else {
 return 0;
 }
 };
}

createComparisonFunction() returns an anonymous function. The returned function
will, presumably, be either assigned to a variable or otherwise called, but within
createComparisonFunction() it is anonymous. Any time a function is being used as a value, it is
a function expression. However, these are not the only uses for function expressions, as the rest of
this chapter will show.

c07.indd 219c07.indd 219 12/8/11 10:02:51 AM12/8/11 10:02:51 AM

220 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

RECURSION

A recursive function typically is formed when a function calls itself by name, as in the following example:

function factorial(num){
 if (num <= 1){
 return 1;
 } else {
 return num * factorial(num-1);
 }
}

RecursionExample01.htm

This is the classic recursive factorial function. Although this works initially, it’s possible to prevent
it from functioning by running the following code immediately after it:

var anotherFactorial = factorial;
factorial = null;
alert(anotherFactorial(4)); //error!

RecursionExample01.htm

Here, the factorial() function is stored in a variable called anotherFactorial. The factorial
variable is then set to null, so only one reference to the original function remains. When
anotherFactorial() is called, it will cause an error, because it will try to execute factorial(),
which is no longer a function. Using arguments.callee can alleviate this problem.

Recall that arguments.callee is a pointer to the function being executed and, as such, can be used
to call the function recursively, as shown here:

function factorial(num){
 if (num <= 1){
 return 1;
 } else {
 return num * arguments.callee(num-1);
 }
}

RecursionExample02.htm

Changing the highlighted line to use arguments.callee instead of the function name ensures that
this function will work regardless of how it is accessed. It’s advisable to always use arguments
.callee of the function name whenever you’re writing recursive functions.

The value of arguments.callee is not accessible to a script running in strict mode and will cause
an error when attempts are made to read it. Instead, you can use named function expressions to
achieve the same result. For example:

var factorial = (function f(num){
 if (num <= 1){
 return 1;
 } else {

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 220c07.indd 220 12/8/11 10:02:51 AM12/8/11 10:02:51 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Closures ❘ 221

 return num * f(num-1);
 }
});

In this code, a named function expression f() is created and assigned to the variable factorial.
The name f remains the same even if the function is assigned to another variable, so the recursive
call will always execute correctly. This pattern works in both nonstrict mode and strict mode.

CLOSURES

The terms anonymous functions and closures are often incorrectly used interchangeably. Closures
are functions that have access to variables from another function’s scope. This is often accomplished
by creating a function inside a function, as in the following highlighted lines from the previous
createComparisonFunction() example:

function createComparisonFunction(propertyName) {

 return function(object1, object2){
 var value1 = object1[propertyName];
 var value2 = object2[propertyName];

 if (value1 < value2){
 return -1;
 } else if (value1 > value2){
 return 1;
 } else {
 return 0;
 }
 };
}

The highlighted lines in this example are part of the inner function (an anonymous function) that is
accessing a variable (propertyName) from the outer function. Even after the inner function has been
returned and is being used elsewhere, it has access to that variable. This occurs because the inner
function’s scope chain includes the scope of createComparisonFunction(). To understand why
this is possible, consider what happens when a function is fi rst called.

Chapter 4 introduced the concept of a scope chain. The details of how scope chains are created and
used are important for a good understanding of closures. When a function is called, an execution
context is created, and its scope chain is created. The activation object for the function is initialized
with values for arguments and any named arguments. The outer function’s activation object is the
second object in the scope chain. This process continues for all containing functions until the scope
chain terminates with the global execution context.

As the function executes, variables are looked up in the scope chain for the reading and writing of
values. Consider the following:

function compare(value1, value2){
 if (value1 < value2){
 return -1;
 } else if (value1 > value2){

c07.indd 221c07.indd 221 12/8/11 10:02:52 AM12/8/11 10:02:52 AM

222 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

 return 1;
 } else {
 return 0;
 }
}

var result = compare(5, 10);

This code defi nes a function named compare() that is called in the global execution context. When
compare() is called for the fi rst time, a new activation object is created that contains arguments,
value1, and value2. The global execution context’s variable object is next in the compare()
execution context’s scope chain, which contains this, result, and compare. Figure 7-1 illustrates
this relationship.

FIGURE 7-1

compare execution context

(scope chain)

Scope Chain

Global variable object

compare() activation object

arguments [5, 10]

5

10

value1

value2

compare

result undefined

1

0

Behind the scenes, an object represents the variables in each execution context. The global context’s
variable object always exists, whereas local context variable objects, such as the one for compare(),
exist only while the function is being executed. When compare() is defi ned, its scope chain is
created, preloaded with the global variable object, and saved to the internal [[Scope]] property.
When the function is called, an execution context is created and its scope chain is built up by
copying the objects in the function’s [[Scope]] property. After that, an activation object (which
also acts as a variable object) is created and pushed to the front of the context’s scope chain. In this
example, that means the compare() function’s execution context has two variable objects in its
scope chain: the local activation object and the global variable object. Note that the scope chain is
essentially a list of pointers to variable objects and does not physically contain the objects.

Whenever a variable is accessed inside a function, the scope chain is searched for a variable with the
given name. Once the function has completed, the local activation object is destroyed, leaving only
the global scope in memory. Closures, however, behave differently.

A function that is defi ned inside another function adds the containing function’s activation object
into its scope chain. So, in createComparisonFunction(), the anonymous function’s scope chain
actually contains a reference to the activation object for createComparisonFunction(). Figure 7-2
illustrates this relationship when the following code is executed:

c07.indd 222c07.indd 222 12/8/11 10:02:53 AM12/8/11 10:02:53 AM

Closures ❘ 223

var compare = createComparisonFunction(“name”);
var result = compare({ name: “Nicholas” }, { name: “Greg” });

When the anonymous function is returned from createComparisonFunction(), its scope
chain has been initialized to contain the activation object from createComparisonFunction()
and the global variable object. This gives the anonymous function access to all of the variables from
createComparisonFunction(). Another interesting side effect is that the activation object
from createComparisonFunction() cannot be destroyed once the function fi nishes executing, because
a reference still exists in the anonymous function’s scope chain. After createComparisonFunction()
completes, the scope chain for its execution context is destroyed, but its activation object will remain in
memory until the anonymous function is destroyed, as in the following:

//create function
var compareNames = createComparisonFunction(“name”);

//call function
var result = compareNames({ name: “Nicholas” }, { name: “Greg”});

//dereference function - memory can now be reclaimed
compareNames = null;

Here, the comparison function is created and stored in the variable compareNames. Setting
compareNames equal to null dereferences the function and allows the garbage collection routine
to clean it up. The scope chain will then be destroyed and, all of the scopes (except the global
scope) can be destroyed safely. Figure 7-2 shows the scope-chain relationships that occur when
compareNames() is called in this example.

FIGURE 7-2

createComparisonFunction

execution context

anonymous execution context

Scope Chain

Global variable object

createComparison

Function

result undefined

createComparisonFunction()

activation object

Closure activation object

arguments [{name: “Nicholas”},

 {name: “Greg”}]

{name: “Nicholas”}

{name: “Greg”}

object1

object2

arguments

propertyName “name”

[“name”]
Scope Chain

1

0

1

2

0

(scope chain)

(scope chain)

c07.indd 223c07.indd 223 12/8/11 10:02:53 AM12/8/11 10:02:53 AM

224 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

Closures and Variables

There is one notable side effect of this scope-chain confi guration. The closure always gets the last
value of any variable from the containing function. Remember that the closure stores a reference
to the entire variable object, not just to a particular variable. This issue is illustrated clearly in the
following example:

function createFunctions(){
 var result = new Array();

 for (var i=0; i < 10; i++){
 result[i] = function(){
 return i;
 };
 }

 return result;
}

ClosureExample01.htm

This function returns an array of functions. It seems that each function should just return the value
of its index, so the function in position 0 returns 0, the function in position 1 returns 1, and so on.
In reality, every function returns 10. Since each function has the createFunctions() activation
object in its scope chain, they are all referring to the same variable, i. When createFunctions()
fi nishes running, the value of i is 10, and since every function references the same variable object in
which i exists, the value of i inside each function is 10. You can, however, force the closures to act
appropriately by creating another anonymous function, as follows:

function createFunctions(){
 var result = new Array();

 for (var i=0; i < 10; i++){
 result[i] = function(num){
 return function(){
 return num;
 };
 }(i);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Since closures carry with them the containing function’s scope, they take up
more memory than other functions. Overuse of closures can lead to excess
memory consumption, so it’s recommended you use them only when absolutely
necessary. Optimizing JavaScript engines, such as V8, make attempts to reclaim
memory that is trapped because of closures, but it’s still recommended to be
careful when using closures.

c07.indd 224c07.indd 224 12/8/11 10:02:54 AM12/8/11 10:02:54 AM

Closures ❘ 225

 }

 return result;
}

ClosureExample02.htm

With this version of createFunctions(), each function returns a different number. Instead of
assigning a closure directly into the array, an anonymous function is defi ned and called immediately.
The anonymous function has one argument, num, which is the number that the result function
should return. The variable i is passed in as an argument to the anonymous function. Since function
arguments are passed by value, the current value of i is copied into the argument num. Inside the
anonymous function, a closure that accesses num is created and returned. Now each function in the
result array has its own copy of num and thus can return separate numbers.

The this Object

Using the this object inside closures introduces some complex behaviors. The this object is bound
at runtime based on the context in which a function is executed: when used inside global functions,
this is equal to window in nonstrict mode and undefined in strict mode, whereas this is equal to
the object when called as an object method. Anonymous functions are not bound to an object in
this context, meaning the this object points to window unless executing in strict mode (where this
is undefined). Because of the way closures are written, however, this fact is not always obvious.
Consider the following:

var name = “The Window”;

var object = {
 name : “My Object”,

 getNameFunc : function(){
 return function(){
 return this.name;
 };
 }
};

alert(object.getNameFunc()()); //”The Window” (in non-strict mode)

ThisObjectExample01.htm

Here, a global variable called name is created along with an object that also contains a
property called name. The object contains a method, getNameFunc(), that returns an anonymous
function, which returns this.name. Since getNameFunc() returns a function, calling object
.getNameFunc()() immediately calls the function that is returned, which returns a string. In this
case, however, it returns “The Window”, which is the value of the global name variable. Why didn’t
the anonymous function pick up the containing scope’s this object?

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 225c07.indd 225 12/8/11 10:03:04 AM12/8/11 10:03:04 AM

226 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

Remember that each function automatically gets two special variables as soon as the function is
called: this and arguments. An inner function can never access these variables directly from an
outer function. It is possible to allow a closure access to a different this object by storing it in
another variable that the closure can access, as in this example:

var name = “The Window”;

var object = {
 name : “My Object”,

 getNameFunc : function(){
 var that = this;
 return function(){
 return that.name;
 };
 }
};

alert(object.getNameFunc()()); //”My Object”

ThisObjectExample02.htm

The two highlighted lines show the difference between this example and the previous one. Before
defi ning the anonymous function, a variable named that is assigned equal to the this object. When
the closure is defi ned, it has access to that, since it is a uniquely named variable in the containing
function. Even after the function is returned, that is still bound to object, so calling object
.getNameFunc()() returns “My Object”.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Both this and arguments behave in this way. If you want access to a containing
scope’s arguments object, you’ll need to save a reference into another variable
that the closure can access.

There are a few special cases where the value of this may not end up as the value you expect.
Consider the following modifi cation to the previous example:

var name = “The Window”;

var object = {
 name : “My Object”,

 getName: function(){
 return this.name;
 }
};

The getName() method simply returns the value of this.name. Here are various ways to call
object.getName() and the results:

c07.indd 226c07.indd 226 12/8/11 10:03:05 AM12/8/11 10:03:05 AM

Closures ❘ 227

object.getName(); //”My Object”
(object.getName)(); //”My Object”
(object.getName = object.getName)(); //”The Window” in non-strict mode

ThisObjectExample03.htm

The fi rst line calls object.getName() in the way you normally would and so returns
“My Object”, as this.name is the same as object.name. The second line places parentheses
around object.getName before calling it. While this might seem to be a reference just to the
function, the this value is maintained, because object.getName and (object.getName) are
defi ned to be equivalent. The third line performs an assignment and then calls the result. Because
the value of this assignment expression is the function itself, the this value is not maintained, and
so “The Window” is returned.

It’s unlikely that you’ll intentionally use the patterns in lines two or three, but it is helpful to know
that the value of this can change in unexpected ways when syntax is changed slightly.

Memory Leaks

The way closures work causes particular problems in Internet Explorer prior to version 9 because
of the different garbage-collection routines used for JScript objects versus COM objects (discussed
in Chapter 4). Storing a scope in which an HTML element is stored effectively ensures that the
element cannot be destroyed. Consider the following:

function assignHandler(){
 var element = document.getElementById(“someElement”);
 element.onclick = function(){
 alert(element.id);
 };
}

This code creates a closure as an event handler on element, which in turn creates a circular
reference (events are discussed in Chapter 13). The anonymous function keeps a reference to the
assignHandler() function’s activation object, which prevents the reference count for element from
being decremented. As long as the anonymous function exists, the reference count for element will
be at least 1, which means the memory will never be reclaimed. This situation can be remedied by
changing the code slightly, as shown here:

function assignHandler(){
 var element = document.getElementById(“someElement”);
 var id = element.id;

 element.onclick = function(){
 alert(id);
 };

 element = null;
}

c07.indd 227c07.indd 227 12/8/11 10:03:11 AM12/8/11 10:03:11 AM

228 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

In this version of the code, a copy of element’s ID is stored in a variable that is used in the closure,
eliminating the circular reference. That step alone is not enough, however, to prevent the memory
problem. Remember: the closure has a reference to the containing function’s entire activation object,
which contains element. Even if the closure doesn’t reference element directly, a reference is still
stored in the containing function’s activation object. It is necessary, therefore, to set the element
variable equal to null. This dereferences the COM object and decrements its reference count,
ensuring that the memory can be reclaimed when appropriate.

MIMICKING BLOCK SCOPE

As mentioned previously, JavaScript has no concept of block-level scoping, meaning variables
defi ned inside of block statements are actually created in the containing function, not within the
statement. Consider the following:

function outputNumbers(count){
 for (var i=0; i < count; i++){
 alert(i);
 }

 alert(i); //count
}

BlockScopeExample01.htm

In this function, a for loop is defi ned and the variable i is initialized to be equal to 0. For languages
such as Java and C++, the variable i would be defi ned only in the block statement representing the
for loop, so the variable would be destroyed as soon as the loop completed. However, in JavaScript
the variable i is defi ned as part of the outputNumbers() activation object, meaning it is accessible
inside the function from that point on. Even the following errant redeclaration of the variable won’t
wipe out its value:

function outputNumbers(count){
 for (var i=0; i < count; i++){
 alert(i);
 }

 var i; //variable redeclared
 alert(i); //count
}

BlockScopeExample02.htm

JavaScript will never tell you if you’ve declared the same variable more than once; it simply ignores
all subsequent declarations (though it will honor initializations). Anonymous functions can be used
to mimic block scoping and avoid such problems.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 228c07.indd 228 12/8/11 10:03:11 AM12/8/11 10:03:11 AM

Mimicking Block Scope ❘ 229

The basic syntax of an anonymous function used as a block scope (often called a private scope) is as
follows:

(function(){
 //block code here
})();

This syntax defi nes an anonymous function that is called immediately and is also sometimes called
an immediately invoked function. What looks like a function declaration is enclosed in parentheses
to indicate that it’s actually a function expression. This function is then called via the second set of
parentheses at the end. If this syntax is confusing, consider the following example:

var count = 5;
outputNumbers(count);

In this example, a variable count is initialized with the value of 5. Of course, the variable is
unnecessary since the value is being passed directly into a function. To make the code more concise,
the value 5 can replace the variable count when calling the function as follows:

outputNumbers(5);

This works the same as the previous example because a variable is just a representation of another
value, so the variable can be replaced with the actual value, and the code works fi ne. Now consider
the following:

var someFunction = function(){
 //block code here
};
someFunction();

In this example, a function is defi ned and then called immediately. An anonymous function is created
and assigned to the variable someFunction. The function is then called by placing parentheses after
the function name, becoming someFunction(). Remember in the previous example that the variable
count could be replaced with its actual value; the same thing can be done here. However, the following
won’t work:

function(){
 //block code here
}(); //error!

This code causes a syntax error, because JavaScript sees the function keyword as the beginning
of a function declaration, and function declarations cannot be followed by parentheses. Function
expressions, however, can be followed by parentheses. To turn the function declaration into a
function expression, you need only surround it with parentheses like this:

(function(){
 //block code here
})();

c07.indd 229c07.indd 229 12/8/11 10:03:12 AM12/8/11 10:03:12 AM

230 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

These private scopes can be used anywhere variables are needed temporarily, as in this example:

function outputNumbers(count){
 (function () {
 for (var i=0; i < count; i++){
 alert(i);
 }
 })();

 alert(i); //causes an error
}

BlockScopeExample03.htm

In this rewritten version of the outputNumbers() function, a private scope is inserted around
the for loop. Any variables defi ned within the anonymous function are destroyed as soon as it
completes execution, so the variable i is used in the loop and then destroyed. The count variable is
accessible inside the private scope because the anonymous function is a closure, with full access to
the containing scope’s variables.

This technique is often used in the global scope outside of functions to limit the number of variables
and functions added to the global scope. Typically you want to avoid adding variables and functions
to the global scope, especially in large applications with multiple developers, to avoid naming
collisions. Private scopes allow every developer to use his or her own variables without worrying
about polluting the global scope. Consider this example:

(function(){

 var now = new Date();
 if (now.getMonth() == 0 && now.getDate() == 1){
 alert(“Happy new year!”);
 }

})();

Placing this code in the global scope provides functionality for determining if the day is January 1
and, if so, displaying a message to the user. The variable now becomes a variable that is local to the
anonymous function instead of being created in the global scope.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

This pattern limits the closure memory problem, because there is no reference to
the anonymous function. Therefore the scope chain can be destroyed
immediately after the function has completed.

c07.indd 230c07.indd 230 12/8/11 10:03:12 AM12/8/11 10:03:12 AM

Private Variables ❘ 231

PRIVATE VARIABLES

Strictly speaking, JavaScript has no concept of private members; all object properties are public.
There is, however, a concept of private variables. Any variable defi ned inside a function is
considered private since it is inaccessible outside that function. This includes function arguments,
local variables, and functions defi ned inside other functions. Consider the following:

function add(num1, num2){
 var sum = num1 + num2;
 return sum;
}

In this function, there are three private variables: num1, num2, and sum. These variables are
accessible inside the function but can’t be accessed outside it. If a closure were to be created inside
this function, it would have access to these variables through its scope chain. Using this knowledge,
you can create public methods that have access to private variables.

A privileged method is a public method that has access to private variables and/or private
functions. There are two ways to create privileged methods on objects. The fi rst is to do so inside a
constructor, as in this example:

function MyObject(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //privileged methods
 this.publicMethod = function (){
 privateVariable++;
 return privateFunction();
 };
}

This pattern defi nes all private variables and functions inside the constructor. Then privileged
methods can be created to access those private members. This works because the privileged methods,
when defi ned in the constructor, become closures with full access to all variables and functions
defi ned inside the constructor’s scope. In this example, the variable privateVariable and the
function privateFunction() are accessed only by publicMethod(). Once an instance of MyObject
is created, there is no way to access privateVariable and privateFunction() directly; you can do
so only by way of publicMethod().

c07.indd 231c07.indd 231 12/8/11 10:03:17 AM12/8/11 10:03:17 AM

232 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

You can defi ne private and privileged members to hide data that should not be changed directly, as
in this example:

function Person(name){

 this.getName = function(){
 return name;
 };

 this.setName = function (value) {
 name = value;
 };
}

var person = new Person(“Nicholas”);
alert(person.getName()); //”Nicholas”
person.setName(“Greg”);
alert(person.getName()); //”Greg”

PrivilegedMethodExample01.htm

The constructor in this code defi nes two privileged methods: getName() and setName(). Each
method is accessible outside the constructor and accesses the private name variable. Outside the
Person constructor, there is no way to access name. Since both methods are defi ned inside the
constructor, they are closures and have access to name through the scope chain. The private variable
name is unique to each instance of Person since the methods are being re-created each time the
constructor is called. One downside, however, is that you must use the constructor pattern to
accomplish this result. As discussed in Chapter 6, the constructor pattern is fl awed in that new
methods are created for each instance. Using static private variables to achieve privileged methods
avoids this problem.

Static Private Variables

Privileged methods can also be created by using a private scope to defi ne the private variables or
functions. The pattern is as follows:

(function(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //constructor
 MyObject = function(){
 };

 //public and privileged methods

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 232c07.indd 232 12/8/11 10:03:18 AM12/8/11 10:03:18 AM

Private Variables ❘ 233

 MyObject.prototype.publicMethod = function(){
 privateVariable++;
 return privateFunction();
 };

})();

In this pattern, a private scope is created to enclose the constructor and its methods. The private
variables and functions are defi ned fi rst, followed by the constructor and the public methods.
Public methods are defi ned on the prototype, as in the typical prototype pattern. Note that this
pattern defi nes the constructor not by using a function declaration but instead by using a function
expression. Function declarations always create local functions, which is undesirable in this case.
For this same reason, the var keyword is not used with MyObject. Remember: initializing an
undeclared variable always creates a global variable, so MyObject becomes global and available
outside the private scope. Also keep in mind that assigning to an undeclared variable in strict mode
causes an error.

The main difference between this pattern and the previous one is that private variables and
functions are shared among instances. Since the privileged method is defi ned on the prototype, all
instances use that same function. The privileged method, being a closure, always holds a reference
to the containing scope. Consider the following:

 (function(){

 var name = “”;

 Person = function(value){
 name = value;
 };

 Person.prototype.getName = function(){
 return name;
 };

 Person.prototype.setName = function (value){
 name = value;
 };
})();

var person1 = new Person(“Nicholas”);
alert(person1.getName()); //”Nicholas”
person1.setName(“Greg”);
alert(person1.getName()); //”Greg”

var person2 = new Person(“Michael”);
alert(person1.getName()); //”Michael”
alert(person2.getName()); //”Michael”

PrivilegedMethodExample02.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 233c07.indd 233 12/8/11 10:03:18 AM12/8/11 10:03:18 AM

234 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

The Person constructor in this example has access to the private variable name, as do the
getName() and setName() methods. Using this pattern, the name variable becomes static and
will be used among all instances. This means calling setName() on one instance affects all other
instances. Calling setName() or creating a new Person instance sets the name variable to a new
value. This causes all instances to return the same value.

Creating static private variables in this way allows for better code reuse through prototypes,
although each instance doesn’t have its own private variable. Ultimately, the decision to use instance
or static private variables needs to be based on your individual requirements.

The farther up the scope chain a variable lookup is, the slower the lookup
becomes because of the use of closures and private variables.

The Module Pattern

The previous patterns create private variables and privileged methods for custom types. The module
pattern, as described by Douglas Crockford, does the same for singletons. Singletons are objects of
which there will only ever be one instance. Traditionally, singletons are created in JavaScript using
object literal notation, as shown in the following example:

var singleton = {
 name : value,
 method : function () {
 //method code here
 }
};

The module pattern augments the basic singleton to allow for private variables and privileged
methods, taking the following format:

var singleton = function(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //privileged/public methods and properties
 return {

 publicProperty: true,

 publicMethod : function(){

c07.indd 234c07.indd 234 12/8/11 10:03:19 AM12/8/11 10:03:19 AM

Private Variables ❘ 235

 privateVariable++;
 return privateFunction();
 }

 };
}();

The module pattern uses an anonymous function that returns an object. Inside of the anonymous
function, the private variables and functions are defi ned fi rst. After that, an object literal is
returned as the function value. That object literal contains only properties and methods that should
be public. Since the object is defi ned inside the anonymous function, all of the public methods
have access to the private variables and functions. Essentially, the object literal defi nes the public
interface for the singleton. This can be useful when the singleton requires some sort of initialization
and access to private variables, as in this example:

var application = function(){

 //private variables and functions
 var components = new Array();

 //initialization
 components.push(new BaseComponent());

 //public interface
 return {
 getComponentCount : function(){
 return components.length;
 },

 registerComponent : function(component){
 if (typeof component == “object”){
 components.push(component);
 }
 }
 };
}();

ModulePatternExample01.htm

In web applications, it’s quite common to have a singleton that manages application-level
information. This simple example creates an application object that manages components.
When the object is fi rst created, the private components array is created and a new instance of
BaseComponent is added to its list. (The code for BaseComponent is not important; it is used only
to show initialization in the example.) The getComponentCount() and registerComponent()
methods are privileged methods with access to the components array. The former simply returns the
number of registered components, and the latter registers a new component.

The module pattern is useful for cases like this, when a single object must be created and
initialized with some data and expose public methods that have access to private data. Every
singleton created in this manner is an instance of Object, since ultimately an object literal

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 235c07.indd 235 12/8/11 10:03:24 AM12/8/11 10:03:24 AM

236 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

represents it. This is inconsequential, because singletons are typically accessed globally instead of
passed as arguments into a function, which negates the need to use the instanceof operator to
determine the object type.

The Module-Augmentation Pattern

Another take on the module pattern calls for the augmentation of the object before returning it. This
pattern is useful when the singleton object needs to be an instance of a particular type but must be
augmented with additional properties and/or methods. Consider the following example:

var singleton = function(){

 //private variables and functions
 var privateVariable = 10;

 function privateFunction(){
 return false;
 }

 //create object
 var object = new CustomType();

 //add privileged/public properties and methods
 object.publicProperty = true;

 object.publicMethod = function(){
 privateVariable++;
 return privateFunction();
 };

 //return the object
 return object;
}();

If the application object in the module pattern example had to be an instance of BaseComponent,
the following code could be used:

var application = function(){

 //private variables and functions
 var components = new Array();

 //initialization
 components.push(new BaseComponent());

 //create a local copy of application
 var app = new BaseComponent();

 //public interface
 app.getComponentCount = function(){
 return components.length;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c07.indd 236c07.indd 236 12/8/11 10:03:25 AM12/8/11 10:03:25 AM

Summary ❘ 237

 };

 app.registerComponent = function(component){
 if (typeof component == “object”){
 components.push(component);
 }
 };

 //return it
 return app;
}();

ModuleAugmentationPatternExample01.htm

In this rewritten version of the application singleton, the private variables are defi ned fi rst, as in the
previous example. The main difference is the creation of a variable named app that is a new instance
of BaseComponent. This is the local version of what will become the application object. Public
methods are then added onto the app object to access the private variables. The last step is to return
the app object, which assigns it to application.

SUMMARY

Function expressions are useful tools in JavaScript programming. They allow truly dynamic
programming where functions need not be named. These anonymous functions, also called lambda
functions, are a powerful way to use JavaScript functions. The following is a summary of function
expressions:

Function expressions are different from function declarations. Function declarations require
names, while function expressions do not. A function expression without a name is also
called an anonymous function.

With no defi nitive way to reference a function, recursive functions become more
complicated.

Recursive functions running in nonstrict mode may use arguments.callee to call
themselves recursively instead of using the function name, which may change.

Closures are created when functions are defi ned inside other functions, allowing the closure access
to all of the variables inside of the containing function, as follows:

Behind the scenes, the closure’s scope chain contains a variable object for itself, the
containing function, and the global context.

Typically a function’s scope and all of its variables are destroyed when the function has
fi nished executing.

When a closure is returned from that function, its scope remains in memory until the
closure no longer exists.

➤

➤

➤

➤

➤

➤

c07.indd 237c07.indd 237 12/8/11 10:03:25 AM12/8/11 10:03:25 AM

238 ❘ CHAPTER 7 FUNCTION EXPRESSIONS

Using closures, it’s possible to mimic block scoping in JavaScript, which doesn’t exist natively,
as follows:

A function can be created and called immediately, executing the code within it but never
leaving a reference to the function.

This results in all of the variables inside the function being destroyed unless they are
specifi cally set to a variable in the containing scope.

Closures can also be used to create private variables in objects, as follows:

Even though JavaScript doesn’t have a formal concept of private object properties, closures
can be used to implement public methods that have access to variables defi ned within the
containing scope.

Public methods that have access to private variables are called privileged methods.

Privileged methods can be implemented on custom types using the constructor or prototype
patterns and on singletons by using the module or module-augmentation patterns.

Function expressions and closures are extremely powerful in JavaScript and can be used to
accomplish many things. Keep in mind that closures maintain extra scopes in memory, so overusing
them may result in increased memory consumption.

➤

➤

➤

➤

➤

c07.indd 238c07.indd 238 12/8/11 10:03:26 AM12/8/11 10:03:26 AM

The Browser Object Model

WHAT’S IN THIS CHAPTER?

Understanding the window object, the core of the BOM

Controlling windows, frames, and pop-ups

Page information from the location object

Using the navigator object to learn about the browser

Though ECMAScript describes it as the core of JavaScript, the Browser Object Model (BOM)
is really the core of using JavaScript on the Web. The BOM provides objects that expose
browser functionality independent of any web page content. For years, a lack of any real
specifi cation made the BOM both interesting and problematic, because browser vendors were
free to augment it as they saw fi t. The commonalities between browsers became de facto
standards that have survived browser development mostly for the purpose of interoperability.
Part of the HTML5 specifi cation now covers the major aspects of the BOM, as the W3C seeks
to standardize one of the most fundamental parts of JavaScript in the browser.

THE WINDOW OBJECT

At the core of the BOM is the window object, which represents an instance of the browser.
The window object serves a dual purpose in browsers, acting as the JavaScript interface to the
browser window and the ECMAScript Global object. This means that every object, variable,
and function defi ned in a web page uses window as its Global object and has access to
methods like parseInt().

➤

➤

➤

➤

8

c08.indd 239c08.indd 239 12/8/11 10:07:02 AM12/8/11 10:07:02 AM

240 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

The Global Scope

Since the window object doubles as the ECMAScript Global object, all variables and functions
declared globally become properties and methods of the window object. Consider this example:

var age = 29;
function sayAge(){
 alert(this.age);
}

alert(window.age); //29
sayAge(); //29
window.sayAge(); //29

Here, a variable named age and a function named sayAge() are defi ned in the global scope, which
automatically places them on the window object. Thus, the variable age is also accessible as window
.age, and the function sayAge() is also accessible via window.sayAge(). Since sayAge() exists in
the global scope, this.age maps to window.age, and the correct result is displayed.

Despite global variables becoming properties of the window object, there is a slight difference between
defi ning a global variable and defi ning a property directly on window: global variables cannot be
removed using the delete operator, while properties defi ned directly on window can. For example:

var age = 29;
window.color = “red”;

//throws an error in IE < 9, returns false in all other browsers
delete window.age;

//throws an error in IE < 9, returns true in all other browsers
delete window.color; //returns true

alert(window.age); //29
alert(window.color); //undefined

DeleteOperatorExample01.htm

Properties of window that were added via var statements have their [[Configurable]] attribute
set to false and so may not be removed via the delete operator. Internet Explorer 8 and earlier
enforced this by throwing an error when the delete operator is used on window properties
regardless of how they were originally created. Internet Explorer 9 and later do not throw an error.

Another thing to keep in mind: attempting to access an undeclared variable throws an error, but it
is possible to check for the existence of a potentially undeclared variable by looking on the window
object. For example:

//this throws an error because oldValue is undeclared
var newValue = oldValue;

//this doesn’t throw an error, because it’s a property lookup
//newValue is set to undefined
var newValue = window.oldValue;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 240c08.indd 240 12/8/11 10:07:04 AM12/8/11 10:07:04 AM

The window Object ❘ 241

Keeping this in mind, there are many objects in JavaScript that are considered to be global, such as
location and navigator (both discussed later in the chapter), but are actually properties of the
window object.

Internet Explorer for Windows Mobile doesn’t allow direct creation of new
properties or methods on the window object via window.property = value. All
variables and functions declared globally, however, will still become members of
window.

Window Relationships and Frames

If a page contains frames, each frame has its own window object and is stored in the frames
collection. Within the frames collection, the window objects are indexed both by number (starting
at 0, going from left to right, and then row by row) and by the name of the frame. Each window
object has a name property containing the name of the frame. Consider the following:

<html>
 <head>
 <title>Frameset Example</title>
 </head>
 <frameset rows=”160,*”>
 <frame src=”frame.htm” name=”topFrame”>
 <frameset cols=”50%,50%”>
 <frame src=”anotherframe.htm” name=”leftFrame”>
 <frame src=”yetanotherframe.htm” name=”rightFrame”>
 </frameset>
 </frameset>
</html>

FramesetExample01.htm

This code creates a frameset with one frame across the top and two frames underneath. Here, the
top frame can be referenced by window.frames[0] or window.frames[“topFrame”]; however,
you would probably use the top object instead of window to refer to these frames (making it top
.frames[0], for instance).

The top object always points to the very top (outermost) frame, which is the browser window itself.
This ensures that you are pointing to the correct frame from which to access the others. Any code
written within a frame that references the window object is pointing to that frame’s unique instance
rather than the topmost one. Figure 8-1 indicates the various ways that the frames in the previous
example may be accessed from code that exists in the topmost window.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 241c08.indd 241 12/8/11 10:07:05 AM12/8/11 10:07:05 AM

242 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

Another window object is called parent. The parent object always points to the current frame’s
immediate parent frame. In some cases, parent may be equal to top, and when there are no frames,
parent is equal to top (and both are equal to window). Consider the following example:

<html>
 <head>
 <title>Frameset Example</title>
 </head>
 <frameset rows=”100,*”>
 <frame src=”frame.htm” name=”topFrame”>
 <frameset cols=”50%,50%”>
 <frame src=”anotherframe.htm” name=”leftFrame”>
 <frame src=”anotherframeset.htm” name=”rightFrame”>
 </frameset>
 </frameset>
</html>

frameset1.htm

This frameset has a frame that contains another frameset, the code for which is as follows:

<html>
 <head>
 <title>Frameset Example</title>
 </head>
 <frameset cols=”50%,50%”>
 <frame src=”red.htm” name=”redFrame”>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 8-1

window.frames[1]
window.frames["leftFrame"]
top.frames[1]
top.frames["leftFrame"]
frames[1]
frames["leftFrame"]

window.frames[0]
window.frames["topFrame"]
top.frames[0]
top.frames["topFrame"]
frames[0]
frames["topFrame"]

window.frames[2]
window.frames["rightFrame"]
top.frames[2]
top.frames["rightFrame"]
frames[2]
frames["rightFrame"]

c08.indd 242c08.indd 242 12/8/11 10:07:17 AM12/8/11 10:07:17 AM

The window Object ❘ 243

 <frame src=”blue.htm” name=”blueFrame”>
 </frameset>
</html>

anotherframeset.htm

When the fi rst frameset is loaded into the browser, it loads another frameset into rightFrame.
If code is written inside redFrame (or blueFrame), the parent object points to rightFrame. If,
however, the code is written in topFrame, then parent points to top because its immediate parent is
the outermost frame. Figure 8-2 shows the values of the various window objects when this example
is loaded into a web browser.

FIGURE 8-2

Note that the topmost window will never have a value set for name unless the window was opened
using window.open(), as discussed later in this chapter.

There is one fi nal window object, called self, which always points to window. The two can, in fact,
be used interchangeably. Even though it has no separate value, self is included for consistency with
the top and parent objects.

Each of these objects is actually a property of the window object, accessible via window.parent,
window.top, and so on. This means it’s possible to chain window objects together, such as window
.parent.parent.frames[0].

c08.indd 243c08.indd 243 12/8/11 10:07:17 AM12/8/11 10:07:17 AM

244 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

Window Position

The position of a window object may be determined and changed using various properties and
methods. Internet Explorer, Safari, Opera, and Chrome all provide screenLeft and screenTop
properties that indicate the window’s location in relation to the left and top of the screen,
respectively. Firefox provides this functionality through the screenX and screenY properties, which
are also supported in Safari and Chrome. Opera supports screenX and screenY, but you should
avoid using them in Opera, because they don’t correspond to screenLeft and screenTop. The
following code determines the left and top positions of the window across browsers:

var leftPos = (typeof window.screenLeft == “number”) ?
 window.screenLeft : window.screenX;
var topPos = (typeof window.screenTop == “number”) ?
 window.screenTop : window.screenY;

WindowPositionExample01.htm

This example uses the ternary operator to determine if the screenLeft and screenTop properties
exist. If they do (which is the case in Internet Explorer, Safari, Opera, and Chrome), they are used.
If they don’t exist (as in Firefox), screenX and screenY are used.

There are some quirks to using these values. In Internet Explorer, Opera, and Chrome, screenLeft
and screenTop refer to the space from the left and top of the screen to the page view area
represented by window. If the window object is the topmost object and the browser window is at the
very top of the screen (with a y-coordinate of 0), the screenTop value will be the pixel height of
the browser toolbars that appear above the page view area. Firefox and Safari treat these coordinates
as being related to the entire browser window, so placing the window at y-coordinate 0 on the
screen returns a top position of 0.

To further confuse things, Firefox, Safari, and Chrome always return the values of top.screenX
and top.screenY for every frame on the page. Even if a page is offset by some margins, these same
values are returned every time screenX and screenY are used in relation to a window object. Internet
Explorer and Opera give accurate coordinates for the location of frames in relation to the screen edges.

The end result is that you cannot accurately determine the left and top coordinates of a browser
window across all browsers. It is possible, however, to accurately move the window to a new position
using the moveTo() and moveBy() methods. Each method accepts two arguments. moveTo() expects
the x and y coordinates to move to, and moveBy() expects the number of pixels to move in each
direction. Consider this example:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Whenever frames are used, multiple Global objects exist in the browser. Global
variables defi ned in each frame are defi ned to be properties of that frame’s
window object. Since each window object contains the native type constructors,
each frame has its own version of the constructors, which are not equal. For
example, top.Object is not equal to top.frames[0].Object, which affects the
use of instanceof when objects are passed across frames.

c08.indd 244c08.indd 244 12/8/11 10:07:18 AM12/8/11 10:07:18 AM

The window Object ❘ 245

//move the window to the upper-left coordinate
window.moveTo(0,0);

//move the window down by 100 pixels
window.moveBy(0, 100);

//move the window to position (200, 300)
window.moveTo(200, 300);

//move the window left by 50 pixels
window.moveBy(-50, 0);

These methods may be disabled by the browser and are disabled by default for the main browser
window in Internet Explorer 7+, Chrome, and Opera. None of these methods work for frames; they
apply only to the topmost window object.

Window Size

Determining the size of a window cross-browser is not straightforward. Internet Explorer 9+,
Firefox, Safari, Opera, and Chrome all provide four properties: innerWidth, innerHeight,
outerWidth, and outerHeight. In Internet Explorer 9+, Safari, Firefox, and Chrome, outerWidth
and outerHeight return the dimensions of the browser window itself (regardless of whether it’s
used on the topmost window object or on a frame). In Opera, these values are the size of the page
viewport. The innerWidth and innerHeight properties indicate the size of the page viewport
inside the browser window (minus borders and toolbars).

Internet Explorer 8 and earlier versions offer no way to get the current dimensions of the browser
window; however, they do provide information about the viewable area of the page via the DOM.

The document.documentElement.clientWidth and document.documentElement.clientHeight
properties provide the width and height of the page viewport in Internet Explorer, Firefox, Safari,
Opera, and Chrome. In Internet Explorer 6, the browser must be in standards mode for these
properties to be available; when in quirks mode, the information is available via document.body
.clientWidth and document.body.clientHeight. When Chrome is in quirks mode, the values
of clientWidth and clientHeight on document.documentElement and document.body both
contain the viewport dimensions.

The end result is that there’s no accurate way to determine the size of the browser window itself, but
it is possible to get the dimensions of the page viewport, as shown in the following example:

var pageWidth = window.innerWidth,
 pageHeight = window.innerHeight;

if (typeof pageWidth != “number”){
 if (document.compatMode == “CSS1Compat”){
 pageWidth = document.documentElement.clientWidth;
 pageHeight = document.documentElement.clientHeight;
 } else {
 pageWidth = document.body.clientWidth;
 pageHeight = document.body.clientHeight;
 }
}

WindowSizeExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 245c08.indd 245 12/8/11 10:07:28 AM12/8/11 10:07:28 AM

246 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

In this code, pageWidth and pageHeight are assigned initial values of window.innerWidth and
window.innerHeight, respectively. A check is then done to see if the value of pageWidth is a
number; if not, then the code determines if the page is in standards mode by using document
.compatMode. (This property is discussed fully in Chapter 11.) If it is, then document
.documentElement.clientWidth and document.documentElement.clientHeight are used;
otherwise, document.body.clientWidth and document.body.clientHeight are used.

For mobile devices, window.innerWidth and window.innerHeight are the dimensions of the
visual viewport, which is the visible area of the page on the screen. Mobile Internet Explorer
doesn’t support these properties but provides the same information on document.documentElement
.clientWidth and document.documentElement.clientHeight. These values change as you zoom
in or out of a page.

In other mobile browsers, the measurements of document.documentElement provide measurements
for the layout viewport, which are the actual dimensions of the rendered page (as opposed to the
visual viewport, which is only a small portion of the entire page). Mobile Internet Explorer stores
this information in document.body.clientWidth and document.body.clientHeight. These
values do not change as you zoom in and out.

Because of these differences from desktop browsers, you may need to fi rst determine if the user is on
a mobile device before deciding which measurements to use and honor.

The topic of mobile viewports is a complex one with various exceptions and
caveats. Peter-Paul Koch, a mobile development consultant, outlined all of his
research at http://quirksmode.org/mobile/viewports2.html. This is
recommended reading if you’re developing for mobile devices.

The browser window can be resized using the resizeTo() and resizeBy() methods. Each method
accepts two arguments: resizeTo() expects a new width and height, and resizeBy() expects the
differences in each dimension. Here’s an example:

//resize to 100 x 100
window.resizeTo(100, 100);

//resize to 200 x 150
window.resizeBy(100, 50);

//resize to 300 x 300
window.resizeTo(300, 300);

As with the window-movement methods, the resize methods may be disabled by the browser and are
disabled by default in Internet Explorer 7+, Chrome, and Opera. Also like the movement methods,
these methods apply only to the topmost window object.

c08.indd 246c08.indd 246 12/8/11 10:07:29 AM12/8/11 10:07:29 AM

The window Object ❘ 247

Navigating and Opening Windows

The window.open() method can be used both to navigate to a particular URL and to open a new
browser window. This method accepts four arguments: the URL to load, the window target, a
string of features, and a Boolean value indicating that the new page should take the place of the
currently loaded page in the browser history. Typically only the fi rst three arguments are used; the
last argument applies only when not opening a new window.

If the second argument passed to window.open() is the name of a window or frame that already
exists, then the URL is loaded into the window or frame with that name. Here’s an example:

//same as
window.open(“http://www.wrox.com/”, “topFrame”);

This line of code acts as if the user clicked a link with the href attribute set to “http://www.wrox.com”
and the target attribute set to “topFrame”. If there is a window or frame named “topFrame”, then
the URL will be loaded there; otherwise, a new window is created and given the name “topFrame”. The
second argument may also be any of the special window names: _self, _parent, _top, or _blank.

Popping Up Windows

When the second argument doesn’t identify an existing window or frame, a new window or tab
is created based on a string passed in as the third argument. If the third argument is missing, a
new browser window (or tab, based on browser settings) is opened with all of the default browser
window settings. (Toolbars, the location bar, and the status bar are all set based on the browser’s
default settings.) The third argument is ignored when not opening a new window.

The third argument is a comma-delimited string of settings indicating display information for the
new window. The following table describes the various options.

SETTING VALUE(S) DESCRIPTION

fullscreen “yes” or “no” Indicates that the browser window should be maximized

when created. Internet Explorer only.

height Number The initial height of the new window. This cannot be less

than 100.

left Number The initial left coordinate of the new window. This cannot

be a negative number.

location “yes” or “no” Indicates if the location bar should be displayed. The default

varies based on the browser. When set to “no”, the location

bar may be either hidden or disabled (browser-dependent).

menubar “yes” or “no” Indicates if the menu bar should be displayed. The default

is “no”.

continues

c08.indd 247c08.indd 247 12/8/11 10:07:34 AM12/8/11 10:07:34 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

248 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

SETTING VALUE(S) DESCRIPTION

resizable “yes” or “no” Indicates if the new window can be resized by dragging

its border. The default is “no”.

scrollbars “yes” or “no” Indicates if the new window allows scrolling if the content

cannot fi t in the viewport. The default is “no”.

status “yes” or “no” Indicates if the status bar should be displayed. The

default varies based on the browser.

toolbar “yes” or “no” Indicates if the toolbar should be displayed. The default

is “no”.

top Number The initial top coordinate of the new window. This cannot

be a negative number.

width Number The initial width of the new window. This cannot be less

than 100.

Any or all of these settings may be specifi ed as a comma-delimited set of name-value pairs. The
name-value pairs are indicated by an equal sign. (No white space is allowed in the feature string.)
Consider the following example:

window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

This code opens a new resizable window that’s 400 � 400 and positioned 10 pixels from the top
and left of the screen.

The window.open() method returns a reference to the newly created window. This object is the
same as any other window object except that you typically have more control over it. For instance,
some browsers that don’t allow you to resize or move the main browser window by default may
allow you to resize or move windows that you’ve created using window.open(). This object can be
used to manipulate the newly opened window in the same way as any other window, as shown in
this example:

var wroxWin =window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

//resize it
wroxWin.resizeTo(500, 500);

//move it
wroxWin.moveTo(100, 100);

It’s possible to close the newly opened window by calling the close() method as follows:

wroxWin.close();

 (continued)

c08.indd 248c08.indd 248 12/8/11 10:07:35 AM12/8/11 10:07:35 AM

http://www.wrox.com
http://www.wrox.com

The window Object ❘ 249

This method works only for pop-up windows created by window.open(). It’s not possible to close
the main browser window without confi rmation from the user. It is possible, however, for the
pop-up window to close itself without user confi rmation by calling top.close(). Once the window
has been closed, the window reference still exists but cannot be used other than to check the closed
property, as shown here:

wroxWin.close();
alert(wroxWin.closed); //true

The newly created window object has a reference back to the window that opened it via the opener
property. This property is defi ned only on the topmost window object (top) of the pop-up window
and is a pointer to the window or frame that called window.open(). For example:

var wroxWin =window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

alert(wroxWin.opener == window); //true

Even though there is a pointer from the pop-up window back to the window that opened it, there is
no reverse relationship. Windows do not keep track of the pop-ups that they spawn, so it’s up to you
to keep track if necessary.

Some browsers, such as Internet Explorer 8+ and Google Chrome, try to run each tab in the
browser as a separate process. When one tab opens another, the window objects need to be able to
communicate with one another, so the tabs cannot run in separate processes. Chrome allows you
to indicate that the newly created tab should be run in a separate process by setting the opener
property to null, as in the following example:

var wroxWin =window.open(“http://www.wrox.com/”,”wroxWindow”,
 “height=400,width=400,top=10,left=10,resizable=yes”);

wroxWin.opener = null;

Setting opener to null indicates to the browser that the newly created tab doesn’t need to
communicate with the tab that opened it, so it may be run in a separate process. Once this
connection has been severed, there is no way to recover it.

Security Restrictions

Pop-up windows went through a period of overuse by advertisers online. Pop-ups were often
disguised as system dialogs to get the user to click on an advertisement. Since these pop-up web pages
were styled to look like system dialogs, it was unclear to the user whether the dialog was legitimate.
To aid in this determination, browsers began putting limits on the confi guration of pop-up windows.

Internet Explorer 6 on Windows XP Service Pack 2 implemented multiple security features on pop-up
windows, including not allowing pop-up windows to be created or moved offscreen and ensuring
that the status bar cannot be turned off. Beginning with Internet Explorer 7, the location bar cannot
be turned off and pop-up windows can’t be moved or resized by default. Firefox 1 turned off the
ability to suppress the status bar, so all pop-up windows have to display the status bar regardless
of the feature string passed into window.open(). Firefox 3 forces the location bar to always be

c08.indd 249c08.indd 249 12/8/11 10:07:36 AM12/8/11 10:07:36 AM

http://www.wrox.com
http://www.wrox.com

250 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

displayed on pop-up windows. Opera opens pop-up windows only within its main browser window
but doesn’t allow them to exist where they might be confused with system dialogs.

Additionally, browsers will allow the creation of pop-up windows only after a user action. A call to
window.open() while a page is still being loaded, for instance, will not be executed and may cause an
error to be displayed to the user. Pop-up windows may be opened based only on a click or a key press.

Chrome uses a different approach to handling pop-up windows that aren’t initiated by the user.
Instead of blocking them, the browser displays only the title bar of the pop-up window and places it
in the lower-right corner of the browser window.

Internet Explorer lifts some restrictions on pop-up windows when displaying a
web page stored on the computer’s hard drive. The same code, when run on
a server, will invoke the pop-up restrictions.

Pop-up Blockers

Most browsers have pop-up–blocking software built in, and for those that don’t, utilities such as the
Yahoo! Toolbar have built-in pop-up blockers. The result is that most unexpected pop-ups are blocked.
When a pop-up is blocked, one of two things happens. If the browser’s built-in pop-up blocker stopped
the pop-up, then window.open() will most likely return null. In that case, you can tell if a pop-up was
blocked by checking the return value, as shown in the following example:

var wroxWin = window.open(“http://www.wrox.com”, “_blank”);
if (wroxWin == null){
 alert(”The popup was blocked!”);
}

When a browser add-on or other program blocks a pop-up, window.open() typically throws an
error. So to accurately detect when a pop-up has been blocked, you must check the return value and
wrap the call to window.open() in a try-catch block, as in this example:

var blocked = false;

try {
 var wroxWin = window.open(“http://www.wrox.com”, “_blank”);
 if (wroxWin == null){
 blocked = true;
 }
} catch (ex){
 blocked = true;
}

if (blocked){
 alert(“The popup was blocked!”);
}

PopupBlockerExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 250c08.indd 250 12/8/11 10:07:36 AM12/8/11 10:07:36 AM

http://www.wrox.com
http://www.wrox.com

The window Object ❘ 251

This code accurately detects if a pop-up blocker has blocked the call to window.open(), regardless
of the method being used. Note that detecting if a pop-up was blocked does not stop the browser
from displaying its own message about a pop-up being blocked.

Intervals and Timeouts

JavaScript execution in a browser is single-threaded, but does allow for the scheduling of code to
run at specifi c points in time through the use of timeouts and intervals. Timeouts execute some
code after a specifi ed amount of time, whereas intervals execute code repeatedly, waiting a specifi c
amount of time in between each execution.

You set a timeout using the window’s setTimeout() method, which accepts two arguments: the
code to execute and the number of time (in milliseconds) to wait before attempting to execute
the code. The fi rst argument can be either a string containing JavaScript code (as would be used
with eval()) or a function. For example, both of the following display an alert after 1 second:

//avoid!
setTimeout(“alert(‘Hello world!’) “, 1000);

//preferred
setTimeout(function() {
 alert(“Hello world!”);
}, 1000);

TimeoutExample01.htm

Even though both of these statements work, it’s considered poor practice to use a string as the fi rst
argument, because it brings with it performance penalties.

The second argument, the number of milliseconds to wait, is not necessarily when the specifi ed code
will execute. JavaScript is single-threaded and, as such, can execute only one piece of code at a time.
To manage execution, there is a queue of JavaScript tasks to execute. The tasks are executed in
the order in which they were added to the queue. The second argument of setTimeout() tells the
JavaScript engine to add this task onto the queue after a set number of milliseconds. If the queue is
empty, then that code is executed immediately; if the queue is not empty, the code must wait its turn.

When setTimeout() is called, it returns a numeric ID for the timeout. The timeout ID is a unique
identifi er for the scheduled code that can be used to cancel the timeout. To cancel a pending
timeout, use the clearTimeout() method and pass in the timeout ID, as in the following example:

//set the timeout
var timeoutId = setTimeout(function() {
 alert(“Hello world!”);
}, 1000);

//nevermind - cancel it
clearTimeout(timeoutId);

TimeoutExample02.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 251c08.indd 251 12/8/11 10:07:41 AM12/8/11 10:07:41 AM

252 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

As long as clearTimeout() is called before the specifi ed amount of time has passed, a timeout
can be canceled completely. Calling clearTimeout() after the code has been executed has
no effect.

All code executed by a timeout runs in the global scope, so the value of this
inside the function will always point to window when running in nonstrict mode
and undefined when running in strict mode.

Intervals work in the same way as timeouts except that they execute the code repeatedly at specifi c
time intervals until the interval is canceled or the page is unloaded. The setInterval() method lets
you set up intervals, and it accepts the same arguments as setTimeout(): the code to execute (string
or function) and the milliseconds to wait between executions. Here’s an example:

//avoid!
setInterval(“alert(‘Hello world!’) “, 10000);

//preferred
setInterval(function() {
 alert(“Hello world!”);
}, 10000);

IntervalExample01.htm

The setInterval() method also returns an interval ID that can be used to cancel the interval
at some point in the future. The clearInterval() method can be used with this ID to cancel all
pending intervals. This ability is more important for intervals than timeouts since, if left unchecked,
they continue to execute until the page is unloaded. Here is a common example of interval usage:

var num = 0;
var max = 10;
var intervalId = null;

function incrementNumber() {
 num++;

 //if the max has been reached, cancel all pending executions
 if (num == max) {
 clearInterval(intervalId);
 alert(”Done”);
 }
}

intervalId = setInterval(incrementNumber, 500);

IntervalExample02.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 252c08.indd 252 12/8/11 10:07:42 AM12/8/11 10:07:42 AM

The window Object ❘ 253

In this example, the variable num is incremented every half second until it fi nally reaches the
maximum number, at which point the interval is canceled. This pattern can also be implemented
using timeouts, as shown here:

var num = 0;
var max = 10;

function incrementNumber() {
 num++;

 //if the max has not been reached, set another timeout
 if (num < max) {
 setTimeout(incrementNumber, 500);
 } else {
 alert(“Done”);
 }
}

setTimeout(incrementNumber, 500);

TimeoutExample03.htm

Note that when you’re using timeouts, it is unnecessary to track the timeout ID, because the
execution will stop on its own and continue only if another timeout is set. This pattern is considered
a best practice for setting intervals without actually using intervals. True intervals are rarely used
in production environments because the time between the end of one interval and the beginning of
the next is not necessarily guaranteed, and some intervals may be skipped. Using timeouts, as in the
preceding example, ensures that can’t happen. Generally speaking, it’s best to avoid intervals.

System Dialogs

The browser is capable of invoking system dialogs to display to the user through the alert(),
confirm(), and prompt() methods. These dialogs are not related to the web page being displayed
in the browser and do not contain HTML. Their appearance is determined by operating system and/
or browser settings rather than CSS. Additionally, each of these dialogs is synchronous and modal,
meaning code execution stops when a dialog is displayed, and resumes
after it has been dismissed.

The alert() method has been used throughout this book. It simply
accepts a string to display to the user. When alert() is called, a
system message box displays the specifi ed text to the user, followed by
a single OK button. For example, alert(“Hello world!”) renders the
dialog box shown in Figure 8-3 when used with Internet Explorer on
Windows XP.

Alert dialogs are typically used when users must be made aware of something that they have no
control over, such as an error. A user’s only choice is to dismiss the dialog after reading the message.

The second type of dialog is invoked by calling confirm(). A confi rm dialog looks similar to an
alert dialog in that it displays a message to the user. The main difference between the two is the

FIGURE 8-3

c08.indd 253c08.indd 253 12/8/11 10:07:47 AM12/8/11 10:07:47 AM

254 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

presence of a Cancel button along with the OK button, which allows
the user to indicate if a given action should be taken. For example,
confirm(“Are you sure?”) displays the confi rm dialog box shown in
Figure 8-4.

To determine if the user clicked OK or Cancel, the confirm() method
returns a Boolean value: true if OK was clicked, or false if Cancel
was clicked or the dialog box was closed by clicking the X in the
corner. Typical usage of a confi rm dialog looks like this:

if (confirm(“Are you sure?”)) {
 alert(“I’m so glad you’re sure! “);
} else {
 alert(“I’m sorry to hear you’re not sure. “);
}

In this example, the confi rm dialog is displayed to the user in the fi rst line, which is a condition of
the if statement. If the user clicks OK, an alert is displayed saying, “I’m so glad you’re sure!”
If, however, the Cancel button is clicked, an alert is displayed saying, “I’m sorry to hear you’re
not sure.” This type of pattern is often employed when the user tries to delete something, such as
an e-mail message.

The fi nal type of dialog is displayed by calling prompt(), which prompts the user for input. Along
with OK and Cancel buttons, this dialog has a text box where the user may enter some data. The
prompt() method accepts two arguments: the text to display to the user, and the default value for
the text box (which can be an empty string). Calling prompt(“What’s your name?”, “Michael”)
results in the dialog box shown in Figure 8-5.

FIGURE 8-4

FIGURE 8-5

If the OK button is clicked, prompt() returns the value in the text box; if Cancel is clicked or the
dialog is otherwise closed without clicking OK, the function returns null. Here’s an example:

var result = prompt(“What is your name? “, “”);
if (result !== null) {
 alert(“Welcome, “ + result);
}

These system dialogs can be helpful for displaying information to the user and asking for
confi rmation of decisions. Since they require no HTML, CSS, or JavaScript to be loaded, they are
fast and easy ways to enhance a web application.

c08.indd 254c08.indd 254 12/8/11 10:07:48 AM12/8/11 10:07:48 AM

The location Object ❘ 255

Chrome and Opera introduced a special feature regarding
these system dialogs. If the actively running script produces
two or more system dialogs during its execution, each
subsequent dialog after the fi rst displays a check box that
allows the user to disable any further dialogs until the page
reloads (see Figure 8-6).

When the check box is checked and the dialog box is
dismissed, all further system dialogs (alerts, confi rms, and prompts) are blocked until the page is
reloaded. Chrome gives the developer no indication as to whether the dialog was displayed. The
dialog counter resets whenever the browser is idle, so if two separate user actions produce an alert,
the check box will not be displayed in either; if a single user action produces two alerts in a row, the
second will contain the check box. Since being fi rst introduced, this feature has made it into Internet
Explorer 9 and Firefox 4.

Two other types of dialogs can be displayed from JavaScript: find and print. Both of these dialogs
are displayed asynchronously, returning control to the script immediately. The dialogs are the same
as the ones the browser employs when the user selects either Find or Print from the browser’s menu.
These are displayed using the find() and print() methods on the window object as follows:

//display print dialog
window.print();

//display find dialog
window.find();

These two methods give no indication as to whether the user has done anything with the dialog, so it
is diffi cult to make good use of them. Furthermore, since they are asynchronous, they don’t contribute
to Chrome’s dialog counter and won’t be affected by the user opting to disallow further dialogs.

THE LOCATION OBJECT

One of the most useful BOM objects is location, which provides information about the document
that is currently loaded in the window, as well as general navigation functionality. The location
object is unique in that it is a property of both window and document; both window.location and
document.location point to the same object. Not only does location know about the currently
loaded document, but it also parses the URL into discrete segments that can be accessed via a series of
properties. These properties are enumerated in the following table (the location prefi x is assumed).

PROPERTY NAME EXAMPLE DESCRIPTION

hash “#contents” The URL hash (the pound sign followed by zero

or more characters), or an empty string if the URL

doesn’t have a hash.

host “www.wrox.com:80” The name of the server and port number if present.

FIGURE 8-6

continues

c08.indd 255c08.indd 255 12/8/11 10:07:48 AM12/8/11 10:07:48 AM

http://www.wrox.com

256 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

PROPERTY NAME EXAMPLE DESCRIPTION

hostname “www.wrox.com” The name of the server without the port number.

href “http://www.wrox

.com”

The full URL of the currently loaded page. The

toString() method of location returns this value.

pathname “/WileyCDA/” The directory and/or fi lename of the URL.

port “8080” The port of the request if specifi ed in the URL. If

a URL does not contain a port, then this property

returns an empty string.

protocol “http:” The protocol used by the page. Typically “http:”

or “https:”.

search “?q=javascript” The query string of the URL. It returns a string

beginning with a question mark.

Query String Arguments

Most of the information in location is easily accessible from these properties. The one part of
the URL that isn’t provided is an easy-to-use query string. Though location.search returns
everything from the question mark until the end of the URL, there is no immediate access to query-
string arguments on a one-by-one basis. The following function parses the query string and returns
an object with entries for each argument:

function getQueryStringArgs(){

 //get query string without the initial ?
 var qs = (location.search.length > 0 ? location.search.substring(1) : “”),

 //object to hold data
 args = {},

 //get individual items
 items = qs.length ? qs.split(“&”) : [],
 item = null,
 name = null,
 value = null,

 //used in for loop
 i = 0,
 len = items.length;

 //assign each item onto the args object
 for (i=0; i < len; i++){
 item = items[i].split(“=”);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 (continued)

c08.indd 256c08.indd 256 12/8/11 10:07:49 AM12/8/11 10:07:49 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

The location Object ❘ 257

 name = decodeURIComponent(item[0]);
 value = decodeURIComponent(item[1]);

 if (name.length) {
 args[name] = value;
 }
 }

 return args;
}

LocationExample01.htm

The fi rst step in this function is to strip off the question mark from the beginning of the query
string. This happens only if location.search has one or more characters. The arguments will be
stored on the args object, which is created using object-literal format. Next, the query string is split
on the ampersand character, returning an array of strings in the format name=value. The for loop
iterates over this array and then splits each item on the equal sign, returning an array where the fi rst
item is the name of the argument and the second item is the value. The name and value are each
decoded using decodeURIComponent() (since query-string arguments are supposed to be encoded).
Last, the name is assigned as a property on the args object and its value is set to value. This
function is used as follows:

//assume query string of ?q=javascript&num=10

var args = getQueryStringArgs();

alert(args[“q”]); //”javascript”
alert(args[”num”]); //”10”

Each of the query-string arguments is now a property on the returned object, which provides fast
access to each argument.

Manipulating the Location

The browser location can be changed in a number of ways using the location object. The fi rst, and
most common, way is to use the assign() method and pass in a URL, as in the following example:

location.assign(“http://www.wrox.com”);

This immediately starts the process of navigating to the new URL and makes an entry in the
browser’s history stack. If location.href or window.location is set to a URL, the assign()
method is called with the value. For example, both of the following perform the same behavior as
calling assign() explicitly:

window.location = “http://www.wrox.com”;
location.href = “http://www.wrox.com”;

Of these three approaches to changing the browser location, setting location.href is most often
seen in code.

c08.indd 257c08.indd 257 12/8/11 10:07:49 AM12/8/11 10:07:49 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

258 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

Changing various properties on the location object can also modify the currently loaded page.
The hash, search, hostname, pathname, and port properties can be set with new values that
alter the current URL, as in this example:

//assume starting at http://www.wrox.com/WileyCDA/

//changes URL to “http://www.wrox.com/WileyCDA/#section1”
location.hash = “#section1”;

//changes URL to “http://www.wrox.com/WileyCDA/?q=javascript”
location.search = “?q=javascript”;

//changes URL to “http://www.yahoo.com/WileyCDA/”
location.hostname = “www.yahoo.com”;

//changes URL to “http://www.yahoo.com/mydir/”
location.pathname = “mydir”;

//changes URL to “http://www.yahoo.com:8080/WileyCDA/

Each time a property on location is changed, with the exception of hash, the page reloads with
the new URL.

Changing the value of hash causes a new entry in the browser’s history to be
recorded as of Internet Explorer 8+, Firefox, Safari 2+, Opera 9+, and Chrome. In
earlier Internet Explorer versions, the hash property was updated not when Back or
Forward was clicked but only when a link containing a hashed URL was clicked.

When the URL is changed using one of the previously mentioned approaches, an entry is made in
the browser’s history stack so the user may click the Back button to navigate to the previous page. It
is possible to disallow this behavior by using the replace() method. This method accepts a single
argument, the URL to navigate to, but does not make an entry in the history stack. After calling
replace(), the user cannot go back to the previous page. Consider this example:

<!DOCTYPE html>
<html>
<head>
 <title>You won’t be able to get back here</title>
</head>
 <body>
 <p>Enjoy this page for a second, because you won’t be coming back here.</p>
 <script type=”text/javascript”>
 setTimeout(function () {
 location.replace(“http://www.wrox.com/”);
 }, 1000);
 </script>
</body>
</html>

LocationReplaceExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 258c08.indd 258 12/8/11 10:07:50 AM12/8/11 10:07:50 AM

http://www.wrox.com

The navigator Object ❘ 259

If this page is loaded into a web browser, it will redirect to www.wrox.com after a second. At that
point, the Back button will be disabled, and you won’t be able to navigate back to this example page
without typing in the complete URL again.

The last method of location is reload(), which reloads the currently displayed page. When
reload() is called with no argument, the page is reloaded in the most effi cient way possible, which
is to say that the page may be reloaded from the browser cache if it hasn’t changed since the last
request. To force a reload from the server, pass in true as an argument like this:

location.reload(); //reload - possibly from cache
location.reload(true); //reload - go back to the server

Any code located after a reload() call may or may not be executed, depending on factors such as
network latency and system resources. For this reason, it is best to have reload() as the last line of code.

THE NAVIGATOR OBJECT

Originally introduced in Netscape Navigator 2, the navigator object is the standard for browser
identifi cation on the client. Though some browsers offer alternate ways to provide the same or
similar information (for example, window.clientInformation in Internet Explorer and window
.opera in Opera), the navigator object is common among all JavaScript-enabled web browsers. As
with other BOM objects, each browser supports its own set of properties. The following table lists
each available property and method, along with which browser versions support it.

PROPERTY/METHOD DESCRIPTION IE FIREFOX

SAFARI/

CHROME OPERA

appCodeName The name of the

browser. Typically

“Mozilla” even in

non-Mozilla browsers.

3.0+ 1.0+ 1.0+ 7.0+

appMinorVersion Extra version

information.

4.0+ — — 9.5+

appName Full browser name. 3.0+ 1.0+ 1.0+ 7.0+

appVersion Browser version.

Typically does not

correspond to the

actual browser version.

3.0+ 1.0+ 1.0+ 7.0+

buildID Build number for the

browser.

 — 2.0+ — —

cookieEnabled Indicates if cookies are

enabled.

4.0+ 1.0+ 1.0+ 7.0+

continues

c08.indd 259c08.indd 259 12/8/11 10:07:55 AM12/8/11 10:07:55 AM

http://www.wrox.com

260 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

PROPERTY/METHOD DESCRIPTION IE FIREFOX

SAFARI/

CHROME OPERA

cpuClass The type of processor

used on the client

computer (“x86”,

“68K”, “Alpha”,

“PPC”, or “Other”).

4.0+ — — —

javaEnabled() Indicates if Java is

enabled in the browser.

4.0+ 1.0+ 1.0+ 7.0+

language The browser’s primary

language.

 — 1.0+ 1.0+ 7.0+

mimeTypes Array of MIME types

registered with the

browser.

4.0+ 1.0+ 1.0+ 7.0+

onLine Indicates if the browser

is connected to the

Internet.

4.0+ 1.0+ — 9.5+

opsProfile Apparently unused.

No documentation

available.

4.0+ — — —

oscpu The operating system

and/or CPU on which

the browser is running.

 — 1.0+ — —

platform The system platform on

which the browser is

running.

4.0+ 1.0+ 1.0+ 7.0+

plugins Array of plug-ins

installed on the

browser. In Internet

Explorer only, this is

an array of all <embed>

elements on the page.

4.0+ 1.0+ 1.0+ 7.0+

preference() Sets a user preference.

Accessible only in

privileged mode.

 — 1.5+ — —

product The name of the

product (typically

“Gecko”).

 — 1.0+ 1.0+ —

 (continued)

c08.indd 260c08.indd 260 12/8/11 10:07:56 AM12/8/11 10:07:56 AM

The navigator Object ❘ 261

PROPERTY/METHOD DESCRIPTION IE FIREFOX

SAFARI/

CHROME OPERA

productSub Extra information about

the product (typically

Gecko version

information).

 — 1.0+ 1.0+ —

registerContent

Handler()

Registers a web site as

a handler for a specifi c

MIME type.

 — 2.0+ — —

registerProtocol

Handler()

Registers a web site

as a handler for a

particular protocol.

 — 2.0+ — —

securityPolicy Deprecated. Name

of the security policy.

Retained for backwards

compatibility with

Netscape Navigator 4.

 — 1.0+ — —

systemLanguage The language used by

the operating system.

4.0+ — — —

taintEnabled() Deprecated. Indicates

if variable tainting is

enabled. Retained for

backwards compatibility

with Netscape

Navigator 3.

4.0+ 1.0+ — 7.0+

userAgent The user-agent string

for the browser.

3.0+ 1.0+ 1.0+ 7.0+

userLanguage The default language

for the operating

system.

4.0+ — — 7.0+

userProfile Object for accessing

user profi le information.

4.0+ — — —

vendor The brand name of the

browser.

 — 1.0+ 1.0+ —

vendorSub Extra information about

the vendor.

 — 1.0+ 1.0+ —

c08.indd 261c08.indd 261 12/8/11 10:07:57 AM12/8/11 10:07:57 AM

262 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

The navigator object’s properties are typically used to determine the type of browser that is
running a web page (discussed fully in Chapter 9).

Detecting Plug-ins

One of the most common detection procedures is to determine whether the browser has a particular
plug-in installed. For browsers other than Internet Explorer, this can be determined using the
plugins array. Each item in the array contains the following properties:

name — The name of the plug-in

description — The description of the plug-in

filename — The fi lename for the plug-in

length — The number of MIME types handled by this plug-in

Typically, the name contains all of the information that’s necessary to identify a plug-in, though
this is not an exact science. Plug-in detection is done by looping over the available plug-ins and
comparing a plug-in’s name to a given name, as in this example:

//plugin detection - doesn’t work in Internet Explorer
function hasPlugin(name){
 name = name.toLowerCase();
 for (var i=0; i < navigator.plugins.length; i++){
 if (navigator.plugins[i].name.toLowerCase().indexOf(name) > -1){
 return true;
 }
 }

 return false;
}

//detect flash
alert(hasPlugin(”Flash”));

//detect quicktime
alert(hasPlugin(”QuickTime”));

PluginDetectionExample01.htm

The hasPlugin() example accepts a single argument: the name of a plug-in to detect. The fi rst step
is to convert that name to lowercase for easier comparison. Next, the plugins array is iterated over,
and each name property is checked via indexOf() to see if the passed-in name appears somewhere
in that string. This comparison is done in all lowercase to avoid casing errors. The argument should
be as specifi c as possible to avoid confusion. Strings such as “Flash” and “QuickTime” are unique
enough that there should be little confusion. This method works for detecting plug-ins in Firefox,
Safari, Opera, and Chrome.

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 262c08.indd 262 12/8/11 10:07:57 AM12/8/11 10:07:57 AM

The navigator Object ❘ 263

Detecting plug-ins in Internet Explorer is more problematic, because it doesn’t support Netscape-
style plug-ins. The only way to detect plug-ins in Internet Explorer is to use the proprietary
ActiveXObject type and attempt to instantiate a particular plug-in. Plug-ins are implemented
in Internet Explorer using COM objects, which are identifi ed by unique strings. So to check for
a particular plug-in, you must know its COM identifi er. For instance, the identifi er for Flash is
“ShockwaveFlash.ShockwaveFlash”. With this information, you can write a function to determine
if the plug-in is installed in Internet Explorer as follows:

//plugin detection for Internet Explorer
function hasIEPlugin(name){
 try {
 new ActiveXObject(name);
 return true;
 } catch (ex){
 return false;
 }
}

//detect flash
alert(hasIEPlugin(“ShockwaveFlash.ShockwaveFlash”));

//detect quicktime
alert(hasIEPlugin(“QuickTime.QuickTime”));

PluginDetectionExample02.htm

In this example, the hasIEPlugin() function accepts a COM identifi er as its sole argument. In the
function, an attempt is made to create a new ActiveXObject instance. This is encapsulated in a
try-catch statement because an attempt to create an unknown COM object will throw an error.
Therefore, if the attempt is successful, the function returns true. If there is an error, the catch
block gets executed, which returns false. This code then checks to see if the Flash and QuickTime
plug-ins are available in Internet Explorer.

Since these two plug-in–detection methods are so different, it’s typical to create functions that test for
specifi c plug-ins rather than use the generic methods described previously. Consider this example:

//detect flash for all browsers
function hasFlash(){
 var result = hasPlugin(“Flash”);
 if (!result){
 result = hasIEPlugin(“ShockwaveFlash.ShockwaveFlash”);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Each plugin object is also an array of MimeType objects that can be accessed
using bracket notation. Each MimeType object has four properties: description,
which is a description of the MIME type; enabledPlugin, which is a pointer
back to the plugin object; suffixes, which is a comma-delimited string of fi le
extensions for the MIME type; and type, which is the full MIME type string.

c08.indd 263c08.indd 263 12/8/11 10:07:58 AM12/8/11 10:07:58 AM

264 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

 }
 return result;
}

//detect quicktime for all browsers
function hasQuickTime(){
 var result = hasPlugin(“QuickTime”);
 if (!result){
 result = hasIEPlugin(“QuickTime.QuickTime”);
 }
 return result;
}

//detect flash
alert(hasFlash());

//detect quicktime
alert(hasQuickTime());

PluginDetectionExample03.htm

This code defi nes two functions: hasFlash() and hasQuickTime(). Each function attempts to
use the non–Internet Explorer plug-in–detection code fi rst. If that method returns false (which it
will for Internet Explorer), the Internet Explorer plug-in–detection method is called. If the Internet
Explorer plug-in–detection method also returns false, then the result of the overall method is
false. If either plug-in–detection function returns true, then the overall method returns true.

The plugins collection has a method called refresh(), which refreshes plugins
to refl ect any newly installed plug-ins. This method accepts a single argument: a
Boolean value indicating if the page should be reloaded. When set to true, all
pages containing plug-ins are reloaded; otherwise the plugins collection is
updated, but the page is not reloaded.

Registering Handlers

Firefox 2 introduced the registerContentHandler() and registerProtocolHandler() methods
to the navigator object. (These are now formally defi ned in HTML 5.) These methods allow a
Website to indicate that it can handle specifi c types of information. With the rise of online RSS
readers and online e-mail applications, this is a way for those applications to be used by default just
as desktop applications are used.

The registerContentHandler() method accepts three arguments: the MIME type to handle, the
URL of the page that can handle that MIME type, and the name of the application. For instance, to
register a site as a handler of RSS feeds, you can use the following code:

c08.indd 264c08.indd 264 12/8/11 10:08:03 AM12/8/11 10:08:03 AM

The screen Object ❘ 265

navigator.registerContentHandler(“application/rss+xml”,
 “http://www.somereader.com?feed=%s”, “Some Reader”);

The fi rst argument is the MIME type for RSS feeds. The second argument is the URL that should
receive the RSS-feed URL. In this second argument, the %s represents the URL of the RSS feed,
which the browser inserts automatically. The next time a request is made for an RSS feed, the
browser will navigate to the URL specifi ed and the web application can handle the request in
the appropriate way.

Firefox through version 4 allows only three MIME types to be used in
registerContentHandler(): “application/rss+xml”, “application/

atom+xml”, and “application/vnd. mozilla.maybe.feed”. All three do the
same thing: register a handler for all RSS and Atom feeds.

A similar call can be made for protocols by using registerProtocolHandler(), which also accepts
three arguments: the protocol to handle (i.e., “mailto” or “ftp”), the URL of the page that handles
the protocol, and the name of the application. For example, to register a web application as the
default mail client, you can use the following:

navigator.registerProtocolHandler(“mailto”,
 “http://www.somemailclient.com?cmd=%s”, “Some Mail Client”);

In this example, a handler is registered for the mailto protocol, which will now point to a web-based
e-mail client. Once again, the second argument is the URL that should handle the request, and %s
represents the original request.

In Firefox 2, registerProtocolHandler() was implemented but does not
work. Firefox 3 fully implemented this method.

THE SCREEN OBJECT

The screen object (also a property of window) is one of the few JavaScript objects that have little
to no programmatic use; it is used purely as an indication of client capabilities. This object provides
information about the client’s display outside the browser window, including information such
as pixel width and height. Each browser provides different properties on the screen object. The
following table indicates the properties and which browsers support them.

c08.indd 265c08.indd 265 12/8/11 10:08:08 AM12/8/11 10:08:08 AM

266 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

PROPERTY DESCRIPTION IE FIREFOX

SAFARI/

CHROME OPERA

availHeight The pixel height of the screen

minus system elements such as

Windows (read only).

X X X X

availLeft The fi rst pixel from the left that is

not taken up by system elements

(read only).

X X

availTop The fi rst pixel from the top that is

not taken up by system elements

(read only).

X X

availWidth The pixel width of the screen minus

system elements (read only).

X X X X

bufferDepth Reads or writes the number of bits

used for off screen bitmap rendering.

X

colorDepth The number of bits used to

represent colors; for most systems,

32 (read only).

X X X X

deviceXDPI The actual horizontal DPI of the

screen (read only).

X

deviceYDPI The actual vertical DPI of the

screen (read only).

X

fontSmoothing

Enabled

Indicates if font smoothing is turned

on (read only).

X

height The pixel height of the screen. X X X X

left The pixel distance of the current

screen’s left side.

X

logicalXDPI The logical horizontal DPI of the

screen (read only).

X

logicalYDPI The logical vertical DPI of the

screen (read only).

X

pixelDepth The bit depth of the screen

(read only).

X X X

top The pixel distance of the current

screen’s top.

X

updateInterval Reads or writes the update interval

for the screen in milliseconds.

X

width The pixel width of the screen. X X X X

c08.indd 266c08.indd 266 12/8/11 10:08:23 AM12/8/11 10:08:23 AM

The history Object ❘ 267

This information is often aggregated by site-tracking tools that measure client capabilities, but
typically it is not used to affect functionality. This information is sometimes used to resize the
browser to take up the available space in the screen as follows:

window.resizeTo(screen.availWidth, screen.availHeight);

As noted previously, many browsers turn off the capability to resize the browser window, so this
code may not work in all circumstances.

Mobile devices behave a little differently with respect to screen dimensions. A device running iOS
will always return dimensions as if the device is being held in portrait mode (1024 × 768). Android
devices, on the other hand, properly adjust the values of screen.width and screen.height.

THE HISTORY OBJECT

The history object represents the user’s navigation history since the given window was fi rst
used. Because history is a property of window, each browser window, tab, and frame has its own
history object relating specifi cally to that window object. For security reasons, it’s not possible to
determine the URLs that the user has visited. It is possible, however, to navigate backwards and
forwards through the list of places the user has been without knowing the exact URL.

The go() method navigates through the user’s history in either direction, backward or forward.
This method accepts a single argument, which is an integer representing the number of pages to
go backward or forward. A negative number moves backward in history (similar to clicking the
browser’s Back button), and a positive number moves forward (similar to clicking the browser’s
Forward button). Here’s an example:

//go back one page
history.go(-1);

//go forward one page
history.go(1);

//go forward two pages
history.go(2);

The go() method argument can also be a string, in which case the browser navigates to the fi rst
location in history that contains the given string. The closest location may be either backward or
forward. If there’s no entry in history matching the string, then the method does nothing, as in this
example:

//go to nearest wrox.com page
history.go(“wrox.com”);

//go to nearest nczonline.net page
history.go(“nczonline.net”);

c08.indd 267c08.indd 267 12/8/11 10:08:24 AM12/8/11 10:08:24 AM

268 ❘ CHAPTER 8 THE BROWSER OBJECT MODEL

Two shortcut methods, back() and forward(), may be used in place of go(). As you might expect,
these mimic the browser Back and Forward buttons as follows:

//go back one page
history.back();

//go forward one page
history.forward();

The history object also has a property, length, which indicates how many items are in the
history stack. This property refl ects all items in the history stack, both those going backward and
those going forward. For the fi rst page loaded into a window, tab, or frame, history.length is
equal to 0. By testing for this value as shown here, it’s possible to determine if the user’s start point
was your page:

if (history.length == 0){
 //this is the first page in the user’s window
}

Though not used very often, the history object typically is used to create custom Back and
Forward buttons and to determine if the page is the fi rst in the user’s history. HTML5 further
augments the history object. See Chapter 16 for more information.

Entries are made in the history stack whenever the page’s URL changes. For
Internet Explorer 8+, Opera, Firefox, Safari 3+, and Chrome, this includes
changes to the URL hash (thus, setting location.hash causes a new entry to be
inserted into the history stack for these browsers).

SUMMARY

The Browser Object Model (BOM) is based on the window object, which represents the browser
window and the viewable page area. The window object doubles as the ECMAScript Global object,
so all global variables and functions become properties on it, and all native constructors and
functions exist on it initially. This chapter discussed the following elements of the BOM:

When frames are used, each frame has its own window object and its own copies of all
native constructors and functions. Each frame is stored in the frames collection, indexed
both by position and by name.

To reference other frames, including parent frames, there are several window pointers.

The top object always points to the outermost frame, which represents the entire browser
window.

The parent object represents the containing frame, and self points back to window.

➤

➤

➤

➤

c08.indd 268c08.indd 268 12/8/11 10:08:24 AM12/8/11 10:08:24 AM

Summary ❘ 269

The location object allows programmatic access to the browser’s navigation system. By
setting properties, it’s possible to change the browser’s URL piece by piece or altogether.

The replace() method allows for navigating to a new URL and replacing the currently
displayed page in the browser’s history.

The navigator object provides information about the browser. The type of information
provided depends largely on the browser being used, though some common properties, such
as userAgent, are available in all browsers.

Two other objects available in the BOM perform very limited functions. The screen object provides
information about the client display. This information is typically used in metrics gathering for web
sites. The history object offers a limited peek into the browser’s history stack, allowing developers
to determine how many sites are in the history stack and giving them the ability to go back or
forward to any page in the history.

➤

➤

➤

c08.indd 269c08.indd 269 12/8/11 10:08:30 AM12/8/11 10:08:30 AM

c08.indd 270c08.indd 270 12/8/11 10:08:30 AM12/8/11 10:08:30 AM

Client Detection

WHAT’S IN THIS CHAPTER?

Using capability detection

The history of user-agent detection

When to use each type of detection

Although browser vendors have made a concerted effort to implement common interfaces, the
fact remains that each browser presents its own capabilities and fl aws. Browsers that are available
cross-platform often have different issues, even though they are technically the same version.
These differences force web developers to either design for the lowest common denominator or,
more commonly, use various methods of client detection to work with or around limitations.

Client detection remains one of the most controversial topics in web development. The idea
that browsers should support a common set of functionality pervades most conversations
on the topic. In an ideal world, this would be the case. In reality, however, there are enough
browser differences and quirks that client detection becomes not just an afterthought but also
a vital part of the development strategy.

There are several approaches to determine the web client being used, and each has advantages
and disadvantages. It’s important to understand that client detection should be the very last
step in solving a problem; whenever a more common solution is available, that solution should
be used. Design for the most common solution fi rst and then augment it with browser-specifi c
solutions later.

CAPABILITY DETECTION

The most commonly used and widely accepted form of client detection is called capability
detection. Capability detection (also called feature detection) aims not to identify a specifi c
browser being used but rather to identify the browser’s capabilities. This approach presumes

➤

➤

➤

9

c09.indd 271c09.indd 271 12/8/11 10:11:25 AM12/8/11 10:11:25 AM

272 ❘ CHAPTER 9 CLIENT DETECTION

that specifi c browser knowledge is unnecessary and that the solution may be found by determining
if the capability in question actually exists. The basic pattern for capability detection is as follows:

if (object.propertyInQuestion){
 //use object.propertyInQuestion
}

For example, the DOM method document.getElementById() didn’t exist in Internet Explorer
prior to version 5. This method simply didn’t exist in earlier versions, although the same
functionality could be achieved using the nonstandard document.all property. This led to a
capability detection fork such as the following:

function getElement(id){
 if (document.getElementById){
 return document.getElementById(id);
 } else if (document.all){
 return document.all[id];
 } else {
 throw new Error(“No way to retrieve element!”);
 }
}

The purpose of the getElement() function is to return an element with the given ID. Since
document.getElementById() is the standard way of achieving this, it is tested for fi rst. If the
function exists (it isn’t undefi ned), then it is used. Otherwise, a check is done to determine if
document.all is available, and if so, that is used. If neither method is available (which is highly
unlikely), an error is thrown to indicate that the function won’t work.

There are two important concepts to understand in capability detection. As just mentioned, the
most common way to achieve the result should be tested for fi rst. In the previous example, this
meant testing for document.getElementById() before document.all. Testing for the most
common solution ensures optimal code execution by avoiding multiple-condition testing in
the common case.

The second important concept is that you must test for exactly what you want to use. Just because
one capability exists doesn’t necessarily mean another exists. Consider the following example:

function getWindowWidth(){
 if (document.all){ //assumes IE
 return document.documentElement.clientWidth; //INCORRECT USAGE!!!
 } else {
 return window.innerWidth;
 }
}

This example shows an incorrect usage of capability detection. The getWindowWidth() function
fi rst checks to see if document.all exists. It does, so the function then returns document
.documentElement.clientWidth. As discussed in Chapter 8, Internet Explorer 8 and earlier
versions do not support the window.innerWidth property. The problem in this code is that a test for

c09.indd 272c09.indd 272 12/8/11 10:11:27 AM12/8/11 10:11:27 AM

document.all does not necessarily indicate that the browser is Internet Explorer. It could, in fact,
be an early version of Opera, which supported document.all and window.innerWidth.

Safer Capability Detection

Capability detection is most effective when you verify not just that the feature is present but also
that the feature is likely to behave in an appropriate manner. The examples in the previous section
rely on type coercion of the tested object member to make a determination as to its presence.
While this tells you about the presence of the object member, there is no indication if the member is
the one you’re expecting. Consider the following function that tries to determine if an object
is sortable:

//AVOID! Incorrect capability detection – only checks for existence
function isSortable(object){
 return !!object.sort;
}

This function attempts to determine that an object can be sorted by checking for the presence of the
sort() method. The problem is that any object with a sort property will also return true:

var result = isSortable({ sort: true });

Simply testing for the existence of a property doesn’t defi nitively indicate that the object in question
is sortable. The better approach is to check that sort is actually a function:

//Better – checks if sort is a function
function isSortable(object){
 return typeof object.sort == “function”;
}

The typeof operator is used in this code to determine that sort is actually a function and therefore
can be called to sort the data contained within.

Capability detection using typeof is preferred whenever possible, but it is not infallible. In
particular, host objects are under no obligation to return rational values for typeof. The most
egregious example of this occurs with Internet Explorer. In most browsers, the following code
returns true if document.createElement() is present:

 //doesn’t work properly in Internet Explorer <= 8
function hasCreateElement(){
 return typeof document.createElement == “function”;
}

In Internet Explorer 8 and earlier, the function returns false because typeof document.createElement
returns “object” instead of “function”. As mentioned previously, DOM objects are host objects, and
host objects are implemented via COM instead of JScript in Internet Explorer 8 and earlier. As such, the
actual function document.createElement() is implemented as a COM object and typeof then returns
“object”. Internet Explorer 9 correctly returns “function” for DOM methods.

Capability Detection ❘ 273

c09.indd 273c09.indd 273 12/8/11 10:11:28 AM12/8/11 10:11:28 AM

274 ❘ CHAPTER 9 CLIENT DETECTION

Internet Explorer has further examples where using typeof doesn’t behave as expected. ActiveX
objects (supported only in Internet Explorer) act very differently than other objects. For instance,
testing for a property without using typeof may cause an error, as in this code:

//causes an error in Internet Explorer
var xhr = new ActiveXObject(“Microsoft.XMLHttp”);
if (xhr.open){ //error occurs here
 //do something
}

Simply accessing a function as a property, which this example does, causes a JavaScript error. It is
safer to use typeof; however, Internet Explorer returns “unknown” for typeof xhr.open. That
means the most complete way to test for the existence of a function on any object in a browser
environment is along the lines of this function:

//credit: Peter Michaux
function isHostMethod(object, property) {
 var t = typeof object[property];
 return t==’function’ ||
 (!!(t==’object’ && object[property])) ||
 t==’unknown’;
}

You can then use this function as follows:

result = isHostMethod(xhr, “open”); //true
result = isHostMethod(xhr, “foo”); //false

The isHostMethod() function is the safest to use today, understanding the quirks of browsers.
Note that host objects are under no obligation to maintain their current implementation
details or to mimic already-existing host object behavior. Because of this, there is no guarantee
that this function, or any other, will continue to be accurate if implementations change.
As the developer, you must assess your risk tolerance based on the functionality you’re trying
to implement.

For an exhaustive discussion of the ins and outs of capability detection in JavaScript,
please see Peter Michaux’s article “Feature Detection: State of the Art Browser
Scripting” at http://peter.michaux.ca/articles/feature-detection-
state-of-the-art-browser-scripting.

Capability Detection Is Not Browser Detection

Detecting a particular capability or set of capabilities does not necessarily indicate the browser in
use. The following “browser detection” code, or something similar, can be found on numerous web
sites and is an example of improper capability detection:

c09.indd 274c09.indd 274 12/8/11 10:11:28 AM12/8/11 10:11:28 AM

//AVOID! Not specific enough
var isFirefox = !!(navigator.vendor && navigator.vendorSub);

//AVOID! Makes too many assumptions
var isIE = !!(document.all && document.uniqueID);

This code represents a classic misuse of capability detection. In the past, Firefox could be
determined by checking for navigator.vendor and navigator.vendorSub, but then Safari came
along and implemented the same properties, meaning this code would give a false positive. To detect
Internet Explorer, the code checks for the presence of document.all and document.uniqueID.
This assumes that both of these properties will continue to exist in future versions of IE and won’t
ever be implemented by any other browser. Both checks use a double NOT operator to produce a
Boolean result (which is more optimal to store and access).

It is appropriate, however, to group capabilities together into classes of browsers. If you know that
your application needs to use specifi c browser functionality, it may be useful to do detection for all
of the capabilities once rather than doing it repeatedly. Consider this example:

//determine if the browser has Netscape-style plugins
var hasNSPlugins = !!(navigator.plugins && navigator.plugins.length);

//determine if the browser has basic DOM Level 1 capabilities
var hasDOM1 = !!(document.getElementById && document.createElement &&
 document.getElementsByTagName);

CapabilitiesDetectionExample01.htm

In this example, two detections are done: one to see if the browser supports Netscape-style plug-ins,
and one to determine if the browser supports basic DOM Level 1 capabilities. These Boolean values
can later be queried, and it will take less time than it would to retest the capabilities.

Capability detection should be used only to determine the next step in a solution,
not as a fl ag indicating a particular browser is being used.

QUIRKS DETECTION

Similar to capability detection, quirks detection aims to identify a particular behavior of the
browser. Instead of looking for something that’s supported, however, quirks detection attempts to
fi gure out what isn’t working correctly (“quirk” really means “bug”). This often involves running
a short amount of code to determine that a feature isn’t working correctly. For example, a bug
in Internet Explorer 8 and earlier causes instance properties with the same name as prototype

Quirks Detection ❘ 275

c09.indd 275c09.indd 275 12/8/11 10:11:38 AM12/8/11 10:11:38 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

276 ❘ CHAPTER 9 CLIENT DETECTION

properties whose [[Enumerable]] attribute is set to false to not appear in for-in loops. This
quirk can be tested using the following code:

var hasDontEnumQuirk = function(){

 var o = { toString : function(){} };
 for (var prop in o){
 if (prop == “toString”){
 return false;
 }
 }

 return true;
}();

QuirksDetectionExample01.htm

This code uses an anonymous function to test for the quirk. An object is created with the toString()
method defi ned. In proper ECMAScript implementations, toString should be returned as a property
in the for-in loop.

Another quirk commonly tested for is Safari versions prior to 3 enumerating over shadowed
properties. This can be tested for as follows:

var hasEnumShadowsQuirk = function(){

 var o = { toString : function(){} };
 var count = 0;
 for (var prop in o){
 if (prop == “toString”){
 count++;
 }
 }

 return (count > 1);
}();

QuirksDetectionExample01.htm

If the browser has this quirk, an object with a custom toString() method will cause two instances
of toString to appear in the for-in loop.

Quirks are frequently browser-specifi c and often are recognized as bugs that may or may not be fi xed
in later versions. Since quirks detection requires code to be run, it’s advisable to test for only the
quirks that will affect you directly and to do so at the beginning of the script to get it out of the way.

USER-AGENT DETECTION

The third, and most controversial, client-detection method is called user-agent detection. User-agent
detection uses the browser’s user-agent string to determine the exact browser being used. The
user-agent string is sent as a response header for every HTTP request and is made accessible in

c09.indd 276c09.indd 276 12/8/11 10:11:43 AM12/8/11 10:11:43 AM

JavaScript through navigator.userAgent. On the server side, it is a common and accepted practice
to look at the user-agent string to determine the browser being used and to act accordingly. On the
client side, however, user-agent detection is generally considered a last-ditch approach for when
capability detection and/or quirks detection cannot be used.

Among the controversial aspects of the user-agent string is its long history of spoofi ng, when browsers
try to fool servers by including erroneous or misleading information in their user-agent string. To
understand this problem, it’s necessary to take a look back at how the user-agent string has evolved
since the Web fi rst appeared.

History

The HTTP specifi cation, both versions 1.0 and 1.1, indicates that browsers should send short
user-agent strings specifying the browser name and version. RFC 2616 (the HTTP 1.1 protocol
specifi cation) describes the user-agent string in this way:

Product tokens are used to allow communicating applications to identify
themselves by software name and version. Most fi elds using product tokens also
allow sub-products which form a signifi cant part of the application to be listed,
separated by white space. By convention, the products are listed in order of their
signifi cance for identifying the application.

The specifi cation further stipulates that the user-agent string should be specifi ed as a list of products
in the form token/product version. In reality, however, user-agent strings have never been that simple.

Early Browsers

The fi rst web browser, Mosaic, was released in 1993 by the National Center for Supercomputing
Applications (NCSA). Its user-agent string was fairly simple, taking a form similar to this:

Mosaic/0.9

Though this would vary depending on the operating system and platform, the basic format
was simple and straightforward. The text before the forward slash indicated the product name
(sometimes appearing as NCSA Mosaic or other derivatives), and the text after the slash is the
product version.

When Netscape Communications began developing its web browser, its code name was Mozilla
(short for “Mosaic Killer”). Netscape Navigator 2, the fi rst publicly available version, had a
user-agent string with the following format:

Mozilla/Version [Language] (Platform; Encryption)

Netscape kept the tradition of using the product name and version as the fi rst part of the user-agent
string but added the following information afterward:

Language — The language code indicating where the application was intended to be used.

Platform — The operating system and/or platform on which the application is running.

➤

➤

User-Agent Detection ❘ 277

c09.indd 277c09.indd 277 12/8/11 10:11:44 AM12/8/11 10:11:44 AM

278 ❘ CHAPTER 9 CLIENT DETECTION

Encryption — The type of security encryption included. Possible values are U (128-bit
encryption), I (40-bit encryption), and N (no encryption).

A typical user-agent string from Netscape Navigator 2 looked like this:

Mozilla/2.02 [fr] (WinNT; I)

This string indicates Netscape Navigator 2.02 is being used, is compiled for use in French-speaking
countries, and is being run on Windows NT with 40-bit encryption. At this point in time, it was
fairly easy to determine what browser was being used just by looking at the product name in the
user-agent string.

Netscape Navigator 3 and Internet Explorer 3

In 1996, Netscape Navigator 3 was released and became the most popular web browser, surpassing
Mosaic. The user-agent string went through only a small change, removing the language token and
allowing optional information about the operating system or CPU used on the system. The format
became the following:

Mozilla/Version (Platform; Encryption [; OS-or-CPU description])

A typical user-agent string for Netscape Navigator 3 running on a Windows system looked like this:

Mozilla/3.0 (Win95; U)

This string indicates Netscape Navigator 3 running on Windows 95 with 128-bit encryption. Note
that the OS or CPU description was left off when the browser ran on Windows systems.

Shortly after the release of Netscape Navigator 3, Microsoft released its fi rst publicly available web
browser, Internet Explorer 3. Since Netscape was the dominant browser at the time, many servers
specifi cally checked for it before serving up pages. The inability to access pages in Internet Explorer
would have crippled adoption of the fl edgling browser, so the decision was made to create a
user-agent string that would be compatible with the Netscape user-agent string. The result was
the following format:

Mozilla/2.0 (compatible; MSIE Version; Operating System)

For example, Internet Explorer 3.02 running on Windows 95 had this user-agent string:

Mozilla/2.0 (compatible; MSIE 3.02; Windows 95)

Since most browser sniffers at the time looked only at the product-name part of the user-agent string,
Internet Explorer successfully identifi ed itself as Mozilla, the same as Netscape Navigator. This move
caused some controversy since it broke the convention of browser identifi cation. Furthermore, the
true browser version is buried in the middle of the string.

Another interesting part of this string is the identifi cation of Mozilla 2.0 instead of 3.0. Since 3.0
was the dominant browser at the time, it would have made more sense to use that. The actual reason
remains a mystery — it was more likely an oversight than anything else.

➤

c09.indd 278c09.indd 278 12/8/11 10:11:44 AM12/8/11 10:11:44 AM

Netscape Communicator 4 and Internet Explorer 4–8

In August 1997, Netscape Communicator 4 was released (the name was changed from Navigator
to Communicator for this release). Netscape opted to keep the following user-agent string format
from version 3:

Mozilla/Version (Platform; Encryption [; OS-or-CPU description])

With version 4 on a Windows 98 machine, the user-agent string looked like this:

Mozilla/4.0 (Win98; I)

As Netscape released patches and fi xes for its browser, the version was incremented accordingly, as
the following user-agent string from version 4.79 indicates:

Mozilla/4.79 (Win98; I)

When Microsoft released Internet Explorer 4, the user-agent string featured an updated version,
taking the following format:

Mozilla/4.0 (compatible; MSIE Version; Operating System)

For example, Internet Explorer 4 running on Windows 98 returned the following user-agent string:

Mozilla/4.0 (compatible; MSIE 4.0; Windows 98)

With this change, the reported Mozilla version and the actual version of Internet Explorer were
synchronized, allowing for easy identifi cation of these fourth-generation browsers. Unfortunately,
the synchronization ended there. When Internet Explorer 4.5 (released only for Macs) debuted, the
Mozilla version remained 4 while the Internet Explorer version changed as follows:

Mozilla/4.0 (compatible; MSIE 4.5; Mac_PowerPC)

In Internet Explorer versions through version 7, the following pattern has remained:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Internet Explorer 8 introduced an additional token called Trident, which is the name of the
rendering engine. The format became:

Mozilla/4.0 (compatible; MSIE Version; Operating System; Trident/TridentVersion)

For example:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)

User-Agent Detection ❘ 279

c09.indd 279c09.indd 279 12/8/11 10:11:44 AM12/8/11 10:11:44 AM

280 ❘ CHAPTER 9 CLIENT DETECTION

The extra Trident token is designed to help developers determine when Internet Explorer 8 is
running in compatibility mode. In that case the MSIE version becomes 7, but the Trident version
remains in the user-agent string:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0)

Adding this extra token makes it possible to determine if a browser is Internet Explorer 7 (in which
case there is no Trident token) or Internet Explorer 8 running in compatibility mode.

Internet Explorer 9 slightly changed this format. The Mozilla version was incremented to 5.0, and
the Trident version was also incremented to 5.0. The default user-agent string for Internet Explorer
9 looks like this:

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)

When Internet Explorer 9 runs in compatibility mode, the old Mozilla version and MSIE version
are restored while the Trident version remains at 5.0. For example, the following user-agent string is
Internet Explorer 9 running in Internet Explorer 7 compatibility mode:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/5.0)

All of these changes were made to ensure that past user-agent detection scripts continue to work
correctly while enabling new scripts to have additional information.

Gecko

The Gecko rendering engine is at the heart of Firefox. When Gecko was fi rst developed, it was as
part of the generic Mozilla browser that was to become Netscape 6. A specifi cation was written for
Netscape 6, indicating how the user-agent string should be constructed in all future versions. The
new format represented a fairly drastic departure from its relatively simple user-agent string used
through version 4.x. The format is as follows:

Mozilla/MozillaVersion (Platform; Encryption; OS-or-CPU; Language;
 PrereleaseVersion)Gecko/GeckoVersion
 ApplicationProduct/ApplicationProductVersion

A lot of thought went into this remarkably complex user-agent string. The following table lists the
meaning of each section.

STRING REQUIRED? DESCRIPTION

MozillaVersion Yes The version of Mozilla.

Platform Yes The platform on which the browser is running.

Possible values include Windows, Mac, and X11 (for

Unix X-windows systems).

Encryption Yes Encryption capabilities: U for 128-bit, I for 40-bit,

or N for no encryption.

c09.indd 280c09.indd 280 12/8/11 10:11:45 AM12/8/11 10:11:45 AM

To better understand the Gecko user-agent string format, consider the following user-agent strings
taken from various Gecko-based browsers.

Netscape 6.21 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:0.9.4) Gecko/20011128
 Netscape6/6.2.1

SeaMonkey 1.1a on Linux:

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1b2) Gecko/20060823 SeaMonkey/1.1a

Firefox 2.0.0.11 on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.11) Gecko/20071127
 Firefox/2.0.0.11

Camino 1.5.1 on Mac OS X:

Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en; rv:1.8.1.6) Gecko/20070809
 Camino/1.5.1

All of these user-agent strings indicate Gecko-based browsers (albeit using different versions).
Oftentimes, looking for a particular browser is not as important as understanding whether it’s

STRING REQUIRED? DESCRIPTION

OS-or-CPU Yes The operating system the browser is being run

on or the processor type of the computer running

the browser. If the platform is Windows, this is the

version of Windows (such as WinNT, Win95, and

so on). If the platform is Macintosh, then this is the

CPU (either 68k, PPC for PowerPC, or MacIntel). If

the Platform is X11, this is the Unix operating-system

name as obtained by the Unix command uname -sm.

Language Yes The language that the browser was created for use in.

Prerelease Version No Originally intended as the prerelease version

number for Mozilla, it now indicates the version

number of the Gecko rendering engine.

GeckoVersion Yes The version of the Gecko rendering engine

represented by a date in the format yyyymmdd.

ApplicationProduct No The name of the product using Gecko. This may be

Netscape, Firefox, and so on.

ApplicationProductVersion No The version of the ApplicationProduct; this is separate

from the MozillaVersion and the GeckoVersion.

User-Agent Detection ❘ 281

c09.indd 281c09.indd 281 12/8/11 10:11:45 AM12/8/11 10:11:45 AM

282 ❘ CHAPTER 9 CLIENT DETECTION

Gecko-based. The Mozilla version hasn’t changed from 5.0 since the fi rst Gecko-based browser was
released, and it likely won’t change again.

With the release of Firefox 4, Mozilla simplifi ed the user-agent string. The major changes include:

Removal of the Language token (i.e., “en-US” in the previous examples).

The Encryption token is not present when the browser uses strong encryption (which is
the default). That means there will no longer be a “U” in Mozilla user-agent strings,
but “I” and “N” might still be present.

The Platform token has been removed for Windows user-agent strings as “Windows” was
redundant with the OS-or-CPU token, which always contained the string “Windows”.

The GeckoVersion token is now frozen to “Gecko/20100101”.

An example of the fi nal Firefox 4 user-agent string is:

Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox 4.0.1

WebKit

In 2003, Apple announced that it would release its own web browser, called Safari. The Safari
rendering engine, called WebKit, began as a fork of the KHTML rendering engine used in the
Linux-based Konqueror web browser. A couple of years later, WebKit was split off into its own
open-source project, focusing on development of the rendering engine.

Developers of this new browser and rendering engine faced a problem similar to that faced by
Internet Explorer 3: how do you ensure that the browser isn’t locked out of popular sites? The
answer is, put enough information into the user-agent string to convince web sites that the browser is
compatible with another popular browser. This led to a user-agent string with the following format:

Mozilla/5.0 (Platform; Encryption; OS-or-CPU; Language)
 AppleWebKit/AppleWebKitVersion (KHTML, like Gecko) Safari/SafariVersion

Here’s an example:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/124 (KHTML, like Gecko)
 Safari/125.1

As you can see, this is another long user-agent string. It takes into account not only the version
of the Apple WebKit but also the Safari version. A point of contention over whether to identify
the browser as Mozilla was resolved rather quickly for compatibility reasons. Now, all WebKit-
based browsers identify themselves as Mozilla 5.0, the same as all Gecko-based browsers. The
Safari version has typically been the build number of the browser, not necessarily a representation
of the release version number. So although Safari 1.25 has the number 125.1 in the user-agent
string, there may not always be a one-to-one match.

The most interesting and controversial part of this user-agent string is the addition of the string
“(KHTML, like Gecko)” in a pre-1.0 version of Safari. Apple got a lot of pushback from developers
who saw this as a blatant attempt to trick clients and servers into thinking Safari was actually

➤

➤

➤

➤

c09.indd 282c09.indd 282 12/8/11 10:11:46 AM12/8/11 10:11:46 AM

Gecko (as if adding Mozilla/5.0 wasn’t enough). Apple’s response was similar to Microsoft’s when
the Internet Explorer user-agent string came under fi re: Safari is compatible with Mozilla, and web
sites shouldn’t block out Safari users because they appear to be using an unsupported browser.

Safari’s user-agent string was augmented slightly when version 3 was released. The following version
token is now used to identify the actual version of Safari being used:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/522.15.5
 (KHTML, like Gecko) Version/3.0.3 Safari/522.15.5

Note that this change was made only to Safari, not to WebKit, so other WebKit-based browsers may
not have this change. Generally speaking, as with Gecko, it’s typical to determine that a browser is
WebKit-based rather than trying to identify Safari specifi cally.

Konqueror

Konqueror, the browser bundled with the KDE Linux desktop environment, is based on the
KHTML open-source rendering engine. Though available only on Linux, Konqueror has an active
user base. For optimal compatibility, Konqueror opted to format its user-agent string after Internet
Explorer as follows:

Mozilla/5.0 (compatible; Konqueror/Version; OS-or-CPU)

However, Konqueror 3.2 introduced a change to coincide with changes to the WebKit user-agent
string, identifying itself as KHTML as follows:

Mozilla/5.0 (compatible; Konqueror/Version; OS-or-CPU) KHTML/KHTMLVersion
 (like Gecko)

Here’s an example:

Mozilla/5.0 (compatible; Konqueror/3.5; SunOS) KHTML/3.5.0 (like Gecko)

The version numbers for Konqueror and KHTML tend to coincide or be within a subpoint
difference, such as Konquerer 3.5 using KHTML 3.5.1.

Chrome

Google’s Chrome web browser uses WebKit as its rendering engine but uses a different JavaScript
engine. Chrome’s user-agent string carries along all of the information from WebKit and an extra
section for the Chrome version. The format is as follows:

Mozilla/5.0 (Platform; Encryption; OS-or-CPU; Language)
 AppleWebKit/AppleWebKitVersion (KHTML, like Gecko)
 Chrome/ChromeVersion Safari/SafariVersion

The full user-agent string for Chrome 7 is as follows:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.7
 (KHTML, like Gecko) Chrome/7.0.517.44 Safari/534.7

User-Agent Detection ❘ 283

c09.indd 283c09.indd 283 12/8/11 10:11:46 AM12/8/11 10:11:46 AM

284 ❘ CHAPTER 9 CLIENT DETECTION

It’s likely that the WebKit version and Safari version will always be synchronized going forward,
though this is not guaranteed.

Opera

One of the most controversial web browsers, as far as user-agent strings are concerned, is Opera. The
default user-agent string for Opera is the most logical of all modern browsers, correctly identifying
itself and its version. Prior to version 8, the Opera user-agent string was in the following format:

Opera/Version (OS-or-CPU; Encryption) [Language]

Using Opera 7.54 on a Windows XP computer, the user-agent string is as follows:

Opera/7.54 (Windows NT 5.1; U) [en]

With the release of Opera 8, the language part of the user-agent string was moved inside of the
parentheses to better match other browsers, as follows:

Opera/Version (OS-or-CPU; Encryption; Language)

Opera 8 on Windows XP yields the following user-agent string:

Opera/8.0 (Windows NT 5.1; U; en)

By default, Opera returns a user-agent string in this simple format. Currently it is the only one of
the major browsers to use the product name and version to fully and completely identify itself. As
with other browsers, however, Opera found problems with using its own user-agent string. Even
though it’s technically correct, there is a lot of browser-sniffi ng code on the Internet that is geared
toward user-agent strings reporting the Mozilla product name. There is also a fair amount of code
looking specifi cally for Internet Explorer or Gecko. Instead of confusing sniffers by changing its
own user-agent string, Opera identifi es itself as a different browser completely by changing its own
user-agent string.

As of Opera 9, there are two ways to change the user-agent string. One way is to identify it as
another browser, either Firefox or Internet Explorer. When using this option, the user-agent string
changes to look just like the corresponding one for Firefox or Internet Explorer, with the addition of
the string “Opera” and Opera’s version number at the end. Here’s an example:

Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0
 Opera 9.50

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50

The fi rst string identifi es Opera 9.5 as Firefox 2 while maintaining the Opera version information. The
second string identifi es Opera 9.5 as Internet Explorer 6 and includes the Opera version information.
Although these user-agent strings pass most tests for Firefox and Internet Explorer, the possibility of
identifying Opera is open.

c09.indd 284c09.indd 284 12/8/11 10:11:46 AM12/8/11 10:11:46 AM

Another option for identifying the browser is to mask it as either Firefox or Internet Explorer.
When masking the browser’s identity, the user-agent strings are exactly the same as would be
returned from the other browsers — the string “Opera” does not appear, nor does any Opera version
information. There is literally no way to distinguish Opera from the other browsers when identity
masking is used. Further complicating the issue is Opera’s tendency to set site-specifi c
user-agent strings without notifying the user. For instance, navigating to the My Yahoo! site
(http://my.yahoo.com) automatically causes Opera to mask itself as Firefox. This makes
identifying Opera by user-agent string very diffi cult.

Before version 7, Opera could interpret the meaning of Windows operating-system
strings. For example, Windows NT 5.1 actually means Windows XP, so in Opera 6,
the user-agent string included Windows XP instead of Windows NT 5.1. In an
effort to be more compatible with other browsers, version 7 started including the
offi cially reported operating-system version instead of an interpreted one.

Opera 10 introduced changes to its user-agent string. The format is now:

Opera/9.80 (OS-or-CPU; Encryption; Language) Presto/PrestoVersion Version/Version

Note that the initial version, Opera/9.80, remains fi xed. There was no Opera 9.8, but Opera
engineers were afraid that poor browser sniffi ng might cause a token of Opera/10.0 to be incorrectly
interpreted as Opera 1 instead of Opera 10. Thus, Opera 10 introduced the additional Presto token
(Presto is the rendering engine for Opera) and the Version token to hold the actual browser version.
This is the user-agent string for Opera 10.63 on Windows 7:

Opera/9.80 (Windows NT 6.1; U; en) Presto/2.6.30 Version/10.63

iOS and Android

The default web browsers for both iOS and Android mobile operating systems are based on WebKit
and so share the same basic user-agent string format as their desktop counterparts. iOS devices
follow this basic format:

Mozilla/5.0 (Platform; Encryption; OS-or-CPU like Mac OS X; Language)
 AppleWebKit/AppleWebKitVersion (KHTML, like Gecko) Version/BrowserVersion
 Mobile/MobileVersion Safari/SafariVersion

Note the addition of “like Mac OS X” to aid in detecting Mac operating systems and the addition
of a Mobile token. The Mobile token version number is typically not useful and is used primarily
to determine a mobile WebKit versus a desktop one. The platform will be “iPhone”, “iPod”, or
“iPad”, depending on the device. Example:

Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us)
 AppleWebKit/528.18 (KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

User-Agent Detection ❘ 285

c09.indd 285c09.indd 285 12/8/11 10:11:47 AM12/8/11 10:11:47 AM

286 ❘ CHAPTER 9 CLIENT DETECTION

Note that prior to iOS 3, the version number of the operating system did not appear in the user-
agent string.

The default Android browser generally follows the format set forth on iOS but without a Mobile
version (the Mobile token is still present). For example:

Mozilla/5.0 (Linux; U; Android 2.2; en-us; Nexus One Build/FRF91)
 AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

This user-agent string is from a Google Nexus One phone, but other Android devices follow the
same pattern.

Working with User-Agent Detection

Using the user-agent string to detect specifi c browsers can get quite complicated because of the
history and usage of user-agent strings in modern browsers. It’s often necessary to fi rst determine
how specifi c you need the browser information to be. Typically, knowing the rendering engine and a
minimum version is enough to determine the correct course of action. For instance, the following is
not recommended:

if (isIE6 || isIE7) { //avoid!!!
 //code
}

In this example, code is executed if the browser is Internet Explorer version 6 or 7. This code is very
fragile because it relies on specifi c browser versions to determine what to do. What should happen
for version 8? Anytime a new version of Internet Explorer is released, this code would have to be
updated. However, using relative version numbers as shown in the following example avoids this
problem:

if (ieVer >= 6){
 //code
}

This rewritten example checks to see if the version of Internet Explorer is at least 6 to determine the
correct course of action. Doing so ensures that this code will continue functioning appropriately in
the future. The browser-detection script focuses on this methodology for identifying browsers.

Identifying the Rendering Engine

As mentioned previously, the exact name and version of a browser isn’t as important as the
rendering engine being used. If Firefox, Camino, and Netscape all use the same version of Gecko,
their capabilities will be the same. Likewise, any browser using the same version of WebKit that
Safari 3 uses will likely have the same capabilities. Therefore, this script focuses on detecting the fi ve
major rendering engines: Internet Explorer, Gecko, WebKit, KHTML, and Opera.

This script uses the module-augmentation pattern to encapsulate the detection script and avoid
adding unnecessary global variables. The basic code structure is as follows:

c09.indd 286c09.indd 286 12/8/11 10:11:51 AM12/8/11 10:11:51 AM

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine
 };

}();

In this code, a global variable named client is declared to hold the information. Within the
anonymous function is a local variable named engine that contains an object literal with some
default settings. Each rendering engine is represented by a property that is set to 0. If a particular
engine is detected, the version of that engine will be placed into the corresponding property as
a fl oating-point value. The full version of the rendering engine (a string) is placed into the ver
property. This setup allows code such as the following:

if (client.engine.ie) { //if it’s IE, client.engine.ie is greater than 0
 //IE-specific code
} else if (client.engine.gecko > 1.5){
 if (client.engine.ver == “1.8.1”){
 //do something specific to this version
 }
}

Whenever a rendering engine is detected, its property on client.engine gets set to a number
greater than 0, which converts to a Boolean true. This allows a property to be used with an if
statement to determine the rendering engine being used, even if the specifi c version isn’t necessary.
Since each property contains a fl oating-point value, it’s possible that some version information may
be lost. For instance, the string “1.8.1” becomes the number 1.8 when passed into parseFloat().
The ver property ensures that the full version is available if necessary.

To identify the correct rendering engine, you need to test in the correct order. Testing out of order
may result in incorrect results because of the user-agent inconsistencies. For this reason, the fi rst
step is to identify Opera, since its user-agent string may completely mimic other browsers. Opera’s
user-agent string cannot be trusted since it won’t, in all cases, identify itself as Opera.

User-Agent Detection ❘ 287

c09.indd 287c09.indd 287 12/8/11 10:11:52 AM12/8/11 10:11:52 AM

288 ❘ CHAPTER 9 CLIENT DETECTION

To identify Opera, you need to look for the window.opera object. This object is present in
all versions of Opera 5 and later and is used to identify information about the browser and to
interact directly with the browser. In versions later than 7.6, a method called version()returns
the browser version number as a string, which is the best way to determine the Opera version
number. Earlier versions may be detected using the user-agent string, since identity masking wasn’t
supported. However, since Opera’s most recent version at the end of 2010 was 10.63, it’s unlikely
that anyone is using a version older than 7.6. The fi rst step in the rendering engine’s detection code
is as follows:

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(engine.ver);
}

The string representation of the version is stored in engine.ver, and the fl oating-point representation
is stored in engine.opera. If the browser is Opera, the test for window.opera will return true.
Otherwise, it’s time to detect another browser.

The next logical rendering engine to detect is WebKit. Since WebKit’s user-agent string contains
“Gecko” and “KHTML”, incorrect results could be returned if you were to check for those rendering
engines fi rst.

WebKit’s user-agent string, however, is the only one to contain the string “AppleWebKit”, so it’s the
most logical one to check for. The following is an example of how to do this:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(engine.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(engine.ver);
}

This code begins by storing the user-agent string in a variable called ua. A regular expression tests
for the presence of “AppleWebKit” in the user-agent string and uses a capturing group around
the version number. Since the actual version number may contain a mixture of numbers, decimal
points, and letters, the non–white-space special character (\S) is used. The separator between the
version number and the next part of the user-agent string is a space, so this pattern ensures all of
the versions will be captured. The test() method runs the regular expression against the user-
agent string. If it returns true, then the captured version number is stored in engine.ver and the
fl oating-point representation is stored in engine.webkit. WebKit versions correspond to Safari
versions, as detailed in the following table.

c09.indd 288c09.indd 288 12/8/11 10:11:52 AM12/8/11 10:11:52 AM

The next rendering engine to test for is KHTML. Once again, this user-agent string contains
“Gecko”, so you cannot accurately detect a Gecko-based browser before fi rst ruling out KHTML.
The KHTML version is included in the user-agent string in a format similar to WebKit, so a similar
regular expression is used. Also, since Konqueror 3.1 and earlier don’t include the KHTML version
specifi cally, the Konquerer version is used instead. Here’s an example:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(engine.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(engine.ver);

SAFARI VERSION MINIMUM WEBKIT VERSION

1.0 through 1.0.2 85.7

1.0.3 85.8.2

1.1 through 1.1.1 100

1.2.2 125.2

1.2.3 125.4

1.2.4 125.5.5

1.3 312.1

1.3.1 312.5

1.3.2 312.8

2.0 412

2.0.1 412.7

2.0.2 416.11

2.0.3 417.9

2.0.4 418.8

3.0.4 523.10

3.1 525

Sometimes Safari versions don’t match up exactly to WebKit versions and may be
a subpoint off. The preceding table indicates the most-likely WebKit versions but is
not exact.

User-Agent Detection ❘ 289

c09.indd 289c09.indd 289 12/8/11 10:11:53 AM12/8/11 10:11:53 AM

290 ❘ CHAPTER 9 CLIENT DETECTION

} else if (/KHTML\/(\S+)/.test(ua) || /Konqueror\/([^;]+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.khtml = parseFloat(engine.ver);
}

Once again, since the KHTML version number is separated from the next token by a space, the
non–white-space character is used to grab all of the characters in the version. Then the string
version is stored in engine.ver, and the fl oating-point version is stored in engine.khtml. If
KHTML isn’t in the user-agent string, then the match is against Konqueror, followed by a slash,
followed by all characters that aren’t a semicolon.

If both WebKit and KHTML have been ruled out, it is safe to check for Gecko. The actual Gecko
version does not appear after the string “Gecko” in the user-agent; instead, it appears after the
string “rv:”. This requires a more complicated regular expression than the previous tests, as you
can see in the following example:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(engine.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(engine.ver);
} else if (/KHTML\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.khtml = parseFloat(engine.ver);
} else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.gecko = parseFloat(engine.ver);
}

The Gecko version number appears between “rv:” and a closing parenthesis, so to extract the
version number, the regular expression looks for all characters that are not a closing parenthesis.
The regular expression also looks for the string “Gecko/” followed by eight numbers. If the pattern
matches, then the version number is extracted and stored in the appropriate properties. Gecko
version numbers are related to Firefox versions, as detailed in the following table.

FIREFOX VERSION MINIMUM GECKO VERSION

1.0 1.7.5

1.5 1.8.0

2.0 1.8.1

3.0 1.9.0

3.5 1.9.1

3.6 1.9.2

4.0 2.0.0

c09.indd 290c09.indd 290 12/8/11 10:11:57 AM12/8/11 10:11:57 AM

Internet Explorer is the last rendering engine to detect. The version number is found following
“MSIE” and before a semicolon, so the regular expression is fairly simple, as you can see in the
following example:

var ua = navigator.userAgent;

if (window.opera){
 engine.ver = window.opera.version();
 engine.opera = parseFloat(engine.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(engine.ver);
} else if (/KHTML\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.khtml = parseFloat(engine.ver);
} else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.gecko = parseFloat(engine.ver);
} else if (/MSIE ([^;]+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.ie = parseFloat(engine.ver);
}

The last part of this rendering engine’s detection script uses a negation class in the regular
expression to get all characters that aren’t a semicolon. Even though Internet Explorer typically
keeps version numbers as standard fl oating-point values, that won’t necessarily always be so. The
negation class [^;] is used to allow for multiple decimal points and possibly letters.

Identifying the Browser

In most cases, identifying the browser’s rendering engine is specifi c enough to determine a correct
course of action. However, the rendering engine alone doesn’t indicate that JavaScript functionality
is present. Apple’s Safari browser and Google’s Chrome browser both use WebKit as their rendering
engine but use different JavaScript engines. Both browsers would return a value for client
.engine.webkit, but that may not be specifi c enough. For these two browsers, it’s helpful to add
new properties to the client object, as shown in the following example:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,

As with Safari and WebKit, matches between Firefox and Gecko version numbers
are not exact.

User-Agent Detection ❘ 291

c09.indd 291c09.indd 291 12/8/11 10:11:58 AM12/8/11 10:11:58 AM

292 ❘ CHAPTER 9 CLIENT DETECTION

 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

 var browser = {

 //browsers
 ie: 0,
 fi refox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,

 //specifi c version
 ver: null
 };

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine,
 browser: browser
 };

}();

This code adds a private variable called browser that contains properties for each of the major
browsers. As with the engine variable, these properties remain zero unless the browser is being
used, in which case the fl oating-point version is stored in the property. Also, the ver property
contains the full string version of the browser in case it’s necessary. As you can see in the following
example, the detection code for browsers is intermixed with the rendering-engine-detection code
because of the tight coupling between most browsers and their rendering engines:

//detect rendering engines/browsers
var ua = navigator.userAgent;
if (window.opera){
 engine.ver = browser.ver = window.opera.version();
 engine.opera = browser.opera = parseFloat(engine.ver);
} else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.webkit = parseFloat(engine.ver);

 //fi gure out if it’s Chrome or Safari
 if (/Chrome\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.chrome = parseFloat(browser.ver);
 } else if (/Version\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];

c09.indd 292c09.indd 292 12/8/11 10:12:03 AM12/8/11 10:12:03 AM

 browser.safari = parseFloat(browser.ver);
 } else {
 //approximate version
 var safariVersion = 1;
 if (engine.webkit < 100){
 safariVersion = 1;
 } else if (engine.webkit < 312){
 safariVersion = 1.2;
 } else if (engine.webkit < 412){
 safariVersion = 1.3;
 } else {
 safariVersion = 2;
 }

 browser.safari = browser.ver = safariVersion;
 }
} else if (/KHTML\/(\S+)/.test(ua) || /Konqueror\/([^;]+)/.test(ua)){
 engine.ver = browser.ver = RegExp[“$1”];
 engine.khtml = browser.konq = parseFloat(engine.ver);
} else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){
 engine.ver = RegExp[“$1”];
 engine.gecko = parseFloat(engine.ver);

 //determine if it’s Firefox
 if (/Firefox\/(\S+)/.test(ua)){
 browser.ver = RegExp[“$1”];
 browser.fi refox = parseFloat(browser.ver);
 }
} else if (/MSIE ([^;]+)/.test(ua)){
 engine.ver = browser.ver = RegExp[“$1”];
 engine.ie = browser.ie = parseFloat(engine.ver);
}

For Opera and Internet Explorer, the values in the browser object are equal to those in the engine
object. For Konqueror, the browser.konq and browser.ver properties are equivalent to the
engine.khtml and engine.ver properties, respectively.

To detect Chrome and Safari, add additional if statements into the engine-detection code. The
version number for Chrome is extracted by looking for the string “Chrome/” and then taking
the numbers after that. Safari detection is done by looking for the “Version/” string and taking the
number after that. Since this works only for Safari versions 3 and higher, there’s some fallback logic
to map WebKit version numbers to the approximate Safari version numbers (see the table in the
previous section).

For the Firefox version, the string “Firefox/” is found and the numbers after it are extracted as the
version number. This happens only if the detected rendering engine is Gecko.

Using this code, you can now write logic such as the following:

if (client.engine.webkit) { //if it’s WebKit
 if (client.browser.chrome){
 //do something for Chrome
 } else if (client.browser.safari){
 //do something for Safari
 }

User-Agent Detection ❘ 293

c09.indd 293c09.indd 293 12/8/11 10:12:03 AM12/8/11 10:12:03 AM

294 ❘ CHAPTER 9 CLIENT DETECTION

} else if (client.engine.gecko){
 if (client.browser.firefox){
 //do something for Firefox
 } else {
 //do something for other Gecko browsers
 }
}

Identifying the Platform

In many cases, simply knowing the rendering engine is enough to get your code working. In some
circumstances, however, the platform is of particular interest. Browsers that are available cross-
platform (such as Safari, Firefox, and Opera) may have different issues on different platforms.
The three major platforms are Windows, Mac, and Unix (including fl avors of Linux). To allow for
detection of these platforms, add a new object to client as follows:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,

 //specific version
 ver: null
 };

 var system = {
 win: false,
 mac: false,
 x11: false
 };

 //detection of rendering engines/platforms/devices here

 return {

c09.indd 294c09.indd 294 12/8/11 10:12:03 AM12/8/11 10:12:03 AM

 engine: engine,
 browser: browser,
 system: system
 };

}();

This code introduces a new system variable that has three properties. The win property indicates
if the platform is Windows, mac indicates Mac, and x11 indicates Unix. Unlike rendering engines,
platform information is typically very limited, without access to operating systems or versions. Of
these three platforms, browsers regularly report only Windows versions. For this reason, each
of these properties is represented initially by a Boolean false instead of a number (as with the
rendering-engine properties).

To determine the platform, it’s much easier to look at navigator.platform than to look at the
user-agent string, which may represent platform information differently across browsers. The
possible values for navigator.platform are “Win32”, “Win64”, “MacPPC”, “MacIntel”, “X11”,
and “Linux i686”, which are consistent across browsers. The platform-detection code is very
straightforward, as you can see in the following example:

var p = navigator.platform;
system.win = p.indexOf(“Win”) == 0;
system.mac = p.indexOf(“Mac”) == 0;
system.x11 = (p.indexOf(“X11”) == 0) || (p.indexOf(“Linux”) == 0);

This code uses the indexOf() method to look at the beginning of the platform string. To detect
Windows, the platform-detection code simply looks for the string “Win” at the beginning of the
platform string (covers both “Win32” and “Win64”). Testing for a Mac platform is done in the same
way to accommodate both “MacPPC” and “MacIntel”. The test for Unix looks for both “X11” and
“Linux” at the beginning of the platform string to future-proof this code against other variants.

Earlier versions of Gecko returned “Windows” for all Windows platforms and
“Macintosh” for all Mac platforms. This occurred prior to the release of Firefox 1,
which stabilized navigator.platform values.

Identifying Windows Operating Systems

If the platform is Windows, it’s possible to get specifi c operating-system information from the
user-agent string. Prior to Windows XP, there were two versions of Windows: one for home use
and one for business use. The version for home use was simply called Windows and had specifi c
versions of 95, 98, and ME. The business version was called Windows NT and eventually was
marketed as Windows 2000. Windows XP represented the convergence of these two product
lines into a common code base evolved from Windows NT. Windows Vista then was built on
Windows XP.

User-Agent Detection ❘ 295

c09.indd 295c09.indd 295 12/8/11 10:12:03 AM12/8/11 10:12:03 AM

296 ❘ CHAPTER 9 CLIENT DETECTION

This information is important because of the way a Windows operating system is represented in
the user-agent string. The following table shows the different strings used to represent the various
Windows operating systems across browsers.

Because of the various ways the Windows operating system is represented in the user-agent string,
detection isn’t completely straightforward. The good news is that since Windows 2000, the string
representation has remained mostly the same, with only the version number changing. To detect
the different Windows operating systems, you need a regular expression. Keep in mind that Opera
versions prior to 7 are no longer in signifi cant use, so there’s no need to prepare for them.

The fi rst step is to match the strings for Windows 95 and Windows 98. The only difference
between the strings returned by Gecko and the other browsers is the absence of “dows” and a
space between “Win” and the version number. This is a fairly easy regular expression, as you can
see here:

/Win(?:dows)?([^do]{2})/

Using this regular expression, the capturing group returns the operating-system version. Since this
may be any two-character code not containing “d” or “o” (such as 95, 98, 9x, NT, ME, or XP) two
non–white-space characters are used.

WINDOWS

VERSION IE 4+ GECKO OPERA < 7 OPERA 7+ WEBKIT

95 “Windows 95” “Win95” “Windows 95” “Windows 95” n/a

98 “Windows 98” “Win98” “Windows 98” “Windows 98” n/a

NT 4.0 “Windows NT” “WinNT4.0” “Windows NT

4.0”

“Windows NT

4.0”

n/a

2000 “Windows NT

5.0”

“Windows NT

5.0”

“Windows

2000”

“Windows NT

5.0”

n/a

ME “Win 9x 4.90” “Win 9x

4.90”

“Windows ME” “Win 9x

4.90”

n/a

XP “Windows NT

5.1”

“Windows NT

5.1”

“Windows XP” “Windows NT

5.1”

“Windows

NT 5.1”

Vista “Windows NT

6.0”

“Windows NT

6.0”

n/a “Windows NT

6.0”

“Windows

NT 6.0”

7 “Windows NT

6.1”

“Windows NT

6.1”

n/a “Windows NT

6.1”

“Windows

NT 6.1”

c09.indd 296c09.indd 296 12/8/11 10:12:09 AM12/8/11 10:12:09 AM

The Gecko representation for Windows NT adds a “4.0” at the end. Instead of looking for that
exact string, it makes more sense to look for a decimal number like this:

/Win(?:dows)?([^do]{2})(\d+\.\d+)?/

This regular expression introduces a second capturing group to get the NT version number. Since that
number won’t be there for Windows 95 or 98, it must be optional. The only difference between this
pattern and the Opera representation of Windows NT is the space between “NT” and “4.0”, which
can easily be added as follows:

/Win(?:dows)?([^do]{2})\s?(\d+\.\d+)?/

With these changes, the regular expression will also successfully match the strings for Windows
ME, Windows XP, and Windows Vista. The fi rst capturing group will capture 95, 98, 9x, NT, ME,
or XP. The second capturing group is used only for Windows ME and all Windows NT derivatives.
This information can be used to assign specifi c operating-system information to the system.win
property, as in the following example:

if (system.win){
 if (/Win(?:dows)?([^do]{2})\s?(\d+\.\d+)?/.test(ua)){
 if (RegExp[“$1”] == “NT”){
 switch(RegExp[“$2”]){
 case “5.0”:
 system.win = “2000”;
 break;
 case “5.1”:
 system.win = “XP”;
 break;
 case “6.0”:
 system.win = “Vista”;
 break;
 case “6.1”:
 system.win = “7”;
 break;
 default:
 system.win = “NT”;
 break;
 }
 } else if (RegExp[“$1”] == “9x”){
 system.win = “ME”;
 } else {
 system.win = RegExp[“$1”];
 }
 }
}

If system.win is true, then the regular expression is used to extract specifi c information from
the user-agent string. It’s possible that some future version of Windows won’t be detectable via this
method, so the fi rst step is to check if the pattern is matched in the user-agent string. When the
pattern matches, the fi rst capturing group will contain one of the following: “95”, “98”, “9x”, or “NT”.
If the value is “NT”, then system.win is set to a specifi c string for the operating system in question; if

User-Agent Detection ❘ 297

c09.indd 297c09.indd 297 12/8/11 10:12:09 AM12/8/11 10:12:09 AM

298 ❘ CHAPTER 9 CLIENT DETECTION

the value is “9x”, then system.win is set to “ME”; otherwise the captured value is assigned directly to
system.win. This setup allows code such as the following:

if (client.system.win){
 if (client.system.win == “XP”) {
 //report XP
 } else if (client.system.win == “Vista”){
 //report Vista
 }
}

Since a nonempty string converts to the Boolean value of true, the client.system.win property
can be used as a Boolean in an if statement. When additional information about the operating
system is necessary, the string value can be used.

Identifying Mobile Devices

In 2006–2007, the use of web browsers on mobile devices exploded. There are mobile versions of all
major browsers, and versions that run on other devices, so it’s important to identify these cases. The
fi rst step is to add properties for all of the mobile devices to detect for, as in the following example:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version
 ver: null
 };

 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,

 //specific version
 ver: null
 };

 var system = {
 win: false,
 mac: false,

c09.indd 298c09.indd 298 12/8/11 10:12:09 AM12/8/11 10:12:09 AM

 x11: false,

 //mobile devices
 iphone: false,
 ipod: false,
 ipad: false,
 ios: false,
 android: false,
 nokiaN: false,
 winMobile: false };

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine,
 browser: browser,
 system: system
 };

}();

Detecting iOS devices is as simple as searching for the strings “iPhone”, “iPod”, and “iPad”:

system.iphone = ua.indexOf(“iPhone”) > -1;
system.ipod = ua.indexOf(“iPod”) > -1;
system.ipad = ua.indexOf(“iPad”) > -1;

In addition to knowing the iOS device, it’s also helpful to know the version of iOS. Prior to iOS 3,
the user-agent string simply said “CPU like Mac OS X”, while later it was changed to “CPU iPhone
OS 3_0 like Mac OS X” for iPhone and “CPU OS 3_2 like Mac OS X” for the iPad. This means
detecting iOS requires a regular expression to take these changes into account:

//determine iOS version
if (system.mac && ua.indexOf(“Mobile”) > -1){
 if (/CPU (?:iPhone)?OS (\d+_\d+)/.test(ua)){
 system.ios = parseFloat(RegExp.$1.replace(“_”, “.”));
 } else {
 system.ios = 2; //can’t really detect - so guess
 }
}

Checking to see if the system is a Mac OS and if the string “Mobile” is present ensures that
system.ios will be nonzero regardless of the version. After that, a regular expression is used to
determine if the iOS version is present in the user-agent string. If it is, then system.ios is set to a
fl oating-point value for the version; otherwise, the version is hardcoded to 2. (There is no way to
determine the actual version, so picking the previous version is safe for making this value useful.)

Detecting the Android operating system is a simple search for the string “Android” and retrieving
the version number immediately after:

//determine Android version
if (/Android (\d+\.\d+)/.test(ua)){
 system.android = parseFloat(RegExp.$1);
}

User-Agent Detection ❘ 299

c09.indd 299c09.indd 299 12/8/11 10:12:10 AM12/8/11 10:12:10 AM

300 ❘ CHAPTER 9 CLIENT DETECTION

Since all versions of Android include the version number, this regular expression accurately detects
all versions and sets system.android to the correct value.

Nokia Nseries mobile phones also use WebKit. The user-agent string is very similar to other
WebKit-based phones, such as the following:

Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaN95/11.0.026;
 Profile MIDP-2.0 Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko)
 Safari/413

Note that even though the Nokia Nseries phones report “Safari” in the user-agent string, the
browser is not actually Safari though it is WebKit-based. A simple check for “NokiaN” in the user-
agent string, as shown here, is suffi cient to detect this series of phones:

system.nokiaN = ua.indexOf(“NokiaN”) > -1;

With this device information, it’s possible to fi gure out how the user is accessing a page with WebKit
by using code such as this:

if (client.engine.webkit){
 if (client.system.ios){
 //iOS stuff
 } else if (client.system.android){
 //android stuff
 } else if (client.system.nokiaN){
 //nokia stuff
 }
}

The last major mobile-device platform is Windows Mobile (previously called Windows CE), which is
available on both Pocket PCs and smartphones. Since these devices are technically a Windows platform,
the Windows platform and operating system will return correct values. For Windows Mobile 5.0 and
earlier, the user-agent strings for these two devices were very similar, such as the following:

Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; PPC; 240x320)
Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; Smartphone; 176x220)

The fi rst of these is mobile Internet Explorer 4.01 on the Pocket PC, and the second one is the same
browser on a smartphone. When the Windows operating system detection script is run against
either of these strings, client.system.win gets fi lled with “CE”, so detection for early Windows
Mobile devices can be done using this value.

It’s not advisable to test for “PPC” or “Smartphone” in the string, because these tokens have been
removed in browsers on Windows Mobile later than 5.0. Oftentimes, simply knowing that the
device is using Windows Mobile is enough.

Windows Phone 7 features a slightly augmented user-agent string with the following basic format:

Mozilla/4.0 (compatible; MSIE 7.0; Windows Phone OS 7.0; Trident/3.1; IEMobile/7.0)
 Asus;Galaxy6

c09.indd 300c09.indd 300 12/8/11 10:12:10 AM12/8/11 10:12:10 AM

The format of the Windows operating system identifi er breaks from tradition, so the value of
client.system.win is equal to “Ph” when this user-agent is encountered. This information can be
used to get more information about the system:

//windows mobile
if (system.win == “CE”){
 system.winMobile = system.win;
} else if (system.win == “Ph”){
 if(/Windows Phone OS (\d+.\d+)/.test(ua)){;
 system.win = “Phone”;
 system.winMobile = parseFloat(RegExp[“$1”]);
 }
}

If the value of system.win is “CE”, that means it’s an older version of Windows Mobile, so system
.winMobile is set to that value (it’s the only information you have). If system.win is “Ph”, then
the device is probably Windows Phone 7 or later, so another regular expression is used to test
for the format and extract the version number. The value of system.win is then reset to “Phone”
and system.winMobile is set to the version number.

Identifying Game Systems

Another new area in which web browsers have become increasingly popular is on video game
systems. Both the Nintendo Wii and Playstation 3 have web browsers either built in or available for
download. The Wii browser is actually a custom version of Opera, designed specifi cally for use with
the Wii remote. The Playstation browser is custom and is not based on any of the rendering engines
previously mentioned. The user-agent strings for these browsers are as follows:

Opera/9.10 (Nintendo Wii;U; ; 1621; en)
Mozilla/5.0 (PLAYSTATION 3; 2.00)

The fi rst user-agent string is Opera running on the Wii. It stays true to the original Opera
user-agent string (keep in mind that Opera on the Wii does not have identity-masking capabilities).
The second string is from a Playstation 3, which reports itself as Mozilla 5.0 for compatibility but
doesn’t give much information. Oddly, it uses all uppercase letters for the device name, prompting
concerns that future versions may change the case.

Before detecting these devices, you must add appropriate properties to the client.system object
as follows:

var client = function(){

 var engine = {

 //rendering engines
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //specific version

User-Agent Detection ❘ 301

c09.indd 301c09.indd 301 12/8/11 10:12:10 AM12/8/11 10:12:10 AM

302 ❘ CHAPTER 9 CLIENT DETECTION

 ver: null
 };

 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,

 //specific version
 ver: null
 };

 var system = {
 win: false,
 mac: false,
 x11: false,

 //mobile devices
 iphone: false,
 ipod: false,
 ipad: false,
 ios: false,
 android: false,
 nokiaN: false,
 winMobile: false,
 //game systems
 wii: false,
 ps: false
 };

 //detection of rendering engines/platforms/devices here

 return {
 engine: engine,
 browser: browser,
 system: system
 };

}();

The following code detects each of these game systems:

system.wii = ua.indexOf(“Wii”) > -1;
system.ps = /playstation/i.test(ua);

For the Wii, a simple test for the string “Wii” is enough. The rest of the code will pick up that
the browser is Opera and return the correct version number in client.browser.opera. For the
Playstation, a regular expression is used to test against the user-agent string in a case-insensitive way.

c09.indd 302c09.indd 302 12/8/11 10:12:10 AM12/8/11 10:12:10 AM

The Complete Script

The complete user-agent detection script, including rendering engines, platforms, Windows
operating systems, mobile devices, and game systems is as follows:

var client = function(){

 //rendering engines
 var engine = {
 ie: 0,
 gecko: 0,
 webkit: 0,
 khtml: 0,
 opera: 0,

 //complete version
 ver: null
 };

 //browsers
 var browser = {

 //browsers
 ie: 0,
 firefox: 0,
 safari: 0,
 konq: 0,
 opera: 0,
 chrome: 0,

 //specific version
 ver: null
 };

 //platform/device/OS
 var system = {
 win: false,
 mac: false,
 x11: false,

 //mobile devices
 iphone: false,
 ipod: false,
 ipad: false,
 ios: false,
 android: false,
 nokiaN: false,
 winMobile: false,

 //game systems
 wii: false,
 ps: false
 };

 //detect rendering engines/browsers

User-Agent Detection ❘ 303

c09.indd 303c09.indd 303 12/8/11 10:12:11 AM12/8/11 10:12:11 AM

304 ❘ CHAPTER 9 CLIENT DETECTION

 var ua = navigator.userAgent;
 if (window.opera){
 engine.ver = browser.ver = window.opera.version();
 engine.opera = browser.opera = parseFloat(engine.ver);
 } else if (/AppleWebKit\/(\S+)/.test(ua)){
 engine.ver = RegExp[”$1”];
 engine.webkit = parseFloat(engine.ver);

 //figure out if it’s Chrome or Safari
 if (/Chrome\/(\S+)/.test(ua)){
 browser.ver = RegExp[”$1”];
 browser.chrome = parseFloat(browser.ver);
 } else if (/Version\/(\S+)/.test(ua)){
 browser.ver = RegExp[”$1”];
 browser.safari = parseFloat(browser.ver);
 } else {
 //approximate version
 var safariVersion = 1;
 if (engine.webkit < 100){
 safariVersion = 1;
 } else if (engine.webkit < 312){
 safariVersion = 1.2;
 } else if (engine.webkit < 412){
 safariVersion = 1.3;
 } else {
 safariVersion = 2;
 }

 browser.safari = browser.ver = safariVersion;
 }
 } else if (/KHTML\/(\S+)/.test(ua) || /Konqueror\/([^;]+)/.test(ua)){
 engine.ver = browser.ver = RegExp[”$1”];
 engine.khtml = browser.konq = parseFloat(engine.ver);
 } else if (/rv:([^\)]+)\) Gecko\/\d{8}/.test(ua)){
 engine.ver = RegExp[”$1”];
 engine.gecko = parseFloat(engine.ver);

 //determine if it’s Firefox
 if (/Firefox\/(\S+)/.test(ua)){
 browser.ver = RegExp[”$1”];
 browser.firefox = parseFloat(browser.ver);
 }
 } else if (/MSIE ([^;]+)/.test(ua)){
 engine.ver = browser.ver = RegExp[”$1”];
 engine.ie = browser.ie = parseFloat(engine.ver);
 }

 //detect browsers
 browser.ie = engine.ie;
 browser.opera = engine.opera;

 //detect platform
 var p = navigator.platform;

c09.indd 304c09.indd 304 12/8/11 10:12:11 AM12/8/11 10:12:11 AM

 system.win = p.indexOf(”Win”) == 0;
 system.mac = p.indexOf(”Mac”) == 0;
 system.x11 = (p == ”X11”) || (p.indexOf(”Linux”) == 0);

 //detect windows operating systems
 if (system.win){
 if (/Win(?:dows)?([^do]{2})\s?(\d+\.\d+)?/.test(ua)){
 if (RegExp[”$1”] == ”NT”){
 switch(RegExp[”$2”]){
 case ”5.0”:
 system.win = ”2000”;
 break;
 case ”5.1”:
 system.win = ”XP”;
 break;
 case ”6.0”:
 system.win = ”Vista”;
 break;
 case ”6.1”:
 system.win = ”7”;
 break;
 default:
 system.win = ”NT”;
 break;
 }
 } else if (RegExp[”$1”] == ”9x”){
 system.win = ”ME”;
 } else {
 system.win = RegExp[“$1”];
 }
 }
 }

 //mobile devices
 system.iphone = ua.indexOf(”iPhone”) > -1;
 system.ipod = ua.indexOf(”iPod”) > -1;
 system.ipad = ua.indexOf(”iPad”) > -1;
 system.nokiaN = ua.indexOf(”NokiaN”) > -1;

 //windows mobile
 if (system.win == ”CE”){
 system.winMobile = system.win;
 } else if (system.win == ”Ph”){
 if(/Windows Phone OS (\d+.\d+)/.test(ua)){;
 system.win = ”Phone”;
 system.winMobile = parseFloat(RegExp[”$1”]);
 }
 }
 //determine iOS version
 if (system.mac && ua.indexOf(”Mobile”) > -1){
 if (/CPU (?:iPhone)?OS (\d+_\d+)/.test(ua)){
 system.ios = parseFloat(RegExp.$1.replace(“_”, “.”));
 } else {

User-Agent Detection ❘ 305

c09.indd 305c09.indd 305 12/8/11 10:12:11 AM12/8/11 10:12:11 AM

306 ❘ CHAPTER 9 CLIENT DETECTION

 system.ios = 2; //can’t really detect - so guess
 }
 }

 //determine Android version
 if (/Android (\d+\.\d+)/.test(ua)){
 system.android = parseFloat(RegExp.$1);
 }

 //gaming systems
 system.wii = ua.indexOf(”Wii”) > -1;
 system.ps = /playstation/i.test(ua);

 //return it
 return {
 engine: engine,
 browser: browser,
 system: system
 };

}();

client.js

Usage

As mentioned previously, user-agent detection is considered the last option for client detection.
Whenever possible, capability detection and/or quirks detection should be used fi rst. User-agent
detection is best used under the following circumstances:

If a capability or quirk cannot be accurately detected directly. For example, some browsers
implement functions that are stubs for future functionality. In that case, testing for the
existence of the function doesn’t give you enough information.

If the same browser has different capabilities on different platforms. It may be necessary to
determine which platform is being used.

If you need to know the exact browser for tracking purposes.

SUMMARY

Client detection is one of the most controversial topics in JavaScript. Because of differences in
browsers, it is often necessary to fork code based on the browser’s capabilities. There are several
approaches to client detection, but the following three are used most frequently:

Capability detection — Tests for specifi c browser capabilities before using them. For
instance, a script may check to see if a function exists before calling it. This approach frees
developers from worrying about specifi c browser types and versions, letting them simply
focus on whether the capability exists or not. Capabilities detection cannot accurately detect
a specifi c browser or version.

➤

➤

➤

➤

c09.indd 306c09.indd 306 12/8/11 10:12:11 AM12/8/11 10:12:11 AM

Quirks detection — Quirks are essentially bugs in browser implementations, such as
WebKit’s early quirk of returning shadowed properties in a for-in loop. Quirks detection
often involves running a short piece of code to determine if the browser has the particular
quirk. Since it is less effi cient than capability detection, quirks detection is used only when a
specifi c quirk may interfere with the processing of the script. Quirks detection cannot detect
a specifi c browser or version.

User-agent detection — Identifi es the browser by looking at its user-agent string. The
user-agent string contains a great deal of information about the browser, often including
the browser, platform, operating system, and browser version. There is a long history
to the development of the user-agent string, with browser vendors attempting to fool web
sites into believing they are another browser. User-agent detection can be tricky, especially
when dealing with Opera’s ability to mask its user-agent string. Even so, the user-agent
string can determine the rendering engine being used and the platform on which it runs,
including mobile devices and gaming systems.

When you are deciding which client-detection method to use, it’s preferable to use capability
detection fi rst. Quirks detection is the second choice for determining how your code should proceed.
User-agent detection is considered the last choice for client detection, because it is so dependent on
the user-agent string.

➤

➤

Summary ❘ 307

c09.indd 307c09.indd 307 12/8/11 10:12:12 AM12/8/11 10:12:12 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

c09.indd 308c09.indd 308 12/8/11 10:12:12 AM12/8/11 10:12:12 AM

The Document Object Model

WHAT’S IN THIS CHAPTER?

Understanding the DOM as a hierarchy of nodes

Working with the various node types

Coding the DOM around browser incompatibilities and gotchas

The Document Object Model (DOM) is an application programming interface (API) for
HTML and XML documents. The DOM represents a document as a hierarchical tree of
nodes, allowing developers to add, remove, and modify individual parts of the page. Evolving
out of early Dynamic HTML (DHTML) innovations from Netscape and Microsoft, the DOM
is now a truly cross-platform, language-independent way of representing and manipulating
pages for markup.

DOM Level 1 became a W3C recommendation in October 1998, providing interfaces for basic
document structure and querying. This chapter focuses on the features and uses of DOM
Level 1 as it relates to HTML pages in the browser and its implementation in JavaScript.
The most recent versions of Internet Explorer, Firefox, Safari, Chrome, and Opera all have
excellent DOM implementations.

➤

➤

➤

10

Note that all DOM objects are represented by COM objects in Internet Explorer 8
and earlier. This means that the objects don’t behave or function the same way
as native JavaScript objects. These differences are highlighted throughout the
chapter.

c10.indd 309c10.indd 309 12/8/11 10:17:22 AM12/8/11 10:17:22 AM

310 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

HIERARCHY OF NODES

Any HTML or XML document can be
represented as a hierarchy of nodes using the
DOM. There are several node types, each
representing different information and/or markup
in the document. Each node type has different
characteristics, data, and methods, and each
may have relationships with other nodes. These
relationships create a hierarchy that allows
markup to be represented as a tree, rooted at
a particular node. For instance, consider the
following HTML:

<html>
 <head>
 <title>Sample Page</title>
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

This simple HTML document can be represented
in a hierarchy, as illustrated in Figure 10-1.

A document node represents every document as the root. In this example, the only child of the
document node is the <html> element, which is called the document element. The document element
is the outermost element in the document within which all other elements exist. There can be only
one document element per document. In HTML pages, the document element is always the <html>
element. In XML, where there are no predefi ned elements, any element may be the document element.

Every piece of markup can be represented by a node in the tree: HTML elements are represented by
element nodes, attributes are represented by attribute nodes, the document type is represented by a
document type node, and comments are represented by comment nodes. In total, there are 12 node
types, all of which inherit from a base type.

The Node Type

DOM Level 1 describes an interface called Node that is to be implemented by all node types in
the DOM. The Node interface is implemented in JavaScript as the Node type, which is accessible
in all browsers except Internet Explorer. All node types inherit from Node in JavaScript, so all node
types share the same basic properties and methods.

Every node has a nodeType property that indicates the type of node that it is. Node types are
represented by one of the following 12 numeric constants on the Node type:

Node.ELEMENT_NODE (1)

Node.ATTRIBUTE_NODE (2)

➤

➤

FIGURE 10-1

Document

Element html

Element head

Element title

Text Sample Page

Element body

Element p

Text Hello World!

c10.indd 310c10.indd 310 12/8/11 10:17:34 AM12/8/11 10:17:34 AM

Hierarchy of Nodes ❘ 311

Node.TEXT_NODE (3)

Node.CDATA_SECTION_NODE (4)

Node.ENTITY_REFERENCE_NODE (5)

Node.ENTITY_NODE (6)

Node.PROCESSING_INSTRUCTION_NODE (7)

Node.COMMENT_NODE (8)

Node.DOCUMENT_NODE (9)

Node.DOCUMENT_TYPE_NODE (10)

Node.DOCUMENT_FRAGMENT_NODE (11)

Node.NOTATION_NODE (12)

A node’s type is easy to determine by comparing against one of these constants, as shown here:

if (someNode.nodeType == Node.ELEMENT_NODE){ //won’t work in IE < 9
 alert(“Node is an element.”);
}

This example compares the someNode.nodeType to the Node.ELEMENT_NODE constant. If they’re
equal, it means someNode is actually an element. Unfortunately, since Internet Explorer 8 and
earlier doesn’t expose the Node type constructor, this code will cause an error. For cross-browser
compatibility, it’s best to compare the nodeType property against a numeric value, as in the
following:

if (someNode.nodeType == 1){ //works in all browsers
 alert(“Node is an element.”);
}

Not all node types are supported in web browsers. Developers most often work with element and
text nodes. The support level and usage of each node type is discussed later in the chapter.

The nodeName and nodeValue Properties

Two properties, nodeName and nodeValue, give specifi c information about the node. The values of
these properties are completely dependent on the node type. It’s always best to test the node type
before using one of these values, as the following code shows:

if (someNode.nodeType == 1){
 value = someNode.nodeName; //will be the element’s tag name
}

In this example, the node type is checked to see if the node is an element. If so, the nodeName value
is assigned to a variable. For elements, nodeName is always equal to the element’s tag name, and
nodeValue is always null.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c10.indd 311c10.indd 311 12/8/11 10:17:35 AM12/8/11 10:17:35 AM

312 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

Node Relationships

All nodes in a document have relationships to other nodes. These relationships are described in
terms of traditional family relationships as if the document tree were a family tree. In HTML,
the <body> element is considered a child of the <html> element; likewise the <html> element is
considered the parent of the <body> element. The <head> element is considered a sibling of the
<body> element, because they both share the same immediate parent, the <html> element.

Each node has a childNodes property containing a NodeList. A NodeList is an array-like object
used to store an ordered list of nodes that are accessible by position. Keep in mind that a NodeList
is not an instance of Array even though its values can be accessed using bracket notation and the
length property is present. NodeList objects are unique in that they are actually queries being run
against the DOM structure, so changes will be refl ected in NodeList objects automatically. It is
often said that a NodeList is a living, breathing object rather than a snapshot of what happened at
the time it was fi rst accessed.

The following example shows how nodes stored in a NodeList may be accessed via bracket notation
or by using the item() method:

var firstChild = someNode.childNodes[0];
var secondChild = someNode.childNodes.item(1);
var count = someNode.childNodes.length;

Note that using bracket notation and using the item() method are both acceptable practices,
although most developers use bracket notation because of its similarity to arrays. Also note that the
length property indicates the number of nodes in the NodeList at that time. It’s possible to convert
NodeList objects into arrays using Array.prototype.slice() as was discussed earlier for the
arguments object. Consider the following example:

//won’t work in IE8 and earlier
var arrayOfNodes = Array.prototype.slice.call(someNode.childNodes,0);

This works in all browsers except Internet Explorer 8 and earlier versions, which throw an error
because a NodeList is implemented as a COM object and thus cannot be used where a JScript
object is necessary. To convert a NodeList to an array in Internet Explorer, you must manually
iterate over the members. The following function works in all browsers:

function convertToArray(nodes){
 var array = null;
 try {
 array = Array.prototype.slice.call(nodes, 0); //non-IE and IE9+
 } catch (ex) {
 array = new Array();
 for (var i=0, len=nodes.length; i < len; i++){
 array.push(nodes[i]);
 }
 }

 return array;
}

c10.indd 312c10.indd 312 12/8/11 10:17:35 AM12/8/11 10:17:35 AM

Hierarchy of Nodes ❘ 313

The convertToArray() function fi rst attempts to use the easiest manner of creating an array. If
that throws an error (which it will in Internet Explorer through version 8), the error is caught by the
try-catch block and the array is created manually. This is another form of quirks detection.

Each node has a parentNode property pointing to its parent in the document tree. All nodes
contained within a childNodes list have the same parent, so each of their parentNode properties
points to the same node. Additionally, each node within a childNodes list is considered to be
a sibling of the other nodes in the same list. It’s possible to navigate from one node in the list to
another by using the previousSibling and nextSibling properties. The fi rst node in the list has
null for the value of its previousSibling property, and the last node in the list has null for the
value of its nextSibling property, as shown in the following example:

if (someNode.nextSibling === null){
 alert(“Last node in the parent’s childNodes list.”);
} else if (someNode.previousSibling === null){
 alert(“First node in the parent’s childNodes list.”);
}

Note that if there’s only one child node, both nextSibling and previousSibling will be null.

Another relationship exists between a parent node and its fi rst and last child nodes. The firstChild
and lastChild properties point to the fi rst and last node in the childNodes list, respectively. The
value of someNode.firstChild is always equal to someNode.childNodes[0], and the value of
someNode.lastChild is always equal to someNode.childNodes[someNode.childNodes.length-1].
If there is only one child node, firstChild and lastChild point to the same node; if there are no
children, then firstChild and lastChild are both null. All of these relationships help to navigate
easily between nodes in a document structure. Figure 10-2 illustrates these relationships.

Node

Node Node Node

firstChild

lastChild

childNodes

nextSibling

previousSibling

nextSibling

previousSibling

parentNode parentNode

parentNode

FIGURE 10-2

With all of these relationships, the childNodes property is really more of a convenience than a
necessity, since it’s possible to reach any node in a document tree by simply using the relationship
pointers. Another convenience method is hasChildNodes(), which returns true if the node has one
or more child nodes and is more effi cient than querying the length of the childNodes list.

c10.indd 313c10.indd 313 12/8/11 10:17:36 AM12/8/11 10:17:36 AM

314 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

One fi nal relationship is shared by every node. The ownerDocument property is a pointer to
the document node that represents the entire document. Nodes are considered to be owned by the
document in which they were created (typically the same in which they reside), because nodes cannot
exist simultaneously in two or more documents. This property provides a quick way to access the
document node without needing to traverse the node hierarchy back up to the top.

Not all node types can have child nodes even though all node types inherit from
Node. The differences among node types are discussed later in this chapter.

Manipulating Nodes

Because all relationship pointers are read-only, several methods are available to manipulate nodes.
The most often-used method is appendChild(), which adds a node to the end of the childNodes
list. Doing so updates all of the relationship pointers in the newly added node, the parent node, and
the previous last child in the childNodes list. When complete, appendChild() returns the newly
added node. Here is an example:

var returnedNode = someNode.appendChild(newNode);
alert(returnedNode == newNode); //true
alert(someNode.lastChild == newNode); //true

If the node passed into appendChild() is already part of the document, it is removed from its previous
location and placed at the new location. Even though the DOM tree is connected by a series of pointers,
no DOM node may exist in more than one location in a document. So if you call appendChild()and
pass in the fi rst child of a parent, as the following example shows, it will end up as the last child:

//assume multiple children for someNode
var returnedNode = someNode.appendChild(someNode.firstChild);
alert(returnedNode == someNode.firstChild); //false
alert(returnedNode == someNode.lastChild); //true

When a node needs to be placed in a specifi c location within the childNodes list, instead of just
at the end, the insertBefore() method may be used. The insertBefore() method accepts two
arguments: the node to insert and a reference node. The node to insert becomes the previous sibling
of the reference node and is ultimately returned by the method. If the reference node is null, then
insertBefore() acts the same as appendChild(), as this example shows:

//insert as last child
returnedNode = someNode.insertBefore(newNode, null);
alert(newNode == someNode.lastChild); //true

//insert as the new first child
returnedNode = someNode.insertBefore(newNode, someNode.firstChild);
alert(returnedNode == newNode); //true
alert(newNode == someNode.firstChild); //true

//insert before last child
returnedNode = someNode.insertBefore(newNode, someNode.lastChild);
alert(newNode == someNode.childNodes[someNode.childNodes.length-2]); //true

c10.indd 314c10.indd 314 12/8/11 10:17:36 AM12/8/11 10:17:36 AM

Hierarchy of Nodes ❘ 315

Both appendChild() and insertBefore() insert nodes without removing any. The
replaceChild() method accepts two arguments: the node to insert and the node to replace. The
node to replace is returned by the function and is removed from the document tree completely while
the inserted node takes its place. Here is an example:

//replace first child
var returnedNode = someNode.replaceChild(newNode, someNode.firstChild);

//replace last child
returnedNode = someNode.replaceChild(newNode, someNode.lastChild);

When a node is inserted using replaceChild(), all of its relationship pointers are duplicated
from the node it is replacing. Even though the replaced node is technically still owned by the same
document, it no longer has a specifi c location in the document.

To remove a node without replacing it, you can use the removeChild() method. This method
accepts a single argument, which is the node to remove. The removed node is then returned as the
function value, as this example shows:

//remove first child
var formerFirstChild = someNode.removeChild(someNode.firstChild);

//remove last child
var formerLastChild = someNode.removeChild(someNode.lastChild);

As with replaceChild(), a node removed via removeChild() is still owned by the document but
doesn’t have a specifi c location in the document.

All four of these methods work on the immediate children of a specifi c node, meaning that to use
them you must know the immediate parent node (which is accessible via the previously mentioned
parentNode property). Not all node types can have child nodes, and these methods will throw
errors if you attempt to use them on nodes that don’t support children.

Other Methods

Two other methods are shared by all node types. The fi rst is cloneNode(), which creates an exact
clone of the node on which it’s called. The cloneNode() method accepts a single Boolean argument
indicating whether to do a deep copy. When the argument is true, a deep copy is used, cloning the
node and its entire subtree; when false, only the initial node is cloned. The cloned node that is
returned is owned by the document but has no parent node assigned. As such, the cloned node
is an orphan and doesn’t exist in the document until added via appendChild(), insertBefore(),
or replaceChild(). For example, consider the following HTML:

 item 1
 item 2
 item 3

c10.indd 315c10.indd 315 12/8/11 10:17:42 AM12/8/11 10:17:42 AM

316 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

If a reference to this element is stored in a variable named myList, the following code shows
the two modes of the cloneNode() method:

var deepList = myList.cloneNode(true);
alert(deepList.childNodes.length); //3 (IE < 9) or 7 (others)

var shallowList = myList.cloneNode(false);
alert(shallowList.childNodes.length); //0

In this example, deepList is fi lled with a deep copy of myList. This means deepList has three list
items, each of which contains text. The variable shallowList contains a shallow copy of myList,
so it has no child nodes. The difference in deepList.childNodes.length is due to the different
ways that white space is handled in Internet Explorer 8 and earlier as compared to other browsers.
Internet Explorer prior to version 9 did not create nodes for white space.

The cloneNode() method doesn’t copy JavaScript properties that you add to
DOM nodes, such as event handlers. This method copies only attributes and,
optionally, child nodes. Everything else is lost. Internet Explorer has a bug
where event handlers are also cloned, so removing event handlers before cloning
is recommended.

The last remaining method is normalize(). Its sole job is to deal with text nodes in a document
subtree. Because of parser implementations or DOM manipulations, it’s possible to end up with text
nodes that contain no text or text nodes that are siblings. When normalize() is called on a node,
that node’s descendants are searched for both of these circumstances. If an empty text node is
found, it is removed; if text nodes are immediate siblings, they are joined into a single text node.
This method is discussed further later on in this chapter.

The Document Type

JavaScript represents document nodes via the Document type. In browsers, the document object
is an instance of HTMLDocument (which inherits from Document) and represents the entire HTML
page. The document object is a property of window and so is accessible globally. A Document node
has the following characteristics:

nodeType is 9.

nodeName is “#document”.

nodeValue is null.

parentNode is null.

ownerDocument is null.

Child nodes may be a DocumentType (maximum of one), Element (maximum of one),
ProcessingInstruction, or Comment.

➤

➤

➤

➤

➤

➤

c10.indd 316c10.indd 316 12/8/11 10:17:42 AM12/8/11 10:17:42 AM

Hierarchy of Nodes ❘ 317

The Document type can represent HTML pages or other XML-based documents, though the most
common use is through an instance of HTMLDocument through the document object. The document
object can be used to get information about the page and to manipulate both its appearance and the
underlying structure.

The Document type constructor and prototype are accessible in script for Firefox,
Safari, Chrome, and Opera. Internet Explorer through version 9 still does not
expose Document. The HTMLDocument type constructor and prototype are
accessible in all browsers, including Internet Explorer beginning with version 8.

Document Children

Though the DOM specifi cation states that the children of a Document node can be a DocumentType,
Element, ProcessingInstruction, or Comment, there are two built-in shortcuts to child nodes. The
fi rst is the documentElement property, which always points to the <html> element in an HTML page.
The document element is always represented in the childNodes list as well, but the documentElement
property gives faster and more direct access to that element. Consider the following simple page:

<html>
 <body>

 </body>
</html>

When this page is parsed by a browser, the document has only one child node, which is the <html>
element. This element is accessible from both documentElement and the childNodes list, as shown here:

var html = document.documentElement; //get reference to <html>
alert(html === document.childNodes[0]); //true
alert(html === document.firstChild); //true

This example shows that the values of documentElement, firstChild, and childNodes[0] are all
the same — all three point to the <html> element.

As an instance of HTMLDocument, the document object also has a body property that points to the
<body> element directly. Since this is the element most often used by developers, document.body
tends to be used quite frequently in JavaScript, as this example shows:

var body = document.body; //get reference to <body>

Both document.documentElement and document.body are supported in all major browsers.

Another possible child node of a Document is a DocumentType. The <!DOCTYPE> tag is considered to
be a separate entity from other parts of the document, and its information is accessible through the
doctype property (document.doctype in browsers), as shown here:

var doctype = document.doctype; //get reference to <!DOCTYPE>

c10.indd 317c10.indd 317 12/8/11 10:17:48 AM12/8/11 10:17:48 AM

318 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

Browser support for document.doctype varies considerably, as described here:

Internet Explorer 8 and earlier — A document type, if present, is misinterpreted as a
comment and treated as a Comment node. document.doctype is always null.

Internet Explorer 9+ and Firefox — A document type, if present, is the fi rst child node of
the document. document.doctype is a DocumentType node, and the same node is accessible
via document.firstChild or document.childNodes[0].

Safari, Chrome, and Opera — A document type, if present, is parsed but is not considered a
child node of the document. document.doctype is a DocumentType node, but the node does
not appear in document.childNodes.

Because of the inconsistent browser support for document.doctype, it is of limited usefulness.

Comments that appear outside of the <html> element are, technically, child nodes of the document.
Once again, browser support varies greatly as to whether these comments will be recognized and
represented appropriately. Consider the following HTML page:

<!-- first comment -->
<html>
 <body>

 </body>
</html>
<!-- second comment -->

This page seems to have three child nodes: a comment, the <html> element, and another comment.
Logically, you would expect document.childNodes to have three items corresponding to what
appears in the code. In practice, however, browsers handle comments outside of the <html> element
in the following very different ways:

Internet Explorer 8 and earlier, Safari 3.1 and later, Opera, and Chrome create a comment
node for the fi rst comment but not for the second. The fi rst comment becomes the fi rst node
in document.childNodes.

Internet Explorer 9 and later create a comment node for the fi rst comment as part of
document.childNodes. They also create a comment node for the second comment as part
of document.body.childNodes.

Firefox and Safari prior to version 3.1 ignore both comments.

Once again, the inconsistent behavior makes accessing comments outside the <html> element
essentially useless.

For the most part, the appendChild(), removeChild(), and replaceChild() methods aren’t used
on document, since the document type (if present) is read-only and there can be only one element
child node (which is already present).

Document Information

The document object, as an instance of HTMLDocument, has several additional properties that
standard Document objects do not have. These properties provide information about the web page

➤

➤

➤

➤

➤

➤

c10.indd 318c10.indd 318 12/8/11 10:17:53 AM12/8/11 10:17:53 AM

Hierarchy of Nodes ❘ 319

that is loaded. The fi rst such property is title, which contains the text in the <title> element and
is displayed in the title bar or tab of the browser window. This property can be used to retrieve the
current page title and to change the page title such that the changes are refl ected in the browser title
bar. Changing the value of the title property does not change the <title> element at all. Here is
an example:

//get the document title
var originalTitle = document.title;

//set the document title
document.title = “New page title”;

The next three properties are all related to the request for the web page: URL, domain, and
referrer. The URL property contains the complete URL of the page (the URL in the address bar),
the domain property contains just the domain name of the page, and the referrer property gives the
URL of the page that linked to this page. The referrer property may be an empty string if there
is no referrer to the page. All of this information is available in the HTTP header of the request and is
simply made available in JavaScript via these properties, as shown in the following example:

//get the complete URL
var url = document.URL;

//get the domain
var domain = document.domain;

//get the referrer
var referrer = document.referrer;

The URL and domain properties are related. For example, if document.URL is http://www.wrox
.com/WileyCDA/, then document.domain will be www.wrox.com.

Of these three properties, the domain property is the only one that can be set. There are some
restrictions as to what the value of domain can be set to because of security issues. If the URL
contains a subdomain, such as p2p.wrox.com, the domain may be set only to “wrox.com” (the same
is true when the URL contains “www,” such as www.wrox.com). The property can never be set to a
domain that the URL doesn’t contain, as this example demonstrates:

//page from p2p.wrox.com

document.domain = “wrox.com”; //succeeds

document.domain = “nczonline.net”; //error!

The ability to set document.domain is useful when there is a frame or iframe on the page from a
different subdomain. Pages from different subdomains can’t communicate with one another via
JavaScript because of cross-domain security restrictions. By setting document.domain in each page
to the same value, the pages can access JavaScript objects from each other. For example, if
a page is loaded from www.wrox.com and it has an iframe with a page loaded from p2p.wrox.com,
each page’s document.domain string will be different, and the outer page and the inner page are

c10.indd 319c10.indd 319 12/8/11 10:17:54 AM12/8/11 10:17:54 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

320 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

restricted from accessing each other’s JavaScript objects. If the document.domain value in each page
is set to “wrox.com”, the pages can then communicate.

A further restriction in the browser disallows tightening of the domain property once it has been
loosened. This means you cannot set document.domain to “wrox.com” and then try to set it back to
“p2p.wrox.com”, because the latter would cause an error, as shown here:

//page from p2p.wrox.com

document.domain = “wrox.com”; //loosen - succeeds

document.domain = “p2p.wrox.com”; //tighten - error!

This restriction exists in all browsers but was implemented in Internet Explorer beginning with
version 8.

Locating Elements

Perhaps the most common DOM activity is to retrieve references to a specifi c element or sets of
elements to perform certain operations. This capability is provided via a number of methods on the
document object. The Document type provides two methods to this end: getElementById() and
getElementsByTagName().

The getElementById() method accepts a single argument — the ID of an element to retrieve — and
returns the element if found, or null if an element with that ID doesn’t exist. The ID must be an
exact match, including character case, to the id attribute of an element on the page. Consider the
following element:

<div id=”myDiv”>Some text</div>

This element can be retrieved using the following code:

var div = document.getElementById(“myDiv”); //retrieve reference to the <div>

The following code, however, would return null in all browsers except Internet Explorer 7 and earlier:

var div = document.getElementById(“mydiv”); //won’t work (except in IE <= 7)

Internet Explorer prior to version 8 considered IDs to be case-insensitive, so “myDiv” and “mydiv”
are considered to be the same element ID.

If there is more than one element with the same ID in a page, getElementById() returns the
element that appears fi rst in the document. Internet Explorer 7 and earlier add an interesting quirk
to this, also returning form elements (<input>, <textarea>, <button>, and <select>) that have a
name attribute matching the given ID. If one of these form elements has a name attribute equal to the
specifi ed ID, and it appears before an element with the given ID in the document, Internet Explorer
returns the form element. Here’s an example:

<input type=”text” name=”myElement” value=”Text field”>
<div id=”myElement”>A div</div>

c10.indd 320c10.indd 320 12/8/11 10:17:54 AM12/8/11 10:17:54 AM

Hierarchy of Nodes ❘ 321

Using this HTML, a call to document.getElementById() in Internet Explorer 7 returns a reference
to the <input> element, whereas the same call returns a reference to the <div> element in all other
browsers. To avoid this issue in Internet Explorer, you should ensure that form fi elds don’t have
name attributes that are equivalent to other element IDs.

The getElementsByTagName() method is another commonly used method for retrieving element
references. It accepts a single argument — the tag name of the elements to retrieve — and returns
a NodeList containing zero or more elements. In HTML documents, this method returns an
HTMLCollection object, which is very similar to a NodeList in that it is considered a “live”
collection. For example, the following code retrieves all elements in the page and returns an
HTMLCollection:

var images = document.getElementsByTagName(“img”);

This code stores an HTMLCollection object in the images variable. As with NodeList objects, items
in HTMLCollection objects can be accessed using bracket notation or the item() method. The number
of elements in the object can be retrieved via the length property, as this example demonstrates:

alert(images.length); //output the number of images
alert(images[0].src); //output the src attribute of the first image
alert(images.item(0).src); //output the src attribute of the first image

The HTMLCollection object has an additional method, namedItem(), that lets you reference an
item in the collection via its name attribute. For example, suppose you had the following
element in a page:

A reference to this element can be retrieved from the images variable like this:

var myImage = images.namedItem(“myImage”);

In this way, an HTMLCollection gives you access to named items in addition to indexed items,
making it easier to get exactly the elements you want. You can also access named items by using
bracket notation, as shown in the following example:

var myImage = images[“myImage”];

For HTMLCollection objects, bracket notation can be used with either numeric or string indices.
Behind the scenes, a numeric index calls item() and a string index calls namedItem().

To retrieve all elements in the document, pass in “*” to getElementsByTagName(). The asterisk
is generally understood to mean “all” in JavaScript and Cascading Style Sheets (CSS). Here’s an
example:

var allElements = document.getElementsByTagName(“*”);

This single line of code returns an HTMLCollection containing all of the elements in the order in
which they appear. So the fi rst item is the <html> element, the second is the <head> element, and

c10.indd 321c10.indd 321 12/8/11 10:17:55 AM12/8/11 10:17:55 AM

322 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

so on. The Internet Explorer 8 and earlier implementation of comments actually makes them into
elements, so the browser will return comment nodes when getElementsByTagName(“*”) is called.
Internet Explorer 9 does not treat comments as elements and so does not return them.

Even though the specifi cation states that tag names are case-sensitive, the
getElementsByTagName() method is case-insensitive for maximum compatibility
with existing HTML pages. When used in XML pages, including XHTML,
getElementsByTagName() switches to case-sensitive mode.

A third method, which is defi ned on the HTMLDocument type only, is getElementsByName().
As its name suggests, this method returns all elements that have a given name attribute. The
getElementsByName() method is most often used with radio buttons, all of which must have the
same name to ensure the correct value gets sent to the server, as the following example shows:

<fieldset>
 <legend>Which color do you prefer?</legend>

 <input type=”radio” value=”red” name=”color” id=”colorRed”>
 <label for=”colorRed”>Red</label>
 <input type=”radio” value=”green” name=”color” id=”colorGreen”>
 <label for=”colorGreen”>Green</label>
 <input type=”radio” value=”blue” name=”color” id=”colorBlue”>
 <label for=”colorBlue”>Blue</label>

</fieldset>

In this code, the radio buttons all have a name attribute of “color” even though their IDs are
different. The IDs allow the <label> elements to be applied to the radio buttons, and the name
attribute ensures that only one of the three values will be sent to the server. These radio buttons can
all then be retrieved using the following line of code:

var radios = document.getElementsByName(“color”);

As with getElementsByTagName(), the getElementsByName() method returns an
HTMLCollection. In this context, however, the namedItem() method always retrieves the fi rst item
(since all items have the same name).

Special Collections

The document object has several special collections. Each of these collections is an HTMLCollection
object and provides faster access to common parts of the document, as described here:

document.anchors — Contains all <a> elements with a name attribute in the document.

document.applets — Contains all <applet> elements in the document. This collection is
deprecated, because the <applet> element is no longer recommended for use.

document.forms — Contains all <form> elements in the document. The same as document
.getElementsByTagName(“form”).

➤

➤

➤

c10.indd 322c10.indd 322 12/8/11 10:17:55 AM12/8/11 10:17:55 AM

Hierarchy of Nodes ❘ 323

document.images — Contains all elements in the document. The same as document
.getElementsByTagName(“img”).

document.links — Contains all <a> elements with an href attribute in the document.

These special collections are always available on HTMLDocument objects and, like all
HTMLCollection objects, are constantly updated to match the contents of the current document.

DOM Conformance Detection

Because there are multiple levels and multiple parts of the DOM, it became necessary to
determine exactly what parts of the DOM a browser has implemented. The document
.implementation property is an object containing information and functionality tied directly to
the browser’s implementation of the DOM. DOM Level 1 specifi es only one method on document
.implementation, which is hasFeature(). The hasFeature() method accepts two arguments: the
name and version of the DOM feature to check for. If the browser supports the named feature and
version, this method returns true, as with this example:

var hasXmlDom = document.implementation.hasFeature(“XML”, “1.0”);

The various values that can be tested are listed in the following table.

FEATURE SUPPORTED VERSIONS DESCRIPTION

Core 1.0, 2.0, 3.0 Basic DOM that spells out the use of a hierarchical

tree to represent documents

XML 1.0, 2.0, 3.0 XML extension of the Core that adds support for

CDATA sections, processing instructions, and entities

HTML 1.0, 2.0 HTML extension of XML that adds support for HTML-

specifi c elements and entities

Views 2.0 Accomplishes formatting of a document based on

certain styles

StyleSheets 2.0 Relates style sheets to documents

CSS 2.0 Support for Cascading Style Sheets Level 1

CSS2 2.0 Support for Cascading Style Sheets Level 2

Events 2.0, 3.0 Generic DOM events

UIEvents 2.0, 3.0 User interface events

MouseEvents 2.0, 3.0 Events caused by the mouse (click, mouseover, and so on)

MutationEvents 2.0, 3.0 Events fi red when the DOM tree is changed

HTMLEvents 2.0 HTML 4.01 events

➤

➤

continues

c10.indd 323c10.indd 323 12/8/11 10:18:01 AM12/8/11 10:18:01 AM

324 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

FEATURE SUPPORTED VERSIONS DESCRIPTION

Range 2.0 Objects and methods for manipulating a range in a

DOM tree

Traversal 2.0 Methods for traversing a DOM tree

LS 3.0 Loading and saving between fi les and DOM trees

synchronously

LS-Async 3.0 Loading and saving between fi les and DOM trees

asynchronously

Validation 3.0 Methods to modify a DOM tree and still make it valid

Although it is a nice convenience, the drawback of using hasFeature() is that the implementer gets
to decide if the implementation is indeed conformant with the various parts of the DOM specifi cation.
It’s very easy to make this method return true for any and all values, but that doesn’t necessarily
mean that the implementation conforms to all the specifi cations it claims to. Safari 2.x and earlier, for
example, return true for some features that aren’t fully implemented. In most cases, it’s a good idea to
use capability detection in addition to hasFeature() before using specifi c parts of the DOM.

Document Writing

One of the older capabilities of the document object is the ability to write to the output stream
of a web page. This capability comes in the form of four methods: write(), writeln(), open(),
and close(). The write() and writeln() methods each accept a string argument to write to
the output stream. write() simply adds the text as is, whereas writeln() appends a new-line
character (\n) to the end of the string. These two methods can be used as a page is being loaded to
dynamically add content to the page, as shown in the following example:

<html>
<head>
 <title>document.write() Example</title>
</head>
<body>
 <p>The current date and time is:
 <script type=”text/javascript”>
 document.write(“” + (new Date()).toString() + “”);
 </script>
 </p>
</body>
</html>

DocumentWriteExample01.htm

This example outputs the current date and time as the page is being loaded. The date is enclosed by
a element, which is treated the same as if it were included in the HTML portion of the

 (continued)

c10.indd 324c10.indd 324 12/8/11 10:18:01 AM12/8/11 10:18:01 AM

Hierarchy of Nodes ❘ 325

page, meaning that a DOM element is created and can later be accessed. Any HTML that is output
via write() or writeln() is treated this way.

The write() and writeln() methods are often used to dynamically include external resources
such as JavaScript fi les. When including JavaScript fi les, you must be sure not to include the string
“</script>” directly, as the following example demonstrates, because it will be interpreted as the
end of a script block and the rest of the code won’t execute.

<html>
<head>
 <title>document.write() Example</title>
</head>
<body>
 <script type=”text/javascript”>
 document.write(“<script type=\”text/javascript\” src=\”file.js\”>” +
 “</script>”);
 </script>
</body>
</html>

DocumentWriteExample02.htm

Even though this fi le looks correct, the closing “</script>” string is interpreted as matching
the outermost <script> tag, meaning that the text “); will appear on the page. To avoid this, you
simply need to change the string, as mentioned in Chapter 2 and shown here:

<html>
<head>
 <title>document.write() Example</title>
</head>
<body>
 <script type=”text/javascript”>
 document.write(“<script type=\”text/javascript\” src=\”file.js\”>” +
 “<\/script>”);
 </script>
</body>
</html>

DocumentWriteExample03.htm

The string “<\/script>” no longer registers as a closing tag for the outermost <script> tag, so
there is no extra content output to the page.

The previous examples use document.write() to output content directly into the page as it’s being
rendered. If document.write() is called after the page has been completely loaded, the content
overwrites the entire page, as shown in the following example:

<html>
<head>
 <title>document.write() Example</title>
</head>

c10.indd 325c10.indd 325 12/8/11 10:18:02 AM12/8/11 10:18:02 AM

326 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

<body>
 <p>This is some content that you won’t get to see because it will be
 overwritten.</p>
 <script type=”text/javascript”>
 window.onload = function(){
 document.write(“Hello world!”);
 };
 </script>
</body>
</html>

DocumentWriteExample04.htm

In this example, the window.onload event handler is used to delay the execution of the function
until the page is completely loaded (events are discussed in Chapter 13). When that happens, the
string “Hello world!” overwrites the entire page content.

The open() and close() methods are used to open and close the web page output stream,
respectively. Neither method is required to be used when write() or writeln() is used during the
course of page loading.

Document writing is not supported in strict XHTML documents. For pages that
are served with the application/xml+xhtml content type, these methods will
not work.

The Element Type

Next to the Document type, the Element type is most often used in web programming. The Element
type represents an XML or HTML element, providing access to information such as its tag name,
children, and attributes. An Element node has the following characteristics:

nodeType is 1.

nodeName is the element’s tag name.

nodeValue is null.

parentNode may be a Document or Element.

Child nodes may be Element, Text, Comment, ProcessingInstruction, CDATASection, or
EntityReference.

An element’s tag name is accessed via the nodeName property or by using the tagName property;
both properties return the same value (the latter is typically used for clarity). Consider the following
element:

<div id=”myDiv”></div>

➤

➤

➤

➤

➤

c10.indd 326c10.indd 326 12/8/11 10:18:03 AM12/8/11 10:18:03 AM

Hierarchy of Nodes ❘ 327

This element can be retrieved and its tag name accessed in the following way:

var div = document.getElementById(“myDiv”);
alert(div.tagName); //”DIV”
alert(div.tagName == div.nodeName); //true

The element in question has a tag name of div and an ID of “myDiv”. Note, however, that div
.tagName actually outputs “DIV” instead of “div”. When used with HTML, the tag name is always
represented in all uppercase; when used with XML (including XHTML), the tag name always
matches the case of the source code. If you aren’t sure whether your script will be on an HTML
or XML document, it’s best to convert tag names to a common case before comparison, as this
example shows:

if (element.tagName == “div”){ //AVOID! Error prone!
 //do something here
}

if (element.tagName.toLowerCase() == “div”){ //Preferred - works in all documents
 //do something here
}

This example shows two comparisons against a tagName property. The fi rst is quite error prone
because it won’t work in HTML documents. The second approach, converting the tag name to all
lowercase, is preferred because it will work for both HTML and XML documents.

The Element type constructor and prototype are accessible in script in all
modern browsers, including Internet Explorer as of version 8. Older browsers,
such as Safari prior to version 2 and Opera prior to version 8, do not expose the
Element type constructor.

HTML Elements

All HTML elements are represented by the HTMLElement type, either directly or through subtyping.
The HTMLElement inherits directly from Element and adds several properties. Each property
represents one of the following standard attributes that are available on every HTML element:

id — A unique identifi er for the element in the document.

title — Additional information about the element, typically represented as a tooltip.

lang — The language code for the contents of the element (rarely used).

dir — The direction of the language, “ltr” (left-to-right) or “rtl” (right-to-left); also
rarely used.

className — The equivalent of the class attribute, which is used to specify CSS classes
on an element. The property could not be named class because class is an ECMAScript
reserved word (see Chapter 1 for information about reserved words).

➤

➤

➤

➤

➤

c10.indd 327c10.indd 327 12/8/11 10:18:09 AM12/8/11 10:18:09 AM

328 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

Each of these properties can be used both to retrieve the corresponding attribute value and to
change the value. Consider the following HTML element:

<div id=”myDiv” class=”bd” title=”Body text” lang=”en” dir=”ltr”></div>

HTMLElementsExample01.htm

All of the information specifi ed by this element may be retrieved using the following JavaScript code:

var div = document.getElementById(“myDiv”);
alert(div.id); //”myDiv”
alert(div.className); //”bd”
alert(div.title); //”Body text”
alert(div.lang); //”en”
alert(div.dir); //”ltr”

It’s also possible to use the following code to change each of the attributes by assigning new values
to the properties:

div.id = “someOtherId”;
div.className = “ft”;
div.title = “Some other text”;
div.lang = “fr”;
div.dir =”rtl”;

HTMLElementsExample01.htm

Not all of the properties effect changes on the page when overwritten. Changes to id or lang will
be transparent to the user (assuming no CSS styles are based on these values), whereas changes to
title will be apparent only when the mouse is moved over the element. Changes to dir will cause
the text on the page to be aligned to either the left or the right as soon as the property is written.
Changes to className may appear immediately if the class has different CSS style information than
the previous one.

As mentioned previously, all HTML elements are represented by an instance of HTMLElement or
a more specifi c subtype. The following table lists each HTML element and its associated type
(italicized elements are deprecated). Note that these types are accessible in Opera, Safari, Chrome,
and Firefox via JavaScript but not in Internet Explorer prior to version 8.

ELEMENT TYPE ELEMENT TYPE

A HTMLAnchorElement INPUT HTMLInputElement

ABBR HTMLElement INS HTMLModElement

ACRONYM HTMLElement ISINDEX HTMLIsIndexElement

ADDRESS HTMLElement KBD HTMLElement

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 328c10.indd 328 12/8/11 10:18:14 AM12/8/11 10:18:14 AM

Hierarchy of Nodes ❘ 329

ELEMENT TYPE ELEMENT TYPE

APPLET HTMLAppletElement LABEL HTMLLabelElement

AREA HTMLAreaElement LEGEND HTMLLegendElement

B HTMLElement LI HTMLLIElement

BASE HTMLBaseElement LINK HTMLLinkElement

BASEFONT HTMLBaseFontElement MAP HTMLMapElement

BDO HTMLElement MENU HTMLMenuElement

BIG HTMLElement META HTMLMetaElement

BLOCKQUOTE HTMLQuoteElement NOFRAMES HTMLElement

BODY HTMLBodyElement NOSCRIPT HTMLElement

BR HTMLBRElement OBJECT HTMLObjectElement

BUTTON HTMLButtonElement OL HTMLOListElement

CAPTION HTMLTableCaptionElement OPTGROUP HTMLOptGroupElement

CENTER HTMLElement OPTION HTMLOptionElement

CITE HTMLElement P HTMLParagraphElement

CODE HTMLElement PARAM HTMLParamElement

COL HTMLTableColElement PRE HTMLPreElement

COLGROUP HTMLTableColElement Q HTMLQuoteElement

DD HTMLElement S HTMLElement

DEL HTMLModElement SAMP HTMLElement

DFN HTMLElement SCRIPT HTMLScriptElement

DIR HTMLDirectoryElement SELECT HTMLSelectElement

DIV HTMLDivElement SMALL HTMLElement

DL HTMLDListElement SPAN HTMLElement

DT HTMLElement STRIKE HTMLElement

EM HTMLElement STRONG HTMLElement

FIELDSET HTMLFieldSetElement STYLE HTMLStyleElement

FONT HTMLFontElement SUB HTMLElement

continues

c10.indd 329c10.indd 329 12/8/11 10:18:14 AM12/8/11 10:18:14 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

330 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

ELEMENT TYPE ELEMENT TYPE

FORM HTMLFormElement SUP HTMLElement

FRAME HTMLFrameElement TABLE HTMLTableElement

FRAMESET HTMLFrameSetElement TBODY HTMLTableSectionElement

H1 HTMLHeadingElement TD HTMLTableCellElement

H2 HTMLHeadingElement TEXTAREA HTMLTextAreaElement

H3 HTMLHeadingElement TFOOT HTMLTableSectionElement

H4 HTMLHeadingElement TH HTMLTableCellElement

H5 HTMLHeadingElement THEAD HTMLTableSectionElement

H6 HTMLHeadingElement TITLE HTMLTitleElement

HEAD HTMLHeadElement TR HTMLTableRowElement

HR HTMLHRElement TT HTMLElement

HTML HTMLHtmlElement U HTMLElement

I HTMLElement UL HTMLUListElement

IFRAME HTMLIFrameElement VAR HTMLElement

IMG HTMLImageElement

Each of these types has attributes and methods associated with it. Many of these types are discussed
throughout this book.

Getting Attributes

Each element may have zero or more attributes, which are typically used to give extra information
about the particular element or its contents. The three primary DOM methods for working with
attributes are getAttribute(), setAttribute(), and removeAttribute(). These methods are
intended to work on any attribute, including those defi ned as properties on the HTMLElement type.
Here’s an example:

var div = document.getElementById(“myDiv”);
alert(div.getAttribute(“id”)); //”myDiv”
alert(div.getAttribute(“class”)); //”bd”
alert(div.getAttribute(“title”)); //”Body text”
alert(div.getAttribute(“lang”)); //”en”
alert(div.getAttribute(“dir”)); //”ltr”

Note that the attribute name passed into getAttribute() is exactly the same as the actual attribute
name, so you pass in “class” to get the value of the class attribute (not className, which is

 (continued)

c10.indd 330c10.indd 330 12/8/11 10:18:15 AM12/8/11 10:18:15 AM

Hierarchy of Nodes ❘ 331

necessary when the attribute is accessed as an object property). If the attribute with the given name
doesn’t exist, getAttribute() always returns null.

The getAttribute() method can also retrieve the value of custom attributes that aren’t part of the
formal HTML language. Consider the following element:

<div id=”myDiv” my_special_attribute=”hello!”></div>

In this element, a custom attribute named my_special_attribute is defi ned to have a value
of “hello!”. This value can be retrieved using getAttribute() just like any other attribute, as
shown here:

var value = div.getAttribute(“my_special_attribute”);

Note that attribute names are case-insensitive, so “ID” and “id” are considered the same attribute.
Also note that, according to HTML5, custom attributes should be prepended with data- in order to
validate.

All attributes on an element are also accessible as properties of the DOM element object itself.
There are, of course, the fi ve properties defi ned on HTMLElement that map directly to corresponding
attributes, but all recognized (noncustom) attributes get added to the object as properties. Consider
the following element:

<div id=”myDiv” align=”left” my_special_attribute=”hello”></div>

Since id and align are recognized attributes for the <div> element in HTML, they will be
represented by properties on the element object. The my_special_attribute attribute is custom
and so won’t show up as a property on the element in Safari, Opera, Chrome, or Firefox. Internet
Explorer through version 8 creates properties for custom attributes as well, as this example
demonstrates:

alert(div.id); //”myDiv”
alert(div.my_special_attribute); //undefined (except in IE)
alert(div.align); //”left”

ElementAttributesExample02.htm

Two types of attributes have property names that don’t map directly to the same value returned
by getAttribute(). The fi rst attribute is style, which is used to specify stylistic information
about the element using CSS. When accessed via getAttribute(), the style attribute contains
CSS text while accessing it via a property that returns an object. The style property is used to
programmatically access the styling of the element (discussed in Chapter 12) and so does not map
directly to the style attribute.

The second category of attribute that behaves differently is event-handler attributes such as
onclick. When used on an element, the onclick attribute contains JavaScript code, and that code
string is returned when using getAttribute(). When the onclick property is accessed, however,
it returns a JavaScript function (or null if the attribute isn’t specifi ed). This is because onclick and
other event-handling properties are provided such that functions can be assigned to them.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 331c10.indd 331 12/8/11 10:18:16 AM12/8/11 10:18:16 AM

332 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

Because of these differences, developers tend to forego getAttribute() when programming the
DOM in JavaScript and instead use the object properties exclusively. The getAttribute() method
is used primarily to retrieve the value of a custom attribute.

In Internet Explorer versions 7 and earlier, the getAttribute() method for the
style attribute and event-handling attributes such as onclick always return the
same value as if they were accessed via a property. So, getAttribute(“style”)
returns an object and getAttribute(“onclick”) returns a function. Though
fi xed in Internet Explorer 8, this inconsistency is another reason to avoid using
getAttribute() for HTML attributes.

Setting Attributes

The sibling method to getAttribute() is setAttribute(), which accepts two arguments: the
name of the attribute to set and the value to set it to. If the attribute already exists, setAttribute()
replaces its value with the one specifi ed; if the attribute doesn’t exist, setAttribute() creates it and
sets its value. Here is an example:

div.setAttribute(“id”, “someOtherId”);
div.setAttribute(“class”, “ft”);
div.setAttribute(“title”, “Some other text”);
div.setAttribute(“lang”,”fr”);
div.setAttribute(“dir”, “rtl”);

ElementAttributesExample01.htm

The setAttribute() method works with both HTML attributes and custom attributes in the same way.
Attribute names get normalized to lowercase when set using this method, so “ID” ends up as “id”.

Because all attributes are properties, assigning directly to the property can set the attribute values,
as shown here:

div.id = “someOtherId”;
div.align = “left”;

Note that adding a custom property to a DOM element, as the following example shows, does not
automatically make it an attribute of the element:

div.mycolor = “red”;
alert(div.getAttribute(“mycolor”)); //null (except in Internet Explorer)

This example adds a custom property named mycolor and sets its value to “red”. In most
browsers, this property does not automatically become an attribute on the element, so calling
getAttribute() to retrieve an attribute with the same name returns null. In Internet Explorer,
however, custom properties are considered to be attributes of the element and vice versa.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 332c10.indd 332 12/8/11 10:18:17 AM12/8/11 10:18:17 AM

Hierarchy of Nodes ❘ 333

The last method is removeAttribute(), which removes the attribute from the element altogether.
This does more than just clear the attribute’s value; it completely removes the attribute from the
element, as shown here:

div.removeAttribute(“class”);

This method isn’t used very frequently, but it can be useful for specifying exactly which attributes to
include when serializing a DOM element.

Internet Explorer versions 7 and earlier had some abnormal behavior regarding
setAttribute(). Attempting to set the class or style attributes has no effect,
similar to setting an event-handler property using setAttribute(). Even
though these issues were resolved in Internet Explorer 8, it’s always best to set
these attributes using properties.

Internet Explorer versions 6 and earlier don’t support removeAttribute().

The attributes Property

The Element type is the only DOM node type that uses the attributes property. The attributes
property contains a NamedNodeMap, which is a “live” collection similar to a NodeList. Every
attribute on an element is represented by an Attr node, each of which is stored in the NamedNodeMap
object. A NamedNodeMap object has the following methods:

getNamedItem(name) — Returns the node whose nodeName property is equal to name.

removeNamedItem(name) — Removes the node whose nodeName property is equal to name
from the list.

setNamedItem(node) — Adds the node to the list, indexing it by its nodeName property.

item(pos) — Returns the node in the numerical position pos.

Each node in the attributes property is a node whose nodeName is the attribute name and whose
nodeValue is the attribute’s value. To retrieve the id attribute of an element, you can use the
following code:

var id = element.attributes.getNamedItem(“id”).nodeValue;

Following is a shorthand notation for accessing attributes by name using bracket notation:

var id = element.attributes[“id”].nodeValue;

It’s possible to use this notation to set attribute values as well, retrieving the attribute node and then
setting the nodeValue to a new value, as this example shows:

element.attributes[“id”].nodeValue = “someOtherId”;

➤

➤

➤

➤

c10.indd 333c10.indd 333 12/8/11 10:18:22 AM12/8/11 10:18:22 AM

334 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

The removeNamedItem() method functions the same as the removeAttribute() method on the
element — it simply removes the attribute with the given name. The following example shows how
the sole difference is that removeNamedItem() returns the Attr node that represented the attribute:

var oldAttr = element.attributes.removeNamedItem(“id”);

The setNamedItem() is a rarely used method that allows you to add a new attribute to the element
by passing in an attribute node, as shown in this example:

element.attributes.setNamedItem(newAttr);

Generally speaking, because of their simplicity, the getAttribute(), removeAttribute(), and
setAttribute() methods are preferred to using any of the preceding attributes methods.

The one area where the attributes property is useful is to iterate over the attributes on an element.
This is done most often when serializing a DOM structure into an XML or HTML string. The
following code iterates over each attribute on an element and constructs a string in the format
name=“value” name=“value”:

function outputAttributes(element){
 var pairs = new Array(),
 attrName,
 attrValue,
 i,
 len;

 for (i=0, len=element.attributes.length; i < len; i++){
 attrName = element.attributes[i].nodeName;
 attrValue = element.attributes[i].nodeValue;
 pairs.push(attrName + “=\”” + attrValue + “\””);
 }
 return pairs.join(“ “);
}

ElementAttributesExample03.htm

This function uses an array to store the name-value pairs until the end, concatenating them with a
space in between. (This technique is frequently used when serializing into long strings.) Using the
attributes.length property, the for loop iterates over each attribute, outputting the name and value
into a string. Here are a couple of important things to note about the way this code works:

Browsers differ on the order in which they return attributes in the attributes object. The
order in which the attributes appear in the HTML or XML code may not necessarily be
the order in which they appear in the attributes object.

Internet Explorer 7 and earlier versions return all possible attributes on an HTML element,
even if they aren’t specifi ed. This means often returning more than 100 attributes.

The previous function can be augmented to ensure that only specifi ed attributes are included to
provide for the issue with Internet Explorer versions 7 and earlier. Each attribute node has a property
called specified that is set to true when the attribute is specifi ed either as an HTML attribute or
via the setAttribute() method. For Internet Explorer, this value is false for the extra attributes,

➤

➤

c10.indd 334c10.indd 334 12/8/11 10:18:32 AM12/8/11 10:18:32 AM

Hierarchy of Nodes ❘ 335

whereas the extra attributes aren’t present in other browsers (thus, specified is always true for any
attribute node). The code can then be augmented as follows:

function outputAttributes(element){
 var pairs = new Array(),
 attrName,
 attrValue,
 i,
 len;

 for (i=0, len=element.attributes.length; i < len; i++){
 attrName = element.attributes[i].nodeName;
 attrValue = element.attributes[i].nodeValue;
 if (element.attributes[i].specifi ed){
 pairs.push(attrName + “=\”” + attrValue + “\””);
 }
 }
 return pairs.join(“ “);
}

ElementAttributesExample04.htm

This revised function ensures that only specifi ed attributes are returned for Internet Explorer 7
and earlier.

Creating Elements

New elements can be created by using the document.createElement() method. This method
accepts a single argument, which is the tag name of the element to create. In HTML documents, the
tag name is case-insensitive, whereas it is case-sensitive in XML documents (including XHTML). To
create a <div> element, the following code can be used:

var div = document.createElement(“div”);

Using the createElement() method creates a new element and sets its ownerDocument property. At
this point, you can manipulate the element’s attributes, add more children to it, and so on. Consider
the following example:

div.id = “myNewDiv”;
div.className = “box”;

Setting these attributes on the new element assigns information only. Since the element is not part of
the document tree, it doesn’t affect the browser’s display. The element can be added to the document
tree using appendChild(), insertBefore(), or replaceChild(). The following code adds the
newly created element to the document’s <body> element:

document.body.appendChild(div);

CreateElementExample01.htm

c10.indd 335c10.indd 335 12/8/11 10:18:33 AM12/8/11 10:18:33 AM

336 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

Once the element has been added to the document tree, the browser renders it immediately. Any
changes to the element after this point are immediately refl ected by the browser.

Internet Explorer allows an alternate use of createElement(), allowing you to specify a full
element, including attributes, as this example shows:

var div = document.createElement(“<div id=\”myNewDiv\” class=\”box\”></div>”);

This usage is helpful to work around some issues regarding dynamically created elements in Internet
Explorer 7 and earlier. The known issues are as follows:

Dynamically created <iframe> elements can’t have their name attribute set.

Dynamically created <input> elements won’t get reset via the form’s reset() method
(discussed in Chapter 14).

Dynamically created <button> elements with a type attribute of “reset” won’t reset the form.

Dynamically created radio buttons with the same name have no relation to one another.
Radio buttons with the same name are supposed to be different values for the same option,
but dynamically created ones lose this relationship.

Each of these issues can be addressed by specifying the complete HTML for the tag in createElement(),
as follows:

if (client.browser.ie && client.browser.ie <= 7){

 //create iframe with a name
 var iframe = document.createElement(“<iframe name=\”myframe\”></iframe>”);

 //create input element
 var input = document.createElement(“<input type=\”checkbox\”>”);

 //create button
 var button = document.createElement(“<button type=\”reset\”></button>”);

 //create radio buttons
 var radio1 = document.createElement(“<input type=\”radio\” name=\”choice\”” +
 “ value=\”1\”>”);
 var radio2 = document.createElement(“<input type=\”radio\” name=\”choice\”” +
 “ value=\”2\”>”);

}

Just as with the traditional way of using createElement(), using it in this way returns a DOM
element reference that can be added into the document and otherwise augmented. This usage is
recommended only when dealing with one of these specifi c issues in Internet Explorer 7 and earlier,
because it requires browser detection. Note that no other browser supports this usage.

Element Children

Elements may have any number of children and descendants since elements may be children of
elements. The childNodes property contains all of the immediate children of the element, which
may be other elements, text nodes, comments, or processing instructions. There is a signifi cant

➤

➤

➤

➤

c10.indd 336c10.indd 336 12/8/11 10:18:33 AM12/8/11 10:18:33 AM

Hierarchy of Nodes ❘ 337

difference between browsers regarding the identifi cation of these nodes. For example, consider the
following code:

<ul id=”myList”>
 Item 1
 Item 2
 Item 3

When this code is parsed in Internet Explorer 8 and earlier, the element has three child nodes,
one for each of the elements. In all other browsers, the element has seven elements:
three elements and four text nodes representing the white space between elements. If
the white space between elements is removed, as the following example demonstrates, all browsers
return the same number of child nodes:

<ul id=”myList”>Item 1Item 2Item 3

Using this code, all browsers return three child nodes for the element. It’s important to keep these
browser differences in mind when navigating children using the childNodes property. Oftentimes, it’s
necessary to check the nodeType before performing an action, as the following example shows:

for (var i=0, len=element.childNodes.length; i < len; i++){
 if (element.childNodes[i].nodeType == 1){
 //do processing
 }
}

This code loops through each child node of a particular element and performs an operation only if
nodeType is equal to 1 (the element node type identifi ed).

To get child nodes and other descendants with a particular tag name, elements also support the
getElementsByTagName() method. When used on an element, this method works exactly the same
as the document version except that the search is rooted on the element, so only descendants of that
element are returned. In the code earlier in this section, all elements can be retrieved
using the following code:

var ul = document.getElementById(“myList”);
var items = ul.getElementsByTagName(“li”);

Keep in mind that this works because the element has only one level of descendants. If there
were more levels, all elements contained in all levels would be returned.

The Text Type

Text nodes are represented by the Text type and contain plain text that is interpreted literally
and may contain escaped HTML characters but no HTML code. A Text node has the following
characteristics:

nodeType is 3.

nodeName is “#text”.

➤

➤

c10.indd 337c10.indd 337 12/8/11 10:18:34 AM12/8/11 10:18:34 AM

338 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

nodeValue is text contained in the node.

parentNode is an Element.

Child nodes are not supported.

The text contained in a Text node may be accessed via either the nodeValue property or the data
property, both of which contain the same value. Changes to either nodeValue or data are refl ected
in the other as well. The following methods allow for manipulation of the text in the node:

appendData(text) — Appends text to the end of the node.

deleteData(offset, count) — Deletes count number of characters starting at position
offset.

insertData(offset, text) — Inserts text at position offset.

replaceData(offset, count, text) — Replaces the text starting at offset through offset +
count with text.

splitText(offset) — Splits the text node into two text nodes separated at position offset.

substringData(offset, count) — Extracts a string from the text beginning at position offset
and continuing until offset + count.

In addition to these methods, the length property returns the number of characters in the node.
This value is the same as using nodeValue.length or data.length.

By default, every element that may contain content will have at most one text node when content is
present. Here is an example:

<!-- no content, so no text node -->
<div></div>

<!-- white space content, so one text node -->
<div> </div>

<!-- content, so one text node -->
<div>Hello World!</div>

The fi rst <div> element in this code has no content, so there is no text node. Any content between the
opening and closing tags means that a text node must be created, so the second <div> element has a
single text node as a child even though its content is white space. The text node’s nodeValue is a single
space. The third <div> also has a single text node whose nodeValue is “Hello World!”. The following
code lets you access this node:

var textNode = div.firstChild; //or div.childNodes[0]

Once a reference to the text node is retrieved, it can be changed like this:

div.firstChild.nodeValue = “Some other message”;

TextNodeExample01.htm

➤

➤

➤

➤

➤

➤

➤

➤

➤

c10.indd 338c10.indd 338 12/8/11 10:18:34 AM12/8/11 10:18:34 AM

Hierarchy of Nodes ❘ 339

As long as the node is currently in the document tree, the changes to the text node will be refl ected
immediately. Another note about changing the value of a text node is that the string is HTML- or
XML-encoded (depending on the type of document), meaning that any less-than symbols, greater-
than symbols, or quotation marks are escaped, as shown in this example:

//outputs as “Some other message”
div.firstChild.nodeValue = “Some other message”;

TextNodeExample02.htm

This is an effective way of HTML-encoding a string before inserting it into the DOM document.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The Text type constructor and prototype are accessible in script in Internet
Explorer 8, Firefox, Safari, Chrome, and Opera.

Creating Text Nodes

New text nodes can be created using the document.createTextNode() method, which accepts a
single argument — the text to be inserted into the node. As with setting the value of an existing text
node, the text will be HTML- or XML-encoded, as shown in this example:

var textNode = document.createTextNode(“Hello world!”);

When a new text node is created, its ownerDocument property is set, but it does not appear in the
browser window until it is added to a node in the document tree. The following code creates a new
<div> element and adds a message to it:

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

document.body.appendChild(element);

TextNodeExample03.htm

This example creates a new <div> element and assigns it a class of “message”. Then a text node
is created and added to that element. The last step is to add the element to the document’s body,
which makes both the element and the text node appear in the browser.

c10.indd 339c10.indd 339 12/8/11 10:18:35 AM12/8/11 10:18:35 AM

340 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

Typically elements have only one text node as a child. However, it is possible to have multiple text
nodes as children, as this example demonstrates:

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

var anotherTextNode = document.createTextNode(“Yippee!”);
element.appendChild(anotherTextNode);

document.body.appendChild(element);

TextNodeExample04.htm

When a text node is added as a sibling of another text node, the text in those nodes is displayed
without any space between them.

Normalizing Text Nodes

Sibling text nodes can be confusing in DOM documents since there is no simple text string that
can’t be represented in a single text node. Still, it is not uncommon to come across sibling text
nodes in DOM documents, so there is a method to join sibling text nodes together. This method is
called normalize(), and it exists on the Node type (and thus is available on all node types). When
normalize() is called on a parent of two or more text nodes, those nodes are merged into one text
node whose nodeValue is equal to the concatenation of the nodeValue properties of each text node.
Here’s an example:

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

var anotherTextNode = document.createTextNode(“Yippee!”);
element.appendChild(anotherTextNode);

document.body.appendChild(element);

alert(element.childNodes.length); //2

element.normalize();
alert(element.childNodes.length); //1
alert(element.fi rstChild.nodeValue); //”Hello world!Yippee!”

TextNodeExample05.htm

When the browser parses a document, it will never create sibling text nodes. Sibling text nodes can
appear only by programmatic DOM manipulation.

c10.indd 340c10.indd 340 12/8/11 10:18:41 AM12/8/11 10:18:41 AM

Hierarchy of Nodes ❘ 341

Splitting Text Nodes

The Text type has a method that does the opposite of normalize(): the splitText() method splits
a text node into two text nodes, separating the nodeValue at a given offset. The original text node
contains the text up to the specifi ed offset, and the new text node contains the rest of the text. The
method returns the new text node, which has the same parentNode as the original. Consider
the following example:

var element = document.createElement(“div”);
element.className = “message”;

var textNode = document.createTextNode(“Hello world!”);
element.appendChild(textNode);

document.body.appendChild(element);

var newNode = element.fi rstChild.splitText(5);
alert(element.fi rstChild.nodeValue); //”Hello”
alert(newNode.nodeValue); //” world!”
alert(element.childNodes.length); //2

TextNodeExample06.htm

In this example, the text node containing the text “Hello world!” is split into two text nodes at
position 5. Position 5 contains the space between “Hello” and “world!”, so the original text node
has the string “Hello” and the new one has the text “ world!” (including the space).

Splitting text nodes is used most often with DOM parsing techniques for extracting data from
text nodes.

The Comment Type

Comments are represented in the DOM by the Comment type. A Comment node has the following
characteristics:

nodeType is 8.

nodeName is “#comment”.

nodeValue is the content of the comment.

parentNode is a Document or Element.

Child nodes are not supported.

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The normalize() method causes Internet Explorer 6 to crash in certain
circumstances. Though unconfi rmed, this may have been fi xed in later patches to
Internet Explorer 6. This problem doesn’t occur in Internet Explorer 7 or later.

c10.indd 341c10.indd 341 12/8/11 10:18:41 AM12/8/11 10:18:41 AM

342 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

The Comment type inherits from the same base as the Text type, so it has all of the same string-
manipulation methods except splitText(). Also similar to the Text type, the actual content of the
comment may be retrieved using either nodeValue or the data property.

A comment node can be accessed as a child node from its parent. Consider the following HTML code:

<div id=”myDiv”><!-- A comment --></div>

In this case, the comment is a child node of the <div> element, which means it can be accessed like this:

var div = document.getElementById(“myDiv”);
var comment = div.firstChild;
alert(comment.data); //”A comment”

CommentNodeExample01.htm

Comment nodes can also be created using the document.createComment() method and passing in
the comment text, as shown in the following code:

var comment = document.createComment(“A comment”);

Not surprisingly, comment nodes are rarely accessed or created, because they serve very little purpose
algorithmically. Additionally, browsers don’t recognize comments that exist after the closing </html>
tag. If you need to access comment nodes, make sure they appear as descendants of the <html>
element.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The Comment type constructor and prototype are accessible in Firefox, Safari,
Chrome, and Opera. The Internet Explorer 8 comment nodes are considered to
be elements with a tag name of “!”. This means comment nodes can be returned
by getElementsByTagName(). Internet Explorer 9 represents comments via a
custom constructor called HTMLCommentElement even though it doesn’t treat
comments as elements.

The CDATASection Type

CDATA sections are specifi c to XML-based documents and are represented by the CDATASection
type. Similar to Comment, the CDATASection type inherits from the base Text type, so it has all
of the same string manipulation methods except for splitText(). A CDATASection node has the
following characteristics:

nodeType is 4.

nodeName is “#cdata-section”.

➤

➤

c10.indd 342c10.indd 342 12/8/11 10:18:47 AM12/8/11 10:18:47 AM

Hierarchy of Nodes ❘ 343

nodeValue is the contents of the CDATA section.

parentNode is a Document or Element.

Child nodes are not supported.

CDATA sections are valid only in XML documents, so most browsers will incorrectly parse a CDATA
section into either a Comment or an Element. Consider the following:

<div id=”myDiv”><![CDATA[This is some content.]]></div>

In this example, a CDATASection node should exist as the fi rst child of the <div>; however, none of
the four major browsers interpret it as such. Even in valid XHTML pages, the browsers don’t properly
support embedded CDATA sections.

True XML documents allow the creation of CDATA sections using document.createCDataSection()
and pass in the node’s content.

➤

➤

➤

The CDATASection type constructor and prototype are accessible in Firefox,
Safari, Chrome, and Opera. Internet Explorer through version 9 still does not
support this type.

The DocumentType Type

The DocumentType type is not used very often in web browsers and is supported in only Firefox, Safari,
and Opera. A DocumentType object contains all of the information about the document’s doctype and
has the following characteristics:

nodeType is 10.

nodeName is the name of the doctype.

nodeValue is null.

parentNode is a Document.

Child nodes are not supported.

DocumentType objects cannot be created dynamically in DOM Level 1; they are created only as the
document’s code is being parsed. For browsers that support it, the DocumentType object is stored in
document.doctype. DOM Level 1 describes three properties for DocumentType objects: name, which
is the name of the doctype; entities, which is a NamedNodeMap of entities described by the doctype;
and notations, which is a NamedNodeMap of notations described by the doctype. Because documents
in browsers typically use an HTML or XHTML doctype, the entities and notations lists are
typically empty. (They are fi lled only with inline doctypes.) For all intents and purposes, the name
property is the only useful one available. This property is fi lled with the name of the doctype, which is
the text that appears immediately after <!DOCTYPE. Consider the following HTML 4.01 strict doctype:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

➤

➤

➤

➤

➤

c10.indd 343c10.indd 343 12/8/11 10:18:52 AM12/8/11 10:18:52 AM

344 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

For this doctype, the name property is “HTML”:

alert(document.doctype.name); //”HTML”

Internet Explorer 8 and earlier did not support the DocumentType type, so document.doctype is always
null. Furthermore, these browsers misinterpret the doctype as a comment and actually create a
comment node for it. Internet Explorer 9 properly assigns an object to document.doctype but still
does not expose the DocumentType type.

The DocumentFragment Type

Of all the node types, the DocumentFragment type is the only one that has no representation
in markup. The DOM defi nes a document fragment as a “lightweight” document, capable of
containing and manipulating nodes without all of the additional overhead of a complete document.
DocumentFragment nodes have the following characteristics:

nodeType is 11.

nodeName is “#document-fragment”.

nodeValue is null.

parentNode is null.

Child nodes may be Element, ProcessingInstruction, Comment, Text, CDATASection, or
EntityReference.

A document fragment cannot be added to a document directly. Instead, it acts as a repository for
other nodes that may need to be added to the document. Document fragments are created using the
document.createDocumentFragment() method, shown here:

var fragment = document.createDocumentFragment();

Document fragments inherit all methods from Node and are typically used to perform DOM
manipulations that are to be applied to a document. If a node from the document is added to a
document fragment, that node is removed from the document tree and won’t be rendered by the
browser. New nodes that are added to a document fragment are also not part of the document
tree. The contents of a document fragment can be added to a document via appendChild() or
insertBefore(). When a document fragment is passed in as an argument to either of these
methods, all of the document fragment’s child nodes are added in that spot; the document fragment
itself is never added to the document tree. For example, consider the following HTML:

<ul id=”myList”>

Suppose you would like to add three list items to this element. Adding each item directly to the
element causes the browser to rerender the page with the new information. To avoid this, the following
code example uses a document fragment to create the list items and then add them all at the same time:

var fragment = document.createDocumentFragment();
var ul = document.getElementById(“myList”);
var li = null;

for (var i=0; i < 3; i++){

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 344c10.indd 344 12/8/11 10:18:57 AM12/8/11 10:18:57 AM

Hierarchy of Nodes ❘ 345

 li = document.createElement(”li”);
 li.appendChild(document.createTextNode(”Item ” + (i+1)));
 fragment.appendChild(li);
}

ul.appendChild(fragment);

DocumentFragmentExample01.htm

This example begins by creating a document fragment and retrieving a reference to the element.
The for loop creates three list items, each with text indicating which item they are. To do this, an
element is created and then a text node is created and added to that element. The element is then
added to the document fragment using appendChild(). When the loop is complete, all of the items
are added to the element by calling appendChild() and passing in the document fragment.
At that point, the document fragment’s child nodes are all removed and placed onto the element.

The Attr Type

Element attributes are represented by the Attr type in the DOM. The Attr type constructor and
prototype are accessible in all browsers, including Internet Explorer beginning with version 8.
Technically, attributes are nodes that exist in an element’s attributes property. Attribute nodes
have the following characteristics:

nodeType is 11.

nodeName is the attribute name.

nodeValue is the attribute value.

parentNode is null.

Child nodes are not supported in HTML.

Child nodes may be Text or EntityReference in XML.

Even though they are nodes, attributes are not considered part of the DOM document tree.
Attribute nodes are rarely referenced directly, with most developers favoring the use of
getAttribute(), setAttribute(), and removeAttribute().

There are three properties on an Attr object: name, which is the attribute name (same as nodeName);
value, which is the attribute value (same as nodeValue); and specified, which is a Boolean value
indicating if the attribute was specifi ed in code or if it is a default value.

New attribute nodes can be created by using document.createAttribute() and passing in the
name of the attribute. For example, to add an align attribute to an element, the following code can
be used:

var attr = document.createAttribute(“align”);
attr.value = “left”;
element.setAttributeNode(attr);

alert(element.attributes[“align”].value); //”left”

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 345c10.indd 345 12/8/11 10:18:58 AM12/8/11 10:18:58 AM

346 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

alert(element.getAttributeNode(“align”).value); //”left”
alert(element.getAttribute(“align”)); //”left”

AttrExample01.htm

In this example, a new attribute node is created. The name property is assigned by the call to
createAttribute(), so there is no need to assign it directly afterward. The value property is then
assigned to “left”. To add the newly created attribute to an element, you can use the element’s
setAttributeNode() method. Once the attribute is added, it can be accessed in any number of ways: via
the attributes property, using getAttributeNode(), or using getAttribute(). Both attributes and
getAttributeNode() return the actual Attr node for the attribute, whereas getAttribute() returns
only the attribute value.

There is really not a good reason to access attribute nodes directly. The get
Attribute(), setAttribute(), and removeAttribute() methods are preferable
over manipulating attribute nodes.

WORKING WITH THE DOM

In many cases, working with the DOM is fairly straightforward, making it easy to re-create with
JavaScript what normally would be created using HTML code. There are, however, times when
using the DOM is not as simple as it may appear. Browsers are fi lled with hidden gotchas and
incompatibilities that make coding certain parts of the DOM more complicated than coding its
other parts.

Dynamic Scripts

The <script> element is used to insert JavaScript code into the page, either using by the src attribute
to include an external fi le or by including text inside the element itself. Dynamic scripts are those
that don’t exist when the page is loaded but are included later by using the DOM. As with the
HTML element, there are two ways to do this: pulling in an external fi le or inserting text directly.

Dynamically loading an external JavaScript fi le works as you would expect. Consider the following
<script> element:

<script type=”text/javascript” src=”client.js”></script>

This <script> element includes the text for the Chapter 9 client-detection script. The DOM code to
create this node is as follows:

var script = document.createElement(“script”);
script.type = “text/javascript”;
script.src = “client.js”;
document.body.appendChild(script);

c10.indd 346c10.indd 346 12/8/11 10:18:59 AM12/8/11 10:18:59 AM

Working with the DOM ❘ 347

As you can see, the DOM code exactly mirrors the HTML code that it represents. Note that the
external fi le is not downloaded until the <script> element is added to the page on the last line. The
element could be added to the <head> element as well, though this has the same effect. This process
can be generalized into the following function:

function loadScript(url){
 var script = document.createElement(“script”);
 script.type = “text/javascript”;
 script.src = url;
 document.body.appendChild(script);
}

This function can now be used to load external JavaScript fi les via the following call:

loadScript(“client.js”);

Once loaded, the script is fully available to the rest of the page. This leaves only one problem: how do
you know when the script has been fully loaded? Unfortunately, there is no standard way to handle
this. Some events are available depending on the browser being used, as discussed in Chapter 13.

The other way to specify JavaScript code is inline, as in this example:

<script type=”text/javascript”>
 function sayHi(){
 alert(“hi”);
 }
</script>

Using the DOM, it would be logical for the following to work:

var script = document.createElement(“script”);
script.type = “text/javascript”;
script.appendChild(document.createTextNode(“function sayHi(){alert(‘hi’);}”));
document.body.appendChild(script);

This works in Firefox, Safari, Chrome, and Opera. In Internet Explorer, however, this causes an
error. Internet Explorer treats <script> elements as special and won’t allow regular DOM access to
child nodes. A property called text exists on all <script> elements that can be used specifi cally
to assign JavaScript code to, as in the following example:

var script = document.createElement(“script”);
script.type = “text/javascript”;
script.text = “function sayHi(){alert(‘hi’);}”;
document.body.appendChild(script);

DynamicScriptExample01.htm

This updated code works in Internet Explorer, Firefox, Opera, and Safari 3 and later. Safari
versions prior to 3 don’t support the text property correctly; however, it will allow the assignment

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 347c10.indd 347 12/8/11 10:19:04 AM12/8/11 10:19:04 AM

348 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

of code using the text-node technique. If you need to do this in an earlier Safari version, the
following code can be used:

var script = document.createElement(“script”);
script.type = “text/javascript”;
var code = “function sayHi(){alert(‘hi’);}”;
try {
 script.appendChild(document.createTextNode(“code”));
} catch (ex){
 script.text = “code”;
}
document.body.appendChild(script);

Here, the standard DOM text-node method is attempted fi rst, because it works in everything but
Internet Explorer, which will throw an error. If that line causes an error, that means it is Internet
Explorer, and the text property must be used. This can be generalized into the following function:

function loadScriptString(code){
 var script = document.createElement(“script”);
 script.type = “text/javascript”;
 try {
 script.appendChild(document.createTextNode(code));
 } catch (ex){
 script.text = code;
 }
 document.body.appendChild(script);
}

The function is called as follows:

loadScriptString(“function sayHi(){alert(‘hi’);}”);

DynamicScriptExample02.htm

Code loaded in this manner is executed in the global scope and is available immediately after
the script fi nishes executing. This is essentially the same as passing the string into eval() in the
global scope.

Dynamic Styles

CSS styles are included in HTML pages using one of two elements. The <link> element is used
to include CSS from an external fi le, whereas the <style> element is used to specify inline styles.
Similar to dynamic scripts, dynamic styles don’t exist on the page when it is loaded initially; rather,
they are added after the page has been loaded.

Consider this typical <link> element:

<link rel=”stylesheet” type=”text/css” href=”styles.css”>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 348c10.indd 348 12/8/11 10:19:04 AM12/8/11 10:19:04 AM

Working with the DOM ❘ 349

This element can just as easily be created using the following DOM code:

var link = document.createElement(“link”);
link.rel = “stylesheet”;
link.type = “text/css”;
link.href = “styles.css”;
var head = document.getElementsByTagName(“head”)[0];
head.appendChild(link);

This code works in all major browsers without any issue. Note that <link> elements should be
added to the <head> instead of the body for this to work properly in all browsers. The technique can
be generalized into the following function:

function loadStyles(url){
 var link = document.createElement(“link”);
 link.rel = “stylesheet”;
 link.type = “text/css”;
 link.href = url;
 var head = document.getElementsByTagName(“head”)[0];
 head.appendChild(link);
}

The loadStyles() function can then be called like this:

loadStyles(“styles.css”);

Loading styles via an external fi le is asynchronous, so the styles will load out of order with the
JavaScript code being executed. Typically it’s not necessary to know when the styles have been fully
loaded; however, there are some techniques (events, discussed in Chapter 13) that can be used to
accomplish this.

The other way to defi ne styles is using the <style> element and including inline CSS, such as this:

<style type=”text/css”>
body {
 background-color: red;
}
</style>

Logically, the following DOM code should work:

var style = document.createElement(“style”);
style.type = “text/css”;
style.appendChild(document.createTextNode(“body{background-color:red}”));
var head = document.getElementsByTagName(“head”)[0];
head.appendChild(style);

DynamicStyleExample01.htm

This code works in Firefox, Safari, Chrome, and Opera but not in Internet Explorer. Internet
Explorer treats <style> nodes as special, similar to <script> nodes, and so won’t allow access to
its child nodes. In fact, Internet Explorer throws the same error as when you try to add a child node

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 349c10.indd 349 12/8/11 10:19:05 AM12/8/11 10:19:05 AM

350 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

to a <script> element. The workaround for Internet Explorer is to access the element’s styleSheet
property, which in turn has a property called cssText that may be set to CSS code (both of these
properties are discussed further in Chapter 12), as this code sample shows:

var style = document.createElement(“style”);
style.type = “text/css”;
try{
 style.appendChild(document.createTextNode(“body{background-color:red}”));
} catch (ex){
 style.styleSheet.cssText = “body{background-color:red}”;
}
var head = document.getElementsByTagName(“head”)[0];
head.appendChild(style);

Similar to the code for adding inline scripts dynamically, this new code uses a try-catch statement
to catch the error that Internet Explorer throws and then responds by using the Internet Explorer–
specifi c way of setting styles. The generic solution is as follows:

function loadStyleString(css){
 var style = document.createElement(“style”);
 style.type = “text/css”;
 try{
 style.appendChild(document.createTextNode(css));
 } catch (ex){
 style.styleSheet.cssText = css;
 }
 var head = document.getElementsByTagName(“head”)[0];
 head.appendChild(style);
}

DynamicStyleExample02.htm

The function can be called as follows:

loadStyleString(“body{background-color:red}”);

Styles specifi ed in this way are added to the page instantly, so changes should be seen immediately.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

If you’re coding for Internet Explorer specifi cally, be careful using styleSheet
.cssText. If you reuse the same <style> element and try to set this property
more than once, it has a tendency to crash the browser. Also, setting cssText to
the empty string has the potential to crash the browser as well. This is a bug
in the browser that hopefully will be fi xed in the future.

Manipulating Tables

One of the most complex structures in HTML is the <table> element. Creating new tables typically
means numerous tags for table rows, table cells, table headers, and so forth. Because of this

c10.indd 350c10.indd 350 12/8/11 10:19:05 AM12/8/11 10:19:05 AM

Working with the DOM ❘ 351

complexity, using the core DOM methods to create and change tables can require a large amount of
code. Suppose you want to create the following HTML table using the DOM:

<table border=”1” width=”100%”>
 <tbody>
 <tr>
 <td>Cell 1,1</td>
 <td>Cell 2,1</td>
 </tr>
 <tr>
 <td>Cell 1,2</td>
 <td>Cell 2,2</td>
 </tr>
 </tbody>
</table>

To accomplish this with the core DOM methods, the code would look something like this:

//create the table
var table = document.createElement(“table”);
table.border = 1;
table.width = “100%”;

//create the tbody
var tbody = document.createElement(“tbody”);
table.appendChild(tbody);

//create the first row
var row1 = document.createElement(“tr”);
tbody.appendChild(row1);
var cell1_1 = document.createElement(“td”);
cell1_1.appendChild(document.createTextNode(“Cell 1,1”));
row1.appendChild(cell1_1);
var cell2_1 = document.createElement(“td”);
cell2_1.appendChild(document.createTextNode(“Cell 2,1”));
row1.appendChild(cell2_1);

//create the second row
var row2 = document.createElement(“tr”);
tbody.appendChild(row2);
var cell1_2 = document.createElement(“td”);
cell1_2.appendChild(document.createTextNode(“Cell 1,2”));
row2.appendChild(cell1_2);
var cell2_2= document.createElement(“td”);
cell2_2.appendChild(document.createTextNode(“Cell 2,2”));
row2.appendChild(cell2_2);

//add the table to the document body
document.body.appendChild(table);

This code is quite verbose and a little hard to follow. To facilitate building tables, the HTML DOM
adds several properties and methods to the <table>, <tbody>, and <tr> elements.

c10.indd 351c10.indd 351 12/8/11 10:19:11 AM12/8/11 10:19:11 AM

352 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

The <table> element adds the following:

caption — Pointer to the <caption> element (if it exists).

tBodies — An HTMLCollection of <tbody> elements.

tFoot — Pointer to the <tfoot> element (if it exists).

tHead — Pointer to the <thead> element (if it exists).

rows — An HTMLCollection of all rows in the table.

createTHead() — Creates a <thead> element, places it into the table, and returns a reference.

createTFoot() — Creates a <tfoot> element, places it into the table, and returns a reference.

createCaption() — Creates a <caption> element, places it into the table, and returns a
reference.

deleteTHead() — Deletes the <thead> element.

deleteTFoot() — Deletes the <tfoot> element.

deleteCaption() — Deletes the <caption> element.

deleteRow(pos) — Deletes the row in the given position.

insertRow(pos) — Inserts a row in the given position in the rows collection.

The <tbody> element adds the following:

rows — An HTMLCollection of rows in the <tbody> element.

deleteRow(pos) — Deletes the row in the given position.

insertRow(pos) — Inserts a row in the given position in the rows collection and returns a
reference to the new row.

The <tr> element adds the following:

cells — An HTMLCollection of cells in the <tr> element.

deleteCell(pos) — Deletes the cell in the given position.

insertCell(pos) — Inserts a cell in the given position in the cells collection and returns
a reference to the new cell.

These properties and methods can greatly reduce the amount of code necessary to create a table. For
example, the previous code can be rewritten using these methods as follows (the highlighted code is
updated):

//create the table
var table = document.createElement(“table”);
table.border = 1;
table.width = “100%”;

//create the tbody
var tbody = document.createElement(“tbody”);

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c10.indd 352c10.indd 352 12/8/11 10:19:11 AM12/8/11 10:19:11 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with the DOM ❘ 353

table.appendChild(tbody);

//create the fi rst row
tbody.insertRow(0);
tbody.rows[0].insertCell(0);
tbody.rows[0].cells[0].appendChild(document.createTextNode(“Cell 1,1”));
tbody.rows[0].insertCell(1);
tbody.rows[0].cells[1].appendChild(document.createTextNode(“Cell 2,1”));

//create the second row
tbody.insertRow(1);
tbody.rows[1].insertCell(0);
tbody.rows[1].cells[0].appendChild(document.createTextNode(“Cell 1,2”));
tbody.rows[1].insertCell(1);
tbody.rows[1].cells[1].appendChild(document.createTextNode(“Cell 2,2”));

//add the table to the document body
document.body.appendChild(table);

In this code, the creation of the <table> and <tbody> elements remains the same. What has
changed is the section creating the two rows, which now makes use of the HTML DOM table
properties and methods. To create the fi rst row, the insertRow() method is called on the <tbody>
element with an argument of 0, which indicates the position in which the row should be placed.
After that point, the row can be referenced by tbody.rows[0] because it is automatically created
and added into the <tbody> element in position 0.

Creating a cell is done in a similar way — by calling insertCell() on the <tr> element and
passing in the position in which the cell should be placed. The cell can then be referenced by tbody
.rows[0].cells[0], because the cell has been created and inserted into the row in position 0.

Using these properties and methods to create a table makes the code much more logical and
readable, although technically both sets of code are correct.

Using NodeLists

Understanding a NodeList object and its relatives, NamedNodeMap and HTMLCollection, is critical
to a good understanding of the DOM as a whole. Each of these collections is considered “live,”
which is to say that they are updated when the document structure changes such that they are
always current with the most accurate information. In reality, all NodeList objects are queries that
are run against the DOM document whenever they are accessed. For instance, the following results
in an infi nite loop:

var divs = document.getElementsByTagName(“div”),
 i,
 div;

for (i=0; i < divs.length; i++){
 div = document.createElement(”div”);
 document.body.appendChild(div);
}

c10.indd 353c10.indd 353 12/8/11 10:19:12 AM12/8/11 10:19:12 AM

354 ❘ CHAPTER 10 THE DOCUMENT OBJECT MODEL

The fi rst part of this code gets an HTMLCollection of all <div> elements in the document. Since that
collection is “live,” any time a new <div> element is added to the page, it gets added into the collection.
Since the browser doesn’t want to keep a list of all the collections that were created, the collection is
updated only when it is accessed again. This creates an interesting problem in terms of a loop such
as the one in this example. Each time through the loop, the condition i < divs.length is being
evaluated. That means the query to get all <div> elements is being run. Because the body of the loop
creates a new <div> element and adds it to the document, the value of divs.length increments each
time through the loop; thus i will never equal divs.length since both are being incremented.

Any time you want to iterate over a NodeList, it’s best to initialize a second variable with the length
and then compare the iterator to that variable, as shown in the following example:

var divs = document.getElementsByTagName(“div”),
 i,
 len,
 div;

for (i=0, len=divs.length; i < len; i++){
 div = document.createElement(”div”);
 document.body.appendChild(div);
}

In this example, a second variable, len, is initialized. Since len contains a snapshot of divs
.length at the time the loop began, it prevents the infi nite loop that was experienced in the previous
example. This technique has been used through this chapter to demonstrate the preferred way of
iterating over NodeList objects.

Generally speaking, it is best to limit the number of times you interact with a NodeList. Since a query
is run against the document each time, try to cache frequently used values retrieved from a NodeList.

SUMMARY

The Document Object Model (DOM) is a language-independent API for accessing and manipulating
HTML and XML documents. DOM Level 1 deals with representing HTML and XML documents
as a hierarchy of nodes that can be manipulated to change the appearance and structure of the
underlying documents using JavaScript.

The DOM is made up of a series of node types, as described here:

The base node type is Node, which is an abstract representation of an individual part of a
document; all other types inherit from Node.

The Document type represents an entire document and is the root node of a hierarchy. In
JavaScript, the document object is an instance of Document, which allows for querying and
retrieval of nodes in a number of different ways.

An Element node represents all HTML or XML elements in a document and can be used to
manipulate their contents and attributes.

Other node types exist for text contents, comments, document types, the CDATA section,
and document fragments.

➤

➤

➤

➤

c10.indd 354c10.indd 354 12/8/11 10:19:12 AM12/8/11 10:19:12 AM

Summary ❘ 355

DOM access works as expected in most cases, although there are often complications when
working with <script> and <style> elements. Since these elements contain scripting and stylistic
information, respectively, they are often treated differently in browsers than other elements.

Perhaps the most important thing to understand about the DOM is how it affects overall
performance. DOM manipulations are some of the most expensive operations that can be done in
JavaScript, with NodeList objects being particularly troublesome. NodeList objects are “live,”
meaning that a query is run every time the object is accessed. Because of these issues, it is best to
minimize the number of DOM manipulations.

c10.indd 355c10.indd 355 12/8/11 10:19:13 AM12/8/11 10:19:13 AM

c10.indd 356c10.indd 356 12/8/11 10:19:13 AM12/8/11 10:19:13 AM

DOM Extensions

WHAT’S IN THIS CHAPTER?

Understanding the Selectors API

Using HTML5 DOM extensions

Working with proprietary DOM extensions

Even though the DOM is a fairly well-defi ned API, it is also frequently augmented with both
standards-based and proprietary extensions to provide additional functionality. Prior to 2008,
almost all of the DOM extensions found in browsers were proprietary. After that point, the
W3C went to work to codify some of the proprietary extensions that had become de facto
standards into formal specifi cations.

The two primary standards specifying DOM extensions are the Selectors API and HTML5.
These both arose out of needs in the development community and a desire to standardize
certain approaches and APIs. There is also a smaller Element Traversal specifi cation with
additional DOM properties. Proprietary extensions still exist, even though these two
specifi cations, especially HTML5, cover a large number of DOM extensions. The proprietary
extensions are also covered within this chapter.

SELECTORS API

One of the most popular capabilities of JavaScript libraries is the ability to retrieve a number
of DOM elements matching a pattern specifi ed using CSS selectors. Indeed, the library jQuery
(www.jquery.com) is built completely around the CSS selector queries of a DOM document
in order to retrieve references to elements instead of using getElementById() and
getElementsByTagName().

The Selectors API (www.w3.org/TR/selectors-api) was started by the W3C to specify native
support for CSS queries in browsers. All JavaScript libraries implementing this feature had to

➤

➤

➤

11

c11.indd 357c11.indd 357 12/8/11 10:20:47 AM12/8/11 10:20:47 AM

358 ❘ CHAPTER 11 DOM EXTENSIONS

do so by writing a rudimentary CSS parser and then using existing DOM methods to navigate the
document and identify matching nodes. Although library developers worked tirelessly to speed up
the performance of such processing, there was only so much that could be done while the code ran in
JavaScript. By making this a native API, the parsing and tree navigating can be done at the browser
level in a compiled language and thus tremendously increase the performance of such functionality.

At the core of Selectors API Level 1 are two methods: querySelector() and querySelectorAll().
On a conforming browser, these methods are available on the Document type and on the Element
type. Selectors API Level 1 was fully implemented in Internet Explorer 8+, Firefox 3.5+, Safari 3.1+,
Chrome, and Opera 10+.

The querySelector() Method

The querySelector() method accepts a CSS query and returns the fi rst descendant element that
matches the pattern or null if there is no matching element. Here is an example:

//get the body element
var body = document.querySelector(“body”);

//get the element with the ID “myDiv”
var myDiv = document.querySelector(“#myDiv”);

//get first element with a class of “selected”
var selected = document.querySelector(“.selected”);

//get first image with class of “button”
var img = document.body.querySelector(“img.button”);

SelectorsAPIExample01.htm

When the querySelector() method is used on the Document type, it starts trying to match the
pattern from the document element; when used on an Element type, the query attempts to make a
match from the descendants of the element only.

The CSS query may be as complex or as simple as necessary. If there’s a syntax error or an
unsupported selector in the query, then querySelector() throws an error.

The querySelectorAll() Method

The querySelectorAll() method accepts the same single argument as querySelector() — the
CSS query — but returns all matching nodes instead of just one. This method returns a static
instance of NodeList.

To clarify, the return value is actually a NodeList with all of the expected properties and methods,
but its underlying implementation acts as a snapshot of elements rather than a dynamic query that is
constantly reexecuted against a document. This implementation eliminates most of the performance
overhead associated with the use of NodeList objects.

Any call to querySelectorAll() with a valid CSS query will return a NodeList object
regardless of the number of matching elements; if there are no matches, the NodeList is empty.

c11.indd 358c11.indd 358 12/8/11 10:20:50 AM12/8/11 10:20:50 AM

As with querySelector(), the querySelectorAll() method is available on the Document,
DocumentFragment, and Element types. Here are some examples:

//get all elements in a <div> (similar to getElementsByTagName(“em”))
var ems = document.getElementById(“myDiv”).querySelectorAll(“em”);

//get all elements with class of “selected”
var selecteds = document.querySelectorAll(“.selected”);

//get all elements inside of <p> elements
var strongs = document.querySelectorAll(“p strong”);

SelectorsAPIExample02.htm

The resulting NodeList object may be iterated over using either item() or bracket notation to
retrieve individual elements. Here’s an example:

var i, len, strong;
for (i=0, len=strongs.length; i < len; i++){
 strong = strongs[i]; //or strongs.item(i)
 strong.className = “important”;
}

As with querySelector(), querySelectorAll() throws an error when the CSS selector is not
supported by the browser or if there’s a syntax error in the selector.

The matchesSelector() Method

The Selectors API Level 2 specifi cation introduces another method called matchesSelector() on
the Element type. This method accepts a single argument, a CSS selector, and returns true if the
given element matches the selector or false if not. For example:

if (document.body.matchesSelector(“body.page1”)){
 //true
}

This method allows you to easily check if an element would be returned by querySelector() or
querySelectorAll() when you already have the element reference.

As of mid-2011, no browser supports matchesSelector(); however, several support experimental
implementations. Internet Explorer 9+ supports the method via msMatchesSelector(),
Firefox 3.6+ supports it via mozMatchesSelector(), and Safari 5+ and Chrome support it via
webkitMatchesSelector(). To make use of this method now, you may want to create a wrapper
function, such as:

function matchesSelector(element, selector){
 if (element.matchesSelector){
 return element.matchesSelector(selector);
 } else if (element.msMatchesSelector){
 return element.msMatchesSelector(selector);
 } else if (element.mozMatchesSelector){
 return element.mozMatchesSelector(selector);

Selectors API ❘ 359

c11.indd 359c11.indd 359 12/8/11 10:20:51 AM12/8/11 10:20:51 AM

360 ❘ CHAPTER 11 DOM EXTENSIONS

 } else if (element.webkitMatchesSelector){
 return element.webkitMatchesSelector(selector);
 } else {
 throw new Error(“Not supported.”);
 }
}

if (matchesSelector(document.body, “body.page1”)){
 //do something
}

SelectorsAPIExample03.htm

ELEMENT TRAVERSAL

Prior to version 9, Internet Explorer did not return text nodes for white space in between elements
while all of the other browsers did. This led to differences in behavior when using properties such
as childNodes and firstChild. In an effort to equalize the differences while still remaining
true to the DOM specifi cation, a new group of properties was defi ned in the Element Traversal
(www.w3.org/TR/ElementTraversal/).

The Element Traversal API adds fi ve new properties to DOM elements:

childElementCount — Returns the number of child elements (excludes text nodes and
comments).

firstElementChild — Points to the fi rst child that is an element. Element-only version
of firstChild.

lastElementChild — Points to the last child that is an element. Element-only version
of lastChild.

previousElementSibling — Points to the previous sibling that is an element. Element-only
version of previousSibling.

nextElementSibling — Points to the next sibling that is an element. Element-only version
of nextSibling.

Supporting browsers add these properties to all DOM elements to allow for easier traversal of
DOM elements without the need to worry about white space text nodes.

As an example, iterating over all child elements of a particular element in a traditional cross-browser
way looks like this:

var i,
 len,
 child = element.firstChild;
while(child != element.lastChild){
 if (child.nodeType == 1){ //check for an element
 processChild(child);
 }
 child = child.nextSibling;
}

➤

➤

➤

➤

➤

c11.indd 360c11.indd 360 12/8/11 10:20:51 AM12/8/11 10:20:51 AM

Using the Element Traversal properties allows a simplifi cation of the code:

var i,
 len,
 child = element.firstElementChild;
while(child != element.lastElementChild){
 processChild(child); //already know it’s an element
 child = child.nextElementSibling;
}

Element Traversal is implemented in Internet Explorer 9+, Firefox 3.5+, Safari 4+, Chrome, and
Opera 10+.

HTML5

HTML5 represents a radical departure from the tradition of HTML. In all previous HTML
specifi cations, the descriptions stopped short of describing any JavaScript interfaces, instead
focusing purely on the markup of the language and deferring JavaScript bindings to the DOM
specifi cation.

The HTML5 specifi cation, on the other hand, contains a large amount of JavaScript APIs designed
for use with the markup additions. Part of these APIs overlap with the DOM and defi ne DOM
extensions that browsers should provide.

Because the scope of HTML5 is vast, this section focuses only on the parts that
affect all DOM nodes. Other parts of HTML5 are discussed in their related topics
throughout the book.

Class-Related Additions

One of the major changes in web development since the time HTML4 was adopted is the increased
usage of the class attribute to indicate both stylistic and semantic information about elements.
This caused a lot of JavaScript interaction with CSS classes, including the dynamic changing of
classes and querying the document to fi nd elements with a given class or set of classes. To adapt to
developers and their newfound appreciation of the class attribute, HTML5 introduces a number of
changes to make CSS class usage easier.

The getElementsByClassName() Method

One of HTML5’s most popular additions is getElementsByClassName(), which is available on
the document object and on all HTML elements. This method evolved out of JavaScript libraries

HTML5 ❘ 361

c11.indd 361c11.indd 361 12/8/11 10:20:52 AM12/8/11 10:20:52 AM

362 ❘ CHAPTER 11 DOM EXTENSIONS

that implemented it using existing DOM features and is provided as a native implementation for
performance reasons.

The getElementsByClassName() method accepts a single argument, which is a string containing
one or more class names, and returns a NodeList containing all elements that have all of the
specifi ed classes applied. If multiple class names are specifi ed, then the order is considered
unimportant. Here are some examples:

//get all elements with a class containing “username” and “current”, though it
//doesn’t matter if one is declared before the other
var allCurrentUsernames = document.getElementsByClassName(“username current”);

//get all elements with a class of “selected” that exist in myDiv’s subtree
var selected = document.getElementById(“myDiv”).getElementsByClassName(“selected”);

When this method is called, it will return only elements in the subtree of the root from which it
was called. Calling getElementsByClassName() on document always returns all elements with
matching class names, whereas calling it on an element will return only descendant elements.

This method is useful for attaching events to classes of elements rather than using IDs or tag
names. Keep in mind that since the returned value is a NodeList, there are the same performance
issues as when you’re using getElementsByTagName() and other DOM methods that return
NodeList objects.

The getElementsByClassName() method was implemented in Internet Explorer 9+, Firefox 3+,
Safari 3.1+, Chrome, and Opera 9.5+.

The classList Property

In class name manipulation, the className property is used to add, remove, and replace class
names. Since className contains a single string, it’s necessary to set its value every time a change
needs to take place, even if there are parts of the string that should be unaffected. For example,
consider the following HTML code:

<div class=”bd user disabled”>...</div>

This <div> element has three classes assigned. To remove one of these classes, you need to split
the class attribute into individual classes, remove the unwanted class, and then create a string
containing the remaining classes. Here is an example:

//remove the “user” class

//first, get list of class names
var classNames = div.className.split(/\s+/);

//find the class name to remove
var pos = -1,
 i,
 len;
for (i=0, len=classNames.length; i < len; i++){
 if (classNames[i] == ”user”){
 pos = i;

c11.indd 362c11.indd 362 12/8/11 10:21:02 AM12/8/11 10:21:02 AM

 break;
 }
}

//remove the class name
classNames.splice(i,1);

//set back the class name
div.className = classNames.join(” ”);

All of this code is necessary to remove the “user” class from the <div> element’s class attribute.
A similar algorithm must be used for replacing class names and detecting if a class name is applied
to an element. Adding class names can be done by using string concatenation, but checks must
be done to ensure that you’re not applying the same class more than one time. Many JavaScript
libraries implement methods to aid in these behaviors.

HTML5 introduces a way to manipulate class names in a much simpler and safer manner through
the addition of the classList property for all elements. The classList property is an instance of a
new type of collection named DOMTokenList. As with other DOM collections, DOMTokenList has a
length property to indicate how many items it contains, and individual items may be retrieved via
the item() method or using bracket notation. It also has the following additional methods:

add(value) — Adds the given string value to the list. If the value already exists, it will
not be added.

contains(value) — Indicates if the given value exists in the list (true if so; false if not).

remove(value) — Removes the given string value from the list.

toggle(value) — If the value already exists in the list, it is removed. If the value doesn’t
exist, then it’s added.

The entire block of code in the previous example can quite simply be replaced with the following:

div.classList.remove(“user”);

Using this code ensures that the rest of the class names will be unaffected by the change. The other
methods also greatly reduce the complexity of the basic operations, as shown in these examples:

//remove the “disabled” class
div.classList.remove(“disabled”);

//add the “current” class
div.classList.add(“current”);

//toggle the “user” class
div.classList.toggle(“user”);

//figure out what’s on the element now
if (div.classList.contains(“bd”) && !div.classList.contains(“disabled”)){
 //do something
)

//iterate over the class names

➤

➤

➤

➤

HTML5 ❘ 363

c11.indd 363c11.indd 363 12/8/11 10:21:03 AM12/8/11 10:21:03 AM

364 ❘ CHAPTER 11 DOM EXTENSIONS

for (var i=0, len=div.classList.length; i < len; i++){
 doSomething(div.classList[i]);
}

The addition of the classList property makes it unnecessary to access the className property
unless you intend to completely remove or completely overwrite the element’s class attribute. The
classList property is implemented in Firefox 3.6+ and Chrome.

Focus Management

HTML5 adds functionality to aid with focus management in the DOM. The fi rst is document
.activeElement, which always contains a pointer to the DOM element that currently has focus.
An element can receive focus automatically as the page is loading, via user input (typically using the
Tab key), or programmatically using the focus() method. For example:

var button = document.getElementById(“myButton”);
button.focus();
alert(document.activeElement === button); //true

By default, document.activeElement is set to document.body when the document is fi rst loaded.
Before the document is fully loaded, document.activeElement is null.

The second addition is document.hasFocus(), which returns a Boolean value indicating if the
document has focus:

var button = document.getElementById(“myButton”);
button.focus();
alert(document.hasFocus()); //true

Determining if the document has focus allows you to determine if the user is interacting with
the page.

This combination of being able to query the document to determine which element has focus and
being able to ask the document if it has focus is of the utmost importance for web application
accessibility. One of the key components of accessible web applications is proper focus management,
and being able to determine which elements currently have focus is a major improvement over the
guesswork of the past.

These properties are implemented in Internet Explorer 4+, Firefox 3+, Safari 4+, Chrome, and
Opera 8+.

Changes to HTMLDocument

HTML5 extends the HTMLDocument type to include more functionality. As with other DOM
extensions specifi ed in HTML5, the changes are based on proprietary extensions that are
well-supported across browsers. As such, even though the standardization of the extensions is
relatively new, some browsers have supported the functionality for a while.

c11.indd 364c11.indd 364 12/8/11 10:21:03 AM12/8/11 10:21:03 AM

The readyState Property

Internet Explorer 4 was the fi rst to introduce a readyState property on the document object.
Other browsers then followed suit and this property was eventually formalized in HTML5. The
readyState property for document has two possible values:

loading — The document is loading.

complete — The document is completely loaded.

The best way to use the document.readyState property is as an indicator that the document has
loaded. Before this property was widely available, you would need to add an onload event handler
to set a fl ag indicating that the document was loaded. Basic usage:

if (document.readyState == “complete”){
 //do something
}

The readyState property is implemented in Internet Explorer 4+, Firefox 3.6+, Safari, Chrome,
and Opera 9+.

Compatibility Mode

With the introduction of Internet Explorer 6 and the ability to render a document in either standards
or quirks mode, it became necessary to determine in which mode the browser was rendering the
page. Internet Explorer added a property on the document named compatMode whose sole job
is to indicate what rendering mode the browser is in. As shown in the following example, when
in standards mode, document.compatMode is equal to “CSS1Compat”; when in quirks mode,
document.compatMode is “BackCompat”:

if (document.compatMode == “CSS1Compat”){
 alert(“Standards mode”);
} else {
 alert(“Quirks mode”);
}

This property was later implemented by Firefox, Safari 3.1+, Opera, and Chrome. As a result, the
property was added to HTML5 to formalize its implementation.

The head Property

HTML5 introduces document.head to point to the <head> element of a document to complement
document.body, which points to the <body> element of the document. You can retrieve a reference
to the <head> element using this property or the fallback method:

var head = document.head || document.getElementsByTagName(“head”)[0];

This code uses document.head, if available; otherwise it falls back to the old method of using
getElementsByTagName().

The document.head property is implemented in Chrome and Safari 5.

➤

➤

HTML5 ❘ 365

c11.indd 365c11.indd 365 12/8/11 10:21:04 AM12/8/11 10:21:04 AM

366 ❘ CHAPTER 11 DOM EXTENSIONS

Character Set Properties

HTML5 describes several new properties dealing with the character set of the document. The
charset property indicates the actual character set being used by the document and can also be used
to specify a new character set. By default, this value is “UTF-16”, although it may be changed by
using <meta> elements or response headers or through setting the charset property directly. Here’s
an example:

alert(document.charset); //”UTF-16”
document.charset = “UTF-8”;

The defaultCharset property indicates what the default character set for the document should be
based on default browser and system settings. The values of charset and defaultCharset may be
different if the document doesn’t use the default character set, as in this example:

if (document.charset != document.defaultCharset){
 alert(“Custom character set being used.”);
}

These properties allow greater insight into, and control over, the character encoding used on
the document. If used properly, this should allow web developers to ensure that their page or
application is being viewed properly.

The document.charset property is supported by Internet Explorer, Firefox, Safari, Opera, and
Chrome. The document.defaultCharset property is supported in Internet Explorer, Safari,
and Chrome.

Custom Data Attributes

HTML5 allows elements to be specifi ed with nonstandard attributes prefi xed with data- in order
to provide information that isn’t necessary to the rendering or semantic value of the element. These
attributes can be added as desired and named anything, provided that the name begins with data-.
Here is an example:

<div id=”myDiv” data-appId=”12345” data-myname=”Nicholas”></div>

When a custom data attribute is defi ned, it can be accessed via the dataset property of the element.
The dataset property contains an instance of DOMStringMap that is a mapping of name-value pairs.
Each attribute of the format data-name is represented by a property with a name equivalent to
the attribute but without the data- prefi x (for example, attribute data-myname is represented by a
property called myname). Example usage:

//the methods used in this example are for illustrative purposes only

var div = document.getElementById(“myDiv”);

//get the values
var appId = div.dataset.appId;

c11.indd 366c11.indd 366 12/8/11 10:21:04 AM12/8/11 10:21:04 AM

var myName = div.dataset.myname;

//set the value
div.dataset.appId = 23456;
div.dataset.myname = ”Michael”;

//is there a ”myname” value?
if (div.dataset.myname){
 alert(”Hello, ” + div.dataset.myname);
}

Custom data attributes are useful when nonvisual data needs to be tied to an element for some
other form of processing. This is a common technique to use for link tracking and mashups in order
to better identify parts of a page.

As of the time of this writing, only Firefox 6+ and Chrome have implemented this feature.

Markup Insertion

Although the DOM provides fi ne-grained control over nodes in a document, it can be cumbersome
when attempting to inject a large amount of new HTML into the document. Instead of creating a
series of DOM nodes and connecting them in the correct order, it’s much easier (and faster) to use
one of the markup insertion capabilities to inject a string of HTML. The following DOM extensions
have been standardized in HTML5 for this purpose.

The innerHTML Property

When used in read mode, innerHTML returns the HTML representing all of the child nodes,
including elements, comments, and text nodes. When used in write mode, innerHTML completely
replaces all of the child nodes in the element with a new DOM subtree based on the specifi ed value.
Consider the following HTML code:

<div id=”content”>
 <p>This is a paragraph with a list following it.</p>

 Item 1
 Item 2
 Item 3

</div>

For the <div> element in this example, the innerHTML property returns the following string:

<p>This is a paragraph with a list following it.</p>

 Item 1
 Item 2
 Item 3

The exact text returned from innerHTML differs from browser to browser. Internet Explorer and
Opera tend to convert all tags to uppercase, whereas Safari, Chrome, and Firefox return HTML in

HTML5 ❘ 367

c11.indd 367c11.indd 367 12/8/11 10:21:05 AM12/8/11 10:21:05 AM

368 ❘ CHAPTER 11 DOM EXTENSIONS

the way it is specifi ed in the document, including white space and indentation. You cannot depend
on the returned value of innerHTML being exactly the same from browser to browser.

When used in write mode, innerHTML parses the given string into a DOM subtree and replaces all of
the existing child nodes with it. Because the string is considered to be HTML, all tags are converted
into elements in the standard way that the browser handles HTML (again, this differs from browser
to browser). Setting simple text without any HTML tags, as shown here, sets the plain text:

div.innerHTML = “Hello world!”;

Setting innerHTML to a string containing HTML behaves quite differently as innerHTML parses
them. Consider the following example:

div.innerHTML = “Hello & welcome, \”reader\”!”;

The result of this operation is as follows:

<div id=”content”>Hello & welcome, "reader"!</div>

After setting innerHTML, you can access the newly created nodes as you would any other nodes in
the document.

Setting innerHTML causes the HTML string to be parsed by the browser into an
appropriate DOM tree. This means that setting innerHTML and then reading
it back typically results in a different string being returned. This is because the
returned string is the result of serializing the DOM subtree that was created for the
original HTML string.

There are some limitations to innerHTML. For one, <script> elements cannot be executed when
inserted via innerHTML in most browsers. Internet Explorer, 8 and earlier, is the only browser that
allows this but only as long as the defer attribute is specifi ed and the <script> element is preceded
by what Microsoft calls a scoped element. The <script> element is considered a NoScope element,
which effectively means that it has no visual representation on the page, like a <style> element or a
comment. Internet Explorer strips out all NoScope elements from the beginning of strings inserted
via innerHTML, which means the following won’t work:

div.innerHTML = “<script defer>alert(‘hi’);<\/script>”; //won’t work

In this case, the innerHTML string begins with a NoScope element, so the entire string becomes empty.
To allow this script to work appropriately, you must precede it with a scoped element, such as a text
node or an element without a closing tag such as <input>. The following lines will all work:

div.innerHTML = “_<script defer>alert(‘hi’);<\/script>”;
div.innerHTML = “<div> </div><script defer>alert(‘hi’);<\/script>”;
div.innerHTML = “<input type=\”hidden\”><script defer>alert(‘hi’);<\/script>”;

c11.indd 368c11.indd 368 12/8/11 10:21:05 AM12/8/11 10:21:05 AM

The fi rst line results in a text node being inserted immediately before the <script> element. You
may need to remove this after the fact so as not to disrupt the fl ow of the page. The second line has
a similar approach, using a <div> element with a nonbreaking space. An empty <div> alone won’t
do the trick; it must contain some content that will force a text node to be created. Once again, the
fi rst node may need to be removed to avoid layout issues. The third line uses a hidden <input> fi eld
to accomplish the same thing. Since it doesn’t affect the layout of the page, this may be the optimal
case for most situations.

In most browsers, the <style> element causes similar problems with innerHTML. Most browsers
support the insertion of <style> elements using innerHTML in the exact way you’d expect,
as shown here:

div.innerHTML = “<style type=\”text/css\”>body {background-color: red; }</style>”;

In Internet Explorer 8 and earlier, <style> is yet another NoScope element, so it must be preceded
by a scoped element such as this:

div.innerHTML = “_<style type=\”text/css\”>body {background-color: red; }</style>”;
div.removeChild(div.firstChild);

The innerHTML property is not available on all elements. The following elements do not support
innerHTML: <col>, <colgroup>, <frameset>, <head>, <html>, <style>, <table>, <tbody>,
<thead>, <tfoot>, and <tr>. Additionally, Internet Explorer 8 and earlier do not support
innerHTML on the <title> element.

Firefox’s support of innerHTML is stricter in XHTML documents served with
the application/xhtml+xml content type. When using innerHTML in XHTML
documents, you must specify well-formed XHTML code. If the code is not well
formed, setting innerHTML fails silently.

Whenever you’re using innerHTML to insert HTML from a source external to your code, it’s
important to sanitize the HTML before passing it through to innerHTML. Internet Explorer 8 added
the window.toStaticHTML() method for this purpose. This method takes a single argument, an
HTML string, and returns a sanitized version that has all script nodes and script event-handler
attributes removed from the source. Following is an example:

var text = “Click Me”;
var sanitized = window.toStaticHTML(text); //Internet Explorer 8 only
alert(sanitized); //”Click Me”

This example runs an HTML link string through toStaticHTML(). The sanitized text no longer
has the onclick attribute present. Though Internet Explorer 8 is the only browser with this native
functionality, it is still advisable to be careful when using innerHTML and inspect the text manually
before inserting it, if possible.

HTML5 ❘ 369

c11.indd 369c11.indd 369 12/8/11 10:21:11 AM12/8/11 10:21:11 AM

370 ❘ CHAPTER 11 DOM EXTENSIONS

The outerHTML Property

When outerHTML is called in read mode, it returns the HTML of the element on which it is called,
as well as its child nodes. When called in write mode, outerHTML replaces the node on which it is
called with the DOM subtree created from parsing the given HTML string. Consider the following
HTML code:

<div id=”content”>
 <p>This is a paragraph with a list following it.</p>

 Item 1
 Item 2
 Item 3

</div>

OuterHTMLExample01.htm

When outerHTML is called on the <div> in this example, the same code is returned, including
the code for the <div>. Note that there may be differences based on how the browser parses
and interprets the HTML code. (These are the same types of differences you’ll notice when
using innerHTML.)

Use outerHTML to set a value in the following manner:

div.outerHTML = “<p>This is a paragraph.</p>”;

This code performs the same operation as the following DOM code:

var p = document.createElement(“p”);
p.appendChild(document.createTextNode(“This is a paragraph.”));
div.parentNode.replaceChild(p, div);

The new <p> element replaces the original <div> element in the DOM tree.

The outerHTML property is supported by Internet Explorer 4+, Safari 4+, Chrome, and Opera 8+.
Firefox, as of version 7, still does not support outerHTML.

The insertAdjacentHTML() Method

The last addition for markup insertion is the insertAdjacentHTML() method. This method also
originated in Internet Explorer and accepts two arguments: the position in which to insert and the
HTML text to insert. The fi rst argument must be one of the following values:

“beforebegin” — Insert just before the element as a previous sibling.

“afterbegin” — Insert just inside of the element as a new child or series of children
before the fi rst child.

➤

➤

c11.indd 370c11.indd 370 12/8/11 10:21:16 AM12/8/11 10:21:16 AM

“beforeend” — Insert just inside of the element as a new child or series of children after
the last child.

“afterend” — Insert just after the element as a next sibling.

Note that each of these values is case insensitive. The second argument is parsed as an HTML string
(the same as with innerHTML/outerHTML) and will throw an error if the value cannot be properly
parsed. Basic usage is as follows:

//insert as previous sibling
element.insertAdjacentHTML(“beforebegin”, “<p>Hello world!</p>”);

//insert as first child
element.insertAdjacentHTML(“afterbegin”, “<p>Hello world!</p>”);

//insert as last child
element.insertAdjacentHTML(“beforeend”, “<p>Hello world!</p>”);

//insert as next sibling
element.insertAdjacentHTML(“afterend”, “<p>Hello world!</p>”);

The insertAdjacentHTML() method is supported in Internet Explorer, Firefox 8+, Safari, Opera,
and Chrome.

Memory and Performance Issues

Replacing child nodes using the methods in this section may cause memory problems in browsers,
especially Internet Explorer. The problem occurs when event handlers or other JavaScript objects are
assigned to subtree elements that are removed. If an element has an event handler (or a JavaScript
object as a property), and one of these properties is used in such a way that the element is removed
from the document tree, the binding between the element and the event handler remains in memory.
If this is repeated frequently, memory usage increases for the page. When using innerHTML,
outerHTML, and insertAdjacentHTML(), it’s best to manually remove all event handlers and
JavaScript object properties on elements that are going to be removed. (Event handlers are discussed
further in Chapter 13.)

Using these properties does have an upside, especially when using innerHTML. Generally speaking,
inserting a large amount of new HTML is more effi cient through innerHTML than through multiple
DOM operations to create nodes and assign relationships between them. This is because an HTML
parser is created whenever a value is set to innerHTML (or outerHTML). This parser runs in browser-
level code (often written in C++), which is must faster than JavaScript. That being said, the creation
and destruction of the HTML parser does have some overhead, so it’s best to limit the number of
times you set innerHTML or outerHTML. For example, the following creates a number of list items
using innerHTML:

for (var i=0, len=values.length; i < len; i++){
 ul.innerHTML += ”” + values[i] + ””; //avoid!!
}

➤

➤

HTML5 ❘ 371

c11.indd 371c11.indd 371 12/8/11 10:21:17 AM12/8/11 10:21:17 AM

372 ❘ CHAPTER 11 DOM EXTENSIONS

This code is ineffi cient, because it sets innerHTML once each time through the loop. Furthermore,
this code is reading innerHTML each time through the loop, meaning that innerHTML is being
accessed twice each time through the loop. It’s best to build up the string separately and assign it
using innerHTML just once at the end, like this:

var itemsHtml = “”;
for (var i=0, len=values.length; i < len; i++){
 itemsHtml += ”” + values[i] + ””;
}
ul.innerHTML = itemsHtml;

This example is more effi cient, limiting the use of innerHTML to one assignment.

The scrollIntoView() Method

One of the issues not addressed by the DOM specifi cation is how to scroll areas of a page. To fi ll
this gap, browsers implemented several methods that control scrolling in different ways. Of the
various proprietary methods, only scrollIntoView() was selected for inclusion in HTML5.

The scrollIntoView() method exists on all HTML elements and scrolls the browser window or
container element so the element is visible in the viewport. If an argument of true is supplied or the
argument is omitted, the window scrolls so that the top of the element is at the top of the viewport
(if possible); otherwise, the element is scrolled so that it is fully visible in the viewport but may not
be aligned at the top. For example:

//make sure this element is visible
document.forms[0].scrollIntoView();

This method is most useful for getting the user’s attention when something has happened on the
page. Note that setting focus to an element also causes the browser to scroll the element into view
so that the focus can properly be displayed.

The scrollIntoView() method is supported in Internet Explorer, Firefox, Safari, Opera,
and Chrome.

PROPRIETARY EXTENSIONS

Although all browser vendors understand the importance of adherence to standards, they all have a
history of adding proprietary extensions to the DOM in order to fi ll perceived gaps in functionality.
Though this may seem like a bad thing on the surface, proprietary extensions have given the web
development community many important features that were later codifi ed into standards such as
HTML5.

There are still a large amount of DOM extensions that are proprietary in nature and haven’t
been incorporated into standards. This doesn’t mean that they won’t later be adopted as standards,
just that at the time of this writing, they remain proprietary and adopted by only a subset of
browsers.

c11.indd 372c11.indd 372 12/8/11 10:21:17 AM12/8/11 10:21:17 AM

Document Mode

Internet Explorer 8 introduced a new concept called document mode. A page’s document mode
determines to which features it has access. This means that there’s a specifi c level of CSS support,
a specifi c number of features available for scripting through JavaScript, and a specifi c way that
doctypes are treated. As of Internet Explorer 9, there are four different document modes:

Internet Explorer 5 — Renders the page in quirks mode (the default mode for Internet
Explorer 5). The new features in Internet Explorer 8 and higher are not available.

Internet Explorer 7 — Renders the page in Internet Explorer 7 standards mode. The
new features in Internet Explorer 8 and higher are not available.

Internet Explorer 8 — Renders the page in Internet Explorer 8 standards mode. New
features in Internet Explorer 8 are available, so you can access the Selectors API, more
CSS 2 selectors, some CSS3 features, and some HTML 5 features. The Internet Explorer 9
features are not available.

Internet Explorer 9 — Renders the page in Internet Explorer 9 standards mode. New
features in Internet Explorer 9 are available, such as ECMAScript 5, full CSS3 support, and
more HTML5 features. This document mode is considered the most advanced.

The concept of document mode is very important for understanding how Internet Explorer 8 and
higher works.

You can force a particular document mode by using the X-UA-Compatible HTTP header or by
using the <meta> tag equivalent:

<meta http-equiv=”X-UA-Compatible” content=”IE=IEVersion”>

There are several different possible values for the Internet Explorer version in this fi eld, and they
don’t necessarily map to the four document modes:

Edge — Always put the document into the most recent document mode available. Doctype
is ignored. For Internet Explorer 8, this forces the document mode to Internet Explorer 8
standards all the time; for Internet Explorer 9, the document mode is forced to Internet
Explorer 9 standards mode.

EmulateIE9 — If a doctype is present, set the document mode to Internet Explorer 9
standards and otherwise set the document mode to Internet Explorer 5.

EmulateIE8 — If a doctype is present, set the document mode to Internet Explorer 8
standards and otherwise set the document mode to Internet Explorer 5.

EmulateIE7 — If a doctype is present, set the document mode to Internet Explorer 7
standards and otherwise set the document mode to Internet Explorer 5.

9 — Force document mode to be Internet Explorer 9 standards. Doctype is ignored.

8 — Force document mode to be Internet Explorer 8 standards. Doctype is ignored.

7 — Force document mode to be Internet Explorer 7 standards. Doctype is ignored.

5 — Force document mode to be Internet Explorer 5. Doctype is ignored.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Proprietary Extensions ❘ 373

c11.indd 373c11.indd 373 12/8/11 10:21:18 AM12/8/11 10:21:18 AM

374 ❘ CHAPTER 11 DOM EXTENSIONS

For example, to make the document mode behave as it would in Internet Explorer 7, you can use the
following:

<meta http-equiv=”X-UA-Compatible” content=”IE=EmulateIE7”>

Whereas to force Internet Explorer 7 standards mode regardless of doctype, use this:

<meta http-equiv=”X-UA-Compatible” content=”IE=7”>

You are not required to have an X-UA-Compatible fi eld set on pages. By default, the browser uses
the doctype to determine if the document mode should be the best available standards mode or
quirks mode.

You can determine the document mode for a given page using the document.documentMode
property, a new feature in Internet Explorer 8, which returns the version of the document mode
being used (in version 9, the values can be 5, 7, 8, or 9):

var mode = document.documentMode;

Using this property can give you a hint as to how the page is going to behave. This property is
available in all document modes.

The children Property

The differences in how Internet Explorer prior to version 9 and other browsers interpret white
space in text nodes led to the creation of the children property. The children property is an
HTMLCollection that contains only an element’s child nodes that are also elements. Otherwise, the
children property is the same as childNodes and may contain the same items when an element has
only elements as children. The children property is accessed as follows:

var childCount = element.children.length;
var firstChild = element.children[0];

The children collection is supported in Internet Explorer 5, Firefox 3.5, Safari 2 (buggy), Safari 3
(complete), Opera 8, and Chrome (all versions). Internet Explorer 8 and earlier also return
comments in the children collection (while Internet Explorer 9 and later do not).

The contains() Method

It’s often necessary to determine if a given node is a descendant of another. Internet Explorer fi rst
introduced the contains() method as a way of providing this information without necessitating
a walk up the DOM document tree. The contains() method is called on the ancestor node from
which the search should begin and accepts a single argument, which is the suspected descendant
node. If the node exists as a descendant of the root node, the method returns true; otherwise it
returns false. Here is an example:

alert(document.documentElement.contains(document.body)); //true

c11.indd 374c11.indd 374 12/8/11 10:21:18 AM12/8/11 10:21:18 AM

This example tests to see if the <body> element is a descendant of the <html> element, which returns
true in all well-formed HTML pages. The contains() method is supported in Internet Explorer,
Firefox 9+, Safari, Opera, and Chrome.

There is another way of determining node relationships by using the DOM Level 3
compareDocumentPosition() method, which is supported in Internet Explorer 9+, Firefox,
Safari, Opera 9.5+, and Chrome. This method determines the relationship between two nodes
and returns a bitmask indicating the relationship. The values for the bitmask are as shown in the
following table.

To mimic the contains() method, you will be interested in the 16 mask. The result of
compareDocumentPosition() can be bitwise ANDed to determine if the reference node contains the
given node. Here is an example:

var result = document.documentElement.compareDocumentPosition(document.body);
alert(!!(result & 16));

When this code is executed, the result becomes 20 (4 for “follows” plus 16 for “is contained by”).
Applying a bitwise mask of 16 to the result returns a nonzero number, and the two NOT operators
convert that value into a Boolean.

A generic contains function can be created with a little help using browser and capability
detection, as shown here:

function contains(refNode, otherNode){
 if (typeof refNode.contains == “function” &&
 (!client.engine.webkit || client.engine.webkit >= 522)){
 return refNode.contains(otherNode);
 } else if (typeof refNode.compareDocumentPosition == “function”){
 return !!(refNode.compareDocumentPosition(otherNode) & 16);
 } else {
 var node = otherNode.parentNode;
 do {
 if (node === refNode){
 return true;
 } else {
 node = node.parentNode;
 }

MASK RELATIONSHIP BETWEEN NODES

1 Disconnected (The passed-in node is not in the document.)

2 Precedes (The passed-in node appears in the DOM tree prior to the reference node.)

4 Follows (The passed-in node appears in the DOM tree after the reference node.)

8 Contains (The passed-in node is an ancestor of the reference node.)

16 Is contained by (The passed-in node is a descendant of the reference node.)

Proprietary Extensions ❘ 375

c11.indd 375c11.indd 375 12/8/11 10:21:19 AM12/8/11 10:21:19 AM

376 ❘ CHAPTER 11 DOM EXTENSIONS

 } while (node !== null);
 return false;
 }
}

ContainsExample02.htm

This function combines three methods of determining if a node is a descendant of another. The fi rst
argument is the reference node and the second argument is the node to check for. In the function
body, the fi rst check is to see if the contains() method exists on refNode (capability detection).
This part of the code also checks the version of WebKit being used. If the function exists and it’s not
WebKit (!client.engine.webkit), then the code can proceed. Likewise, if the browser is WebKit
and at least Safari 3 (WebKit 522 and higher), then the code can proceed. WebKit less than 522 has
a contains() method that doesn’t work properly.

Next is a check to see if the compareDocumentPosition() method exists, and the fi nal part of the
function walks up the DOM structure from otherNode, recursively getting the parentNode and
checking to see if it’s equal to refNode. At the very top of the document tree, parentNode will be
null and the loop will end. This is the fallback strategy for older versions of Safari.

Markup Insertion

While the innerHTML and outerHTML markup insertion properties were adopted by HTML5 from
Internet Explorer, there are two others that were not. The two remaining properties that are left out
of HTML5 are innerText and outerText.

The innerText Property

The innerText property works with all text content contained within an element, regardless of how deep
in the subtree the text exists. When used to read the value, innerText concatenates the values of all text
nodes in the subtree in depth-fi rst order. When used to write the value, innerText removes all children of
the element and inserts a text node containing the given value. Consider the following HTML code:

<div id=”content”>
 <p>This is a paragraph with a list following it.</p>

 Item 1
 Item 2
 Item 3

</div>

InnerTextExample01.htm

For the <div> element in this example, the innerText property returns the following string:

This is a paragraph with a list following it.
Item 1
Item 2
Item 3

c11.indd 376c11.indd 376 12/8/11 10:21:19 AM12/8/11 10:21:19 AM

Note that different browsers treat white space in different ways, so the formatting may or may not
include the indentation in the original HTML code.

Using the innerText property to set the contents of the <div> element is as simple as this single
line of code:

div.innerText = “Hello world!”;

InnerTextExample02.htm

After executing this line of code, the HTML of the page is effectively changed to the following:

<div id=”content”>Hello world!</div>

Setting innerText removes all of the child nodes that existed before, completely changing the
DOM subtree. Additionally, setting innerText encodes all HTML syntax characters (less-than,
greater-than, quotation marks, and ampersands) that may appear in the text. Here is an example:

div.innerText = “Hello & welcome, \”reader\”!”;

InnerTextExample03.htm

The result of this operation is as follows:

<div id=”content”>Hello & welcome, "reader"!</div>

Setting innerText can never result in anything other than a single text node as the child of the
container, so the HTML-encoding of the text must take place in order to keep to that single
text node. The innerText property is also useful for stripping out HTML tags. By setting the
innerText equal to the innerText, as shown here, all HTML tags are removed:

div.innerText = div.innerText;

Executing this code replaces the contents of the container with just the text that exists already.

The innerText property is supported in Internet Explorer 4+, Safari 3+, Opera 8+, and Chrome.
Firefox does not support innerText, but it supports an equivalent property called textContent.
The textContent property is specifi ed in DOM Level 3 and is also supported by Internet Explorer
9+, Safari 3+, Opera 10+, and Chrome. For cross-browser compatibility, it’s helpful to use functions
that check which property is available, as follows:

function getInnerText(element){
 return (typeof element.textContent == “string”) ?
 element.textContent : element.innerText;
}

function setInnerText(element, text){
 if (typeof element.textContent == “string”){
 element.textContent = text;

Proprietary Extensions ❘ 377

c11.indd 377c11.indd 377 12/8/11 10:21:20 AM12/8/11 10:21:20 AM

378 ❘ CHAPTER 11 DOM EXTENSIONS

 } else {
 element.innerText = text;
 }
}

InnerTextExample05.htm

Each of these methods expects an element to be passed in. Then the element is checked to see if it has
the textContent property. If it does, then the typeof element.textContent should be “string”.
If textContent is not available, each function uses innerText. These can be called as follows:

setInnerText(div, “Hello world!”);
alert(getInnerText(div)); //”Hello world!”

Using these functions ensures the correct property is used based on what is available in the browser.

There is a slight difference in the content returned from innerText and that
returned from textContent. Whereas innerText skips over inline style and script
blocks, textContent returns any inline style or script code along with other text.
The best ways to avoid cross-browser differences are to use read text only on
shallow DOM subtrees or in parts of the DOM where there are no inline styles or
inline scripts.

The outerText Property

The outerText property works in the same way as innerText except that it includes the node on
which it’s called. For reading text values, outerText and innerText essentially behave in the exact
same way. In writing mode, however, outerText behaves very differently. Instead of replacing just
the child nodes of the element on which it’s used, outerText actually replaces the entire element,
including its child nodes. Consider the following:

div.outerText = “Hello world!”;

This single line of code is equivalent to the following two lines:

var text = document.createTextNode(“Hello world!”);
div.parentNode.replaceChild(text, div);

Essentially, the new text node completely replaces the element on which outerText was set. After
that point in time, the element is no longer in the document and cannot be accessed.

The outerText property is supported by Internet Explorer 4+, Safari 3+, Opera 8+, and Chrome.
This property is typically not used since it modifi es the element on which it is accessed. It is
recommended to avoid it whenever possible.

c11.indd 378c11.indd 378 12/8/11 10:21:21 AM12/8/11 10:21:21 AM

Scrolling

As mentioned previously, scrolling is one area where specifi cations didn’t exist prior to HTML5.
While scrollIntoView() was standardized in HTML5, there are still several additional
proprietary methods available in various browsers. Each of the following methods exists as an
extension to the HTMLElement type and therefore each is available on all elements:

scrollIntoViewIfNeeded(alignCenter) — Scrolls the browser window or container
element so that the element is visible in the viewport only if it’s not already visible; if
the element is already visible in the viewport, this method does nothing. The optional
alignCenter argument will attempt to place the element in the center of the viewport if
set to true. This is implemented in Safari and Chrome.

scrollByLines(lineCount) — Scrolls the contents of the element by the height of the
given number of text lines, which may be positive or negative. This is implemented in
Safari and Chrome.

scrollByPages(pageCount) — Scrolls the contents of the element by the height of a
page, which is determined by the height of the element. This is implemented in Safari and
Chrome.

Keep in mind that scrollIntoView() and scrollIntoViewIfNeeded() act on the element’s
container, whereas scrollByLines() and scrollByPages() affect the element itself. Following
is an example of how this may be used:

//scroll body by five lines
document.body.scrollByLines(5);

//make sure this element is visible only if it’s not already
document.images[0].scrollIntoViewIfNeeded();

//scroll the body back up one page
document.body.scrollByPages(-1);

Because scrollIntoView() is the only method supported in all browsers, this is typically the only
one used.

SUMMARY

While the DOM specifi es the core API for interacting with XML and HTML documents, there are
several specifi cations that provide extensions to the standard DOM. Many of the extensions are
based on proprietary extensions that later became de facto standards as other browsers began to
mimic their functionality. The three specifi cations covered in this chapter are:

Selectors API, which defi nes two methods for retrieving DOM elements based on CSS
selectors: querySelector() and querySelectorAll().

Element Traversal, which defi nes additional properties on DOM elements to allow easy
traversal to the next related DOM element. The need for this arose because of the handling
of white space in the DOM that creates text nodes between elements.

➤

➤

➤

➤

➤

Summary ❘ 379

c11.indd 379c11.indd 379 12/8/11 10:21:26 AM12/8/11 10:21:26 AM

380 ❘ CHAPTER 11 DOM EXTENSIONS

HTML5, which provides a large number of extensions to the standard DOM. These include
standardization of de facto standards such as innerHTML, as well as additional functionality
for dealing with focus management, character sets, scrolling, and more.

The number of DOM extensions is currently small, but it’s almost a certainty that the number will
continue to grow as web technology continues to evolve. Browsers still experiment with proprietary
extensions that, if successful, may end up as pseudo-standards or be incorporated into future
versions’ specifi cations.

➤

c11.indd 380c11.indd 380 12/8/11 10:21:27 AM12/8/11 10:21:27 AM

DOM Levels 2 and 3

WHAT’S IN THIS CHAPTER?

Changes to the DOM introduced in Levels 2 and 3

The DOM API for manipulating styles

Working with DOM traversal and ranges

The fi rst level of the DOM focuses on defi ning the underlying structure of HTML and XML
documents. DOM Levels 2 and 3 build on this structure to introduce more interactivity and
support for more advanced XML features. As a result, DOM Levels 2 and 3 actually consist
of several modules that, although related, describe very specifi c subsets of the DOM. These
modules are as follows:

DOM Core — Builds on the Level 1 core, adding methods and properties to nodes.

DOM Views — Defi nes different views for a document based on stylistic information.

DOM Events — Explains how to tie interactivity to DOM documents using events.

DOM Style — Defi nes how to programmatically access and change CSS styling
information.

DOM Traversal and Range — Introduces new interfaces for traversing a DOM
document and selecting specifi c parts of it.

DOM HTML — Builds on the Level 1 HTML, adding properties, methods, and
new interfaces.

This chapter explores each of these modules except for DOM events, which are covered
fully in Chapter 13.

➤

➤

➤

➤

➤

➤

➤

➤

➤

12

DOM Level 3 also contains the XPath module and the Load and Save module.
These are discussed in Chapter 18.

c12.indd 381c12.indd 381 12/8/11 10:25:56 AM12/8/11 10:25:56 AM

382 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

DOM CHANGES

The purpose of the DOM Levels 2 and 3 Core is to expand the DOM API to encompass all
of the requirements of XML and to provide for better error handling and feature detection. For
the most part, this means supporting the concept of XML namespaces. DOM Level 2 Core doesn’t
introduce any new types; it simply augments the types defi ned in DOM Level 1 to include new
methods and properties. DOM Level 3 Core further augments the existing types and introduces
several new ones.

Similarly, DOM Views and HTML augment DOM interfaces, providing new properties and methods.
These two modules are fairly small and so are grouped in with the Core to discuss changes to
fundamental JavaScript objects. You can determine which browsers support these parts of the DOM
using the following code:

var supportsDOM2Core = document.implementation.hasFeature(“Core”, “2.0”);
var supportsDOM3Core = document.implementation.hasFeature(“Core”, “3.0”);
var supportsDOM2HTML = document.implementation.hasFeature(“HTML”, “2.0”);
var supportsDOM2Views = document.implementation.hasFeature(“Views”, “2.0”);
var supportsDOM2XML = document.implementation.hasFeature(“XML”, “2.0”);

This chapter covers only the parts of the DOM that have been implemented by
browsers; parts that have yet to be implemented by any browser are not mentioned.

XML Namespaces

XML namespaces allow elements from different XML-based languages to be mixed together in a
single, well-formed document without fear of element name clashes. Technically, XML namespaces
are not supported by HTML but supported in XHTML; therefore, the examples in this section are
in XHTML.

Namespaces are specifi ed using the xmlns attribute. The namespace for XHTML is
http://www.w3.org/1999/xhtml and should be included on the <html> element of any
well-formed XHTML page, as shown in the following example:

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Example XHTML page</title>
 </head>
 <body>
 Hello world!
 </body>
</html>

For this example, all elements are considered to be part of the XHTML namespace by default.
You can explicitly create a prefi x for an XML namespace using xmlns, followed by a colon,
followed by the prefi x, as in this example:

c12.indd 382c12.indd 382 12/8/11 10:26:08 AM12/8/11 10:26:08 AM

<xhtml:html xmlns:xhtml=”http://www.w3.org/1999/xhtml”>
 <xhtml:head>
 <xhtml:title>Example XHTML page</xhtml:title>
 </xhtml:head>
 <xhtml:body>
 Hello world!
 </xhtml:body>
</xhtml:html>

Here, the namespace for XHTML is defi ned with a prefi x of xhtml, requiring all XHTML elements
to begin with that prefi x. Attributes may also be namespaced to avoid confusion between languages,
as shown in the following example:

<xhtml:html xmlns:xhtml=”http://www.w3.org/1999/xhtml”>
 <xhtml:head>
 <xhtml:title>Example XHTML page</xhtml:title>
 </xhtml:head>
 <xhtml:body xhtml:class=”home”>
 Hello world!
 </xhtml:body>
</xhtml:html>

The class attribute in this example is prefi xed with xhtml. Namespacing isn’t really necessary
when only one XML-based language is being used in a document; it is, however, very useful when
mixing two languages together. Consider the following document containing both XHTML
and SVG:

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Example XHTML page</title>
 </head>
 <body>
 <svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”
 viewBox=”0 0 100 100” style=”width:100%; height:100%”>
 <rect x=”0” y=”0” width=”100” height=”100” style=”fi ll:red” />
 </svg>
 </body>
</html>

In this example, the <svg> element is indicated as foreign to the containing document by setting its own
namespace. All children of the <svg> element, as well as all attributes of the elements, are considered
to be in the http://www.w3.org/2000/svg namespace. Even though the document is technically an
XHTML document, the SVG code is considered valid because of the use of namespaces.

The interesting problem with a document such as this is what happens when a method is
called on the document to interact with nodes in the document. When a new element is created, which
namespace does it belong to? When querying for a specifi c tag name, what namespaces should be
included in the results? DOM Level 2 Core answers these questions by providing namespace-specifi c
versions of most DOM Level 1 methods.

DOM Changes ❘ 383

c12.indd 383c12.indd 383 12/8/11 10:26:13 AM12/8/11 10:26:13 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

384 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

Changes to Node

The Node type evolves in DOM Level 2 to include the following namespace-specifi c properties:

localName — The node name without the namespace prefi x.

namespaceURI — The namespace URI of the node or null if not specifi ed.

prefix — The namespace prefi x or null if not specifi ed.

When a node uses a namespace prefi x, the nodeName is equivalent to prefix + “:” + localName.
Consider the following example:

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Example XHTML page</title>
 </head>
 <body>
 <s:svg xmlns:s=”http://www.w3.org/2000/svg” version=”1.1”
 viewBox=”0 0 100 100” style=”width:100%; height:100%”>
 <s:rect x=”0” y=”0” width=”100” height=”100” style=”fi ll:red” />
 </s:svg>
 </body>
</html>

NamespaceExample.xml

For the <html> element, the localName and tagName is “html”, the namespaceURI is
“http://www.w3.org/1999/xhtml”, and the prefix is null. For the <s:svg> element, the
localName is “svg”, the tagName is “s:svg”, the namespaceURI is “http://www.w3.org/2000/
svg”, and the prefix is “s”.

DOM Level 3 goes one step further and introduces the following methods to work with namespaces:

isDefaultNamespace(namespaceURI) — Returns true when the specifi ed namespaceURI
is the default namespace for the node.

lookupNamespaceURI(prefi x) — Returns the namespace URI for the given prefi x.

lookupPrefix(namespaceURI) — Returns the prefi x for the given namespaceURI.

In the previous example, the following code can be executed:

alert(document.body.isDefaultNamespace(“http://www.w3.org/1999/xhtml”)); //true

//assume svg contains a reference to <s:svg>
alert(svg.lookupPrefix(“http://www.w3.org/2000/svg”)); //”s”
alert(svg.lookupNamespaceURI(“s”)); //”http://www.w3.org/2000/svg”

These methods are primarily useful when you have a reference to a node without knowing its
relationship to the rest of the document.

➤

➤

➤

➤

➤

➤

c12.indd 384c12.indd 384 12/8/11 10:26:14 AM12/8/11 10:26:14 AM

Changes to Document

The Document type is changed in DOM Level 2 to include the following namespace-specifi c methods:

createElementNS(namespaceURI, tagName) — Creates a new element with the given
tagName as part of the namespace indicated by namespaceURI.

createAttributeNS(namespaceURI, attributeName) — Creates a new attribute node as
part of the namespace indicated by namespaceURI.

getElementsByTagNameNS(namespaceURI, tagName) — Returns a NodeList of elements
with the given tagName that are also a part of the namespace indicated by namespaceURI.

These methods are used by passing in the namespace URI of the namespace to use (not the
namespace prefi x), as shown in the following example.

//create a new SVG element
var svg = document.createElementNS(“http://www.w3.org/2000/svg”,”svg”);

//create new attribute for a random namespace
var att = document.createAttributeNS(“http://www.somewhere.com”, “random”);

//get all XHTML elements
var elems = document.getElementsByTagNameNS(”http://www.w3.org/1999/xhtml”, ”*”);

The namespace-specifi c methods are necessary only when there are two or more namespaces in a
given document.

Changes to Element

The changes to Element in DOM Level 2 Core are mostly related to attributes. The following new
methods are introduced:

getAttributeNS(namespaceURI, localName) — Gets the attribute from the namespace
represented by namespaceURI and with a name of localName.

getAttributeNodeNS(namespaceURI, localName) — Gets the attribute node from the
namespace represented by namespaceURI and with a name of localName.

getElementsByTagNameNS(namespaceURI, tagName) — Returns a NodeList of descendant
elements with the given tagName that are also a part of the namespace indicated by
namespaceURI.

hasAttributeNS(namespaceURI, localName) — Determines if the element has
an attribute from the namespace represented by namespaceURI and with a name of
localName. Note: DOM Level 2 Core also adds a hasAttribute() method for use
without namespaces.

removeAttributeNS(namespaceURI, localName) — Removes the attribute from the
namespace represented by namespaceURI and with a name of localName.

➤

➤

➤

➤

➤

➤

➤

➤

DOM Changes ❘ 385

c12.indd 385c12.indd 385 12/8/11 10:26:14 AM12/8/11 10:26:14 AM

386 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

setAttributeNS(namespaceURI, qualifiedName, value) — Sets the attribute from
the namespace represented by namespaceURI and with a name of qualifiedName equal
to value.

setAttributeNodeNS(attNode) — Sets the attribute node from the namespace represented
by namespaceURI.

These methods behave the same as their DOM Level 1 counterparts with the exception of the fi rst
argument, which is always the namespace URI except for setAttributeNodeNS().

Changes to NamedNodeMap

The NamedNodeMap type also introduces the following methods for dealing with namespaces. Since
attributes are represented by a NamedNodeMap, these methods mostly apply to attributes.

getNamedItemNS(namespaceURI, localName) — Gets the item from the namespace
represented by namespaceURI and with a name of localName.

removeNamedItemNS(namespaceURI, localName) — Removes the item from the
namespace represented by namespaceURI and with a name of localName.

setNamedItemNS(node) — Adds node, which should have namespace information
already applied.

These methods are rarely used, because attributes are typically accessed directly from an element.

Other Changes

There are some other minor changes made to various parts of the DOM in DOM Level 2 Core.
These changes don’t have to do with XML namespaces and are targeted more toward ensuring the
robustness and completeness of the API.

Changes to DocumentType

The DocumentType type adds three new properties: publicId, systemId, and internalSubset.
The publicId and systemId properties represent data that is readily available in a doctype but
were inaccessible using DOM Level 1. Consider the following HTML doctype:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

In this doctype, the publicId is “-//W3C//DTD HTML 4.01//EN” and the systemId is
“http://www.w3.org/TR/html4/strict.dtd”. Browsers that support DOM Level 2 should
be able to run the following JavaScript code:

alert(document.doctype.publicId);
alert(document.doctype.systemId);

Accessing this information is rarely, if ever, needed in web pages.

➤

➤

➤

➤

➤

c12.indd 386c12.indd 386 12/8/11 10:26:15 AM12/8/11 10:26:15 AM

The internalSubset property accesses any additional defi nitions that are included in the doctype,
as shown in the following example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”
[<!ELEMENT name (#PCDATA)>] >

For this code, document.doctype.internalSubset returns “<!ELEMENT name (#PCDATA)>”.
Internal subsets are rarely used in HTML and are slightly more common in XML.

Changes to Document

The only new method on Document that is not related to namespaces is importNode(). The purpose
of this method is to take a node from a different document and import it into a new document so
that it can be added into the document structure. Remember, every node has an ownerDocument
property that indicates the document it belongs to. If a method such as appendChild() is called
and a node with a different ownerDocument is passed in, an error will occur. Calling importNode()
on a node from a different document returns a new version of the node that is owned by the
appropriate document.

The importNode() method is similar to the cloneNode() method on an element. It accepts two
arguments: the node to clone and a Boolean value indicating if the child nodes should also be copied.
The result is a duplicate of the node that is suitable for use in the document. Here is an example:

var newNode = document.importNode(oldNode, true); //import node and all children
document.body.appendChild(newNode);

This method isn’t used very often with HTML documents; it is used more frequently with XML
documents (discussed further in Chapter 18).

DOM Level 2 Views adds a property called defaultView, which is a pointer to the window (or
frame) that owns the given document. The Views specifi cation doesn’t provide details about when
other views may be available, so this is the only property added. The defaultView property is
supported in all browsers (except Internet Explorer 8 and earlier). There is an equivalent property
called parentWindow that is supported in Internet Explorer 8 and earlier, as well as Opera. Thus, to
determine the owning window of a document, you can use the following code:

var parentWindow = document.defaultView || document.parentWindow;

Aside from this one method and property, there are a couple of changes to the document
.implementation object specifi ed in the DOM Level 2 Core in the form of two new methods:
createDocumentType() and createDocument(). The createDocumentType() method is used to create
new DocumentType nodes and accepts three arguments: the name of the doctype, the publicId, and
the systemId. For example, the following code creates a new HTML 4.01 Strict doctype:

var doctype = document.implementation.createDocumentType(“html”,
 “-//W3C//DTD HTML 4.01//EN”,
 “http://www.w3.org/TR/html4/strict.dtd”);

DOM Changes ❘ 387

c12.indd 387c12.indd 387 12/8/11 10:26:16 AM12/8/11 10:26:16 AM

388 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

An existing document’s doctype cannot be changed, so createDocumentType() is useful only when
creating new documents, which can be done with createDocument(). This method accepts three
arguments: the namespaceURI for the document element, the tag name of the document element,
and the doctype for the new document. A new blank XML document can be created, as shown in
the following example:

var doc = document.implementation.createDocument(“”, “root”, null);

This code creates a new document with no namespace and a document element of <root> with no
doctype specifi ed. To create an XHTML document, you can use the following code:

var doctype = document.implementation.createDocumentType(“html”,
 “-//W3C//DTD XHTML 1.0 Strict//EN”,
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”);

var doc = document.implementation.createDocument(“http://www.w3.org/1999/xhtml”,
 ”html”, doctype);

Here, a new XHTML document is created with the appropriate namespace and doctype. The
document has only the document element <html>; everything else must be added.

The DOM Level 2 HTML module also adds a method called createHTMLDocument() to document
.implementation. The purpose of this method is to create a complete HTML document, including
the <html>, <head>, <title>, and <body> elements. This method accepts a single argument, which
is the title of the newly created document (the string to go in the <title> element), and returns the
new HTML document as follows:

var htmldoc = document.implementation.createHTMLDocument(“New Doc”);
alert(htmldoc.title); //”New Doc”
alert(typeof htmldoc.body); //”object”

CreateHTMLDocumentExample.htm

The object created from a call to createHTMLDocument() is an instance of the HTMLDocument type
and so contains all of the properties and methods associated with it, including the title and body
properties. This method is supported in Internet Explorer 9+, Firefox 4+, Safari, Chrome, and Opera.

Changes to Node

The sole non–namespace-related change to the Node type is the addition of the isSupported()
method. Like the hasFeature() method on document.implementation that was introduced in
DOM Level 1, the isSupported() method indicates what the node is capable of doing. This method
accepts the same two arguments: the feature name and the feature version. When the feature is
implemented and is capable of being executed by the given node, isSupported() returns true.
Here is an example:

if (document.body.isSupported(“HTML”, “2.0”)){
 //do something only possible using DOM Level 2 HTML
}

c12.indd 388c12.indd 388 12/8/11 10:26:16 AM12/8/11 10:26:16 AM

This method is of limited usefulness and falls victim to the same issues surrounding hasFeature()
in that implementations get to decide whether to return true or false for each feature. Capability
detection is a better approach for detecting whether or not a particular feature is available.

DOM Level 3 introduces two methods to help compare nodes: isSameNode() and isEqualNode().
Both methods accept a single node as an argument and return true if that node is the same as or
equal to the reference node. Two nodes are the same when they reference the same object. Two
nodes are equal when they are of the same type and have properties that are equal (nodeName,
nodeValue, and so on), and their attributes and childNodes properties are equivalent (containing
equivalent values in the same positions). Here is an example:

var div1 = document.createElement(“div”);
div1.setAttribute(“class”, “box”);

var div2 = document.createElement(“div”);
div2.setAttribute(“class”, “box”);

alert(div1.isSameNode(div1)); //true
alert(div1.isEqualNode(div2)); //true
alert(div1.isSameNode(div2)); //false

Here, two <div> elements are created with the same attributes. The two elements are equivalent to
one another but are not the same.

DOM Level 3 also introduces methods for attaching additional data to DOM nodes. The setUserData()
method assigns data to a node and accepts three arguments: the key to set, the actual data (which may
be of any data type), and a handler function. You can assign data to a node using the following code:

document.body.setUserData(“name”, “Nicholas”, function(){});

You can then retrieve the information using getUserData() and passing in the same key, as shown here:

var value = document.body.getUserData(“name”);

The handler function for setUserData() is called whenever the node with the data is cloned,
removed, renamed, or imported into another document and gives you the opportunity to determine
what should happen to the user data in each of those cases. The handler function accepts fi ve
arguments: a number indicating the type of operation (1 for clone, 2 for import, 3 for delete, or 4 for
rename), the data key, the data value, the source node, and the destination node. The source node
is null when the node is being deleted, and the destination node is null unless the node is being
cloned. You can then determine how to store the data. Here is an example:

var div = document.createElement(“div”);
div.setUserData(“name”, “Nicholas”, function(operation, key, value, src, dest){
 if (operation == 1){
 dest.setUserData(key, value, function(){}); }
});

var newDiv = div.cloneNode(true);
alert(newDiv.getUserData(”name”)); //”Nicholas”

UserDataExample.htm

DOM Changes ❘ 389

c12.indd 389c12.indd 389 12/8/11 10:26:17 AM12/8/11 10:26:17 AM

390 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

Here, a <div> element is created and has some data assigned to it, including some user data. When
the element is cloned via cloneNode(), the handler function is called and the data is automatically
assigned to the clone. When getUserData() is called on the clone, it returns the same value that
was assigned to the original.

Changes to Frames

Frames and iframes, represented by HTMLFrameElement and HTMLIFrameElement, respectively,
have a new property in DOM Level 2 HTML called contentDocument. This property contains a
pointer to the document object representing the contents of the frame. Prior to this, there was no
way to retrieve the document object directly through the element; it was necessary to use the frames
collection. This property can be used, as shown in the following example:

var iframe = document.getElementById(“myIframe”);
var iframeDoc = iframe.contentDocument; //won’t work in IE < 8

IFrameElementExample.htm

The contentDocument property is an instance of Document and can be used just like any other
HTML document, including all properties and methods. This property is supported in Opera,
Firefox, Safari, and Chrome. Internet Explorer versions prior to 8 don’t support contentDocument
on frames but do support a property called contentWindow that returns the window object for the
frame, which has a document property. So, to access the document object for an iframe in all four
browsers, you can use the following code:

var iframe = document.getElementById(“myIframe”);
var iframeDoc = iframe.contentDocument || iframe.contentWindow.document;

IFrameElementExample2.htm

The contentWindow property is available in all browsers.

Access to the document object of a frame or iframe is limited based on cross-
domain security restrictions. If you are attempting to access the document object of
a frame containing a page that is loaded from a different domain or subdomain, or
with a different protocol, doing so will throw an error.

STYLES

Styles are defi ned in HTML in three ways: including an external style sheet via the <link> element,
defi ning inline styles using the <style> element, and defi ning element-specifi c styles using the style
attribute. DOM Level 2 Styles provides an API around all three of these styling mechanisms. You
can determine if the browser supports the DOM Level 2 CSS capabilities using the following code:

var supportsDOM2CSS = document.implementation.hasFeature(“CSS”, “2.0”);
var supportsDOM2CSS2 = document.implementation.hasFeature(“CSS2”, “2.0”);

c12.indd 390c12.indd 390 12/8/11 10:26:18 AM12/8/11 10:26:18 AM

Accessing Element Styles

Any HTML element that supports the style attribute also has a style property exposed in
JavaScript. The style object is an instance of CSSStyleDeclaration and contains all stylistic
information specifi ed by the HTML style attribute but no information about styles that have
cascaded from either included or inline style sheets. Any CSS property specifi ed in the style
attribute are represented as properties on the style object. Since CSS property names use dash case
(using dashes to separate words, such as background-image), the names must be converted into
camel case in order to be used in JavaScript. The following table lists some common CSS properties
and the equivalent property names on the style object.

For the most part, property names convert directly simply by changing the format of the property
name. The one CSS property that doesn’t translate directly is float. Since float is a reserved
word in JavaScript, it can’t be used as a property name. The DOM Level 2 Style specifi cation states
that the corresponding property on the style object should be cssFloat, which is supported
in Internet Explorer 9, Firefox, Safari, Opera, and Chrome. Internet Explorer 8 and earlier use
styleFloat instead.

Styles can be set using JavaScript at any time so long as a valid DOM element reference is available.
Here are some examples:

var myDiv = document.getElementById(“myDiv”);

//set the background color
myDiv.style.backgroundColor = ”red”;

//change the dimensions
myDiv.style.width = ”100px”;
myDiv.style.height = ”200px”;

//assign a border
myDiv.style.border = ”1px solid black”;

When styles are changed in this manner, the display of the element is automatically updated.

CSS PROPERTY JAVASCRIPT PROPERTY

background-image style.backgroundImage

color style.color

display style.display

font-family style.fontFamily

Styles ❘ 391

c12.indd 391c12.indd 391 12/8/11 10:26:23 AM12/8/11 10:26:23 AM

392 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

Styles specifi ed in the style attribute can also be retrieved using the style object. Consider the
following HTML:

<div id=”myDiv” style=”background-color: blue; width: 10px; height: 25px”></div>

The information from this element’s style attribute can be retrieved via the following code:

alert(myDiv.style.backgroundColor); //”blue”
alert(myDiv.style.width); //”10px”
alert(myDiv.style.height); //”25px”

If no style attribute is specifi ed on an element, the style object may contain some default values
but cannot give any accurate information about the styling of the element.

DOM Style Properties and Methods

The DOM Level 2 Style specifi cation also defi nes several properties and methods on the style
object. These properties and methods provide information about the contents of the element’s style
attribute and enabling changes. They are as follows:

cssText — As described previously, provides access to the CSS code of the style attribute.

length — The number of CSS properties applied to the element.

parentRule — The CSSRule object representing the CSS information. The CSSRule type is
discussed in a later section.

getPropertyCSSValue(propertyName) — Returns a CSSValue object containing the value
of the given property.

getPropertyPriority(propertyName) — Returns “important” if the given property is
set using !important; otherwise it returns an empty string.

getPropertyValue(propertyName) — Returns the string value of the given property.

item(index) — Returns the name of the CSS property at the given position.

removeProperty(propertyName) — Removes the given property from the style.

setProperty(propertyName, value, priority) — Sets the given property to the given
value with a priority (either “important” or an empty string).

The cssText property allows access to the CSS code of the style. When used in read mode, cssText
returns the browser’s internal representation of the CSS code in the style attribute. When used

➤

➤

➤

➤

➤

➤

➤

➤

➤

When in standards mode, all measurements have to include a unit of measure.
In quirks mode, you can set style.width to be “20” and it will assume that you
mean “20px”; in standards mode, setting style.width to “20” will be ignored
because it has no unit of measure. In practice, it’s best to always include the unit of
measurement.

c12.indd 392c12.indd 392 12/8/11 10:26:23 AM12/8/11 10:26:23 AM

in write mode, the value assigned to cssText overwrites the entire value of the style attribute,
meaning that all previous style information specifi ed using the attribute is lost. For instance,
if the element has a border specifi ed via the style attribute and you overwrite cssText with
rules that don’t include the border, it is removed from the element. The cssText property is used
as follows:

myDiv.style.cssText = “width: 25px; height: 100px; background-color: green”;
alert(myDiv.style.cssText);

Setting the cssText property is the fastest way to make multiple changes to an element’s style
because all of the changes are applied at once.

The length property is designed for use in conjunction with the item() method for iterating
over the CSS properties defi ned on an element. With these, the style object effectively becomes a
collection, and bracket notation can be used in place of item() to retrieve the CSS property name in
the given position, as shown in the following example:

for (var i=0, len=myDiv.style.length; i < len; i++){
 alert(myDiv.style[i]); //or myDiv.style.item(i)
}

Using either bracket notation or item(), you can retrieve the CSS property name (“background-
color”, not “backgroundColor”). This property name can then be used in getPropertyValue()
to retrieve the actual value of the property, as shown in the following example:

var prop, value, i, len;
for (i=0, len=myDiv.style.length; i < len; i++){
 prop = myDiv.style[i]; //or myDiv.style.item(i)
 value = myDiv.style.getPropertyValue(prop);
 alert(prop + “ : “ + value);
}

The getPropertyValue() method always retrieves the string representation of the CSS property
value. If you need more information, getPropertyCSSValue() returns a CSSValue object that
has two properties: cssText and cssValueType. The cssText property is the same as the value
returned from getPropertyValue(). The cssValueType property is a numeric constant indicating
the type of value being represented: 0 for an inherited value, 1 for a primitive value, 2 for a list,
or 3 for a custom value. The following code outputs the CSS property value and the value type:

var prop, value, i, len;
for (i=0, len=myDiv.style.length; i < len; i++){
 prop = myDiv.style[i]; //or myDiv.style.item(i)
 value = myDiv.style.getPropertyCSSValue(prop);
 alert(prop + “ : “ + value.cssText + “ (“ + value.cssValueType + “)”);
}

DOMStyleObjectExample.htm

Styles ❘ 393

c12.indd 393c12.indd 393 12/8/11 10:26:29 AM12/8/11 10:26:29 AM

394 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

In practice, getPropertyCSSValue() is less useful than getPropertyValue(). This method is
supported in Internet Explorer 9+, Safari 3+, and Chrome. Firefox through version 7 provides the
method, but calls always return null.

The removeProperty() method is used to remove a specifi c CSS property from the element’s
styling. Removing a property using this method means that any default styling for that property
(cascading from other style sheets) will be applied. For instance, to remove a border property that
was set in the style attribute, you can use the following code:

myDiv.style.removeProperty(“border”);

This method is helpful when you’re not sure what the default value for a given CSS property is.
Simply removing the property allows the default value to be used.

Unless otherwise noted, the properties and methods in this section are supported in
Internet Explorer 9+, Firefox, Safari, Opera 9+, and Chrome.

Computed Styles

The style object offers information about the style attribute on any element that supports
it but contains no information about the styles that have cascaded from style sheets and affect
the element. DOM Level 2 Style augments document.defaultView to provide a method called
getComputedStyle(). This method accepts two arguments: the element to get the computed
style for and a pseudo-element string (such as “:after”). The second argument can be null
if no pseudo-element information is necessary. The getComputedStyle() method returns a
CSSStyleDeclaration object (the same type as the style property) containing all computed styles
for the element. Consider the following HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>Computed Styles Example</title>
 <style type=”text/css”>
 #myDiv {
 background-color: blue;
 width: 100px;
 height: 200px;
 }
 </style>
</head>
<body>
 <div id=”myDiv” style=”background-color: red; border: 1px solid black”></div>
</body>
</html>

ComputedStylesExample.htm

In this example, the <div> element has styles applied to it both from an inline style sheet (the
<style> element) and from the style attribute. The style object has values for backgroundColor

c12.indd 394c12.indd 394 12/8/11 10:26:29 AM12/8/11 10:26:29 AM

and border, but nothing for width and height, which are applied through a style sheet rule. The
following code retrieves the computed style for the element:

var myDiv = document.getElementById(“myDiv”);
var computedStyle = document.defaultView.getComputedStyle(myDiv, null);

alert(computedStyle.backgroundColor); //”red”
alert(computedStyle.width); //”100px”
alert(computedStyle.height); //”200px”
alert(computedStyle.border); //”1px solid black” in some browsers

ComputedStylesExample.htm

When retrieving the computed style of this element, the background color is reported as “red”,
the width as “100px”, and the height as “200px”. Note that the background color is not “blue”,
because that style is overridden on the element itself. The border property may or may not return
the exact border rule from the style sheet (Opera returns it, but other browsers do not). This
inconsistency is due to the way that browsers interpret rollup properties, such as border, that
actually set a number of other properties. When you set border, you’re actually setting rules for
the border width, color, and style on all four borders (border-left-width, border-top-color,
border-bottom-style, and so on). So even though computedStyle.border may not return a value
in all browsers, computedStyle.borderLeftWidth does.

Note that although some browsers support this functionality, the manner in which
values are represented can differ. For example, Firefox and Safari translate all
colors into RGB form (such as rgb(255,0,0) for red), whereas Opera translates
all colors into their hexadecimal representations (#ff0000 for red). It’s always best to
test your functionality on a number of browsers when using getComputedStyle().

Internet Explorer doesn’t support getComputedStyle(), though it has a similar concept. Every
element that has a style property also has a currentStyle property. The currentStyle property
is an instance of CSSStyleDeclaration and contains all of the fi nal computed styles for the
element. The styles can be retrieved in a similar fashion, as shown in this example:

var myDiv = document.getElementById(“myDiv”);
var computedStyle = myDiv.currentStyle;

alert(computedStyle.backgroundColor); //”red”
alert(computedStyle.width); //”100px”
alert(computedStyle.height); //”200px”
alert(computedStyle.border); //undefined

IEComputedStylesExample.htm

As with the DOM version, the border style is not returned in Internet Explorer because it is
considered a rollup property.

Styles ❘ 395

c12.indd 395c12.indd 395 12/8/11 10:26:35 AM12/8/11 10:26:35 AM

396 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

The important thing to remember about computed styles in all browsers is that they are read-only;
you cannot change CSS properties on a computed style object. Also, the computed style contains
styling information that is part of the browser’s internal style sheet, so any CSS property that
has a default value will be represented in the computed style. For instance, the visibility
property always has a default value in all browsers, but this value differs per implementation.
Some browsers set the visibility property to “visible” by default, whereas others have it
as “inherit”. You cannot depend on the default value of a CSS property to be the same across
browsers. If you need elements to have a specifi c default value, you should manually specify it
in a style sheet.

Working with Style Sheets

The CSSStyleSheet type represents a CSS style sheet as included using a <link> element or defi ned
in a <style> element. Note that the elements themselves are represented by the HTMLLinkElement
and HTMLStyleElement types, respectively. The CSSStyleSheet type is generic enough to represent
a style sheet no matter how it is defi ned in HTML. Furthermore, the element-specifi c types allow
for modifi cation of HTML attributes, whereas a CSSStyleSheet object is, with the exception of one
property, a read-only interface. You can determine if the browser supports the DOM Level 2 style
sheets using the following code:

var supportsDOM2StyleSheets =
 document.implementation.hasFeature(“StyleSheets”, “2.0”);

The CSSStyleSheet type inherits from StyleSheet, which can be used as a base to defi ne non-CSS
style sheets. The following properties are inherited from StyleSheet:

disabled — A Boolean value indicating if the style sheet is disabled. This property is read/
write, so setting its value to true will disable a style sheet.

href — The URL of the style sheet if it is included using <link>; otherwise, this is null.

media — A collection of media types supported by this style sheet. The collection has
a length property and item() method, as with all DOM collections. Like other DOM
collections, you can use bracket notation to access specifi c items in the collection.
An empty list indicates that the style sheet should be used for all media. In Internet
Explorer 8 and earlier, media is a string refl ecting the media attribute of the <link> or
<style> element.

ownerNode — Pointer to the node that owns the style sheet, which is either a <link> or a
<style> element in HTML (it can be a processing instruction in XML). This property is
null if a style sheet is included in another style sheet using @import. Internet Explorer 8
and earlier do not support this property.

parentStyleSheet — When a style sheet is included via @import, this is a pointer to the
style sheet that imported it.

title — The value of the title attribute on the ownerNode.

type — A string indicating the type of style sheet. For CSS style sheets, this is “text/css”.

➤

➤

➤

➤

➤

➤

➤

c12.indd 396c12.indd 396 12/8/11 10:26:40 AM12/8/11 10:26:40 AM

With the exception of disabled, the rest of these properties are read-only. The CSSStyleSheet type
supports all of these properties and the following properties and methods:

cssRules — A collection of rules contained in the style sheet. Internet Explorer 8
and earlier don’t support this property but have a comparable property called rules. Internet
Explorer 9 supports both cssRules and rules.

ownerRule — If the style sheet was included using @import, this is a pointer to the rule
representing the import; otherwise, this is null. Internet Explorer does not support this
property.

deleteRule(index) — Deletes the rule at the given location in the cssRules collection.
Internet Explorer 8 and earlier does not support this method, but it does have a similar method
called removeRule(). Internet Explorer 9 supports both deleteRule() and removeRule().

insertRule(rule, index) — Inserts the given string rule at the position specifi ed in the
cssRules collection. Internet Explorer 8 and earlier do not support this method but have
a similar method called addRule(). Internet Explorer 9 supports both insertRule() and
addRule().

The list of style sheets available on the document is represented by the document.styleSheets
collection. The number of style sheets on the document can be retrieved using the length property,
and each individual style sheet can be accessed using either the item() method or bracket notation.
Here is an example:

var sheet = null;
for (var i=0, len=document.styleSheets.length; i < len; i++){
 sheet = document.styleSheets[i];
 alert(sheet.href);
}

StyleSheetsExample.htm

This code outputs the href property of each style sheet used in the document (<style> elements
have no href).

The style sheets returned in document.styleSheets vary from browser to browser. All browsers
include <style> elements and <link> elements with rel set to “stylesheet”. Internet Explorer
and Opera also include <link> elements where rel is set to “alternate stylesheet”.

It’s also possible to retrieve the CSSStyleSheet object directly from the <link> or <style>
element. The DOM specifi es a property called sheet that contains the CSSStyleSheet object,
which all browsers except Internet Explorer support. Internet Explorer supports a property called
styleSheet that does the same thing. To retrieve the style sheet object across browsers, you can
use the following code:

function getStyleSheet(element){
 return element.sheet || element.styleSheet;
}

//get the style sheet for the first <link/> element

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Styles ❘ 397

c12.indd 397c12.indd 397 12/8/11 10:26:41 AM12/8/11 10:26:41 AM

398 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

var link = document.getElementsByTagName(“link”)[0];
var sheet = getStyleSheet(link);

StyleSheetsExample2.htm

The object returned from getStyleSheet() is the same object that exists in the document.styleSheets
collection.

CSS Rules

A CSSRule object represents each rule in a style sheet. The CSSRule type is actually a base type from
which several other types inherit, but the most often used is CSSStyleRule, which represents styling
information (other rules include @import, @font-face, @page, and @charset, although these
rules rarely need to be accessed from script). The following properties are available on a
CSSStyleRule object:

cssText — Returns the text for the entire rule. This text may be different from the actual
text in the style sheet because of the way that browsers handle style sheets internally; Safari
always converts everything to all lowercase. This property is not supported in Internet
Explorer.

parentRule — If this rule is imported, this is the import rule; otherwise, this is null. This
property is not supported in Internet Explorer.

parentStyleSheet — The style sheet that this rule is a part of. This property is not
supported in Internet Explorer.

selectorText — Returns the selector text for the rule. This text may be different from the
actual text in the style sheet because of the way that browsers handle style sheets internally.
This property is read-only in Firefox, Safari, Chrome, and Internet Explorer (where it
throws an error). Opera allows selectorText to be changed.

style — A CSSStyleDeclaration object that allows the setting and getting of specifi c
style values for the rule.

type — A constant indicating the type of rule. For style rules, this is always 1. This
property is not supported in Internet Explorer.

The three most frequently used properties are cssText, selectorText, and style. The cssText
property is similar to the style.cssText property but not exactly the same. The former includes
the selector text and the braces around the style information; the latter contains only the style
information (similar to style.cssText on an element). Also, cssText is read-only, whereas style
.cssText may be overwritten.

Most of the time, the style property is all that is required to manipulate style rules. This object can
be used just like the one on each element to read or change the style information for a rule. Consider
the following CSS rule:

div.box {
 background-color: blue;
 width: 100px;

➤

➤

➤

➤

➤

➤

c12.indd 398c12.indd 398 12/8/11 10:26:42 AM12/8/11 10:26:42 AM

 height: 200px;
}

CSSRulesExample.htm

Assuming that this rule is in the fi rst style sheet on the page and is the only style in that style sheet,
the following code can be used to retrieve all of its information:

var sheet = document.styleSheets[0];
var rules = sheet.cssRules || sheet.rules; //get rules list
var rule = rules[0]; //get first rule
alert(rule.selectorText); //”div.box”
alert(rule.style.cssText); //complete CSS code
alert(rule.style.backgroundColor); //”blue”
alert(rule.style.width); //”100px”
alert(rule.style.height); //”200px”

CSSRulesExample.htm

Using this technique, it’s possible to determine the style information related to a rule in the same
way you can determine the inline style information for an element. As with elements, it’s also
possible to change the style information, as shown in the following example:

var sheet = document.styleSheets[0];
var rules = sheet.cssRules || sheet.rules; //get rules list
var rule = rules[0]; //get first rule
rule.style.backgroundColor = “red”

CSSRulesExample.htm

Note that changing a rule in this way affects all elements on the page for which the rule applies. If
there are two <div> elements that have the box class, they will both be affected by this change.

Creating Rules

The DOM states that new rules are added to existing style sheets using the insertRule() method.
This method expects two arguments: the text of the rule and the index at which to insert the rule.
Here is an example:

sheet.insertRule(“body { background-color: silver }”, 0); //DOM method

This example inserts a rule that changes the document’s background color. The rule is inserted as
the fi rst rule in the style sheet (position 0) — the order is important in determining how the rule
cascades into the document. The insertRule() method is supported in Internet Explorer 9+ and all
modern versions of Firefox, Safari, Opera, and Chrome.

Internet Explorer 8 and earlier have a similar method called addRule() that expects two
arguments: the selector text and the CSS style information. An optional third argument indicates

Styles ❘ 399

c12.indd 399c12.indd 399 12/8/11 10:26:42 AM12/8/11 10:26:42 AM

400 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

the position in which to insert the rule. The Internet Explorer equivalent of the previous example is
as follows:

sheet.addRule(“body”, “background-color: silver”, 0); //IE only

The documentation for this method indicates that you can add up to 4,095 style rules using
addRule(). Any additional calls result in an error.

To add a rule to a style sheet in a cross-browser way, you can use the following method. It accepts
four arguments: the style sheet to add to followed by the same three arguments as addRule(), as
shown in the following example:

function insertRule(sheet, selectorText, cssText, position){
 if (sheet.insertRule){
 sheet.insertRule(selectorText + “{“ + cssText + “}”, position);
 } else if (sheet.addRule){
 sheet.addRule(selectorText, cssText, position);
 }
}

CSSRulesExample2.htm

This function can then be called in the following way:

insertRule(document.styleSheets[0], “body”, “background-color: silver”, 0);

Although adding rules in this way is possible, it quickly becomes burdensome when the number of rules
to add is large. In that case, it’s better to use the dynamic style loading technique discussed in Chapter 10.

Deleting Rules

The DOM method for deleting rules from a style sheet is deleteRule(), which accepts a single
argument: the index of the rule to remove. To remove the fi rst rule in a style sheet, you can use the
following code:

sheet.deleteRule(0); //DOM method

Internet Explorer 8 and earlier support a method called removeRule() that is used in the same way,
as shown here:

sheet.removeRule(0); //IE only

The following function handles deleting a rule in a cross-browser way. The fi rst argument is the
style sheet to act on and the second is the index to delete, as shown in the following example:

function deleteRule(sheet, index){
 if (sheet.deleteRule){
 sheet.deleteRule(index);
 } else if (sheet.removeRule){

c12.indd 400c12.indd 400 12/8/11 10:26:43 AM12/8/11 10:26:43 AM

 sheet.removeRule(index);
 }
}

CSSRulesExample2.htm

This function can be used as follows:

deleteRule(document.styleSheets[0], 0);

As with adding rules, deleting rules is not a common practice in web development and should be
used carefully, because the cascading effect of CSS can be affected.

Element Dimensions

The following properties and methods are not part of the DOM Level 2 Style specifi cation but
nonetheless related to styles on HTML elements. The DOM stops short of describing ways to
determine the actual dimensions of elements on a page. Internet Explorer fi rst introduced several
properties to expose dimension information to developers. These properties have now been
incorporated into all of the major browsers.

Off set Dimensions

The fi rst set of properties deals with offset dimensions, which incorporate all of the visual space that
an element takes up on the screen. An element’s visual space on the page is made up of its height
and width, including all padding, scrollbars, and borders (but not including margins). The following
four properties are used to retrieve offset dimensions:

offsetHeight — The amount of vertical space, in pixels, taken up by the element,
including its height, the height of a horizontal scrollbar (if visible), the top border height,
and the bottom border height.

offsetLeft — The number of pixels between the element’s outside left border and the
containing element’s inside left border.

offsetTop — The number of pixels between the element’s outside top border and the
containing element’s inside top border.

offsetWidth — The amount of horizontal space taken up by the element, including its
width, the width of a vertical scrollbar (if visible), the left border width, and the right
border width.

The offsetLeft and offsetTop properties are in relation to the containing element, which is
stored in the offsetParent property. The offsetParent may not necessarily be the same as the
parentNode. For example, the offsetParent of a <td> element is the <table> element that it’s
an ancestor of, because the <table> is the fi rst element in the hierarchy that provides dimensions.
Figure 12-1 illustrates the various dimensions these properties represent.

➤

➤

➤

➤

Styles ❘ 401

c12.indd 401c12.indd 401 12/8/11 10:26:43 AM12/8/11 10:26:43 AM

402 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

The offset of an element on the page can roughly be determined by taking the offsetLeft and
offsetTop properties and adding them to the same properties of the offsetParent, continuing up
the hierarchy until you reach the root element. Here is an example:

function getElementLeft(element){
 var actualLeft = element.offsetLeft;
 var current = element.offsetParent;

 while (current !== null){
 actualLeft += current.offsetLeft;
 current = current.offsetParent;
 }

 return actualLeft;
}

function getElementTop(element){
 var actualTop = element.offsetTop;
 var current = element.offsetParent;

 while (current !== null){
 actualTop += current.offsetTop;
 current = current.offsetParent;
 }

 return actualTop;
}

OffsetDimensionsExample.htm

offsetTop

offsetLeft
offsetHeight

offsetWidth

offsetParent

border

padding

content

FIGURE 12-1

c12.indd 402c12.indd 402 12/8/11 10:26:44 AM12/8/11 10:26:44 AM

These two functions climb through the DOM hierarchy using the offsetParent property,
adding up the offset properties at each level. For simple page layouts using CSS-based layouts,
these functions are very accurate. For page layouts using tables and iframes, the values returned
are less accurate on a cross-browser basis because of the different ways that these elements are
implemented. Generally, all elements that are contained solely within <div> elements have <body>
as their offsetParent, so getElementLeft() and getElementTop() will return the same values as
offsetLeft and offsetTop.

All of the offset dimension properties are read-only and are calculated each time
they are accessed. Therefore, you should try to avoid making multiple calls to any
of these properties; instead, store the values you need in local variables to avoid
incurring a performance penalty.

Client Dimensions

The client dimensions of an element comprise the space occupied by the element’s content
and its padding. There are only two properties related to client dimensions: clientWidth and
clientHeight. The clientWidth property is the width of the content area plus the width of both
the left and the right padding. The clientHeight property is the height of the content area plus the
height of both the top and the bottom padding. Figure 12-2 illustrates these properties.

clientHeight

clientWidth

offsetParent

border

padding

content

FIGURE 12-2

The client dimensions are literally the amount of space inside of the element, so the space taken
up by scrollbars is not counted. The most common use of these properties is to determine the
browser viewport size, as discussed in Chapter 8. This is done by using the clientWidth and

Styles ❘ 403

c12.indd 403c12.indd 403 12/8/11 10:26:44 AM12/8/11 10:26:44 AM

404 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

clientHeight of document.documentElement or document.body (in Internet Explorer 6 and
earlier), as shown in the following example:

function getViewport(){
 if (document.compatMode == “BackCompat”){
 return {
 width: document.body.clientWidth,
 height: document.body.clientHeight
 };
 } else {
 return {
 width: document.documentElement.clientWidth,
 height: document.documentElement.clientHeight
 };
 }
}

This function determines whether or not the browser is running in quirks mode by checking the
document.compatMode property. Internet Explorer 8+, Chrome, Safari, Opera, and Firefox run in
standards mode most of the time, so they will also continue to the else statement. The function
returns an object with two properties: width and height. These represent the dimensions of the
viewport (the <html> or <body> elements).

As with offset dimensions, client dimensions are read-only and are calculated each
time they are accessed.

Scroll Dimensions

The last set of dimensions is scroll dimensions, which provide information about an element whose
content is scrolling. Some elements, such as the <html> element, scroll automatically without
needing any additional code, whereas other elements can be made to scroll by using the CSS
overflow property. The four scroll dimension properties are as follows:

scrollHeight — The total height of the content if there were no scrollbars present.

scrollLeft — The number of pixels that are hidden to the left of the content area. This
property can be set to change the scroll position of the element.

scrollTop — The number of pixels that are hidden in the top of the content area. This
property can be set to change the scroll position of the element.

scrollWidth — The total width of the content if there were no scrollbars present.

Figure 12-3 illustrates these properties.

➤

➤

➤

➤

c12.indd 404c12.indd 404 12/8/11 10:26:49 AM12/8/11 10:26:49 AM

The scrollWidth and scrollHeight properties are useful for determining the actual dimensions
of the content in a given element. For example, the <html> element is considered the element that
scrolls the viewport in a web browser (in Internet Explorer 5.5 and earlier, the <body> element
is the element that scrolls). Therefore, the height of an entire page that has a vertical scrollbar is
document.documentElement.scrollHeight.

The relationship between scrollWidth and scrollHeight to clientWidth and clientHeight is
not clear when it comes to documents that do not scroll. Inspecting these properties on document
.documentElement leads to inconsistent results across browsers, as described here:

Firefox keeps the properties equal, but the size is related to the actual size of the document
content, not the size of the viewport.

Opera, Safari 3.1 and later, and Chrome keep the properties different, with scrollWidth
and scrollHeight equal to the size of the viewport and clientWidth and clientHeight
equal to the document content.

Internet Explorer (in standards mode) keeps the properties different, with scrollWidth
and scrollHeight equal to the size of the document content, and clientWidth and
clientHeight equal to the viewport size.

When trying to determine the total height of a document, including the minimum height based on
the viewport, you must take the maximum value of scrollWidth/clientWidth and scrollHeight/
clientHeight to guarantee accurate results across browsers. Here is an example:

var docHeight = Math.max(document.documentElement.scrollHeight,
 document.documentElement.clientHeight);

var docWidth = Math.max(document.documentElement.scrollWidth,
 document.documentElement.clientWidth);

Note that for Internet Explorer in quirks mode, you’ll need to use the same measurements on
document.body instead of document.documentElement.

➤

➤

➤

scrollWidth

border

scrollLeft

hidden content

scrollHeight

scrollTop

content � padding

FIGURE 12-3

Styles ❘ 405

c12.indd 405c12.indd 405 12/8/11 10:26:54 AM12/8/11 10:26:54 AM

406 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

The scrollLeft and scrollTop properties can be used either to determine the current scroll
settings on an element or to set them. When an element hasn’t been scrolled, both properties are
equal to 0. If the element has been scrolled vertically, scrollTop is greater than 0, indicating the
amount of content that is not visible at the top of the element. If the element has been scrolled
horizontally, scrollLeft is greater than 0, indicating the number of pixels that are not visible on
the left. Since each property can also be set, you can reset the element’s scroll position by setting
both scrollLeft and scrollTop to 0. The following function checks to see if the element is at the
top, and if not, it scrolls it back to the top:

function scrollToTop(element){
 if (element.scrollTop != 0){
 element.scrollTop = 0;
 }
}

This function uses scrollTop both for retrieving the value and for setting it.

Determining Element Dimensions

Internet Explorer, Firefox 3+, Safari 4+, Opera 9.5+, and Chrome offer a method called
getBoundingClientRect() on each element, which returns a rectangle object that has four
properties: left, top, right, and bottom. These properties give the location of the element on the
page relative to the viewport. The browser implementations are slightly different. Internet Explorer 8
and earlier consider the upper-left corner of the document to be located at (2,2), whereas the other
implementations, including Internet Explorer 9, use the traditional (0,0) as the starting coordinates.
This necessitates doing an initial check for the location of an element positioned at (0,0), which will
return (2,2) in Internet Explorer 8 and earlier and (0,0) in other browsers. Here is an example:

function getBoundingClientRect(element){
 if (typeof arguments.callee.offset != “number”){
 var scrollTop = document.documentElement.scrollTop;
 var temp = document.createElement(“div”);
 temp.style.cssText = “position:absolute;left:0;top:0;”;
 document.body.appendChild(temp);
 arguments.callee.offset = -temp.getBoundingClientRect().top - scrollTop;
 document.body.removeChild(temp);
 temp = null;
 }

 var rect = element.getBoundingClientRect();
 var offset = arguments.callee.offset;

 return {
 left: rect.left + offset,
 right: rect.right + offset,
 top: rect.top + offset,
 bottom: rect.bottom + offset
 };
}

GetBoundingClientRectExample.htm

c12.indd 406c12.indd 406 12/8/11 10:26:55 AM12/8/11 10:26:55 AM

This function uses a property on itself to determine the necessary adjustment for the coordinates.
The fi rst step is to see if the property is defi ned and, if not, defi ne it. The offset is defi ned as the
negative value of a new element’s top coordinate, essentially setting it to –2 in Internet Explorer and
–0 in Firefox and Opera. To fi gure this out, you are required to create a temporary element, set its
position to (0,0), and then call getBoundingClientRect(). The scrollTop of the viewport is
subtracted from this value just in case the window has already been scrolled when the method is
called. Using this construct ensures that you don’t have to call getBoundingClientRect() twice
each time this function is called. Then, the method is called on the element and an object is created
with the new calculations.

For browsers that don’t support getBoundingClientRect(), the same information can be gained
by using other means. Generally, the difference between the right and the left properties
is equivalent to offsetWidth, and the difference between the bottom and the top properties is
equivalent to offsetHeight. Furthermore, the left and top properties are roughly equivalent to using
the getElementLeft() and getElementTop() functions defi ned earlier in this chapter. A cross-browser
implementation of the function can be created, as shown in the following example:

function getBoundingClientRect(element){

 var scrollTop = document.documentElement.scrollTop;
 var scrollLeft = document.documentElement.scrollLeft;

 if (element.getBoundingClientRect){
 if (typeof arguments.callee.offset != “number”){
 var temp = document.createElement(“div”);
 temp.style.cssText = “position:absolute;left:0;top:0;”;
 document.body.appendChild(temp);
 arguments.callee.offset = -temp.getBoundingClientRect().top -
 scrollTop;
 document.body.removeChild(temp);
 temp = null;
 }

 var rect = element.getBoundingClientRect();
 var offset = arguments.callee.offset;

 return {
 left: rect.left + offset,
 right: rect.right + offset,
 top: rect.top + offset,
 bottom: rect.bottom + offset
 };
 } else {

 var actualLeft = getElementLeft(element);
 var actualTop = getElementTop(element);

 return {
 left: actualLeft - scrollLeft,
 right: actualLeft + element.offsetWidth - scrollLeft,

Styles ❘ 407

c12.indd 407c12.indd 407 12/8/11 10:26:56 AM12/8/11 10:26:56 AM

408 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

 top: actualTop - scrollTop,
 bottom: actualTop + element.offsetHeight - scrollTop
 }
 }
}

GetBoundingClientRectExample.htm

This function uses the native getBoundingClientRect() method when it’s available and defaults
to calculating the dimensions when it is not. There are some instances where the values will vary in
browsers, such as with layouts that use tables or scrolling elements.

TRAVERSALS

The DOM Level 2 Traversal and Range module defi nes two types that aid in sequential traversal of
a DOM structure. These types, NodeIterator and TreeWalker, perform depth-fi rst traversals of a
DOM structure given a certain starting point. These object types are available in DOM-compliant
browsers, including Internet Explorer 9+, Firefox, Safari, Opera, and Chrome. There is no support
for DOM traversals in Internet Explorer 8 and earlier. You can test for DOM Level 2 Traversal
support using the following code:

var supportsTraversals = document.implementation.hasFeature(“Traversal”, “2.0”);
var supportsNodeIterator = (typeof document.createNodeIterator == “function”);
var supportsTreeWalker = (typeof document.createTreeWalker == “function”);

As stated previously, DOM traversals are a depth-fi rst traversal of the DOM structure that allows
movement in at least two directions (depending on the type being used). A traversal is rooted at a
given node, and it cannot go any further up the DOM tree than that root. Consider the following
HTML page:

<!DOCTYPE html>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>Hello world!</p>
 </body>
</html>

This page evaluates to the DOM tree represented in Figure 12-4.

Because of the use of arguments.callee, this method will not work in strict mode.

c12.indd 408c12.indd 408 12/8/11 10:26:56 AM12/8/11 10:26:56 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Any node can be the root of the traversals. Suppose, for example, that the <body> element is the
traversal root. The traversal can then visit the <p> element, the element, and the two text nodes
that are descendants of <body>; however, the traversal can never reach the <html> element, the
<head> element, or any other node that isn’t in the <body> element’s subtree. A traversal that has its
root at document, on the other hand, can access all of the nodes in document. Figure 12-5 depicts a
depth-fi rst traversal of a DOM tree rooted at document.

Document

Element html

Element head Element body

Element p

Element b

Text Hello

Text world!

Element title

Text Example

FIGURE 12-4

Document

Element html

Element head Element body

Element p

Element b

Text Hello

Text world!

Element title

Text Example

1

2

3

4

8 10

9

6

7

5

FIGURE 12-5

Traversals ❘ 409

c12.indd 409c12.indd 409 12/8/11 10:27:01 AM12/8/11 10:27:01 AM

410 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

Starting at document and moving sequentially, the fi rst node visited is document and the last
node visited is the text node containing “ world!” From the very last text node at the end of the
document, the traversal can be reversed to go back up the tree. In that case, the fi rst node visited
is the text node containing “ world!” and the last one visited is the document node itself. Both
NodeIterator and TreeWalker perform traversals in this manner.

NodeIterator

The NodeIterator type is the simpler of the two, and a new instance can be created using the
document.createNodeIterator() method. This method accepts the following four arguments:

root — The node in the tree that you want to start searching from.

whatToShow — A numerical code indicating which nodes should be visited.

filter — A NodeFilter object or a function indicating whether a particular node should
be accepted or rejected.

entityReferenceExpansion — A Boolean value indicating whether entity references
should be expanded. This has no effect in HTML pages, because entity references are never
expanded.

The whatToShow argument is a bitmask that determines which nodes to visit by applying one or
more fi lters. Possible values for this argument are included as constants on the NodeFilter type as
follows:

NodeFilter.SHOW_ALL — Show all node types.

NodeFilter.SHOW_ELEMENT — Show element nodes.

NodeFilter.SHOW_ATTRIBUTE — Show attribute nodes. This can’t actually be used because
of the DOM structure.

NodeFilter.SHOW_TEXT — Show text nodes.

NodeFilter.SHOW_CDATA_SECTION — Show CData section nodes. This is not used in
HTML pages.

NodeFilter.SHOW_ENTITY_REFERENCE — Show entity reference nodes. This is not used in
HTML pages.

NodeFilter.SHOW_ENTITY — Show entity nodes. This is not used in HTML pages.

NodeFilter.SHOW_PROCESSING_INSTRUCTION — Show PI nodes. This is not used in HTML
pages.

NodeFilter.SHOW_COMMENT — Show comment nodes.

NodeFilter.SHOW_DOCUMENT — Show document nodes.

NodeFilter.SHOW_DOCUMENT_TYPE — Show document type nodes.

NodeFilter.SHOW_DOCUMENT_FRAGMENT — Show document fragment nodes. This is not
used in HTML pages.

NodeFilter.SHOW_NOTATION — Show notation nodes. This is not used in HTML pages.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c12.indd 410c12.indd 410 12/8/11 10:27:02 AM12/8/11 10:27:02 AM

With the exception of NodeFilter.SHOW_ALL, you can combine multiple options using the bitwise
OR operator, as shown in the following example:

var whatToShow = NodeFilter.SHOW_ELEMENT | NodeFilter.SHOW_TEXT;

The filter argument of createNodeIterator() can be used to specify a custom NodeFilter object
or a function that acts as a node fi lter. A NodeFilter object has only one method, acceptNode(),
which returns NodeFilter.FILTER_ACCEPT if the given node should be visited or NodeFilter
.FILTER_SKIP if the given node should not be visited. Since NodeFilter is an abstract type, it’s not
possible to create an instance of it. Instead, just create an object with an acceptNode() method and
pass the object into createNodeIterator(). The following code accepts only <p> elements:

var filter = {
 acceptNode: function(node){
 return node.tagName.toLowerCase() == ”p” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
 }
};

var iterator = document.createNodeIterator(root, NodeFilter.SHOW_ELEMENT,
 filter, false);

The third argument can also be a function that takes the form of the acceptNode() method, as
shown in this example:

var fi lter = function(node){
 return node.tagName.toLowerCase() == “p” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

var iterator = document.createNodeIterator(root, NodeFilter.SHOW_ELEMENT,
 filter, false);

Typically, this is the form that is used in JavaScript, since it is simpler and works more like the rest
of JavaScript. If no fi lter is required, the third argument should be set to null.

To create a simple NodeIterator that visits all node types, use the following code:

var iterator = document.createNodeIterator(document, NodeFilter.SHOW_ALL,
 null, false);

The two primary methods of NodeIterator are nextNode() and previousNode(). The
nextNode() method moves one step forward in the depth-fi rst traversal of the DOM subtree,
and previousNode() moves one step backward in the traversal. When the NodeIterator is fi rst
created, an internal pointer points to the root, so the fi rst call to nextNode() returns the root.
When the traversal has reached the last node in the DOM subtree, nextNode() returns null. The
previousNode() method works in a similar way. When the traversal has reached the last node in
the DOM subtree, after previousNode() has returned the root of the traversal, it will return null.

Traversals ❘ 411

c12.indd 411c12.indd 411 12/8/11 10:27:02 AM12/8/11 10:27:02 AM

412 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

Consider the following HTML fragment:

<div id=”div1”>
 <p>Hello world!</p>

 List item 1
 List item 2
 List item 3

</div>

NodeIteratorExample1.htm

Suppose that you would like to traverse all elements inside of the <div> element. This can be
accomplished using the following code:

var div = document.getElementById(“div1”);
var iterator = document.createNodeIterator(div, NodeFilter.SHOW_ELEMENT,
 null, false);

var node = iterator.nextNode();
while (node !== null) {
 alert(node.tagName); //output the tag name
 node = iterator.nextNode();
}

NodeIteratorExample1.htm

The fi rst call to nextNode() in this example returns the <p> element. Since nextNode() returns
null when it has reached the end of the DOM subtree, a while loop checks to see when null has
been returned as it calls nextNode() each time through. When this code is executed, alerts are
displayed with the following tag names:

DIV
P
B
UL
LI
LI
LI

Perhaps this is too much information and you really only want to return the elements that
occur in the traversal. This can be accomplished by using a fi lter, as shown in the following
example:

var div = document.getElementById(“div1”);
var fi lter = function(node){
 return node.tagName.toLowerCase() == ”li” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;

c12.indd 412c12.indd 412 12/8/11 10:27:03 AM12/8/11 10:27:03 AM

};

var iterator = document.createNodeIterator(div, NodeFilter.SHOW_ELEMENT,
 fi lter, false);

var node = iterator.nextNode();
while (node !== null) {
 alert(node.tagName); //output the tag name
 node = iterator.nextNode();
}

NodeIteratorExample2.htm

In this example, only elements will be returned from the iterator.

The nextNode() and previousNode() methods work with NodeIterator’s internal pointer in the
DOM structure, so changes to the structure are represented appropriately in the traversal.

Firefox versions prior to 3.5 do not implement the createNodeIterator() method,
though they do support createTreeWalker(), as discussed in the next section.

TreeWalker

TreeWalker is a more advanced version of NodeIterator. It has the same functionality, including
nextNode() and previousNode(), and adds the following methods to traverse a DOM structure in
different directions:

parentNode() — Travels to the current node’s parent.

firstChild() — Travels to the fi rst child of the current node.

lastChild() — Travels to the last child of the current node.

nextSibling() — Travels to the next sibling of the current node.

previousSibling() — Travels to the previous sibling of the current node.

A TreeWalker object is created using the document.createTreeWalker() method, which accepts the
same three arguments as document.createNodeIterator(): the root to traverse from, which node
types to show, a fi lter, and a Boolean value indicating if entity references should be expanded. Because
of these similarities, TreeWalker can always be used in place of NodeIterator, as in this example:

var div = document.getElementById(“div1”);
var filter = function(node){
 return node.tagName.toLowerCase() == “li” ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_SKIP;
};

var walker = document.createTreeWalker(div, NodeFilter.SHOW_ELEMENT,

➤

➤

➤

➤

➤

Traversals ❘ 413

c12.indd 413c12.indd 413 12/8/11 10:27:04 AM12/8/11 10:27:04 AM

414 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

 fi lter, false);

var node = iterator.nextNode();
while (node !== null) {
 alert(node.tagName); //output the tag name
 node = iterator.nextNode();
}

TreeWalkerExample1.htm

One difference is in the values that the filter can return. In addition to NodeFilter.FILTER_
ACCEPT and NodeFilter.FILTER_SKIP, there is NodeFilter.FILTER_REJECT. When used with a
NodeIterator object, NodeFilter.FILTER_SKIP and NodeFilter.FILTER_REJECT do the same
thing: they skip over the node. When used with a TreeWalker object, NodeFilter.FILTER_SKIP skips
over the node and goes on to the next node in the subtree, whereas NodeFilter.FILTER_REJECT
skips over that node and that node’s entire subtree. For instance, changing the fi lter in the previous
example to return NodeFilter.FILTER_REJECT instead of NodeFilter.FILTER_SKIP will result in
no nodes being visited. This is because the fi rst element returned is <div>, which does not have a tag
name of “li”, so NodeFilter.FILTER_REJECT is returned, indicating that the entire subtree should be
skipped. Since the <div> element is the traversal root, this means that the traversal stops.

Of course, the true power of TreeWalker is its ability to move around the DOM structure. Instead
of specifying fi lter, it’s possible to get at the elements by navigating through the DOM tree
using TreeWalker, as shown here:

var div = document.getElementById(“div1”);
var walker = document.createTreeWalker(div, NodeFilter.SHOW_ELEMENT, null, false);

walker.fi rstChild(); //go to <p>
walker.nextSibling(); //go to

var node = walker.fi rstChild(); //go to fi rst
while (node !== null) {
 alert(node.tagName);
 node = walker.nextSibling();
}

TreeWalkerExample2.htm

Since you know where the elements are located in the document structure, it’s possible
to navigate there, using firstChild() to get to the <p> element, nextSibling() to get to the
element, and then firstChild() to get to the fi rst element. Keep in mind that TreeWalker is
returning only elements (because of the second argument passed in to createTreeWalker()). Then,
nextSibling() can be used to visit each until there are no more, at which point the method
returns null.

The TreeWalker type also has a property called currentNode that indicates the node that was last
returned from the traversal via any of the traversal methods. This property can also be set to change
where the traversal continues from when it resumes, as shown in this example:

c12.indd 414c12.indd 414 12/8/11 10:27:09 AM12/8/11 10:27:09 AM

var node = walker.nextNode();
alert(node === walker.currentNode); //true
walker.currentNode = document.body; //change where to start from

Compared to NodeIterator, the TreeWalker type allows greater fl exibility when traversing the
DOM. There is no equivalent in Internet Explorer 8 and earlier, so cross-browser solutions using
traversals are quite rare.

RANGES

To allow an even greater measure of control over a page, the DOM Level 2 Traversal and Range
module defi nes an interface called a range. A range can be used to select a section of a document
regardless of node boundaries. (This selection occurs behind the scenes and cannot be seen by
the user.) Ranges are helpful when regular DOM manipulation isn’t specifi c enough to change a
document. DOM ranges are supported in Firefox, Opera, Safari, and Chrome. Internet Explorer
implements ranges in a proprietary way.

Ranges in the DOM

DOM Level 2 defi nes a method on the Document type called createRange(). In DOM-compliant
browsers, this method belongs to the document object. You can test for the range support by using
hasFeature() or by checking for the method directly. Here is an example:

var supportsRange = document.implementation.hasFeature(“Range”, “2.0”);
var alsoSupportsRange = (typeof document.createRange == “function”);

If the browser supports it, a DOM range can be created using createRange(), as shown here:

var range = document.createRange();

Similar to nodes, the newly created range is tied directly to the document on which it was created
and cannot be used on other documents. This range can then be used to select specifi c parts of
the document behind the scenes. Once a range has been created and its position set, a number of
different operations can be performed on the contents of the range, allowing more fi ne-grained
manipulation of the underlying DOM tree.

Each range is represented by an instance of the Range type, which has a number of properties
and methods. The following properties provide information about where the range is located in
the document:

startContainer — The node within which the range starts (the parent of the fi rst node in
the selection).

startOffset — The offset within the startContainer where the range starts. If
startContainer is a text node, comment node, or CData node, the startOffset is the
number of characters skipped before the range starts; otherwise, the offset is the index of
the fi rst child node in the range.

➤

➤

Ranges ❘ 415

c12.indd 415c12.indd 415 12/8/11 10:27:10 AM12/8/11 10:27:10 AM

416 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

endContainer — The node within which the range ends (the parent of the last node in the
selection).

endOffset — The offset within the endContainer where the range ends (follows the same
rules as startOffset).

commonAncestorContainer — The deepest node in the document that has both
startContainer and endContainer as descendants.

These properties are fi lled when the range is placed into a specifi c position in the document.

Simple Selection in DOM Ranges

The simplest way to select a part of the document using a range is to use either selectNode() or
selectNodeContents(). These methods each accept one argument, a DOM node, and fi ll a range
with information from that node. The selectNode() method selects the entire node, including its
children, whereas selectNodeContents() selects only the node’s children. For example, consider
the following HTML:

<!DOCTYPE html>
<html>
 <body>
 <p id=”p1”>Hello world!</p>
 </body>
</html>

This code can be accessed using the following JavaScript:

var range1 = document.createRange(),
 range2 = document.createRange(),
 p1 = document.getElementById(“p1”);
range1.selectNode(p1);
range2.selectNodeContents(p1);

DOMRangeExample.htm

The two ranges in this example contain different
sections of the document: range1 contains the <p>
element and all its children, whereas range2 contains
the element, the text node “Hello”, and the text
node “ world!” See Figure 12-6.

When selectNode() is called, startContainer,
endContainer, and commonAncestorContainer are all equal to the parent node of the node that
was passed in; in this example, these would all be equal to document.body. The startOffset
property is equal to the index of the given node within the parent’s childNodes collection (which is
1 in this example — remember DOM-compliant browsers count white space as text nodes), whereas
endOffset is equal to the startOffset plus one (because only one node is selected).

When selectNodeContents() is called, startContainer, endContainer, and commonAncestor
Container are equal to the node that was passed in, which is the <p> element in this example.

➤

➤

➤

range1

range2

�p id�"p1"��b�Hello�/b� world!�/p�

FIGURE 12-6

c12.indd 416c12.indd 416 12/8/11 10:27:10 AM12/8/11 10:27:10 AM

The startOffset property is always equal to 0, since the range begins with the fi rst child of the
given node, whereas endOffset is equal to the number of child nodes (node.childNodes.length),
which is 2 in this example.

It’s possible to get more fi ne-grained control over which nodes are included in the selection by using
the following range methods:

setStartBefore(refNode) — Sets the starting point of the range to begin before refNode,
so refNode is the fi rst node in the selection. The startContainer property is set to
refNode.parentNode, and the startOffset property is set to the index of refNode within
its parent’s childNodes collection.

setStartAfter(refNode) — Sets the starting point of the range to begin after refNode, so
refNode is not part of the selection; rather, its next sibling is the fi rst node in the selection.
The startContainer property is set to refNode.parentNode, and the startOffset
property is set to the index of refNode within its parent’s childNodes collection plus one.

setEndBefore(refNode) — Sets the ending point of the range to begin before refNode, so
refNode is not part of the selection; its previous sibling is the last node in the selection. The
endContainer property is set to refNode.parentNode, and the endOffset property is set
to the index of refNode within its parent’s childNodes collection.

setEndAfter(refNode) — Sets the ending point of the range to begin before refNode, so
refNode is the last node in the selection. The endContainer property is set to refNode
.parentNode, and the endOffset property is set to the index of refNode within its parent’s
childNodes collection plus one.

Using any of these methods, all properties are assigned for you. However, it is possible to assign
these values directly in order to make complex range selections.

Complex Selection in DOM Ranges

Creating complex ranges requires the use of the setStart() and setEnd() methods. Both methods
accept two arguments: a reference node and an offset. For setStart(), the reference node becomes
the startContainer, and the offset becomes the startOffset. For setEnd(), the reference node
becomes the endContainer, and the offset becomes the endOffset.

Using these methods, it is possible to mimic selectNode() and selectNodeContents(). Here is
an example:

var range1 = document.createRange(),
 range2 = document.createRange(),
 p1 = document.getElementById(“p1”),
 p1Index = -1,
 i, len;
for (i=0, len=p1.parentNode.childNodes.length; i < len; i++) {
 if (p1.parentNode.childNodes[i] == p1) {
 p1Index = i;
 break;
 }
}

range1.setStart(p1.parentNode, p1Index);

➤

➤

➤

➤

Ranges ❘ 417

c12.indd 417c12.indd 417 12/8/11 10:27:11 AM12/8/11 10:27:11 AM

418 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

range1.setEnd(p1.parentNode, p1Index + 1);
range2.setStart(p1, 0);
range2.setEnd(p1, p1.childNodes.length);

DOMRangeExample2.htm

Note that to select the node (using range1), you must fi rst determine the index of the given node
(p1) in its parent node’s childNodes collection. To select the node contents (using range2), you
do not need calculations; setStart() and setEnd() can be set with default values. Although
mimicking selectNode() and selectNodeContents() is possible, the real power of setStart()
and setEnd() is in the partial selection of nodes.

Suppose that you want to select only from the “llo” in “Hello” to the “o” in “world!” in the
previous HTML code. This is quite easy to accomplish. The fi rst step is to get references to all of
the relevant nodes, as shown in the following example:

var p1 = document.getElementById(“p1”),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild

DOMRangeExample3.htm

The “Hello” text node is actually a grandchild of <p> because it’s a child of , so you can use
p1.firstChild to get and p1.firstChild.firstChild to get the text node. The “world!”
text node is the second (and the last) child of <p>, so you can use p1.lastChild to retrieve it. Next,
the range must be created and its boundaries defi ned, as shown in the following example:

var range = document.createRange();
range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

DOMRangeExample3.htm

Since the selection should start after the “e” in
“Hello”, helloNode is passed into setStart()
with an offset of 2 (the position after the “e”
where “H” is in position 0). To set the end of the
selection, pass worldNode into setEnd() with an
offset of 3, indicating the fi rst character that should
not be selected, which is “r” in position 3 (there is actually a space in position 0).
See Figure 12-7.

Because both helloNode and worldNode are text nodes, they become the startContainer and
endContainer for the range so that the startOffset and endOffset accurately look at the text
contained within each node instead of look for child nodes (which is what happens when an element
is passed in). The commonAncestorContainer is the <p> element, which is the fi rst ancestor that
contains both nodes.

range

0 1 2 3 4

�p id�"p1"��b�Hello�/b� world!�/p�
0 1 2 3 4 5 6

FIGURE 12-7

c12.indd 418c12.indd 418 12/8/11 10:27:12 AM12/8/11 10:27:12 AM

Of course, just selecting sections of the document isn’t very useful unless you can interact with the
selection.

Interacting with DOM Range Content

When a range is created, internally it creates a document fragment node onto which all of the nodes
in the selection are attached. The range contents must be well formed in order for this process to
take place. In the previous example, the range does not represent a well-formed DOM structure,
because the selection begins inside one text node and ends in another, which cannot be represented
in the DOM. Ranges, however, recognize missing opening and closing tags and are, therefore, able
to reconstruct a valid DOM structure to operate on.

In the previous example, the range calculates that a start tag is missing inside the selection, so
the range dynamically adds it behind the scenes, along with a new end tag to enclose “He”,
thus altering the DOM to the following:

<p>Hello world!</p>

Additionally, the “world!” text node is split into
two text nodes, one containing “ wo” and the
other containing “rld!”. The resulting DOM tree
is shown in Figure 12-8, along with the contents of
the document fragment for the range.

With the range created, the contents of the range
can be manipulated using a variety of methods.
(Note that all nodes in the range’s internal
document fragment are simply pointers to nodes in
the document.)

The fi rst method is the simplest to understand
and use: deleteContents(). This method
simply deletes the contents of the range from the
document. Here is an example:

var p1 = document.getElementById(“p1”),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

range.deleteContents();

DOMRangeExample4.htm

Element p

Element b

Element b

Text He

Text llo

Text wo

Text rld!

Document

DocumentFragment

Element b

Text llo

Text wo

Range

FIGURE 12-8

Ranges ❘ 419

c12.indd 419c12.indd 419 12/8/11 10:27:13 AM12/8/11 10:27:13 AM

420 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

Executing this code results in the following HTML being shown on the page:

<p>Herld!</p>

Since the range selection process altered the underlying DOM structure to remain well formed, the
resulting DOM structure is well formed even after removing the contents.

extractContents() is similar to deleteContents() in that it also removes the range selection from
the document. The difference is that extractContents() returns the range’s document fragment as the
function value. This allows you to insert the contents of the range somewhere else. Here is an example:

var p1 = document.getElementById(“p1”),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

var fragment = range.extractContents();
p1.parentNode.appendChild(fragment);

DOMRangeExample5.htm

In this example, the fragment is extracted and added to the end of the document’s <body> element.
(Remember, when a document fragment is passed into appendChild(), only the fragment’s children
are added, not the fragment itself.) The resulting HTML is as follows:

<p>Herld!</p>
llo wo

Another option is to leave the range in place but create a clone of it that can be inserted elsewhere in
the document by using cloneContents(), as shown in this example:

var p1 = document.getElementById(“p1”),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

var fragment = range.cloneContents();
p1.parentNode.appendChild(fragment);

DOMRangeExample6.htm

This method is very similar to extractContents() because both return a document fragment. The
main difference is that the document fragment returned by cloneContents() contains clones of
the nodes contained in the range instead of the actual nodes. With this operation, the HTML in the
page is as follows:

c12.indd 420c12.indd 420 12/8/11 10:27:13 AM12/8/11 10:27:13 AM

<p>Hello world!</p>
llo wo

It’s important to note that the splitting of nodes ensures that a well-formed document isn’t produced
until one of these methods is called. The original HTML remains intact right up until the point that
the DOM is modifi ed.

Inserting DOM Range Content

Ranges can be used to remove or clone content, as seen in the previous section, and to manipulate
the contents inside of the range. The insertNode() method enables you to insert a node at the
beginning of the range selection. As an example, suppose that you want to insert the following
HTML prior to the HTML used in the previous example:

Inserted text

The following code accomplishes this:

var p1 = document.getElementById(“p1”),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.setStart(helloNode, 2);
range.setEnd(worldNode, 3);

var span = document.createElement(“span”);
span.style.color = “red”;
span.appendChild(document.createTextNode(“Inserted text”));
range.insertNode(span);

DOMRangeExample7.htm

Running this JavaScript effectively creates the following HTML code:

<p id=”p1”>HeInserted textllo world</p>

Note that is inserted just before the “llo” in “Hello”, which is the fi rst part of the range
selection. Also note that the original HTML didn’t add or remove elements, because none of the
methods introduced in the previous section were used. You can use this technique to insert helpful
information, such as an image next to links that open in a new window.

Along with inserting content into the range, it is possible to insert content surrounding the range by
using the surroundContents() method. This method accepts one argument, which is the node that
surrounds the range contents. Behind the scenes, the following steps are taken:

 1. The contents of the range are extracted (similarly to using extractContents()).

 2. The given node is inserted into the position in the original document where the range was.

 3. The contents of the document fragment are added to the given node.

Ranges ❘ 421

c12.indd 421c12.indd 421 12/8/11 10:27:14 AM12/8/11 10:27:14 AM

422 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

This sort of functionality is useful online to highlight certain words in a web page, as shown here:

var p1 = document.getElementById(“p1”),
 helloNode = p1.firstChild.firstChild,
 worldNode = p1.lastChild,
 range = document.createRange();

range.selectNode(helloNode);

var span = document.createElement(“span”);
span.style.backgroundColor = “yellow”;
range.surroundContents(span);

DOMRangeExample8.htm

This code highlights the range selection with a yellow background. The resulting HTML is as follows:

<p>Hello world!</p>

In order to insert the , the range has to contain a whole DOM selection. (It can’t have only
partially selected DOM nodes.)

Collapsing a DOM Range

When a range isn’t selecting any part of a document, it
is said to be collapsed. Collapsing a range resembles
the behavior of a text box. When you have text in a
text box, you can highlight an entire word using the
mouse. However, if you left-click the mouse again,
the selection is removed and the cursor is located
between two letters. When you collapse a range, its
location is set between parts of a document, either
at the beginning of the range selection or at the end.
Figure 12-9 illustrates what happens when a range is
collapsed.

You can collapse a range by using the collapse() method, which accepts a single argument: a
Boolean value indicating which end of the range to collapse to. If the argument is true, then the
range is collapsed to its starting point; if it is false, the range is collapsed to its ending point. To
determine if a range is already collapsed, you can use the collapsed property as follows:

range.collapse(true); //collapse to the starting point
alert(range.collapsed); //outputs “true”

Testing whether a range is collapsed is helpful if you aren’t sure if two nodes in the range are next to
each other. For example, consider this HTML code:

<p id=”p1”>Paragraph 1</p><p id=”p2”>Paragraph 2</p>

�p id�"p1"��b�Hello�/b� world!�/p�

Original Range

�p id�"p1"��b�Hello�/b� world!�/p�

Collapsed to end

�p id�"p1"��b�Hello�/b� world!�/p�

Collapsed to beginning

FIGURE 12-9

c12.indd 422c12.indd 422 12/8/11 10:27:14 AM12/8/11 10:27:14 AM

If you don’t know the exact makeup of this code (for example, if it is automatically generated), you
might try creating a range like this:

var p1 = document.getElementById(“p1”),
 p2 = document.getElementById(”p2”),
 range = document.createRange();
range.setStartAfter(p1);
range.setStartBefore(p2);
alert(range.collapsed); //outputs ”true”

In this case, the created range is collapsed, because there is nothing between the end of p1 and the
beginning of p2.

Comparing DOM Ranges

If you have more than one range, you can use the compareBoundaryPoints() method to determine
if the ranges have any boundaries (start or end) in common. The method accepts two arguments: the
range to compare to and how to compare. It is one of the following constant values:

Range.START_TO_START (0) — Compares the starting point of the fi rst range to the
starting point of the second.

Range.START_TO_END (1) — Compares the starting point of the fi rst range to the end point
of the second.

Range.END_TO_END (2) — Compares the end point of the fi rst range to the end point of
the second.

Range.END_TO_START (3) — Compares the end point of the fi rst range to the starting point
of the second.

The compareBoundaryPoints() method returns –1 if the point from the fi rst range comes before
the point from the second range, 0 if the points are equal, or 1 if the point from the fi rst range
comes after the point from the second range. Here is an example:

var range1 = document.createRange();
var range2 = document.createRange();
var p1 = document.getElementById(“p1”);

range1.selectNodeContents(p1);
range2.selectNodeContents(p1);
range2.setEndBefore(p1.lastChild);

alert(range1.compareBoundaryPoints(Range.START_TO_START, range2)); //0
alert(range1.compareBoundaryPoints(Range.END_TO_END, range2)); //1

DOMRangeExample9.htm

In this code, the starting points of the two ranges are exactly the same because both use the default
value from selectNodeContents(); therefore, the method returns 0. For range2, however, the

➤

➤

➤

➤

Ranges ❘ 423

c12.indd 423c12.indd 423 12/8/11 10:27:15 AM12/8/11 10:27:15 AM

424 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

end point is changed using setEndBefore(), making
the end point of range1 come after the end point of
range2 (see Figure 12-10), so the method returns 1.

Cloning DOM Ranges

Ranges can be cloned by calling the cloneRange()
method. This method creates an exact duplicate of the range on which it is called:

var newRange = range.cloneRange();

The new range contains all of the same properties as the original, and its end points can be modifi ed
without affecting the original in any way.

Clean Up

When you are done using a range, it is best to call the detach() method, which detaches the
range from the document on which it was created. After calling detach(), the range can be safely
dereferenced, so the memory can be reclaimed through garbage collection. Here is an example:

range.detach(); //detach from document
range = null; //dereferenced

Following these two steps is the most appropriate way to fi nish using a range. Once it is detached, a
range can no longer be used.

Ranges in Internet Explorer 8 and Earlier

While Internet Explorer 9 supports DOM ranges, versions 8 and earlier do not. Earlier versions
do, however, support a similar concept called text ranges. Text ranges are proprietary to Internet
Explorer and so have not been implemented in any other browsers. This type of range deals
specifi cally with text (not necessarily DOM nodes). The createTextRange() method can be called
on a small number of elements: <body>, <button>, <input>, and <textarea>. Here is an example:

var range = document.body.createTextRange();

Creating a range in this way allows it to be used anywhere on the page (whereas creating a range
on one of the other specifi ed elements limits the range to working on that element). As with DOM
ranges, there are a number of ways to use Internet Explorer text ranges.

Simple Selection in Internet Explorer Ranges

The simplest way to select an area of the page is to use a range’s findText() method. This method
fi nds the fi rst instance of a given text string and moves the range to surround it. If the text isn’t
found, the method returns false; otherwise, it returns true. Once again, consider the following
HTML code:

<p id=”p1”>Hello world!</p>

range1

range2

�p id�"p1"��b�Hello�/b� world!�/p�

FIGURE 12-10

c12.indd 424c12.indd 424 12/8/11 10:27:15 AM12/8/11 10:27:15 AM

To select “Hello”, you can use the following code:

var range = document.body.createTextRange();
var found = range.findText(“Hello”);

IERangeExample1.htm

After the second line of code, the text “Hello” is contained within the range. You can test this by
using the range’s text property (which returns the text contained in the range) or checking the
returned value of findText(), which is true if the text was found. Here is an example:

alert(found); //true
alert(range.text); //”Hello”

There is a second argument to findText(), which is a number indicating the direction in which
to continue searching. A negative number indicates that the search should go backward from the
current position, whereas a positive number indicates that the search should go forward from
the current position. So, to fi nd the fi rst two instances of “Hello” in the document, you can
use the following code:

var found = range.findText(“Hello”);
var foundAgain = range.findText(“Hello”, 1);

The closest thing to the DOM’s selectNode() in Internet Explorer is moveToElementText(),
which accepts a DOM element as an argument and selects all of the element’s text, including HTML
tags. Here is an example:

var range = document.body.createTextRange();
var p1 = document.getElementById(“p1”);
range.moveToElementText(p1);

IERangeExample2.htm

When HTML is contained in a text range, the htmlText property can be used to return the entire
contents of the range, including HTML and text, as shown in this example:

alert(range.htmlText);

Ranges in Internet Explorer don’t have any other properties that are dynamically updated as the
range selection changes, although the parentElement() method behaves the same as the DOM’s
commonAncestorContainer property, as shown here:

var ancestor = range.parentElement();

The parent element always refl ects the parent node for the text selection.

Complex Selection in Internet Explorer Ranges

Complex ranges can be created in Internet Explorer by moving the range selection around in
specifi c increments. This can be done using four methods: move(), moveStart(), moveEnd(), and

Ranges ❘ 425

c12.indd 425c12.indd 425 12/8/11 10:27:16 AM12/8/11 10:27:16 AM

426 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

expand(). Each of these methods accepts two arguments: the type of unit to move and the number
of units to move. The type of units to move is one of the following string values:

“character” — Moves a point by one character.

“word” — Moves a point by one word (a sequence of non–white-space characters).

“sentence” — Moves a point by one sentence (a sequence of characters ending with a
period, question mark, or exclamation point).

“textedit” — Moves a point to the start or end of the current range selection.

The moveStart() method moves the starting point of the range by the given number of units,
whereas the moveEnd() method moves the end point of the range by the given number of units, as
shown in the following example:

range.moveStart(“word”, 2); //move the start point by two words
range.moveEnd(“character”, 1); //move the ending point by one character

You can also use the expand() method to normalize the range. The expand() method makes sure
that any partially selected units become fully selected. For example, if you selected only the middle
two characters of a word, you can call expand(“word”) to ensure that the entire word is enclosed
by the range.

The move() method fi rst collapses the range (making the start and end points equal) and then
moves the range by the specifi ed number of units, as shown in the following example:

range.move(“character”, 5); //move over five characters

After using move(), the start and end points are equal, so you must use either moveStart() or
moveEnd() to once again make a selection.

Interacting with Internet Explorer Range Content

Interacting with a range’s content in Internet Explorer is done through either the text property or
the pasteHTML() method. The text property, used previously to retrieve the text content of the
range, can also be used to set the text content of the range. Here is an example:

var range = document.body.createTextRange();
range.findText(“Hello”);
range.text = “Howdy”;

If you run this code against the same “Hello world!” code shown earlier, the HTML result is as follows:

<p id=”p1”>Howdy world!</p>

Note that all the HTML tags remained intact when setting the text property.

To insert HTML code into the range, you can use the pasteHTML() method, as shown in the
following example:

➤

➤

➤

➤

c12.indd 426c12.indd 426 12/8/11 10:27:17 AM12/8/11 10:27:17 AM

var range = document.body.createTextRange();
range.findText(“Hello”);
range.pasteHTML(“Howdy”);

IERangeExample3.htm

After executing this code, the following is the resulting HTML:

<p id=”p1”>Howdy world!</p>

You should not use pasteHTML() when the range contains HTML code, because this causes
unpredictable results, and you may end up with malformed HTML.

Collapsing an Internet Explorer Range

Ranges in Internet Explorer have a collapse() method that works exactly the same way as the
DOM method: pass in true to collapse the range to the beginning or false to collapse the range to
the end. Here’s an example:

range.collapse(true); //collapse to start

Unfortunately, no corresponding collapsed property tells you whether a range is already collapsed.
Instead, you must use the boundingWidth property, which returns the width (in pixels) of the range.
If boundingWidth is equal to 0, the range is collapsed as follows:

var isCollapsed = (range.boundingWidth == 0);

The boundingHeight, boundingLeft, and boundingTop properties also give information about the
range location, although these are less helpful than boundingWidth.

Comparing Internet Explorer Ranges

The compareEndPoints() method in Internet Explorer is similar to the DOM range’s
compareBoundaryPoints() method. This method accepts two arguments: the type of comparison
and the range to compare to. The type of comparison is indicated by one of the following string
values: “StartToStart”, “StartToEnd”, “EndToEnd”, and “EndToStart”. These comparisons are
equal to the corresponding values in DOM ranges.

Also similar to the DOM, compareEndPoints() returns –1 if the fi rst range boundary occurs
before the second range boundary, 0 if they are equal, and 1 if the fi rst range boundary occurs after
the second range boundary. Once again using the “Hello world!” code from the previous example,
the following code creates two ranges, one that selects “Hello world!” (including the tags) and
one that selects “Hello”:

var range1 = document.body.createTextRange(),
 range2 = document.body.createTextRange();

range1.findText(“Hello world!”);

Ranges ❘ 427

c12.indd 427c12.indd 427 12/8/11 10:27:17 AM12/8/11 10:27:17 AM

428 ❘ CHAPTER 12 DOM LEVELS 2 AND 3

range2.findText(“Hello”);

alert(range1.compareEndPoints(“StartToStart”, range2)); //0
alert(range1.compareEndPoints(“EndToEnd”, range2)); //1

IERangeExample5.htm

The fi rst and second ranges share the same starting point, so comparing them using compareEndPoints()
returns 0. range1’s end point occurs after range2’s end point, so compareEndPoints() returns 1.

Internet Explorer also has two additional methods for comparing ranges: isEqual(), which
determines if two ranges have the same start and end points, and inRange(), which determines if a
range occurs inside of another range. Here is an example:

var range1 = document.body.createTextRange();
var range2 = document.body.createTextRange();
range1.findText(“Hello world!”);
range2.findText(“Hello”);
alert(“range1.isEqual(range2): “ + range1.isEqual(range2)); //false
alert(“range1.inRange(range2): “ + range1.inRange(range2)); //true

IERangeExample6.htm

This example uses the same ranges as in the previous example to illustrate these methods. The
ranges are not equal, because the end points are different, so calling isEqual() returns false.
However, range2 is actually inside of range1, because its end point occurs before range1’s end
point but after range1’s start point. For this reason, range2 is considered to be inside of range1, so
inRange() returns true.

Cloning an Internet Explorer Range

Text ranges can be cloned in Internet Explorer using the duplicate() method, which creates an
exact clone of the range, as shown in the following example:

var newRange = range.duplicate();

All properties from the original range are carried over into the newly created one.

SUMMARY

The DOM Level 2 specifi cations defi ne several modules that augment the functionality of DOM
Level 1. DOM Level 2 Core introduces several new methods related to XML namespaces on various
DOM types. These changes are relevant only when used in XML or XHTML documents; they
have no use in HTML documents. Methods not related to XML namespaces include the ability to
programmatically create new instances of Document and to enable the creation of DocumentType
objects.

c12.indd 428c12.indd 428 12/8/11 10:27:18 AM12/8/11 10:27:18 AM

The DOM Level 2 Style module specifi es how to interact with stylistic information about elements
as follows:

Every element has a style object associated with it that can be used to determine and
change inline styles.

To determine the computed style of an element, including all CSS rules that apply to it, you
can use a method called getComputedStyle().

Internet Explorer doesn’t support this method but offers a currentStyle property on all
elements that returns the same information.

It’s also possible to access style sheets via the document.styleSheets collection.

The interface for style sheets is supported by all browsers except Internet Explorer 8 and
earlier, which offer comparable properties and methods for almost all DOM functionality.

The DOM Level 2 Traversals and Range module specifi es different ways to interact with a DOM
structure as follows:

Traversals are handled using either NodeIterator or TreeWalker to perform depth-fi rst
traversals of a DOM tree.

The NodeIterator interface is simple, allowing only forward and backward movement in
one-step increments. The TreeWalker interface supports the same behavior and moves across
the DOM structure in all other directions, including parents, siblings, and children.

Ranges are a way to select specifi c portions of a DOM structure to augment it in some
fashion.

Selections of ranges can be used to remove portions of a document while retaining a
well-formed document structure or for cloning portions of a document.

Internet Explorer 8 and earlier don’t support DOM Level 2 Traversals and Range, though
they offer a proprietary text range object that can be used to do simple text-based range
manipulation. Internet Explorer 9 fully supports DOM traversals.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Summary ❘ 429

c12.indd 429c12.indd 429 12/8/11 10:27:18 AM12/8/11 10:27:18 AM

c12.indd 430c12.indd 430 12/8/11 10:27:19 AM12/8/11 10:27:19 AM

Events

WHAT’S IN THIS CHAPTER?

Understanding event fl ow

Working with event handlers

Examining the diff erent types of events

JavaScript’s interaction with HTML is handled through events, which indicate when
particular moments of interest occur in the document or browser window. Events can be
subscribed to using listeners (also called handlers) that execute only when an event occurs. This
model, called the observer pattern in traditional software engineering, allows a loose coupling
between the behavior of a page (defi ned in JavaScript) and the appearance of the page (defi ned
in HTML and CSS).

Events fi rst appeared in Internet Explorer 3 and Netscape Navigator 2 as a way to offl oad
some form processing from the server onto the browser. By the time Internet Explorer 4 and
Netscape 4 were released, each browser delivered similar but different APIs that continued for
several generations. DOM Level 2 was the fi rst attempt to standardize the DOM events API in
a logical way. Internet Explorer 9, Firefox, Opera, Safari, and Chrome all have implemented
the core parts of DOM Level 2 Events. Internet Explorer 8 was the last major browser to use a
purely proprietary event system.

The browser event system is a complex one. Even though all major browsers have implemented
DOM Level 2 Events, the specifi cation doesn’t cover all event types. The BOM also supports
events, and the relationship between these and the DOM events is often confusing because of
a longtime lack of documentation (something that HTML5 has tried to clarify). Further
complicating matters is the augmentation of the DOM events API by DOM Level 3. Working
with events can be relatively simple or very complex, depending on your requirements.
Still, there are some core concepts that are important to understand.

➤

➤

➤

13

c13.indd 431c13.indd 431 12/8/11 10:35:08 AM12/8/11 10:35:08 AM

432 ❘ CHAPTER 13 EVENTS

EVENT FLOW

When development for the fourth generation of web browsers began (Internet Explorer 4 and
Netscape Communicator 4), the browser development teams were met with an interesting question:
what part of a page owns a specifi c event? To understand the issue, consider a series of concentric
circles on a piece of paper. When you place your fi nger at the center, it is inside of not just one circle
but all of the circles on the paper. Both development teams looked at browser events in the same
way. When you click on a button, they concluded, you’re clicking not just on the button but also on
its container and on the page as a whole.

Event fl ow describes the order in which events are received on the page, and interestingly, the
Internet Explorer and Netscape development teams came up with an almost exactly opposite
concept of event fl ow. Internet Explorer would support an event bubbling fl ow, whereas Netscape
Communicator would support an event capturing fl ow.

Event Bubbling

The Internet Explorer event fl ow is called event bubbling, because an event is said to start at the
most specifi c element (the deepest possible point in the document tree) and then fl ow upward
toward the least specifi c node (the document). Consider the following HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>Event Bubbling Example</title>
</head>
<body>
 <div id=”myDiv”>Click Me</div>
</body>
</html>

When you click the <div> element in the page, the click event occurs in the following order:

 1. <div>

 2. <body>

 3. <html>

 4. document

The click event is fi rst fi red on the <div>, which is the element
that was clicked. Then the click event goes up the DOM tree,
fi ring on each node along its way until it reaches the document
object. Figure 13-1 illustrates this effect.

All modern browsers support event bubbling, although there
are some variations on how it is implemented. Internet
Explorer 5.5 and earlier skip bubbling to the <html> element
(going from <body> directly to document). Internet Explorer 9,
Firefox, Chrome, and Safari continue event bubbling up to
the window object.

Document

Element html

Element body

4

3

2

Element div 1

FIGURE 13-1

c13.indd 432c13.indd 432 12/8/11 10:35:11 AM12/8/11 10:35:11 AM

Event Capturing

The Netscape Communicator team came up with an alternate event fl ow called event capturing. The
theory of event capturing is that the least specifi c node should receive the event fi rst and the most
specifi c node should receive the event last. Event capturing was really designed to intercept the event
before it reached the intended target. If the previous example is used with event capturing, clicking
the <div> element fi res the click event in the following order:

 1. document

 2. <html>

 3. <body>

 4. <div>

With event capturing, the click event is fi rst received by the
document and then continues down the DOM tree to the
actual target of the event, the <div> element. This fl ow is
illustrated in Figure 13-2.

Although this was Netscape Communicator’s only event fl ow
model, event capturing is currently supported in Internet
Explorer 9, Safari, Chrome, Opera, and Firefox. All of them
actually begin event capturing at the window-level event
despite the fact that the DOM Level 2 Events specifi cation
indicates that the events should begin at document.

Event capturing is generally not used because of a lack of support in older browsers. The general
advice is to use event bubbling freely while retaining event capturing for special circumstances.

DOM Event Flow

The event fl ow specifi ed by DOM Level 2 Events has three phases: the event capturing phase, at
the target, and the event bubbling phase. Event capturing occurs fi rst, providing the opportunity to
intercept events if necessary. Next, the actual target receives the event. The fi nal phase is bubbling,
which allows a fi nal response to the event. Considering the simple HTML example used previously,
clicking the <div> fi res the event in the order indicated in Figure 13-3.

Event Flow ❘ 433

FIGURE 13-2

Document

Element html

Element body

1

2

3

Element div 4

Document

Element html
bubbling phase

capturing phase

Element body

7

6

5

Element div 4

1

2

3

FIGURE 13-3

c13.indd 433c13.indd 433 12/8/11 10:35:11 AM12/8/11 10:35:11 AM

434 ❘ CHAPTER 13 EVENTS

In the DOM event fl ow, the actual target (the <div> element) does not receive the event during the
capturing phase. This means that the capturing phase moves from document to <html> to <body>
and stops. The next phase is “at target,” which fi res on the <div> and is considered to be part of the
bubbling phase in terms of event handling (discussed later). Then, the bubbling phase occurs and
the event travels back up to the document.

Most of the browsers that support DOM event fl ow have implemented a quirk. Even though the
DOM Level 2 Events specifi cation indicates that the capturing phase doesn’t hit the event target,
Internet Explorer 9, Safari, Chrome, Firefox, and Opera 9.5 and later all fi re an event during the
capturing phase on the event target. The end result is that there are two opportunities to work with
the event on the target.

Internet Explorer 9, Opera, Firefox, Chrome, and Safari all support the DOM
event fl ow; Internet Explorer 8 and earlier do not.

EVENT HANDLERS

Events are certain actions performed either by the user or by the browser itself. These events have
names like click, load, and mouseover. A function that is called in response to an event is called
an event handler (or an event listener). Event handlers have names beginning with “on”, so an event
handler for the click event is called onclick and an event handler for the load event is called
onload. Assigning event handlers can be accomplished in a number of different ways.

HTML Event Handlers

Each event supported by a particular element can be assigned using an HTML attribute with the
name of the event handler. The value of the attribute should be some JavaScript code to execute. For
example, to execute some JavaScript when a button is clicked, you can use the following:

<input type=”button” value=”Click Me” onclick=”alert(‘Clicked’)” />

When this button is clicked, an alert is displayed. This interaction is defi ned by specifying the
onclick attribute and assigning some JavaScript code as the value. Note that since the JavaScript
code is an attribute value, you cannot use HTML syntax characters such as the ampersand, double
quotes, less-than, or greater-than without escaping them. In this case, single quotes were used
instead of double quotes to avoid the need to use HTML entities. To use double quotes, you will
change the code to the following:

<input type=”button” value=”Click Me” onclick=”alert("Clicked")” />

An event handler defi ned in HTML may contain the precise action to take or it can call a script
defi ned elsewhere on the page, as in this example:

<script type=”text/javascript”>
 function showMessage(){
 alert(“Hello world!”);
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 434c13.indd 434 12/8/11 10:35:12 AM12/8/11 10:35:12 AM

</script>
<input type=”button” value=”Click Me” onclick=”showMessage()” />

HTMLEventHandlerExample01.htm

In this code, the button calls showMessage() when it is clicked. The showMessage() function is
defi ned in a separate <script> element and could also be included in an external fi le. Code executing
as an event handler has access to everything in the global scope.

Event handlers assigned in this way have some unique aspects. First, a function is created that wraps
the attribute value. That function has a special local variable called event, which is the event
object (discussed later in this chapter):

<!-- outputs “click” -->
<input type=”button” value=”Click Me” onclick=”alert(event.type)”>

This gives you access to the event object without needing to defi ne it yourself and without needing
to pull it from the enclosing function’s argument list.

The this value inside of the function is equivalent to the event’s target element, for example:

<!-- outputs “Click Me” -->
<input type=”button” value=”Click Me” onclick=”alert(this.value)”>

Another interesting aspect of this dynamically created function is how it augments the scope
chain. Within the function, members of both document and the element itself can be accessed
as if they were local variables. The function accomplishes this via scope chain augmentation
using with:

function(){
 with(document){
 with(this){
 //attribute value
 }
 }
}

This means that an event handler can access its own properties easily. The following is functionally
the same as the previous example:

<!-- outputs “Click Me” -->
<input type=”button” value=”Click Me” onclick=”alert(value)”>

If the element is a form input element, then the scope chain also contains an entry for the parent
form element, making the function the equivalent to the following:

function(){
 with(document){
 with(this.form){
 with(this){
 //attribute value

Event Handlers ❘ 435

c13.indd 435c13.indd 435 12/8/11 10:35:22 AM12/8/11 10:35:22 AM

436 ❘ CHAPTER 13 EVENTS

 }
 }
 }
}

Basically, this augmentation allows the event handler code to access other members of the same
form without referencing the form element itself. For example:

<form method=”post”>
 <input type=”text” name=”username” value=””>
 <input type=”button” value=”Echo Username” onclick=”alert(username.value)”>
</form>

HTMLEventHandlerExample04.htm

Clicking on the button in this example results in the text from the text box being displayed. Note
that it just references username directly.

There are a few downsides to assigning event handlers in HTML. The fi rst is a timing issue:
it’s possible that the HTML element appears on the page and is interacted with by the user before
the event handler code is ready. In the previous example, imagine a scenario where the
showMessage() function isn’t defi ned until later on the page, after the code for the button. If the
user were to click the button before showMessage() was defi ned, an error would occur. For this
reason, most HTML event handlers are enclosed in try-catch blocks so that they quietly fail,
as in the following example:

<input type=”button” value=”Click Me” onclick=”try{showMessage();}catch(ex){}”>

If this button is clicked before the showMessage() function is defi ned, no JavaScript error occurs
because the error is caught before the browser can handle it.

Another downside is that the scope chain augmentation in the event handler function can lead
to different results in different browsers. The rules being followed for identifi er resolution are slightly
different amongst JavaScript engines, and so the result of accessing unqualifi ed object members may
cause errors.

The last downside to assigning event handlers using HTML is that it tightly couples the HTML to
the JavaScript. If the event handler needs to be changed, you may need to change code in two places:
in the HTML and in the JavaScript. This is the primary reason that many developers avoid HTML
event handlers in favor of using JavaScript to assign event handlers.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

For more information on the disadvantages of HTML event handlers, please
see Event Handler Scope by Garrett Smith (www.jibbering.com/faq/names/
event_handler.html).

c13.indd 436c13.indd 436 12/8/11 10:35:22 AM12/8/11 10:35:22 AM

DOM Level 0 Event Handlers

The traditional way of assigning event handlers in JavaScript is to assign a function to an event
handler property. This was the event handler assignment method introduced in the fourth
generation of web browsers, and it still remains in all modern browsers because of its simplicity
and cross-browser support. To assign an event handler using JavaScript, you must fi rst retrieve a
reference to the object to act on.

Each element (as well as window and document) has event handler properties that are typically
all lowercase, such as onclick. An event handler is assigned by setting the property equal to a
function, as in this example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){
 alert(“Clicked”);
};

Here, a button is retrieved from the document and an onclick event handler is assigned. Note that
the event handler isn’t assigned until this code is run, so if the code appears after the code for the
button in the page, there may be an amount of time during which the button will do nothing when
clicked.

When assigning event handlers using the DOM Level 0 method, the event handler is considered
to be a method of the element. The event handler, therefore, is run within the scope of element,
meaning that this is equivalent to the element. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){
 alert(this.id); //”myBtn”
};

DOMLevel0EventHandlerExample01.htm

This code displays the element’s ID when the button is clicked. The ID is retrieved using this.id.
It’s possible to use this to access any of the element’s properties or methods from within the event
handlers. Event handlers added in this way are intended for the bubbling phase of the event fl ow.

You can remove an event handler assigned via the DOM Level 0 approach by setting the value of the
event handler property to null, as in the following example:

btn.onclick = null; //remove event handler

Once the event handler is set to null, the button no longer has any action to take when it is clicked.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

If you’ve assigned an event handler using HTML, the value on the onclick
property is a function containing the code specifi ed in the HTML attribute. These
event handlers can also be removed by setting the property to null.

Event Handlers ❘ 437

c13.indd 437c13.indd 437 12/8/11 10:35:33 AM12/8/11 10:35:33 AM

438 ❘ CHAPTER 13 EVENTS

DOM Level 2 Event Handlers

DOM Level 2 Events defi ne two methods to deal with the assignment and removal of event
handlers: addEventListener() and removeEventListener(). These methods exist on all DOM
nodes and accept three arguments: the event name to handle, the event handler function, and a
Boolean value indicating whether to call the event handler during the capture phase (true) or during
the bubble phase (false).

To add an event handler for the click event on a button, you can use the following code:

var btn = document.getElementById(“myBtn”);
btn.addEventListener(“click”, function(){
 alert(this.id);
}, false);

This code adds an onclick event handler to a button that will be fi red in the bubbling phase (since
the last argument is false). As with the DOM Level 0 approach, the event handler runs in the scope
of the element on which it is attached. The major advantage to using the DOM Level 2 method for
adding event handlers is that multiple event handlers can be added. Consider the following example:

var btn = document.getElementById(“myBtn”);
btn.addEventListener(“click”, function(){
 alert(this.id);
}, false);
btn.addEventListener(“click”, function(){
 alert(“Hello world!”);
}, false);

DOMLevel2EventHandlerExample01.htm

Here, two event handlers are added to the button. The event handlers fi re in the order in which
they were added, so the fi rst alert displays the element’s ID and the second displays the message
“Hello world!”

Event handlers added via addEventListener() can be removed only by using
removeEventListener() and passing in the same arguments as were used when the handler
was added. This means that anonymous functions added using addEventListener() cannot be
removed, as shown in this example:

var btn = document.getElementById(“myBtn”);
btn.addEventListener(“click”, function(){
 alert(this.id);
}, false);

//other code here

btn.removeEventListener(“click”, function(){ //won’t work!
 alert(this.id);
}, false);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 438c13.indd 438 12/8/11 10:35:38 AM12/8/11 10:35:38 AM

In this example, an anonymous function is added as an event handler using addEventListener().
The call to removeEventListener() looks like it’s using the same arguments, but in reality, the
second argument is a completely different function than the one used in addEventListener(). The
event handler function passed into removeEventListener() must be the same one that was used in
addEventListener(), as in this example:

var btn = document.getElementById(“myBtn”);
var handler = function(){
 alert(this.id);
};
btn.addEventListener(“click”, handler, false);

//other code here

btn.removeEventListener(“click”, handler, false); //works!

DOMLevel2EventHandlerExample02.htm

This rewritten example works as expected because the same function is used for both
addEventListener() and removeEventListener().

In most cases, event handlers are added to the bubbling phase of the event fl ow since this offers the
broadest possible cross-browser support. Attaching an event handler in the capture phase is best
done if you need to intercept events before they reach their intended target. If this is not necessary,
it’s advisable to avoid event capturing.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

DOM Level 2 event handlers are supported in Internet Explorer 9, Firefox, Safari,
Chrome, and Opera.

Internet Explorer Event Handlers

Internet Explorer implements methods similar to the DOM called attachEvent() and detachEvent().
These methods accept the same two arguments: the event handler name and the event handler
function. Since Internet Explorer 8 and earlier support only event bubbling, event handlers added using
attachEvent() are attached on the bubbling phase.

To add an event handler for the click event on a button using attachEvent(), you can use the
following code:

var btn = document.getElementById(“myBtn”);
btn.attachEvent(“onclick”, function(){
 alert(“Clicked”);
});

IEEventHandlerExample01.htm

Note that the fi rst argument of attachEvent() is “onclick” as opposed to “click” in the DOM’s
addEventListener() method.

Event Handlers ❘ 439

c13.indd 439c13.indd 439 12/8/11 10:35:38 AM12/8/11 10:35:38 AM

440 ❘ CHAPTER 13 EVENTS

A major difference between using attachEvent() and using the DOM Level 0 approach in Internet
Explorer is the scope of the event handler. When using DOM Level 0, the event handler runs with
a this value equal to the element on which it is attached; when using attachEvent(), the event
handler runs in the global context, so this is equivalent to window. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.attachEvent(“onclick”, function(){
 alert(this === window); //true
});

This difference is important to understand when writing cross-browser code.

The attachEvent() method, similar to addEventListener(), can be used to add multiple event
handlers to a single element. Consider the following example:

var btn = document.getElementById(“myBtn”);
btn.attachEvent(“onclick”, function(){
 alert(“Clicked”);
});
btn.attachEvent(“onclick”, function(){
 alert(“Hello world!”);
});

IEEventHandlerExample01.htm

Here, attachEvent() is called twice, adding two different event handlers to the same button. Unlike
the DOM method, though, the event handlers fi re in reverse of the order they were added. When the
button in this example is clicked, the fi rst alert says “Hello world!” and the second says “Clicked”.

Events added using attachEvent() are removed using detachEvent() as long as the same arguments
are provided. As with the DOM methods, this means that anonymous functions cannot be removed
once they have been added. Event handlers can always be removed as long as a reference to the same
function can be passed into detachEvent(). Here is an example:

var btn = document.getElementById(“myBtn”);
var handler = function(){
 alert(“Clicked”);
};
btn.attachEvent(“onclick”, handler);

//other code here

btn.detachEvent(“onclick”, handler);

IEEventHandlerExample02.htm

This example adds an event handler stored in the variable handler. That same function is later
removed using detachEvent().

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Internet Explorer event handlers are supported in Internet Explorer and Opera.

c13.indd 440c13.indd 440 12/8/11 10:35:43 AM12/8/11 10:35:43 AM

Cross-Browser Event Handlers

To accommodate event handling in a cross-browser way, many developers end up either using a
JavaScript library that abstracts away the browser differences or writing custom code to use the
most appropriate event-handling approach. Writing your own code is fairly straightforward, because
it relies on capability detection (covered in Chapter 9). To make sure that the event-handling code
works in the most compatible way possible, you will need it to work only on the bubbling phase.

The fi rst method to create is called addHandler(), and its job is to use the DOM Level 0 approach,
the DOM Level 2 approach, or the Internet Explorer approach to adding events, depending on which
is available. This method is attached to an object called EventUtil that will be used throughout
this book to aid in handling cross-browser differences. The addHandler() method accepts three
arguments: the element to act on, the name of the event, and the event handler function.

The counterpart to addHandler() is removeHandler(), which accepts the same three arguments.
This method’s job is to remove a previously added event handler using whichever means is available,
defaulting to DOM Level 0 if no other method is available.

The full code for EventUtil is as follows:

var EventUtil = {

 addHandler: function(element, type, handler){
 if (element.addEventListener){
 element.addEventListener(type, handler, false);
 } else if (element.attachEvent){
 element.attachEvent(“on” + type, handler);
 } else {
 element[“on” + type] = handler;
 }
 },

 removeHandler: function(element, type, handler){
 if (element.removeEventListener){
 element.removeEventListener(type, handler, false);
 } else if (element.detachEvent){
 element.detachEvent(“on” + type, handler);
 } else {
 element[“on” + type] = null;
 }
 }

};

EventUtil.js

Both methods fi rst check for the existence of the DOM Level 2 method on the element that was
passed in. If the DOM Level 2 method exists, it is used, passing in the event type and the event

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Handlers ❘ 441

c13.indd 441c13.indd 441 12/8/11 10:35:49 AM12/8/11 10:35:49 AM

442 ❘ CHAPTER 13 EVENTS

handler function, along with a third argument of false (to indicate the bubbling phase). If the
Internet Explorer method is available, it is used as a second option. Note that the event type must
be prefi xed with “on” in order for it to work in Internet Explorer 8 and earlier. The last resort is to
use the DOM Level 0 method (code should never reach here in modern browsers). Note the use of
bracket notation to assign the property name to either the event handler or null.

This utility object can be used in the following way:

var btn = document.getElementById(“myBtn”);
var handler = function(){
 alert(“Clicked”);
};
EventUtil.addHandler(btn, “click”, handler);

//other code here

EventUtil.removeHandler(btn, “click”, handler);

CrossBrowserEventHandlerExample01.htm

The addHandler() and removeHandler() methods don’t equalize all functionality across all
browsers, such as the Internet Explorer scope issue, but it does allow the seamless addition and
removal of event handlers. Keep in mind, also, that DOM Level 0 support is limited to just one
event handler per event. Fortunately, DOM Level 0 browsers are no longer in popular use, so this
shouldn’t affect you.

THE EVENT OBJECT

When an event related to the DOM is fi red, all of the relevant information is gathered and stored
on an object called event. This object contains basic information such as the element that caused
the event, the type of event that occurred, and any other data that may be relevant to the particular
event. For example, an event caused by a mouse action generates information about the mouse’s
position, whereas an event caused by a keyboard action generates information about the keys that
were pressed. All browsers support the event object, though not in the same way.

The DOM Event Object

In DOM-compliant browsers, the event object is passed in as the sole argument to an event
handler. Regardless of the method used to assign the event handler, DOM Level 0 or DOM Level 2,
the event object is passed in. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){
 alert(event.type); //”click”
};

btn.addEventListener(“click”, function(event){
 alert(event.type); //”click”
}, false);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 442c13.indd 442 12/8/11 10:35:49 AM12/8/11 10:35:49 AM

Both event handlers in this example pop up an alert indicating the type of event being fi red by using
the event.type property. This property always contains the type of event that was fi red, such as
“click” (it is the same value that you pass into addEventListener() and removeEventListener()).

When an event handler is assigned using HTML attributes, the event object is available as a
variable called event. Here’s an example:

<input type=”button” value=”Click Me” onclick=”alert(event.type)”>

Providing the event object in this way allows HTML attribute event handlers to perform the same
as JavaScript functions.

The event object contains properties and methods related to the specifi c event that caused its
creation. The available properties and methods differ based on the type of event that was fi red,
but all events have the members listed in the following table.

PROPERTY/METHOD TYPE READ/WRITE DESCRIPTION

bubbles Boolean Read only Indicates if the event bubbles.

cancelable Boolean Read only Indicates if the default behavior

of the event can be canceled.

currentTarget Element Read only The element whose event

handler is currently handling

the event.

defaultPrevented Boolean Read only When true, indicates that

preventDefault() has been

called (added in DOM Level 3

Events).

detail Integer Read only Extra information related to the

event.

eventPhase Integer Read only The phase during which the

event handler is being called:

1 for the capturing phase, 2 for

“at target,” and 3 for bubbling.

preventDefault() Function Read only Cancels the default behavior

for the event. If cancelable is

true, this method can be used.

stopImmediatePropagation() Function Read only Cancels any further event

capturing or event bubbling

and prevents any other event

handlers from being called.

(Added in DOM Level 3 Events.)

continues

The Event Object ❘ 443

c13.indd 443c13.indd 443 12/8/11 10:35:50 AM12/8/11 10:35:50 AM

444 ❘ CHAPTER 13 EVENTS

PROPERTY/METHOD TYPE READ/WRITE DESCRIPTION

stopPropagation() Function Read only Cancels any further event

capturing or event bubbling. If

bubbles is true, this method

can be used.

target Element Read only The target of the event.

trusted Boolean Read only When true, indicates if the

event was generated by

the browser. When false,

indicates the event was

created using JavaScript by

the developer. (Added in DOM

Level 3 Events.)

type String Read only The type of event that was fi red.

view AbstractView Read only The abstract view associated

with the event. This is equal to

the window object in which the

event occurred.

 (continued)

Inside an event handler, the this object is always equal to the value of currentTarget, whereas
target contains only the actual target of the event. If the event handler is assigned directly onto the
intended target, then this, currentTarget, and target all have the same value. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){
 alert(event.currentTarget === this); //true
 alert(event.target === this); //true
};

DOMEventObjectExample01.htm

This code examines the values of currentTarget and target relative to this. Since the target
of the click event is the button, all three are equal. If the event handler existed on a parent node of
the button, such as document.body, the values would be different. Consider the following example:

document.body.onclick = function(event){
 alert(event.currentTarget === document.body); //true
 alert(this === document.body); //true
 alert(event.target === document.getElementById(“myBtn”)); //true
};

DOMEventObjectExample02.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 444c13.indd 444 12/8/11 10:35:50 AM12/8/11 10:35:50 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

When the button is clicked in this example, both this and currentTarget are equal to document
.body because that’s where the event handler was registered. The target property, however, is equal to the
button element itself, because that’s the true target of the click event. Since the button itself doesn’t have
an event handler assigned, the click event bubbles up to document.body, where the event is handled.

The type property is useful when you want to assign a single function to handle multiple events.
Here is an example:

var btn = document.getElementById(“myBtn”);
var handler = function(event){
 switch(event.type){
 case “click”:
 alert(“Clicked”);
 break;

 case “mouseover”:
 event.target.style.backgroundColor = “red”;
 break;

 case “mouseout”:
 event.target.style.backgroundColor = “”;
 break;
 }
};

btn.onclick = handler;
btn.onmouseover = handler;
btn.onmouseout = handler;

DOMEventObjectExample03.htm

In this example, a single function called handler is defi ned to handle three different events: click,
mouseover, and mouseout. When the button is clicked, it should pop up an alert, as in the previous
examples. When the mouse is moved over the button, the background color should change to red,
and when the mouse is moved away from the button, the background color should revert to its
default. Using the event.type property, the function is able to determine which event occurred and
then react appropriately.

The preventDefault() method is used to prevent the default action of a particular event. The
default behavior of a link, for example, is to navigate to the URL specifi ed in its href attribute when
clicked. If you want to prevent that navigation from occurring, an onclick event handler can cancel
that behavior, as in the following example:

var link = document.getElementById(“myLink”);
link.onclick = function(event){
 event.preventDefault();
};

DOMEventObjectExample04.htm

Any event that can be canceled using preventDefault() will have its cancelable property set to true.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The Event Object ❘ 445

c13.indd 445c13.indd 445 12/8/11 10:35:50 AM12/8/11 10:35:50 AM

446 ❘ CHAPTER 13 EVENTS

The stopPropagation() method stops the fl ow of an event through the DOM structure immediately,
canceling any further event capturing or bubbling before it occurs. For example, an event handler
added directly to a button can call stopPropagation() to prevent an event handler on document
.body from being fi red, as shown in the following example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){
 alert(“Clicked”);
 event.stopPropagation();
};

document.body.onclick = function(event){
 alert(“Body clicked”);
};

DOMEventObjectExample05.htm

Without the call to stopPropagation() in this example, two alerts would be displayed when the
button is clicked. However, the click event never reaches document.body, so the onclick event
handler is never executed.

The eventPhase property aids in determining what phase of event fl ow is currently active. If the event
handler is called during the capture phase, eventPhase is 1; if the event handler is at the target,
eventPhase is 2; if the event handler is during the bubble phase, eventPhase is 3. Note that even
though “at target” occurs during the bubbling phase, eventPhase is always 2. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){
 alert(event.eventPhase); //2
};

document.body.addEventListener(“click”, function(event){
 alert(event.eventPhase); //1
}, true);

document.body.onclick = function(event){
 alert(event.eventPhase); //3
};

DOMEventObjectExample06.htm

When the button in this example is clicked, the fi rst event handler to fi re is the one on document
.body in the capturing phase, which pops up an alert that displays 1 as the eventPhase. Next, event
handler on the button itself is fi red, at which point the eventPhase is 2. The last event handler to
fi re is during the bubbling phase on document.body when eventPhase is 3. Whenever eventPhase
is 2, this, target, and currentTarget are always equal.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The event object exists only while event handlers are still being executed; once all
event handlers have been executed, the event object is destroyed.

c13.indd 446c13.indd 446 12/8/11 10:35:51 AM12/8/11 10:35:51 AM

The Internet Explorer Event Object

Unlike the DOM event object, the Internet Explorer event object is accessible in different ways
based on the way in which the event handler was assigned. When an event handler is assigned using
the DOM Level 0 approach, the event object exists only as a property of the window object. Here is
an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){
 var event = window.event;
 alert(event.type); //”click”
};

Here, the event object is retrieved from window.event and then used to determine the type of event
that was fi red (the type property for Internet Explorer is identical to that of the DOM version).
However, if the event handler is assigned using attachEvent(), the event object is passed in as the
sole argument to the function, as shown here:

var btn = document.getElementById(“myBtn”);
btn.attachEvent(“onclick”, function(event){
 alert(event.type); //”click”
});

When using attachEvent(), the event object is also available on the window object, as with the
DOM Level 0 approach. It is also passed in as an argument for convenience.

If the event handler is assigned by an HTML attribute, the event object is available as a variable
called event (the same as the DOM model). Here’s an example:

<input type=”button” value=”Click Me” onclick=”alert(event.type)”>

The Internet Explorer event object also contains properties and methods related to the specifi c event
that caused its creation. Many of these either map directly to or are related to DOM properties or
methods. Like the DOM event object, the available properties and methods differ based on the type
of event that was fi red, but all events use the properties and methods defi ned in the following table.

PROPERTY/METHOD TYPE READ/WRITE DESCRIPTION

cancelBubble Boolean Read/Write False by default, but can be set to true to

cancel event bubbling (same as the DOM

stopPropagation() method).

returnValue Boolean Read/Write True by default, but can be set to false to cancel

the default behavior of the event (same as the

DOM preventDefault() method).

srcElement Element Read only The target of the event (same as the DOM

target property).

type String Read only The type of event that was fi red.

The Event Object ❘ 447

c13.indd 447c13.indd 447 12/8/11 10:35:56 AM12/8/11 10:35:56 AM

448 ❘ CHAPTER 13 EVENTS

Since the scope of an event handler is determined by the manner in which it was assigned, the value
of this cannot always be assumed to be equal to the event target, so it’s a good idea to always use
event.srcElement instead. Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){
 alert(window.event.srcElement === this); //true
};

btn.attachEvent(“onclick”, function(event){
 alert(event.srcElement === this); //false
});

IEEventObjectExample01.htm

In the fi rst event handler, which is assigned using the DOM Level 0 approach, the srcElement
property is equal to this, but in the second event handler, the two values are different.

The returnValue property is the equivalent of the DOM preventDefault() method in that it
cancels the default behavior of a given event. You need only set returnValue to false to prevent
the default action. Consider the following example:

var link = document.getElementById(“myLink”);
link.onclick = function(){
 window.event.returnValue = false;
};

IEEventObjectExample02.htm

In this example, using returnValue in an onclick event handler stops a link’s default action.
Unlike the DOM, there is no way to determine whether an event can be canceled or not using
JavaScript.

The cancelBubble property performs the same action as the DOM stopPropagation() method:
it stops the event from bubbling. Since Internet Explorer 8 and earlier don’t support the capturing
phase, only bubbling is canceled, whereas stopPropagation() stops both capturing and bubbling.
Here is an example:

var btn = document.getElementById(“myBtn”);
btn.onclick = function(){
 alert(“Clicked”);
 window.event.cancelBubble = true;
};

document.body.onclick = function(){
 alert(“Body clicked”);
};

IEEventObjectExample03.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 448c13.indd 448 12/8/11 10:35:56 AM12/8/11 10:35:56 AM

By setting cancelBubble to true in the button’s onclick event handler, it prevents the event from
bubbling up to the document.body event handler. The result is that only one alert is displayed when
the button is clicked.

The Cross-Browser Event Object

Although the event objects for the DOM and Internet Explorer are different, there are enough
similarities to allow cross-browser solutions. All of the information and capabilities of the Internet
Explorer event object are present in the DOM object, just in a different form. These parallels
enable easy mapping from one event model to the other. The EventUtil object described earlier can
be augmented with methods that equalize the differences:

var EventUtil = {

 addHandler: function(element, type, handler){
 //code removed for printing
 },

 getEvent: function(event){
 return event ? event : window.event;
 },

 getTarget: function(event){
 return event.target || event.srcElement;

 },

 preventDefault: function(event){
 if (event.preventDefault){
 event.preventDefault();
 } else {
 event.returnValue = false;
 }
 },

 removeHandler: function(element, type, handler){
 //code removed for printing
 },

 stopPropagation: function(event){
 if (event.stopPropagation){
 event.stopPropagation();
 } else {
 event.cancelBubble = true;
 }
 }

};

EventUtil.js

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The Event Object ❘ 449

c13.indd 449c13.indd 449 12/8/11 10:35:57 AM12/8/11 10:35:57 AM

450 ❘ CHAPTER 13 EVENTS

There are four new methods added to EventUtil in this code. The fi rst is getEvent(), which
returns a reference to the event object. Since the location of the event object differs in Internet
Explorer, this method can be used to retrieve the event object regardless of the event handler
assignment approach used. To use this method, you must assume that the event object is passed
into the event handler and pass in that variable to the method. Here is an example:

btn.onclick = function(event){
 event = EventUtil.getEvent(event);
};

CrossBrowserEventObjectExample01.htm

When used in a DOM-compliant browser, the event variable is just passed through and returned.
In Internet Explorer the event argument will be undefi ned, so window.event is returned. Adding
this line to the beginning of event handlers ensures that the event object is always available,
regardless of the browser being used.

The second method is getTarget(), which returns the target of the event. Inside the method,
it checks the event object to see if the target property is available and returns its value if it is;
otherwise, the srcElement property is used. This method can be used as follows:

btn.onclick = function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
};

CrossBrowserEventObjectExample01.htm

The third method is preventDefault(), which stops the default behavior of an event. When the
event object is passed in, it is checked to see if the preventDefault() method is available and, if
so, calls it. If preventDefault() is not available, the method sets returnValue to false. Here is
an example:

var link = document.getElementById(“myLink”);
link.onclick = function(event){
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);
};

CrossBrowserEventObjectExample02.htm

This code prevents a link click from navigating to another page in all major browsers. The event object
is fi rst retrieved using EventUtil.getEvent() and then passed into EventUtil.preventDefault()
to stop the default behavior.

The fourth method, stopPropagation(), works in a similar way. It fi rst tries to use the DOM
method for stopping the event fl ow and uses cancelBubble if necessary. Here is an example:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 450c13.indd 450 12/8/11 10:35:57 AM12/8/11 10:35:57 AM

var btn = document.getElementById(“myBtn”);
btn.onclick = function(event){
 alert(“Clicked”);
 event = EventUtil.getEvent(event);
 EventUtil.stopPropagation(event);
};

document.body.onclick = function(event){
 alert(“Body clicked”);
};

CrossBrowserEventObjectExample03.htm

Here, the event object is retrieved using EventUtil.getEvent() and then passed into EventUtil
.stopPropagation(). Remember that this method may stop event bubbling or both event bubbling
and capturing depending on the browser.

EVENT TYPES

There are numerous categories of events that can occur in a web browser. As mentioned previously,
the type of event being fi red determines the information that is available about the event. DOM
Level 3 Events specifi es the following event groups:

User interface (UI) events are general browser events that may have some interaction
with the BOM.

Focus events are fi red when an element gains or loses focus.

Mouse events are fi red when the mouse is used to perform an action on the page.

Wheel events are fi red when a mouse wheel (or similar device) is used.

Text events are fi red when text is input into the document.

Keyboard events are fi red when the keyboard is used to perform an action on the page.

Composition events are fi red when inputting characters for an Input Method Editor (IME).

Mutation events are fi red when a change occurs to the underlying DOM structure.

Mutation name events are fi red when element or attribute names are changed. These events
are deprecated and not implemented by any browser, so they are intentionally omitted from
this chapter.

In addition to these categories, HTML5 defi nes another set of events, and browsers often implement
proprietary events both on the DOM and on the BOM. These proprietary events are typically driven by
developer demand rather than specifi cations and so may be implemented differently across browsers.

DOM Level 3 Events redefi nes the event groupings from DOM Level 2 Events and adds additional
event defi nitions. All major browsers support DOM Level 2 Events, including Internet Explorer 9.
Internet Explorer 9 also supports DOM Level 3 Events.

➤

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 451

c13.indd 451c13.indd 451 12/8/11 10:35:58 AM12/8/11 10:35:58 AM

452 ❘ CHAPTER 13 EVENTS

UI Events

UI events are those events that aren’t necessarily related to user actions. These events existed
in some form or another prior to the DOM specifi cation and were retained for backwards
compatibility. The UI events are as follows:

DOMActivate — Fires when an element has been activated by some user action, by either
mouse or keyboard (more generic than click or keydown). This event is deprecated in
DOM Level 3 Events and is supported in Firefox 2+ and Chrome. Because of cross-browser
implementation differences, it’s recommended not to use this event.

load — Fires on a window when the page has been completely loaded, on a frameset when
all frames have been completely loaded, on an element when it has been completely
loaded, or on an <object> element when it has been completely loaded.

unload — Fires on a window when the page has been completely unloaded, on a frameset
when all frames have been completely unloaded, or on an <object> element when it has
been completely unloaded.

abort — Fires on an <object> element if it is not fully loaded before the user stops the
download process.

error — Fires on a window when a JavaScript error occurs, on an element if the
image specifi ed cannot be loaded, on an <object> element if it cannot be loaded, or on a
frameset if one or more frames cannot be loaded. This event is discussed in Chapter 17.

select — Fires when the user selects one or more characters in a text box (either <input>
or <textarea>). This event is discussed in Chapter 14.

resize — Fires on a window or frame when it is resized.

scroll — Fires on any element with a scrollbar when the user scrolls it. The <body>
element contains the scrollbar for a loaded page.

Most of the HTML events are related either to the window object or to form controls.

With the exception of DOMActivate, these events were part of the HTML Events group in DOM
Level 2 Events (DOMActivate was still part of UI Events in DOM Level 2). To determine if a browser
supports HTML events according to DOM Level 2 Events, you can use the following code:

var isSupported = document.implementation.hasFeature(“HTMLEvents”, “2.0”);

Note that browsers should return true for this only if they implement these events according to the
DOM Level 2 Events. Browsers may support these events in nonstandard ways and thus return false.
To determine if the browser supports these events as defi ned in DOM Level 3 Events, use the following:

var isSupported = document.implementation.hasFeature(“UIEvent”, “3.0”);

The load Event

The load event is perhaps the most often used event in JavaScript. For the window object, the load
event fi res when the entire page has been loaded, including all external resources such as images,

➤

➤

➤

➤

➤

➤

➤

➤

c13.indd 452c13.indd 452 12/8/11 10:35:58 AM12/8/11 10:35:58 AM

JavaScript fi les, and CSS fi les. You can defi ne an onload event handler in two ways. The fi rst is by
using JavaScript, as shown here:

EventUtil.addHandler(window, “load”, function(event){
 alert(“Loaded!”);
});

LoadEventExample01.htm

This is the JavaScript-based way of assigning an event handler, using the cross-browser EventUtil
object discussed earlier in this chapter. As with other events, the event object is passed into the
event handler. The event object doesn’t provide any extra information for this type of event,
although it’s interesting to note that DOM-compliant browsers have event.target set to document,
whereas Internet Explorer prior to version 8 doesn’t set the srcElement property for this event.

The second way to assign the onload event handler is to add an onload attribute to the <body>
element, as in the following example:

<!DOCTYPE html>
<html>
<head>
 <title>Load Event Example</title>
</head>
<body onload=”alert(‘Loaded!’)”>

</body>
</html>

LoadEventExample02.htm

Generally speaking, any events that occur on the window can be assigned via attributes on the
<body> element, because there is no access to the window element in HTML. This really is a hack
for backwards compatibility but is still well-supported in all browsers. It is recommended that you
use the JavaScript approach whenever possible.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

According to DOM Level 2 Events, the load event is supposed to fi re on document,
not on window. However, load is implemented on window in all browsers for
backwards compatibility.

The load event also fi res on images, both those that are in the DOM and those that are not. You
can assign an onload event handler directly using HTML on any images in the document, using
code such as this:

LoadEventExample03.htm

Event Types ❘ 453

c13.indd 453c13.indd 453 12/8/11 10:35:58 AM12/8/11 10:35:58 AM

454 ❘ CHAPTER 13 EVENTS

This example displays an alert when the given image has been loaded. This can also be done using
JavaScript as follows:

var image = document.getElementById(“myImage”);
EventUtil.addHandler(image, “load”, function(event){
 event = EventUtil.getEvent(event);
 alert(EventUtil.getTarget(event).src);
});

LoadEventExample04.htm

Here, the onload event handler is assigned using JavaScript. The event object is passed in, though
it doesn’t have much useful information. The target of the event is the element, so its src
property can be accessed and displayed.

When creating a new element, an event handler can be assigned to indicate when the image
has been loaded. In this case, it’s important to assign the event before assigning the src property,
as in the following example:

EventUtil.addHandler(window, “load”, function(){
 var image = document.createElement(“img”);
 EventUtil.addHandler(image, “load”, function(event){
 event = EventUtil.getEvent(event);
 alert(EventUtil.getTarget(event).src);
 });
 document.body.appendChild(image);
 image.src = “smile.gif”;
});

LoadEventExample05.htm

The fi rst part of this example is to assign an onload event handler for the window. Since the
example involves adding a new element to the DOM, you must be certain that the page is loaded,
because trying to manipulate document.body prior to its being fully loaded can cause errors. A new
image element is created and its onload event handler is set. Then, the image is added to the page
and its src is assigned. Note that the element need not be added to the document for the image
download to begin; it begins as soon as the src property is set.

This same technique can be used with the DOM Level 0 Image object. Prior to the DOM, the Image
object was used to preload images on the client. It can be used the same way as an element
with the exception that it cannot be added into the DOM tree. Consider the following example:

EventUtil.addHandler(window, “load”, function(){
 var image = new Image();
 EventUtil.addHandler(image, “load”, function(event){
 alert(“Image loaded!”);
 });
 image.src = “smile.gif”;
});

LoadEventExample06.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 454c13.indd 454 12/8/11 10:36:03 AM12/8/11 10:36:03 AM

Here, the Image constructor is used to create a new image and the event handler is assigned. Some
browsers implement the Image object as an element, but not all, so it’s best to treat them
as separate.

Internet Explorer 8 and earlier versions don’t generate an event object when the
load event fi res for an image that isn’t part of the DOM document. This pertains
both to elements that are never added to the document and to the Image
object. This was fi xed in Internet Explorer 9.

There are other elements that also support the load event in nonstandard ways. The <script>
element fi res a load event in Internet Explorer 9+, Firefox, Opera, Chrome, and Safari 3+, allowing
you to determine when dynamically loaded JavaScript fi les have been completely loaded. Unlike
images, JavaScript fi les start downloading only after the src property has been assigned and the
element has been added into the document, so the order in which the event handler and the src
property are assigned is insignifi cant. The following illustrates how to assign an event handler for a
<script> element:

EventUtil.addHandler(window, “load”, function(){
 var script = document.createElement(“script”);
 script.type = “text/javascript”;
 EventUtil.addHandler(script, “load”, function(event){
 alert(“Loaded”);
 });
 script.src = “example.js”;
 document.body.appendChild(script);
});

LoadEventExample07.htm

This example uses the cross-browser EventUtil object to assign the onload event handler to a
newly created <script> element. The event object’s target is the <script> node in most browsers.
Internet Explorer 8 and earlier versions do not support the load event for <script> elements.

Internet Explorer and Opera support the load event for <link> elements, allowing you to determine
when a style sheet has been loaded. For example:

EventUtil.addHandler(window, “load”, function(){
 var link = document.createElement(“link”);
 link.type = “text/css”;
 link.rel= “stylesheet”;
 EventUtil.addHandler(link, “load”, function(event){
 alert(“css loaded”);
 });
 link.href = “example.css”;
 document.getElementsByTagName(“head”)[0].appendChild(link);
});

LoadEventExample07.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 455

c13.indd 455c13.indd 455 12/8/11 10:36:04 AM12/8/11 10:36:04 AM

456 ❘ CHAPTER 13 EVENTS

As with the <script> node, a style sheet does not begin downloading until the href property has
been assigned and the <link> element has been added to the document.

The unload Event

A companion to the load event, the unload event fi res when a document has completely unloaded.
The unload event typically fi res when navigating from one page to another and is most often used
to clean up references to avoid memory leaks. Similar to the load event, an onunload event handler
can be assigned in two ways. The fi rst is by using JavaScript as shown here:

EventUtil.addHandler(window, “unload”, function(event){
 alert(“Unloaded!”);
});

The event object is generated for this event but contains nothing more than the target (set to
document) in DOM-compliant browsers. Internet Explorer 8 and earlier versions don’t provide the
srcElement property for this event.

The second way to assign the event handler, similar to the load event, is to add an attribute to the
<body> element, as in this example:

<!DOCTYPE html>
<html>
<head>
 <title>Unload Event Example</title>
</head>
<body onunload=”alert(‘Unloaded!’)”>

</body>
</html>

UnloadEventExample01.htm

Regardless of the approach you use, be careful with the code that executes inside of an onunload
event handler. Since the unload event fi res after everything is unloaded, not all objects that were
available when the page was loaded are still available. Trying to manipulate the location of a DOM
node or its appearance can result in errors.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

According to DOM Level 2 Events, the unload event is supposed to fi re on
<body>, not on window. However, unload is implemented on window in all
browsers for backwards compatibility.

The resize Event

When the browser window is resized to a new height or width, the resize event fi res. This event
fi res on window, so an event handler can be assigned either via JavaScript or by using the onresize

c13.indd 456c13.indd 456 12/8/11 10:36:09 AM12/8/11 10:36:09 AM

attribute on the <body> element. As mentioned previously, it is recommended that you use the
JavaScript approach as shown here:

EventUtil.addHandler(window, “resize”, function(event){
 alert(“Resized”);
});

Similar to other events that occur on the window, the event object is created and its target
is document in DOM-compliant browsers, whereas Internet Explorer 8 and earlier provide no
properties of use.

There are some important differences as to when the resize events fi re across browsers. Internet
Explorer, Safari, Chrome, and Opera fi re the resize event as soon as the browser is resized by one
pixel and then repeatedly as the user resizes the browser window. Firefox fi res the resize event
only after the user has stopped resizing the browser. Because of these differences, you should avoid
computation-heavy code in the event handler for this event, because it will be executed frequently
and cause a noticeable slowdown in the browser.

The resize event also fi res when the browser window is minimized or maximized.

The scroll Event

Even though the scroll event occurs on the window, it actually refers to changes in the appropriate
page-level element. In quirks mode, the changes are observable using the scrollLeft and
scrollTop of the <body> element; in standards mode, the changes occur on the <html> element in
all browsers except Safari (which still tracks scroll position on <body>). For example:

EventUtil.addHandler(window, “scroll”, function(event){
 if (document.compatMode == “CSS1Compat”){
 alert(document.documentElement.scrollTop);
 } else {
 alert(document.body.scrollTop);
 }
});

ScrollEventExample01.htm

This code assigns an event handler that outputs the vertical scroll position of the page, depending on
the rendering mode. Since Safari prior to 3.1 doesn’t support document.compatMode, older versions
fall through to the second case.

Similar to resize, the scroll event occurs repeatedly as the document is being scrolled, so
it’s best to keep the event handlers as simple as possible.

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 457

c13.indd 457c13.indd 457 12/8/11 10:36:14 AM12/8/11 10:36:14 AM

458 ❘ CHAPTER 13 EVENTS

Focus Events

Focus events are fi red when elements of a page receive or lose focus. These events work in concert
with the document.hasFocus() and document.activeElement properties to give insight as to how
the user is navigating the page. There are six focus events:

blur — Fires when an element has lost focus. This event does not bubble and is supported
in all browsers.

DOMFocusIn — Fires when an element has received focus. This is a bubbling version of the
focus HTML event. Opera is the only major browser to support this event. DOM Level 3
Events deprecates DOMFocusIn in favor of focusin.

DOMFocusOut — Fires when an element has lost focus. This is a generic version of the blur
HTML event. Opera is the only major browser to support this event. DOM Level 3 Events
deprecates DOMFocusOut in favor of focusout.

focus — Fires when an element has received focus. This event does not bubble and is
supported in all browsers.

focusin — Fires when an element has received focus. This is a bubbling version of the focus
HTML event and is supported in Internet Explorer 5.5+, Safari 5.1+, Opera 11.5+, and Chrome.

focusout — Fires when an element has lost focus. This is a generic version of the blur HTML
event and is supported in Internet Explorer 5.5+, Safari 5.1+, Opera 11.5+, and Chrome.

The two primary events of this group are focus and blur, both of which have been supported
in browsers since the early days of JavaScript. One of the biggest issues with these events is that
they don’t bubble. This led to the inclusion of focusin and focusout by Internet Explorer and
DOMFocusIn and DOMFocusOut by Opera. Internet Explorer’s approach has been standardized in
DOM Level 3 Events.

When focus is moved from one element to another on the page, the following order of events
is followed:

 1. focusout fi res on the element losing focus.

 2. focusin fi res on the element receiving focus.

 3. blur fi res on the element losing focus.

 4. DOMFocusOut fi res on the element losing focus.

 5. focus fi res on the element receiving focus.

 6. DOMFocusIn fi res on the element receiving focus.

The event target for blur, DOMFocusOut, and focusout is the element losing focus while the event
target for focus, DOMFocusIn, and focusin is the element receiving focus.

You can determine if a browser supports these events with the following:

var isSupported = document.implementation.hasFeature(“FocusEvent”, “3.0”);

➤

➤

➤

➤

➤

➤

c13.indd 458c13.indd 458 12/8/11 10:36:19 AM12/8/11 10:36:19 AM

Mouse and Wheel Events

Mouse events are the most commonly used group of events on the Web, because the mouse is the
primary navigation device used. There are nine mouse events defi ned in DOM Level 3 Events.
They are as follows:

click — Fires when the user clicks the primary mouse button (typically the left button) or
when the user presses the Enter key. This is an important fact for accessibility purposes,
because onclick event handlers can be executed using the keyboard and the mouse.

dblclick — Fires when the user double-clicks the primary mouse button (typically the left
button). This event was not defi ned in DOM Level 2 Events but is well-supported and so
was standardized in DOM Level 3 Events.

mousedown — Fires when the user pushes any mouse button down. This event cannot be
fi red via the keyboard.

mouseenter — Fires when the mouse cursor is outside of an element and then the user
fi rst moves it inside of the boundaries of the element. This event does not bubble and does
not fi re when the cursor moves over descendant elements. The mouseenter event was not
defi ned in DOM Level 2 Events but was added in DOM Level 3 Events. Internet Explorer,
Firefox 9+, and Opera support this event.

mouseleave — Fires when the mouse cursor is over an element and then the user moves it
outside of that element’s boundaries. This event does not bubble and does not fi re when the
cursor moves over descendant elements. The mouseleave event was not defi ned in DOM
Level 2 Events but was added in DOM Level 3 Events. Internet Explorer, Firefox 9+, and
Opera support this event.

mousemove — Fires repeatedly as the cursor is being moved around an element. This event
cannot be fi red via the keyboard.

mouseout — Fires when the mouse cursor is over an element and then the user moves it
over another element. The element moved to may be outside of the bounds of the original
element or a child of the original element. This event cannot be fi red via the keyboard.

mouseover — Fires when the mouse cursor is outside of an element and then the user
fi rst moves it inside of the boundaries of the element. This event cannot be fi red via the
keyboard.

mouseup — Fires when the user releases a mouse button. This event cannot be fi red via the
keyboard.

All elements on a page support mouse events. All mouse events bubble except mouseenter and
mouseleave, and they can all be canceled, which affects the default behavior of the browser.

➤

➤

➤

➤

➤

➤

➤

➤

➤

Even though focus and blur don’t bubble, they can be listened for during the
capturing phase. Peter-Paul Koch has an excellent write-up on this topic at
www.quirksmode.org/blog/archives/2008/04/delegating_the.html.

Event Types ❘ 459

c13.indd 459c13.indd 459 12/8/11 10:36:19 AM12/8/11 10:36:19 AM

460 ❘ CHAPTER 13 EVENTS

Canceling the default behavior of mouse events can affect other events as well because of the
relationship that exists amongst the events.

A click event can be fi red only if a mousedown event is fi red and followed by a mouseup event
on the same element; if either mousedown or mouseup is canceled, then the click event will not
fi re. Similarly, it takes two click events to cause the dblclick event to fi re. If anything prevents
these two click events from fi ring (either canceling one of the click events or canceling either
mousedown or mouseup), the dblclick event will not fi re. These four mouse events always fi re in
the following order:

 1. mousedown

 2. mouseup

 3. click

 4. mousedown

 5. mouseup

 6. click

 7. dblclick

Both click and dblclick rely on other events to fi re before they can fi re, whereas mousedown and
mouseup are not affected by other events.

Internet Explorer through version 8 has a slight implementation bug that causes the second
mousedown and click events to be skipped during a double click. The order is:

 1. mousedown

 2. mouseup

 3. click

 4. mouseup

 5. dblclick

Internet Explorer 9 fi xes this bug so the event ordering is correct.

You can determine if the DOM Level 2 Events (those listed above excluding dblclick, mouseenter,
and mouseleave) are supported by using this code:

var isSupported = document.implementation.hasFeature(“MouseEvents”, “2.0”);

To determine if the browser supports all of the events listed above, use the following:

var isSupported = document.implementation.hasFeature(“MouseEvent”, “3.0”)

Note that the DOM Level 3 feature name is just “MouseEvent” instead of “MouseEvents”.

There is also a subgroup of mouse events called wheel events. Wheel events are really just a single
event, mousewheel, which monitors interactions of a mouse wheel or a similar device such as the
Mac trackpad.

c13.indd 460c13.indd 460 12/8/11 10:36:24 AM12/8/11 10:36:24 AM

Client Coordinates

Mouse events all occur at a particular location within the browser viewport. This information is
stored in the clientX and clientY properties of the event object. These properties indicate the
location of the mouse cursor within the viewport at the time of the event and are supported in all
browsers. Figure 13-4 illustrates the client coordinates in a viewport.

You can retrieve the client coordinates of a mouse event in the following way:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);
 alert(“Client coordinates: “ + event.clientX + “,” + event.clientY);
});

ClientCoordinatesExample01.htm

This example assigns an onclick event handler to a <div> element. When the element is clicked, the
client coordinates of the event are displayed. Keep in mind that these coordinates do not take into
account the scroll position of the page, so these numbers do not indicate the location of the cursor
on the page.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Client Area

(clientX,clientY)

FIGURE 13-4

Event Types ❘ 461

c13.indd 461c13.indd 461 12/8/11 10:36:25 AM12/8/11 10:36:25 AM

462 ❘ CHAPTER 13 EVENTS

Page Coordinates

Where client coordinates give you information about where an event occurred in the viewport, page
coordinates tell you where on the page the event occurred via the pageX and pageY properties of
the event object. These properties indicate the location of the mouse cursor on the page, so the
coordinates are from the left and top of the page itself rather than the viewport.

You can retrieve the page coordinates of a mouse event in the following way:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);
 alert(“Page coordinates: “ + event.pageX + “,” + event.pageY);
});

PageCoordinatesExample01.htm

The values for pageX and pageY are the same as clientX and clientY when the page is not scrolled.

Internet Explorer 8 and earlier don’t support page coordinates on the event object, but you can
calculate them using client coordinates and scrolling information. You need to use the scrollLeft
and scrollTop properties on either document.body (when in quirks mode) or document
.documentElement (in standards mode). The calculation is done as follows:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);
 var pageX = event.pageX,
 pageY = event.pageY;

 if (pageX === undefined){
 pageX = event.clientX + (document.body.scrollLeft ||
 document.documentElement.scrollLeft);
 }

 if (pageY === undefined){
 pageY = event.clientY + (document.body.scrollTop ||
 document.documentElement.scrollTop);
 }

 alert(“Page coordinates: “ + pageX + “,” + pageY);
});

PageCoordinatesExample01.htm

Screen Coordinates

Mouse events occur not only in relation to the browser window but also in relation to the entire
screen. It’s possible to determine the location of the mouse in relation to the entire screen by using
the screenX and screenY properties. Figure 13-5 illustrates the screen coordinates in a browser.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 462c13.indd 462 12/8/11 10:36:25 AM12/8/11 10:36:25 AM

You can retrieve the screen coordinates of a mouse event in the following way:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);
 alert(“Screen coordinates: “ + event.screenX + “,” + event.screenY);
});

ScreenCoordinatesExample01.htm

Similar to the previous examples, this code assigns an onclick event handler to a <div> element.
When the element is clicked, the screen coordinates of the event are displayed.

Modifi er Keys

Even though a mouse event is primarily triggered by using the mouse, the state of certain keyboard
keys may be important in determining the action to take. The modifi er keys Shift, Ctrl, Alt, and
Meta are often used to alter the behavior of a mouse event. The DOM specifi es four properties to
indicate the state of these modifi er keys: shiftKey, ctrlKey, altKey, and metaKey. Each of these
properties contains a Boolean value that is set to true if the key is being held down or false if the
key is not pressed. When a mouse event occurs, you can determine the state of the various keys by
inspecting these properties. Consider the following example:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “click”, function(event){
 event = EventUtil.getEvent(event);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

(screenX,screenY)

FIGURE 13-5

Event Types ❘ 463

c13.indd 463c13.indd 463 12/8/11 10:36:26 AM12/8/11 10:36:26 AM

464 ❘ CHAPTER 13 EVENTS

 var keys = new Array();

 if (event.shiftKey){
 keys.push(“shift”);
 }

 if (event.ctrlKey){
 keys.push(“ctrl”);
 }

 if (event.altKey){
 keys.push(“alt”);
 }

 if (event.metaKey){
 keys.push(“meta”);
 }

 alert(“Keys: “ + keys.join(“,”));

});

Modifi erKeysExample01.htm

In this example, an onclick event handler checks the state of the various modifi er keys. The keys
array contains the names of the modifi er keys that are being held down. For each property that is
true, the name of the key is added to keys. At the end of the event handler, the keys are displayed
in an alert.

Internet Explorer 9, Firefox, Safari, Chrome, and Opera support all four keys.
Internet Explorer 8 and earlier versions do not support the metaKey property.

Related Elements

For the mouseover and mouseout events, there are other elements related to the event. Both of
these events involve moving the mouse cursor from within the boundaries of one element to within
the boundaries of another element. For the mouseover event, the primary target of the event
is the element that is gaining the cursor, and the related element is the one that is losing the cursor.
Likewise, for mouseout, the primary target is the element that is losing the cursor, and the related
element is the one that is gaining the cursor. Consider the following example:

<!DOCTYPE html>
<html>
<head>
 <title>Related Elements Example</title>
</head>
<body>
 <div id=”myDiv” style=”background-color:red;height:100px;width:100px;”></div>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 464c13.indd 464 12/8/11 10:36:26 AM12/8/11 10:36:26 AM

</body>
</html>

RelatedElementsExample01.htm

This page renders a single <div> on the page. If the mouse cursor starts over the <div> and then
moves outside of it, a mouseout event fi res on <div> and the related element is the <body> element.
Simultaneously, the mouseover event fi res on <body> and the related element is the <div>.

The DOM provides information about related elements via the relatedTarget property on the
event object. This property contains a value only for the mouseover and mouseout events; it is null
for all other events. Internet Explorer 8 and earlier don’t support the relatedTarget property but
offer comparable access to the related element using other properties. When the mouseover event
fi res, Internet Explorer provides a fromElement property containing the related element; when the
mouseout event fi res, Internet Explorer provides a toElement property containing the related element
(Internet Explorer 9 supports all properties). A cross-browser method to get the related element can be
added to EventUtil like this:

var EventUtil = {

 //more code here

 getRelatedTarget: function(event){
 if (event.relatedTarget){
 return event.relatedTarget;
 } else if (event.toElement){
 return event.toElement;
 } else if (event.fromElement){
 return event.fromElement;
 } else {
 return null;
 }

 },

 //more code here

};

EventUtil.js

As with the previous cross-browser methods, this one uses feature detection to determine which
value to return. The EventUtil.getRelatedTarget() method can then be used as follows:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “mouseout”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
 var relatedTarget = EventUtil.getRelatedTarget(event);
 alert(“Moused out of “ + target.tagName + “ to “ + relatedTarget.tagName);
});

RelatedElementsExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 465

c13.indd 465c13.indd 465 12/8/11 10:36:31 AM12/8/11 10:36:31 AM

466 ❘ CHAPTER 13 EVENTS

This example registers an event handler for the mouseout event on the <div> element. When the
event fi res, an alert is displayed indicating the place the mouse moved from and the place the mouse
moved to.

Buttons

The click event is fi red only when the primary mouse button is clicked on an element (or when the
Enter key is pressed on the keyboard), so button information isn’t necessary. For the mousedown and
mouseup events, there is a button property on the event object that indicates the button that was
pressed or released. The DOM button property has the following three possible values: 0 for the
primary mouse button, 1 for the middle mouse button (usually the scroll wheel button), and 2 for
the secondary mouse button. In traditional setups, the primary mouse button is the left button
and the secondary button is the right one.

Internet Explorer through version 8 also provides a button property, but it has completely different
values, as described here:

0 indicates that no button has been pressed.

1 indicates that the primary mouse button has been pressed.

2 indicates that the secondary mouse button has been pressed.

3 indicates that the primary and secondary buttons have been pressed.

4 indicates that the middle button has been pressed.

5 indicates that the primary and middle buttons have been pressed.

6 indicates that the secondary and middle buttons have been pressed.

7 indicates that all three buttons have been pressed.

As you can tell, the DOM model for the button property is much simpler and arguably more useful
than the Internet Explorer model since multi-button mouse usage is rare. It’s typical to normalize
the models to the DOM way since all browsers except Internet Explorer 8 and earlier implement
it natively. The mapping of primary, middle, and secondary buttons is fairly straightforward; all
of the other Internet Explorer options will translate into the pressing of one of the buttons, giving
precedence to the primary button in all instances. So if Internet Explorer returns either 5 or 7, this
converts to 0 in the DOM model.

Since capability detection alone can’t be used to determine the difference (since both have a button
property), you must use another method. Browsers that support the DOM version of mouse events
can be detected using the hasFeature() method, so a normalizing getButton() method on
EventUtil can be written as follows:

var EventUtil = {

 //more code here

 getButton: function(event){
 if (document.implementation.hasFeature(“MouseEvents”, “2.0”)){
 return event.button;

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 466c13.indd 466 12/8/11 10:36:32 AM12/8/11 10:36:32 AM

 } else {
 switch(event.button){
 case 0:
 case 1:
 case 3:
 case 5:
 case 7:
 return 0;
 case 2:
 case 6:
 return 2;
 case 4:
 return 1;
 }
 }
 },

 //more code here

};

EventUtil.js

Checking for the feature “MouseEvents” determines if the button property that is already present
on event contains the correct values. If that test fails, then the browser is likely Internet Explorer
and the values must be normalized. This method can then be used as follows:

var div = document.getElementById(“myDiv”);
EventUtil.addHandler(div, “mousedown”, function(event){
 event = EventUtil.getEvent(event);
 alert(EventUtil.getButton(event));
});

ButtonExample01.htm

In this example, an onmousedown event handler is added to a <div> element. When a mouse button
is pressed on the element, an alert displays the code for the button.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Note that when used with an onmouseup event handler, the value of button is the
button that was just released.

Additional Event Information

The DOM Level 2 Events specifi cation provides the detail property on the event object to give
additional information about an event. For mouse events, detail contains a number indicating
how many times a click has occurred at the given location. Clicks are considered to be a mousedown
event followed by a mouseup event at the same pixel location. The value of detail starts at 1 and is
incremented every time a click occurs. If the mouse is moved between mousedown and mouseup, then
detail is set back to 0.

Event Types ❘ 467

c13.indd 467c13.indd 467 12/8/11 10:36:32 AM12/8/11 10:36:32 AM

468 ❘ CHAPTER 13 EVENTS

Internet Explorer provides the following additional information for each mouse event as well:

altLeft is a Boolean value indicating if the left Alt key is pressed. If altLeft is true then
altKey is also true.

ctrlLeft is a Boolean value indicating if the left Ctrl key is pressed. If ctrlLeft is true
then ctrlKey is also true.

offsetX is the x-coordinate of the cursor relative to the boundaries of the target element.

offsetY is the y-coordinate of the cursor relative to the boundaries of the target element.

shiftLeft is a Boolean value indicating if the left Shift key is pressed. If shiftLeft is
true, then shiftKey is also true.

These properties are of limited value because they are available only in Internet Explorer and
provide information that either is not necessary or can be calculated in other ways.

The mousewheel Event

Internet Explorer 6 fi rst implemented the mousewheel
event. Since that time, it has been picked up by Opera,
Chrome, and Safari. The mousewheel event fi res when
the user interacts with the mouse wheel, rolling it vertically
in either direction. This event fi res on each element
and bubbles up to document (in Internet Explorer 8) and
window (in Internet Explorer 9+, Opera, Chrome,
and Safari). The event object for the mousewheel event
contains all standard information about mouse events
and an additional property called wheelDelta. When
the mouse wheel is rolled toward the front of the mouse,
wheelDelta is a positive multiple of 120; when the
mouse wheel is rolled toward the rear of the mouse,
wheelDelta is a negative multiple of 120. See Figure 13-6.

An onmousewheel event handler can be assigned to any element on the page or to the document to
handle all mouse wheel interactions. Here’s an example:

EventUtil.addHandler(document, “mousewheel”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.wheelDelta);
});

This example simply displays the wheelDelta value when the event is fi red. In most cases, you need
only know which direction the mouse wheel was turned, which can easily be determined by the sign
of the wheelDelta value.

One thing to be careful of: in Opera prior to version 9.5, the values for wheelDelta are reversed. If
you plan on supporting earlier versions of Opera, you’ll need to use browser detection to determine
the actual value, as shown in the following example:

➤

➤

➤

➤

➤

�120�120

FIGURE 13-6

c13.indd 468c13.indd 468 12/8/11 10:36:37 AM12/8/11 10:36:37 AM

EventUtil.addHandler(document, “mousewheel”, function(event){
 event = EventUtil.getEvent(event);
 var delta = (client.engine.opera && client.engine.opera < 9.5 ?
 -event.wheelDelta : event.wheelDelta);
 alert(delta);
});

MouseWheelEventExample01.htm

This code uses the client object created in Chapter 9 to see if the browser is an earlier version of Opera.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The mousewheel event was added to HTML5 as a refl ection of its popularity and
availability in most browsers.

Firefox supports a similar event called DOMMouseScroll, which
fi res when the mouse wheel is turned. As with mousewheel,
this event is considered a mouse event and has all of the usual
mouse event properties. Information about the mouse wheel is
given in the detail property, which is a negative multiple of three
when the scroll wheel is rolled toward the front of the mouse and
a positive multiple of three when it’s rolled toward the back of
the mouse. See Figure 13-7.

The DOMMouseScroll event can be attached to any element on the
page and bubbles up to the window object. You can attach an event
handler, as shown in the following example:

EventUtil.addHandler(window, “DOMMouseScroll”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.detail);
});

DOMMouseScrollEventExample01.htm

This simple event handler outputs the value of the detail property each time the mouse wheel is scrolled.

For a cross-browser solution, the fi rst step is to create a method that can retrieve a normalized value
for the mouse wheel delta. This can be added to the EventUtil object as follows:

var EventUtil = {

 //more code here

 getWheelDelta: function(event){
 if (event.wheelDelta){
 return (client.engine.opera && client.engine.opera < 9.5 ?
 -event.wheelDelta : event.wheelDelta);

�3�3

FIGURE 13-7

Event Types ❘ 469

c13.indd 469c13.indd 469 12/8/11 10:36:38 AM12/8/11 10:36:38 AM

470 ❘ CHAPTER 13 EVENTS

 } else {
 return -event.detail * 40;
 }
 },

 //more code here
};

EventUtil.js

The getWheelDelta() method checks to see if the event object has a wheelDelta property and, if
so, uses the browser detecting code to determine the correct value. If wheelDelta doesn’t exist, then
it assumes the value is in the detail property. Since Firefox’s value is different, it is fi rst negated
and then multiplied by 40 to be certain that its value will be the same as other browsers. With this
method complete, you can assign the same event handler to both mousewheel and DOMMouseScroll,
as shown here:

(function(){

 function handleMouseWheel(event){
 event = EventUtil.getEvent(event);
 var delta = EventUtil.getWheelDelta(event);
 alert(delta);
 }

 EventUtil.addHandler(document, “mousewheel”, handleMouseWheel);
 EventUtil.addHandler(document, “DOMMouseScroll”, handleMouseWheel);

})();

CrossBrowserMouseWheelExample01.htm

This code exists within a private scope so as not to pollute the global scope with extra functions.
The handleMouseWheel() function is the event handler for both events. (The event handler
assignment quietly fails when assigned to an event that doesn’t exist.) Using the EventUtil
.getWheelDelta() method allows the event handler to work seamlessly in both cases.

Touch Device Support

Touch devices running iOS or Android have interesting implementations, because, of course, there is
no mouse to interact with. When developing for touch devices, keep the following in mind:

The dblclick event is not supported at all. Double-clicking on the browser window zooms
in, and there is no way to override that behavior.

Tapping on a clickable element causes the mousemove event to fi re. If content changes as a
result of this action, no further events are fi red; if there are no changes to the screen, then
the mousedown, mouseup, and click events fi re in order. No events are fi red when tapping
on a nonclickable element. Clickable elements are defi ned as those that have a default action
when clicked (such as links) or elements that have an onclick event handler assigned.

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 470c13.indd 470 12/8/11 10:36:43 AM12/8/11 10:36:43 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The mousemove event also fi res mouseover and mouseout events.

The mousewheel and scroll events fi re when two fi ngers are on the screen and the page is
scrolled as the result of fi nger movement.

Accessibility Issues

If your web application or website must be accessible to users with disabilities, specifi cally those
who are using screen readers, you should be careful when using mouse events. As mentioned
previously, the click event can be fi red using the Enter key on the keyboard, but other mouse
events have no keyboard support. It’s advisable not to use mouse events other than click to show
functionality or cause code execution, as this will severely limit the usability for blind or sight-
impaired users. Here are some tips for accessibility using mouse events:

Use click to execute code. Some suggest that an application feels faster when code is
executed using onmousedown, which is true for sighted users. For screen readers, however,
this code is not accessible, because the mousedown event cannot be triggered.

Avoid using onmouseover to display new options to the user. Once again, screen readers
have no way to trigger this event. If you really must display new options in this manner,
consider adding keyboard shortcuts to display the same information.

Avoid using dblclick to execute important actions. The keyboard cannot fi re this event.

Following these simple hints can greatly increase the accessibility of your web application or website
to those with disabilities.

➤

➤

➤

➤

➤

To learn more about accessibility on web pages, please visit www.webaim.org and
http://accessibility.yahoo.com.

Keyboard and Text Events

Keyboard events are fi red when the user interacts with the keyboard. DOM Level 2 Events originally
specifi ed keyboard events, but that section was removed before the specifi cation became fi nal. As a
result, keyboard events are largely supported based on the original DOM Level 0 implementations.

DOM Level 3 Events provides a specifi cation for keyboard events that was fi rst completely
implemented in Internet Explorer 9. Other browsers have also started work on implementing the
standard, but there are still many legacy implementations.

There are three keyboard events, as described here:

keydown — Fires when the user presses a key on the keyboard and fi res repeatedly while the
key is being held down.

keypress — Fires when the user presses a key on the keyboard that results in a character
and fi res repeatedly while the key is being held down. This event also fi res for the Esc key.
DOM Level 3 Events deprecates the keypress event in favor of the textInput event.

keyup — Fires when the user releases a key on the keyboard.

➤

➤

➤

Event Types ❘ 471

c13.indd 471c13.indd 471 12/8/11 10:36:43 AM12/8/11 10:36:43 AM

472 ❘ CHAPTER 13 EVENTS

These events are most easily seen as the user types in a text box, though all elements support them.

There is only one text event and it is called textInput. This event is an augmentation of keypress
intended to make it easier to intercept text input before being displayed to the user. The textInput
event fi res just before text is inserted into a text box.

When the user presses a character key once on the keyboard, the keydown event is fi red fi rst,
followed by the keypress event, followed by the keyup event. Note that both keydown and
keypress are fi red before any change has been made to the text box, whereas the keyup event fi res
after changes have been made to the text box. If a character key is pressed and held down, keydown
and keypress are fi red repeatedly and don’t stop until the key is released.

For noncharacter keys, a single key press on the keyboard results in the keydown event being fi red
followed by the keyup event. If a noncharacter key is held down, the keydown event fi res repeatedly
until the key is released, at which point the keyup event fi res.

Keyboard events support the same set of modifi er keys as mouse events. The
shiftKey, ctrlKey, altKey, and metaKey properties are all available for keyboard
events. Internet Explorer 8 and earlier do not support metaKey.

Key Codes

For keydown and keyup events, the event object’s keyCode property is fi lled in with a code that
maps to a specifi c key on the keyboard. For alphanumeric keys, the keyCode is the same as the
ASCII value for the lowercase letter or number on that key, so the 7 key has a keyCode of 55 and the
A key has a keyCode of 65, regardless of the state of the Shift key. Both the DOM and the Internet
Explorer event objects support the keyCode property. Here’s an example:

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “keyup”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.keyCode);
});

KeyUpEventExample01.htm

In this example, the keyCode is displayed every time a keyup event is fi red. The complete list of key
codes to noncharacter keys is listed in the following table.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

KEY KEY CODE KEY KEY CODE

Backspace 8 Numpad 8 104

Tab 9 Numpad 9 105

Enter 13 Numpad + 107

c13.indd 472c13.indd 472 12/8/11 10:36:48 AM12/8/11 10:36:48 AM

KEY KEY CODE KEY KEY CODE

Shift 16 Minus (both Numpad and not) 109

Ctrl 17 Numpad . 110

Alt 18 Numpad / 111

Pause/Break 19 F1 112

Caps Lock 20 F2 113

Esc 27 F3 114

Page Up 33 F4 115

Page Down 34 F5 116

End 35 F6 117

Home 36 F7 118

Left Arrow 37 F8 119

Up Arrow 38 F9 120

Right Arrow 39 F10 121

Down Arrow 40 F11 122

Ins 45 F12 123

Del 46 Num Lock 144

Left Windows Key 91 Scroll Lock 145

Right Windows Key 92 Semicolon (IE/Safari/Chrome) 186

Context Menu Key 93 Semicolon (Opera/FF) 59

Numpad 0 96 Less-than 188

Numpad 1 97 Greater-than 190

Numpad 2 98 Forward slash 191

Numpad 3 99 Grave accent (`) 192

Numpad 4 100 Equals 61

Numpad 5 101 Left Bracket 219

Numpad 6 102 Back slash (\) 220

Numpad 7 103 Right Bracket 221

Single Quote 222

Event Types ❘ 473

c13.indd 473c13.indd 473 12/8/11 10:36:53 AM12/8/11 10:36:53 AM

474 ❘ CHAPTER 13 EVENTS

There is one oddity regarding the keydown and keyup events. Firefox and Opera return 59 for the
keyCode of the semicolon key, which is the ASCII code for a semicolon, whereas Internet Explorer,
Chrome, and Safari return 186, which is the code for the keyboard key.

Character Codes

When a keypress event occurs, this means that the key affects the display of text on the screen.
All browsers fi re the keypress event for keys that insert or remove a character; other keys
are browser-dependent. Since the DOM Level 3 Events specifi cation has only started being
implemented, there are signifi cant implementation differences across browsers.

Internet Explorer 9+, Firefox, Chrome, and Safari support a property on the event object called
charCode, which is fi lled in only for the keypress event and contains the ASCII code for the
character related to the key that was pressed. In this case, the keyCode is typically equal to 0 or may
also be equal to the key code for the key that was pressed. Internet Explorer 8 and earlier and Opera
use keyCode to communicate the ASCII code for the character. To retrieve the character code in a
cross-browser way, you must therefore fi rst check to see if the charCode property is used and, if not,
use keyCode instead, as shown in the following example:

var EventUtil = {

 //more code here

 getCharCode: function(event){
 if (typeof event.charCode == “number”){
 return event.charCode;
 } else {
 return event.keyCode;
 }
 },

 //more code here
};

EventUtil.js

This method checks to see if the charCode property is a number (it will be undefi ned for browsers
that don’t support it) and, if it is, returns the value. Otherwise, the keyCode value is returned. This
method can be used as follows:

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 alert(EventUtil.getCharCode(event));
});

KeyPressEventExample01.htm

Once you have the character code, it’s possible to convert it to the actual character using the
String.fromCharCode() method.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 474c13.indd 474 12/8/11 10:36:54 AM12/8/11 10:36:54 AM

DOM Level 3 Changes

Although all browsers implement some form of keyboard events, DOM Level 3 Events makes several
changes. The charCode property, for instance, isn’t part of the DOM Level 3 Events specifi cation
for keyboard events. Instead, the specifi cation defi nes two additional properties: key and char.

The key property is intended as a replacement for keyCode and contains a string. When a character
key is pressed, the value of key is equal to the text character (for example, “k” or “M”); when
a noncharacter key is pressed, the value of key is the name of the key (for example, “Shift” or
“Down”). The char property behaves the same as key when a character key is pressed and is set to
null when a noncharacter key is pressed.

Internet Explorer 9 supports the key property but not the char property. Safari 5 and Chrome
support a property called keyIdentifier that returns the same value that key would in the case of
noncharacter keys (such as Shift). For character keys, keyIdentifier returns the character code as
a string in the format “U+0000” to indicate the Unicode value.

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 var identifi er = event.key || event.keyIdentifi er;
 if (identifi er){
 alert(identifi er);
 }
});

DOMLevel3KeyPropertyExample01.htm

Because of the lack of cross-browser support, it’s not recommended to use key, keyIdentifier,
or char.

DOM Level 3 Events also adds a property called location, which is a numeric value indicating
where the key was pressed. Possible values are 0 for default keyboard, 1 for left location (such as
the left Alt key), 2 for the right location (such as the right Shift key), 3 for the numeric keypad, 4 for
mobile (indicating a virtual keypad), or 5 for joystick (such as the Nintendo Wii controller). Internet
Explorer 9 supports this property. Safari 5 and Chrome support an identical property called
keyLocation, but because of a bug, the value is always 0 unless the key is on the numeric keypad (in
which case it’s 3); the value is never 1, 2, 4, or 5.

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 var loc = event.location || event.keyLocation;
 if (loc){
 alert(loc);
 }
});

DOMLevel3LocationPropertyExample01.htm

As with the key property, the location property isn’t widely supported and so isn’t recommended
for cross-browser development.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 475

c13.indd 475c13.indd 475 12/8/11 10:36:55 AM12/8/11 10:36:55 AM

476 ❘ CHAPTER 13 EVENTS

The last addition to the event object is the getModifierState() method. This method accepts a
single argument, a string equal to Shift, Control, Alt, AltGraph, or Meta, which indicates the
modifi er key to check. The method returns true if the given modifi er is active (the key is being held
down) or false if not:

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 if (event.getModifi erState){
 alert(event.getModifi erState(“Shift”));
 }
});

DOMLevel3LocationGetModifi erStateExample01.htm

You can retrieve some of this information already using the shiftKey, altKey, ctrlKey, and
metaKey properties on the event object. Internet Explorer 9 is the only browser to support the
getModifierState() method.

The textInput Event

The DOM Level 3 Events specifi cation introduced an event called textInput that fi res when a
character is input to an editable area. Designed as a replacement for keypress, a textInput event
behaves somewhat differently. One difference is that keypress fi res on any element that can have
focus but textInput fi res only on editable areas. Another difference is that textInput fi res only for
keys that result in a new character being inserted, whereas keypress fi res for keys that affect text in
any way (including Backspace).

Since the textInput event is interested primarily in characters, it provides a data property on the
event object that contains the character that was inserted (not the character code). The value of
data is always the exact character that was inserted, so if the S key is pressed without Shift, data is
“s”, but if the same key is pressed holding Shift down, then data is “S”.

The textInput event can be used as follows:

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “textInput”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.data);
});

TextInputEventExample01.htm

In this example, the character that was inserted into the text box is displayed in an alert.

There is another property, on the event object, called inputMethod that indicates how the text was
input into the control. The possible values are:

0 indicates the browser couldn’t determine how the input was entered.

1 indicates a keyboard was used.

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 476c13.indd 476 12/8/11 10:36:56 AM12/8/11 10:36:56 AM

2 indicates the text was pasted in.

3 indicates the text was dropped in as part of a drag operation.

4 indicates the text was input using an IME.

5 indicates the text was input by selecting an option in a form.

6 indicates the text was input by handwriting (such as with a stylus).

7 indicates the text was input by voice command.

8 indicates the text was input by a combination of methods.

9 indicates the text was input by script.

Using this property, you can determine how text was input into a control in order to verify its validity.

The textInput event is supported in Internet Explorer 9+, Safari, and Chrome. Only Internet Explorer
supports the inputMethod property.

Keyboard Events on Devices

The Nintendo Wii fi res keyboard events when buttons are pressed on a Wii remote. Although
you can’t access all of the buttons on the Wii remote, there are several that fi re keyboard events.
Figure 13-8 illustrates the key codes that indicate particular buttons being pressed.

➤

➤

➤

➤

➤

➤

➤

➤

175

178

170 174

172

173

176

177

(unavailable)

(unavailable)

(unavailable)

FIGURE 13-8

Event Types ❘ 477

c13.indd 477c13.indd 477 12/8/11 10:36:56 AM12/8/11 10:36:56 AM

478 ❘ CHAPTER 13 EVENTS

Keyboard events are fi red when the crosspad (keycodes 175–178), minus (170), plus (174), 1 (172), or
2 (173) buttons are pressed. There is no way to tell if the power button, A, B, or Home button has
been pressed.

Safari on iOS and WebKit on Android fi re keyboard events when using the onscreen keyboard.

Composition Events

Composition events were fi rst introduced in DOM Level 3 Events to handle complex input
sequences typically found on IMEs. IMEs allow users to input characters not found on the physical
keyboard. For example, those using a Latin keyboard can still enter Japanese characters into the
computer. IMEs often require multiple keys to be pressed at once while resulting in only a single
character being entered. Composition events help to detect and work with such input. There are
three composition events:

compositionstart — Fires when the text composition system of the IME is opened,
indicating that input is about to commence.

compositionupdate — Fires when a new character has been inserted into the input fi eld.

compositionend — Fires when the text composition system is closed, indicating a return to
normal keyboard input.

Composition events are similar to text events in many ways. When a composition event fi res,
the target is the input fi eld receiving the text. The only additional event property is data, which
contains one of the following:

When accessed during compositionstart, contains the text being edited (for instance, if
text has been selected and will now be replaced).

When accessed during compositionupdate, contains the new character being inserted.

When accessed during compositionend, contains all of the input entered during this
composition session.

As with text events, composition events can be used to fi lter input where necessary. These events can
be used as follows:

var textbox = document.getElementById(“myText”);
EventUtil.addHandler(textbox, “compositionstart”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.data);
});

EventUtil.addHandler(textbox, “compositionupdate”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.data);
});

EventUtil.addHandler(textbox, “compositionend”, function(event){
 event = EventUtil.getEvent(event);
 alert(event.data);
});

CompositionEventsExample01.htm

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 478c13.indd 478 12/8/11 10:36:57 AM12/8/11 10:36:57 AM

Internet Explorer 9+ is the only browser to support composition events as of 2011. Because of
this lack of support, composition events are of little use to web developers needing cross-browser
support. You can determine if a browser supports composition events by using the following:

var isSupported = document.implementation.hasFeature(“CompositionEvent”, “3.0”);

Mutation Events

The DOM Level 2 mutation events provide notifi cation when a part of the DOM has been changed.
Mutation events are designed to work with any XML or HTML DOM and are not specifi c to a
particular language. The mutation events defi ned in DOM Level 2 are as follows:

DOMSubtreeModified — Fires when any change occurs to the DOM structure. This is a
catchall event that fi res after any of the other events fi re.

DOMNodeInserted — Fires after a node is inserted as a child of another node.

DOMNodeRemoved — Fires before a node is removed from its parent node.

DOMNodeInsertedIntoDocument — Fires after a node has been inserted either directly or by
inserting the subtree in which it exists. This event fi res after DOMNodeInserted. This event
has been deprecated in DOM Level 3 Events and should not be used.

DOMNodeRemovedFromDocument — Fires before a node is removed either directly or by
having the subtree in which it exists removed. This event fi res after DOMNodeRemoved. This
event has been deprecated in DOM Level 3 Events and should not be used.

DOMAttrModified — Fires when an attribute has been modifi ed. This event has been
deprecated in DOM Level 3 Events and should not be used.

DOMCharacterDataModified — Fires when a change is made to the value of a text node.
This event has been deprecated in DOM Level 3 Events and should not be used.

You can determine if the browser supports DOM Level 2 mutation events by using the following code:

var isSupported = document.implementation.hasFeature(“MutationEvents”, “2.0”);

Internet Explorer 8 and earlier don’t support any mutation events. The following table describes
browser support for the various mutation events that have not been deprecated.

➤

➤

➤

➤

➤

➤

➤

EVENT OPERA 9+ FIREFOX 3+

SAFARI 3+ AND

CHROME

INTERNET

EXPLORER 9+

DOMSubtreeModified — Yes Yes Yes

DOMNodeInserted Yes Yes Yes Yes

DOMNodeRemoved Yes Yes Yes Yes

Since many of the mutation events were deprecated in DOM Level 3 Events, this section focuses on
only those events that will have continued support moving forward.

Event Types ❘ 479

c13.indd 479c13.indd 479 12/8/11 10:36:57 AM12/8/11 10:36:57 AM

480 ❘ CHAPTER 13 EVENTS

Node Removal

When a node is removed from the DOM using removeChild() or replaceChild(), the
DOMNodeRemoved event is fi red fi rst. The target of this event is the removed node, and the event
.relatedNode property contains a reference to the parent node. At the point that this event fi res,
the node has not yet been removed from its parent, so its parentNode property still points to the
parent (same as event.relatedNode). This event bubbles, so the event can be handled at any level
of the DOM.

If the removed node has any child nodes, the deprecated DOMNodeRemovedFromDocument event fi res
on each of those child nodes and then on the removed node. This event doesn’t bubble, so an event
handler is called only if it’s attached directly to one of the child nodes. The target of this event is the
child node or the node that was removed, and the event object provides no additional information.

After that, the DOMSubtreeModified event fi res. The target of this event is the parent of the node
that was removed. The event object provides no additional information about this event.

To understand how this works in practice, consider the following simple HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>Node Removal Events Example</title>
</head>
<body>
 <ul id=”myList”>
 Item 1
 Item 2
 Item 3

</body>
</html>

In this example, consider removing the element. When that happens, the following sequence of
events fi re:

 1. DOMNodeRemoved is fi red on the element. The relatedNode property is document.body.

 2. DOMNodeRemovedFromDocument is fi red on .

 3. DOMNodeRemovedFromDocument is fi red on each element and each text node that is a
child of the element.

 4. DOMSubtreeModified is fi red on document.body, since was an immediate child of
document.body.

You can test this by running the following JavaScript code in the page:

EventUtil.addHandler(window, “load”, function(event){
 var list = document.getElementById(“myList”);

 EventUtil.addHandler(document, “DOMSubtreeModified”, function(event){

c13.indd 480c13.indd 480 12/8/11 10:36:58 AM12/8/11 10:36:58 AM

 alert(event.type);
 alert(event.target);
 });
 EventUtil.addHandler(document, “DOMNodeRemoved”, function(event){
 alert(event.type);
 alert(event.target);
 alert(event.relatedNode);
 });
 EventUtil.addHandler(list.firstChild, “DOMNodeRemovedFromDocument”,
 function(event){
 alert(event.type);
 alert(event.target);
 });

 list.parentNode.removeChild(list);
});

This code adds event handlers for DOMSubtreeModified and DOMNodeRemoved to the document so
they can handle all such events on the page. Since DOMNodeRemovedFromDocument does not bubble,
its event handler is added directly to the fi rst child of the element (which is a text node in
DOM-compliant browsers). Once the event handlers are set up, the element is removed from
the document.

Node Insertion

When a node is inserted into the DOM using appendChild(), replaceChild(), or
insertBefore(), the DOMNodeInserted event is fi red fi rst. The target of this event is the inserted
node, and the event.relatedNode property contains a reference to the parent node. At the point
that this event fi res, the node has already been added to the new parent. This event bubbles, so the
event can be handled at any level of the DOM.

Next, the deprecated DOMNodeInsertedIntoDocument event fi res on the newly inserted node. This
event doesn’t bubble, so the event handler must be attached to the node before it is inserted. The
target of this event is the inserted node, and the event object provides no additional information.

The last event to fi re is DOMSubtreeModified, which fi res on the parent node of the newly
inserted node.

Considering the same HTML document used in the previous section, the following JavaScript code
indicates the order of events:

EventUtil.addHandler(window, “load”, function(event){
 var list = document.getElementById(“myList”);
 var item = document.createElement(“li”);
 item.appendChild(document.createTextNode(“Item 4”));

 EventUtil.addHandler(document, “DOMSubtreeModified”, function(event){
 alert(event.type);
 alert(event.target);
 });
 EventUtil.addHandler(document, “DOMNodeInserted”, function(event){
 alert(event.type);

Event Types ❘ 481

c13.indd 481c13.indd 481 12/8/11 10:36:59 AM12/8/11 10:36:59 AM

482 ❘ CHAPTER 13 EVENTS

 alert(event.target);
 alert(event.relatedNode);
 });
 EventUtil.addHandler(item, “DOMNodeInsertedIntoDocument”, function(event){
 alert(event.type);
 alert(event.target);
 });

 list.appendChild(item);
});

This code begins by creating a new element containing the text “Item 4”. The event handlers
for DOMSubtreeModified and DOMNodeInserted are added to the document since those events
bubble. Before the item is added to its parent, an event handler for DOMNodeInsertedIntoDocument
is added to it. The last step is to use appendChild() to add the item, at which point the events begin
to fi re. The DOMNodeInserted event fi res on the new item, and the relatedNode is the
element. Then DOMNodeInsertedIntoDocument is fi red on the new item, and lastly
the DOMSubtreeModified event is fi red on the element.

HTML5 Events

The DOM specifi cation doesn’t cover all events that are supported by all browsers. Many browsers
have implemented custom events for various purposes based on either user need or a specifi c use case.
HTML5 has an exhaustive list of all events that should be supported by browsers. This section
discusses several events in HTML5 that are well supported by browsers. Note that this is not an
exhaustive list of all events the browser supports. (Other events will be discussed throughout this book.)

The contextmenu Event

Windows 95 introduced the concept of context menus to PC users via a right mouse click. Soon,
that paradigm was being mimicked on the Web. The problem developers were facing was how
to detect that a context menu should be displayed (in Windows, it’s a right click; on a Mac, it’s
a Ctrl+click) and then how to avoid the default context menu for the action. This resulted in the
introduction of the contextmenu event to specifi cally indicate when a context menu is about to be
displayed, allowing developers to cancel the default context menu and provide their own.

The contextmenu event bubbles, so a single event handler can be assigned to a document that
handles all such events for the page. The target of the event is the element that was acted on.
This event can be canceled in all browsers, using event.preventDefault() in DOM-compliant
browsers and setting event.returnValue to false in Internet Explorer 8 and earlier. The
contextmenu event is considered a mouse event and so has all of the properties related to the cursor
position. Typically, a custom context menu is displayed using an oncontextmenu event handler and
hidden again using the onclick event handler. Consider the following HTML page:

<!DOCTYPE html>
<html>
<head>
 <title>ContextMenu Event Example</title>
</head>
<body>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 482c13.indd 482 12/8/11 10:36:59 AM12/8/11 10:36:59 AM

 <div id=”myDiv”>Right click or Ctrl+click me to get a custom context menu.
 Click anywhere else to get the default context menu.</div>
 <ul id=”myMenu” style=”position:absolute;visibility:hidden;background-color:
 silver”>
 Nicholas’ site
 Wrox site
 Yahoo!

</body>
</html>

ContextMenuEventExample01.htm

In this code, a <div> is created that has a custom context menu. The element serves as the
custom context menu and is initially hidden. The JavaScript to make this example work is as follows:

EventUtil.addHandler(window, “load”, function(event){
 var div = document.getElementById(“myDiv”);

 EventUtil.addHandler(div, “contextmenu”, function(event){
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);

 var menu = document.getElementById(“myMenu”);
 menu.style.left = event.clientX + “px”;
 menu.style.top = event.clientY + “px”;
 menu.style.visibility = “visible”;
 });

 EventUtil.addHandler(document, “click”, function(event){
 document.getElementById(“myMenu”).style.visibility = “hidden”;
 });
});

ContextMenuEventExample01.htm

Here, an oncontextmenu event handler is defi ned for the <div>. The event handler begins by
canceling the default behavior, ensuring that the browser’s context menu won’t be displayed. Next,
the element is placed into position based on the clientX and clientY properties of the event
object. The last step is to show the menu by setting its visibility to “visible”. An onclick
event handler is then added to the document to hide the menu whenever a click occurs (which is the
behavior of system context menus).

Though this example is very basic, it is the basis for all custom context menus on the Web. Applying
some additional CSS to the context menu in this example can yield great results.

The contextmenu event is supported in Internet Explorer, Firefox, Safari, Chrome, and Opera 11+.

The beforeunload Event

The beforeunload event fi res on the window and is intended to give developers a way to prevent
the page from being unloaded. This event fi res before the page starts to unload from the browser,

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 483

c13.indd 483c13.indd 483 12/8/11 10:37:00 AM12/8/11 10:37:00 AM

http://www.wrox.com

484 ❘ CHAPTER 13 EVENTS

allowing continued use of the page should it ultimately not
be unloaded. You cannot cancel this event outright because
that would be the equivalent of holding the user hostage
on a page. Instead, the event gives you the ability to display
a message to the user. The message indicates that the page
is about to be unloaded, displays the message, and asks
if the user would like to continue to close the page or stay
(see Figure 13-9).

In order to cause this dialog box to pop up, you must set event.returnValue equal to the string
you want displayed in the dialog (for Internet Explorer and Firefox) and also return it as the
function value (for Safari and Chrome), as in this example:

EventUtil.addHandler(window, “beforeunload”, function(event){
 event = EventUtil.getEvent(event);
 var message = “I’m really going to miss you if you go.”;
 event.returnValue = message;
 return message;
});

BeforeUnloadEventExample01.htm

Internet Explorer, Firefox, Safari, and Chrome support the beforeunload event and pop up the
dialog box to confi rm that the user wants to navigate away. Opera as of version 11 does not support
beforeunload.

The DOMContentLoaded Event

The window’s load event fi res when everything on the page has been completely loaded, which may
take some time for pages with lots of external resources. The DOMContentLoaded event fi res as soon
as the DOM tree is completely formed and without regard to images, JavaScript fi les, CSS fi les, or
other such resources. As compared to the load event, DOMContentLoaded allows event handlers to be
attached earlier in the page download process, which means a faster time to interactivity for users.

To handle the DOMContentLoaded event, you can attach an event handler either on the document
or on the window (the target for the event actually is document, although it bubbles up to window).
Here’s an example:

EventUtil.addHandler(document, “DOMContentLoaded”, function(event){
 alert(“Content loaded”);
});

DOMContentLoadedEventExample01.htm

The event object for DOMContentLoaded doesn’t provide any additional information (target
is document).

The DOMContentLoaded event is supported in Internet Explorer 9+, Firefox, Chrome, Safari 3.1+,
and Opera 9+ and is typically used to attach event handlers or perform other DOM manipulations.
This event always fi res before the load event.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 13-9

c13.indd 484c13.indd 484 12/8/11 10:37:00 AM12/8/11 10:37:00 AM

For browsers that don’t support DOMContentLoaded, it has been suggested that a timeout should be
set during page loading with a millisecond delay of 0, as in this example:

setTimeout(function(){
 //attach event handlers here
}, 0);

This code essentially says, “Run this function as soon as the current JavaScript process is complete.”
There is a single JavaScript process running as the page is being downloaded and constructed,
so the timeout will fi re after that. Whether or not this coincides directly with the timing of
DOMContentLoaded relates to both the browser being used and other code on the page. To work
properly, this must be the fi rst timeout set on the page, and even then, it is not guaranteed that the
timeout will run prior to the load event in all circumstances.

The readystatechange Event

Internet Explorer fi rst defi ned an event called readystatechange on several parts of a DOM
document. This somewhat mysterious event is intended to provide information about the loading
state of the document or of an element, though its behavior is often erratic. Each object that
supports the readystatechange event has a readyState property that can have one of the
following fi ve possible string values:

uninitialized — The object exists but has not been initialized.

loading — The object is loading data.

loaded — The object has fi nished loading its data.

interactive — The object can be interacted with but it’s not fully loaded.

complete — The object is completely loaded.

Even though this seems straightforward, not all objects go through all readystate phases. The
documentation indicates that objects may completely skip a phase if it doesn’t apply but doesn’t
indicate which phases apply to which objects. This means that the readystatechange event often
fi res fewer than four times and the readyState value doesn’t always follow the same progression.

When used on document, a readyState of “interactive” fi res the readystatechange event at
a time similar to DOMContentLoaded. The interactive phase occurs when the entire DOM tree has
been loaded and thus is safe to interact with. Images and other external resources may or may not
be available at that point in time. The readystatechange event can be handled like this:

EventUtil.addHandler(document, “readystatechange”, function(event){
 if (document.readyState == “interactive”){
 alert(“Content loaded”);
 }
});

The event object for this event doesn’t provide any additional information and has no target set.

When used in conjunction with the load event, the order in which these events fi re is not
guaranteed. In pages with numerous or large external resources, the interactive phase is reached

➤

➤

➤

➤

➤

Event Types ❘ 485

c13.indd 485c13.indd 485 12/8/11 10:37:01 AM12/8/11 10:37:01 AM

486 ❘ CHAPTER 13 EVENTS

well before the load event fi res; in smaller pages with few or small external resources, the
readystatechange event may not fi re until after the load event.

To make matters even more confusing, the interactive phase may come either before or after the
complete phase; the order is not constant. In pages with more external resources, it is more likely
that the interactive phase will occur before the complete phase, whereas in pages with fewer
resources, it is more likely that the complete phase will occur before the interactive phase. So,
to ensure that you are getting the earliest possible moment, it’s necessary to check for both the
interactive and the complete phases, as in this example:

EventUtil.addHandler(document, “readystatechange”, function(event){
 if (document.readyState == “interactive” || document.readyState == “complete”){
 EventUtil.removeHandler(document, “readystatechange”, arguments.callee);
 alert(“Content loaded”);
 }
});

When the readystatechange event fi res in this code, the document.readyState property is
checked to see if it’s either the interactive or the complete phase. If so, the event handler is removed
to ensure that it won’t be executed for another phase. Note that because the event handler is an
anonymous function, arguments.callee is used as the pointer to the function. After that, the
alert is displayed indicating that the content is loaded. This construct allows you to get as close as
possible to the DOMContentLoaded event.

The readystatechange event on the document is supported in Internet Explorer, Firefox 4+, and Opera.

Even though you can get close to mimicking DOMContentLoaded using
readystatechange, they are not exactly the same. The order in which the load
event and readystatechange events are fi red is not consistent from page to page.

The readystatechange event also fi res on <script> (Internet Explorer and Opera) and <link>
(Internet Explorer only), allowing you to determine when external JavaScript and CSS fi les have
been loaded. As with other browsers, dynamically created elements don’t begin downloading
external resources until they are added to the page. The behavior of this event for elements is
similarly confusing, because the readyState property may be either “loaded” or “complete” to
indicate that the resource is available. Sometimes the readyState stops at “loaded” and never
makes it to “complete”, and other times it skips “loaded” and goes straight to “complete”. As a
result, it’s necessary to use the same construct used with the document. For example, the following
loads an external JavaScript fi le:

EventUtil.addHandler(window, “load”, function(){
 var script = document.createElement(“script”);

 EventUtil.addHandler(script, “readystatechange”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.readyState == “loaded” || target.readyState == “complete”){

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 486c13.indd 486 12/8/11 10:37:01 AM12/8/11 10:37:01 AM

 EventUtil.removeHandler(target, “readystatechange”, arguments.
callee);
 alert(“Script Loaded”);
 }
 });
 script.src = “example.js”;
 document.body.appendChild(script);
});

ReadyStateChangeEventExample01.htm

This example assigns an event handler to a newly created <script> node. The target of the event
is the node itself, so when the readystatechange event fi res, the target’s readyState property is
checked to see if it’s either “loaded” or “complete”. If the phase is either of the two, then the event
handler is removed (to prevent it from possibly being executed twice) and then an alert is displayed.
At this time, you can start executing functions that have been loaded from the external fi le.

The same construct can be used to load CSS fi les via a <link> element, as shown in this example:

EventUtil.addHandler(window, “load”, function(){
 var link = document.createElement(“link”);
 link.type = “text/css”;
 link.rel= “stylesheet”;

 EventUtil.addHandler(script, “readystatechange”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.readyState == “loaded” || target.readyState == “complete”){
 EventUtil.removeHandler(target, “readystatechange”, arguments.
callee);
 alert(“CSS Loaded”);
 }
 });

 link.href = “example.css”;
 document.getElementsByTagName(“head”)[0].appendChild(link);
});

ReadyStateChangeEventExample02.htm

Once again, it’s important to test for both readyState values and to remove the event handler after
calling it once.

The pageshow and pagehide Events

Firefox and Opera introduced a feature called the back-forward cache (bfcache) designed to speed
up page transitions when using the browser’s Back and Forward buttons. The cache stores not only
page data but also the DOM and JavaScript state, effectively keeping the entire page in memory.
If a page is in the bfcache, the load event will not fi re when the page is navigated to. This usually
doesn’t cause an issue since the entire page state is stored. However, Firefox decided to provide some
events to give visibility to the bfcache behavior.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 487

c13.indd 487c13.indd 487 12/8/11 10:37:07 AM12/8/11 10:37:07 AM

488 ❘ CHAPTER 13 EVENTS

The fi rst event is pageshow, which fi res whenever a page is displayed, whether from the bfcache or
not. On a newly loaded page, pageshow fi res after the load event; on a page in the bfcache, pageshow
fi res as soon as the page’s state has been completely restored. Note that even though the target of this
event is document, the event handler must be attached to window. Consider the following:

(function(){
 var showCount = 0;

 EventUtil.addHandler(window, “load”, function(){
 alert(“Load fired”);
 });

 EventUtil.addHandler(window, “pageshow”, function(){
 showCount++;
 alert(“Show has been fired “ + showCount + “ times.”);
 });
})();

This example uses a private scope to protect the showCount variable from being introduced into the
global scope. When the page is fi rst loaded, showCount has a value of 0. Every time the pageshow
event fi res, showCount is incremented and an alert is displayed. If you navigate away from the page
containing this code and then click the Back button to restore it, you will see that the value of
showCount is incremented each time. That’s because the variable state, along with the entire page
state, is stored in memory and then retrieved when you navigate back to the page. If you were to
click the Reload button on the browser, the value of showCount would be reset to 0 because the page
would be completely reloaded.

Besides the usual properties, the event object for pageshow includes a property called persisted.
This is a Boolean value that is set to true if the page is stored in the bfcache or false if the page is
not. The property can be checked in the event handler as follows:

(function(){
 var showCount = 0;

 EventUtil.addHandler(window, “load”, function(){
 alert(“Load fired”);
 });

 EventUtil.addHandler(window, “pageshow”, function(){
 showCount++;
 alert(“Show has been fi red “ + showCount +
 “ times. Persisted? “ + event.persisted);
 });
})();

PageShowEventExample01.htm

The persisted property lets you determine if a different action must be taken depending on the
state of the page in the bfcache.

The pagehide event is a companion to pageshow and fi res whenever a page is unloaded from the
browser, fi ring immediately before the unload event. As with the pageshow event, pagehide fi res

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 488c13.indd 488 12/8/11 10:37:07 AM12/8/11 10:37:07 AM

on the document even though the event handler must be attached to the window. The event object
also includes the persisted property, though there is a slight difference in its usage. Consider
the following:

EventUtil.addHandler(window, “pagehide”, function(event){
 alert(“Hiding. Persisted? “ + event.persisted);
});

PageShowEventExample01.htm

You may decide to take a different action based on the value of persisted when pagehide fi res.
For the pageshow event, persisted is set to true if the page has been loaded from the bfcache; for the
pagehide event, persisted is set to true if the page will be stored in the bfcache once unloaded. So
the fi rst time pageshow is fi red, persisted is always false, whereas the fi rst time pagehide is fi red,
persisted will be true (unless the page won’t be stored in the bfcache).

The pageshow and pagehide events are supported in Firefox, Safari 5+, Chrome, and Opera.
Internet Explorer through version 9 does not support these events.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The hashchange Event

HTML5 introduced the hashchange event as a way to notify developers when the URL hash
(everything following a pound sign (#) in a URL) changed. This came about as developers frequently
used the URL hash to store state information or navigational information in Ajax applications.

The onhashchange event handler must be attached to the window, and it is called whenever the URL
hash changes. The event object should have two additional properties: oldURL and newURL. These
properties hold the complete URL including the hash before the change and after the change. For
example:

EventUtil.addHandler(window, “hashchange”, function(event){
 alert(“Old URL: “ + event.oldURL + “\nNew URL: “ + event.newURL);
});

HashChangeEventExample01.htm

The hashchange event is supported in Internet Explorer 8+, Firefox 3.6+, Safari 5+, Chrome, and
Opera 10.6+. Of those browsers, only Firefox 6+, Chrome, and Opera support the oldURL and newURL
properties. For that reason, it’s best to use the location object to determine the current hash:

EventUtil.addHandler(window, “hashchange”, function(event){
 alert(“Current hash: “ + location.hash);
});

Pages that have an onunload event handler assigned are automatically excluded
from the bfcache, even if the event handler is empty. The reasoning is that
onunload is typically used to undo what was done using onload, and so skipping
onload the next time the page is displayed could cause it to break.

Event Types ❘ 489

c13.indd 489c13.indd 489 12/8/11 10:37:08 AM12/8/11 10:37:08 AM

490 ❘ CHAPTER 13 EVENTS

You can detect if the hashchange event is supported using the following code:

var isSupported = (“onhashchange” in window); //buggy

Internet Explorer 8 has a quirk where this code returns true even when running in Internet
Explorer 7 document mode, even though it doesn’t work. To get around this, use the following as a
more bulletproof detection:

var isSupported = (“onhashchange” in window) && (document.documentMode ===
 undefined || document.documentMode > 7);

Device Events

With the introduction of smartphones and tablet devices came a new set of ways for users to interact
with a browser. As such, a new class of events was invented. Device events allow you to determine
how a device is being used. A new draft for device events was started in 2011 at the W3C (http://
dev.w3.org/geo/api/spec-source-orientation.html) to cover the growing number of devices
looking to implement device-related events. This section covers both the API defi ned in the draft
and vendor-specifi c events.

The orientationchange Event

Apple created the orientationchange event on mobile Safari so that developers could determine
when the user switched the device from landscape to portrait mode. There is a window.orientation
property on mobile Safari that contains one of three values: 0 for portrait mode, 90 for landscape
mode when rotated to the left (the Home button on the right), and –90 for landscape mode when
rotated to the right (the Home button on the left). The documentation also mentions a value of 180 if
the device is upside down, but that confi guration is not supported to date. Figure 13-10 illustrates the
various values for window.orientation.

FIGURE 13-10

0

90 �90

c13.indd 490c13.indd 490 12/8/11 10:37:13 AM12/8/11 10:37:13 AM

Whenever the user changes from one mode to another, the orientationchange event fi res.
The event object doesn’t contain any useful information, since the only relevant information is
accessible via window.orientation. Typical usage of this event is as follows:

EventUtil.addHandler(window, “load”, function(event){
 var div = document.getElementById(“myDiv”);
 div.innerHTML = “Current orientation is “ + window.orientation;

 EventUtil.addHandler(window, “orientationchange”, function(event){
 div.innerHTML = “Current orientation is “ + window.orientation;
 });
});

OrientationChangeEventExample01.htm

In this example, the initial orientation is displayed when the load event fi res. Then, the event
handler for orientationchange is assigned. Whenever the event fi res, the message on the page is
updated to indicate the new orientation.

All iOS devices support both the orientationchange event and the window.orientation property.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The MozOrientation Event

Firefox 3.6 introduced a new event called MozOrientation to detect device orientation. (The
prefi x Moz indicates that it’s a vendor-specifi c event instead of a standard event.) This event fi res
periodically as the device accelerometer detects changes in how the device is oriented. Note that this
is different from orientationchange in iOS, which provides only one dimension of movement. The
MozOrientation event fi res on the window object and so can be handled with the following code:

EventUtil.addHandler(window, “MozOrientation”, function(event){
 //respond to event
});

The event object has three properties with accelerometer data: x, y, and z. Each value is a number
between 1 and –1 and represents a different axis. When at rest, x is 0, y is 0, and z is 1 (indicating the
device is upright). Tilting to the right decreases the value of x, while tilting to the left increases the value.
Likewise, tilting away from you decreases the value of y, while tilting toward you (as if to read a paper)
increases it. The z value is the vertical acceleration, and so is 1 at rest, and decreases when the device is
in motion. (It would be 0 with no gravity.) Here’s a simple example that outputs the three values:

EventUtil.addHandler(window, “MozOrientation”, function(event){
 var output = document.getElementById(“output”);
 output.innerHTML = “X=” + event.x + “, Y=” + event.y + “, Z=” + event.z +
 “
”;
});

MozOrientationEventExample01.htm

Since orientationchange is considered a window event, you can also assign an
event handler by adding the onorientationchange attribute to the <body> element.

Event Types ❘ 491

c13.indd 491c13.indd 491 12/8/11 10:37:13 AM12/8/11 10:37:13 AM

492 ❘ CHAPTER 13 EVENTS

The MozOrientation event is supported only on devices with accelerometers, including Macbook
laptops, Lenovo Thinkpad laptops, and both Windows Mobile and Android devices. It should be
noted that this is an experimental API and may or may not change in the future. (It is likely that it
may be superseded by another event.)

The deviceorientation Event

The deviceorientation event is defi ned in the DeviceOrientation Event specifi cation and is
similar in nature to the MozOrientation event. The event is fi red on window when accelerometer
information is available and changes and, as such, has the same support limitations as
MozOrientation. Keep in mind that the purpose of deviceorientation is to inform you of
how the device is oriented in space and not of
movement.

A device is said to exist in three-dimensional
space along an x-axis, a y-axis, and a z-axis.
These all start at zero when the device is at rest on
a horizontal surface. The x-axis goes from the left
of the device to the right, the y-axis goes from the
bottom of the device to the top, and the z-axis
goes from the back of the device to the front
(see Figure 13-11).

When deviceorientation fi res, it returns
information about how the values of each axis
have changed relative to the device at rest.
The event object has fi ve properties:

alpha — The difference in y-axis
degrees as you rotate around the z-axis
(side-to-side tilt); a fl oating point number
between 0 and 360.

beta — The difference in z-axis degrees as you rotate around the x-axis (front-to-back tilt);
a fl oating point number between –180 and 180.

gamma — The difference in the z-axis degrees as you rotate around the y-axis (twisting tilt);
a fl oating point number between –90 and 90.

absolute — A Boolean value indicating if the device is returning absolute values or not.

compassCalibrated — A Boolean value indicating if the device’s compass is properly
calibrated or not.

Figure 13-12 shows how the values of alpha, beta, and gamma are calculated.

➤

➤

➤

➤

➤

y

x

z

FIGURE 13-11

c13.indd 492c13.indd 492 12/8/11 10:37:18 AM12/8/11 10:37:18 AM

Here’s a simple example that outputs the values for alpha, beta, and gamma:

EventUtil.addHandler(window, “deviceorientation”, function(event){
 var output = document.getElementById(“output”);
 output.innerHTML = “Alpha=” + event.alpha + “, Beta=” + event.beta +
 “, Gamma=” + event.gamma + “
”;
});

DeviceOrientationEventExample01.htm

You can use this information to rearrange or otherwise alter elements on the screen in reaction to
the device changing its orientation. For example, this code rotates an element in reaction to the
device orientation:

EventUtil.addHandler(window, “deviceorientation”, function(event){
 var arrow = document.getElementById(“arrow”);
 arrow.style.webkitTransform = “rotate(“ + Math.round(event.alpha) + “deg)”;
});

DeviceOrientationEventExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

alpha

start y

new y

new x

start x
start z

start z

start x

start y
new y

new z

new z

new x

beta

gamma

FIGURE 13-12

Event Types ❘ 493

c13.indd 493c13.indd 493 12/8/11 10:37:19 AM12/8/11 10:37:19 AM

494 ❘ CHAPTER 13 EVENTS

This example works only on mobile WebKit browsers because of the use of the proprietary webkit
Transform property (the temporary version of the CSS standard transform property). The element
“arrow” is rotated along with the value of event.alpha, giving it a compass-like feel. The CSS3
rotation transformation is used with a rounded version of the value to ensure smoothness.

As of 2011, Safari for iOS 4.2+, Chrome, and WebKit for Android are the only implementations of
the deviceorientation event.

The devicemotion Event

The DeviceOrientation Event specifi cation also includes a devicemotion event. This event is designed
to inform you when the device is actually moving, not just when it has changed orientation. For
instance, devicemotion is useful to determine that the device is falling or is being held by someone
who is walking.

When the devicemotion event fi res, the event object contains the following additional properties:

acceleration — An object containing x, y, and z properties that tells you the acceleration
in each dimension without considering gravity.

accelerationIncludingGravity — An object containing x, y, and z properties that tells you
the acceleration in each dimension, including the natural acceleration of gravity in the z-axis.

interval — The amount of time, in milliseconds, that will pass before another
devicemotion event is fi red. This value should be constant from event to event.

rotationRate — An object containing the alpha, beta, and gamma properties that indicate
device orientation.

If acceleration, accelerationIncludingGravity, or rotationRate cannot be provided, then
the property value is null. Because of that, you should always check that the value is not null
before using any of these properties. For example:

EventUtil.addHandler(window, “devicemotion”, function(event){
 var output = document.getElementById(“output”);
 if (event.rotationRate !== null){
 output.innerHTML += “Alpha=” + event.rotationRate.alpha + “, Beta=” +
 event.rotationRate.beta + “, Gamma=” +
 event.rotationRate.gamma;
 }
});

DeviceMotionEventExample01.htm

As with deviceorientation, Safari for iOS 4.2+, Chrome, and WebKit for Android are the only
implementations of the devicemotion event.

Touch and Gesture Events

Safari for iOS introduced several proprietary events designed to inform developers when specifi c
events occur. Since iOS devices are mouseless and keyboardless, the regular mouse and keyboard

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 494c13.indd 494 12/8/11 10:37:20 AM12/8/11 10:37:20 AM

events simply aren’t enough to create a completely interactive web page designed with mobile Safari
in mind. With the introduction of WebKit for Android, many of the proprietary events became de
facto standards and led to the beginning of a Touch Events specifi cation from the W3C (found at
https://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html). The following events
work only on touch-based devices.

Touch Events

When the iPhone 3G was released with iOS 2.0 software, a new version of Safari was included. This
new mobile Safari exposed several new events relating to touch interactions. The Android browser
later implemented these same events. Touch events are fi red when a fi nger is placed on the screen,
dragged across the screen, or removed from the screen. The touch events are as follows:

touchstart — Fires when a fi nger touches the screen even if another fi nger is already
touching the screen.

touchmove — Fires continuously as a fi nger is moved across the screen. Calling
preventDefault() during this event prevents scrolling.

touchend — Fires when a fi nger is removed from the screen.

touchcancel — Fires when the system has stopped tracking the touch. It’s unclear in the
documentation as to when this can occur.

Each of these events bubbles and can be canceled. Even though touch events aren’t part of the DOM
specifi cation, they are implemented in a DOM-compatible way. So the event object for each touch
event provides properties that are common to mouse events: bubbles, cancelable, view, clientX,
clientY, screenX, screenY, detail, altKey, shiftKey, ctrlKey, and metaKey.

In addition to these common DOM properties, touch events have the following three properties to
track touches:

touches — An array of Touch objects that indicate the currently tracked touches.

targetTouches — An array of Touch objects specifi c to the event’s target.

changedTouches — An array of Touch objects that have been changed in the last user action.

Each Touch object, in turn, has the following properties:

clientX — The x-coordinate of the touch target in the viewport.

clientY — The y-coordinate of the touch target in the viewport.

identifier — A unique ID for the touch.

pageX — The x-coordinate of the touch target on the page.

pageY — The y-coordinate of the touch target on the page.

screenX — The x-coordinate of the touch target on the screen.

screenY — The y-coordinate of the touch target on the screen.

target — The DOM node target for the touch.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Event Types ❘ 495

c13.indd 495c13.indd 495 12/8/11 10:37:21 AM12/8/11 10:37:21 AM

496 ❘ CHAPTER 13 EVENTS

These properties can be used to track the touch around the screen. For example:

function handleTouchEvent(event){

 //only for one touch
 if (event.touches.length == 1)

 var output = document.getElementById(“output”);
 switch(event.type){
 case “touchstart”:
 output.innerHTML = “Touch started (“ + event.touches[0].clientX +
 “,” + event.touches[0].clientY + “)”;
 break;
 case “touchend”:
 output.innerHTML += “
Touch ended (“ +
 event.changedTouches[0].clientX + “,” +
 event.changedTouches[0].clientY + “)”;
 break;
 case “touchmove”:
 event.preventDefault(); //prevent scrolling
 output.innerHTML += “
Touch moved (“ +
 event.changedTouches[0].clientX + “,” +
 event.changedTouches[0].clientY + “)”;
 break;
 }
 }
}

EventUtil.addHandler(document, “touchstart”, handleTouchEvent);
EventUtil.addHandler(document, “touchend”, handleTouchEvent);
EventUtil.addHandler(document, “touchmove”, handleTouchEvent);

TouchEventsExample01.htm

This code tracks a single touch around the screen. To keep things simple, it outputs information
only when there’s a single active touch. When the touchstart event occurs, it outputs the location
of the touch into a <div>. When a touchmove event fi res, its default behavior is canceled to prevent
scrolling (moving touches typically scroll the page) and then it outputs information about the
changed touch. The touchend event outputs the last information about the touch. Note that there
is nothing in the touches collection during the touchend event, because there is no longer an active
touch; the changedTouches collection must be used instead.

These events fi re on all elements of the document, so you can manipulate different parts of the page
individually. The order of events (including mouse events) when you tap on an element are:

 1. touchstart

 2. mouseover

 3. mousemove (once)

 4. mousedown

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 496c13.indd 496 12/8/11 10:37:21 AM12/8/11 10:37:21 AM

 5. mouseup

 6. click

 7. touchend

Safari for iOS, WebKit for Android, Dolfi n for bada, BlackBerry WebKit for OS6+, Opera Mobile
10.1+, and Phantom browser for LG-proprietary OSs all support touch events. Only Safari on iOS
can support multiple touches at once. Both Firefox 6+ and Chrome on the desktop also support
touch events.

Gesture Events

The iOS 2.0 version of Safari also introduced a class of events for gestures. A gesture occurs when
two fi ngers are touching the screen and typically causes a change in the scale of the displayed item
or the rotation. There are three gesture events, as described here:

gesturestart — Fires when a fi nger is already on the screen and another fi nger is placed
on the screen.

gesturechange — Fires when the position of either fi nger on the screen has changed.

gestureend — Fires when one of the fi ngers has been removed from the screen.

These events fi re only if the two fi ngers are touching the recipient of the event. Setting event
handlers on a single element means that both fi ngers must be within the bounds of the element in
order for gesture events to fi re (this will be the target). Since these events bubble, you can also place
event handlers at the document level to handle all gesture events. When you are using this approach,
the target of the event will be the element that has both fi ngers within its boundaries.

There is a relationship between the touch and the gesture events. When a fi nger is placed on the
screen, the touchstart event fi res. When another fi nger is placed on the screen, the gesturestart
event fi res fi rst and is followed by the touchstart event for that fi nger. If one or both of the fi ngers
are moved, a gesturechange event is fi red. As soon as one of the fi ngers is removed, the gestureend
event fi res, followed by touchend for that fi nger.

As with touch events, each gesture event object contains all of the standard mouse event properties:
bubbles, cancelable, view, clientX, clientY, screenX, screenY, detail, altKey, shiftKey,
ctrlKey, and metaKey. The two additions to the event object are rotation and scale. The
rotation property indicates the degrees of rotation that the fi ngers have changed, where negative
numbers indicate a counterclockwise rotation and positive numbers indicate clockwise rotation (the
value begins as 0). The scale property indicates how much of a distance change occurred between
the fi ngers (making a pinch motion). This starts out as 1 and will either increase as the distance
increases or decrease as the distance decreases.

These events can be used as follows:

function handleGestureEvent(event){
 var output = document.getElementById(“output”);
 switch(event.type){
 case “gesturestart”:
 output.innerHTML = “Gesture started (rotation=” + event.rotation +
 “,scale=” + event.scale + “)”;

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Event Types ❘ 497

c13.indd 497c13.indd 497 12/8/11 10:37:22 AM12/8/11 10:37:22 AM

498 ❘ CHAPTER 13 EVENTS

 break;
 case “gestureend”:
 output.innerHTML += “
Gesture ended (rotation=” + event.rotation +
 “,scale=” + event.scale + “)”;
 break;
 case “gesturechange”:
 output.innerHTML += “
Gesture changed (rotation=” + event.rotation +
 “,scale=” + event.scale + “)”;
 break;
 }
}

document.addEventListener(“gesturestart”, handleGestureEvent, false);
document.addEventListener(“gestureend”, handleGestureEvent, false);
document.addEventListener(“gesturechange”, handleGestureEvent, false);

GestureEventsExample01.htm

As with the touch events example, this code simply wires up each event to a single function and then
outputs information about each event.

Touch events also return rotation and scale properties, but they change only
when two fi ngers are in contact with the screen. Generally, it is easier to use
gesture events with two fi ngers than to manage all interactions with touch events.

MEMORY AND PERFORMANCE

Since event handlers provide the interaction on modern web applications, many developers mistakenly
add a large number of them to the page. In languages that create GUIs, such as C#, it’s customary to
add an onclick event handler to each button in the GUI, and there is no real penalty for doing so.
In JavaScript, the number of event handlers on the page directly relates to the overall performance of
the page. This happens for a number of reasons. The fi rst is that each function is an object and takes
up memory; the more objects in memory, the slower the performance. Second, the amount of DOM
access needed to assign all of the event handlers up front delays the interactivity of the entire page.
There are a number of ways that you can improve performance by minding your use of event handlers.

Event Delegation

The solution to the “too many event handlers” issue is called event delegation. Event delegation
takes advantage of event bubbling to assign a single event handler to manage all events of a
particular type. The click event, for example, bubbles all the way up to the document level. This
means that it’s possible to assign one onclick event handler for an entire page instead of one for
each clickable element. Consider the following HTML:

<ul id=”myLinks”>
 <li id=”goSomewhere”>Go somewhere
 <li id=”doSomething”>Do somethingAvailable for

download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 498c13.indd 498 12/8/11 10:37:23 AM12/8/11 10:37:23 AM

 <li id=”sayHi”>Say hi

EventDelegationExample01.htm

The HTML in this example contains three items that should perform actions when clicked.
Traditional thinking simply attaches three event handlers like this:

var item1 = document.getElementById(“goSomewhere”);
var item2 = document.getElementById(“doSomething”);
var item3 = document.getElementById(“sayHi”);

EventUtil.addHandler(item1, “click”, function(event){
 location.href = “http://www.wrox.com”;
});

EventUtil.addHandler(item2, “click”, function(event){
 document.title = “I changed the document’s title”;
});

EventUtil.addHandler(item3, “click”, function(event){
 alert(“hi”);
});

If this scenario is repeated for all of the clickable elements in a complex web application, the result is
an incredibly long section of code that simply attaches event handlers. Event delegation approaches
this problem by attaching a single event handler to the highest possible point in the DOM tree,
as in this example:

var list = document.getElementById(“myLinks”);

EventUtil.addHandler(list, “click”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 switch(target.id){
 case “doSomething”:
 document.title = “I changed the document’s title”;
 break;

 case “goSomewhere”:
 location.href = “http://www.wrox.com”;
 break;

 case “sayHi”:
 alert(“hi”);
 break;
 }
});

EventDelegationExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Memory and Performance ❘ 499

c13.indd 499c13.indd 499 12/8/11 10:37:28 AM12/8/11 10:37:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.wrox.com
http://www.wrox.com

500 ❘ CHAPTER 13 EVENTS

In this code, event delegation is used to attach a single onclick event handler to the element.
Since all of the list items are children of this element, their events bubble up and are handled by
this function. The event target is the list item that was clicked, so you can check the id property
to determine the appropriate action. In comparison with the previous code that didn’t use event
delegation, this code has less of an up-front cost, because it just retrieves one DOM element and
attaches one event handler. The end result is the same for the user, but this approach requires much
less memory. All events that use buttons (most mouse events and keyboard events) are candidates
for this technique.

If it’s practical, you may want to consider attaching a single event handler on document that can
handle all of the page events of a particular type. This has the following advantages compared to
traditional techniques:

The document object is immediately available and can have event handlers assigned at any
point during the page’s life cycle (no need to wait for DOMContentLoaded or load events).
This means that as soon as a clickable element is rendered, it can function appropriately
without delay.

Less time is spent setting up event handlers on the page. Assigning one event handler takes
fewer DOM references and less time.

Lower memory usage is required for the entire page, improving overall performance.

The best candidates for event delegation are click, mousedown, mouseup, keydown, keyup, and
keypress. The mouseover and mouseout events bubble but are complicated to handle properly
and often require calculating element position to appropriately handle (since mouseout fi res when
moving from an element to one of its child nodes and when moving outside of the element).

Removing Event Handlers

When event handlers are assigned to elements, a connection is formed between code that is running
the browser and JavaScript code interacting with the page. The more of these connections that exist, the
slower a page performs. One way to handle this issue is through event delegation to limit the number
of connections that are set up. Another way to manage the issue is to remove event handlers when they
are no longer needed. Dangling event handlers, those that remain in memory after they are necessary,
are a major source of memory and performance issues in web applications.

This problem occurs at two specifi c points during a page’s life cycle. The fi rst is when an element is
removed from the document while it has event handlers attached. This can be due to a true DOM
manipulation involving removeChild() or replaceChild(), but it happens most often when
using innerHTML to replace a section of the page. Any event handlers assigned to an element that
was eliminated by the call to innerHTML may not be properly garbage collected. Consider the
following example:

<div id=”myDiv”>
 <input type=”button” value=”Click Me” id=”myBtn”>
</div>
<script type=”text/javascript”>
 var btn = document.getElementById(“myBtn”);

➤

➤

➤

c13.indd 500c13.indd 500 12/8/11 10:37:29 AM12/8/11 10:37:29 AM

 btn.onclick = function(){

 //do something

 document.getElementById(“myDiv”).innerHTML = “Processing...”; //Bad!!!
 };
</script>

Here, a button exists inside of a <div> element. When the button is clicked, it is removed and
replaced with a message to prevent double-clicking, which is a very common paradigm on websites.
The issue is that the button still had an event handler attached when it was removed from the
page. Setting innerHTML on the <div> removed the button completely, but the event handler
remains attached. Some browsers, especially Internet Explorer 8 and earlier, will have trouble in
this situation, and most likely, references to both the element and the event handler will remain in
memory. If you know that a given element is going to be removed, it’s best to manually remove the
event handlers yourself, as in this example:

<div id=”myDiv”>
 <input type=”button” value=”Click Me” id=”myBtn”>
</div>
<script type=”text/javascript”>
 var btn = document.getElementById(“myBtn”);
 btn.onclick = function(){

 //do something

 btn.onclick = null; //remove event handler

 document.getElementById(“myDiv”).innerHTML = “Processing...”;
 };
</script>

In this rewritten code, the button’s event handler is removed before setting the <div> element’s
innerHTML. This ensures that the memory will be reclaimed and the button can safely be removed
from the DOM.

Note also that removing the button in the event handler prevents bubbling of the event. An event
will bubble only if its target is still present in the document.

Event delegation also helps solve this problem. If you know that a particular part
of the page is going to be replaced using innerHTML, do not attach event handlers
directly to elements within that part. Instead, attach event handlers at a higher
level that can handle events in that area.

The other time that dangling event handlers are a problem is when the page is unloaded. Once
again, Internet Explorer 8 and earlier have a lot of problems with this situation, though it seems
to affect all browsers in some way. If event handlers aren’t cleaned up before the page is unloaded,

Memory and Performance ❘ 501

c13.indd 501c13.indd 501 12/8/11 10:37:29 AM12/8/11 10:37:29 AM

502 ❘ CHAPTER 13 EVENTS

they remain in memory. Each time the browser loads and unloads the page after that (as a result
of navigating away and back or clicking the Reload button), the number of objects in memory
increases, since the event handler memory is not being reclaimed.

Generally speaking, it’s a good idea to remove all event handlers before the page is unloaded by
using an onunload event handler. This is another area where event delegation helps, because it is
easier to keep track of the event handlers to remove when there are fewer of them. A good way to
think about this technique is that anything done using an onload event handler must be reversed
using onunload.

Keep in mind that assigning an onunload event handler means that your page will
not be stored in the bfcache. If this is of concern, you may want to use onunload to
remove event handlers only in Internet Explorer.

SIMULATING EVENTS

Events are designed to indicate particular moments of interest in a web page. These events are often
fi red based on user interaction or other browser functionality. It’s a little-known fact that JavaScript
can be used to fi re specifi c events at any time, and those events are treated the same as events that
are created by the browser. This means that the events bubble appropriately and cause the browser
to execute event handlers assigned to deal with the event. This capability can be extremely useful in
testing web applications. The DOM Level 3 specifi cation indicates ways to simulate specifi c types of
events, and Internet Explorer 9, Opera, Firefox, Chrome, and Safari all support it. Internet Explorer 8
and earlier versions have their own way to simulate events.

DOM Event Simulation

An event object can be created at any time by using the createEvent() method on document. This
method accepts a single argument, which is a string indicating the type of event to create. In DOM
Level 2, all of these strings were plural, while DOM Level 3 changed them to singular. The string
may be one of the following:

UIEvents — Generic UI event. Mouse events and keyboard events inherit from UI events.
For DOM Level 3, use UIEvent.

MouseEvents — Generic mouse event. For DOM Level 3, use MouseEvent.

MutationEvents — Generic DOM mutation event. For DOM Level 3, use MutationEvent.

HTMLEvents — Generic HTML event. There is no equivalent DOM Level 3 Event (HTML
events were dispersed into other groupings).

Note that keyboard events are not specifi cally described in DOM Level 2 Events and were only later
introduced in DOM Level 3 Events. Internet Explorer 9 is currently the only browser to support
DOM Level 3 keyboard events. There are, however, ways to simulate keyboard events
using methods that are available in other browsers.

➤

➤

➤

➤

c13.indd 502c13.indd 502 12/8/11 10:37:34 AM12/8/11 10:37:34 AM

Once an event object is created, it needs to be initialized with information about the event. Each
type of event object has a specifi c method that is used to initialize it with the appropriate data. The
name of the method is different, depending on the argument that was used with createEvent().

The fi nal step in event simulation is to fi re the event. This is done by using the dispatchEvent()
method that is present on all DOM nodes that support events. The dispatchEvent() method
accepts a single argument, which is the event object representing the event to fi re. After that point,
the event becomes “offi cial,” bubbling and causing event handlers to execute.

Simulating Mouse Events

Mouse events can be simulated by creating a new mouse event object and assigning the necessary
information. A mouse event object is created by passing “MouseEvents” into the createEvent()
method. The returned object has a method called initMouseEvent() that is used to assign mouse-
related information. This method accepts 15 arguments, one for each property typically available on
a mouse event. The arguments are as follows:

type (string) — The type of event to fi re, such as “click”.

bubbles (Boolean) — Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

cancelable (Boolean) — Indicates if the event can be canceled. This should be set to true
for accurate mouse event simulation.

view (AbstractView) — The view associated with the event. This is almost always
document.defaultView.

detail (integer) — Additional information for the event. This is used only by event
handlers, though it’s typically set to 0.

screenX (integer) — The x-coordinate of the event relative to the screen.

screenY (integer) — The y-coordinate of the event relative to the screen.

clientX (integer) — The x-coordinate of the event relative to the viewport.

clientY (integer) — The y-coordinate of the event relative to the viewport.

ctrlKey (Boolean) — Indicates if the Ctrl key is pressed. The default is false.

altKey (Boolean) — Indicates if the Alt key is pressed. The default is false.

shiftKey (Boolean) — Indicates if the Shift key is pressed. The default is false.

metaKey (Boolean) — Indicates if the Meta key is pressed. The default is false.

button (integer) — Indicates the button that was pressed. The default is 0.

relatedTarget (object) — An object related to the event. This is used only when
simulating mouseover or mouseout.

As should be obvious, the arguments for initMouseEvent() map directly to the event object
properties for a mouse event. The fi rst four arguments are the only ones that are critical for the
proper execution of the event, because they are used by the browser; only event handlers use the

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Simulating Events ❘ 503

c13.indd 503c13.indd 503 12/8/11 10:37:40 AM12/8/11 10:37:40 AM

504 ❘ CHAPTER 13 EVENTS

other arguments. The target property of the event object is set automatically when it is passed
into the dispatchEvent() method. As an example, the following simulates a click on a button
using default values:

var btn = document.getElementById(“myBtn”);

//create event object
var event = document.createEvent(“MouseEvents”);

//initialize the event object
event.initMouseEvent(“click”, true, true, document.defaultView, 0, 0, 0, 0, 0,
 false, false, false, false, 0, null);

//fire the event
btn.dispatchEvent(event);

SimulateDOMClickExample01.htm

All other mouse events, including dblclick, can be simulated using this same technique in DOM-
compliant browsers.

Simulating Keyboard Events

As mentioned previously, keyboard events were left out of DOM Level 2 Events, so simulating
keyboard events is not straightforward. Keyboard events were included in draft versions of DOM
Level 2 Events and were removed before fi nalization. Firefox implements the draft version of
keyboard events. It’s worth noting that keyboard events in DOM Level 3 are drastically different
from the draft version originally included in DOM Level 2.

The DOM Level 3 way to create a keyboard event is by passing “KeyboardEvent” into the create
Event() method. Doing so creates an event object with a method called initKeyboardEvent().
This method has the following parameters:

type (string) — The type of event to fi re, such as “keydown”.

bubbles (Boolean) — Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

cancelable (Boolean) — Indicates if the event can be canceled. This should be set to true
for accurate mouse event simulation.

view (AbstractView) — The view associated with the event. This is almost always
document.defaultView.

key (string) — String code for the key that was pressed.

location (integer) — The location of the key that was pressed. 0 for default keyboard, 1 for
the left location, 2 for the right location, 3 for the numeric keypad, 4 for mobile (indicating
a virtual keypad), or 5 for joystick.

modifiers (string) — A space-separated list of modifi ers such as “Shift”.

repeat (integer) — The number of times this key has been pressed in a row.

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c13.indd 504c13.indd 504 12/8/11 10:37:40 AM12/8/11 10:37:40 AM

Keep in mind that DOM Level 3 Events deprecates the keypress event, so you can simulate only the
keydown and keyup events using this technique:

var textbox = document.getElementById(“myTextbox”),
 event;

//create event object the DOM Level 3 way
if (document.implementation.hasFeature(“KeyboardEvents”, “3.0”)){
 event = document.createEvent(“KeyboardEvent”);

 //initialize the event object
 event.initKeyboardEvent(“keydown”, true, true, document.defaultView, “a”,
 0, “Shift”, 0);
}

//fire the event
textbox.dispatchEvent(event);

SimulateDOMKeyEventExample01.htm

This example simulates keydown of the A key while Shift is being held. You should always
check for DOM Level 3 keyboard events support before attempting to use document.createEvent
(“KeyboardEvent”); other browsers return a nonstandard KeyboardEvent object.

Firefox allows you to create a keyboard event by passing “KeyEvents” into the createEvent()
method. This returns an event object with a method called initKeyEvent(), which accepts the
following 10 arguments:

type (string) — The type of event to fi re, such as “keydown”.

bubbles (Boolean) — Indicates if the event should bubble. This should be set to true for
accurate mouse event simulation.

cancelable (Boolean) — Indicates if the event can be canceled. This should be set to true
for accurate mouse event simulation.

view (AbstractView) — The view associated with the event. This is almost always
document.defaultView.

ctrlKey (Boolean) — Indicates if the Ctrl key is pressed. The default is false.

altKey (Boolean) — Indicates if the Alt key is pressed. The default is false.

shiftKey (Boolean) — Indicates if the Shift key is pressed. The default is false.

metaKey (Boolean) — Indicates if the Meta key is pressed. The default is false.

keyCode (integer) — The key code of the key that was pressed or released. This is used for
keydown and keyup. The default is 0.

charCode (integer) — The ASCII code of the character generated from the key press. This is
used for keypress. The default is 0.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Simulating Events ❘ 505

c13.indd 505c13.indd 505 12/8/11 10:37:41 AM12/8/11 10:37:41 AM

506 ❘ CHAPTER 13 EVENTS

A keyboard event can then be fi red by passing this event object to dispatchEvent(), as in this example:

//for Firefox only
var textbox = document.getElementById(“myTextbox”);

//create event object
var event = document.createEvent(“KeyEvents”);

//initialize the event object
event.initKeyEvent(“keydown”, true, true, document.defaultView, false, false,
 true, false, 65, 65);

//fire the event
textbox.dispatchEvent(event);

SimulateFFKeyEventExample01.htm

This example simulates keydown for the A key with the Shift key held down. You can also simulate
keyup and keypress events using this technique.

For other browsers, you’ll need to create a generic event and assign keyboard-specifi c information to
it. Here is an example:

var textbox = document.getElementById(“myTextbox”);

//create event object
var event = document.createEvent(“Events”);

//initialize the event object
event.initEvent(type, bubbles, cancelable);
event.view = document.defaultView;
event.altKey = false;
event.ctrlKey = false;
event.shiftKey = false;
event.metaKey = false;
event.keyCode = 65;
event.charCode = 65;

//fire the event
textbox.dispatchEvent(event);

This code creates a generic event, initializes it by using initEvent(), and then assigns keyboard
event information. It’s necessary to use a generic event instead of a UI event because the UI event
prevents new properties from being added to the event object (except in Safari). Simulating an event
in this way causes the keyboard event to fi re, but no text will be placed into the text box because
this doesn’t accurately simulate a keyboard event.

Simulating Other Events

Mouse events and keyboard events are the ones most often simulated in the browser, though it is
possible to simulate mutation and HTML events as well. To simulate a mutation event, use create

Available for
download on
Wrox.com

c13.indd 506c13.indd 506 12/8/11 10:37:42 AM12/8/11 10:37:42 AM

Event(“MutationEvents”) to create a new mutation event object with an initMutationEvent()
method. The arguments of this event are type, bubbles, cancelable, relatedNode, prevValue,
newValue, attrName, and attrChange. Simulating a mutation event takes the following form:

var event = document.createEvent(“MutationEvents”);
event.initMutationEvent(“DOMNodeInserted”, true, false, someNode, “”,””,””,0);
target.dispatchEvent(event);

This code simulates a DOMNodeInserted event. All other mutation events can be simulated using the
same basic code and changing the arguments.

HTML events are simulated by creating an event object, using createEvent(“HTMLEvents”), and
then initializing the event object using initEvent(). Here’s an example:

var event = document.createEvent(“HTMLEvents”);
event.initEvent(“focus”, true, false);
target.dispatchEvent(event);

This example fi res the focus event on a given target. Other HTML events may be simulated the same way.

Mutation events and HTML events are rarely used in browsers because they are of
limited utility.

Custom DOM Events

DOM Level 3 specifi es a class of events called custom events. Custom events don’t get fi red natively
by the DOM but are provided so that developers can create their own events. You create a new
custom event by calling createEvent(“CustomEvent”). The returned object has a method called
initCustomEvent(), which takes four arguments:

type (string) — The type of event to fi re, such as “keydown”.

bubbles (Boolean) — Indicates if the event should bubble.

cancelable (Boolean) — Indicates if the event can be canceled.

detail (object) — Any value. This fi lls in the detail property of the event object.

The created event can then be dispatched in the DOM just like any other event. For example:

var div = document.getElementById(“myDiv”),
 event;

EventUtil.addHandler(div, “myevent”, function(event){
 alert(“DIV: “ + event.detail);
});
EventUtil.addHandler(document, “myevent”, function(event){
 alert(“DOCUMENT: “ + event.detail);
});

if (document.implementation.hasFeature(“CustomEvents”, “3.0”)){

➤

➤

➤

➤

Available for
download on
Wrox.com

Simulating Events ❘ 507

c13.indd 507c13.indd 507 12/8/11 10:37:42 AM12/8/11 10:37:42 AM

508 ❘ CHAPTER 13 EVENTS

 event = document.createEvent(“CustomEvent”);
 event.initCustomEvent(“myevent”, true, false, “Hello world!”);
 div.dispatchEvent(event);
}

SimulateDOMCustomEventExample01.htm

This example creates a bubbling event called “myevent”. The value of event.detail is set to a
simple string and is then listened for both on a <div> element and at the document level. Because
the event is specifi ed as bubbling using initCustomEvent(), the browser takes care of bubbling the
event up to the document.

Custom DOM events are supported only in Internet Explorer 9+ and Firefox 6+.

Internet Explorer Event Simulation

Event simulation in Internet Explorer 8 and earlier follows a similar pattern as event simulation in
the DOM: you create an event object, assign the appropriate information, and then fi re the event
using the object. Of course, Internet Explorer has different ways of doing each step.

The createEventObject() method of document creates an event object. Unlike the DOM, this
method accepts no arguments and returns a generic event object. After that, you must manually
assign all of the properties that you want to have on the object. (There is no method to do this.) The
last step is to call fireEvent() on the target, which accepts two arguments: the name of the event
handler and the event object. When fireEvent() is called, the srcElement and type properties
are automatically assigned to the event object; all other properties must be manually assigned. This
means that all events that Internet Explorer supports are simulated using the same algorithm. For
example, the following fi res a click event on a button:

var btn = document.getElementById(“myBtn”);

//create event object
var event = document.createEventObject();

//initialize the event object
event.screenX = 100;
event.screenY = 0;
event.clientX = 0;
event.clientY = 0;
event.ctrlKey = false;
event.altKey = false;
event.shiftKey = false;
event.button = 0;

//fire the event
btn.fireEvent(“onclick”, event);

SimulateIEClickExample01.htm

This example creates an event object and then initializes it with some information. Note that
property assignment is free-form, so you can assign any properties you’d like, including those not

Available for
download on
Wrox.com

c13.indd 508c13.indd 508 12/8/11 10:37:43 AM12/8/11 10:37:43 AM

normally supported by Internet Explorer 8 and earlier. The property values are of no consequence to
the event, because only event handlers use them.

The same algorithm can be used to fi re a keypress event as well, as shown in this example:

var textbox = document.getElementById(“myTextbox”);

//create event object
var event = document.createEventObject();

//initialize the event object
event.altKey = false;
event.ctrlKey = false;
event.shiftKey = false;
event.keyCode = 65;

//fire the event
textbox.fireEvent(“onkeypress”, event);

SimulateIEKeyEventExample01.htm

Since there is no difference between event objects for mouse, keyboard, or other events, a generic
event object can be used to fi re any type of event. Note that, as with DOM keyboard event
simulation, no characters will appear in a text box as the result of a simulated keypress event even
though the event handler will fi re.

SUMMARY

Events are the primary way that JavaScript is tied to web pages. Most common events are defi ned in
the DOM Level 3 Events specifi cation or in HTML5. Even though there is a specifi cation for basic
events, many browsers have gone beyond the specifi cation and implemented proprietary events to
give developers greater insight into user interactions. Some proprietary events are directly related to
specifi c devices, such as the mobile Safari orientationchange event that is specifi c to iOS devices.

There are some memory and performance considerations surrounding events. For example:

It’s best to limit the number of event handlers on a page, since they can take up more
memory and make the page feel less responsive to the user.

Event delegation can be used to limit the number of event handlers by taking advantage of
event bubbling.

It’s a good idea to remove all event handlers that were added before the page is unloaded.

It’s possible to simulate events in the browser using JavaScript. The DOM Level 2 and 3 Events
specifi cations provide for the simulation of all events, making it easy to simulate all defi ned events.
It’s also possible to simulate keyboard events to a point by using a combination of other techniques.
Internet Explorer 8 and earlier also support event simulation, albeit through a different interface.

Events are one of the most important topics in JavaScript, and a good understanding of how they
work and their performance implications is critical.

➤

➤

➤

Available for
download on
Wrox.com

Summary ❘ 509

c13.indd 509c13.indd 509 12/8/11 10:37:44 AM12/8/11 10:37:44 AM

c13.indd 510c13.indd 510 12/8/11 10:37:44 AM12/8/11 10:37:44 AM

Scripting Forms

WHAT’S IN THIS CHAPTER?

Understanding form basics

Text box validation and interaction

Working with other form controls

One of the original uses of JavaScript was to offl oad some form-processing responsibilities
onto the browser instead of relying on the server to do it all. Although the Web and JavaScript
have evolved since that time, web forms remain more or less unchanged. The failure of
web forms to provide out-of-the-box solutions for common problems led developers to use
JavaScript not just for form validation but also to augment the default behavior of standard
form controls.

FORM BASICS

Web forms are represented by the <form> element in HTML and by the HTMLFormElement
type in JavaScript. The HTMLFormElement type inherits from HTMLElement and therefore has
all of the same default properties as other HTML elements. However, HTMLFormElement also
has the following additional properties and methods:

acceptCharset — The character sets that the server can process; equivalent to the
HTML accept-charset attribute.

action — The URL to send the request to; equivalent to the HTML action attribute.

elements — An HTMLCollection of all controls in the form.

enctype — The encoding type of the request; equivalent to the HTML enctype attribute.

length — The number of controls in the form.

➤

➤

➤

➤

➤

➤

➤

➤

14

c14.indd 511c14.indd 511 12/8/11 10:38:29 AM12/8/11 10:38:29 AM

512 ❘ CHAPTER 14 SCRIPTING FORMS

method — The type of HTTP request to send, typically “get” or “post”; equivalent to the
HTML method attribute.

name — The name of the form; equivalent to the HTML name attribute.

reset() — Resets all form fi elds to their default values.

submit() — Submits the form.

target — The name of the window to use for sending the request and receiving the
response; equivalent to the HTML target attribute.

References to <form> elements can be retrieved in a number of different ways. The most common
way is to treat them as any other elements and assign the id attribute, allowing the use of
getElementById(), as in the following example:

var form = document.getElementById(“form1”);

All forms on the page can also be retrieved from document.forms collection. Each form can be
accessed in this collection by numeric index and by name, as shown in the following examples:

var firstForm = document.forms[0]; //get the first form in the page
var myForm = document.forms[“form2”]; //get the form with a name of “form2”

Older browsers, or those with strict backwards compatibility, also add each form with a name as
a property of the document object. For instance, a form named “form2” could be accessed via
document.form2. This approach is not recommended, because it is error-prone and may be removed
from browsers in the future.

Note that forms can have both an id and a name and that these values need not be the same.

Submitting Forms

Forms are submitted when a user interacts with a submit button or an image button. Submit
buttons are defi ned using either the <input> element or the <button> element with a type attribute
of “submit“, and image buttons are defi ned using the <input> element with a type attribute of
“image“. All of the following, when clicked, will submit a form in which the button resides:

<!-- generic submit button -->
<input type=”submit” value=”Submit Form”>

<!-- custom submit button -->
<button type=”submit”>Submit Form</button>

<!-- image button -->
<input type=”image” src=”graphic.gif”>

If any one of these types of buttons is within a form that has a submit button, pressing Enter on the
keyboard while a form control has focus will also submit the form. (The one exception is a textarea,
within which Enter creates a new line of text.) Note that forms without a submit button will not be
submitted when Enter is pressed.

➤

➤

➤

➤

➤

c14.indd 512c14.indd 512 12/8/11 10:38:32 AM12/8/11 10:38:32 AM

When a form is submitted in this manner, the submit event fi res right before the request is sent to
the server. This gives you the opportunity to validate the form data and decide whether to allow the
form submission to occur. Preventing the event’s default behavior cancels the form submission. For
example, the following prevents a form from being submitted:

var form = document.getElementById(“myForm”);
EventUtil.addHandler(form, ”submit”, function(event){

 //get event object
 event = EventUtil.getEvent(event);

 //prevent form submission
 EventUtil.preventDefault(event);
});

This code uses the EventUtil object from the previous chapter to provide cross-browser event
handling. The preventDefault() method stops the form from being submitted. Typically, this
functionality is used when data in the form is invalid and should not be sent to the server.

It’s possible to submit a form programmatically by calling the submit() method from JavaScript.
This method can be called at any time to submit a form and does not require a submit button to be
present in the form to function appropriately. Here’s an example:

var form = document.getElementById(“myForm”);

//submit the form
form.submit();

When a form is submitted via submit(), the submit event does not fi re, so be sure to do data
validation before calling the method.

One of the biggest issues with form submission is the possibility of submitting the form twice.
Users sometimes get impatient when it seems like nothing is happening and may click a submit
button multiple times. The results can be annoying (because the server processes duplicate requests)
or damaging (if the user is attempting a purchase and ends up placing multiple orders). There are
essentially two ways to solve this problem: disable the submit button once the form is submitted, or
use the onsubmit event handler to cancel any further form submissions.

Resetting Forms

Forms are reset when the user clicks a reset button. Reset buttons are created using either the
<input> or the <button> element with a type attribute of “reset“, as in these examples:

<!-- generic reset button -->
<input type=”reset” value=”Reset Form”>

<!-- custom reset button -->
<button type=”reset”>Reset Form</button>

Form Basics ❘ 513

c14.indd 513c14.indd 513 12/8/11 10:38:33 AM12/8/11 10:38:33 AM

514 ❘ CHAPTER 14 SCRIPTING FORMS

Either of these buttons will reset a form. When a form is reset, all of the form fi elds are set back
to the values they had when the page was fi rst rendered. If a fi eld was originally blank, it becomes
blank again, whereas a fi eld with a default value reverts to that value.

When a form is reset by the user clicking a reset button, the reset event fi res. This event gives
you the opportunity to cancel the reset if necessary. For example, the following prevents a form
from being reset:

var form = document.getElementById(“myForm”);
EventUtil.addHandler(form, ”reset”, function(event){

 //get event object
 event = EventUtil.getEvent(event);

 //prevent form reset
 EventUtil.preventDefault(event);
});

As with form submission, resetting a form can be accomplished via JavaScript using the reset()
method, as in this example:

var form = document.getElementById(“myForm”);

//reset the form
form.reset();

Unlike the submit() method’s functionality, reset() fi res the reset event the same as if a reset
button were clicked.

Form resetting is typically a frowned-upon approach to web form design. It’s often
disorienting to the user and, when triggered accidentally, can be quite frustrating.
There’s almost never a need to reset a form. It’s often enough to provide a cancel
button that takes the user back to the previous page rather than explicitly to revert
all values in the form.

Form Fields

Form elements can be accessed in the same ways as any other elements on the page using native
DOM methods. Additionally, all form elements are parts of an elements collection that is a
property of each form. The elements collection is an ordered list of references to all form fi elds in
the form and includes all <input>, <textarea>, <button>, <select>, and <fieldset> elements.
Each form fi eld appears in the elements collection in the order in which it appears in the markup,
indexed by both position and name. Here are some examples:

c14.indd 514c14.indd 514 12/8/11 10:38:33 AM12/8/11 10:38:33 AM

var form = document.getElementById(“form1”);

//get the first field in the form
var field1 = form.elements[0];

//get the field named ”textbox1”
var field2 = form.elements[”textbox1”];

//get the number of fields
var fieldCount = form.elements.length;

If a name is in use by multiple form controls, as is the case with radio buttons, then an HTMLCollection
is returned containing all of the elements with the name. For example, consider the following HTML
snippet:

<form method=”post” id=”myForm”>

 <input type=”radio” name=”color” value=”red”>Red
 <input type=”radio” name=”color” value=”green”>Green
 <input type=”radio” name=”color” value=”blue”>Blue

</form>

FormFieldsExample01.htm

The form in this HTML has three radio controls that have “color” as their name, which ties the fi elds
together. When accessing elements[“color”], a NodeList is returned, containing all three elements;
when accessing elements[0], however, only the fi rst element is returned. Consider this example:

var form = document.getElementById(“myForm”);

var colorFields = form.elements[“color”];
alert(colorFields.length); //3

var firstColorField = colorFields[0];
var firstFormField = form.elements[0];
alert(firstColorField === firstFormField); //true

FormFieldsExample01.htm

This code shows that the fi rst form fi eld, accessed via form.elements[0], is the same as the fi rst
element contained in form.elements[“color”].

It’s possible to access elements as properties of a form as well, such as form[0]
to get the fi rst form fi eld and form[“color”] to get a named fi eld. These
properties always return the same thing as their equivalent in the elements
collection. This approach is provided for backwards compatibility with older
browsers and should be avoided when possible in favor of using elements.

Form Basics ❘ 515

c14.indd 515c14.indd 515 12/8/11 10:38:43 AM12/8/11 10:38:43 AM

516 ❘ CHAPTER 14 SCRIPTING FORMS

Common Form-Field Properties

With the exception of the <fieldset> element, all form fi elds share a common set of properties.
Since the <input> type represents many form fi elds, some properties are used only with certain fi eld
types, whereas others are used regardless of the fi eld type. The common form-fi eld properties and
methods are as follows:

disabled — A Boolean indicating if the fi eld is disabled.

form — A pointer to the form that the fi eld belongs to. This property is read only.

name — The name of the fi eld.

readOnly — A Boolean indicating if the fi eld is read only.

tabIndex — Indicates the tab order for the fi eld.

type — The type of the fi eld: “checkbox”, “radio”, and so on.

value — The value of the fi eld that will be submitted to the server. For fi le-input fi elds, this
property is read only and simply contains the fi le’s path on the computer.

With the exception of the form property, JavaScript can change all other properties dynamically.
Consider this example:

var form = document.getElementById(“myForm”);
var field = form.elements[0];

//change the value
field.value = ”Another value”;

//check the value of form
alert(field.form === form); //true

//set focus to the field
field.focus();

//disable the field
field.disabled = true;

//change the type of field (not recommended, but possible for <input>)
field.type = ”checkbox”;

The ability to change form-fi eld properties dynamically allows you to change the form at any time
and in almost any way. For example, a common problem with web forms is users’ tendency to click
the submit button twice. This is a major problem when credit-card orders are involved, because it
may result in duplicate charges. A very common solution to this problem is to disable the submit
button once it’s been clicked, which is possible by listening for the submit event and disabling the
submit button when it occurs. The following code accomplishes this:

//Code to prevent multiple form submissions
EventUtil.addHandler(form, “submit”, function(event){
 event = EventUtil.getEvent(event);

➤

➤

➤

➤

➤

➤

➤

c14.indd 516c14.indd 516 12/8/11 10:38:48 AM12/8/11 10:38:48 AM

 var target = EventUtil.getTarget(event);

 //get the submit button
 var btn = target.elements[“submit-btn”];

 //disable it
 btn.disabled = true;

});

FormFieldsExample02.htm

This code attaches an event handler on the form for the submit event. When the event fi res, the
submit button is retrieved and its disabled property is set to true. Note that you cannot attach an
onclick event handler to the submit button to do this because of a timing issue across browsers:
some browsers fi re the click event before the form’s submit event, some after. For browsers that
fi re click fi rst, the button will be disabled before the submission occurs, meaning that the form
will never be submitted. Therefore it’s better to disable the submit button using the submit event.
This approach won’t work if you are submitting the form without using a submit button, because, as
stated before, the submit event is fi red only by a submit button.

The type property exists for all form fi elds except <fieldset>. For <input> elements, this value is
equal to the HTML type attribute. For other elements, the value of type is set as described in the
following table.

DESCRIPTION SAMPLE HTML VALUE OF TYPE

Single-select list <select>...</select> “select-one”

Multi-select list <select multiple>...</select> “select-multiple”

Custom button <button>...</button> “submit”

Custom nonsubmit button <button type=”button”>...</button> “button”

Custom reset button <button type=”reset”>...</button> “reset”

Custom submit button <button type=”submit”>...</button> “submit”

For <input> and <button> elements, the type property can be changed dynamically, whereas the
<select> element’s type property is read only.

Common Form-Field Methods

Each form fi eld has two methods in common: focus() and blur(). The focus() method sets
the browser’s focus to the form fi eld, meaning that the fi eld becomes active and will respond to
keyboard events. For example, a text box that receives focus displays its caret and is ready to accept
input. The focus() method is most often employed to call the user’s attention to some part of
the page. It’s quite common, for instance, to have the focus moved to the fi rst fi eld in a form when

Form Basics ❘ 517

c14.indd 517c14.indd 517 12/8/11 10:38:49 AM12/8/11 10:38:49 AM

518 ❘ CHAPTER 14 SCRIPTING FORMS

the page is loaded. This can be accomplished by listening for the load event and then calling
focus() on the fi rst fi eld, as in the following example:

EventUtil.addHandler(window, “load”, function(event){
 document.forms[0].elements[0].focus();
});

Note that this code will cause an error if the fi rst form fi eld is an <input> element with a type of
“hidden” or if the fi eld is being hidden using the display or visibility CSS property.

HTML5 introduces an autofocus attribute for form fi elds that causes supporting browsers to
automatically set the focus to that element without the use of JavaScript. For example:

<input type=”text” autofocus>

In order for the previous code to work correctly with autofocus, you must fi rst detect if it has been
set and, if so, not call focus():

EventUtil.addHandler(window, “load”, function(event){
 var element = document.forms[0].elements[0];

 if (element.autofocus !== true){
 element.focus(); console.log(“JS focus”);
 }
});

FocusExample01.htm

Because autofocus is a Boolean attribute, the value of the autofocus property will be true in
supporting browsers. (It will be the empty string in browsers without support.) So this code calls
focus() only if the autofocus property is not equal to true, ensuring forwards compatibility. The
autofocus property is supported in Firefox 4+, Safari 5+, Chrome, and Opera 9.6+.

By default, only form elements can have focus set to them. It’s possible to allow
any element to have focus by setting its tabIndex property to –1 and then
calling focus(). The only browser that doesn’t support this technique is Opera.

The opposite of focus() is blur(), which removes focus from the element. When blur() is
called, focus isn’t moved to any element in particular; it’s just removed from the fi eld on which
it was called. This method was used early in web development to create read-only fi elds before
the readonly attribute was introduced. There’s rarely a need to call blur(), but it’s available if
necessary. Here’s an example:

document.forms[0].elements[0].blur();

c14.indd 518c14.indd 518 12/8/11 10:38:50 AM12/8/11 10:38:50 AM

Common Form-Field Events

All form fi elds support the following three events in addition to mouse, keyboard, mutation, and
HTML events:

blur — Fires when the fi eld loses focus.

change — Fires when the fi eld loses focus and the value has changed for <input> and
<textarea> elements; also fi res when the selected option changes for <select> elements.

focus — Fires when the fi eld gets focus.

Both the blur and the focus events fi re because of users manually changing the fi eld’s focus, as
well as by calling the blur() and focus() methods, respectively. These two events work the same
way for all form fi elds. The change event, however, fi res at different times for different controls. For
<input> and <textarea> elements, the change event fi res when the fi eld loses focus and the value
has changed since the time the control got focus. For <select> elements, however, the change event
fi res whenever the user changes the selected option; the control need not lose focus for change to fi re.

The focus and blur events are typically used to change the user interface in some way, to provide
either visual cues or additional functionality (such as showing a drop-down menu of options for
a text box). The change event is typically used to validate data that was entered into a fi eld. For
example, consider a text box that expects only numbers to be entered. The focus event may be used
to change the background color to more clearly indicate that the fi eld has focus, the blur event can
be used to remove that background color, and the change event can change the background color to
red if nonnumeric characters are entered. The following code accomplishes this:

var textbox = document.forms[0].elements[0];

EventUtil.addHandler(textbox, “focus”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.style.backgroundColor != “red”){
 target.style.backgroundColor = “yellow”;
 }
});

EventUtil.addHandler(textbox, “blur”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (/[^\d]/.test(target.value)){
 target.style.backgroundColor = “red”;
 } else {
 target.style.backgroundColor = “”;
 }
});

EventUtil.addHandler(textbox, “change”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (/[^\d]/.test(target.value)){

➤

➤

➤

Form Basics ❘ 519

c14.indd 519c14.indd 519 12/8/11 10:38:55 AM12/8/11 10:38:55 AM

520 ❘ CHAPTER 14 SCRIPTING FORMS

 target.style.backgroundColor = “red”;
 } else {
 target.style.backgroundColor = “”;
 }
});

FormFieldEventsExample01.htm

The onfocus event handler simply changes the background color of the text box to yellow, more
clearly indicating that it’s the active fi eld. The onblur and onchange event handlers turn the
background color red if any nonnumeric character is found. To test for a nonnumeric character, use
a simple regular expression against the text box’s value. This functionality has to be in both the
onblur and onchange event handlers to ensure that the behavior remains consistent regardless of
text box changes.

The relationship between the blur and the change events is not strictly defi ned.
In some browsers, the blur event fi res before change; in others, it’s the opposite.
You can’t depend on the order in which these events fi re, so use care whenever
they are required.

SCRIPTING TEXT BOXES

There are two ways to represent text boxes in HTML: a single-line version using the <input>
element and a multiline version using <textarea>. These two controls are very similar and behave
in similar ways most of the time. There are, however, some important differences.

By default, the <input> element displays a text box, even when the type attribute is omitted
(the default value is “text”). The size attribute can then be used to specify how wide the text
box should be in terms of visible characters. The value attribute specifi es the initial value of the
text box, and the maxlength attribute specifi es the maximum number of characters allowed in
the text box. So to create a text box that can display 25 characters at a time but has a maximum
length of 50, you can use the following code:

<input type=”text” size=”25” maxlength=”50” value=”initial value”>

The <textarea> element always renders a multiline text box. To specify how large the text box
should be, you can use the rows attribute, which specifi es the height of the text box in number of
characters, and the cols attribute, which specifi es the width in number of characters, similar to
size for an <input> element. Unlike <input>, the initial value of a <textarea> must be enclosed
between <textarea> and </textarea>, as shown here:

<textarea rows=”25” cols=”5”>initial value</textarea>

c14.indd 520c14.indd 520 12/8/11 10:38:56 AM12/8/11 10:38:56 AM

Also unlike the <input> element, a <textarea> cannot specify the maximum number of characters
allowed using HTML.

Despite the differences in markup, both types of text boxes store their contents in the value property.
The value can be used to read the text box value and to set the text box value, as in this example:

var textbox = document.forms[0].elements[“textbox1”];
alert(textbox.value);

textbox.value = “Some new value”;

It’s recommended to use the value property to read or write text box values rather than to use
standard DOM methods. For instance, don’t use setAttribute() to set the value attribute on an
<input> element, and don’t try to modify the fi rst child node of a <textarea> element. Changes
to the value property aren’t always refl ected in the DOM either, so it’s best to avoid using DOM
methods when dealing with text box values.

Text Selection

Both types of text boxes support a method called select(), which selects all of the text in a text box.
Most browsers automatically set focus to the text box when the select() method is called (Opera
does not). The method accepts no arguments and can be called at any time. Here’s an example:

var textbox = document.forms[0].elements[“textbox1”];
textbox.select();

It’s quite common to select all of the text in a text box when it gets focus, especially if the text box
has a default value. The thinking is that it makes life easier for users when they don’t have to delete
text separately. This pattern is accomplished with the following code:

EventUtil.addHandler(textbox, “focus”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 target.select();
});

TextboxSelectExample01.htm

With this code applied to a text box, all of the text will be selected as soon as the text box gets
focus. This can greatly aid the usability of forms.

The select Event

To accompany the select() method, there is a select event. The select event fi res when text is
selected in the text box. Exactly when the event fi res differs from browser to browser. In Internet
Explorer 9+, Opera, Firefox, Chrome, and Safari, the select event fi res once the user has fi nished

Scripting Text Boxes ❘ 521

c14.indd 521c14.indd 521 12/8/11 10:39:01 AM12/8/11 10:39:01 AM

522 ❘ CHAPTER 14 SCRIPTING FORMS

selecting text, whereas in Internet Explorer 8 and earlier it fi res as soon as one letter is selected. The
select event also fi res when the select() method is called. Here’s a simple example:

var textbox = document.forms[0].elements[“textbox1”];
EventUtil.addHandler(textbox, “select”, function(event){
 var alert(“Text selected: “ + textbox.value);
});

SelectEventExample01.htm

Retrieving Selected Text

Although useful for understanding when text is selected, the select event provides no information
about what text has been selected. HTML5 solved this issue by introducing some extensions
to allow for better retrieval of selected text. The specifi cation approach adds two properties to
text boxes: selectionStart and selectionEnd. These properties contain zero-based numbers
indicating the text-selection boundaries (the offset of the beginning of text selection and the offset
of end of text selection, respectively). So, to get the selected text in a text box, you can use the
following code:

function getSelectedText(textbox){
 return textbox.value.substring(textbox.selectionStart, textbox.selectionEnd);
}

Since the substring() method works on string offsets, the values from selectionStart and
selectionEnd can be passed in directly to retrieve the selected text.

This solution works for Internet Explorer 9+, Firefox, Safari, Chrome, and Opera. Internet Explorer 8
and earlier don’t support these properties, so a different approach is necessary.

Older versions of Internet Explorer have a document.selection object that contains text-selection
information for the entire document, which means you can’t be sure where the selected text is on
the page. When used in conjunction with the select event, however, you can be assured that the
selection is inside the text box that fi red the event. To get the selected text, you must fi rst create a
range (discussed in Chapter 12) and then extract the text from it, as in the following:

function getSelectedText(textbox){
 if (typeof textbox.selectionStart == “number”){
 return textbox.value.substring(textbox.selectionStart,
 textbox.selectionEnd);
 } else if (document.selection){
 return document.selection.createRange().text;
 }
}

TextboxGetSelectedTextExample01.htm

This function has been modifi ed to determine whether to use the Internet Explorer approach to
selected text. Note that document.selection doesn’t need the textbox argument at all.

c14.indd 522c14.indd 522 12/8/11 10:39:02 AM12/8/11 10:39:02 AM

Partial Text Selection

HTML5 also specifi es an addition to aid in partially selecting text in a text box. The
setSelectionRange() method, originally implemented by Firefox, is now available on all text
boxes in addition to the select() method. This method takes two arguments: the index of
the fi rst character to select and the index at which to stop the selection (the same as the string’s
substring() method). Here are some examples:

textbox.value = “Hello world!”

//select all text
textbox.setSelectionRange(0, textbox.value.length); //”Hello world!”

//select first three characters
textbox.setSelectionRange(0, 3); //”Hel”

//select characters 4 through 6
textbox.setSelectionRange(4, 7); //”o w”

To see the selection, you must set focus to the text box either immediately before or after a call to
setSelectionRange(). This approach works for Internet Explorer 9, Firefox, Safari, Chrome, and
Opera.

Internet Explorer 8 and earlier allow partial text selection through the use of ranges (discussed in
Chapter 12). To select part of the text in a text box, you must fi rst create a range and place it in the
correct position by using the createTextRange() method that Internet Explorer provides on text boxes
and using the moveStart() and moveEnd() range methods to move the range into position. Before
calling these methods, however, you need to collapse the range to the start of the text box using
collapse(). After that, moveStart() moves both the starting and the end points of the range to the
same position. You can then pass in the total number of characters to select as the argument to moveEnd().
The last step is to use the range’s select() method to select the text, as shown in these examples:

textbox.value = “Hello world!”;

var range = textbox.createTextRange();

//select all text
range.collapse(true);
range.moveStart(“character”, 0);
range.moveEnd(“character”, textbox.value.length); //”Hello world!”
range.select();

//select first three characters
range.collapse(true);
range.moveStart(“character”, 0);
range.moveEnd(“character”, 3);
range.select(); //”Hel”

//select characters 4 through 6
range.collapse(true);
range.moveStart(“character”, 4);
range.moveEnd(“character”, 3);
range.select(); //”o w”

Scripting Text Boxes ❘ 523

c14.indd 523c14.indd 523 12/8/11 10:39:03 AM12/8/11 10:39:03 AM

524 ❘ CHAPTER 14 SCRIPTING FORMS

As with the other browsers, the text box must have focus in order for the selection to be visible.

These two techniques can be combined into a single function for cross-browser usage, as in the
following example:

function selectText(textbox, startIndex, stopIndex){
 if (textbox.setSelectionRange){
 textbox.setSelectionRange(startIndex, stopIndex);
 } else if (textbox.createTextRange){
 var range = textbox.createTextRange();
 range.collapse(true);
 range.moveStart(“character”, startIndex);
 range.moveEnd(“character”, stopIndex - startIndex);
 range.select();
 }
 textbox.focus();
}

TextboxPartialSelectionExample01.htm

The selectText() function accepts three arguments: the text box to act on, the index at which
to begin the selection, and the index before which to end the selection. First, the text box is
tested to determine if it has the setSelectionRange() method. If so, that method is used.
If setSelectionRange() is not available, then the text box is checked to see if it supports
createTextRange(). If createTextRange() is supported, then a range is created to accomplish the
text selection. The last step in the method is to set the focus to the text box so that the selection will
be visible. The selectText() method can be used as follows:

textbox.value = “Hello world!”

//select all text
selectText(textbox, 0, textbox.value.length); //”Hello world!”

//select first three characters
selectText(textbox, 0, 3); //”Hel”

//select characters 4 through 6
selectText(textbox, 4, 7); //”o w”

Partial text selection is useful for implementing advanced text input boxes such as those that provide
autocomplete suggestions.

Input Filtering

It’s common for text boxes to expect a certain type of data or data format. Perhaps the data needs
to contain certain characters or must match a particular pattern. Since text boxes don’t offer much
in the way of validation by default, JavaScript must be used to accomplish such input fi ltering. Using
a combination of events and other DOM capabilities, you can turn a regular text box into one that
understands the data it is dealing with.

c14.indd 524c14.indd 524 12/8/11 10:39:03 AM12/8/11 10:39:03 AM

Blocking Characters

Certain types of input require that specifi c characters be present or absent. For example, a text box
for the user’s phone number should not allow non-numeric values to be inserted. The keypress
event is responsible for inserting characters into a text box. Characters can be blocked by preventing
this event’s default behavior. For example, the following code blocks all key presses:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 EventUtil.preventDefault(event);
});

Running this code causes the text box to effectively become read only, because all key presses are
blocked. To block only specifi c characters, you need to inspect the character code for the event and
determine the correct response. For example, the following code allows only numbers:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
 var charCode = EventUtil.getCharCode(event);

 if (!/\d/.test(String.fromCharCode(charCode))){
 EventUtil.preventDefault(event);
 }
});

In this example, the character code is retrieved using EventUtil.getCharCode() for cross-browser
compatibility. The character code is converted to a string using String.fromCharCode(), and the
result is tested against the regular expression /\d/, which matches all numeric characters. If that
test fails, then the event is blocked using EventUtil.preventDefault(). This ensures that the text
box ignores nonnumeric keys.

Even though the keypress event should be fi red only when a character key is pressed, some browsers
fi re it for other keys as well. Firefox and Safari (versions prior to 3.1) fi re keypress for keys like up,
down, Backspace, and Delete; Safari versions 3.1 and later do not fi re keypress events for these
keys. This means that simply blocking all characters that aren’t numbers isn’t good enough, because
you’ll also be blocking these very useful and necessary keys. Fortunately, you can easily detect
when one of these keys is pressed. In Firefox, all noncharacter keys that fi re the keypress event
have a character code of 0, whereas Safari versions prior to 3 give them all a character code of 8. To
generalize the case, you don’t want to block any character codes lower than 10. The function can
then be updated as follows:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
 var charCode = EventUtil.getCharCode(event);

 if (!/\d/.test(String.fromCharCode(charCode)) && charCode > 9){
 EventUtil.preventDefault(event);
 }
});

Scripting Text Boxes ❘ 525

c14.indd 525c14.indd 525 12/8/11 10:39:04 AM12/8/11 10:39:04 AM

526 ❘ CHAPTER 14 SCRIPTING FORMS

The event handler now behaves appropriately in all browsers, blocking nonnumeric characters but
allowing all basic keys that also fi re keypress.

There is still one more issue to handle: copying, pasting, and any other functions that involve the
Ctrl key. In all browsers but Internet Explorer, the preceding code disallows the shortcut keystrokes
of Ctrl+C, Ctrl+V, and any other combinations using the Ctrl key. The last check, therefore, is to
make sure the Ctrl key is not pressed, as shown in the following example:

EventUtil.addHandler(textbox, “keypress”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);
 var charCode = EventUtil.getCharCode(event);

 if (!/\d/.test(String.fromCharCode(charCode)) && charCode > 9 &&
 !event.ctrlKey){
 EventUtil.preventDefault(event);
 }
});

TextboxInputFilteringExample01.htm

This fi nal change ensures that all of the default text box behaviors work. This technique can be
customized to allow or disallow any characters in a text box.

Dealing with the Clipboard

Internet Explorer was the fi rst browser to support events related to the clipboard and access to
clipboard data from JavaScript. The Internet Explorer implementation became a de facto standard
as Safari 2, Chrome, and Firefox 3 implemented similar events and clipboard access (Opera as of
version 11 still doesn’t have JavaScript clipboard support), and clipboard events were later added to
HTML5. The following six events are related to the clipboard:

beforecopy — Fires just before the copy operation takes place.

copy — Fires when the copy operation takes place.

beforecut — Fires just before the cut operation takes place.

cut — Fires when the cut operation takes place.

beforepaste — Fires just before the paste operation takes place.

paste — Fires when the paste operation takes place.

Since this is a fairly new standard governing clipboard access, the behavior of the events and
related objects differs from browser to browser. In Safari, Chrome, and Firefox, the beforecopy,
beforecut, and beforepaste events fi re only when the context menu for the text box is displayed
(in anticipation of a clipboard event), but Internet Explorer fi res them in that case and immediately
before fi ring the copy, cut, and paste events. The copy, cut, and paste events all fi re when you
would expect them to in all browsers, both when the selection is made from a context menu and
when using keyboard shortcuts.

➤

➤

➤

➤

➤

➤

c14.indd 526c14.indd 526 12/8/11 10:39:04 AM12/8/11 10:39:04 AM

The beforecopy, beforecut, and beforepaste events give you the opportunity to change the data
being sent to or retrieved from the clipboard before the actual event occurs. However, canceling
these events does not cancel the clipboard operation — you must cancel the copy, cut, or paste
event to prevent the operation from occurring.

Clipboard data is accessible via the clipboardData object that exists either on the window object
(in Internet Explorer) or on the event object (in Firefox 4+, Safari, and Chrome). In Firefox,
Safari, and Chrome, the clipboardData object is available only during clipboard events to prevent
unauthorized clipboard access; Internet Explorer exposes the clipboardData object all the time.
For cross-browser compatibility, it’s best to use this object only during clipboard events.

There are three methods on the clipboardData object: getData(), setData(), and clearData().
The getData() method retrieves string data from the clipboard and accepts a single argument,
which is the format for the data to retrieve. Internet Explorer specifi es two options: “text” and
“URL”. Firefox, Safari, and Chrome expect a MIME type but will accept “text” as equivalent to
“text/plain”.

The setData() method is similar: its fi rst argument is the data type, and its second argument is the
text to place on the clipboard. Once again, Internet Explorer supports “text” and “URL” whereas
Safari and Chrome expect a MIME type. Unlike getData(), however, Safari and Chrome won’t
recognize the “text” type. Only Internet Explorer 8 and earlier allow honors calling setData();
other browsers simply ignore the call. To even out the differences, you can add the following
cross-browser methods to EventUtil:

var EventUtil = {

 //more code here

 getClipboardText: function(event){
 var clipboardData = (event.clipboardData || window.clipboardData);
 return clipboardData.getData(“text”);
 },

 //more code here

 setClipboardText: function(event, value){
 if (event.clipboardData){
 return event.clipboardData.setData(“text/plain”, value);
 } else if (window.clipboardData){
 return window.clipboardData.setData(“text”, value);
 }
 },

 //more code here

};

EventUtil.js

The getClipboardText() method is relatively simple. It needs only to identify the location of the
clipboardData object and then call getData() with a type of “text”. Its companion method,

Scripting Text Boxes ❘ 527

c14.indd 527c14.indd 527 12/8/11 10:39:05 AM12/8/11 10:39:05 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

528 ❘ CHAPTER 14 SCRIPTING FORMS

setClipboardText(), is slightly more involved. Once the clipboardData object is located,
setData() is called with the appropriate type for each implementation (“text/plain” for Firefox,
Safari, and Chrome; “text” for Internet Explorer).

Reading text from the clipboard is helpful when you have a text box that expects only certain
characters or a certain format of text. For example, if a text box allows only numbers, then pasted
values must also be inspected to ensure that the value is valid. In the paste event, you can determine
if the text on the clipboard is invalid and, if so, cancel the default behavior, as shown in the
following example:

EventUtil.addHandler(textbox, “paste”, function(event){
 event = EventUtil.getEvent(event);
 var text = EventUtil.getClipboardText(event);

 if (!/^\d*$/.test(text)){
 EventUtil.preventDefault(event);
 }
});

TextboxClipboardExample01.htm

This onpaste handler ensures that only numeric values can be pasted into the text box. If the
clipboard value doesn’t match the pattern, then the paste is canceled. Firefox, Safari, and Chrome
allow access to the getData() method only in an onpaste event handler.

Since not all browsers support clipboard access, it’s often easier to block one or more of the
clipboard operations. In browsers that support the copy, cut, and paste events (Internet Explorer,
Safari, Chrome, and Firefox 3+), it’s easy to prevent the events’ default behavior. For Opera, you
need to block the keystrokes that cause the events and block the context menu from being displayed.

Automatic Tab Forward

JavaScript can be used to increase the usability of form fi elds in a number of ways. One of the most
common is to automatically move the focus to the next fi eld when the current fi eld is complete.
This is frequently done when entering data whose appropriate length is already known, such as for
telephone numbers. In the United States, telephone numbers are typically split into three parts: the
area code, the exchange, and then four more digits. It’s quite common for web pages to represent
this as three text boxes, such as the following:

<input type=”text” name=”tel1” id=”txtTel1” maxlength=”3”>
<input type=”text” name=”tel2” id=”txtTel2” maxlength=”3”>
<input type=”text” name=”tel3” id=”txtTel3” maxlength=”4”>

TextboxTabForwardExample01.htm

To aid in usability and speed up the data-entry process, you can automatically move focus to the
next element as soon as the maximum number of characters has been entered. So once the user

c14.indd 528c14.indd 528 12/8/11 10:39:06 AM12/8/11 10:39:06 AM

types three characters in the fi rst text box, the focus moves to the second, and once the user types
three characters in the second text box, the focus moves to the third. This “tab forward” behavior
can be accomplished using the following code:

(function(){

 function tabForward(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 if (target.value.length == target.maxLength){
 var form = target.form;

 for (var i=0, len=form.elements.length; i < len; i++) {
 if (form.elements[i] == target) {
 if (form.elements[i+1]){
 form.elements[i+1].focus();
 }
 return;
 }
 }
 }
 }

 var textbox1 = document.getElementById(”txtTel1”);
 var textbox2 = document.getElementById(”txtTel2”);
 var textbox3 = document.getElementById(”txtTel3”);

 EventUtil.addHandler(textbox1, ”keyup”, tabForward);
 EventUtil.addHandler(textbox2, ”keyup”, tabForward);
 EventUtil.addHandler(textbox3, ”keyup”, tabForward);

})();

TextboxTabForwardExample01.htm

The tabForward() function is the key to this functionality. It checks to see if the text box’s
maximum length has been reached by comparing the value to the maxlength attribute. If they’re
equal (since the browser enforces the maximum, there’s no way it could be more), then the next
form element needs to be found by looping through the elements collection until the text box is
found and then setting focus to the element in the next position. This function is then assigned as
the onkeyup handler for each text box. Since the keyup event fi res after a new character has been
inserted into the text box, this is the ideal time to check the length of the text box contents. When
fi lling out this simple form, the user will never have to press the Tab key to move between fi elds and
submit the form.

Keep in mind that this code is specifi c to the markup mentioned previously and doesn’t take into
account possible hidden fi elds.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Scripting Text Boxes ❘ 529

c14.indd 529c14.indd 529 12/8/11 10:39:06 AM12/8/11 10:39:06 AM

530 ❘ CHAPTER 14 SCRIPTING FORMS

HTML5 Constraint Validation API

HTML5 introduces the ability for browsers to validate data in forms before submitting to the
server. This capability enables basic validation even when JavaScript is unavailable or fails to load.
The browser itself handles performing the validation based on rules in the code and then displays
appropriate error messages on its own (without needing additional JavaScript). Of course, this
functionality works only in browsers that support this part of HTML5, including Firefox 4+,
Safari 5+, Chrome, and Opera 10+.

Validation is applied to a form fi eld only under certain conditions. You can use HTML markup to
specify constraints on a particular fi eld that will result in the browser automatically performing
form validation.

Required Fields

The fi rst condition is when a form fi eld has a required attribute, as in this example:

<input type=”text” name=”username” required>

Any fi eld marked as required must have a value in order for the form to be submitted. This
attribute applies to <input>, <textarea>, and <select> fi elds (Opera through version 11 doesn’t
support required on <select>). You can check to see if a form fi eld is required in JavaScript by
using the corresponding required property on the element:

var isUsernameRequired = document.forms[0].elements[“username”].required;

You can also test to see if the browser supports the required attribute using this code snippet:

var isRequiredSupported = “required” in document.createElement(“input”);

This code uses simple feature detection to determine if the property required exists on a newly
created <input> element.

Keep in mind that different browsers behave differently when a form fi eld is required. Firefox 4 and
Opera 11 prevent the form from submitting and pop up a help box beneath the fi eld, while Safari (as
of version 5) and Chrome (as of version 9) do nothing and don’t prevent the form from submitting.

Alternate Input Types

HTML5 specifi es several additional values for the type attribute on an <input> element. These type
attributes not only provide additional information about the type of data expected but also provide
some default validation. The two new input types that are mostly widely supported are ”email” and
”url”, and each comes with a custom validation that the browser applies. For example:

<input type=”email” name=”email”>
<input type=”url” name=”homepage”>

The ”email” type ensures that the input text matches the pattern for an e-mail address, while
the ”url” type ensures that the input text matches the pattern for a URL. Note that the browsers

c14.indd 530c14.indd 530 12/8/11 10:39:07 AM12/8/11 10:39:07 AM

mentioned earlier in this section all have some issues with proper pattern matching. Most notably,
the text ”-@-” is considered a valid e-mail address. Such issues are still being addressed with
browser vendors.

You can detect if a browser supports these new types by creating an element in JavaScript and
setting the type property to ”email” or ”url” and then reading the value back. Older browsers
automatically set unknown values back to ”text”, while supporting browsers echo the correct value
back. For example:

var input = document.createElement(“input”);
input.type = “email”;

var isEmailSupported = (input.type == “email”);

Keep in mind that an empty fi eld is also considered valid unless the required attribute is applied.
Also, specifying a special input type doesn’t prevent the user from entering an invalid value; it only
applies some default validation.

Numeric Ranges

In addition to ”email” and ”url”, there are several other new input element types defi ned in
HTML5. These are all numeric types that expect some sort of numbers-based input: ”number”,
”range”, ”datetime”, ”datetime-local”, ”date”, ”month”, ”week”, and ”time”. These types are
not well supported in browsers and as such should be used carefully, if at all. Browser vendors are
working toward better cross-compatibility and more logical functionality at this time. Therefore,
the information in this section is more forward looking rather than explanatory of existing
functionality.

For each of these numeric types, you can specify a min attribute (the smallest possible value), a max
attribute (the largest possible value), and a step attribute (the difference between individual steps
along the scale from min to max). For instance, to allow only multiples of 5 between 0 and 100, you
could use:

<input type=”number” min=”0” max=”100” step=”5” name=”count”>

Depending on the browser, you may or may not see a spin control (up and down buttons) to
automatically increment or decrement the browser.

Each of the attributes have corresponding properties on the element that are accessible (and
changeable) using JavaScript. Additionally, there are two methods: stepUp() and stepDown().
These methods each accept an optional argument: the number to either subtract or add from the
current value. (By default, they increment or decrement by one.) The methods have not yet been
implemented by browsers but will be usable as in this example:

input.stepUp(); //increment by one
input.stepUp(5); //increment by five
input.stepDown(); //decrement by one
input.stepDown(10); //decrement by ten

Scripting Text Boxes ❘ 531

c14.indd 531c14.indd 531 12/8/11 10:39:08 AM12/8/11 10:39:08 AM

532 ❘ CHAPTER 14 SCRIPTING FORMS

Input Patterns

The pattern attribute was introduced for text fi elds in HTML5. This attribute specifi es a regular
expression with which the input value must match. For example, to allow only numbers in a text
fi eld, the following code applies this constraint:

<input type=”text” pattern=”\d+” name=”count”>

Note that ^ and $ are assumed at the beginning and end of the pattern, respectively. That means the
input must exactly match the pattern from beginning to end.

As with the alternate input types, specifying a pattern does not prevent the user from entering
invalid text. The pattern is applied to the value, and the browser then knows if the value is valid or
not. You can read the pattern by accessing the pattern property:

var pattern = document.forms[0].elements[“count”].pattern;

You can also test to see if the browser supports the pattern attribute using this code snippet:

var isPatternSupported = “pattern” in document.createElement(“input”);

Checking Validity

You can check if any given fi eld on the form is valid by using the checkValidity() method. This
method is provided on all elements and returns true if the fi eld’s value is valid or false if not.
Whether or not a fi eld is valid is based on the conditions previously mentioned in this section, so
a required fi eld without a value is considered invalid, and a fi eld whose value does not match the
pattern attribute is considered invalid. For example:

if (document.forms[0].elements[0].checkValidity()){
 //field is valid, proceed
} else {
 //field is invalid
}

To check if the entire form is valid, you can use the checkValidity() method on the form itself.
This method returns true if all form fi elds are valid and false if even one is not:

if(document.forms[0].checkValidity()){
 //form is valid, proceed
} else {
 //form field is invalid
}

While checkValidity() simply tells you if a fi eld is valid or not, the validity property indicates exactly
why the fi eld is valid or invalid. This object has a series of properties that return a Boolean value:

customError — true if setCustomValidity() was set, false if not.

patternMismatch — true if the value doesn’t match the specifi ed pattern attribute.

➤

➤

c14.indd 532c14.indd 532 12/8/11 10:39:08 AM12/8/11 10:39:08 AM

rangeOverflow — true if the value is larger than the max value.

rangeUnderflow — true if the value is smaller than the min value.

stepMisMatch — true if the value isn’t correct given the step attribute in combination
with min and max.

tooLong — true if the value has more characters than allowed by the maxlength property.
Some browsers, such as Firefox 4, automatically constrain the character count, and so this
value may always be false.

typeMismatch — value is not in the required format of either ”email” or ”url”.

valid — true if every other property is false. Same value that is required by
checkValidity().

valueMissing — true if the fi eld is marked as required and there is no value.

Therefore, you may wish to check the validity of a form fi eld using validity to get more specifi c
information, as in the following code:

if (input.validity && !input.validity.valid){
 if (input.validity.valueMissing){
 alert(“Please specify a value.”)
 } else if (input.validity.typeMismatch){
 alert(“Please enter an email address.”);
 } else {
 alert(“Value is invalid.”);
 }
}

Disabling Validation

You can instruct a form not to apply any validation to a form by specifying the novalidate attribute:

<form method=”post” action=”signup.php” novalidate>
 <!-- form elements here -->
</form>

This value can also be retrieved or set by using the JavaScript property noValidate, which is set to
true if the attribute is present and false if the attribute is omitted:

document.forms[0].noValidate = true; //turn off validation

If there are multiple submit buttons in a form, you can specify that the form not validate when a
particular submit button is used by adding the formnovalidate attribute to the button itself:

<form method=”post” action=”foo.php”>
 <!-- form elements here -->
 <input type=”submit” value=”Regular Submit”>
 <input type=”submit” formnovalidate name=”btnNoValidate”
 value=”Non-validating Submit”>
</form>

➤

➤

➤

➤

➤

➤

➤

Scripting Text Boxes ❘ 533

c14.indd 533c14.indd 533 12/8/11 10:39:09 AM12/8/11 10:39:09 AM

534 ❘ CHAPTER 14 SCRIPTING FORMS

In this example, the fi rst submit button will cause the form to validate as usual while the second
disables validation when submitting. You can also set this property using JavaScript:

//turn off validation
document.forms[0].elements[“btnNoValidate”].formNoValidate = true;

SCRIPTING SELECT BOXES

Select boxes are created using the <select> and <option> elements. To allow for easier interaction
with the control, the HTMLSelectElement type provides the following properties and methods in
addition to those that are available on all form fi elds:

add(newOption, relOption) — Adds a new <option> element to the control before the
related option.

multiple — A Boolean value indicating if multiple selections are allowed; equivalent to the
HTML multiple attribute.

options — An HTMLCollection of <option> elements in the control.

remove(index) — Removes the option in the given position.

selectedIndex — The zero-based index of the selected option or –1 if no options are
selected. For select boxes that allow multiple selections, this is always the fi rst option in
the selection.

size — The number of rows visible in the select box; equivalent to the HTML size attribute.

The type property for a select box is either “select-one” or “select-multiple”, depending on
the absence or presence of the multiple attribute. The option that is currently selected determines a
select box’s value property according to the following rules:

If there is no option selected, the value of a select box is an empty string.

If an option is selected and it has a value attribute specifi ed, then the select box’s value
is the value attribute of the selected option. This is true even if the value attribute is an
empty string.

If an option is selected and it doesn’t have a value attribute specifi ed, then the select box’s
value is the text of the option.

If multiple options are selected, then the select box’s value is taken from the fi rst selected
option according to the previous two rules.

Consider the following select box:

<select name=”location” id=”selLocation”>
 <option value=”Sunnyvale, CA”>Sunnyvale</option>
 <option value=”Los Angeles, CA”>Los Angeles</option>
 <option value=”Mountain View, CA”>Mountain View</option>
 <option value=””>China</option>
 <option>Australia</option>
</select>

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c14.indd 534c14.indd 534 12/8/11 10:39:09 AM12/8/11 10:39:09 AM

If the fi rst option in this select box is selected, the value of the fi eld is “Sunnyvale, CA”. If the
option with the text “China” is selected, then the fi eld’s value is an empty string because the value
attribute is empty. If the last option is selected, then the value is “Australia” because there is no
value attribute specifi ed on the <option>.

Each <option> element is represented in the DOM by an HTMLOptionElement object. The
HTMLOptionElement type adds the following properties for easier data access:

index — The option’s index inside the options collection.

label — The option’s label; equivalent to the HTML label attribute.

selected — A Boolean value used to indicate if the option is selected. Set this property to
true to select an option.

text — The option’s text.

value — The option’s value (equivalent to the HTML value attribute).

Most of the <option> properties are used for faster access to the option data. Normal DOM
functionality can be used to access this information, but it’s quite ineffi cient, as this example shows:

var selectbox = document.forms[0].elements[“location”];

//not recommended
var text = selectbox.options[0].firstChild.nodeValue; //option text
var value = selectbox.options[0].getAttribute(“value”); //option value

This code gets the text and value of the fi rst option in the select box using standard DOM
techniques. Compare this to using the special option properties:

var selectbox = document.forms[0].elements[“location”];

//preferred
var text = selectbox.options[0].text; //option text
var value = selectbox.options[0].value; //option value

When dealing with options, it’s best to use the option-specifi c properties because they are well
supported across all browsers. The exact interactions of form controls may vary from browser to
browser when manipulating DOM nodes. It is not recommended to change the text or values of
<option> elements by using standard DOM techniques.

As a fi nal note, there is a difference in the way the change event is used for select boxes. As opposed
to other form fi elds, which fi re the change event after the value has changed and the fi eld loses
focus, the change event fi res on select boxes as soon as an option is selected.

➤

➤

➤

➤

➤

There are differences in what the value property returns across browsers. The
value property is always equal to the value attribute in all browsers. When the
value attribute is not specifi ed, Internet Explorer 8 and earlier versions return
an empty string, whereas Internet Explorer 9+, Safari, Firefox, Chrome, and
Opera return the same value as text.

Scripting Select Boxes ❘ 535

c14.indd 535c14.indd 535 12/8/11 10:39:10 AM12/8/11 10:39:10 AM

536 ❘ CHAPTER 14 SCRIPTING FORMS

Options Selection

For a select box that allows only one option to be selected, the easiest way to access the selected
option is by using the select box’s selectedIndex property to retrieve the option, as shown in the
following example:

var selectedOption = selectbox.options[selectbox.selectedIndex];

This can be used to display all of the information about the selected option, as in this example:

var selectedIndex = selectbox.selectedIndex;
var selectedOption = selectbox.options[selectedIndex];
alert(“Selected index: “ + selectedIndex + “\nSelected text: “ +
 selectedOption.text + “\nSelected value: “ + selectedOption.value);

SelectboxExample01.htm

Here, an alert is displayed showing the selected index along with the text and value of the selected option.

When used in a select box that allows multiple selections, the selectedIndex property acts as if
only one selection was allowed. Setting selectedIndex removes all selections and selects just the
single option specifi ed, whereas getting selectedIndex returns only the index of the fi rst option
that was selected.

Options can also be selected by getting a reference to the option and setting its selected property
to true. For example, the following selects the fi rst option in a select box:

selectbox.options[0].selected = true;

Unlike selectedIndex, setting the option’s selected property does not remove other selections when
used in a multiselect select box, allowing you to dynamically select any number of options. If an option’s
selected property is changed in a single-select select box, then all other selections are removed. It’s
worth noting that setting the selected property to false has no effect in a single-select select box.

The selected property is helpful in determining which options in a select box are selected. To get
all of the selected options, you can loop over the options collection and test the selected property.
Consider this example:

function getSelectedOptions(selectbox){
 var result = new Array();
 var option = null;

 for (var i=0, len=selectbox.options.length; i < len; i++){
 option = selectbox.options[i];
 if (option.selected){
 result.push(option);
 }
 }

 return result;
}

SelectboxExample03.htm

c14.indd 536c14.indd 536 12/8/11 10:39:15 AM12/8/11 10:39:15 AM

This function returns an array of options that are selected in a given select box. First an array to
contain the results is created. Then a for loop iterates over the options, checking each option’s
selected property. If the option is selected, it is added to the result array. The last step is to
return the array of selected options. The getSelectedOptions() function can then be used to get
information about the selected options, like this:

var selectbox = document.getElementById(“selLocation”);
var selectedOptions = getSelectedOptions(selectbox);
var message = “”;

for (var i=0, len=selectedOptions.length; i < len; i++){
 message += “Selected index: “ + selectedOptions[i].index +
 “\nSelected text: “ + selectedOptions[i].text +
 “\nSelected value: “ + selectedOptions[i].value + “\n\n”;
}

alert(message);

SelectboxExample03.htm

In this example, the selected options are retrieved from a select box. A for loop is used to construct
a message containing information about all of the selected options, including each option’s index,
text, and value. This can be used for select boxes that allow single or multiple selection.

Adding Options

There are several ways to create options dynamically and add them to select boxes using JavaScript.
The fi rst way is to the use the DOM as follows:

var newOption = document.createElement(“option”);
newOption.appendChild(document.createTextNode(“Option text”));
newOption.setAttribute(“value”, “Option value”);

selectbox.appendChild(newOption);

SelectboxExample04.htm

This code creates a new <option> element, adds some text using a text node, sets its value
attribute, and then adds it to a select box. The new option shows up immediately after being
created.

New options can also be created using the Option constructor, which is a holdover from pre-
DOM browsers. The Option constructor accepts two arguments, the text and the value, though
the second argument is optional. Even though this constructor is used to create an instance of
Object, DOM-compliant browsers return an <option> element. This means you can still use
appendChild() to add the option to the select box. Consider the following:

var newOption = new Option(“Option text”, “Option value”);
selectbox.appendChild(newOption); //problems in IE <= 8

SelectboxExample04.htm

Scripting Select Boxes ❘ 537

c14.indd 537c14.indd 537 12/8/11 10:39:16 AM12/8/11 10:39:16 AM

538 ❘ CHAPTER 14 SCRIPTING FORMS

This approach works as expected in all browsers except Internet Explorer 8 and earlier. Because of a
bug, the browser doesn’t correctly set the text of the new option when using this approach.

Another way to add a new option is to use the select box’s add() method. The DOM specifi es that
this method accepts two arguments: the new option to add and the option before which the new
option should be inserted. To add an option at the end of the list, the second argument should be null.
The Internet Explorer 8 and earlier implementation of add() is slightly different in that the second
argument is optional, and it must be the index of the option before which to insert the new option.
DOM-compliant browsers require the second argument, so you can’t use just one argument for a cross-
browser approach (Internet Explorer 9 is DOM-compliant). Instead, passing undefined as the second
argument ensures that the option is added at the end of the list in all browsers. Here’s an example:

var newOption = new Option(“Option text”, “Option value”);
selectbox.add(newOption, undefined); //best solution

SelectboxExample04.htm

This code works appropriately in all versions of Internet Explorer and DOM-compliant browsers. If
you need to insert a new option into a position other than last, you should use the DOM technique
and insertBefore().

As in HTML, you are not required to assign a value for an option. The Option
constructor works with just one argument (the option text).

Removing Options

As with adding options, there are multiple ways to remove options. You can use the DOM
removeChild() method and pass in the option to remove, as shown here:

selectbox.removeChild(selectbox.options[0]); //remove first option

The second way is to use the select box’s remove() method. This method accepts a single argument,
the index of the option to remove, as shown here:

selectbox.remove(0); //remove first option

The last way is to simply set the option equal to null. This is also a holdover from pre-DOM
browsers. Here’s an example:

selectbox.options[0] = null; //remove first option

To clear a select box of all options, you need to iterate over the options and remove each one, as in
this example:

function clearSelectbox(selectbox){
 for(var i=0, len=selectbox.options.length; i < len; i++){

c14.indd 538c14.indd 538 12/8/11 10:39:17 AM12/8/11 10:39:17 AM

 selectbox.remove(0);
 }
}

This function simply removes the fi rst option in a select box repeatedly. Since removing the fi rst
option automatically moves all of the options up one spot, this removes all options.

Moving and Reordering Options

Before the DOM, moving options from one select box to another was a rather arduous process
that involved removing the option from the fi rst select box, creating a new option with the same
name and value, and then adding that new option to the second select box. Using DOM methods,
it’s possible to literally move an option from the fi rst select box into the second select box by
using the appendChild() method. If you pass an element that is already in the document into this
method, the element is removed from its parent and put into the position specifi ed. For example, the
following code moves the fi rst option from one select box into another select box.

var selectbox1 = document.getElementById(“selLocations1”);
var selectbox2 = document.getElementById(“selLocations2”);

selectbox2.appendChild(selectbox1.options[0]);

SelectboxExample05.htm

Moving options is the same as removing them in that the index property of each option is reset.

Reordering options is very similar, and DOM methods are the best way to accomplish this. To
move an option to a particular location in the select box, the insertBefore() method is most
appropriate, though the appendChild() method can be used to move any option to the last
position. To move an option up one spot in the select box, you can use the following code:

var optionToMove = selectbox.options[1];
selectbox.insertBefore(optionToMove, selectbox.options[optionToMove.index-1]);

SelectboxExample06.htm

In this code, an option is selected to move and then inserted before the option that is in the previous
index. The second line of code is generic enough to work with any option in the select box except
the fi rst. The following similar code can be used to move an option down one spot:

var optionToMove = selectbox.options[1];
selectbox.insertBefore(optionToMove, selectbox.options[optionToMove.index+2]);

SelectboxExample06.htm

This code works for all options in a select box, including the last one.

Scripting Select Boxes ❘ 539

c14.indd 539c14.indd 539 12/8/11 10:39:22 AM12/8/11 10:39:22 AM

540 ❘ CHAPTER 14 SCRIPTING FORMS

FORM SERIALIZATION

With the emergence of Ajax (discussed further in Chapter 21), form serialization has become a
common requirement. A form can be serialized in JavaScript using the type property of form
fi elds in conjunction with the name and value properties. Before writing the code, you need to
understand how the browser determines what gets sent to the server during a form submission:

Field names and values are URL-encoded and delimited using an ampersand.

Disabled fi elds aren’t sent at all.

A check box or radio fi eld is sent only if it is checked.

Buttons of type “reset” or “button” are never sent.

Multiselect fi elds have an entry for each value selected.

When the form is submitted by clicking a submit button, that submit button is sent;
otherwise no submit buttons are sent. Any <input> elements with a type of “image” are
treated the same as submit buttons.

The value of a <select> element is the value attribute of the selected <option> element.
If the <option> element doesn’t have a value attribute, then the value is the text of the
<option> element.

Form serialization typically doesn’t include any button fi elds, because the resulting string will
most likely be submitted in another way. All of the other rules should be followed. The code to
accomplish form serialization is as follows:

function serialize(form){
 var parts = [],
 field = null,
 i,
 len,
 j,
 optLen,
 option,
 optValue;

 for (i=0, len=form.elements.length; i < len; i++){
 field = form.elements[i];

 switch(field.type){
 case ”select-one”:
 case ”select-multiple”:

 if (field.name.length){

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

There is a repainting issue in Internet Explorer 7 that sometimes causes options
that are reordered using DOM methods to take a few seconds to display correctly.

c14.indd 540c14.indd 540 12/8/11 10:39:23 AM12/8/11 10:39:23 AM

 for (j=0, optLen = field.options.length; j < optLen; j++){
 option = field.options[j];
 if (option.selected){
 optValue = ””;
 if (option.hasAttribute){
 optValue = (option.hasAttribute(”value”) ?
 option.value : option.text);
 } else {
 optValue = (option.attributes[”value”].specified ?
 option.value : option.text);
 }
 parts.push(encodeURIComponent(field.name) + ”=” +
 encodeURIComponent(optValue));
 }
 }
 }
 break;

 case undefined: //fieldset
 case ”file”: //file input
 case ”submit”: //submit button
 case ”reset”: //reset button
 case ”button”: //custom button
 break;

 case ”radio”: //radio button
 case ”checkbox”: //checkbox
 if (!field.checked){
 break;
 }
 /* falls through */

 default:
 //don’t include form fields without names
 if (field.name.length){
 parts.push(encodeURIComponent(field.name) + ”=” +
 encodeURIComponent(field.value));
 }
 }
 }
 return parts.join(”&”);
}

FormSerializationExample01.htm

The serialize() function begins by defi ning an array called parts to hold the parts of the string
that will be created. Next, a for loop iterates over each form fi eld, storing it in the field variable.
Once a fi eld reference is obtained, its type is checked using a switch statement. The most involved
fi eld to serialize is the <select> element, in either single-select or multiselect mode. Serialization
is done by looping over all of the options in the control and adding a value if the option is selected.
For single-select controls, there will be only one option selected, whereas multiselect controls may

Form Serialization ❘ 541

c14.indd 541c14.indd 541 12/8/11 10:39:29 AM12/8/11 10:39:29 AM

542 ❘ CHAPTER 14 SCRIPTING FORMS

have zero or more options selected. The same code can be used for both select types, because the
restriction on the number of selections is enforced by the browser. When an option is selected, you
need to determine which value to use. If the value attribute is not present, the text should be used
instead, although a value attribute with an empty string is completely valid. To check this, you’ll
need to use hasAttribute() in DOM-compliant browsers and the attribute’s specified property
in Internet Explorer 8 and earlier.

If a <fieldset> element is in the form, it appears in the elements collection but has no type
property. So if type is undefined, no serialization is necessary. The same is true for all types of
buttons and fi le input fi elds. (File input fi elds contain the content of the fi le in form submissions;
however, these fi elds can’t be mimicked, so they are typically omitted in serialization.) For radio and
check box controls, the checked property is inspected and if it is set to false, the switch statement
is exited. If checked is true, then the code continues executing in the default statement, which
encodes the name and value of the fi eld and adds it to the parts array. Note that in all cases form
fi elds without names are not included as part of the serialization to mimic browser form submission
behavior. The last part of the function uses join() to format the string correctly with ampersands
between fi elds.

The serialize() function outputs the string in query string format, though it can easily be adapted
to serialize the form into another format.

RICH TEXT EDITING

One of the most requested features for web applications was the ability to edit rich text on a web
page (also called what you see is what you get, or WYSIWYG, editing). Though no specifi cation
covers this, a de facto standard has emerged from functionality originally introduced by Internet
Explorer and now supported by Opera, Safari, Chrome, and Firefox. The basic technique is to
embed an iframe containing a blank HTML fi le in the page. Through the designMode property,
this blank document can be made editable, at which point you’re editing the HTML of the page’s
<body> element. The designMode property has two possible values: “off” (the default) and “on”.
When set to “on”, an entire document becomes editable (showing a caret), allowing you to edit text
as if you were using a word processor complete with keystrokes for making text bold, italic, and
so forth.

A very simple, blank HTML page is used as the source of the iframe. Here’s an example:

<!DOCTYPE html>
<html>
 <head>
 <title>Blank Page for Rich Text Editing</title>
 </head>
 <body>
 </body>
</html>

This page is loaded inside an iframe as any other page would be. To allow it to be edited, you
must set designMode to “on”, but this can happen only after the document is fully loaded. In the

c14.indd 542c14.indd 542 12/8/11 10:39:29 AM12/8/11 10:39:29 AM

containing page, you’ll need to use the onload event handler to indicate the appropriate time to set
designMode, as shown in the following example:

<iframe name=”richedit” style=”height: 100px; width: 100px” src=”blank.htm”>
</iframe>

<script type=”text/javascript”>
EventUtil.addHandler(window, “load”, function(){
 frames[“richedit”].document.designMode = “on”;
});
</script>

Once this code is loaded, you’ll see what looks like a text box on the page. The box has the same
default styling as any web page, though this can be adjusted by applying CSS to the blank page.

Using contenteditable

Another way to interact with rich text, also fi rst implemented by Internet Explorer, is through the
use of a special attribute called contenteditable. The contenteditable attribute can be applied
to any element on a page and instantly makes that element editable by the user. This approach
has gained favor because it doesn’t require the overhead of an iframe, blank page, and JavaScript.
Instead, you can just add the attribute to an element:

<div class=”editable” id=”richedit” contenteditable></div>

Any text already contained within the element is automatically made editable by the user, making
it behave similarly to the <textarea> element. You can also toggle the editing mode on or off by
setting the contentEditable property on an element:

var div = document.getElementById(“richedit”);
richedit.contentEditable = “true”;

There are three possible values for contentEditable: ”true” to turn on, ”false” to turn off, or
”inherit” to inherit the setting from a parent (required since elements can be created/destroyed
inside of a contenteditable element). The contentEditable attribute is supported in Internet
Explorer, Firefox, Chrome, Safari, and Opera. For mobile devices, contenteditable is supported
on Safari for iOS 5+ and WebKit for Android 3+.

Interacting with Rich Text

The primary method of interacting with a rich text editor is through the use of document
.execCommand(). This method executes named commands on the document and can be used to
apply most formatting changes. There are three possible arguments for document.execCommand():
the name of the command to execute, a Boolean value indicating if the browser should provide a
user interface for the command, and a value necessary for the command to work (or null if none is
necessary). The second argument should always be false for cross-browser compatibility, because
Firefox throws an error when true is passed in.

Rich Text Editing ❘ 543

c14.indd 543c14.indd 543 12/8/11 10:39:30 AM12/8/11 10:39:30 AM

544 ❘ CHAPTER 14 SCRIPTING FORMS

Each browser supports a different set of commands. The most commonly supported commands are
listed in the following table.

COMMAND

VALUE (THIRD

ARGUMENT) DESCRIPTION

backcolor A color string Sets the background color of the document.

bold null Toggles bold text for the text selection.

copy null Executes a clipboard copy on the text selection.

createlink A URL string Turns the current text selection into a link that

goes to the given URL.

cut null Executes a clipboard cut on the text selection.

delete null Deletes the currently selected text.

fontname The font name Changes the text selection to use the given

font name.

fontsize 1 through 7 Changes the font size for the text selection.

forecolor A color string Changes the text color for the text selection.

formatblock The HTML tag

to surround the

block with; for

example, <h1>

Formats the entire text box around the

selection with a particular HTML tag.

indent null Indents the text.

inserthorizontalrule null Inserts an <hr> element at the caret location.

insertimage The image URL Inserts an image at the caret location.

insertorderedlist null Inserts an element at the caret location.

insertparagraph null Inserts a <p> element at the caret location.

insertunorderedlist null Inserts a element at the caret location.

italic null Toggles italic text for the text selection.

justifycenter null Centers the block of text in which the caret is

positioned.

justifyleft null Left-aligns the block of text in which the caret is

positioned.

outdent null Outdents the text.

c14.indd 544c14.indd 544 12/8/11 10:39:30 AM12/8/11 10:39:30 AM

COMMAND

VALUE (THIRD

ARGUMENT) DESCRIPTION

paste null Executes a clipboard paste on the text

selection.

removeformat null Removes block formatting from the block

in which the caret is positioned. This is the

opposite of formatblock.

selectall null Selects all of the text in the document.

underline null Toggles underlined text for the text selection.

unlink null Removes a text link. This is the opposite of

createlink.

The clipboard commands are very browser-dependent. Opera doesn’t implement any of the
clipboard commands, and Firefox has them disabled by default. (You must change a user preference
to enable them.) Safari and Chrome implement cut and copy but not paste. Note that even though
these commands aren’t available via document.execCommand(), they still work with the appropriate
keyboard shortcuts.

These commands can be used at any time to modify the appearance of the iframe rich text area, as
in this example:

//toggle bold text in an iframe
frames[“richedit”].document.execCommand(“bold”, false, null);

//toggle italic text in an iframe
frames[“richedit”].document.execCommand(“italic”, false, null);

//create link to www.wrox.com in an iframe
frames[“richedit”].document.execCommand(“createlink”, false,
 “http://www.wrox.com”);

//format as first-level heading in an iframe
frames[“richedit”].document.execCommand(“formatblock”, false, “<h1>”);

RichTextEditingExample01.htm

You can use the same methods to act on a contenteditable section of the page, just use the
document object of the current window instead of referencing the iframe:

//toggle bold text
document.execCommand(“bold”, false, null);

//toggle italic text

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Rich Text Editing ❘ 545

c14.indd 545c14.indd 545 12/8/11 10:39:31 AM12/8/11 10:39:31 AM

http://www.wrox.com
http://www.wrox.com

546 ❘ CHAPTER 14 SCRIPTING FORMS

document.execCommand(“italic”, false, null);

//create link to www.wrox.com
document.execCommand(“createlink”, false,
 “http://www.wrox.com”);

//format as first-level heading
document.execCommand(“formatblock”, false, “<h1>”);

RichTextEditingExample01.htm

Note that even when commands are supported across all browsers, the HTML that the commands
produce is often very different. For instance, applying the bold command surrounds text with
 in Internet Explorer and Opera, with in Safari and Chrome, and with a in
Firefox. You cannot rely on consistency in the HTML produced from a rich text editor, because of
both command implementation and the transformations done by innerHTML.

There are some other methods related to commands. The fi rst is queryCommandEnabled(), which
determines if a command can be executed given the current text selection or caret position. This
method accepts a single argument, the command name to check, and returns true if the command
is allowed given the state of the editable area or false if not. Consider this example:

var result = frames[“richedit”].document.queryCommandEnabled(“bold”);

This code returns true if the “bold” command can be executed on the current selection. It’s worth
noting that queryCommandEnabled() indicates not if you are allowed to execute the command but
only if the current selection is appropriate for use with the command. In Firefox, queryCommand
Enabled(“cut”) returns true even though it isn’t allowed by default.

The queryCommandState() method lets you determine if a given command has been applied to the
current text selection. For example, to determine if the text in the current selection is bold, you can
use the following:

var isBold = frames[“richedit”].document.queryCommandState(“bold”);

RichTextEditingExample01.htm

If the “bold” command was previously applied to the text selection, then this code returns true.
This is the method by which full-featured rich text editors are able to update buttons for bold, italic,
and so on.

The last method is queryCommandValue(), which is intended to return the value with which a
command was executed. (The third argument in execCommand is in the earlier example.) For
instance, a range of text that has the “fontsize” command applied with a value of 7 returns “7”
from the following:

var fontSize = frames[“richedit”].document.queryCommandValue(“fontsize”);

RichTextEditingExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c14.indd 546c14.indd 546 12/8/11 10:39:31 AM12/8/11 10:39:31 AM

http://www.wrox.com
http://www.wrox.com

This method can be used to determine how a command was applied to the text selection, allowing
you to determine whether the next command is appropriate to be executed.

Rich Text Selections

You can determine the exact selection in a rich text editor by using the getSelection() method
of the iframe. This method is available on both the document object and the window object and
returns a Selection object representing the currently selected text. Each Selection object has the
following properties:

anchorNode — The node in which the selection begins.

anchorOffset — The number of characters within the anchorNode that are skipped before
the selection begins.

focusNode — The node in which the selection ends.

focusOffset — The number of characters within the focusNode that are included in the
selection.

isCollapsed — Boolean value indicating if the start and end of the selection are the same.

rangeCount — The number of DOM ranges in the selection.

The properties for a Selection don’t contain a lot of useful information. Fortunately, the following
methods provide more information and allow manipulation of the selection:

addRange(range) — Adds the given DOM range to the selection.

collapse(node, offset) — Collapses the selection to the given text offset within the
given node.

collapseToEnd() — Collapses the selection to its end.

collapseToStart() — Collapses the selection to its start.

containsNode(node) — Determines if the given node is contained in the selection.

deleteFromDocument() — Deletes the selection text from the document. This is the same
as execCommand(“delete”, false, null).

extend(node, offset) — Extends the selection by moving the focusNode and
focusOffset to the values specifi ed.

getRangeAt(index) — Returns the DOM range at the given index in the selection.

removeAllRanges() — Removes all DOM ranges from the selection. This effectively
removes the selection, because there must be at least one range in a selection.

removeRange(range) — Removes the specifi ed DOM range from the selection.

selectAllChildren(node) — Clears the selection and then selects all child nodes of the
given node.

toString() — Returns the text content of the selection.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Rich Text Editing ❘ 547

c14.indd 547c14.indd 547 12/8/11 10:39:32 AM12/8/11 10:39:32 AM

548 ❘ CHAPTER 14 SCRIPTING FORMS

The methods of a Selection object are extremely powerful and make extensive use of DOM ranges
(discussed in Chapter 12) to manage the selection. Access to DOM ranges allows you to modify the
contents of the rich text editor in even fi ner-grain detail than is available using execCommand(),
because you can directly manipulate the DOM of the selected text. Consider the following example:

var selection = frames[“richedit”].getSelection();

//get selected text
var selectedText = selection.toString();

//get the range representing the selection
var range = selection.getRangeAt(0);

//highlight the selected text
var span = frames[“richedit”].document.createElement(“span”);
span.style.backgroundColor = “yellow”;
range.surroundContents(span);

RichTextEditingExample01.htm

This code places a yellow highlight around the selected text in a rich text editor. Using the DOM
range in the default selection, the surroundContents() method surrounds the selection with a
 element whose background color is yellow.

The getSelection() method was standardized in HTML5 and is implemented in Internet Explorer 9,
Firefox, Safari, Chrome, and Opera 8. Firefox 3.6+ incorrectly returns a string from document
.getSelection() because of legacy support issues. You can retrieve a Selection object in
Firefox 3.6+ by using the window.getSelection() method instead. Firefox 8 fi xed document.
getSelection() to return the same value as window.getSelection().

Internet Explorer 8 and earlier versions don’t support DOM ranges, but they do allow interaction
with the selected text via the proprietary selection object. The selection object is a property of
document, as discussed earlier in this chapter. To get the selected text in a rich text editor, you must
fi rst create a text range (discussed in Chapter 12) and then use the text property as follows:

var range = frames[“richedit”].document.selection.createRange();
var selectedText = range.text;

Performing HTML manipulations using Internet Explorer text ranges is not as safe as using DOM
ranges, but it is possible. To achieve the same highlighting effect as described using DOM ranges,
you can use a combination of the htmlText property and the pasteHTML() method:

var range = frames[“richedit”].document.selection.createRange();
range.pasteHTML(“” + range.htmlText +
 “”);

This code retrieves the HTML of the current selection using htmlText and then surrounds it with a
 and inserts it back into the selection using pasteHTML().

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c14.indd 548c14.indd 548 12/8/11 10:39:33 AM12/8/11 10:39:33 AM

Rich Text in Forms

Since rich text editing is implemented using an iframe or a contenteditable element instead of
a form control, a rich text editor is technically not part of a form. That means the HTML will not
be submitted to the server unless you extract the HTML manually and submit it yourself. This is
typically done by having a hidden form fi eld that is updated with the HTML from the iframe or
the contenteditable element. Just before the form is submitted, the HTML is extracted from the
iframe or element and inserted into the hidden fi eld. For example, the following may be done in the
form’s onsubmit event handler when using an iframe:

EventUtil.addHandler(form, “submit”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 target.elements[“comments”].value = frames[“richedit”].document.body.innerHTML;
});

RichTextEditingExample01.htm

Here, the HTML is retrieved from the iframe using the innerHTML property of the document’s
body and inserted into a form fi eld named “comments”. Doing so ensures that the “comments”
fi eld is fi lled in just before the form is submitted. If you are submitting the form manually using
the submit() method, take care to perform this operation beforehand. You can perform a similar
operation with a contenteditable element:

EventUtil.addHandler(form, “submit”, function(event){
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 target.elements[“comments”].value =
 document.getElementById(“richedit”).innerHTML;
});

SUMMARY

Even though HTML and web applications have changed dramatically since their inception, web forms
have remained mostly unchanged. JavaScript can be used to augment existing form fi elds to provide
new functionality and usability enhancements. To aid in this, forms and form fi elds have properties,
methods, and events for JavaScript usage. Here are some of the concepts introduced in this chapter:

It’s possible to select all of the text in a text box or just part of the text using a variety of
standard and nonstandard methods.

All browsers have adopted Firefox’s way of interacting with text selection, making it a true
standard.

Text boxes can be changed to allow or disallow certain characters by listening for keyboard
events and inspecting the characters being inserted.

➤

➤

➤

Summary ❘ 549

c14.indd 549c14.indd 549 12/8/11 10:39:33 AM12/8/11 10:39:33 AM

550 ❘ CHAPTER 14 SCRIPTING FORMS

All browsers except Opera support events for the clipboard, including copy, cut, and paste.
Clipboard event implementations across the other browsers vary in the following ways:

Internet Explorer, Firefox, Chrome, and Safari allow access to clipboard data from
JavaScript, whereas Opera doesn’t allow such access.

Even amongst Internet Explorer, Chrome, and Safari, there are differences in
implementation.

Firefox, Safari, and Chrome allow reading of clipboard data only during the paste event,
whereas Internet Explorer has no such restrictions.

Firefox, Safari, and Chrome limit the availability of clipboard information to clipboard-
related events, whereas Internet Explorer allows access to the data at any time.

Hooking into clipboard events is useful for blocking paste events when the contents of a text box
must be limited to certain characters.

Select boxes are also frequently controlled using JavaScript. Thanks to the DOM, manipulating
select boxes is much easier than it was previously. Options can be added, removed, moved from
one select box to another, or reordered using standard DOM techniques.

Rich text editing is handled by using an iframe containing a blank HTML document. By setting
the document’s designMode property to “on”, you make the page editable and it acts like a word
processor. You can also use an element set as contenteditable. By default, you can toggle font styles
such as bold and italic and use clipboard actions. JavaScript can access some of this functionality
by using the execCommand() method and can get information about the text selection by using the
queryCommandEnabled(), queryCommandState(), and queryCommandValue() methods. Since
building a rich text editor in this manner does not create a form fi eld, it’s necessary to copy the HTML
from the iframe or contenteditable element into a form fi eld if it is to be submitted to the server.

➤

➤

➤

➤

c14.indd 550c14.indd 550 12/8/11 10:39:34 AM12/8/11 10:39:34 AM

Graphics with Canvas

WHAT’S IN THIS CHAPTER?

Understanding the <canvas> element

Drawing simple 2D graphics

3D drawing with WebGL

Arguably, HTML5’s most popular addition is the <canvas> element. This element designates
an area of the page where graphics can be created, on the fl y, using JavaScript. Originally
proposed by Apple for use with its Dashboard widgets, <canvas> quickly was added into
HTML5 and found a very fast adoption rate amongst browsers. Internet Explorer 9+, Firefox
1.5+, Safari 2+, Opera 9+, Chrome, Safari for iOS, and WebKit for Android all support
<canvas> to some degree.

Similar to the other parts of the browser environment, <canvas> is made up of a few API sets and
not all browsers support all API sets. There is a 2D context with basic drawing capabilities and a
proposed 3D context called WebGL. The latest versions of the supporting browsers now support
the 2D context and the text API; support for WebGL is slowly evolving, but since WebGL is still
experimental, full support will likely take longer. Firefox 4+ and Chrome support early versions
of the WebGL specifi cation, though older operating systems such as Windows XP lack the
necessary graphics drivers for enabling WebGL even when these browsers are present.

BASIC USAGE

The <canvas> element requires at least its width and height attributes to be set in order
to indicate the size of the drawing to be created. Any content appearing between the opening
and closing tags is fallback data that is displayed only if the <canvas> element isn’t supported.
For example:

<canvas id=”drawing” width=”200” height=”200”>A drawing of something.</canvas>

➤

➤

➤

15

c15.indd 551c15.indd 551 12/8/11 10:40:47 AM12/8/11 10:40:47 AM

552 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

As with other elements, the width and height attributes are also available as properties on the
DOM element object and may be changed at any time. The entire element may be styled using CSS
as well, and the element is invisible until it is styled or drawn upon.

To begin drawing on a canvas, you need to retrieve a drawing context. A reference to a drawing context
is retrieved using the getContext() method and passing in the name of the context. For example,
passing “2d” retrieves a 2D context object:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //more code here
}

When using the <canvas> element, it’s important to test for the presence of the getContext()
method. Some browsers create default HTML element objects for elements that aren’t offi cially part
of HTML. In that case, the getContext() method would not be available even though drawing
would contain a valid element reference.

Images created on a <canvas> element can be exported using the toDataURL() method. This
method accepts a single argument, the MIME type format of the image to produce, and is applicable
regardless of the context used to create the image. For example, to return a PNG-formatted image
from a canvas, use the following:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 //get data URI of the image
 var imgURI = drawing.toDataURL(“image/png”);

 //display the image
 var image = document.createElement(“img”);
 image.src = imgURI;
 document.body.appendChild(image);
}

2DDataUrlExample01.htm

By default, browsers encode the image as PNG unless otherwise specifi ed. Firefox and Opera also
support JPEG encoding via “image/jpeg”. Because this method was added later in the process, it
was adopted in later versions of supporting browsers, including Internet Explorer 9, Firefox 3.5,
and Opera 10.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 552c15.indd 552 12/8/11 10:40:50 AM12/8/11 10:40:50 AM

The 2D Context ❘ 553

THE 2D CONTEXT

The 2D drawing context provides methods for drawing simple 2D shapes such as rectangles,
arcs, and paths. The coordinates in a 2D context begin at the upper-left of the <canvas> element,
which is considered point (0,0). All coordinate values are calculated in relation to that point, with
x increasing to the right and y increasing toward the bottom. By default, the width and height
indicate how many pixels are available in each direction.

Fills and Strokes

There are two basic drawing operations on the 2D context: fi ll and stroke. Fill automatically fi lls
in the shape with a specifi c style (color, gradient, or image) while stroke colors only the edges. Most
of the 2D context operations have both fi ll and stroke variants, and how they are displayed is based
on a couple of properties: fillStyle and strokeStyle.

Both properties can be set to a string, a gradient object, or a pattern object, and both default to
a value of “#000000”. A string value indicates a color defi ned using one of the various CSS color
formats: name, hex code, rgb, rgba, hsl, or hsla. For example:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);
 context.strokeStyle = “red”;
 context.fillStyle = “#0000ff”;
}

This code sets the strokeStyle to “red” (a named CSS color) and fillStyle to “#0000ff” (also
known as blue). All drawing operations involving stroke and fi ll will use these styles until the
properties are changed again. These properties can also be set to a gradient or a pattern, both of
which are discussed later in this chapter.

Drawing Rectangles

The only shape that can be drawn directly on the 2D drawing context is the rectangle. There are
three methods for working with rectangles: fillRect(), strokeRect(), and clearRect(). Each
of these methods accepts four arguments: the x-coordinate of the rectangle, the y-coordinate of the
rectangle, the width of the rectangle, and the height of the rectangle. Each of these arguments is
considered to be in pixels.

The toDataURL() method throws an error if an image from a different domain is
drawn onto a canvas. More details are available later in this chapter.

c15.indd 553c15.indd 553 12/8/11 10:40:51 AM12/8/11 10:40:51 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

554 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

The fillRect() method is used to draw a rectangle that is fi lled with a specifi c color onto the
canvas. The fi ll color is specifi ed using the fillStyle property, for example:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 /*
 * Based on Mozilla’s documentation:
 * http://developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 //draw a red rectangle
 context.fi llStyle = “#ff0000”;
 context.fi llRect(10, 10, 50, 50);

 //draw a blue rectangle that’s semi-transparent
 context.fi llStyle = “rgba(0,0,255,0.5)”;
 context.fi llRect(30, 30, 50, 50);
}

2DFillRectExample01.htm

This code fi rst sets the fillStyle to red and draws a rectangle located
at (10,10) that’s 50 pixels tall and wide. Next, it sets the fillStyle to a
semitransparent blue color using rgba() format and draws another rectangle
that overlaps the fi rst. The result is that you can see the red rectangle through
the blue rectangle (see Figure 15-1).

The strokeRect() method draws a rectangle outline using the color specifi ed
with the strokeStyle property. Here is an example:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 /*
 * Based on Mozilla’s documentation:
 * http://developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 //draw a red outlined rectangle
 context.strokeStyle = “#ff0000”;
 context.strokeRect(10, 10, 50, 50);

 //draw a blue outlined rectangle that’s semi-transparent

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-1

c15.indd 554c15.indd 554 12/8/11 10:41:01 AM12/8/11 10:41:01 AM

The 2D Context ❘ 555

 context.strokeStyle = “rgba(0,0,255,0.5)”;
 context.strokeRect(30, 30, 50, 50);
}

2DStrokeRectExample01.htm

This code also draws two rectangles that overlap; however, they are just outlines rather than fi lled
rectangles (see Figure 15-2).

FIGURE 15-2

The size of the stroke is controlled by the lineWidth property, which can be set
to any whole number. Likewise, a lineCap property describes the shape that
should be used at the end of lines (“butt”, “round”, or “square”) and lineJoin
indicates how lines should be joined (“round”, “bevel”, or “miter”).

You can erase an area of the canvas by using the clearRect() method. This method is used to make
an area of the drawing context transparent. By drawing shapes and then clearing specifi c areas, you
are able to create interesting effects, such as cutting out a section of another shape. Here is an example:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 /*
 * Based on Mozilla’s documentation:
 * http://developer.mozilla.org/en/docs/Canvas_tutorial:Basic_usage
 */

 //draw a red rectangle
 context.fillStyle = “#ff0000”;
 context.fillRect(10, 10, 50, 50);

 //draw a blue rectangle that’s semi-transparent
 context.fillStyle = “rgba(0,0,255,0.5)”;
 context.fillRect(30, 30, 50, 50);

 //clear a rectangle that overlaps both of the previous rectangles
 context.clearRect(40, 40, 10, 10);
}

2DClearRectExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 555c15.indd 555 12/8/11 10:41:01 AM12/8/11 10:41:01 AM

556 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

Here, two fi lled rectangles overlap one another and then a small rectangle is
cleared inside of that overlapping area. Figure 15-3 shows the result.

Drawing Paths

The 2D drawing context supports a number of methods for drawing paths on
a canvas. Paths allow you to create complex shapes and lines. To start creating a
path, you must fi rst call beginPath() to indicate that a new path has begun. After
that, the following methods can be called to create the path:

arc(x, y, radius, startAngle, endAngle, counterclockwise)— Draws an arc
centered at point (x,y) with a given radius and between startAngle and endAngle
(expressed in radians). The last argument is a Boolean indicating if the startAngle and
endAngle should be calculated counterclockwise instead of clockwise.

arcTo(x1, y1, x2, y2, radius)— Draws an arc from the last point to (x2,y2), passing
through (x1,y1) with the given radius.

bezierCurveTo(c1x, c1y, c2x, c2y, x, y)— Draws a curve from the last point to the
point (x,y) using the control points (c1x,c1y) and (c2x,c2y).

lineTo(x, y) — Draws a line from the last point to the point (x,y).

moveTo(x, y) — Moves the drawing cursor to the point (x,y) without drawing a line.

quadraticCurveTo(cx, cy, x, y)— Draws a quadratic curve from the last point to the
point (x,y) using a control point of (cx,cy).

rect(x, y, width, height) — Draws a rectangle at point (x,y) with the given width and
height. This is different from strokeRect() and fillRect() in that it creates a path rather
than a separate shape.

Once the path has been created, you have several options. To draw a line back to the origin of
the path, you can call closePath(). If the path is already completed and you want to fi ll it with
fillStyle, call the fill() method. Another option is to stroke the path by calling the stroke()
method, which uses strokeStyle. The last option is to call clip(), which creates a new clipping
region based on the path.

As an example, consider the following code for drawing the face of a clock without the numbers:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //start the path
 context.beginPath();

 //draw outer circle

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-3

c15.indd 556c15.indd 556 12/8/11 10:41:07 AM12/8/11 10:41:07 AM

The 2D Context ❘ 557

 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 //draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 //draw minute hand
 context.moveTo(100, 100);
 context.lineTo(100, 15);

 //draw hour hand
 context.moveTo(100, 100);
 context.lineTo(35, 100);

 //stroke the path
 context.stroke();
}

2DPathExample01.htm

This example draws two circles using arc(): an outer one and an
inner one to create a border around the clock. The outer circle has a
radius of 99 pixels and is centered at (100,100), which is the center
of the canvas. To draw a complete circle, you must start at an angle
of 0 radians and draw all the way around to 2� radians (calculated
using Math.PI). Before drawing the inner circle, you must move
the path to a point that will be on the circle to avoid an additional
line being drawn. The second call to arc() uses a slightly smaller
radius for the border effect. After that, combinations of moveTo()
and lineTo() are used to draw the hour and minute hands. The last
step is to call stroke(), which makes the image appear as shown in
Figure 15-4.

Paths are the primary drawing mechanism for the 2D drawing context because they provide
more control over what is drawn. Since paths are used so often, there is also a method called
isPointInPath(), which accepts an x-coordinate and a y-coordinate as arguments. This method can
be called anytime before the path is closed to determine if a point exists on the path, as shown here:

if (context.isPointInPath(100, 100)){
 alert(“Point (100, 100) is in the path.”);
}

The path API for the 2D drawing context is robust enough to create very complex images using
multiple fi ll styles, stroke styles, and more.

Drawing Text

Since it’s often necessary to mix text and graphics, the 2D drawing context provides methods to
draw text. There are two methods for drawing text, fillText() and strokeText(), and each takes

FIGURE 15-4

c15.indd 557c15.indd 557 12/8/11 10:41:07 AM12/8/11 10:41:07 AM

558 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

four arguments: the string to draw, the x-coordinate, the y-coordinate, and an optional maximum
pixel width to draw. Both methods base their drawing on the following three properties:

font — Indicates the font style, size, and family in the same manner specifi ed in CSS, such
as “10px Arial”.

textAlign — Indicates how the text should be aligned. Possible values are “start”, “end”,
“left”, “right”, and “center”. It’s recommended to use “start” and “end” instead
of “left” and “right” as these are more indicative of rendering in both left-to-right
languages and right-to-left languages.

textBaseline — Indicates the baseline of the text. Possible values are “top”, “hanging”,
“middle”, “alphabetic”, “ideographic”, and “bottom”.

These properties have a default value, so there’s no need to set them each time you want to
draw text. The fillText() method uses the fillStyle property to draw the text, whereas the
strokeText() method uses the strokeStyle property. You will probably use fillText() most of
the time, since this mimics normal text rendering on web pages. For example, the following renders
a 12 at the top of the clock created in the previous section:

context.font = “bold 14px Arial”;
context.textAlign = “center”;
context.textBaseline = “middle”;
context.fillText(“12”, 100, 20);

2DTextExample01.htm

The resulting image is displayed in Figure 15-5.

Since textAlign is set to “center” and textBaseline is set to
“middle”, the coordinates (100,80) indicate the horizontal and
vertical center and top coordinates for the text. If textAlign were
“start”, then the x-coordinate would represent the left coordinate
of the text in a left-to-right language while “end” would make the
x-coordinate represent the right coordinate in a left-to-right
language. For example:

//normal
context.font = “bold 14px Arial”;
context.textAlign = “center”;
context.textBaseline = “middle”;
context.fillText(“12”, 100, 20);

//start-aligned
context.textAlign = “start”;
context.fi llText(“12”, 100, 40);

//end-aligned
context.textAlign = “end”;
context.fi llText(“12”, 100, 60);

2DTextExample02.htm

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-5

c15.indd 558c15.indd 558 12/8/11 10:41:08 AM12/8/11 10:41:08 AM

The 2D Context ❘ 559

The string “12” is drawn three times, each using the same
x-coordinate but with three different textAlign values. The
y-coordinate values are also incremented so that the strings don’t render
on top of one another. The resulting image is shown in Figure 15-6.

The vertical line of the clock is directly at the center so the alignment
of the text becomes obvious. You can similarly adjust how the text is
aligned vertically by altering textBaseline. Setting to “top” means
that the y-coordinate is the top of the text, “bottom” means it’s the
bottom, and “hanging”, “alphabetic”, and “ideographic” refer
to specifi c baseline coordinates of a font.

Since drawing text is quite complicated, especially when you want
text to render within a specifi c area, the 2D context provides a little extra help to determine the
dimensions of text via the measureText() method. This method accepts a single argument, the text
to draw, and returns a TextMetrics object. The returned object currently has only one property,
width, but the intent is to provide more metrics in the future.

The measureText() method uses the current values for font, textAlign, and textBaseline to
calculate the size of the specifi ed text. For example, suppose you want to fi t the text “Hello world!”
within a rectangle that is 140 pixels wide. The following code starts with a font size of 100 pixels
and decrements until the text fi ts:

var fontSize = 100;
context.font = fontSize + “px Arial”;

while(context.measureText(“Hello world!”).width > 140){
 fontSize--;
 context.font = fontSize + “px Arial”;
}

context.fillText(“Hello world!”, 10, 10);
context.fillText(“Font size is “ + fontSize + “px”, 10, 50);

2DTextExample03.htm

There is also a fourth argument for both fillText() and strokeText(), which is the maximum
width of the text. This argument is optional and hasn’t been implemented in all browsers yet
(Firefox 4 was the fi rst to implement it). When provided, calling fillText() or
strokeText() with a string that will not fi t within the maximum width results
in the text being drawn with the correct character height, but the characters are
scaled horizontally to fi t. Figure 15-7 shows this effect.

Text drawing is one of the more complex drawing operations and, as such, not all portions of the
API have been implemented in the all browsers that support the <canvas> element.

Transformations

Context transformations allow the manipulation of images drawn onto the canvas. The 2D drawing
context supports all of the basic drawing transformations. When the drawing context is created, the

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-6

FIGURE 15-7

c15.indd 559c15.indd 559 12/8/11 10:41:08 AM12/8/11 10:41:08 AM

560 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

transformation matrix is initialized with default values that cause all drawing operations to be applied
directly as they are described. Applying transformations to the drawing context causes operations to
be applied using a different transformation matrix and thus produces a different result.

The transformation matrix can be augmented by using any of the following methods:

rotate(angle)— Rotates the image around the origin by angle radians.

scale(scaleX, scaleY)— Scales the image by a multiple of scaleX in the x dimension
and by scaleY in the y dimension. The default value for both scaleX and scaleY is 1.0.

translate(x, y)— Moves the origin to the point (x,y). After performing this operation,
the coordinates (0,0) are located at the point previously described as (x,y).

transform(m1_1, m1_2, m2_1, m2_2, dx, dy)— Changes the transformation matrix
directly by multiplying by the matrix described as this:

m1_1 m1_2 dx
m2_1 m2_2 dy
0 0 1

setTransform(m1_1, m1_2, m2_1, m2_2, dx, dy)— Resets the transformation matrix
to its default state and then calls transform().

Transformations can be as simple or as complex as necessary. For example, it may be easier to draw
the hands on the clock in the previous example by translating the origin to the center of the clock
and then drawing the hands from there. Consider the following:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //start the path
 context.beginPath();

 //draw outer circle
 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 //draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 //translate to center
 context.translate(100, 100);

 //draw minute hand
 context.moveTo(0,0);
 context.lineTo(0, -85);

 //draw hour hand

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 560c15.indd 560 12/8/11 10:41:09 AM12/8/11 10:41:09 AM

The 2D Context ❘ 561

 context.moveTo(0, 0);
 context.lineTo(-65, 0);

 //stroke the path
 context.stroke();
}

2DTransformExample01.htm

After translating the origin to (100,100), the center of the clock face, it’s just a matter of simple
math to draw the lines in the same direction. All math is now based on (0,0) instead of (100,100).
You can go further, moving the hands of the clock by using the rotate() method as shown here:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”);

 //start the path
 context.beginPath();

 //draw outer circle
 context.arc(100, 100, 99, 0, 2 * Math.PI, false);

 //draw inner circle
 context.moveTo(194, 100);
 context.arc(100, 100, 94, 0, 2 * Math.PI, false);

 //translate to center
 context.translate(100, 100);

 //rotate the hands
 context.rotate(1);

 //draw minute hand
 context.moveTo(0,0);
 context.lineTo(0, -85);

 //draw hour hand
 context.moveTo(0, 0);
 context.lineTo(-65, 0);

 //stroke the path
 context.stroke();
}

2DTransformExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 561c15.indd 561 12/8/11 10:41:09 AM12/8/11 10:41:09 AM

562 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

Since the origin has already been translated to the center of clock,
the rotation is applied from that point. This means that the hands
are anchored at the center and then rotated around to the right. The
result is displayed in Figure 15-8.

All of these transformations, as well as properties like fillStyle
and strokeStyle, remain set on the context until explicitly changed.
Although there’s no way to explicitly reset everything to their
default values, there are two methods that can help keep track of
changes. Whenever you want to be able to return to a specifi c set
of properties and transformations, call the save() method. Once
called, this method pushes all of the settings at the moment onto a
stack for safekeeping. You can then go on to make other changes to
the context. When you want to go back to the previous settings, call the restore() method, which
pops the settings stack and restores all of the settings. You can keep calling save() to store more
settings on the stack and then systematically go back through them using restore(). Here is
an example:

context.fillStyle = “#ff0000”;
context.save();

context.fillStyle = “#00ff00”;
context.translate(100, 100);
context.save();

context.fillStyle = “#0000ff”;
context.fillRect(0, 0, 100, 200); //draws blue rectangle at (100, 100)

context.restore();
context.fillRect(10, 10, 100, 200); //draws green rectangle at (110, 110)

context.restore();
context.fillRect(0, 0, 100, 200); //draws red rectangle at (0,0)

2DSaveRestoreExample01.htm

In this code, the fillStyle is set to red and then save() is called. Next, the fillStyle is changed
to green, and the coordinates are translated to (100,100). Once again, save() is called to save
these settings. The fillStyle property is then set to blue and a rectangle is drawn. Because
the coordinates are translated, the rectangle actually ends up being drawn at (100,100). When
restore() is called, fillStyle is set back to green, so the next rectangle that’s drawn is green.
This rectangle is drawn at (110,110) because the translation is still in effect. When restore()
is called one more time, the translation is removed and fillStyle is set back to red. The last
rectangle is drawn at (0,0).

Note that save() saves only the settings and transformations applied to the drawing context but
not the contents of the drawing context.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-8

c15.indd 562c15.indd 562 12/8/11 10:41:10 AM12/8/11 10:41:10 AM

The 2D Context ❘ 563

Drawing Images

The 2D drawing context has built-in support for working with images. If you have an existing
image that should be drawn on the canvas, you can do so using the drawImage() method. This
method can be called with three different sets of arguments based on the desired result. The
simplest call is to pass in an HTML element, as well as the destination x- and y-coordinates,
which simply draws the image at the specifi ed location. Here is an example:

var image = document.images[0];
context.drawImage(image, 10, 10);

2DDrawImageExample01.htm

This code gets the fi rst image in the document and draws it on the context at position (10,10). The
image is drawn in the same scale as the original. You can change how the image is drawn by adding
two more arguments: the destination width and destination height. This scales the drawing without
affecting the transformation matrix of the context. Here’s an example:

context.drawImage(image, 50, 10, 20, 30);

2DDrawImageExample01.htm

When this code is executed, the image is scaled to be 20 pixels wide by 30 pixels tall.

You can also select just a region of the image to be drawn onto the context. This is done by providing
nine arguments to drawImage(): the image to draw, the source x-coordinate, the source y-coordinate,
the source width, the source height, the destination x-coordinate, the destination y-coordinate, the
destination width, and the destination height. Using this overload of drawImage() gives you the most
control. Consider this example:

context.drawImage(image, 0, 10, 50, 50, 0, 100, 40, 60);

2DDrawImageExample01.htm

Here, only part of the image is drawn on the canvas. That part of the image
begins at point (0,10) and is 50 pixels wide and 50 pixels tall. The image is
drawn to point (0,100) on the context and scaled to fi t in a 40×60 area.

These drawing operations allow you to create interesting effects such as those
shown in Figure 15-9.

In addition to passing in an HTML element as the fi rst argument,
you can also pass in another <canvas> element to draw the contents of one
canvas onto another.

The drawImage() method, in combination with other methods, can easily
be used to perform basic image manipulation, the result of which can be
retrieved using toDataURL(). There is, however, one instance where this
won’t work: if an image from a different origin than the page is drawn onto

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-9

c15.indd 563c15.indd 563 12/8/11 10:41:10 AM12/8/11 10:41:10 AM

564 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

the context. In that case, calling toDataURL() throws an error. For example, if a page hosted on
www.example.com draws an image hosted on www.wrox.com, the context is considered “dirty” and
an error is thrown.

Shadows

 The 2D context will automatically draw a shadow along with a shape or path based on the value of
several properties:

shadowColor — The CSS color in which the shadow should be drawn. The default is black.

shadowOffsetX — The x-coordinate offset from the x-coordinate of the shape or path. The
default is 0.

shadowOffsetY — The y-coordinate offset from the y-coordinate of the shape or path. The
default is 0.

shadowBlur — The number of pixels to blur. If set to 0, the shadow has no blur. The
default is 0.

Each of these properties can be read and written on the context object. You just need to set the
values appropriately before drawing and the shadows are drawn automatically. For example:

var context = drawing.getContext(“2d”);

//setup shadow
context.shadowOffsetX = 5;
context.shadowOffsetY = 5;
context.shadowBlur = 4;
context.shadowColor = “rgba(0, 0, 0, 0.5)”;

//draw a red rectangle
context.fillStyle = “#ff0000”;
context.fillRect(10, 10, 50, 50);

//draw a blue rectangle
context.fillStyle = “rgba(0,0,255,1)”;
context.fillRect(30, 30, 50, 50);

2DFillRectShadowExample01.htm

A shadow is drawn using the same styles for both rectangles, resulting in the image
displayed in Figure 15-10.

There are some quirks with shadow support across browsers. Internet Explorer 9,
Firefox 4, and Opera 11 have the correct behavior in all situations while the others
have strange effects or none at all. Chrome (through version 10) will incorrectly
apply a fi lled shadow to a stroked shape. Both Chrome and Safari (through version 5)
have a problem drawing shadows for images with transparent pixels. While the
shadow should be under the nontransparent parts of the image, it actually just
disappears. Safari will also not apply a shadow to a gradient, while the other browsers will.

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-10

c15.indd 564c15.indd 564 12/8/11 10:41:11 AM12/8/11 10:41:11 AM

http://www.wrox.com

The 2D Context ❘ 565

Gradients

 Gradients are represented by an instance of CanvasGradient and are very simple to create and
modify using the 2D context. To create a new linear gradient, call the createLinearGradient()
method. This method accepts four arguments: the starting x-coordinate, the starting y-coordinate,
the ending x-coordinate, and the ending y-coordinate. Once called, the method creates a new
CanvasGradient object of the size you specifi ed and returns the instance.

Once you have the gradient object, the next step is to assign color stops using the addColorStop()
method. This method accepts two arguments: the location of the color stop and a CSS color. The
color stop location is a number between 0 (the fi rst color) and 1 (the last color). For example:

var gradient = context.createLinearGradient(30, 30, 70, 70);

gradient.addColorStop(0, “white”);
gradient.addColorStop(1, “black”);

2DFillRectGradientExample01.htm

The gradient object now represents a gradient that is drawn from point (30,30) to point (70,70)
on the canvas. The starting color is white and the stopping color is black. You can now set the
fillStyle or strokeStyle properties to this value to draw a shape using the gradient:

//draw a red rectangle
context.fillStyle = “#ff0000”;
context.fillRect(10, 10, 50, 50);

//draw a gradient rectangle
context.fi llStyle = gradient;
context.fillRect(30, 30, 50, 50);

2DFillRectGradientExample01.htm

In order for the gradient to be drawn over the entire rectangle and not just
part of it, the coordinates need to match up. This code produces the drawing in
Figure 15-11.

If the rectangle isn’t drawn in exactly this spot, then only part of the gradient is
displayed. For example:

context.fillStyle = gradient;
context.fi llRect(50, 50, 50, 50);

2DFillRectGradientExample02.htm

This code creates a rectangle with only a small amount of white in the upper-left corner. That’s
because the rectangle is drawn at the midpoint of the gradient, where the color transition is almost
complete. The rectangle is therefore mostly black since gradients do not repeat. Keeping the gradient

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-11

c15.indd 565c15.indd 565 12/8/11 10:41:12 AM12/8/11 10:41:12 AM

566 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

lined up with your shapes is important, and sometimes using a function to calculate the appropriate
coordinates is useful. For example:

function createRectLinearGradient(context, x, y, width, height){
 return context.createLinearGradient(x, y, x+width, y+height);
}

2DFillRectGradientExample03.htm

This function creates a gradient based on the starting x- and y-coordinates, along with a width and
height, so that the same numbers can be used as fillRect():

var gradient = createRectLinearGradient(context, 30, 30, 50, 50);

gradient.addColorStop(0, “white”);
gradient.addColorStop(1, “black”);

//draw a gradient rectangle
context.fi llStyle = gradient;
context.fillRect(30, 30, 50, 50);

2DFillRectGradientExample03.htm

Keeping track of coordinates is an important and tricky aspect of using canvas. Helper functions
such as createRectLinearGradient() can take some of the pain out of managing coordinates.

Radial gradients are created using the createRadialGradient() method. This method accepts six
arguments corresponding to the center of a circle and its radius. The fi rst three arguments defi ne the
starting circle’s center (x and y) and radius, while the last three defi ne the same for the ending circle.
When thinking about radial gradients, you will fi nd it helps to think of a long cylinder where you’re
defi ning the size of the circle on each end. By making one circle smaller and the other larger, you’ve
effectively made a cone, and you rotate that cone around by moving the center of each circle.

To create a radial gradient that starts in the center of a shape and continues out, you need to set the
center of both circles to the same origin. For example, to create a radial gradient in the center of
the rectangle in the previous example, both circles must be centered at (55,55). That’s because the
rectangle is drawn from point (30,30) to point (80,80). Here’s the code:

var gradient = context.createRadialGradient(55, 55, 10, 55, 55, 30);

gradient.addColorStop(0, “white”);
gradient.addColorStop(1, “black”);

//draw a red rectangle
context.fillStyle = “#ff0000”;
context.fillRect(10, 10, 50, 50);

//draw a gradient rectangle
context.fillStyle = gradient;
context.fillRect(30, 30, 50, 50);

2DFillRectGradientExample04.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 566c15.indd 566 12/8/11 10:41:13 AM12/8/11 10:41:13 AM

The 2D Context ❘ 567

Running this code results in the drawing displayed in Figure 15-12.

Radial gradients are a little bit more diffi cult to work with because of the
complexities of their creation, but generally you’ll end up using the same center for
both starting circle and ending circle and just altering the radii of the circles for
most basic effects.

Patterns

Patterns are simply repeating images that may be used to fi ll or stroke a shape. To create a new
pattern, call the createPattern() method and pass in two arguments: an HTML element
and a string indicating how the image should be repeated. The second argument is the same as the
values for the CSS background-repeat property: “repeat”, “repeat-x”, “repeat-y”, and
“no-repeat”. For example:

var image = document.images[0],
 pattern = context.createPattern(image, “repeat”);

//draw a rectangle
context.fillStyle = pattern;
context.fillRect(10, 10, 150, 150);

2DFillRectPatternExample01.htm

Keep in mind that, like gradients, a pattern actually starts
at point (0,0) on the canvas. Setting the fi ll style to a pattern
means revealing the pattern in the specifi ed location rather
than starting to draw at that position. This code results in a
page that looks like Figure 15-13.

The fi rst argument for createPattern() can also be a
<video> element or another <canvas> element.

Working with Image Data

One of the more powerful aspects of the 2D context is the ability to retrieve raw image data using
the getImageData() method. This method accepts four arguments: the left and top position of the
fi rst pixel whose data should be retrieved, and the pixel width and the pixel height to retrieve. For
instance, to get image data for a 50 by 50 area starting at (10,5), use the following:

var imageData = context.getImageData(10, 5, 50, 50);

The returned object is an instance of ImageData. Each ImageData object contains just three
properties: width, height, and data. The data property is an array that contains the raw pixel
information for the image. Each pixel is actually represented as four items in the data array, one each
for red, green, blue, and alpha. So the data for the fi rst pixel is contained in items 0 through 3, such as:

var data = imageData.data,
 red = data[0],

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-12

FIGURE 15-13

c15.indd 567c15.indd 567 12/8/11 10:41:13 AM12/8/11 10:41:13 AM

568 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

 green = data[1],
 blue = data[2],
 alpha = data[3];

Each value in the array is a number between 0 and 255, inclusive. Having access to the raw image
data allows you to manipulate the image in a variety of ways. For example, a simple grayscale fi lter
can be created by changing the image data:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var context = drawing.getContext(“2d”),
 image = document.images[0],
 imageData, data,
 i, len, average,
 red, green, blue, alpha;

 //draw regular size
 context.drawImage(image, 0, 0);

 //get the image data
 imageData = context.getImageData(0, 0, image.width, image.height);
 data = imageData.data;

 for (i=0, len=data.length; i < len; i+=4){

 red = data[i];
 green = data[i+1];
 blue = data[i+2];
 alpha = data[i+3];

 //get the average of rgb
 average = Math.floor((red + green + blue) / 3);

 //set the colors, leave alpha alone
 data[i] = average;
 data[i+1] = average;
 data[i+2] = average;

 }

 //assign back to image data and display
 imageData.data = data;
 context.putImageData(imageData, 0, 0);
}

2DImageDataExample01.htm

This example fi rst draws an image onto the canvas and then retrieves its image data. A for loop iterates
over each pixel in the image data. Note that each trip through the loop adds 4 to the value of i. Once
the red, green, and blue values are retrieved, they are averaged together to get a new value. Then each

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 568c15.indd 568 12/8/11 10:41:14 AM12/8/11 10:41:14 AM

The 2D Context ❘ 569

of the values is set back to that average, effectively washing out the color and leaving only a gray of
similar brightness in its place. The data array is then assigned back onto the imageData object. After
that, the putImageData() method is called to draw the image data back to the canvas. The result is a
grayscale version of the image.

Of course, grayscale isn’t the only type of fi lter that can be implemented by manipulating raw pixel
values. For more information on creating fi lters with raw image data, see “Making Image Filters with
Canvas” by Ilmari Heikkinen (www.html5rocks.com/en/tutorials/canvas/imagefilters/).

Image data is available only if the canvas isn’t dirty from loading a cross-domain
resource. Attempting to access image data when the canvas is dirty causes a
JavaScript error.

Compositing

There are two properties that apply to all drawing done on the 2D context: globalAlpha and
globalCompositionOperation. The globalAlpha property is a number between 0 and 1, inclusive,
that specifi es the alpha value for all drawings. The default value is 0. If all of the upcoming
drawings should be done with the same alpha, set globalAlpha to the appropriate value, perform
the drawings, and then set globalAlpha back to 0. For example:

//draw a red rectangle
context.fillStyle = “#ff0000”;
context.fillRect(10, 10, 50, 50);

//change the global alpha
context.globalAlpha = 0.5;

//draw a blue rectangle
context.fillStyle = “rgba(0,0,255,1)”;
context.fillRect(30, 30, 50, 50);

//reset
context.globalAlpha = 0;

2DGlobalAlphaExample01.htm

In this example, a blue rectangle is drawn on top of a red rectangle. Since globalAlpha is set to 0.5
before drawing the blue rectangle, it becomes partially transparent, allowing the red rectangle to be
seen through the blue.

The globalCompositionOperation property indicates how newly drawn shapes should merge with
the already-existing image on the context. This property is a string value of one of the following:

source-over (default) — New drawing is drawn on top of the existing image.

source-in — New drawing is drawn only where it overlaps the existing image. Everything
else becomes transparent.

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 569c15.indd 569 12/8/11 10:41:15 AM12/8/11 10:41:15 AM

570 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

source-out — New drawing is drawn only where it does not overlap the existing image.
Everything else becomes transparent.

source-atop — New drawing is drawn only where it overlaps the existing image. The
existing image is otherwise unaffected.

destination-over — New drawing is drawn underneath the existing image, visible only
through previously transparent pixels.

destination-in — New drawing is drawn underneath the existing image, and all places
where the two images do not overlap become transparent.

destination-out — New drawing erases the parts of the existing image where they overlap.

destination-atop — New drawing is drawn behind the existing image. The existing
image becomes transparent where there is no overlap with new drawing.

lighter — New drawing is drawn by combining its values with the existing image values
to create a lighter image.

copy — New drawing erases the existing image and replaces it completely.

xor — New drawing is drawn by XORing the image data with the existing image.

The descriptions of these composite operations are diffi cult to represent in words or black-and-white
images. For a better demonstration of each operation, see https://developer.mozilla.org/
samples/canvas-tutorial/6_1_canvas_composite.html. It’s recommended to visit this site
in Internet Explorer 9+ or Firefox 4+, as they have the most complete implementations of canvas.
Here’s a simple example:

//draw a red rectangle
context.fillStyle = “#ff0000”;
context.fillRect(10, 10, 50, 50);

//set composite operation
context.globalCompositeOperation = “destination-over”;

//draw a blue rectangle
context.fillStyle = “rgba(0,0,255,1)”;
context.fillRect(30, 30, 50, 50);

2DGlobalCompositeOperationExample01.htm

Even though the blue rectangle would normally be drawn over the red, changing globalComposite
Operation to “destination-over” means that the red rectangle actually ends up on top of
the blue.

When using globalCompositionOperation, be sure to test across a wide variety of browsers.
There are still signifi cant differences between how these operations are implemented cross-browser.
Safari and Chrome still have several issues with these operations, which can be seen by going to the
previously mentioned URL and comparing the rendering to that of Internet Explorer or Firefox.

➤

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 570c15.indd 570 12/8/11 10:41:20 AM12/8/11 10:41:20 AM

WebGL ❘ 571

WEBGL

WebGL is a 3D context for canvas. Unlike other web technologies, WebGL is not specifi ed by
the W3C. Instead, the Khronos Group is developing the specifi cation. According to its website,
“The Khronos Group is a not for profi t, member-funded consortium focused on the creation of
royalty-free open standards for parallel computing, graphics and dynamic media on a wide variety
of platforms and devices.” The Khronos Group has also worked on other graphics APIs, such as
OpenGL ES 2.0, which is the basis for WebGL in the browser.

3D graphics languages such as OpenGL are complex topics, and it is beyond the scope of this book
to cover all concepts. Familiarity with OpenGL ES 2.0 is recommended for using WebGL as a lot of
concepts map directly.

This section assumes a working knowledge of OpenGL ES 2.0 concepts and simply attempts
to describe how certain parts of OpenGL ES 2.0 have been implemented in WebGL. For more
information on OpenGL, please visit www.opengl.org and for an excellent series of WebGL
tutorials, please visit www.learningwebgl.com.

Typed Arrays

Since WebGL deals with complex calculations requiring predictable precision, standard JavaScript
numbers do not work. Instead, WebGL introduces the concept of typed arrays, which are arrays
whose items are set to be values of a particular type.

At the core of typed arrays is a type called ArrayBuffer. An ArrayBuffer object represents a
specifi ed number of bytes in memory but does not specify the type to treat the bytes. All you can
do with an ArrayBuffer is allocate a certain number of bytes for use. For example, the following
allocates 20 bytes:

var buffer = new ArrayBuffer(20);

Once the ArrayBuffer is created, all you can do with the object itself is retrieve the number of bytes
contained within by accessing the byteLength property:

var bytes = buffer.byteLength;

Although the ArrayBuffer object itself isn’t very interesting, its use is extremely important to
WebGL and is made more interesting when you use views.

Views

An array buffer view is a particular way of using the bytes within an array buffer. The most generic
view is DataView, which allows you to select a subset of bytes in an ArrayBuffer. To do so, create
a new instance of DataView and pass in the ArrayBuffer, an optional byte offset from which to
select, and an optional number of bytes to select. For example:

//create a new view over the entire buffer
var view = new DataView(buffer);

//create a new view starting with byte 9

c15.indd 571c15.indd 571 12/8/11 10:41:21 AM12/8/11 10:41:21 AM

572 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

var view = new DataView(buffer, 9);

//create a new view going from byte 9 to byte 18
var view = new DataView(buffer, 9, 10);

Once instantiated, a DataView keeps the byte offset and length information in the byteOffset and
byteLength properties, respectively:

alert(view.byteOffset);
alert(view.byteLength);

These properties let you easily inspect the view later on. You can also retrieve the array buffer
through the buffer property.

Reading and writing to the DataView are done through a series of getter and setter methods based
on the type of data you’re working with. The following table lists the supported data types and their
associated methods:

DATA TYPE GETTER SETTER

Signed 8-bit integer getInt8(byteOffset) setInt8(byteOffset, value)

Unsigned 8-bit integer getUint8(byteOffset) setUint8(byteOffset, value)

Signed 16-bit integer getInt16(byteOffset,

littleEndian)

setInt16(byteOffset, value,

littleEndian)

Unsigned 16-bit integer getUint16(byteOffset,

littleEndian)

setUint16(byteOffset,

value, littleEndian)

Signed 32-bit integer getInt32(byteOffset,

littleEndian)

setInt32(byteOffset, value,

littleEndian)

Unsigned 32-bit integer getUint32(byteOffset,

littleEndian)

setUint32(byteOffset,

value, littleEndian)

32-bit fl oat getFloat32(byteOffset,

littleEndian)

setFloat32(byteOffset,

value, littleEndian)

64-bit fl oat getFloat64(byteOffset,

littleEndian)

setFloat64(byteOffset,

value, littleEndian)

Each method expects the fi rst argument to be the byte offset to retrieve from or write to. Keep in
mind that, depending on the data type, the data may take more than one byte to store. An unsigned
8-bit integer takes one byte to store while a 32-bit fl oat takes four bytes. Using a DataView, you’ll
need to manage this yourself by ensuring you know exactly how many bytes your data needs and
using the correct method. For example:

var buffer = new ArrayBuffer(20),
 view = new DataView(buffer),
 value;

view.setUint16(0, 25);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 572c15.indd 572 12/8/11 10:41:21 AM12/8/11 10:41:21 AM

WebGL ❘ 573

view.setUint16(2, 50); //don’t start at 1, 16-bit integers take two bytes
value = view.getUint16(0);

DataViewExample01.htm

This code saves two unsigned 16-bit integers into the array buffer. Since each 16-bit integer takes
two bytes, the fi rst number is stored at byte offset 0 while the second is stored at byte offset 2.

Each method dealing with 16-bit or larger numbers has an optional argument called littleEndian.
This is a Boolean value indicating if the value should be read or written as little-endian (least
signifi cant byte is the fi rst byte) instead of big-endian (least signifi cant byte is the last byte). If you’re
not sure which to use, then leave off this option to use the default big-endian storage pattern.

Because you’re dealing with byte offsets rather than item numbers, it’s possible to access the same
bytes in different ways. For example:

var buffer = new ArrayBuffer(20),
 view = new DataView(buffer),
 value;

view.setUint16(0, 25);
value = view.getInt8(0);

alert(value); //0

DataViewExample02.htm

In this example, the number 25 is written into a
16-bit unsigned integer beginning at byte offset
0. An attempt to read the value as an 8-bit signed
integer results in a return value of 0. That’s because
the binary form of 25 has all zeros in the fi rst byte
(see Figure 15-14).

So while the DataView gives you access to byte-
level data in an array buffer, you’ll need to keep
track of where data is being stored and how many bytes it needs to do so. This can be a lot of work,
and so typed views are also available.

Typed Views

The typed views are typically referred to as typed arrays because they act like regular arrays with
the exception that their elements must be of a particular data type. There are several typed views,
and all of them inherit from DataView:

Int8Array — Represents numbers as 8-bit two’s complement integers.

Uint8Array — Represents numbers as 8-bit unsigned integers.

Int16Array — Represents numbers as 16-bit two’s complement integers.

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 15-14

0

byte 0 byte 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

8-bit integer

16-bit integer

c15.indd 573c15.indd 573 12/8/11 10:41:22 AM12/8/11 10:41:22 AM

574 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

Uint16Array — Represents numbers as 16-bit unsigned integers.

Int32Array — Represents numbers as 32-bit two’s complement integers.

Uint32Array — Represents numbers as 32-bit unsigned integers.

Float32Array — Represents numbers as 32-bit IEEE fl oating-point values.

Float64Array — Represents numbers as 64-bit IEEE fl oating-point values.

Each view represents data in a different way, and each piece of data may take one or more bytes
to represent. For example, an ArrayBuffer of 20 bytes will hold 20 values in Int8Array or
Uint8Array; 10 values in Int16Array or Uint16Array; 5 values in Int32Array, Uint32Array, or
Float32Array; or two values in Float64Array.

Since each of these types inherits from DataView, you can instantiate them using the same
constructor arguments: the ArrayBuffer object to use, the starting byte offset (0 by default), and
the number of bytes to include. Only the fi rst argument is required. Some examples:

//create a new array that uses the whole buffer
var int8s = new Int8Array(buffer);

//only use bytes starting at byte 9
var int16s = new Int16Array(buffer, 9);

//only use bytes starting at 9 going through 18
var uint16s = new Uint16Array(buffer, 9, 10);

Being able to specify a subset of a buffer means that you can store different numeric types within
the same buffer. For example, the following allows storing of 8-bit integers at the start of the buffer
and 16-bit integers in the rest:

//use part of the buffer for 8-bit integers, part for 16-bit
var int8s = new Int8Array(buffer, 0, 10);
var uint16s = new Uint16Array(buffer, 11, 10);

Each view constructor has a property called BYTES_PER_ELEMENT that indicates how many
bytes each element of a typed array requires. So Uint8Array.BYTES_PER_ELEMENT is 1 while
Float32Array.BYTES_PER_ELEMENT is 4. You can use this to help initialize a view:

//need space for 10 items
var int8s = new Int8Array(buffer, 0, 10 * Int8Array.BYTES_PER_ELEMENT);

//need space for 5 items
var uint16s = new Uint16Array(buffer, int8s.byteOffset + int8s.byteLength,
 5 * Uint16Array.BYTES_PER_ELEMENT);

This example creates two views onto an array buffer. The fi rst 10 bytes are used for storing 8-bit integers
while the rest are used to store unsigned 16-bit integers. The Uint16Array uses the byteOffset and
byteLength properties of the Int8Array to ensure the view starts after the 8-bit data.

➤

➤

➤

➤

➤

c15.indd 574c15.indd 574 12/8/11 10:41:23 AM12/8/11 10:41:23 AM

WebGL ❘ 575

Since the point of typed views are to make working with binary data easier, you can also create a
new typed view without fi rst creating an ArrayBuffer object. Just pass in the number of items you’d
like the array to hold, and an ArrayBuffer will be automatically created with the correct number of
bytes. For example:

//create an array for 10 8-bit integers (10 bytes)
var int8s = new Int8Array(10);

//create an array for 10 16-bit integers (20 bytes)
var int16s = new Int16Array(10);

Regular arrays can also be converted into typed views by passing them into a typed view
constructor:

//create an array for 5 8-bit integers (10 bytes)
var int8s = new Int8Array([10, 20, 30, 40, 50]);

This is the best way to initialize typed views with default values and is used quite frequently with
WebGL projects.

Using typed views in this way makes them more like regular Array objects and ensures that the
proper data types are used when reading or writing information.

When using a typed view, you can access data members using bracket notation and use the length
property to determine how many items are present. This makes iterating over typed views exactly
the same as iterating over Array objects:

for (var i=0, len=int8s.length; i < len; i++){
 console.log(”Value at position ” + i + ” is ” + int8s[i]);
}

Values can also be assigned to spots in a typed view using bracket notation. If the value doesn’t fi t
within the specifi ed number of bytes for an item, the number is stored as the modulo of the largest
possible number. For example, the largest number that can be represented as an unsigned 16-bit integer
is 65535. If you attempt to store 65536, it becomes 0; attempting to store 65537 yields 1, and so on:

var uint16s = new Uint16Array(10);
uint16s[0] = 65537;
alert(uint16s[0]); //1

No errors are thrown when data types don’t match, so you must be certain that numbers fi t within
their byte limits.

Typed views have one additional method called subarray(), which allows you to create a new view
on a subset of the underlying array buffer. This method accepts two arguments, the item index to
start with and an optional item index to end with. The returned type is the same as the type on
which the method was called. For example:

var uint16s = new Uint16Array(10),
 sub = uint16s.subarray(2, 5);

c15.indd 575c15.indd 575 12/8/11 10:41:23 AM12/8/11 10:41:23 AM

576 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

In this code, sub is also an instance of Uint16Array and is a view into the same ArrayBuffer
object as uint16s. The advantage of subarrays is in allowing access to a smaller number of items in
a larger array without fear of unintentionally modifying other items.

Typed arrays are an important part of performing operations in WebGL.

The WebGL Context

The WebGL context name in supporting browsers is currently “experimental-webgl”, as the WebGL
specifi cation is still under development. Once development is complete, the context name will simply
be “webgl”. If the browser doesn’t support WebGL, then attempting to retrieve a WebGL context
returns null. You should always check the returned value before attempting to use the context:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var gl = drawing.getContext(“experimental-webgl”);
 if (gl){
 //proceed with WebGL
 }
}

WebGLExample01.htm

The WebGL context object is typically called gl. Most WebGL applications and examples use this
convention because OpenGL ES 2.0 methods and values typically begin with “gl”. Doing so means
the JavaScript code reads more closely like an OpenGL program.

Once the WebGL context is established, you’re ready to start 3D drawing. As mentioned previously,
since WebGL is a web version of OpenGL ES 2.0, the concepts discussed in this section are really
OpenGL concepts as implemented in JavaScript.

You can specify options for the WebGL context by passing in a second argument to getContext().
The argument is an object containing one or more of the following properties:

alpha — When set to true, creates an alpha channel buffer for the context. Default is true.

depth — When set to true, a 16-bit depth buffer is available. Default is true.

stencil — When set to true, an 8-bit stencil buffer is available. Default is false.

antialias — When set to true, antialiasing will be performed using the default
mechanism. Default is true.

premultipliedAlpha — When set to true, the drawing buffer is assumed to have
premultipled alpha values. Default is true.

preserveDrawingBuffer — When set to true, the drawing buffer is preserved after
drawing is completed. Default is false. Recommended to change only if you know exactly
what this does, as there may be performance implications.

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 576c15.indd 576 12/8/11 10:41:24 AM12/8/11 10:41:24 AM

WebGL ❘ 577

The options object is passed in like this:

var drawing = document.getElementById(“drawing”);

//make sure <canvas> is completely supported
if (drawing.getContext){

 var gl = drawing.getContext(“experimental-webgl”, { alpha: false});
 if (gl){
 //proceed with WebGL
 }
}

WebGLExample01.htm

Most of the context options are for advanced use. In many cases, the default values will serve your
purpose.

Some browsers may throw an error if the WebGL context can’t be created via getContext(). For
that reason, it’s best to wrap the call in a try-catch block:

Insert IconMargin [download]var drawing = document.getElementById(“drawing”),
 gl;

//make sure <canvas> is completely supported
if (drawing.getContext){
 try {
 gl = drawing.getContext(“experimental-webgl”);
 } catch (ex) {
 //noop
 }

 if (gl){
 //proceed with WebGL
 } else {
 alert(“WebGL context could not be created.”);
 }
}

WebGLExample01.htm

Constants

If you’re familiar with OpenGL, then you’re familiar with the large number of constants used for
operations. These constants are named in OpenGL with a prefi x of GL_. In WebGL, each constant
is available on the WebGL context object without the GL_ prefi x. For example, the GL_COLOR_
BUFFER_BIT constant is available as gl.COLOR_BUFFER_BIT. WebGL supports most OpenGL
constants in this manner (some constants are not available).

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 577c15.indd 577 12/8/11 10:41:24 AM12/8/11 10:41:24 AM

578 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

Method Naming

Many method names in OpenGL, and so also in WebGL, tend to include information about the
type of data to be used with the method. If a method can accept different types and numbers of
arguments then it is suffi xed to indicate the expected input. The method will indicate the number
of arguments (1 through 4) followed by the data type (“f” for fl oat and “i” for int). For example,
gl.uniform4f() expects four fl oats to be passed in and gl.uniform3i() expects three integers to
be passed in.

Many methods also allow an array to be passed in instead of individual arguments. This is indicated
by the letter “v,” which is short for vector. So gl.uniform3iv() accepts an array of integers with
three values. Keep this convention in mind throughout the discussion of WebGL.

Getting Ready to Draw

One of the fi rst steps when working on a WebGL context is to clear the <canvas> with a solid color
to prepare for drawing. To do this, you fi rst must assign the color to use via the clearColor()
method. This method accepts four arguments: red, green, blue, and alpha. Each argument must
be a number between 0 and 1 defi ning the strength of value as part of a fi nal color. Consider the
following example:

gl.clearColor(0,0,0,1); //black
gl.clear(gl.COLOR_BUFFER_BIT);

WebGLExample01.htm

This code sets the clear color buffer value to black and then calls the clear() method, which is the
equivalent of glClear() in OpenGL. Providing the argument gl.COLOR_BUFFER_BIT tells WebGL
to use the previously defi ned color to fi ll the area. Generally speaking, all drawing operations begin
with a call to clear the area for drawing.

Viewports and Coordinates

To get started, it’s a good idea to defi ne the WebGL viewport. By default, the viewport is set to use
the entire <canvas> area. To change the viewport, call the viewport() method and pass in the x,
y, width, and height of the viewport relative to the <canvas>
element. For example, this call uses the entire <canvas> element:

gl.viewport(0, 0, drawing.width, drawing.height);

The viewport is defi ned using a different coordinate system
than is typically used in a web page. The x- and y-coordinates
start with (0,0) at the bottom-left of the <canvas> element and
increase toward the top and right, which can be defi ned as point
(width–1, height–1) (see Figure 15-15).

Knowing how the viewport is defi ned allows you to use just a part of the <canvas> element for
drawing. Consider the following examples:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

(0,0)

<canvas> (width�1,height�1)

FIGURE 15-15

c15.indd 578c15.indd 578 12/8/11 10:41:25 AM12/8/11 10:41:25 AM

WebGL ❘ 579

//viewport is a quarter of the <canvas> in the lower-left corner
gl.viewport(0, 0, drawing.width/2, drawing.height/2);

//viewport is a quarter of the <canvas> in the upper-left corner
gl.viewport(0, drawing.height/2, drawing.width/2, drawing.height/2);

//viewport is a quarter of the <canvas> in the lower-right corner
gl.viewport(drawing.width/2, 0, drawing.width/2, drawing.height/2);

The coordinate system within a viewport is different than the
coordinate system for defi ning a viewport. Inside of a viewport,
the coordinates start with point (0,0) in the center of the viewport.
The lower-left corner is (–1,–1) while the upper-right is (1,1) (see
Figure 15-16).

If a coordinate outside of the viewport is used for a drawing operation
then the drawing is clipped along the viewport. For instance, attempting
to draw a shape with a vertex at (1,2) will result in a shape that is cut
off on the right side of the viewport.

Buff ers

Vertex information is stored in typed arrays in JavaScript and must be converted into WebGL
buffers for use. Buffers are created by calling gl.createBuffer() and then bound to the WebGL
context using gl.bindBuffer(). Once that happens, you can fi ll the buffer with data. For example:

var buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([0, 0.5, 1]), gl.STATIC_DRAW);

The call to gl.bindBuffer() sets buffer as the current buffer for the context. After that point,
all buffer operations are performed on buffer directly. So the call to gl.bufferData() doesn’t
contain a direct reference to buffer but works on it nonetheless. That last line initializes buffer
with information from a Float32Array (you generally will be using Float32Array for all vertex
information). You can also use gl.ELEMENT_ARRAY_BUFFER if you intend to use drawElements()
for outputting the buffer content.

The last argument of gl.bufferData() indicates how the buffer will be used. This is one of the
following constants:

gl.STATIC_DRAW — The data will be loaded once and used for drawing multiple times.

gl.STREAM_DRAW — The data will be loaded once and used for drawing just a few times.

gl.DYNAMIC_DRAW — The data will be modifi ed repeatedly and used for drawing multiple
times.

You’ll likely use gl.STATIC_DRAW for most buffers unless you’re an experienced OpenGL programmer.

➤

➤

➤

FIGURE 15-16

(�1,�1)

(1,1)

(0,0)

Viewport

c15.indd 579c15.indd 579 12/8/11 10:41:26 AM12/8/11 10:41:26 AM

580 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

Buffers stay in memory until the containing page is unloaded. If you no longer need a buffer, then
it’s best to free its memory by calling gl.deleteBuffer():

gl.deleteBuffer(buffer);

Errors

One of the differences between most JavaScript and WebGL is that errors are generally not thrown
from WebGL operations. Instead, you must call the gl.getError() method after invoking a
method that may have failed. This method returns a constant value indicating the type of error that
has occurred. The constants are as follows:

gl.NO_ERROR — There wasn’t an error during the last operation (value of 0).

gl.INVALID_ENUM — An incorrect argument was passed to a method that was expecting
one of the WebGL constants.

gl.INVALID_VALUE — A negative number was passed where only an unsigned number
is accepted.

gl.INVALID_OPERATION — The operation cannot be completed in the current state.

gl.OUT_OF_MEMORY — There is not enough memory to complete the operation.

gl.CONTEXT_LOST_WEBGL — The WebGL context was lost because of an external event
(such as loss of power on a device).

Each call to gl.getError() returns a single error value. After the initial call, the next call to
gl.getError() may return another error value. If there are multiple errors, then this process
continues until gl.getError() returns gl.NO_ERROR. If you have performed a number of operations,
then you’ll likely want to call getError() in a loop, such as:

var errorCode = gl.getError();
while(errorCode){
 console.log(“Error occurred: “ + errorCode);
 errorCode = gl.getError();
}

If your WebGL script is not resulting in the correct output, then putting a few calls to gl.getError()
into your script may help debug the issue.

Shaders

Shaders are another concept from OpenGL. There are two types of shaders in WebGL: vertex shaders
and fragment shaders. Vertex shaders are used to convert a 3D vertex into a 2D point to be rendered.
Fragment shaders are used to compute the correct color for drawing a single pixel. The unique and
challenging aspect of WebGL shaders is that they are not written in JavaScript. Shaders are written
using OpenGL Shading Language (GLSL), a completely separate language from C or JavaScript.

➤

➤

➤

➤

➤

➤

c15.indd 580c15.indd 580 12/8/11 10:41:26 AM12/8/11 10:41:26 AM

WebGL ❘ 581

Writing Shaders

GLSL is a C-like language that is used specifi cally for defi ning OpenGL shaders. Since WebGL is
an implementation of OpenGL ES 2, the shaders used in OpenGL can be used directly in WebGL,
allowing for easy porting of desktop graphics to the Web.

Each shader has a method called main() that is executed repeatedly during drawing. There are two
ways to pass data into a shader: attributes and uniforms. Attributes are used to pass vertices into
a vertex shader while uniforms are used to pass constant values to either type of shader. Attributes
and uniforms are defi ned outside of main() by using the keywords attribute or uniform,
respectively. After the value type keyword, the data type is specifi ed followed by a name. Here’s a
simple example vertex shader:

//OpenGL Shading Language
//Shader by Bartek Drozdz in his article at
//http://www.netmagazine.com/tutorials/get-started-webgl-draw-square
attribute vec2 aVertexPosition;

void main() {
 gl_Position = vec4(aVertexPosition, 0.0, 1.0);
}

WebGLExample02.htm

This vertex shader defi nes a single attribute called aVertexPosition. This attribute is an array of
two items (vec2 data type) representing an x- and y-coordinate. A vertex shader must always result
in a four-part vertex being assigned to the special variable gl_Position even though only
two coordinates were passed. This shader creates a new four-item array (vec4) and fi lls in the
missing coordinates, effectively turning a 2D coordinate into a 3D one.

Fragment shaders are similar to vertex shaders except you can pass data only in via uniforms. Here’s
an example fragment shader:

//OpenGL Shading Language
//Shader by Bartek Drozdz in his article at
//http://www.netmagazine.com/tutorials/get-started-webgl-draw-square
uniform vec4 uColor;

void main() {
 gl_FragColor = uColor;
}

WebGLExample02.htm

Fragment shaders must result in a value being assigned to gl_FragColor, which indicates the color
to use while drawing. This shader defi ned a uniform four-part (vec4) color named uColor to be set.
Literally, this shader does nothing but assign the passed-in value to gl_FragColor. The value of
uColor cannot be changed within the shader.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 581c15.indd 581 12/8/11 10:41:27 AM12/8/11 10:41:27 AM

582 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

Creating Shader Programs

GLSL cannot be natively understood by a browser, so you must have a string of GLSL ready for
compilation and linking into a shader program. For ease of use, shaders are typically included in
a page using <script> elements with a custom type attribute. Using an invalid type attribute
prevents the browser from attempting to interpret the <script> contents while allowing you easy
access. For example:

<script type=”x-webgl/x-vertex-shader” id=”vertexShader”>
attribute vec2 aVertexPosition;

void main() {
 gl_Position = vec4(aVertexPosition, 0.0, 1.0);
}
</script>
<script type=”x-webgl/x-fragment-shader” id=”fragmentShader”>
uniform vec4 uColor;

void main() {
 gl_FragColor = uColor;
}
</script>

WebGLExample02.htm

You can then extract the contents of the <script> element using the text property:

var vertexGlsl = document.getElementById(“vertexShader”).text,
 fragmentGlsl = document.getElementById(“fragmentShader”).text;

More complex WebGL applications may choose to download shaders dynamically using Ajax
(discussed in Chapter 21). The important aspect is that you need a GLSL string in order to use
a shader.

Once you have a GLSL string, the next step is to create a shader object. This is done by calling
the gl.createShader() method and passing in the type of shader to create (gl.VERTEX_
SHADER or gl.FRAGMENT_SHADER). After that, the source code of the shader is applied using
gl.shaderSource() and the shader is compiled using gl.compileShader(). Here’s an example:

var vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vertexGlsl);
gl.compileShader(vertexShader);

var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

OpenGL Shading Language is a more complex language than represented here.
There are entire books devoted to explaining the intricacies of the languages,
and so this section is just a quick introduction to the language as a way of
facilitating WebGL usage. For more information, please read OpenGL Shading
Language by Randi J. Rost (Addison-Wesley, 2006).

c15.indd 582c15.indd 582 12/8/11 10:41:27 AM12/8/11 10:41:27 AM

WebGL ❘ 583

gl.shaderSource(fragmentShader, fragmentGlsl);
gl.compileShader(fragmentShader);

WebGLExample02.htm

This code creates two shaders and stores them in vertexShader and fragmentShader. These two
objects can then be linked into a shader program by using the following code:

var program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);

WebGLExample02.htm

The fi rst line creates a program and then attachShader() is used to include the two shaders. The
call to gl.linkProgram() encapsulates both shaders together into the variable program. With
the program linked, you can instruct the WebGL context to use the program via the gl.useProgram()
method:

gl.useProgram(program);

After gl.useProgram() has been called, all further drawing operations will use the specifi ed program.

Passing Values to Shaders

Each of the previously defi ned shaders has a value that must be passed in to complete the shader’s
job. To pass values into a shader, you must fi rst locate the variable whose value must be fi lled.
For uniform variables, this is done through gl.getUniformLocation(), which returns an object
representing the location of the uniform variable in memory. You can then use this location to
assign data. For example:

var uColor = gl.getUniformLocation(program, “uColor”);
gl.uniform4fv(uColor, [0, 0, 0, 1]);

WebGLExample02.htm

This example locates the uniform variable uColor in program and returns its memory location. The
second line assigns a value into uColor using gl.uniform4fv().

A similar process is followed for attribute variables in vertex shaders. To get the location of an
attribute variable, use gl.getAttribLocation(). Once the location is retrieved, it can be used as in
this example:

var aVertexPosition = gl.getAttribLocation(program, “aVertexPosition”);
gl.enableVertexAttribArray(aVertexPosition);
gl.vertexAttribPointer(aVertexPosition, itemSize, gl.FLOAT, false, 0, 0);

WebGLExample02.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 583c15.indd 583 12/8/11 10:41:33 AM12/8/11 10:41:33 AM

584 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

Here, the location of aVertexPosition is retrieved so that it may be enabled for use via gl
.enableVertexAttribArray(). The last line creates a pointer into the last buffer specifi ed using
gl.bindBuffer() and stores it in aVertexPosition so that it may be used by the vertex shader.

Debugging Shaders and Programs

As with other operations in WebGL, shader operations may fail and will do so silently. You need to
manually ask the WebGL context for information about the shader or program if you think there
has been an error.

For shaders, call gl.getShaderParameter() to get the compiled status of the shader after
attempting compilation:

if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS)){
 alert(gl.getShaderInfoLog(vertexShader));
}

WebGLExample02.htm

This example checks the compilation status of vertexShader. If the shader compiled successfully,
then the call to gl.getShaderParameter() returns true. If the call returns false, then there
was an error during compilation and you can retrieve the error by using gl.getShaderInfoLog()
and passing in the shader. This method returns a string message indicating the issue. Both
gl.getShaderParameter() and gl.getShaderInfoLog() may be used on vertex shaders and
fragment shaders.

Programs may also fail and have a similar method, gl.getProgramParameter(), to check status.
The most common program failure is during the linking process, for which you would check using
the following code:

if (!gl.getProgramParameter(program, gl.LINK_STATUS)){
 alert(gl.getProgramInfoLog(program));
}

WebGLExample02.htm

As with gl.getShaderParameter(), the gl.getProgramParameter() returns either
true to indicate that the link succeeded or false to indicate it failed. There is also
gl.getProgramInfoLog(), which is used to get information about the program during failures.

These methods are primarily used during development to aid in debugging. As long as there are no
external dependencies, it’s safe to remove them in production.

Drawing

WebGL can draw only three types of shapes: points, lines, and triangles. All other shapes must
be composed using a combination of these three basic shapes drawn in three-dimensional space.
Drawing is executed by using the drawArrays() or drawElements() methods; the former works on
array buffers while the latter acts on element array buffers.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 584c15.indd 584 12/8/11 10:41:34 AM12/8/11 10:41:34 AM

WebGL ❘ 585

The fi rst argument for both gl.drawArrays() and drawElements() is a constant indicating the
type of shape to draw. The constants are:

gl.POINTS — Treats each vertex as a single point to be drawn.

gl.LINES — Treats the array as a series of vertices between which to draw lines. Each set
of vertices is a start point and an end point, so you must have an even number of vertices in
the array for all drawing to take place.

gl.LINE_LOOP — Treats the array as a series of vertices between which to draw lines. The
line is drawn from the fi rst vertex to the second, from the second to the third, etc., until
the last vertex is reached. A line is then drawn from the last vertex to the fi rst vertex. This
effectively creates an outline of a shape.

gl.LINE_STRIP — Same as gl.LINE_LOOP except a line is not drawn from the last vertex
back to the fi rst.

gl.TRIANGLES — Treats the array as a series of vertices within which triangles should be
drawn. Each triangle is drawn separately from the previous without sharing vertex unless
explicitly specifi ed.

gl.TRIANGLES_STRIP — Same as gl.TRIANGLES except vertices after the fi rst three are
treated as the third vertex for a new triangle made with the previous two vertices. For
example, if an array contains vertices A, B, C, D, the fi rst triangle is drawn as ABC while
the second is drawn as BCD.

gl.TRIANGLES_FAN — Same as gl.TRIANGLES except vertices after the fi rst three are
treated as the third vertex for a triangle made with the previous vertex and the fi rst
coordinate. For example, if an array contains vertices A, B, C, D, the fi rst triangle is drawn
as ABC while the second is drawn as ACD.

The gl.drawArrays() method accepts one of these values as its fi rst argument, the starting index
within the array buffer as the second argument, and the number of sets contained in the array
buffer as the third argument. The following code uses gl.drawArrays() to draw a single triangle
across the canvas:

//assume viewport is cleared using the shaders from earlier in the section

//define three vertices, x and y for each
var vertices = new Float32Array([0, 1, 1, -1, -1, -1]),
 buffer = gl.createBuffer(),
 vertexSetSize = 2,
 vertexSetCount = vertices.length/vertexSetSize,
 uColor, aVertexPosition;

//put data into the buffer
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);

//pass color to fragment shader
uColor = gl.getUniformLocation(program, “uColor”);
gl.uniform4fv(uColor, [0, 0, 0, 1]);

//pass vertex information to shader

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 585c15.indd 585 12/8/11 10:41:35 AM12/8/11 10:41:35 AM

586 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

aVertexPosition = gl.getAttribLocation(program, “aVertexPosition”);
gl.enableVertexAttribArray(aVertexPosition);
gl.vertexAttribPointer(aVertexPosition, vertexSetSize, gl.FLOAT, false, 0, 0);

//draw the triangle
gl.drawArrays(gl.TRIANGLES, 0, vertexSetCount);

WebGLExample02.htm

This example defi nes a Float32Array containing three sets of two-point vertices. It’s important
to keep track of the size and number of vertex sets for use in later calculations. The vertexSetSize
is set to 2 while the vertexSetCount is calculated. The vertex information is stored in a buffer.
Color information is then passed to the fragment shader.

The vertex shader is passed the size of the vertex set and indicates that the vertex coordinates
are fl oats (gl.FLOAT). The fourth argument is a Boolean indicating that the coordinates are not
normalized. The fi fth argument is the stride value, which indicates how many array items need to
be skipped to get the next value. This is 0 unless you really know what you’re doing. The last
argument is the starting offset, which is 0 to start at the fi rst item.

The last step is to draw the triangle by using gl.drawArrays(). By specifying the fi rst argument
as gl.TRIANGLES, a triangle will be drawn from (0,1) to (1,–1) to (–1,–1) and fi lled in with the color
passed to the fragment shader. The second argument is the starting offset in the buffer, and the
last argument is the total number of vertex sets to read. The result of this drawing operation is
displayed in Figure 15-17.

By changing the fi rst argument to gl.drawArrays(), you can change how the triangle is drawn.
Figure 15-18 shows some other possible outputs based on changing the fi rst argument.

FIGURE 15-17 FIGURE 15-18

c15.indd 586c15.indd 586 12/8/11 10:41:35 AM12/8/11 10:41:35 AM

WebGL ❘ 587

Textures

WebGL textures work together with images from the DOM. You create a new texture using
gl.createTexture() and then bind an image to that texture. If the image isn’t already loaded, then
you may create a new instance of Image to dynamically load it. A texture isn’t initialized until the
image is completely loaded, so texture setup steps must be done after the load event has fi red. For
example:

var image = new Image(),
 texture;
image.src = “smile.gif”;
image.onload = function(){
 texture = gl.createTexture();
 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);

 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

 //clear current texture
 gl.bindTexture(gl.TEXTURE_2D, null);
}

Aside from using a DOM image, these steps are the same for creating texture in OpenGL. The
biggest difference is in setting the pixel storage format with gl.pixelStorei(). The constant
gl.UNPACK_FLIP_Y_WEBGL is unique to WebGL and must be used in most circumstances when
loading Web-based images. This is because of the different coordinate systems used by GIF, JPEG,
and PNG images as compared to the internal coordinate system of WebGL. Without this fl ag, the
image is interpreted upside down.

Images used for textures must be of the same origin as the containing page or else exist on servers
that have Cross-Origin Resource Sharing (CORS) enabled for the images. CORS is discussed in
Chapter 21.

Texture sources may be images, videos loaded into the <video> element, and
even another <canvas> element. The same restrictions regarding cross-origin
resources apply to videos.

Reading Pixels

As with the 2D context, it’s possible to read pixels from the WebGL context. The readPixels()
method has the same arguments as in OpenGL with the exception that the last argument must be
a typed array. Pixel information is read from the frame buffer and placed into the typed array. The
arguments for readPixels() are x, y, width, height, image format, type, and typed array. The fi rst
four arguments specify the location of the pixels to read. The image format argument will almost

c15.indd 587c15.indd 587 12/8/11 10:41:36 AM12/8/11 10:41:36 AM

588 ❘ CHAPTER 15 GRAPHICS WITH CANVAS

always be gl.RGBA. The type argument is the type of data that will be stored in the typed array and
has the following restrictions:

If the type is gl.UNSIGNED_BYTE, then the typed array must be Uint8Array.

If the type is gl.UNSIGNED_SHORT_5_6_5, gl.UNSIGNED_SHORT_4_4_4_4, or gl.UNSIGNED_
SHORT_5_5_5_1, then the typed array must be Uint16Array.

Here’s a simple example:

var pixels = new Uint8Array(25*25);
gl.readPixels(0, 0, 25, 25, gl.RGBA, gl.UNSIGNED_BYTE, pixels);

This code reads a 25 × 25 area of the frame buffer and stores the pixel information in the pixels
array. Each pixel color is represented as four array items, one each for red, green, blue, and alpha.
The values are numbers 0 through 255, inclusive. Don’t forget to initialize the typed array for the
amount of data you’re expecting back.

Calling readPixels() before the browser has drawn the updated WebGL image works as
expected. After the paint has occurred, the frame buffer is reverted to its original cleared state
and calling readPixels() will result in pixel data matching the cleared state. If you want to
read pixels after the paint has occurred, then you must initialize the WebGL context with the
preserveDrawingBuffer option discussed previously:

var gl = drawing.getContext(“experimental-webgl”, { preserveDrawingBuffer: true; });

Setting this fl ag forces the frame buffer to stay in its last state until the next draw occurs. This
option does have some performance overhead, so it’s best to avoid using if possible.

Support

The WebGL API has been implemented in Firefox 4+ and Chrome. Safari 5.1 has implemented
WebGL but has it disabled by default. WebGL is unique in that having a particular browser version
doesn’t automatically ensure support. Two things must happen for a browser to support WebGL.
First, the browser itself must have implemented the API. Second, the computer must have updated
graphics card drivers. Older computers, such as those running Windows XP, typically have out-of-
date drivers, and so WebGL will be disabled in browsers running on those computers. For this reason,
it’s important to specifi cally check for support of WebGL rather than particular browser versions.

Keep in mind that the WebGL specifi cation is still undergoing development and changes. Everything
from function names to function signatures to data types is in a state of fl ux, so while WebGL may
be fun to experiment with, it is defi nitely not suitable for production use quite yet.

SUMMARY

The HTML5 <canvas> element provides a JavaScript API for creating graphics on the fl y. Graphics
are created in a specifi c context, of which there are currently two. The fi rst is a 2D context that
allows primitive drawing operations:

➤

➤

c15.indd 588c15.indd 588 12/8/11 10:41:41 AM12/8/11 10:41:41 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Summary ❘ 589

Setting fi ll and stroke colors and patterns

Drawing rectangles

Drawing paths

Drawing text

Creating gradients and patterns

The second context is a 3D context called WebGL. WebGL is a browser port of OpenGL ES 2.0,
a language frequently used by game developers for computer graphics. WebGL allows far more
powerful graphics processing than the 2D context, providing:

Vertex and fragment shaders written in OpenGL Shading Language (GLSL)

Typed array support, limiting the type of data contained in an array to specifi c numeric
types

Texture creation and manipulation

The <canvas> tag itself is now widely supported and is available in the most recent version of all
major browsers. Support for the 2D context is also available in the same browsers while WebGL
support is limited to Firefox 4+ and Chrome.

➤

➤

➤

➤

➤

➤

➤

➤

c15.indd 589c15.indd 589 12/8/11 10:41:42 AM12/8/11 10:41:42 AM

c15.indd 590c15.indd 590 12/8/11 10:41:42 AM12/8/11 10:41:42 AM

HTML5 Scripting

WHAT’S IN THIS CHAPTER?

Using cross-document messaging

Drag-and-drop APIs

Working with audio and video

As discussed earlier in the book, the HTML5 specifi cation defi nes much more than HTML
markup. A signifi cant portion of the HTML5 defi nes JavaScript APIs that are intended to
work in concert with the markup changes. The goal of these APIs is to make previously
diffi cult tasks easier with the ultimate goal of allowing the creation of dynamic web interfaces.

CROSS-DOCUMENT MESSAGING

Cross-document messaging, sometimes abbreviated as XDM, is the ability to pass information
between pages from different origins. For example, a page on www.wrox.com wants to
communicate with a page from p2p.wrox.com that is contained in an iframe. Prior to XDM,
achieving this communication in a secure manner took a lot of work. XDM formalizes this
functionality in a way that is both secure and easy to use.

At the heart of XDM is the postMessage() method. This method name is used in many parts
of HTML5 in addition to XDM and is always used for the same purpose: to pass data into
another location. In the case of XDM, that other location is an <iframe> element or pop-up
window owned by the page.

The postMessage() method accepts two arguments: a message and a string indicating the
intended recipient origin. The second argument is very important for security reasons and
restricts where the browser will deliver the message. Consider this example:

//note: all browsers that support XDM also support iframe contentWindow
var iframeWindow = document.getElementById(“myframe”).contentWindow;
iframeWindow.postMessage(“A secret”, “http://www.wrox.com”);

➤

➤

➤

16

c16.indd 591c16.indd 591 12/8/11 10:42:19 AM12/8/11 10:42:19 AM

http://www.wrox.com
http://www.wrox.com

592 ❘ CHAPTER 16 HTML5 SCRIPTING

The last line attempts to send a message into the iframe and specifi es that the origin must be
“http://www.wrox.com”. If the origin matches, then the message will be delivered into the iframe;
otherwise postMessage() silently does nothing. This restriction protects your information should
the location of the window change without your knowledge. It is possible to allow posting to any
origin by passing in “*” as the second argument to postMessage(), but this is not recommended.

A message event is fi red on a window when an XDM message is received. This message is fi red
asynchronously so there may be a delay between the time at which the message was sent and the
time at which the message event is fi red in the receiving window. The event object that is passed to
an onmessage event handler has three important pieces of information:

data — The string data that was passed as the fi rst argument to postMessage().

origin — The origin of the document that sent the message, for example,
“http://www.wrox.com”.

source — A proxy for the window object of the document that sent the message. This
proxy object is used primarily to execute the postMessage() method on the window that
sent the last message. If the sending window has the same origin, this may be the actual
window object.

It’s very important when receiving a message to verify the origin of the sending window. Just
like specifying the second argument to postMessage() ensures that data doesn’t get passed
unintentionally to an unknown page, checking the origin during onmessage ensures that the
data being passed is coming from the right place. The basic pattern is as follows:

EventUtil.addHandler(window, “message”, function(event){

 //ensure the sender is expected
 if (event.origin == “http://www.wrox.com”){

 //do something with the data
 processMessage(event.data);

 //optional: send a message back to the original window
 event.source.postMessage(“Received!”, “http://p2p.wrox.com”);
 }
});

Keep in mind that event.source is a proxy for a window in most cases, not the actual window
object, so you can’t access all of the window information. It’s best to just use postMessage(),
which is always present and always callable.

There are a few quirks with XDM. First, the fi rst argument of postMessage() was initially
implemented as always being a string. The defi nition of that fi rst argument changed to allow any
structured data to be passed in; however, not all browsers have implemented this change. For
this reason, it’s best to always pass a string using postMessage(). If you need to pass structured
data, then the best approach is to call JSON.stringify() on the data, passing the string to
postMessage(), and then call JSON.parse() in the onmessage event handler.

➤

➤

➤

c16.indd 592c16.indd 592 12/8/11 10:42:22 AM12/8/11 10:42:22 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

XDM is extremely useful when trying to sandbox content using an iframe to a different domain.
This approach is frequently used in mashups and social networking applications. The containing
page is able to keep itself secure against malicious content by only communicating into an embedded
iframe via XDM. XDM can also be used with pages from the same domain.

XDM is supported in Internet Explorer 8+, Firefox 3.5+, Safari 4+, Opera, Chrome, Safari on iOS,
and WebKit on Android. XDM was separated out into its own specifi cation, which is now called
Web Messaging and is found at http://dev.w3.org/html5/postmsg/.

NATIVE DRAG AND DROP

Internet Explorer 4 fi rst introduced JavaScript support for drag-and-drop functionality for web
pages. At the time, only two items on a web page could initiate a system drag: an image or some text.
When dragging an image, you simply held the mouse button down and then moved it; with text, you
fi rst highlighted some text and then you could drag it the same way as you would drag an image.
In Internet Explorer 4, the only valid drop target was a text box. In version 5, Internet Explorer
extended its drag-and-drop capabilities by adding new events and allowing nearly anything on a web
page to become a drop target. Version 5.5 went a little bit further by allowing nearly anything to
become draggable. (Internet Explorer 6 supports this functionality as well.) HTML5 uses the
Internet Explorer drag-and-drop implementation as the basis for its drag-and-drop specifi cation.
Firefox 3.5, Safari 3+, and Chrome have also implemented native drag and drop according to the
HTML5 spec.

Perhaps the most interesting thing about drag-and-drop support is that elements can be dragged
across frames, browser windows, and sometimes, other applications. Drag-and-drop support in the
browser allows you to tap into that functionality.

Drag-and-Drop Events

The events provided for drag and drop enable you to control nearly every aspect of a drag-and-drop
operation. The tricky part is determining where each event is fi red: some fi re on the dragged item;
others fi re on the drop target. When an item is dragged, the following events fi re (in this order):

 1. dragstart

 2. drag

 3. dragend

At the moment you hold a mouse button down and begin to move the mouse, the dragstart event
fi res on the item that is being dragged. The cursor changes to the no-drop symbol (a circle with a
line through it), indicating that the item cannot be dropped on itself. You can use the ondragstart
event handler to run JavaScript code as the dragging begins.

After the dragstart event fi res, the drag event fi res and continues fi ring as long as the object is
being dragged. This is similar to mousemove, which also fi res repeatedly as the mouse is moved.
When the dragging stops (because you drop the item onto either a valid or an invalid drop target),
the dragend event fi res.

Native Drag and Drop ❘ 593

c16.indd 593c16.indd 593 12/8/11 10:42:23 AM12/8/11 10:42:23 AM

594 ❘ CHAPTER 16 HTML5 SCRIPTING

The target of all three events is the element that is being dragged. By default, the browser does not
change the appearance of the dragged element while a drag is happening, so it’s up to you to change
the appearance. Most browsers do, however, create a semitransparent clone of the element being
dragged that always stays immediately under the cursor.

When an item is dragged over a valid drop target, the following sequence of events occurs:

 1. dragenter

 2. dragover

 3. dragleave or drop

The dragenter event (similar to the mouseover event) fi res as soon as the item is dragged over the
drop target. Immediately after the dragenter event fi res, the dragover event fi res and continues
to fi re as the item is being dragged within the boundaries of the drop target. When the item is
dragged outside of the drop target, dragover stops fi ring and the dragleave event is fi red (similar
to mouseout). If the dragged item is actually dropped on the target, the drop event fi res instead of
dragleave. The target of these events is the drop target element.

Custom Drop Targets

When you try to drag something over an invalid drop target, you see a special cursor (a circle with
a line through it) indicating that you cannot drop. Even though all elements support the drop target
events, the default is to not allow dropping. If you drag an element over something that doesn’t
allow a drop, the drop event will never fi re regardless of the user action. However, you can turn any
element into a valid drop target by overriding the default behavior of both the dragenter and the
dragover events. For example, if you have a <div> element with an ID of “droptarget”, you can
use the following code to turn it into a drop target:

var droptarget = document.getElementById(“droptarget”);

EventUtil.addHandler(droptarget, “dragover”, function(event){
 EventUtil.preventDefault(event);
});

EventUtil.addHandler(droptarget, “dragenter”, function(event){
 EventUtil.preventDefault(event);
});

After making these changes, you’ll note that the cursor now indicates that a drop is allowed over
the drop target when dragging an element. Also, the drop event will fi re.

In Firefox 3.5+, the default behavior for a drop event is to navigate to the URL that was dropped
on the drop target. That means dropping an image onto the drop target will result in the page
navigating to the image fi le, and text that is dropped on the drop target results in an invalid URL
error. For Firefox support, you must also cancel the default behavior of the drop event to prevent
this navigation from happening:

EventUtil.addHandler(droptarget, “drop”, function(event){
 EventUtil.preventDefault(event);
});

c16.indd 594c16.indd 594 12/8/11 10:42:23 AM12/8/11 10:42:23 AM

The dataTransfer Object

Simply dragging and dropping isn’t of any use unless data is actually being affected. To aid
in the transmission of data via a drag-and-drop operation, Internet Explorer 5 introduced the
dataTransfer object, which exists as a property of event and is used to transfer string data from
the dragged item to the drop target. Because it is a property of event, the dataTransfer object
doesn’t exist except within the scope of an event handler for a drag-and-drop event. Within an
event handler, you can use the object’s properties and methods to work with your drag-and-drop
functionality. The dataTransfer object is now part of the working draft of HTML5.

The dataTransfer object has two primary methods: getData() and setData(). As you might
expect, getData() is capable of retrieving a value stored by setData(). The fi rst argument for
setData(), and the only argument of getData(), is a string indicating the type of data being set:
either “text” or “URL”, as shown here:

//working with text
event.dataTransfer.setData(“text”, “some text”);
var text = event.dataTransfer.getData(“text”);

//working with a URL
event.dataTransfer.setData(“URL”, “http://www.wrox.com/”);
var url = event.dataTransfer.getData(“URL”);

Even though Internet Explorer started out by introducing only “text” and “URL” as valid data types,
HTML5 extends this to allow any MIME type to be specifi ed. The values “text” and “URL” will
be supported by HTML5 for backwards compatibility, but they are mapped to “text/plain” and
“text/uri-list”.

The dataTransfer object can contain exactly one value of each MIME type, meaning that you
can store both text and a URL at the same time without overwriting either. The data stored in the
dataTransfer object is available only until the drop event. If you do not retrieve the data in the
ondrop event handler, the dataTransfer object is destroyed and the data is lost.

When you drag text from a text box, the browser calls setData() and stores the dragged text
in the “text” format. Likewise, when a link or image is dragged, setData() is called and the
URL is stored. It is possible to retrieve these values when the data is dropped on a target by using
getData(). You can also call setData() manually during the dragstart event to store custom data
that you may want to retrieve later.

There is a difference between data treated as text and data treated as a URL. When you specify data
to be stored as text, it gets no special treatment whatsoever. When you specify data to be stored as a
URL, however, it is treated just like a link on a web page, meaning that if you drop it onto another
browser window, the browser will navigate to that URL.

Firefox through version 5 doesn’t properly alias “url” to “text/uri-list” or “text” to “text/
plain”. It does, however, alias “Text” (uppercase T) to “text/plain”. For best cross-browser

Native Drag and Drop ❘ 595

c16.indd 595c16.indd 595 12/8/11 10:42:24 AM12/8/11 10:42:24 AM

http://www.wrox.com

596 ❘ CHAPTER 16 HTML5 SCRIPTING

compatibility of retrieving data from dataTransfer, you’ll need to check for two values for URLs
and use “Text” for plain text:

var dataTransfer = event.dataTransfer;

//read a URL
var url = dataTransfer.getData(“url”) ||dataTransfer.getData(“text/uri-list”);

//read text
var text = dataTransfer.getData(“Text”);

DataTransferExample01.htm

It’s important that the shortened data name be tried fi rst, because Internet Explorer through
version 10 doesn’t support the extended names and also throws an error when the data name isn’t
recognized.

dropEff ect and eff ectAllowed

The dataTransfer object can be used to do more than simply transport data to and fro; it can also
be used to determine what type of actions can be done with the dragged item and the drop target.
You accomplish this by using two properties: dropEffect and effectAllowed.

The dropEffect property is used to tell the browser which type of drop behaviors are allowed. This
property has the following four possible values:

“none” — A dragged item cannot be dropped here. This is the default value for everything
except text boxes.

“move” — The dragged item should be moved to the drop target.

“copy” — The dragged item should be copied to the drop target.

“link” — Indicates that the drop target will navigate to the dragged item (but only if it is
a URL).

Each of these values causes a different cursor to be displayed when an item is dragged over the drop
target. It is up to you, however, to actually cause the actions indicated by the cursor. In other words,
nothing is automatically moved, copied, or linked without your direct intervention. The only thing
you get for free is the cursor change. In order to use the dropEffect property, you must set it in the
ondragenter event handler for the drop target.

The dropEffect property is useless, unless you also set the effectAllowed. This property indicates
which dropEffect is allowed for the dragged item. The possible values are as follows:

“uninitialized” — No action has been set for the dragged item.

“none” — No action is allowed on the dragged item.

“copy” — Only dropEffect “copy” is allowed.

“link” — Only dropEffect “link” is allowed.

“move” — Only dropEffect “move” is allowed.

➤

➤

➤

➤

➤

➤

➤

➤

➤

c16.indd 596c16.indd 596 12/8/11 10:42:24 AM12/8/11 10:42:24 AM

“copyLink” — dropEffect “copy” and “link” are allowed.

“copyMove” — dropEffect “copy” and “move” are allowed.

“linkMove” — dropEffect “link” and “move” are allowed.

“all” — All dropEffect values are allowed.

This property must be set inside the ondragstart event handler.

Suppose that you want to allow a user to move text from a text box into a <div>. To accomplish
this, you must set both dropEffect and effectAllowed to “move”. The text won’t automatically
move itself, because the default behavior for the drop event on a <div> is to do nothing. If you
override the default behavior, the text is automatically removed from the text box. It is then up
to you to insert it into the <div> to fi nish the action. If you were to change dropEffect and
effectAllowed to “copy”, the text in the text box would not automatically be removed.

➤

➤

➤

➤

Firefox through version 5 has an issue with effectAllowed where the drop
event may not fi re when this value is set in code.

Draggability

By default, images, links, and text are draggable, meaning that no additional code is necessary to
allow a user to start dragging them. Text is draggable only after a section has been highlighted,
while images and links may be dragged at any point in time.

It is possible to make other elements draggable. HTML5 specifi es a draggable property on all
HTML elements indicating if the element can be dragged. Images and links have draggable
automatically set to true, whereas everything else has a default value of false. This property can
be set in order to allow other elements to be draggable or to ensure that an image or link won’t be
draggable. For example:

<!-- turn off dragging for this image -->

<!-- turn on dragging for this element -->
<div draggable=”true”>...</div>

The draggable attribute is supported in Internet Explorer 10+, Firefox 4+, Safari 5+, and Chrome.
Opera, as of version 11.5, does not support HTML5 drag and drop. In order for Firefox to initiate
the drag, you must also add an ondragstart event handler that sets some information on the
dataTransfer object.

Internet Explorer 9 and earlier allow you to make any element draggable by
calling the dragDrop() method on it during the mousedown event. Safari 4 and
earlier required the addition of a CSS style –khtml-user-drag: element to
make an element draggable.

Native Drag and Drop ❘ 597

c16.indd 597c16.indd 597 12/8/11 10:42:25 AM12/8/11 10:42:25 AM

598 ❘ CHAPTER 16 HTML5 SCRIPTING

Additional Members

The HTML5 specifi cation indicates the following additional methods on the dataTransfer object:

addElement(element) — Adds an element to the drag operation. This is purely for data
purposes and doesn’t affect the appearance of the drag operation. As of the time of this
writing, no browsers have implemented this method.

clearData(format) — Clears the data being stored with the particular format. This has
been implemented in Internet Explorer, Firefox 3.5+, Chrome, and Safari 4+.

setDragImage(element, x, y) — Allows you to specify an image to be displayed under
the cursor as the drag takes place. This method accepts three arguments: an HTML element
to display and the x- and y-coordinates on the image where the cursor should be positioned.
The HTML element may be an image, in which case the image is displayed, or any other
element, in which case a rendering of the element is displayed. Firefox 3.5+, Safari 4+, and
Chrome all support this method.

types — A list of data types currently being stored. This collection acts like an array and
stores the data types as strings such as “text”. Internet Explorer 10+, Firefox 3.5+, and
Chrome implemented this property.

MEDIA ELEMENTS

With the explosive popularity of embedded audio and video on the Web, most content producers
have been forced to use Flash for optimal cross-browser compatibility. HTML5 introduces two
media-related elements to enable cross-browser audio and video embedding into a browser baseline
without any plug-ins: <audio> and <video>.

Both of these elements allow web developers to easily embed media fi les into a page, as well as
provide JavaScript hooks into common functionality, allowing custom controls to be created for the
media. The elements are used as follows:

<!-- embed a video -->
<video src=”conference.mpg” id=”myVideo”>Video player not available.</video>

<!-- embed an audio file -->
<audio src=”song.mp3” id=”myAudio”>Audio player not available.</audio>

Each of these elements requires, at a minimum, the src attribute indicating the media fi le to load.
You can also specify width and height attributes to indicate the intended dimensions of the video
player and a poster attribute that is an image URI to display while the video content is being
loaded. The controls attribute, if present, indicates that the browser should display a UI enabling
the user to interact directly with the media. Any content between the opening and the closing tags is
considered alternate content to display if the media player is unavailable.

You may optionally specify multiple different media sources, because not all browsers support all
media formats. To do so, omit the src attribute from the element and instead include one or more
<source> elements, as in this example:

➤

➤

➤

➤

c16.indd 598c16.indd 598 12/8/11 10:42:40 AM12/8/11 10:42:40 AM

<!-- embed a video -->
<video id=”myVideo”>
 <source src=”conference.webm” type=”video/webm; codecs=’vp8, vorbis’”>
 <source src=”conference.ogv” type=”video/ogg; codecs=’theora, vorbis’”>
 <source src=”conference.mpg”>
 Video player not available.
</video>

<!-- embed an audio file -->
<audio id=”myAudio”>
 <source src=”song.ogg” type=”audio/ogg”>
 <source src=”song.mp3” type=”audio/mpeg”>
 Audio player not available.
</audio>

It’s beyond the scope of this book to discuss the various codecs used with video and audio, but
suffi ce to say that browsers support a varying range of codecs, so multiple source fi les are typically
required. The media elements are supported by Internet Explorer 9+, Firefox 3.5+, Safari 4+, Opera
10.5+, Chrome, Safari for iOS, and WebKit for Android.

Properties

The <video> and <audio> elements provide robust JavaScript interfaces. There are numerous
properties shared by both elements that can be evaluated to determine the current state of the
media, as described in the following table.

PROPERTY NAME DATA TYPE DESCRIPTION

autoplay Boolean Gets or sets the autoplay fl ag.

buffered TimeRanges An object indicating the buff ered time ranges that have

already been downloaded.

bufferedBytes ByteRanges An object indicating the buff ered byte ranges that have

already been downloaded.

bufferingRate Integer The average number of bits per second received from

the download.

bufferingThrottled Boolean Indicates if the buff ering has been throttled by the browser.

controls Boolean Gets or sets the controls attribute, which displays or

hides the browser’s built-in controls.

currentLoop Integer The number of loops that the media has played.

currentSrc String The URL for the currently playing media.

currentTime Float The number of seconds that have been played.

continues

Media Elements ❘ 599

c16.indd 599c16.indd 599 12/8/11 10:42:41 AM12/8/11 10:42:41 AM

600 ❘ CHAPTER 16 HTML5 SCRIPTING

PROPERTY NAME DATA TYPE DESCRIPTION

defaultPlaybackRate Float Gets or sets the default playback rate. By default, this is

1.0 seconds.

duration Float The total number of seconds for the media.

ended Boolean Indicates if the media has completely played.

loop Boolean Gets or sets whether the media should loop back to

the start when fi nished.

muted Boolean Gets or sets if the media is muted.

networkState Integer Indicates the current state of the network connection

for the media: 0 for empty, 1 for loading, 2 for loading

meta data, 3 for loaded fi rst frame, and 4 for loaded.

paused Boolean Indicates if the player is paused.

playbackRate Float Gets or sets the current playback rate. This may be

aff ected by the user causing the media to play faster or

slower, unlike defaultPlaybackRate, which remains

unchanged unless the developer changes it.

played TimeRanges The range of times that have been played thus far.

readyState Integer Indicates if the media is ready to be played. Values are

0 if the data is unavailable, 1 if the current frame can be

displayed, 2 if the media can begin playing, and 3 if the

media can play from beginning to end.

seekable TimeRanges The ranges of times that are available for seeking.

seeking Boolean Indicates that the player is moving to a new position in

the media fi le.

src String The media fi le source. This can be rewritten at any time.

start Float Gets or sets the location in the media fi le, in seconds,

where playing should begin.

totalBytes Integer The total number of bytes needed for the resource

(if known).

videoHeight Integer Returns the height of the video (not necessarily of

the element). Only for <video>.

videoWidth Integer Returns the width of the video (not necessarily of

the element). Only for <video>.

volume Float Gets or sets the current volume as a value between

0.0 and 1.0.

 (continued)

c16.indd 600c16.indd 600 12/8/11 10:42:41 AM12/8/11 10:42:41 AM

Many of these properties can also be specifi ed as attributes on either the <audio> or the <video> elements.

Events

In addition to the numerous properties, there are also numerous events that fi re on these media
elements. The events monitor all of the different properties that change because of media playback
and user interaction with the player. These events are listed in the following table.

EVENT NAME FIRES WHEN

abort Downloading has been aborted.

canplay Playback can begin; readyState is 2.

canplaythrough Playback can proceed and should be uninterrupted; readyState is 3.

canshowcurrentframe The current frame has been downloaded; readyState is 1.

dataunavailable Playback can’t happen because there’s no data; readyState is 0.

durationchange The duration property value has changed.

emptied The network connection has been closed.

empty An error occurs that prevents the media download.

ended The media has played completely through and is stopped.

error A network error occurred during download.

load All of the media has been loaded. This event is considered

deprecated; use canplaythrough instead.

loadeddata The fi rst frame for the media has been loaded.

loadedmetadata The meta data for the media has been loaded.

loadstart Downloading has begun.

pause Playback has been paused.

play The media has been requested to start playing.

playing The media has actually started playing.

progress Downloading is in progress.

ratechange The speed at which the media is playing has changed.

seeked Seeking has ended.

seeking Playback is being moved to a new position.

continues

Media Elements ❘ 601

c16.indd 601c16.indd 601 12/8/11 10:42:42 AM12/8/11 10:42:42 AM

602 ❘ CHAPTER 16 HTML5 SCRIPTING

These events are designed to be as specifi c as possible to enable web developers to create custom
audio/video players using little more than HTML and JavaScript (as opposed to creating a new
Flash movie).

Custom Media Players

You can manually control the playback of a media fi le, using the play() and pause() methods that
are available on both <audio> and <video>. Combining the properties, events, and these methods
makes it easy to create a custom media player, as shown in this example:

<div class=”mediaplayer”>
 <div class=”video”>
 <video id=”player” src=”movie.mov” poster=”mymovie.jpg”
 width=”300” height=”200”>
 Video player not available.
 </video>
 </div>
 <div class=”controls”>
 <input type=”button” value=”Play” id=”video-btn”>
 0/0
 </div>
</div>

VideoPlayerExample01.htm

This basic HTML can then be brought to life by using JavaScript to create a simple video player, as
shown here:

//get references to the elements
var player = document.getElementById(“player”),
 btn = document.getElementById(“video-btn”),
 curtime = document.getElementById(“curtime”),
 duration = document.getElementById(“duration”);

//update the duration
duration.innerHTML = player.duration;

//attach event handler to button

EVENT NAME FIRES WHEN

stalled The browser is trying to download, but no data is being received.

timeupdate The currentTime is updated in an irregular or unexpected way.

volumechange The volume property value or muted property value has changed.

waiting Playback is paused to download more data.

 (continued)

c16.indd 602c16.indd 602 12/8/11 10:42:42 AM12/8/11 10:42:42 AM

EventUtil.addHandler(btn, “click”, function(event){
 if (player.paused){
 player.play();
 btn.value = “Pause”;
 } else {
 player.pause();
 btn.value = “Play”;
 }
});

//update the current time periodically
setInterval(function(){
 curtime.innerHTML = player.currentTime;
}, 250);

VideoPlayerExample01.htm

The JavaScript code here simply attaches an event handler to the button that either pauses or plays
the video, depending on its current state. Then, an event handler is set for the <video> element’s
load event so that the duration can be displayed. Last, a repeating timer is set to update the current
time display. You can extend the behavior of this custom video player by listening for more events
and making use of more properties. The exact same code can also be used with the <audio> element
to create a custom audio player.

Codec Support Detection

As mentioned previously, not all browsers support all codecs for <video> and <audio>, which
frequently means you must provide more than one media source. There is also a JavaScript API for
determining if a given format and codec is supported by the browser. Both media elements have a
method called canPlayType(), which accepts a format/codec string and returns a string value of
“probably”, “maybe”, or “” (empty string). The empty string is a falsy value, which means you can
still use canPlayType() in an if statement like this:

if (audio.canPlayType(“audio/mpeg”)){
 //do something
}

Both “probably” and “maybe” are truthy values and so get coerced to true within the context of
an if statement.

When just a MIME type is provided to canPlayType(), the most likely return values are “maybe”
and the empty string. This is because a fi le is really just a container for audio or video data; it is the
encoding that really determines if the fi le can be played. When both a MIME type and a codec are
specifi ed, you increase the likelihood of getting “probably” as the return value. Some examples:

var audio = document.getElementById(“audio-player”);

//most likely “maybe”

Media Elements ❘ 603

c16.indd 603c16.indd 603 12/8/11 10:42:43 AM12/8/11 10:42:43 AM

604 ❘ CHAPTER 16 HTML5 SCRIPTING

if (audio.canPlayType(“audio/mpeg”)){
 //do something
}

//could be “probably”
if (audio.canPlayType(“audio/ogg; codecs=\”vorbis\””)){
 //do something
}

Note that the codecs list must always be enclosed in quotes to work properly. The following is a list
of known supported audio formats and codecs:

NAME STRING SUPPORTING BROWSERS

AAC audio/mp4; codecs=”mp4a.40.2” Internet Explorer 9+, Safari 4+, Safari for iOS

MP3 audio/mpeg Internet Explorer 9+, Chrome

Vorbis audio/ogg; codecs=”vorbis” Firefox 3.5+, Chrome, Opera 10.5+

WAV audio/wav; codecs=”1” Firefox 3.5+, Opera 10.5+, Chrome

You can also detect video formats using canPlayType() on any video element. The following is a
list of known supported video formats and codecs:

The Audio Type

The <audio> element also has a native JavaScript constructor called Audio to allow the playing of
audio at any point in time. The Audio type is similar to Image in that it is the equivalent of a DOM
element but doesn’t require insertion into the document to work. Just create a new instance and pass
in the audio source fi le:

var audio = new Audio(“sound.mp3”);
EventUtil.addHandler(audio, “canplaythrough”, function(event){
 audio.play();
});

Creating a new instance of Audio begins the process of downloading the specifi ed fi led. Once it’s
ready, you can call play() to start playing the audio.

NAME STRING SUPPORTING BROWSERS

H.264 video/mp4; codecs=”avc1.42E01E, mp4a.40.2” Internet Explorer 9+, Safari 4+,

Safari for iOS, WebKit for Android

Theora video/ogg; codecs=”theora” Firefox 3.5+, Opera 10.5, Chrome

WebM video/webm; codecs=”vp8, vorbis” Firefox 4+, Opera 10.6, Chrome

c16.indd 604c16.indd 604 12/8/11 10:42:43 AM12/8/11 10:42:43 AM

Calling the play() method on iOS causes a dialog to pop up asking for the user’s permission to play
the sound. In order to play one sound after another, you must call play() immediately within the
onfinish event handler.

HISTORY STATE MANAGEMENT

One of the most diffi cult aspects of modern web application programming is history management.
Gone are the days where every action takes a user to a completely new page, which also means that
the Back and Forward buttons have been taken away from users as a familiar way to say “get me
to a different state.” The fi rst step to solving that problem was the hashchange event (discussed in
Chapter 13). HTML5 updates the history object to provide easy state management.

Where the hashchange event simply let you know when the URL hash changed and expected you
to act accordingly, the state management API actually lets you change the browser URL without
loading a new page. To do so, use the history.pushState() method. This method accepts three
arguments: a data object, the title of the new state, and an optional relative URL. For example:

history.pushState({name:”Nicholas”}, “Nicholas’ page”, “nicholas.html”);

As soon as pushState() executes, the state information is pushed onto the history stack and the
browser’s address bar changes to refl ect the new relative URL. Despite this change, the browser does
not make a request to the server, even though querying location.href will return exactly what’s in
the address bar. The second argument isn’t currently used by any implementations and so it is safe
to either leave it as an empty string or provide a short title. The fi rst argument should contain all of
the information necessary to correctly initialize this page state when necessary.

Since pushState() creates a new history entry, you’ll notice that the Back button is enabled. When
the Back button is pressed, the popstate event fi res on the window object. The event object for
popstate has a property called state, which contains the object that was passed into pushState()
as the fi rst argument:

EventUtil.addHandler(window, “popstate”, function(event){
 var state = event.state;
 if (state){ //state is null when at first page load
 processState(state);
 }
});

Using this state, you must then reset the page into the state represented by the data in the state
object (as the browser doesn’t do this automatically for you). Keep in mind that when a page is fi rst
loaded, there is no state, so hitting the Back button until you get to the original page state will result
in event.state being null.

You can update the current state information by using replaceState() and passing in the same
fi rst two arguments as pushState(). Doing so does not create a new entry in history, it just
overwrites the current state:

history.replaceState({name:”Greg”}, “Greg’s page”);

History State Management ❘ 605

c16.indd 605c16.indd 605 12/8/11 10:42:44 AM12/8/11 10:42:44 AM

606 ❘ CHAPTER 16 HTML5 SCRIPTING

HTML5 history state management is supported in Firefox 4+, Safari 5+, Opera 11.5+, and Chrome.
In Safari and Chrome, the state object passed into pushState() or replaceState() must not
contain any DOM elements. Firefox properly supports putting DOM elements in the state object.
Opera also supports the history.state property, which returns the state object for the
current state.

SUMMARY

HTML5, in addition to defi ning new markup rules, also defi nes several JavaScript APIs. These APIs
are designed to enable better web interfaces that can rival the capabilities of desktop applications.
The APIs covered in this chapter are as follows:

Cross-document messaging provides the ability to send messages across documents from
different origins while keeping the security of the same-origin policy intact.

Native drag and drop allows you to easily indicate that an element is draggable and respond
as the operating system does to drops. You can create custom draggable elements and drop
targets.

The new media elements <audio> and <video> have their own APIs for interacting with the
audio and video. Not all media formats are supported by all browsers, so make use of the
canPlayType() method to properly detect browser support.

History state management allows you to change the browser history stack without
unloading the current page. This allows the user of the Back and Forward buttons to
move between page states that are handled purely by JavaScript.

➤

➤

➤

➤

When using HTML5 history state management, make sure that any “fake” URL
you create using pushState() is backed up by a real, physical URL on the web
server. Otherwise, hitting the Refresh button will result in a 404.

c16.indd 606c16.indd 606 12/8/11 10:42:44 AM12/8/11 10:42:44 AM

Error Handling and Debugging

WHAT’S IN THIS CHAPTER?

Understanding browser error reporting

Handling errors

Debugging JavaScript code

JavaScript has traditionally been known as one of the most diffi cult programming languages
to debug because of its dynamic nature and years without proper development tools. Errors
typically resulted in confusing browser messages such as “object expected” that provided
little or no contextual information. The third edition of ECMAScript aimed to improve this
situation, introducing the try-catch and throw statements, along with various error types to
help developers deal with errors when they occur. A few years later, JavaScript debuggers and
debugging tools began appearing for web browsers. By 2008, most web browsers supported
some JavaScript debugging capabilities.

Armed with the proper language support and development tools, web developers are
now empowered to implement proper error-handling processes and fi gure out the cause
of problems.

BROWSER ERROR REPORTING

All of the major web browsers — Internet Explorer, Firefox, Safari, Chrome, and Opera —
have some way to report JavaScript errors to the user. By default, all browsers hide this
information, because it’s of little use to anyone but the developer. When developing
browser-based JavaScript solutions, be sure to enable JavaScript error reporting to be
notifi ed when there is an error.

➤

➤

➤

17

c17.indd 607c17.indd 607 12/8/11 10:57:38 AM12/8/11 10:57:38 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

608 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

Internet Explorer

Internet Explorer is the only browser that displays a JavaScript error indicator in the browser’s
chrome by default. When a JavaScript error occurs, a small yellow icon appears in the lower-left
corner of the browser next to the text “Error on page”. The icon is easy to miss if you’re not
expecting it. When you double-click the icon, a dialog box is displayed containing the error message
and allowing you to see other related information, such as the line number, character number, error
code, and fi lename (which is always the URL you are viewing) (see Figure 17-1).

This default behavior is fi ne for general users but is
insuffi cient for web development. The settings can be
changed such that an error dialog is displayed every
time there is an error. To make this change, click
on the Tools menu, then Internet Options. When the
dialog box appears, click the Advanced tab and check
the box next to “Display a notifi cation about every
script error” (see Figure 17-2). Click OK to save
this setting.

After updating this setting, the dialog box that
is typically displayed when double-clicking the
yellow icon is shown by default whenever an
error occurs.

If script debugging is enabled (it is disabled by
default), and you have the browser set to
always display a notifi cation about errors,
then you may see an alternate dialog box
that asks if you’d like to debug the error
(see Figure 17-3).

To enable script debugging, you must fi rst have a
script debugger installed that is compatible with
Internet Explorer. (Versions 8 and 9 come bundled
with a debugger.) Debuggers are discussed later in
this chapter.

FIGURE 17-1

FIGURE 17-2

FIGURE 17-3

c17.indd 608c17.indd 608 12/8/11 10:57:41 AM12/8/11 10:57:41 AM

Firefox

By default, Firefox makes no changes to the user interface when a JavaScript error occurs. Instead,
it silently logs the error to the error console. Click on the Tools menu then Error Console to display
the error console (see Figure 17-4). Be aware that the error console also contains warnings and
information about JavaScript, CSS, and HTML, so it may be useful to fi lter the results.

Browser Error Reporting ❘ 609

In Internet Explorer 7 and earlier, the line number in the error message is
typically off by one when the error was caused by a script in an external fi le.
Errors caused by inline scripts have an accurate line number. Internet Explorer 8
and later fi xed this issue so all line numbers are accurate.

FIGURE 17-4

When a JavaScript error occurs, it gets logged as an error with an error message, the URL on which
the error occurred, and the line number. Clicking the fi lename opens a read-only view of the script
that caused the error with the offending line highlighted.

Firebug, arguably the most popular browser add-on for web developers, augments the default
Firefox JavaScript error behavior. Firebug, available at www.getfirebug.com, adds an area in the
bottom-right Firefox status bar for JavaScript information. By default, a green check mark icon is
displayed in this location. The icon changes to a red X when a JavaScript error occurs and displays
the number of errors. Clicking the red X opens the Firebug console, which displays the error
message, the line of code that caused the error (out of context), the URL where the error occurred,
and the line number (see Figure 17-5).

c17.indd 609c17.indd 609 12/8/11 10:57:42 AM12/8/11 10:57:42 AM

610 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

When the line that caused the error is clicked in Firebug, it opens a new Firebug view with the line
highlighted in the context of the entire script fi le.

FIGURE 17-5

Firebug has many more uses beyond displaying error messages. It is a full-featured
debugging environment for Firefox, providing ways to debug JavaScript, CSS, the
DOM, and network information.

Safari

Safari on both Windows and Mac OS hide all JavaScript error information by default. In order
to get access to this information, you must enable the Develop menu. To do so, choose Edit ➪

Preferences and then click the Advanced tab. There is a check box titled “Show develop menu in
menu bar” that should be checked. Once the setting is enabled, a menu named “Develop” appears
in the Safari menu bar (see Figure 17-6).

c17.indd 610c17.indd 610 12/8/11 10:57:52 AM12/8/11 10:57:52 AM

The Develop menu provides several options for debugging and otherwise working with the page
that is currently loaded. You can click Show Error Console to display a list of JavaScript and other
errors. The console displays the error message, the URL of the error, and the line number for
the error (see Figure 17-7).

FIGURE 17-6

FIGURE 17-7

Browser Error Reporting ❘ 611

c17.indd 611c17.indd 611 12/8/11 10:57:58 AM12/8/11 10:57:58 AM

612 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

When you click on the error message, you are taken to the source code that caused the error. Other
than outputting to the console, JavaScript errors cause no change in the Safari window.

Opera

Opera also hides JavaScript errors by default. All errors are logged to the error console, which can
be displayed by selecting the Page menu, then Page ➪ Developer Tools ➪ Error Console. As with
Firefox, the Opera error console contains information about not only JavaScript errors but also errors
or warnings for HTML, CSS, XML, XSLT, and a number of other sources. You can fi lter on the type
of messages you want to see by using the drop-down boxes in the lower-left corner (see Figure 17-8).

FIGURE 17-8

The error messages appear with information about
the URL that caused the error and the thread
in which the error occurred. In some cases, a stack
trace is also provided. There is no way to get
additional data about the error other than the
details displayed in the error console.

It’s possible to have the error console pop up
whenever a JavaScript error occurs. To do so,
go to the Settings menu and click Preferences.
Click the Advanced tab, and then select Content
from the left menu. Click the JavaScript Options
button to bring up the JavaScript Options
dialog box (shown in Figure 17-9). FIGURE 17-9

c17.indd 612c17.indd 612 12/8/11 10:57:58 AM12/8/11 10:57:58 AM

Ensure that the check box next to “Open console on error” is checked, and then click OK. The error
console will now pop up any time there is a JavaScript error. This can also be done on a per-site
basis by choosing Tools ➪ Quick Preferences ➪ Edit Site Preferences, selecting the Scripting tab, and
checking the “Open console on error” check box.

Chrome

As with Safari and Opera, Chrome hides JavaScript errors. All errors are logged to the Web Inspector
console. In order to access this information, you must manually open the Web Inspector. To do so,
click the “Control this page” button to the right of the address bar, and select Developer ➪ JavaScript
console (see Figure 17-10).

FIGURE 17-10

The Web Inspector contains information about the page and the JavaScript console. Errors are
displayed in the console with the error message, the URL of the error, and the line number for the
error (see Figure 17-11).

Browser Error Reporting ❘ 613

c17.indd 613c17.indd 613 12/8/11 10:57:59 AM12/8/11 10:57:59 AM

614 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

Clicking on the error in the JavaScript console takes you to the source code in the fi le that caused
the error.

ERROR HANDLING

No one doubts the importance of error handling in programming. Every major web application
needs a good error-handling protocol and most good ones do, though it is typically on the server
side of the application. In fact, great care is usually taken by the server-side team to defi ne an error-
logging mechanism that categorizes errors by type, frequency, and any other metric that may be
important. The result is the ability to understand how the application is working in the public with
a simple database query or report-generating script.

Error handling has slowly been adopted on the browser side of web applications even though it is
just as important. An important fact to understand is that most people who use the Web are not
technically savvy — most don’t even fully comprehend what a web browser is, let alone which one
they’re using. As described earlier in this chapter, each browser behaves a little bit differently when
a JavaScript error occurs. From a small icon appearing in the corner of a browser to absolutely
nothing happening, the default browser experience for JavaScript errors is horrible for the end

FIGURE 17-11

c17.indd 614c17.indd 614 12/8/11 10:57:59 AM12/8/11 10:57:59 AM

user. In the best case, the user has no idea what happened and will try again; in the worst case, the
user gets incredibly annoyed and never comes back. Having a good error-handling strategy keeps
your users informed about what is going on without scaring them. To accomplish this, you must
understand the various ways that you can trap and deal with JavaScript errors as they occur.

The try-catch Statement

ECMA-262, third edition, introduced the try-catch statement as a way to handle exceptions in
JavaScript. The basic syntax is as follows, which is the same as the try-catch statement in Java:

try {
 //code that may cause an error
} catch (error) {
 //what to do when an error occurs
}

Any code that might possibly throw an error should be placed in the try portion of the statement,
and the code to handle the error is placed in the catch portion, as shown in the following example:

try {
 window.someNonexistentFunction();
} catch (error){
 alert(“An error happened!”);
}

If an error occurs at any point in the try portion of the statement, code execution immediately
exits and resumes in the catch portion. The catch portion of the statement receives an object
containing information about the error that occurred. Unlike other languages, you must defi ne a
name for the error object even if you don’t intend to use it. The exact information available on this
object varies from browser to browser but contains, at a minimum, a message property that holds
the error message. ECMA-262 also specifi es a name property that defi nes the type of error; this
property is available in all current browsers. You can, therefore, display the actual browser message
if necessary, as shown in the following example:

try {
 window.someNonexistentFunction();
} catch (error){
 alert(error.message);
}

TryCatchExample01.htm

This example uses the message property when displaying an error message to the user. The message
property is the only one that is guaranteed to be there across Internet Explorer, Firefox, Safari,
Chrome, and Opera, even though each browser adds other information. Internet Explorer adds a
description property that is always equal to the message, as well as a number property that gives
an internal error number. Firefox adds fileName, lineNumber, and stack (which contains a stack
trace). Safari adds line (for the line number), sourceId (an internal error code), and sourceURL.
Once again, it is best to rely only on the message property for cross-browser compatibility.

Error Handling ❘ 615

c17.indd 615c17.indd 615 12/8/11 10:57:59 AM12/8/11 10:57:59 AM

616 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

The fi nally Clause

The optional finally clause of the try-catch statement always runs its code no matter what.
If the code in the try portion runs completely, the finally clause executes; if there is an error and
the catch portion executes, the finally portion still executes. There is literally nothing that can be
done in the try or catch portion of the statement to prevent the code in finally from executing,
which includes using a return statement. Consider the following function:

function testFinally(){
 try {
 return 2;
 } catch (error){
 return 1;
 } finally {
 return 0;
 }
}

TryCatchExample02.htm

This function simply places a return statement in each portion of the try-catch statement. It
looks like the function should return 2, since that is in the try portion and wouldn’t cause an error.
However, the presence of the finally clause causes that return to be ignored; the function returns
0 when called no matter what. If the finally clause were removed, the function would return 2.

If finally is provided, then catch becomes optional (only one or the other is required). Internet
Explorer 7 and earlier had a bug where the code in finally would never be executed unless
there was also a catch. If you are still dealing with earlier versions of Internet Explorer, then the
workaround is to also provide a catch clause even if it is empty. This was fi xed in version 8.

It’s very important to understand that any return statements in either the try or
the catch portion will be ignored if a fi nally clause is also included in your code.
Be sure to double-check the intended behavior of your code when using fi nally.

Error Types

There are several different types of errors that can occur during the course of code execution. Each
error type has a corresponding object type that is thrown when an error occurs. ECMA-262 defi nes
the following seven error types:

Error

EvalError

RangeError

ReferenceError

➤

➤

➤

➤

c17.indd 616c17.indd 616 12/8/11 10:58:00 AM12/8/11 10:58:00 AM

SyntaxError

TypeError

URIError

The Error type is the base type from which all other error types inherit. As a result of this, all error
types share the same properties (the only methods on error objects are the default object methods).
An error of type Error is rarely, if ever, thrown by a browser; it is provided mainly for developers to
throw custom errors.

The EvalError type is thrown when an exception occurs while using the eval() function.
ECMA-262 states that this error is thrown “if value of the eval property is used in any way other
than a direct call (that is, other than by the explicit use of its name as an Identifier, which is the
MemberExpression in a CallExpression), or if the eval property is assigned to.” This basically
means using eval() as anything other than a function call, such as:

new eval(); //throws EvalError
eval = foo; //throws EvalError

In practice, browsers don’t always throw EvalError when they’re supposed to. For example, Firefox
4+ and Internet Explorer 8 throw an TypeError in the fi rst case but the second succeeds without
error. Because of this and the unlikelihood of these patterns being used, it is highly unlikely that you
will run into this error type.

A RangeError occurs when a number is outside the bounds of its range. For example, this error
may occur when an attempt is made to defi ne an array with an unsupported number of items,
such as –20 or Number.MAX_VALUE, as shown here:

var items1 = new Array(-20); //throws RangeError
var items2 = new Array(Number.MAX_VALUE); //throws RangeError

Range errors occur infrequently in JavaScript.

The ReferenceError type is used when an object is expected. (This is literally the cause of the
famous “object expected” browser error.) This type of error typically occurs when attempting to
access a variable that doesn’t exist, as in this example:

var obj = x; //throws ReferenceError when x isn’t declared

A SyntaxError object is thrown most often when there is a syntax error in a JavaScript string that
is passed to eval(), as in this example:

eval(“a ++ b”); //throws SyntaxError

Outside of using eval(), the SyntaxError type is rarely used, because syntax errors occurring in
JavaScript code stop execution immediately.

The TypeError type is the most used in JavaScript and occurs when a variable is of an unexpected
type or an attempt is made to access a nonexistent method. This can occur for any number of

➤

➤

➤

Error Handling ❘ 617

c17.indd 617c17.indd 617 12/8/11 10:58:06 AM12/8/11 10:58:06 AM

618 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

reasons, most often when a type-specifi c operation is used with a variable of the wrong type. Here
are some examples:

var o = new 10; //throws TypeError
alert(“name” in true); //throws TypeError
Function.prototype.toString.call(“name”); //throws TypeError

Type errors occur most frequently with function arguments that are used without their type being
verifi ed fi rst.

The last type of error is URIError, which occurs only when using the encodeURI() or decodeURI()
with a malformed URI. This error is perhaps the most infrequently observed in JavaScript, because
these functions are incredibly robust.

The different error types can be used to provide more information about an exception, allowing
appropriate error handling. You can determine the type of error thrown in the catch portion of a
try-catch statement by using the instanceof operator, as shown here:

try {
 someFunction();
} catch (error){
 if (error instanceof TypeError){
 //handle type error
 } else if (error instanceof ReferenceError){
 //handle reference error
 } else {
 //handle all other error types
 }
}

Checking the error type is the easiest way to determine the appropriate course of action in a
cross-browser way, since the error message contained in the message property differs from browser
to browser.

Usage of try-catch

When an error occurs within a try-catch statement, the browser considers the error to have been
handled, and so it won’t report it using the mechanisms discussed earlier in this chapter. This
is ideal for web applications with users who aren’t technically inclined and wouldn’t otherwise
understand when an error occurs. The try-catch statement allows you to implement your own
error-handling mechanism for specifi c error types.

The try-catch statement is best used where an error might occur that is out of your control. For
example, if you are using a function that is part of a larger JavaScript library, that function may
throw errors either purposefully or by mistake. Since you can’t modify the library’s code, it would
be appropriate to surround the call in a try-catch statement in case an error does occur and then
handle the error appropriately.

It’s not appropriate to use a try-catch statement if you know an error will occur with your code
specifi cally. For example, if a function will fail when a string is passed in instead of a number, you

c17.indd 618c17.indd 618 12/8/11 10:58:06 AM12/8/11 10:58:06 AM

should check the data type of the argument and act accordingly; there is no need in this case to use a
try-catch statement.

Throwing Errors

A companion to the try-catch statement is the throw operator, which can be used to throw custom
errors at any point in time. The throw operator must be used with a value but places no limitation
on the type of value. All of the following lines are legal:

throw 12345;
throw “Hello world!”;
throw true;
throw { name: “JavaScript”};

When the throw operator is used, code execution stops immediately and continues only if a try-
catch statement catches the value that was thrown.

Browser errors can be more accurately simulated by using one of the built-in error types. Each error
type’s constructor accepts a single argument, which is the exact error message. Here is an example:

throw new Error(“Something bad happened.”);

This code throws a generic error with a custom error message. The error is handled by the browser
as if it were generated by the browser itself, meaning that it is reported by the browser in the usual
way and your custom error message is displayed. You can achieve the same result using the other
error types, as shown in these examples:

throw new SyntaxError(“I don’t like your syntax.”);
throw new TypeError(“What type of variable do you take me for?”);
throw new RangeError(“Sorry, you just don’t have the range.”);
throw new EvalError(“That doesn’t evaluate.”);
throw new URIError(“Uri, is that you?”);
throw new ReferenceError(“You didn’t cite your references properly.”);

The most often used error types for custom error messages are Error, RangeError,
ReferenceError, and TypeError.

You can also create custom error types by inheriting from Error using prototype chaining
(discussed in Chapter 6). You should provide both a name property and a message property on your
error type. Here is an example:

function CustomError(message){
 this.name = “CustomError”;
 this.message = message;
}

CustomError.prototype = new Error();

throw new CustomError(“My message”);

ThrowingErrorsExample01.htm

Error Handling ❘ 619

c17.indd 619c17.indd 619 12/8/11 10:58:07 AM12/8/11 10:58:07 AM

620 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

Custom error types that are inherited from Error are treated just like any other error by the
browser. Creating custom error types is helpful when you will be catching the errors that you throw
and need to decipher them from browser-generated errors.

Internet Explorer displays custom error messages only when throwing Error
objects. For all other types, it simply displays “exception thrown and not
caught”.

When to Throw Errors

Throwing custom errors is a great way to provide more information about why a function has
failed. Errors should be thrown when a particular known error condition exists that won’t allow the
function to execute properly. That is, the browser will throw an error while executing this function
given a certain condition. For example, the following function will fail if the argument is not an
array:

function process(values){
 values.sort();

 for (var i=0, len=values.length; i < len; i++){
 if (values[i] > 100){
 return values[i];
 }
 }

 return -1;
}

ThrowingErrorsExample02.htm

If this function is run with a string as the argument, the call to sort() fails. Each browser gives a
different, though somewhat obtuse, error message, as listed here:

Internet Explorer — Property or method doesn’t exist.

Firefox — values.sort() is not a function.

Safari — Value undefi ned (result of expression values.sort) is not an object.

Chrome — Object name has no method ‘sort’.

Opera — Type mismatch (usually a non-object value used where an object is required).

Although Firefox, Chrome, and Safari at least indicate the part of the code that caused the error,
none of the error messages are particularly clear as to what happened or how it could be fi xed.
When dealing with one function, as in the preceding example, debugging is easy enough to handle
with these error messages. However, when you’re working on a complex web application with
thousands of lines of JavaScript code, fi nding the source of the error becomes much more diffi cult.

➤

➤

➤

➤

➤

c17.indd 620c17.indd 620 12/8/11 10:58:07 AM12/8/11 10:58:07 AM

This is where a custom error with appropriate information will signifi cantly contribute to the
maintainability of the code. Consider the following example:

function process(values){

 if (!(values instanceof Array)){
 throw new Error(“process(): Argument must be an array.”);
 }

 values.sort();

 for (var i=0, len=values.length; i < len; i++){
 if (values[i] > 100){
 return values[i];
 }
 }

 return -1;
}

ThrowingErrorsExample02.htm

In this rewritten version of the function, an error is thrown if the values argument isn’t an array.
The error message provides the name of the function and a clear description as to why the error
occurred. If this error occurred in a complex web application, you would have a much clearer idea
of where the real problem is.

When you’re developing JavaScript code, take a critical eye toward each function and the
circumstances under which it may fail. A good error-handling protocol ensures that the only errors
that occur are the ones that you throw.

Using instanceof to identify arrays has some issues when used in a cross-frame
environment. See Safe Type Detection in Chapter 22 for more details.

Throwing Errors versus try-catch

A common question that arises is when to throw errors versus when to use try-catch to capture
them. Generally speaking, errors are thrown in the low levels of an application architecture, at a
level where not much is known about the ongoing process, and so the error can’t really be handled.
If you are writing a JavaScript library that may be used in a number of different applications, or
even a utility function that will be used in a number of different places in a single application, you
should strongly consider throwing errors with detailed information. It is then up to the application
to catch the errors and handle them appropriately.

The best way to think about the difference between throwing errors and catching errors is this: you
should catch errors only if you know exactly what to do next. The purpose of catching an error is

Error Handling ❘ 621

c17.indd 621c17.indd 621 12/8/11 10:58:18 AM12/8/11 10:58:18 AM

622 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

to prevent the browser from responding in its default manner; the purpose of throwing an error is to
provide information about why an error occurred.

The error Event

Any error that is not handled by a try-catch causes the error event to fi re on the window object.
This event was one of the fi rst supported by web browsers, and its format has remained intact
for backwards compatibility in Internet Explorer, Firefox, and Chrome. (The error event is not
supported in Opera or Safari.) An onerror event handler doesn’t create an event object in any
browser, instead, it receives three arguments: the error message, the URL on which the error
occurred, and the line number. In most cases, only the error message is relevant since the URL is
the same as the location of the document, and the line number could be for inline JavaScript or code
in external fi les. The onerror event handler needs to be assigned using the DOM Level 0 technique
shown here, since it doesn’t follow the DOM Level 2 Events standard format:

window.onerror = function(message, url, line){
 alert(message);
};

When any error occurs, whether browser-generated or not, the error event fi res, and this event handler
executes. Then, the default browser behavior takes over, displaying the error message as it would
normally. You can prevent the default browser error reporting by returning false, as shown here:

window.onerror = function(message, url, line){
 alert(message);
 return false;
};

OnErrorExample01.htm

By returning false, this function effectively becomes a try-catch statement for the entire
document, capturing all unhandled runtime errors. This event handler is the last line of defense
against errors being reported by the browser and, ideally, should never have to be used. Proper
usage of the try-catch statement means that no errors reach the browser level and, therefore,
should never fi re the error event.

There is a signifi cant difference between the way browsers handle errors using
this event. When the error event occurs in Internet Explorer, normal code
execution continues; all variables and data are retained and remain accessible
from within the onerror event handler. In Firefox, however, normal code
execution ends, and all variables and data that existed prior to the error
occurring are destroyed, making it diffi cult to truly evaluate the error.

c17.indd 622c17.indd 622 12/8/11 10:58:23 AM12/8/11 10:58:23 AM

Images also support an error event. Any time the URL in an image’s src attribute doesn’t return a
recognized image format, the error event fi res. This event follows the DOM format by returning an
event object with the image as the target. Here is an example:

var image = new Image();
EventUtil.addHandler(image, “load”, function(event){
 alert(“Image loaded!”);
});
EventUtil.addHandler(image, “error”, function(event){
 alert(“Image not loaded!”);
});
image.src = “smilex.gif”; //doesn’t exist

OnErrorExample02.htm

In this example, an alert is displayed when the image fails to load. It’s important to understand that
once the error event fi res, the image download process is already over and will not be resumed.

Error-Handling Strategies

Error-handling strategies have traditionally been confi ned to the server for web applications. There’s
often a lot of thought that goes into errors and error handling, including logging and monitoring
systems. The point of such tools is to analyze error patterns in the hopes of tracking down the root
cause and understanding how many users the error affects.

It is equally important to have an error-handling strategy for the JavaScript layer of a web
application. Since any JavaScript error can cause a web page to become unusable, understanding
when and why errors occur is vital. Most web-application users are not technical and can easily
get confused when something doesn’t work as expected. They may reload the page in an attempt
to fi x the problem, or they may just stop trying. As the developer, you should have a good
understanding of when and how the code could fail and have a system to track such issues.

Identify Where Errors Might Occur

The most important part of error handling is to fi rst identify where errors might occur in the code.
Since JavaScript is loosely typed and function arguments aren’t verifi ed, there are often errors that
become apparent only when the code is executed. In general, there are three error categories to
watch for:

Type coercion errors

Data type errors

Communication errors

Each of these errors occurs when using specifi c patterns or not applying suffi cient value checking.

➤

➤

➤

Error Handling ❘ 623

c17.indd 623c17.indd 623 12/8/11 10:58:28 AM12/8/11 10:58:28 AM

624 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

Type Coercion Errors

Type coercion errors occur as the result of using an operator or other language construct that
automatically changes the data type of a value. The two most common type coercion errors occur
as a result of using the equal (==) or not equal (!=) operator and using a non-Boolean value in a fl ow
control statement, such as if, for, and while.

The equal and not equal operators, discussed in Chapter 3, automatically convert values of
different types before performing a comparison. Since the same symbols typically perform straight
comparisons in nondynamic languages, developers often mistakenly use them in JavaScript in the
same way. In most cases, it’s best to use the identically equal (===) and not identically equal (!==)
operators to avoid type coercion. Here is an example:

alert(5 == “5”); //true
alert(5 === “5”); //false
alert(1 == true); //true
alert(1 === true); //false

In this code, the number 5 and the string “5” are compared using the equal operator and the
identically equal operator. The equal operator fi rst converts the string “5” into the number 5 and
then compares it with the other number 5, resulting in true. The identically equal operator notes
that the two data types are different and simply returns false. The same occurs with the values 1
and true: they are considered equal by the equal operator but not equal using the identically equal
operator. Using the identically equal and not identically equal operators can prevent type coercion
errors that occur during comparisons and are highly recommended over using the equal and not
equal operators.

The second place that type coercion errors occur is in fl ow control statements. Statements such as if
automatically convert any value into a Boolean before determining the next step. The if statement,
specifi cally, is often used in error-prone ways. Consider the following example:

function concat(str1, str2, str3){
 var result = str1 + str2;
 if (str3){ //avoid!!!
 result += str3;
 }
 return result;
}

This function’s intended purpose is to concatenate two or three strings and return the result. The
third string is an optional argument and so must be checked. As mentioned in Chapter 3, named
variables that aren’t used are automatically assigned the value of undefined. The value undefined
converts into the Boolean value false, so the intent of the if statement in this function is to
concatenate the third argument only if it is provided. The problem is that undefined is not the only
value that gets converted to false, and a string is not the only value that gets converted to true. If
the third argument is the number 0, for example, the if condition fails, while a value of 1 causes the
condition to pass.

c17.indd 624c17.indd 624 12/8/11 10:58:29 AM12/8/11 10:58:29 AM

Using non-Boolean values as conditions in a fl ow control statement is a very common cause of
errors. To avoid such errors, always make sure that a Boolean value is passed as the condition. This
is most often accomplished by doing a comparison of some sort. For example, the previous function
can be rewritten as shown here:

function concat(str1, str2, str3){
 var result = str1 + str2;
 if (typeof str3 == “string”){ //proper comparison
 result += str3;
 }
 return result;
}

In this updated version of the function, the if statement condition returns a Boolean value based on
a comparison. This function is much safer and is less affected by incorrect values.

Data Type Errors

Since JavaScript is loosely typed, variables and function arguments aren’t compared to ensure that
the correct type of data is being used. It is up to you, as the developer, to do an appropriate amount
of data type checking to ensure that an error will not occur. Data type errors most often occur as a
result of unexpected values being passed into a function.

In the previous example, the data type of the third argument is checked to ensure that it’s a string,
but the other two arguments aren’t checked at all. If the function must return a string, then passing
in two numbers and omitting the third argument easily breaks it. A similar situation is present in
the following function:

//unsafe function, any non-string value causes an error
function getQueryString(url){
 var pos = url.indexOf(“?”);
 if (pos > -1){
 return url.substring(pos +1);
 }
 return “”;
}

The purpose of this function is to return the query string of a given URL. To do so, it fi rst looks for
a question mark in the string using indexOf() and, if found, returns everything after the question
mark using the substring() method. The two methods used in this example are specifi c to strings,
so any other data type that is passed in will cause an error. The following simple type check makes
this function less error prone:

function getQueryString(url){
 if (typeof url == “string”){ //safer with type check
 var pos = url.indexOf(“?”);
 if (pos > -1){
 return url.substring(pos +1);
 }
 }
 return “”;
}

Error Handling ❘ 625

c17.indd 625c17.indd 625 12/8/11 10:58:30 AM12/8/11 10:58:30 AM

626 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

In this rewritten version of the function, the fi rst step is to check that the value passed in is actually
a string. This ensures that the function will never cause an error because of a nonstring value.

As discussed in the previous section, using non-Boolean values as conditions for fl ow control
statements is a bad idea because of type coercion. This is also a bad practice that can cause data
type errors. Consider the following function:

//unsafe function, non-array values cause an error
function reverseSort(values){
 if (values){ //avoid!!!
 values.sort();
 values.reverse();
 }
}

The reverseSort() function sorts an array in reverse order, using both the sort() and the
reverse() methods. Because of the control condition in the if statement, any nonarray value that
converts to true will cause an error. Another common mistake is to compare the argument against
null, as in this example:

//still unsafe, non-array values cause an error
function reverseSort(values){
 if (values != null){ //avoid!!!
 values.sort();
 values.reverse();
 }
}

Comparing a value against null only protects the code from two values: null and undefined
(which are equivalent to using the equal and not equal operators). A null comparison doesn’t do
enough to ensure that the value is appropriate; therefore, this technique should be avoided. It’s also
recommended that you don’t compare a value against undefined, for the same reason.

Another poor choice is to use feature detection for only one of the features being used. Here is
an example:

//still unsafe, non-array values cause an error
function reverseSort(values){
 if (typeof values.sort == “function”){ //avoid!!!
 values.sort();
 values.reverse();
 }
}

In this example, the code checks for the existence of a sort() method on the argument. This leaves
open the possibility that an object may be passed in with a sort() function that is not an array,
in which case the call to reverse() causes an error. When you know the exact type of object that
is expected, it’s best to use instanceof, as shown in the following example, to determine that the
value is of the right type:

//safe, non-array values are ignored
function reverseSort(values){

c17.indd 626c17.indd 626 12/8/11 10:58:30 AM12/8/11 10:58:30 AM

 if (values instanceof Array){ //fi xed
 values.sort();
 values.reverse();
 }
}

This last version of reverseSort() is safe — it tests the values argument to see if it’s an instance of
Array. In this way, the function is assured that any nonarray values are ignored.

Generally speaking, values that should be primitive types should be checked using typeof, and
values that should be objects should be checked using instanceof. Depending on how a function is
being used, it may not be necessary to check the data type of every argument, but any public-facing
APIs should defi nitely perform type checking to ensure proper execution.

Communication Errors

Since the advent of Ajax programming (discussed in Chapter 21), it has become quite common for
web applications to dynamically load information or functionality throughout the application’s
life cycle. Any communication between JavaScript and the server is an opportunity for an error
to occur.

The fi rst type of communication error involves malformed URLs or post data. This typically
occurs when data isn’t encoded using encodeURIComponent() before being sent to the server. The
following URL, for example, isn’t formed correctly:

http://www.yourdomain.com/?redir=http://www.someotherdomain.com?a=b&c=d

This URL can be fi xed by using encodeURIComponent() on everything after “redir=”, which
produces the following result:

http://www.example.com/?redir=http%3A%2F%2Fwww.someotherdomain.com%3Fa%3Db%26c%3Dd

The encodeURIComponent() method should always be used for query string arguments. To ensure
that this happens, you will fi nd it’s sometimes helpful to defi ne a function that handles query string
building, such as the following:

function addQueryStringArg(url, name, value){
 if (url.indexOf(“?”) == -1){
 url += “?”;
 } else {
 url += “&”;
 }

 url += encodeURIComponent(name) + “=” + encodeURIComponent(value);
 return url;
}

This function accepts three arguments: the URL to append the query string argument to, the name
of the argument, and the argument value. If the URL that’s passed in doesn’t contain a question

Error Handling ❘ 627

c17.indd 627c17.indd 627 12/8/11 10:58:31 AM12/8/11 10:58:31 AM

628 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

mark, then one is added; otherwise, an ampersand is added because this means there are other
query string arguments. The query string name and value are then encoded and added to the URL.
The function can be used as in the following example:

var url = “http://www.somedomain.com”;
var newUrl = addQueryStringArg(url, “redir”,
 “http://www.someotherdomain.com?a=b&c=d”);
alert(newUrl);

Using this function instead of manually building URLs can ensure proper encoding and avoid errors
related to it.

Communication errors also occur when the server response is not as expected. When using dynamic
script loading or dynamic style loading, as discussed in Chapter 10, there is the possibility that the
requested resource is not available. Firefox, Chrome, and Safari fail silently when a resource isn’t
returned, whereas Internet Explorer and Opera both error out. Unfortunately, there is little you can
do when using these techniques to determine that an error has occurred. In some cases, using Ajax
communication can provide additional information about error conditions.

Communication errors can also occur when using Ajax communication. Issues
and errors surrounding Ajax are discussed in Chapter 21.

Distinguishing between Fatal and Nonfatal Errors

One of the most important parts of any error-handling strategy is to determine whether or not an
error is fatal. One or more of the following identifi es a nonfatal error:

It won’t interfere with the user’s main tasks.

It affects only a portion of the page.

Recovery is possible.

Repeating the action may result in success.

In essence, nonfatal errors aren’t a cause for concern. For example, Yahoo! Mail (http://mail.yahoo
.com) has a feature that allows users to send SMS messages from the interface. If for some reason SMS
messages don’t work, it’s a nonfatal error, because that is not the application’s primary function. The
primary use case for Yahoo! Mail is to read and write e-mail messages, and as long as the user can do
that, there is no reason to interrupt the user experience. Nonfatal errors don’t require you to send an
explicit message to the user — you may be able to replace the area of the page that is affected with a
message indicating that the functionality isn’t available, but it’s not necessary to interrupt the user.

Fatal errors, on the other hand, are identifi ed by one or more of the following:

The application absolutely cannot continue.

The error signifi cantly interferes with the user’s primary objective.

Other errors will occur as a result.

➤

➤

➤

➤

➤

➤

➤

c17.indd 628c17.indd 628 12/8/11 10:58:31 AM12/8/11 10:58:31 AM

It’s vitally important to understand when a fatal error occurs in JavaScript so appropriate action can
be taken. When a fatal error occurs, you should send a message to the users immediately to let them
know that they will not be able to continue what they were doing. If the page must be reloaded for
the application to work, then you should tell the user this and provide a button that automatically
reloads the page.

You must also make sure that your code doesn’t dictate what is and is not a fatal error. Nonfatal
and fatal errors are primarily indicated by their affect on the user. Good code design means that
an error in one part of the application shouldn’t unnecessarily affect another part that, in reality,
isn’t related at all. For example, consider a personalized home page, such as My Yahoo! (http://
my.yahoo.com), that has multiple independent modules on the page. If each module has to be
initialized using a JavaScript call, you may see code that looks something like this:

for (var i=0, len=mods.length; i < len; i++){
 mods[i].init(); //possible fatal error
}

On its surface, this code appears fi ne: the init() method is called on each module. The problem is
that an error in any module’s init() method will cause all modules that come after it in the array
to never be initialized. If the error occurs on the fi rst module, then none of the modules on the page
will be initialized. Logically, this doesn’t make sense, because each module is an independent entity
that isn’t reliant on any other module for its functionality. It’s the structure of the code that makes
this type of error fatal. Fortunately, the code can be rewritten as follows to make an error in any
one module nonfatal:

for (var i=0, len=mods.length; i < len; i++){
 try {
 mods[i].init();
 } catch (ex){
 //handle error here
 }
}

By adding a try-catch statement into the for loop, any error when a module initializes will not
prevent other modules from initializing. When an error occurs in this code, it can be handled
independently and in a way that doesn’t interfere with the user experience.

Log Errors to the Server

A common practice in web applications is to have a centralized error log where important errors
are written for tracking purposes. Database and server errors are regularly written to the log and
categorized through some common API. With complex web applications, it’s recommended
that you also log JavaScript errors back to the server. The idea is to log the errors into the same
system used for server-side errors and categorize them as having come from the front end. Using
the same system allows for the same analytics to be performed on the data regardless of the
error’s source.

Error Handling ❘ 629

c17.indd 629c17.indd 629 12/8/11 10:58:36 AM12/8/11 10:58:36 AM

630 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

To set up a JavaScript error-logging system, you’ll fi rst need a page or entry point on the server that
can handle the error data. The page need not do anything more than take data from the query string
and save it to an error log. This page can then be used with code such as the following:

function logError(sev, msg){
 var img = new Image();
 img.src = “log.php?sev=” + encodeURIComponent(sev) + “&msg=” +
 encodeURIComponent(msg);
}

The logError() function accepts two arguments: a severity and the error message. The severity
may be numbers or strings, depending on the system you’re using. An Image object is used to send
the request because of its fl exibility, as described here:

The Image object is available in all browsers, even those that don’t support the
XMLHttpRequest object.

Cross-domain restrictions don’t apply. Often there is one server responsible for handling
error logging from multiple servers, and XMLHttpRequest would not work in that situation.

There’s less of a chance that an error will occur in the process of logging the error. Most
Ajax communication is handled through functionality wrappers provided by JavaScript
libraries. If that library’s code fails, and you’re trying to use it to log the error, the message
may never get logged.

Whenever a try-catch statement is used, it’s likely that the error should be logged. Here is an example:

for (var i=0, len=mods.length; i < len; i++){
 try {
 mods[i].init();
 } catch (ex){
 logError(“nonfatal”, “Module init failed: “ + ex.message);
 }
}

In this code, logError() is called when a module fails to initialize. The fi rst argument is
“nonfatal”, indicating the severity of the error, and the message provides contextual information
plus the true JavaScript error message. Error messages that are logged to the server should provide
as much contextual information as possible to help identify the exact cause of the error.

DEBUGGING TECHNIQUES

Before JavaScript debuggers were readily available, developers had to use creative methods to debug
their code. This led to the placement of code specifi cally designed to output debugging information
in one or more ways. The most common debugging technique was to insert alerts throughout the
code in question, which was both tedious, because it required cleanup after the code was debugged,
and annoying if an alert was mistakenly left in code that was used in a production environment.
Alerts are no longer recommended for debugging purposes, because several other, more elegant
solutions are available.

➤

➤

➤

c17.indd 630c17.indd 630 12/8/11 10:58:37 AM12/8/11 10:58:37 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Logging Messages to a Console

Internet Explorer 8+, Firefox, Opera, Chrome, and Safari all have JavaScript consoles that can be
used to view JavaScript errors. All three also allow you to write directly to the console from code.
For this to work in Firefox 3.6 or earlier, you need to have Firebug installed (www.getfirebug.com),
since it’s the Firebug console that is used in Firefox. Internet Explorer 8+, Firefox, Chrome, Safari,
and Opera 10.5 allow you to write to the JavaScript console via the console object, which has the
following methods:

error(message) — Logs an error message to the console

info(message) — Logs an informational message to the console

log(message) — Logs a general message to the console

warn(message) — Logs a warning message to the console

In Internet Explorer 8, Firebug, Chrome, Safari, and Opera, the message display on the error
console differs according to the method that was used to log the message. Error messages contain
a red icon, whereas warnings contain a yellow icon. Console messages may be used, as in the
following function:

function sum(num1, num2){
 console.log(“Entering sum(), arguments are “ + num1 + “,” + num2);

 console.log(“Before calculation”);
 var result = num1 + num2;
 console.log(“After calculation”);

 console.log(“Exiting sum()”);
 return result;
}

As the sum() function is called, several messages are output to the JavaScript console to aid in
debugging. The Safari JavaScript console can be opened via the Develop menu (discussed earlier);
the Chrome JavaScript console is opened by clicking the “Control this page” button and selecting
Developer JavaScript console (also discussed earlier); and the Firebug console is accessed by clicking
the icon in the lower-right corner of the Firefox status bar. The Internet Explorer 8 console is part
of the Developer Tools extension, which is available under the Tools menu; the console is on the
Script tab.

Prior to version 10.5, Opera’s JavaScript console was accessible only using the opera.postError()
method. This method accepts a single argument, the message to write to the console, and is used
as follows:

function sum(num1, num2){
 opera.postError(“Entering sum(), arguments are “ + num1 + “,” + num2);

 opera.postError(“Before calculation”);
 var result = num1 + num2;

➤

➤

➤

➤

Debugging Techniques ❘ 631

c17.indd 631c17.indd 631 12/8/11 10:58:37 AM12/8/11 10:58:37 AM

632 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

 opera.postError(“After calculation”);

 opera.postError(“Exiting sum()”);
 return result;
}

The opera.postError() method can be used to write out any type of information to the JavaScript
console, despite its name.

Another option is to use LiveConnect, which is the ability to run Java code from JavaScript. Firefox,
Safari, and Opera all support LiveConnect and may interact with a Java console. It’s possible to
write messages to the Java console using JavaScript via the following code:

java.lang.System.out.println(“Your message”);

This can be used in place of console.log() or opera.postError(), as shown in the following
example:

function sum(num1, num2){
 java.lang.System.out.println(“Entering sum(), arguments are “ + num1 + “,”
 +
 num2);

 java.lang.System.out.println(“Before calculation”);
 var result = num1 + num2;
 java.lang.System.out.println(“After calculation”);

 java.lang.System.out.println(“Exiting sum()”);
 return result;
}

Depending on system settings, the Java console may be displayed as soon as a LiveConnect call is
made. The Java console is found in Firefox under the Tools menu and in Opera under the Tools ➪

Advanced menu. Safari doesn’t have built-in support for opening the Java console; you must run it
separately.

Since there is no true, cross-browser support for writing to the JavaScript console, the following
function equalizes the interface:

function log(message){
 if (typeof console == “object”){
 console.log(message);
 } else if (typeof opera == “object”){
 opera.postError(message);
 } else if (typeof java == “object” && typeof java.lang == “object”){
 java.lang.System.out.println(message);
 }

}

ConsoleLoggingExample01.htm

c17.indd 632c17.indd 632 12/8/11 10:58:38 AM12/8/11 10:58:38 AM

The log() function detects which JavaScript console interface is available and uses the appropriate
one. This function can safely be used in all browsers without causing any errors, as shown in the
following example:

function sum(num1, num2){
 log(“Entering sum(), arguments are “ + num1 + “,” + num2);

 log(“Before calculation”);
 var result = num1 + num2;
 log(“After calculation”);

 log(“Exiting sum()”);
 return result;
}

ConsoleLoggingExample01.htm

Logging messages to the JavaScript console is helpful in debugging code, but all messages should be
removed when code goes to production. This can be done automatically, using a code-processing
step in deployment, or manually.

Logging messages is considered a better debugging method than using alerts,
because alerts interrupt program execution, which may affect the result of the
code as timing of asynchronous processes are affected.

Logging Messages to the Page

Another common way to log debugging messages is to specify an area of the page that messages
are written to. This may be an element that is included all the time but only used for debugging
purposes, or an element that is created only when necessary. For example, the log() function may
be changed to the following:

function log(message){
 var console = document.getElementById(“debuginfo”);
 if (console === null){
 console = document.createElement(“div”);
 console.id = “debuginfo”;
 console.style.background = “#dedede”;
 console.style.border = “1px solid silver”;
 console.style.padding = “5px”;
 console.style.width = “400px”;
 console.style.position = “absolute”;
 console.style.right = “0px”;
 console.style.top = “0px”;

Debugging Techniques ❘ 633

c17.indd 633c17.indd 633 12/8/11 10:58:39 AM12/8/11 10:58:39 AM

634 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

 document.body.appendChild(console);
 }
 console.innerHTML += “<p>” + message + “</p>”;
}

PageLoggingExample01.htm

In this new version of log(), the code fi rst checks to see if the debugging element already exists. If
not, then a new <div> element is created and assigned stylistic information to separate it from the
rest of the page. After that, the message is written into the <div> using innerHTML. The result is a
small area that displays log information on the page. This approach may be useful when debugging
code in Internet Explorer 7 and earlier or other browsers that don’t support a JavaScript console.

As with console logging, page-logging code should be removed before the code is
used in a production environment.

Throwing Errors

As mentioned earlier, throwing errors is an excellent way to debug code. If your error messages are
specifi c enough, just seeing the error as it’s reported may be enough to determine the error’s source.
The key to good error messages is for them to provide exact details about the cause of the error so
that additional debugging is minimal. Consider the following function:

function divide(num1, num2){
 return num1 / num2;
}

This simple function divides two numbers but will return NaN if either of the two arguments
isn’t a number. Simple calculations often cause problems in web applications when they return
NaN unexpectedly. In this case, you can check that the type of each argument is a number before
attempting the calculation. Consider the following example:

function divide(num1, num2){
 if (typeof num1 != “number” || typeof num2 != “number”){
 throw new Error(“divide(): Both arguments must be numbers.”);
 }
 return num1 / num2;
}

Here, an error is thrown if either of the two arguments isn’t a number. The error message provides
the name of the function and the exact cause of the error. When the browser reports this error
message, it immediately gives you a place to start looking for problems and a basic summary of the
issue. This is much easier than dealing with a nonspecifi c browser error message.

c17.indd 634c17.indd 634 12/8/11 10:58:44 AM12/8/11 10:58:44 AM

In large applications, custom errors are typically thrown using an assert() function. Such a
function takes a condition that should be true and throws an error if the condition is false. The
following is a very basic assert() function:

function assert(condition, message){
 if (!condition){
 throw new Error(message);
 }
}

AssertExample01.htm

The assert() function can be used in place of multiple if statements in a function and can be a
good location for error logging. This function can be used as follows:

function divide(num1, num2){
 assert(typeof num1 == “number” && typeof num2 == “number”,
 “divide(): Both arguments must be numbers.”);
 return num1 / num2;
}

AssertExample01.htm

Using an assert() function reduces the amount of code necessary to throw custom errors and
makes the code more readable compared to the previous example.

COMMON INTERNET EXPLORER ERRORS

Internet Explorer has traditionally been one of the most diffi cult browsers in which to debug
JavaScript errors. The browser’s error messages are generally short and confusing, with little or no
context given. As Internet Explorer is the most popular web browser, its errors tend to get the most
attention. The following sections provide a list of common and diffi cult-to-debug JavaScript errors
that may occur.

Operation Aborted

Internet Explorer versions prior to 8 had perhaps one of the most confounding, annoying, and
diffi cult-to-debug errors of all browsers: the operation aborted error. The operation aborted
error occurs when part of the page that isn’t yet fully loaded is being modifi ed. The result is a
modal dialog that says “Operation aborted.” When the OK button is clicked, the entire web page
is unloaded and replaced with a blank screen, making it very diffi cult to debug. The following
example page causes an operation aborted error:

<!DOCTYPE html>
<html>
<head>
 <title>Operation Aborted Example</title>

Common Internet Explorer Errors ❘ 635

c17.indd 635c17.indd 635 12/8/11 10:58:49 AM12/8/11 10:58:49 AM

636 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

</head>
<body>
 <p>The following code should cause an Operation Aborted error in IE versions
 prior to 8.</p>
 <div>
 <script type=”text/javascript”>
 document.body.appendChild(document.createElement(“div”));
 </script>
 </div>
</body>
</html>

OperationAbortedExample01.htm

The problems in this example are that the JavaScript code is attempting to modify document.body
before it is fully loaded and the <script> element is not a direct child of the <body> element. To be
more specifi c, this error will occur whenever a <script> node is contained within an element and
the JavaScript code attempts to modify that element’s parent or ancestors using appendChild(),
innerHTML, or any other DOM method that assumes the element is fully loaded.

You can work around this problem either by waiting until the element is fully loaded before trying
to manipulate it or by using a different manipulation method. For example, it’s quite common to
add overlays to document.body that will appear absolutely positioned on the page. These extra
elements are typically added by using appendChild() but could easily be changed to use insert
Before(). The previous example could be rewritten to avoid an operation aborted error by changing
just one line, as shown here:

<!DOCTYPE html>
<html>
<head>
 <title>Operation Aborted Example</title>
</head>
<body>
 <p>The following code should not cause an Operation Aborted error in IE
 versions prior to 8.</p>
 <div>
 <script type=”text/javascript”>
 document.body.insertBefore(document.createElement(“div”),
 document.body.fi rstChild);
 </script>
 </div>
</body>
</html>

OperationAbortedExample02.htm

In this example, the new <div> element is added to the beginning of document.body instead of at
the end. This won’t cause an error, because all of the information needed to complete the operation
is available when the script runs.

c17.indd 636c17.indd 636 12/8/11 10:58:50 AM12/8/11 10:58:50 AM

Another option is to move the <script> element so that it is a direct child of <body>. Consider the
following example:

<!DOCTYPE html>
<html>
<head>
 <title>Operation Aborted Example</title>
</head>
<body>
 <p>The following code should not cause an Operation Aborted error in IE
 versions prior to 8.</p>
 <div>
 </div>
 <script type=”text/javascript”>
 document.body.appendChild(document.createElement(“div”));
 </script>
</body>
</html>

OperationAbortedExample03.htm

Here, the operation aborted error doesn’t occur because the script is modifying its immediate parent
instead of an ancestor.

Internet Explorer 8 and later no longer throw operation aborted errors and instead throw a regular
JavaScript error with the following message:

HTML Parsing Error: Unable to modify the parent container element before the child
element is closed (KB927917).

The solution to the problem is the same even though the browser’s reaction is different.

Invalid Character

The syntax of a JavaScript fi le must be made up of certain characters. When an invalid character is
detected in a JavaScript fi le, IE throws the “invalid character” error. An invalid character is any
character not defi ned as part of JavaScript syntax. For example, there is a character that looks like
a minus sign but is represented by the Unicode value 8211 (\u2013). This character cannot be used
in place of a regular minus sign (ASCII code of 45) because it’s not part of JavaScript syntax. This
special character is often automatically inserted into Microsoft Word documents, so you will get
an illegal character error if you were to copy code written in Word to a text editor and then run
it in Internet Explorer. Other browsers react similarly. Firefox throws an “illegal character”
error, Safari reports a syntax error, and Opera reports a ReferenceError, because it interprets the
character as an undefi ned identifi er.

Member Not Found

As mentioned previously, all DOM objects in Internet Explorer are implemented as COM objects
rather than in native JavaScript. This can result is some very strange behavior when it comes to

Common Internet Explorer Errors ❘ 637

c17.indd 637c17.indd 637 12/8/11 10:58:50 AM12/8/11 10:58:50 AM

638 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

garbage collection. The “member not found” error is the direct result the mismatched garbage
collection routines in Internet Explorer.

This error typically occurs when you’re trying to assign a value to an object property after the object
has already been destroyed. The object must be a COM object to get this specifi ed error message.
The best example of this occurs when you are using the event object. The Internet Explorer event
object exists as a property of window and is created when the event occurs and destroyed after the
last event handler has been executed. So if you were to use the event object in a closure that was
to be executed later, any attempt to assign to a property of event will result in this error, as in the
following example:

document.onclick = function(){
 var event = window.event;
 setTimeout(function(){
 event.returnValue = false; //member not found error
 }, 1000);
};

In this code, a click handler is assigned to the document. It stores a reference to window.event in
a local variable named event. This event variable is then referenced in a closure that is passed
into setTimeout(). When the onclick event handler is exited, the event object is destroyed, so
the reference in the closure is to an object whose members no longer exist. Assigning a value to
returnValue causes the “member not found” error, because you cannot write to a COM object
that has already destroyed its members.

Unknown Runtime Error

An unknown runtime error occurs when HTML is assigned using the innerHTML or outerHTML
property in one of the following ways: if a block element is being inserted into an inline element or
you’re accessing either property on any part of a table (<table>, <tbody>, and so on). For example,
a <p> tag cannot technically contain a block-level element such as a <div>, so the following code
will cause an unknown runtime error:

p.innerHTML = “<div>Hi</div>”; //where p contains a <p> element

Other browsers attempt to error-correct when block elements are inserted in invalid places so that
no error occurs, but Internet Explorer is much stricter in this regard.

Syntax Error

Often when Internet Explorer reports a syntax error, the cause is immediately apparent. You can
usually trace back the error to a missing semicolon or an errant closing brace. However, there is
another instance where a syntax error occurs that may not be immediately apparent.

If you are referencing an external JavaScript fi le that for some reason returns non-JavaScript code,
Internet Explorer throws a syntax error. For example, if you set the src attribute of a <script>
to point to an HTML fi le, a syntax error occurs. The syntax error is typically reported as the fi rst
line and fi rst character of a script. Opera and Safari report a syntax error as well, but they will also

c17.indd 638c17.indd 638 12/8/11 10:58:51 AM12/8/11 10:58:51 AM

report the referenced fi le that caused the problem. Internet Explorer gives no such information, so
you need to double-check every externally referenced JavaScript fi le. Firefox simply ignores any
parsing errors in a non-JavaScript fi le that’s included as if it were JavaScript.

This type of error typically occurs when JavaScript is being dynamically generated by a server-side
component. Many server-side languages automatically insert HTML into the output if a runtime
error occurs, and such output clearly breaks JavaScript syntax. If you’re having trouble tracking
down a syntax error, double-check each external JavaScript fi le to be sure that it doesn’t contain
HTML inserted by the server because of an error.

The System Cannot Locate the Resource Specifi ed

Perhaps one of the least useful error messages is “The system cannot locate the resource
specified.” This error occurs when JavaScript is used to request a resource by URL and the URL
is longer than Internet Explorer’s maximum URL length of 2083 characters. This URL length limit
applies not just to JavaScript but also to Internet Explorer in general. (Other browsers do not limit
URL length so tightly.) There is also a URL path limit of 2048 characters. The following example
causes this error:

function createLongUrl(url){
 var s = “?”;
 for (var i=0, len=2500; i < len; i++){
 s += “a”;
 }

 return url + s;
}

var x = new XMLHttpRequest();
x.open(“get”, createLongUrl(“http://www.somedomain.com/”), true);
x.send(null);

LongURLErrorExample01.htm

In this code, the XMLHttpRequest object attempts to make a request to a URL that exceeds the
maximum URL limit. The error occurs when open() is called. One workaround for this type of
error is to shorten the query string necessary for the request to succeed, either by decreasing the size
of the named query string arguments or by eliminating unnecessary data. Another workaround is
to change the request to a POST and send the data as the request body instead of in the query string.
Ajax, the XMLHttpRequest object, and issues such as this are discussed fully in Chapter 21.

SUMMARY

Error handling in JavaScript is critical for today’s complex web applications. Failing to anticipate
where errors might occur and how to recover from them can lead to a poor user experience and
possibly frustrated users. Most browsers don’t report JavaScript errors to users by default, so you
need to enable error reporting when developing and debugging. In production, however, no errors
should ever be reported this way.

Summary ❘ 639

c17.indd 639c17.indd 639 12/8/11 10:58:51 AM12/8/11 10:58:51 AM

640 ❘ CHAPTER 17 ERROR HANDLING AND DEBUGGING

The following methods can be used to prevent the browser from reacting to a JavaScript error:

The try-catch statement can be used where errors may occur, giving you the opportunity
to respond to errors in an appropriate way instead of allowing the browser to handle
the error.

Another option is to use the window.onerror event handler, which receives all errors that
are not handled by a try-catch (Internet Explorer, Firefox, and Chrome only).

Each web application should be inspected to determine where errors might occur and how those
errors should be dealt with.

A determination as to what constitutes a fatal error or a nonfatal error needs to be made
ahead of time.

After that, code can be evaluated to determine where the most likely errors will occur.
Errors commonly occur in JavaScript because of the following factors:

Type coercion

Insuffi cient data type checking

Incorrect data being sent to or received from the server

Internet Explorer, Firefox, Chrome, Opera, and Safari each have JavaScript debuggers that either
come with the browser or can be downloaded as an add-on. Each debugger offers the ability to set
breakpoints, control code execution, and inspect the value of variables at runtime.

➤

➤

➤

➤

➤

➤

➤

c17.indd 640c17.indd 640 12/8/11 10:58:52 AM12/8/11 10:58:52 AM

XML in JavaScript

WHAT’S IN THIS CHAPTER?

Examining XML DOM support in browsers

Understanding XPath in JavaScript

Using XSLT processors

At one point in time, XML was the standard for structured data storage and transmission
over the Internet. The evolution of XML closely mirrored the evolution of web technologies,
as the DOM was developed for use not just in web browsers but also in desktop and server
applications for dealing with XML data structures. Many developers started writing their
own XML parsers in JavaScript to deal with the lack of built-in solutions. Since that time,
all browsers have introduced native support for XML, the XML DOM, and many related
technologies.

XML DOM SUPPORT IN BROWSERS

Since browser vendors began implementing XML solutions before formal standards were
created, each offers not only different levels of support but also different implementations.
DOM Level 2 was the fi rst specifi cation to introduce the concept of dynamic XML
DOM creation. This capability was expanded on in DOM Level 3 to include parsing
and serialization. By the time DOM Level 3 was fi nalized, however, most browsers had
implemented their own solutions.

DOM Level 2 Core

As mentioned in Chapter 12, DOM Level 2 introduced the createDocument() method of
document.implementation. Internet Explorer 9+, Firefox, Opera, Chrome, and Safari

➤

➤

➤

18

c18.indd 641c18.indd 641 12/8/11 10:59:25 AM12/8/11 10:59:25 AM

642 ❘ CHAPTER 18 XML IN JAVASCRIPT

support this method. You may recall that it’s possible to create a blank XML document using the
following syntax:

var xmldom = document.implementation.createDocument(namespaceUri, root, doctype);

When dealing with XML in JavaScript, the root argument is typically the only one that is used,
because this defi nes the tag name of the XML DOM’s document element. The namespaceUri
argument is used sparingly, because namespaces are diffi cult to manage from JavaScript. The
doctype argument is rarely, if ever, used.

To create a new XML document with document element of <root>, you can use the following code:

var xmldom = document.implementation.createDocument(“”, “root”, null);

alert(xmldom.documentElement.tagName); //”root”

var child = xmldom.createElement(“child”);
xmldom.documentElement.appendChild(child);

DOMLevel2CoreExample01.htm

This example creates an XML DOM document with no default namespace and no doctype. Note
that even though a namespace and doctype aren’t needed, the arguments must still be passed in. An
empty string is passed as the namespace URI so that no namespace is applied, and null is passed
as the doctype. The xmldom variable contains an instance of the DOM Level 2 Document type,
complete with all of the DOM methods and properties discussed in Chapter 12. In this example, the
document element’s tag name is displayed and then a new child element is created and added.

You can check to see if DOM Level 2 XML support is enabled in a browser by using the following
line of code:

var hasXmlDom = document.implementation.hasFeature(“XML”, “2.0”);

In practice, it is rare to create an XML document from scratch and then build it up systematically
using DOM methods. It is much more likely that an XML document needs to be parsed into a
DOM structure or vice versa. Because DOM Level 2 didn’t provide for such functionality, a couple
of de facto standards emerged.

The DOMParser Type

Firefox introduced the DOMParser type specifi cally for parsing XML into a DOM document, and it
was later adopted by Internet Explorer 9, Safari, Chrome, and Opera. To use it, you must fi rst create
an instance of DOMParser and then call the parseFromString() method. This method accepts two
arguments: the XML string to parse and a content type, which should always be ”text/xml”. The
return value is an instance of Document. Consider the following example:

var parser = new DOMParser();
var xmldom = parser.parseFromString(“<root><child/></root>”, “text/xml”);

alert(xmldom.documentElement.tagName); //”root”

c18.indd 642c18.indd 642 12/8/11 10:59:28 AM12/8/11 10:59:28 AM

alert(xmldom.documentElement.firstChild.tagName); //”child”

var anotherChild = xmldom.createElement(“child”);
xmldom.documentElement.appendChild(anotherChild);

var children = xmldom.getElementsByTagName(“child”);
alert(children.length); //2

DOMParserExample01.htm

In this example, a simple XML string is parsed into a DOM document. The DOM structure has
<root> as the document element with a single <child> element as its child. You can then interact
with the returned document using DOM methods.

The DOMParser can parse only well-formed XML and, as such, cannot parse HTML into an
HTML document. Unfortunately, browsers behave differently when a parsing error occurs. When a
parsing error occurs in Firefox, Opera, Safari, and Chrome, a Document object is still returned from
parseFromString(), but its document element is <parsererror> and the content of the element is
a description of the parsing error. Here is an example:

<parsererror xmlns=”http://www.mozilla.org/newlayout/xml/parsererror.xml”>XML
Parsing Error: no element found Location: file:///I:/My%20Writing/My%20Books/Profess
ional%20JavaScript/Second%20Edition/Examples/Ch15/DOMParserExample2.htm Line Number
1, Column 7:<sourcetext><root> ------^</sourcetext></parsererror>

Firefox and Opera both return documents in this format. Safari and Chrome return a document
that has a <parsererror> element embedded at the point where the parsing error occurred. Internet
Explorer 9 throws a parsing error at the point where parseFromString() is called. Because of
these differences, the best way to determine if a parsing error has occurred is to use a try-catch
block, and if there’s no error, look for a <parsererror> element anywhere in the document via
getElementsByTagName(), as shown here:

var parser = new DOMParser(),
 xmldom,
 errors;
try {
 xmldom = parser.parseFromString(“<root>”, “text/xml”);
 errors = xmldom.getElementsByTagName(“parsererror”);
 if (errors.length > 0){
 throw new Error(“Parsing error!”);
 }
} catch (ex) {
 alert(“Parsing error!”);
}

DOMParserExample02.htm

In this example, the string to be parsed is missing a closing </root> tag, which causes a parse error.
In Internet Explorer 9+, this throws an error. In Firefox and Opera, the <parsererror> element
will be the document element, whereas it’s the fi rst child <root> in Chrome and Safari. The call to

XML DOM Support in Browsers ❘ 643

c18.indd 643c18.indd 643 12/8/11 10:59:29 AM12/8/11 10:59:29 AM

644 ❘ CHAPTER 18 XML IN JAVASCRIPT

getElementsByTagName(“parsererror”) covers both cases. If any elements are returned by this
method call, then an error has occurred and an alert is displayed. You could go one step further and
extract the error information from the element as well.

The XMLSerializer Type

As a companion to DOMParser, Firefox also introduced the XMLSerializer type to provide the
reverse functionality: serializing a DOM document into an XML string. Since that time, the
XMLSerializer has been adopted by Internet Explorer 9+, Opera, Chrome, and Safari.

To serialize a DOM document, you must create a new instance of XMLSerializer and then pass the
document into the serializeToString() method, as in this example:

var serializer = new XMLSerializer();
var xml = serializer.serializeToString(xmldom);
alert(xml);

XMLSerializerExample01.htm

The value returned from serializeToString() is a string that is not pretty-printed, so it may be
diffi cult to read with the naked eye.

The XMLSerializer is capable of serializing any valid DOM object, which includes individual
nodes and HTML documents. When an HTML document is passed into serializeToString(), it
is treated as an XML document, and so the resulting code is well-formed.

If a non-DOM object is passed into the serializeToString() method, an error
is thrown.

XML in Internet Explorer 8 and Earlier

Internet Explorer was actually the fi rst browser to implement native XML processing support, and
it did so through the use of ActiveX objects. Microsoft created the MSXML library to provide
desktop-application developers with XML processing capabilities, and instead of creating different
objects for JavaScript, they just enabled access to the same objects through the browser.

In Chapter 8, you were introduced to the ActiveXObject type, which is used to instantiate ActiveX
objects in JavaScript. An XML document instance is created using the ActiveXObject constructor
and passing in the string identifi er for the XML document version. There are six different XML
document objects, as described here:

Microsoft.XmlDom — Initial release with IE; should not be used.

MSXML2.DOMDocument — Updated version for scripting purposes but considered an
emergency fallback only.

MSXML2.DOMDocument.3.0 — Lowest recommended version for JavaScript usage.

➤

➤

➤

c18.indd 644c18.indd 644 12/8/11 10:59:29 AM12/8/11 10:59:29 AM

MSXML2.DOMDocument.4.0 — Not considered safe for scripting, so attempting to use it may
result in a security warning.

MSXML2.DOMDocument 5.0 — Also not considered safe for scripting and may cause a
security warning.

MSXML2.DOMDocument.6.0 — The most recent version marked safe for scripting.

Of the six versions, Microsoft recommends using only MSXML2.DOMDocument.6.0, which is the most
recent and robust version, or MSXML2.DOMDocument.3.0, which is the version that is available on
most Windows computers. The last fallback is MSXML2.DOMDocument, which may be necessary for
browsers earlier than Internet Explorer 5.5.

You can determine which version is available by attempting to create each and watching for errors.
For example:

function createDocument(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.DOMDocument.6.0”, “MSXML2.DOMDocument.3.0”,
 “MSXML2.DOMDocument”],
 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

IEXmlDomExample01.htm

In this function, a for loop is used to iterate over the possible ActiveX versions. If the version
isn’t available, the call to create a new ActiveXObject throws an error, in which case the catch
statement catches the error and the loop continues. If an error doesn’t occur, then the version is
stored as the activeXString property of the function, so that this process needn’t be repeated each
time the function is called, and the created object is returned.

To parse an XML string, you must fi rst create a DOM document and then call the loadXML() method.
When the document is fi rst created, it is completely empty and so cannot be interacted with. Passing an
XML string into loadXML() parses the XML into the DOM document. Here’s an example:

var xmldom = createDocument();
xmldom.loadXML(“<root><child/></root>”);

alert(xmldom.documentElement.tagName); //”root”

➤

➤

➤

XML DOM Support in Browsers ❘ 645

c18.indd 645c18.indd 645 12/8/11 10:59:40 AM12/8/11 10:59:40 AM

646 ❘ CHAPTER 18 XML IN JAVASCRIPT

alert(xmldom.documentElement.firstChild.tagName); //”child”

var anotherChild = xmldom.createElement(“child”);
xmldom.documentElement.appendChild(anotherChild);

var children = xmldom.getElementsByTagName(“child”);
alert(children.length); //2

IEXmlDomExample01.htm

Once the DOM document is fi lled with XML content, it can be interacted with just like any other
DOM document, including all methods and properties.

Parsing errors are represented by the parseError property, which is an object with several
properties relating to any parsing issues. These properties are as follows:

errorCode — Numeric code indicating the type of error that occurred, or 0 when there’s
no error.

filePos — Position within the fi le where the error occurred.

line — The line on which the error occurred.

linepos — The character on the line where the error occurred.

reason — A plain text explanation of the error.

srcText — The code that caused the error.

url — The URL of the fi le that caused the error (if available).

The valueOf() method for parseError returns the value of errorCode, so you can check to see if a
parsing error occurred by using the following:

if (xmldom.parseError != 0){
 alert(“Parsing error occurred.”);
}

An error code may be a positive or negative number, so you need only check to see if it’s not equal to 0.
The details of the parsing error are easily accessible and can be used to indicate more useful error
information, as shown in the following example:

if (xmldom.parseError != 0){
 alert(“An error occurred:\nError Code: “
 + xmldom.parseError.errorCode + “\n”
 + “Line: “ + xmldom.parseError.line + “\n”
 + “Line Pos: “ + xmldom.parseError.linepos + “\n”
 + “Reason: “ + xmldom.parseError.reason);
}

IEXmlDomExample02.htm

You should check for parsing errors immediately after a call to loadXML() and before attempting to
query the XML document for more information.

➤

➤

➤

➤

➤

➤

➤

c18.indd 646c18.indd 646 12/8/11 10:59:41 AM12/8/11 10:59:41 AM

Serializing XML

XML serialization is built into the DOM document in Internet Explorer. Each node has an xml
property that can be used to retrieve the XML string representing that node, as in this example:

alert(xmldom.xml);

This simple serialization method is available on every node in the document, allowing you to
serialize the entire document or a specifi c subtree.

Loading XML Files

The XML document object in Internet Explorer can also load fi les from a server. As with the DOM
Level 3 functionality, XML documents must be located on the same server as the page running
the JavaScript code. Also similar to DOM Level 3, documents can be loaded synchronously or
asynchronously. To determine which method to use, set the async property to either true or false
(it’s true by default). Here’s an example:

var xmldom = createDocument();
xmldom.async = false;

Once you’ve determined the mode to load the XML document in, a call to load() initiates the
download process. This method takes a single argument, which is the URL of the XML fi le to
load. When run in synchronous mode, a call to load() can immediately be followed by a check for
parsing errors and other XML processing, such as this:

var xmldom = createDocument();
xmldom.async = false;
xmldom.load(“example.xml”);

if (xmldom.parseError != 0){
 //handle error
} else {
 alert(xmldom.documentElement.tagName); //”root”
 alert(xmldom.documentElement.fi rstChild.tagName); //”child”

 var anotherChild = xmldom.createElement(“child”);
 xmldom.documentElement.appendChild(anotherChild);

 var children = xmldom.getElementsByTagName(“child”);
 alert(children.length); //2

 alert(xmldom.xml);
}

IEXmlDomExample03.htm

Because the XML fi le is being processed synchronously, code execution is halted until the parsing is
complete, allowing a simple coding procedure. Although this may be convenient, it could also lead
to a long delay if the download takes longer than expected. XML documents are typically loaded
asynchronously to avoid such issues.

XML DOM Support in Browsers ❘ 647

c18.indd 647c18.indd 647 12/8/11 10:59:41 AM12/8/11 10:59:41 AM

648 ❘ CHAPTER 18 XML IN JAVASCRIPT

When an XML fi le is loaded asynchronously, you need to assign an onreadystatechange event
handler to the XML DOM document. There are four different ready states:

1 — The DOM is loading data.

2 — The DOM has completed loading the data.

3 — The DOM may be used although some sections may not be available.

4 — The DOM is completely loaded and ready to be used.

Practically speaking, the only ready state of interest is 4, which indicates that the XML fi le has
been completely downloaded and parsed into a DOM. You can retrieve the ready state of the XML
document via the readyState property. Loading an XML fi le asynchronously typically uses the
following pattern:

var xmldom = createDocument();
xmldom.async = true;

xmldom.onreadystatechange = function(){
 if (xmldom.readyState == 4){
 if (xmldom.parseError != 0){
 alert(“An error occurred:\nError Code: “
 + xmldom.parseError.errorCode + “\n”
 + “Line: “ + xmldom.parseError.line + “\n”
 + “Line Pos: “ + xmldom.parseError.linepos + “\n”
 + “Reason: “ + xmldom.parseError.reason);
 } else {
 alert(xmldom.documentElement.tagName); //”root”
 alert(xmldom.documentElement.fi rstChild.tagName); //”child”

 var anotherChild = xmldom.createElement(“child”);
 xmldom.documentElement.appendChild(anotherChild);

 var children = xmldom.getElementsByTagName(“child”);
 alert(children.length); //2

 alert(xmldom.xml);
 }
 }
};

xmldom.load(“example.xml”);

IEXmlDomExample04.htm

Note that the assignment of the onreadystatechange event handler must happen before the call
to load() to ensure that it gets called in time. Also note that inside of the event handler, you must
use the name of the XML document variable, xmldom, instead of the this object. ActiveX controls
disallow the use of this as a security precaution. Once the ready state of the document reaches 4,
you can safely check to see if there’s a parsing error and begin your XML processing.

➤

➤

➤

➤

c18.indd 648c18.indd 648 12/8/11 10:59:42 AM12/8/11 10:59:42 AM

Cross-Browser XML Processing

Since there are very few developers with the luxury of developing for a single browser, it’s frequently
necessary to create browser-equalizing functions for XML processing. For XML parsing, the
following function works in all of the major browsers:

function parseXml(xml){
 var xmldom = null;

 if (typeof DOMParser != “undefined”){
 xmldom = (new DOMParser()).parseFromString(xml, “text/xml”);
 var errors = xmldom.getElementsByTagName(“parsererror”);
 if (errors.length){
 throw new Error(”XML parsing error:” + errors[0].textContent);
 }

 } else if (typeof ActiveXObject != ”undefined”){
 xmldom = createDocument();
 xmldom.loadXML(xml);
 if (xmldom.parseError != 0){
 throw new Error(”XML parsing error: ” + xmldom.parseError.reason);
 }

 } else {
 throw new Error(”No XML parser available.”);
 }

 return xmldom;
}

CrossBrowserXmlExample01.htm

The parseXml() function accepts a single argument, the XML string to parse, and then uses
capability detection to determine which XML parsing pattern to use. Since the DOMParser
type is the most widely available solution, the function fi rst tests to see if it is available. If so, a
new DOMParser object is created and the XML string is parsed into the xmldom variable. Since
DOMParser won’t throw an error for parsing errors other than in Internet Explorer 9+, the returned
document is checked for errors, and if one is found, an error is thrown with the message.

The last part of the function checks for ActiveX support and uses the createDocument() function
defi ned earlier to create an XML document using the correct signature. As with DOMParser,
the result is checked for parsing errors. If one is found, then an error is thrown indicating the
reported description.

Even though it’s possible to load XML fi les via the XML DOM document
object, it’s generally accepted to use an XMLHttpRequest for this instead. The
XMLHttpRequest object, and Ajax in general, is discussed in Chapter 21.

XML DOM Support in Browsers ❘ 649

c18.indd 649c18.indd 649 12/8/11 10:59:43 AM12/8/11 10:59:43 AM

650 ❘ CHAPTER 18 XML IN JAVASCRIPT

If no XML parser is available, then the function simply throws an error indicating that it could
not continue.

This function can be used to parse any XML string and should always be wrapped in a try-catch
statement just in case a parsing error occurs. Here’s an example:

var xmldom = null;

try {
 xmldom = parseXml(“<root><child/></root>”);
} catch (ex){
 alert(ex.message);
}

//further processing

CrossBrowserXmlExample01.htm

For XML serialization, the same process can be followed to write a function that works in the four
major browsers. For example:

function serializeXml(xmldom){

 if (typeof XMLSerializer != “undefined”){
 return (new XMLSerializer()).serializeToString(xmldom);

 } else if (typeof xmldom.xml != “undefined”){
 return xmldom.xml;

 } else {
 throw new Error(“Could not serialize XML DOM.”);
 }
}

CrossBrowserXmlExample02.htm

The serializeXml() function accepts a single argument, which is the XML DOM document to
serialize. As with the parseXml() function, the fi rst step is to check for the most widely available
solution, which is XMLSerializer. If this type is available, then it is used to return the XML
string for the document. Since the ActiveX approach simply uses the xml property, the function
checks for that property specifi cally. If each of these three attempts fails, then the method throws an
error indicating that serialization could not take place. Generally, serialization attempts shouldn’t
fail if you’re using the appropriate XML DOM object for the browser, so it shouldn’t be necessary
to wrap a call to serializeXml() in a try-catch. Instead, you can simply use this:

var xml = serializeXml(xmldom);

Note that because of differences in serializing logic, you may not end up with exactly the same
serialization results from browser to browser.

c18.indd 650c18.indd 650 12/8/11 10:59:53 AM12/8/11 10:59:53 AM

XPATH SUPPORT IN BROWSERS

XPath was created as a way to locate specifi c nodes within a DOM document, so it’s important
to XML processing. An API for XPath wasn’t part of a specifi cation until DOM Level 3, which
introduced the DOM Level 3 XPath recommendation. Many browsers chose to implement this
specifi cation, but Internet Explorer decided to implement support in its own way.

DOM Level 3 XPath

The DOM Level 3 XPath specifi cation defi nes interfaces to use for evaluating XPath expressions in the
DOM. To determine if the browser supports DOM Level 3 XPath, use the following JavaScript code:

var supportsXPath = document.implementation.hasFeature(“XPath”, “3.0”);

Although there are several types defi ned in the specifi cation, the two most important ones are
XPathEvaluator and XPathResult. The XPathEvaluator is used to evaluate XPath expressions
within a specifi c context. This type has the following three methods:

createExpression(expression, nsresolver) — Computes the XPath expression and
accompanying namespace information into an XPathExpression, which is a compiled
version of the query. This is useful if the same query is going to be run multiple times.

createNSResolver(node) — Creates a new XPathNSResolver object based on the
namespace information of node. An XPathNSResolver object is required when evaluating
against an XML document that uses namespaces.

evaluate(expression, context, nsresolver, type, result) — Evaluates an XPath
expression in the given context and with specifi c namespace information. The additional
arguments indicate how the result should be returned.

In Firefox, Safari, Chrome, and Opera, the Document type is typically implemented with the
XPathEvaluator interface. So you can either create a new instance of XPathEvaluator or use the
methods located on the Document instance (for both XML and HTML documents).

Of the three methods, evaluate() is the most frequently used. This method takes fi ve arguments:
the XPath expression, a context node, a namespace resolver, the type of result to return, and an
XPathResult object to fi ll with the result (usually null, since the result is also returned as the
function value). The third argument, the namespace resolver, is necessary only when the XML
code uses an XML namespace. If namespaces aren’t used, this should be set to null. The fourth
argument, the type of result to return, is one of the following 10 constants values:

XPathResult.ANY_TYPE — Returns the type of data appropriate for the XPath expression.

XPathResult.NUMBER_TYPE — Returns a number value.

XPathResult.STRING_TYPE — Returns a string value.

XPathResult.BOOLEAN_TYPE — Returns a Boolean value.

XPathResult.UNORDERED_NODE_ITERATOR_TYPE — Returns a node set of matching nodes,
although the order may not match the order of the nodes within the document.

➤

➤

➤

➤

➤

➤

➤

➤

XPath Support in Browsers ❘ 651

c18.indd 651c18.indd 651 12/8/11 10:59:54 AM12/8/11 10:59:54 AM

652 ❘ CHAPTER 18 XML IN JAVASCRIPT

XPathResult.ORDERED_NODE_ITERATOR_TYPE — Returns a node set of matching nodes in
the order in which they appear in the document. This is the most commonly used result type.

XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE — Returns a node set snapshot, capturing
the nodes outside of the document so that any further document modifi cation doesn’t affect
the node set. The nodes in the node set are not necessarily in the same order as they appear
in the document.

XPathResult.ORDERED_NODE_SNAPSHOT_TYPE — Returns a node set snapshot, capturing the
nodes outside of the document so that any further document modifi cation doesn’t affect the
result set. The nodes in the result set are in the same order as they appear in the document.

XPathResult.ANY_UNORDERED_NODE_TYPE — Returns a node set of matching nodes,
although the order may not match the order of the nodes within the document.

XPathResult.FIRST_ORDERED_NODE_TYPE — Returns a node set with only one node, which
is the fi rst matching node in the document.

The type of result you specify determines how to retrieve the value of the result. Here’s a typical example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

if (result !== null) {
 var element = result.iterateNext();
 while(element) {
 alert(element.tagName);
 node = result.iterateNext();
 }
}

DomXPathExample01.htm

This example uses the XPathResult.ORDERED_NODE_ITERATOR_TYPE result, which is the most
commonly used result type. If no nodes match the XPath expression, evaluate() returns null;
otherwise, it returns an XPathResult object. The XPathResult has properties and methods for
retrieving results of specifi c types. If the result is a node iterator, whether it be ordered or unordered,
the iterateNext() method must be used to retrieve each matching node in the result. When there
are no further matching nodes, iterateNext() returns null.

If you specify a snapshot result type (either ordered or unordered), you must use the
snapshotItem() method and snapshotLength property, as in the following example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE,
null);
if (result !== null) {
 for (var i=0, len=result.snapshotLength; i < len; i++) {
 alert(result.snapshotItem(i).tagName);
 }
}

DomXPathExample02.htm

➤

➤

➤

➤

➤

c18.indd 652c18.indd 652 12/8/11 10:59:54 AM12/8/11 10:59:54 AM

In this example, snapshotLength returns the number of nodes in the snapshot, and snapshotItem()
returns the node in a given position in the snapshot (similar to length and item() in a NodeList).

Single Node Results

The XPathResult.FIRST_ORDERED_NODE_TYPE result returns the fi rst matching node, which is
accessible through the singleNodeValue property of the result. For example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.FIRST_ORDERED_NODE_TYPE, null);

if (result !== null) {
 alert(result.singleNodeValue.tagName);
}

DomXPathExample03.htm

As with other queries, evaluate() returns null when there are no matching nodes. If a node is
returned, it is accessed using the singleNodeValue property. This is the same for XPathResult
.FIRST_ORDERED_NODE_TYPE.

Simple Type Results

It’s possible to retrieve simple, nonnode data types from XPath as well, using the XPathResult types
of Boolean, number, and string. These result types return a single value using the booleanValue,
numberValue, and stringValue properties, respectively. For the Boolean type, the evaluation typically
returns true if at least one node matches the XPath expression and returns false otherwise.
Consider the following:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.BOOLEAN_TYPE, null);
alert(result.booleanValue);

DomXPathExample04.htm

In this example, if any nodes match ”employee/name”, the booleanValue property is equal to true.

For the number type, the XPath expression must use an XPath function that returns a number, such
as count(), which counts all the nodes that match a given pattern. Here’s an example:

var result = xmldom.evaluate(“count(employee/name)”, xmldom.documentElement,
 null, XPathResult.NUMBER_TYPE, null);
alert(result.numberValue);

DomXPathExample05.htm

XPath Support in Browsers ❘ 653

c18.indd 653c18.indd 653 12/8/11 10:59:55 AM12/8/11 10:59:55 AM

654 ❘ CHAPTER 18 XML IN JAVASCRIPT

This code outputs the number of nodes that match “employee/name” (which is 2). If you try using
this method without one of the special XPath functions, numberValue is equal to NaN.

For the string type, the evaluate() method fi nds the fi rst node matching the XPath expression, and
then returns the value of the fi rst child node, assuming the fi rst child node is a text node. If not, the
result is an empty string. Here is an example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.STRING_TYPE, null);
alert(result.stringValue);

DomXPathExample06.htm

In this example, the code outputs the string contained in the fi rst text node under the fi rst element
matching “element/name”.

Default Type Results

All XPath expressions automatically map to a specifi c result type. Setting the specifi c result type
limits the output of the expression. You can, however, use the XPathResult.ANY_TYPE constant to
allow the automatic result type to be returned. Typically, the result type ends up as a Boolean value,
a number value, a string value, or an unordered node iterator. To determine which result type has
been returned, use the resultType property on the evaluation result, as shown in this example:

var result = xmldom.evaluate(“employee/name”, xmldom.documentElement, null,
 XPathResult.ANY_TYPE, null);

if (result !== null) {
 switch(result.resultType) {
 case XPathResult.STRING_TYPE:
 //handle string type
 break;

 case XPathResult.NUMBER_TYPE:
 //handle number type
 break;

 case XPathResult.BOOLEAN_TYPE:
 //handle boolean type
 break;

 case XPathResult.UNORDERED_NODE_ITERATOR_TYPE:
 //handle unordered node iterator type
 break;

 default:
 //handle other possible result types

 }
}

Using the XPathResult.ANY_TYPE constant allows more natural use of XPath but may also require
extra processing code after the result is returned.

c18.indd 654c18.indd 654 12/8/11 10:59:56 AM12/8/11 10:59:56 AM

Namespace Support

For XML documents that make use of namespaces, the XPathEvaluator must be informed of
the namespace information in order to make a proper evaluation. There are a number of ways to
accomplish this. Consider the following XML code:

<?xml version=”1.0” ?>
<wrox:books xmlns:wrox=”http://www.wrox.com/”>
 <wrox:book>
 <wrox:title>Professional JavaScript for Web Developers</wrox:title>
 <wrox:author>Nicholas C. Zakas</wrox:author>
 </wrox:book>
 <wrox:book>
 <wrox:title>Professional Ajax</wrox:title>
 <wrox:author>Nicholas C. Zakas</wrox:author>
 <wrox:author>Jeremy McPeak</wrox:author>
 <wrox:author>Joe Fawcett</wrox:author>
 </wrox:book>
</wrox:books>

In this XML document, all elements are part of the http://www.wrox.com/ namespace, identifi ed
by the wrox prefi x. If you want to use XPath with this document, you need to defi ne the namespaces
being used; otherwise the evaluation will fail.

The fi rst way to handle namespaces is by creating an XPathNSResolver object via the
createNSResolver() method. This method accepts a single argument, which is a node in the
document that contains the namespace defi nition. In the previous example, this node is the
document element <wrox:books>, which has the xmlns attribute defi ning the namespace. This node
can be passed into createNSResolver(), and the result can then be used in evaluate()as follows:

var nsresolver = xmldom.createNSResolver(xmldom.documentElement);

var result = xmldom.evaluate(“wrox:book/wrox:author”,
 xmldom.documentElement, nsresolver,
 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);

alert(result.snapshotLength);

DomXPathExample07.htm

When the nsresolver object is passed into evaluate(), it ensures that the wrox prefi x used in the
XPath expression will be understood appropriately. Attempting to use this same expression without
using an XPathNSResolver will result in an error.

The second way to deal with namespaces is by defi ning a function that accepts a namespace
prefi x and returns the associated URI, as in this example:

var nsresolver = function(prefi x){
 switch(prefi x){
 case “wrox”: return “http://www.wrox.com/”;
 //others here
 }

XPath Support in Browsers ❘ 655

c18.indd 655c18.indd 655 12/8/11 10:59:56 AM12/8/11 10:59:56 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

656 ❘ CHAPTER 18 XML IN JAVASCRIPT

};

var result = xmldom.evaluate(“count(wrox:book/wrox:author)”,
 xmldom.documentElement, nsresolver, XPathResult.NUMBER_TYPE, null);

alert(result.numberValue);

DomXPathExample08.htm

Defi ning a namespace-resolving function is helpful when you’re not sure which node of a document
contains the namespace defi nitions. As long as you know the prefi xes and URIs, you can defi ne a
function to return this information and pass it in as the third argument to evaluate().

XPath in Internet Explorer

XPath support is built into the ActiveX-based XML DOM document object in Internet Explorer but not
with the DOM object returned from a DOMParser. In order to use XPath in Internet Explorer through
version 9, you must use the ActiveX implementation. The interface defi nes two additional methods on
every node: selectSingleNode() and selectNodes(). The selectSingleNode() method accepts an
XPath pattern and returns the fi rst matching node if found or null if there are no nodes. For example:

var element = xmldom.documentElement.selectSingleNode(“employee/name”);

if (element !== null){
 alert(element.xml);
}

IEXPathExample01.htm

Here, the fi rst node matching “employee/name” is returned. The context node is xmldom
.documentElement, the node on which selectSingleNode() is called. Since it’s possible to get a
null value returned from this method, you should always check to ensure that the value isn’t null
before attempting to use node methods.

The selectNodes() method also accepts an XPath pattern as an argument, but it returns a
NodeList of all nodes matching the pattern (if no nodes match, a NodeList with zero items is
returned). Here is an example:

var elements = xmldom.documentElement.selectNodes(“employee/name”);
alert(elements.length);

IEXPathExample02.htm

In this example, all of the elements matching ”employee/name” are returned as a NodeList.
Since there is no possibility of a null value being returned, you can safely begin using the result.
Remember that because the result is a NodeList, it is a dynamic collection that will constantly be
updated every time it’s accessed.

c18.indd 656c18.indd 656 12/8/11 10:59:57 AM12/8/11 10:59:57 AM

XPath support in Internet Explorer is very basic. It’s not possible to get result types other than a
node or NodeList.

Namespace Support in Internet Explorer

To deal with XPath expressions that contain namespaces in Internet Explorer, you’ll need to know
which namespaces you’re using and create a string in the following format:

“xmlns:prefix1=’uri1’ xmlns:prefix2=’uri2’ xmlns:prefix3=’uri3’”

This string then must be passed to a special method on the XML DOM document object in Internet
Explorer called setProperty(), which accepts two arguments: the name of the property to set
and the property value. In this case, the name of the property is ”SelectionNamespaces”, and the
value is a string in the format mentioned previously. Therefore, the following code can be used to
evaluate the XML document used in the DOM XPath namespaces example:

xmldom.setProperty(“SelectionNamespaces”, “xmlns:wrox=’http://www.wrox.com/’”);

var result = xmldom.documentElement.selectNodes(“wrox:book/wrox:author”);
alert(result.length);

IEXPathExample03.htm

As with the DOM XPath example, failing to provide the namespace resolution information results
in an error when the expression is evaluated.

Cross-Browser XPath

Since XPath functionality is so limited in Internet Explorer, cross-browser XPath usage must be
kept to evaluations that Internet Explorer can execute. This means, essentially, recreating the
selectSingleNode() and selectNodes() methods in other browsers using the DOM Level 3
XPath objects. The fi rst function is selectSingleNode(), which accepts three arguments: the
context node, the XPath expression, and an optional namespaces object. The namespaces object
should be a literal in the following form:

{
 prefix1: “uri1”,
 prefix2: “uri2”,
 prefix3: “uri3”
}

Providing the namespace information in this way allows for easy conversion into the browser-
specifi c namespace-resolving format. The full code for selectSingleNode() is as follows:

function selectSingleNode(context, expression, namespaces){
 var doc = (context.nodeType != 9 ? context.ownerDocument : context);

 if (typeof doc.evaluate != “undefined”){
 var nsresolver = null;

XPath Support in Browsers ❘ 657

c18.indd 657c18.indd 657 12/8/11 10:59:57 AM12/8/11 10:59:57 AM

http://www.wrox.com

658 ❘ CHAPTER 18 XML IN JAVASCRIPT

 if (namespaces instanceof Object){
 nsresolver = function(prefix){
 return namespaces[prefix];
 };
 }

 var result = doc.evaluate(expression, context, nsresolver,
 XPathResult.FIRST_ORDERED_NODE_TYPE, null);
 return (result !== null ? result.singleNodeValue : null);

 } else if (typeof context.selectSingleNode != “undefined”){

 //create namespace string
 if (namespaces instanceof Object){
 var ns = “”;
 for (var prefix in namespaces){
 if (namespaces.hasOwnProperty(prefix)){
 ns += “xmlns:” + prefix + “=’” + namespaces[prefix] + “’ “;
 }
 }
 doc.setProperty(“SelectionNamespaces”, ns);
 }
 return context.selectSingleNode(expression);
 } else {
 throw new Error(“No XPath engine found.”);
 }
}

CrossBrowserXPathExample01.htm

The fi rst step in this function is to determine the XML document on which to evaluate the
expression. Since a context node can be a document, it’s necessary to check the nodeType property.
The variable doc holds a reference to the XML document after doing this check. At that point,
you can check the document to see if the evaluate() method is present, indicating DOM Level 3
XPath support. If it is supported, the next step is to see if a namespaces object has been passed in.
This is done by using the instanceof operator, because typeof returns “object” for null values
and objects. The nsresolver variable is initialized to null and then overwritten with a function
if namespace information is available. This function is a closure, using the passed-in namespaces
object to return namespace URIs. After that, the evaluate() method is called and the result is
inspected to determine whether or not a node was returned before returning a value.

The Internet Explorer branch of the function checks for the existence of the selectSingleNode()
method on the context node. As with the DOM branch, the fi rst step is to construct namespace
information for the selection. If a namespaces object is passed in, then its properties are iterated
over to create a string in the appropriate format. Note the use of the hasOwnProperty() method to
ensure that any modifi cations to Object.prototype are not picked up by this function. The native
selectSingleNode() method is then called and the result is returned.

c18.indd 658c18.indd 658 12/8/11 10:59:58 AM12/8/11 10:59:58 AM

If neither of the two methods is supported, then the function throws an error indicating that there’s
no XPath engine available. The selectSingleNode() function can be used as follows:

var result = selectSingleNode(xmldom.documentElement, “wrox:book/wrox:author”,
 { wrox: “http://www.wrox.com/” });
alert(serializeXml(result));

CrossBrowserXPathExample01.htm

A cross-browser selectNodes() function is created in a very similar fashion. The function accepts
the same three arguments as the selectSingleNode() function and much of its logic is similar. For
ease of reading, the following highlights the differences between the functions:

function selectNodes(context, expression, namespaces){
 var doc = (context.nodeType != 9 ? context.ownerDocument : context);

 if (typeof doc.evaluate != “undefined”){
 var nsresolver = null;
 if (namespaces instanceof Object){
 nsresolver = function(prefix){
 return namespaces[prefix];
 };
 }

 var result = doc.evaluate(expression, context, nsresolver,
 XPathResult.ORDERED_NODE_SNAPSHOT_TYPE,
null);
 var nodes = new Array();

 if (result !== null){
 for (var i=0, len=result.snapshotLength; i < len; i++){
 nodes.push(result.snapshotItem(i));
 }
 }

 return nodes;
 } else if (typeof context.selectNodes != “undefined”){

 //create namespace string
 if (namespaces instanceof Object){
 var ns = “”;
 for (var prefix in namespaces){
 if (namespaces.hasOwnProperty(prefix)){
 ns += “xmlns:” + prefix + “=’” + namespaces[prefix] + “’ “;
 }
 }
 doc.setProperty(“SelectionNamespaces”, ns);
 }
 var result = context.selectNodes(expression);
 var nodes = new Array();

 for (var i=0,len=result.length; i < len; i++){

XPath Support in Browsers ❘ 659

c18.indd 659c18.indd 659 12/8/11 10:59:59 AM12/8/11 10:59:59 AM

http://www.wrox.com

660 ❘ CHAPTER 18 XML IN JAVASCRIPT

 nodes.push(result[i]);
 }

 return nodes;
 } else {
 throw new Error(“No XPath engine found.”);
 }
}

CrossBrowserXPathExample02.htm

As you can see, much of the same logic is used from selectSingleNode(). In the DOM portion of
the code, an ordered snapshot result type is used and then stored in an array. To match the Internet
Explorer implementation, the function should return an array even if no results were found, so the
nodes array is always returned. In the Internet Explorer branch of the code, the selectNodes()
method is called and then the results are copied into an array. Since Internet Explorer returns a
NodeList, it’s best to copy the nodes over into an array, so the function returns the same type
regardless of the browser being used. This function can then be used as follows:

var result = selectNodes(xmldom.documentElement, “wrox:book/wrox:author”,
 { wrox: “http://www.wrox.com/” });
alert(result.length);

CrossBrowserXPathExample02.htm

For the best cross-browser compatibility, it’s best to use these two methods exclusively for XPath
processing in JavaScript.

XSLT SUPPORT IN BROWSERS

XSLT is a companion technology to XML that makes use of XPath to transform one document
representation into another. Unlike XML and XPath, XSLT has no formal API associated with it
and is not represented in the formal DOM at all. This left browser vendors to implement support in
their own way. The fi rst browser to add XSLT processing in JavaScript was Internet Explorer.

XSLT in Internet Explorer

As with the rest of the XML functionality in Internet Explorer, XSLT support is provided through
the use of ActiveX objects. Beginning with MSXML 3.0 (shipped with Internet Explorer 6), full
XSLT 1.0 support is available via JavaScript. There is no XSLT support for DOM documents
created using a DOMParser in Internet Explorer 9.

Simple XSLT Transformations

The simplest way to transform an XML document using an XSLT style sheet is to load each into
a DOM document and then use the transformNode() method. This method exists on every node
in a document and accepts a single argument, which is the document containing an XSLT style

c18.indd 660c18.indd 660 12/8/11 10:59:59 AM12/8/11 10:59:59 AM

http://www.wrox.com

sheet. The transformNode() method returns a string containing the transformation. Here is
an example:

//load the XML and XSLT (IE-specific)
xmldom.load(“employees.xml”);
xsltdom.load(“employees.xslt”);

//transform
var result = xmldom.transformNode(xsltdom);

IEXsltExample01.htm

This example loads a DOM document with XML and a DOM document with the XSLT style sheet.
Then, transformNode() is called on the XML document node, passing in the XSLT. The variable
result is then fi lled with a string resulting from the transformation. Note that the transformation
began at the document node level, because that’s where transformNode() was called. XSLT
transformations can also take place anywhere in the document by calling transformNode() on the
node at which you want the transformations to begin. Here is an example:

result = xmldom.documentElement.transformNode(xsltdom);
result = xmldom.documentElement.childNodes[1].transformNode(xsltdom);
result = xmldom.getElementsByTagName(“name”)[0].transformNode(xsltdom);
result = xmldom.documentElement.firstChild.lastChild.transformNode(xsltdom);

If you call transformNode() from anywhere other than the document element, you start the
transformation at that spot. The XSLT style sheet, however, still has access to the full XML
document from which that node came.

Complex XSLT Transformations

The transformNode() method gives basic XSLT transformation capabilities, but there are more
complex ways to use the language. To do so, you must use an XSL template and an XSL processor.
The fi rst step is to load the XSLT style sheet into a thread-safe version of an XML document. This
is done by using the MSXML2.FreeThreadedDOMDocument ActiveX object, which supports all of the
same interfaces as a normal DOM document in Internet Explorer. This object needs to be created
using the most up-to-date version as well. For example:

function createThreadSafeDocument(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.FreeThreadedDOMDocument.6.0”,
 “MSXML2.FreeThreadedDOMDocument.3.0”,
 “MSXML2.FreeThreadedDOMDocument”],
 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){

XSLT Support in Browsers ❘ 661

c18.indd 661c18.indd 661 12/8/11 11:00:00 AM12/8/11 11:00:00 AM

662 ❘ CHAPTER 18 XML IN JAVASCRIPT

 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

IEXsltExample02.htm

Aside from the different signature, using a thread-safe XML DOM document is the same as using
the normal kind, as shown here:

var xsltdom = createThreadSafeDocument();
xsltdom.async = false;
xsltdom.load(“employees.xslt”);

After the free-threaded DOM document is created and loaded, it must be assigned to an XSL
template, which is another ActiveX object. The template is used to create an XSL processor object
that can then be used to transform an XML document. Once again, the most appropriate version
must be created, like this:

function createXSLTemplate(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XSLTemplate.6.0”,
 “MSXML2.XSLTemplate.3.0”,
 “MSXML2.XSLTemplate”],
 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

IEXsltExample02.htm

You can use the createXSLTemplate() function to create the most recent version of the object, as
in this example:

var template = createXSLTemplate();
template.stylesheet = xsltdom;

var processor = template.createProcessor();

c18.indd 662c18.indd 662 12/8/11 11:00:00 AM12/8/11 11:00:00 AM

processor.input = xmldom;
processor.transform();

var result = processor.output;

IEXsltExample02.htm

When the XSL processor is created, the node to transform must be assigned to the input property.
This value may be a document or any node within a document. The call to transform() executes
the transformations and stores the result in the output property as a string. This code duplicates the
functionality available with transformNode().

There is a signifi cant difference between the 3.0 and 6.0 versions of the XSL
template object. In 3.0, the input property must be a complete document; using
a node throws an error. In 6.0, you may use any node in a document.

Using the XSL processor allows extra control over the transformation and provides support for more
advanced XSLT features. For example, XSLT style sheets accept parameters that can be passed in and
used as local variables. Consider the following style sheet:

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:output method=”html” />

 <xsl:param name=”message” />

 <xsl:template match=”/”>

 <xsl:apply-templates select=”*” />

 <p>Message: <xsl:value-of select=”$message” /></p>
 </xsl:template>

 <xsl:template match=”employee”>
 <xsl:value-of select=”name” />, <xsl:value-of select=”@title” /></
em>
 </xsl:template>

</xsl:stylesheet>

employees.xslt

This style sheet defi nes a parameter named message and then outputs that parameter into the
transformation result. To set the value of message, you use the addParameter() method before
calling transform(). The addParameter() method takes two arguments: the name of the

XSLT Support in Browsers ❘ 663

c18.indd 663c18.indd 663 12/8/11 11:00:01 AM12/8/11 11:00:01 AM

664 ❘ CHAPTER 18 XML IN JAVASCRIPT

parameter to set (as specifi ed in <xsl:param>’s name attribute) and the value to assign (most often a
string, but it can be a number or Boolean as well). Here is an example:

processor.input = xmldom.documentElement;
processor.addParameter(“message”, “Hello World!”);
processor.transform();

IEXsltExample03.htm

When you set a value for the parameter, the output will refl ect the value.

Another advanced feature of the XSL processor is the capability to set a mode of operation. In
XSLT, it’s possible to defi ne a mode for a template using the mode attribute. When a mode is
defi ned, the template isn’t run unless <xsl:apply-templates> is used with a matching mode
attribute. Consider the following example:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:output method=”html” />

 <xsl:param name=”message” />

 <xsl:template match=”/”>

 <xsl:apply-templates select=”*” />

 <p>Message: <xsl:value-of select=”$message” /></p>
 </xsl:template>

 <xsl:template match=”employee”>
 <xsl:value-of select=”name” />, <xsl:value-of select=”@title” /></
em>
 </xsl:template>

 <xsl:template match=”employee” mode=”title-first”>
 <xsl:value-of select=”@title” />, <xsl:value-of select=”name”
/>
 </xsl:template>

</xsl:stylesheet>

employees3.xslt

This style sheet defi nes a template with its mode attribute set to “title-first”. Inside of this
template, the employee’s title is output fi rst, and the employee name is output second. In order to
use this template, the <xsl:apply-templates> element must have its mode set to “title-first”
as well. If you use this style sheet, it has the same output as the previous one by default, displaying
the employee name fi rst and the position second. If, however, you use this style sheet and set the
mode to “title-first” using JavaScript, it outputs the employee’s title fi rst. This can be done in
JavaScript using the setStartMode() method as shown here:

c18.indd 664c18.indd 664 12/8/11 11:00:06 AM12/8/11 11:00:06 AM

processor.input = xmldom;
processor.addParameter(“message”, “Hello World!”);
processor.setStartMode(“title-first”);
processor.transform();

IEXsltExample05.htm

The setStartMode() method accepts only one argument, which is the mode to set the processor to.
Just as with addParameter(), this must be called before transform().

If you are going to do multiple transformations using the same style sheet, you can reset the
processor after each transformation. When you call the reset() method, the input and output
properties are cleared, as well as the start mode and any specifi ed parameters. The syntax for this
method is as follows:

processor.reset(); //prepare for another use

Because the processor has compiled the XSLT style sheet, it is faster to make repeat transformations
versus using transformNode().

MSXML supports only XSLT 1.0. Development on MSXML has stopped since
Microsoft’s focus has shifted to the .NET Framework. It is expected that, at
some point in the future, JavaScript will have access to the XML and XSLT
.NET objects.

The XSLTProcessor Type

Mozilla implemented JavaScript support for XSLT in Firefox by creating a new type. The
XSLTProcessor type allows developers to transform XML documents by using XSLT in a manner
similar to the XSL processor in Internet Explorer. Since it was fi rst implemented, Chrome, Safari,
and Opera have copied the implementation, making XSLTProcessor into a de facto standard for
JavaScript-enabled XSLT transformations.

As with the Internet Explorer implementation, the fi rst step is to load two DOM documents, one
with the XML and the other with the XSLT. After that, create a new XSLTProcessor and use the
importStylesheet() method to assign the XSLT to it, as shown in this example:

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);

XsltProcessorExample01.htm

The last step is to perform the transformation. This can be done in two different ways. If you want
to return a complete DOM document as the result, call transformToDocument(). You can also get
a document fragment object as the result by calling transformToFragment(). Generally speaking,

XSLT Support in Browsers ❘ 665

c18.indd 665c18.indd 665 12/8/11 11:00:07 AM12/8/11 11:00:07 AM

666 ❘ CHAPTER 18 XML IN JAVASCRIPT

the only reason to use transformToFragment() is if you intend to add the results to another DOM
document.

When using transformToDocument(), just pass in the XML DOM and use the result as another
completely different DOM. Here’s an example:

var result = processor.transformToDocument(xmldom);
alert(serializeXml(result));

XsltProcessorExample01.htm

The transformToFragment() method accepts two arguments: the XML DOM to transform and
the document that should own the resulting fragment. This ensures that the new document fragment
is valid in the destination document. You can, therefore, create the fragment and add it to the page
by passing in document as the second argument. Consider the following example:

var fragment = processor.transformToFragment(xmldom, document);
var div = document.getElementById(“divResult”);
div.appendChild(fragment);

XsltProcessorExample02.htm

Here, the processor creates a fragment owned by the document object. This enables the fragment to
be added to a <div> element that exists in the page.

When the output format for an XSLT style sheet is either “xml” or “html”, creating a document or
document fragment makes perfect sense. When the output format is “text”, however, you typically
just want the text result of the transformation. Unfortunately, there is no method that returns
text directly. Calling transformToDocument() when the output is “text” results in a full XML
document being returned, but the contents of that document are different from browser to browser.
Safari, for example, returns an entire HTML document, whereas Opera and Firefox return a one-
element document with the output as the element’s text.

The solution is to call transformToFragment(), which returns a document fragment that has a
single child node containing the result text. You can, therefore, get the text by using the following
code:

var fragment = processor.transformToFragment(xmldom, document);
var text = fragment.firstChild.nodeValue;
alert(text);

This code works the same way for each of the supporting browsers and correctly returns just the
text output from the transformation.

Using Parameters

The XSLTProcessor also allows you to set XSLT parameters using the setParameter() method,
which accepts three arguments: a namespace URI, the parameter local name, and the value to set.
Typically, the namespace URI is null, and the local name is simply the parameter’s name. This

c18.indd 666c18.indd 666 12/8/11 11:00:12 AM12/8/11 11:00:12 AM

method must be called prior to transformToDocument() or transformToFragment(). Here’s an
example:

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);
processor.setParameter(null, “message”, “Hello World!”);
var result = processor.transformToDocument(xmldom);

XsltProcessorExample03.htm

There are two other methods related to parameters, getParameter() and removeParameter(),
which are used to get the current value of a parameter and remove the parameter value, respectively.
Each method takes the namespace URI (once again, typically null) and the local name of the
parameter. For example:

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);
processor.setParameter(null, “message”, “Hello World!”);

alert(processor.getParameter(null, “message”)); //outputs “Hello World!”
processor.removeParameter(null, “message”);

var result = processor.transformToDocument(xmldom);

These methods aren’t used often and are provided mostly for convenience.

Resetting the Processor

Each XSLTProcessor instance can be reused multiple times for multiple transformations with
different XSLT style sheets. The reset() method removes all parameters and style sheets from the
processor, allowing you to once again call importStylesheet() to load a different XSLT style
sheet, as in this example:

var processor = new XSLTProcessor()
processor.importStylesheet(xsltdom);

//do some transformations

processor.reset();
processor.importStylesheet(xsltdom2);

//do more transformations

Reusing a single XSLTProcessor saves memory when using multiple style sheets to perform
transformations.

Cross-Browser XSLT

The Internet Explorer XSLT transformation is quite different from the XSLTProcessor approach,
so recreating all of the functionality available in each is not realistic. The easiest cross-browser

XSLT Support in Browsers ❘ 667

c18.indd 667c18.indd 667 12/8/11 11:00:13 AM12/8/11 11:00:13 AM

668 ❘ CHAPTER 18 XML IN JAVASCRIPT

technique for XSLT transformations is to return a string result. For Internet Explorer, this means
simply calling transformNode() on the context node, whereas other browsers need to serialize
the result of a transformToDocument() operation. The following function can be used in Internet
Explorer, Firefox, Chrome, Safari, and Opera:

function transform(context, xslt){
 if (typeof XSLTProcessor != “undefined”){
 var processor = new XSLTProcessor();
 processor.importStylesheet(xslt);

 var result = processor.transformToDocument(context);
 return (new XMLSerializer()).serializeToString(result);

 } else if (typeof context.transformNode != “undefined”) {
 return context.transformNode(xslt);
 } else {
 throw new Error(“No XSLT processor available.”);
 }
}

CrossBrowserXsltExample01.htm

The transform() function accepts two arguments: the context node on which to perform the
transformation and the XSLT document object. First, the code checks to see if the XSLTProcessor
type is defi ned, and if so, it uses that to process the transformation. The transformToDocument()
method is called and the result is serialized into a string to be returned. If the context node has a
transformNode() method, then that is used to return the result. As with the other cross-browser
functions in this chapter, transform() throws an error if there is no XSLT processor available. This
function is used as follows:

var result = transform(xmldom, xsltdom);

Using the Internet Explorer transformNode() method ensures that you don’t need to use a thread-
safe DOM document for the transformation.

Note that because of different XSLT engines in browsers, the results you receive
from a transformation may vary slightly or greatly from browser to browser.
You should never depend on an absolute transformation result using XSLT in
JavaScript.

SUMMARY

There is a great deal of support for XML and related technologies in JavaScript. Unfortunately,
because of an early lack of specifi cations, there are several different implementations for common
functionality. DOM Level 2 provides an API for creating empty XML documents but not for

c18.indd 668c18.indd 668 12/8/11 11:00:14 AM12/8/11 11:00:14 AM

parsing or serialization. Because of this lack of functionality, browser vendors began creating their
own approaches. Internet Explorer took the following approach:

Internet Explorer introduced XML support through ActiveX objects, the same objects that
could be used to build desktop applications.

The MSXML library ships with Windows and is accessible from JavaScript.

This library includes support for basic XML parsing and serialization and for
complementary technologies such as XPath and XSLT.

Firefox, on the other hand, implemented two new types to deal with XML parsing and serialization
as follows:

The DOMParser type is a simple object that parses an XML string into a DOM document.

The XMLSerializer type performs the opposite operation, serializing a DOM document
into an XML string.

Because of the simplicity and popularity of these objects, Internet Explorer 9, Opera, Chrome, and
Safari duplicated the functionality, and these types are de facto standards in web development.

DOM Level 3 introduced a specifi cation for an XPath API that has been implemented by Firefox,
Safari, Chrome, and Opera. The API enables JavaScript to run any XPath query against a DOM
document and retrieve the result regardless of its data type. Internet Explorer implemented its own
XPath support in the form of two methods: selectSingleNode() and selectNodes(). Although
much more limited than the DOM Level 3 API, these methods provide basic XPath functionality to
locate a node or set of nodes in a DOM document.

The last related technology is XSLT, which has no public specifi cation defi ning an API for its usage.
Firefox created the XSLTProcessor type to handle transformations via JavaScript and was soon
copied by Safari, Chrome, and Opera. Internet Explorer implemented its own solution, both with
the simple transformNode() method and through a more complicated template/processor approach.

XML is now well supported in Internet Explorer, Firefox, Chrome, Safari, and Opera. Even though
the implementations vary wildly between Internet Explorer and the other browsers, there’s enough
commonality to create reasonable cross-browser functionality.

➤

➤

➤

➤

➤

Summary ❘ 669

c18.indd 669c18.indd 669 12/8/11 11:00:19 AM12/8/11 11:00:19 AM

c18.indd 670c18.indd 670 12/8/11 11:00:20 AM12/8/11 11:00:20 AM

ECMAScript for XML

WHAT’S IN THIS CHAPTER?

Additional types introduced by E4X

Using E4X for XML manipulation

Syntax changes

In 2002, a group of companies led by BEA Systems proposed an extension to ECMAScript to
add native XML support to the language. In June 2004, ECMAScript for XML (E4X) was
released as ECMA-357, which was revised in December 2005. E4X is not its own language;
rather, it is an optional extension to the ECMAScript language. As such, E4X introduces new
syntax for dealing with XML, as well as for XML-specifi c objects.

Though browser adoption has been slow, Firefox versions 1.5 and later support almost the
entire E4X standard. This chapter focuses on the Firefox implementation.

E4X TYPES

As an extension to ECMAScript, E4X introduces the following new global types:

XML — Any single part of an XML structure

XMLList — A collection of XML objects

Namespace — Mapping between a namespace prefi x and a namespace URI

QName — A qualifi ed name made up of a local name and a namespace URI

Using these four types, E4X is capable of representing all parts of an XML document by
mapping each type, specifi cally XML and XMLList, to multiple DOM types.

➤

➤

➤

➤

➤

➤

➤

19

c19.indd 671c19.indd 671 12/8/11 11:00:57 AM12/8/11 11:00:57 AM

672 ❘ CHAPTER 19 ECMASCRIPT FOR XML

The XML Type

The XML type is the most important new type introduced in E4X, because it can represent any single
part of an XML structure. An instance of XML can represent an element, an attribute, a comment,
a processing instruction, or a text node. The XML type inherits from the Object type, so it inherits
all of the default properties and methods of all objects. There are a few ways to create a new XML
object, the fi rst of which is to call the constructor like this:

var x = new XML();

This line creates an empty XML object that can be fi lled with data. You can also pass in an XML
string to the constructor, as shown in this example:

var x = new XML(“<employee position=\”Software Engineer\”><name>Nicholas “ +
 “Zakas</name></employee>”);

The XML string passed into the constructor is parsed into an object hierarchy of XML objects.
Additionally, you can pass in a DOM document or node to the constructor as follows and have its
data represented in E4X:

var x = new XML(xmldom);

Even though these methods of construction are useful, the most powerful and interesting method is
direct assignment of XML data into a variable via an XML literal. XML literals are nothing more
than XML code embedded into JavaScript code. Here’s an example:

var employee = <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>;

XMLTypeExample01.htm

Here, an XML data structure is assigned directly to a variable. This augmented syntax creates an
XML object and assigns it to the employee variable.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

The Firefox implementation of E4X doesn’t support the parsing of XML
prologs. If <?xml version=”1.0”?> is present, either in text that is passed to the
XML constructor or as part of the XML literal, a syntax error occurs.

The toXMLString() method returns an XML string representing the object and its children. The
toString() method, on the other hand, behaves differently based on the contents of the XML object.
If the contents are simple (plain text), then the text is returned; otherwise toString() acts the same
as toXMLString(). Consider the following example:

c19.indd 672c19.indd 672 12/8/11 11:01:00 AM12/8/11 11:01:00 AM

E4X Types ❘ 673

var data = <name>Nicholas C. Zakas</name>;
alert(data.toString()); //”Nicholas C. Zakas”
alert(data.toXMLString()); //“<name>Nicholas C. Zakas</name>“

Between these two methods, most XML serialization needs can be met.

The XMLList Type

The XMLList type represents ordered collections of XML objects. The DOM equivalent of XMLList
is NodeList, although the differences between XML and XMLList are intentionally small as compared
to the differences between Node and NodeList. To create a new XMLList object explicitly, you can
use the following XMLList constructor:

var list = new XMLList();

As with the XML constructor, you can pass in an XML string to be parsed. The string need not
contain a single document element, as the following code illustrates:

var list = new XMLList(“<item/><item/>”);

XMLListTypeExample01.htm

Here the list variable is fi lled with an XMLList containing two XML objects, one for each <item/>
element.

An XMLList object also can be created by combining two or more XML objects via the plus (+)
operator. This operator has been overloaded in E4X to perform XMLList creation, as in this example:

var list = <item/> + <item/>;

This example combines two XML literals into an XMLList by using the plus operator. The same can be
accomplished by using the special <> and </> syntax and omitting the plus operator, as shown here:

var list = <><item/><item/></>;

Although it’s possible to create stand-alone XMLList objects, they are typically created as part of
parsing a larger XML structure. Consider the following:

var employees = <employees>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
 <employee position=“Salesperson“>
 <name>Jim Smith</name>
 </employee>
</employees>;

XMLListTypeExample02.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 673c19.indd 673 12/8/11 11:01:11 AM12/8/11 11:01:11 AM

674 ❘ CHAPTER 19 ECMASCRIPT FOR XML

This code defi nes an employees variable that becomes an XML object representing the <employees/>
element. Since there are two child <employee/> elements, an XMLList object is created and stored
in employees.employee. It’s then possible to access each element using bracket notation and its
position like this:

var firstEmployee = employees.employee[0];
var secondEmployee = employees.employee[1];

Each XMLList object also has a length() method that returns the number of items it contains. For
example:

alert(employees.employee.length()); //2

Note that length() is a method, not a property. This is intentionally different from arrays and
NodeLists.

One interesting part of E4X is the intentional blurring of the XML and XMLList types. In fact,
there is no discernible difference between an XML object and an XMLList containing a single XML
object. To minimize these differences, each XML object also has a length() method and a property
referenced by [0] (which returns the XML object itself).

The compatibilities between XML and XMLList allow for much easier E4X usage, because some
methods may return either type.

The toString() and toXMLString() methods for an XMLList object return the same string value,
which is a concatenated serialization of all XML objects it contains.

The Namespace Type

Namespaces are represented in E4X by Namespace objects. A Namespace object generally is used
to map a namespace prefi x to a namespace URI, although a prefi x is not always necessary. You can
create a Namespace object by using the Namespace constructor as follows:

var ns = new Namespace();

You can also initialize a Namespace object with either a URI or a prefi x and URI, as shown here:

var ns = new Namespace(“http://www.wrox.com/”); //no prefix namespace
var wrox = new Namespace(“wrox”, “http://www.wrox.com/”); //wrox namespace

NamespaceTypeExample01.htm

The information in a Namespace object can be retrieved using the prefix and uri properties like this:

alert(ns.uri); //”http://www.wrox.com/”
alert(ns.prefix); //undefined
alert(wrox.uri); //”http://www.wrox.com/”
alert(wrox.prefix); //”wrox”

NamespaceTypeExample01.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 674c19.indd 674 12/8/11 11:01:11 AM12/8/11 11:01:11 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

E4X Types ❘ 675

Whenever a prefi x isn’t assigned as part of the Namespace object, its prefix property is set to
undefined. To create a default namespace, you should set the prefi x to an empty string.

If an XML literal contains a namespace or if an XML string containing namespace information is
parsed via the XML constructor, a Namespace object is created automatically. You can then retrieve
a reference to the Namespace object by using the namespace() method and specifying the prefi x.
Consider the following example:

var xml = <wrox:root xmlns:wrox=”http://www.wrox.com/”>
 <wrox:message>Hello World!</wrox:message>
 </wrox:root>;

var wrox = xml.namespace(“wrox”);
alert(wrox.uri);
alert(wrox.prefix);

NamespaceTypeExample02.htm

In this example, an XML fragment containing a namespace is created as an XML literal. The
Namespace object from the wrox namespace can be retrieved via namespace(“wrox”), after which
point you can access the uri and prefix properties. If the XML fragment has a default namespace,
that can be retrieved by passing an empty string into the namespace() method.

The toString() method for a Namespace object always returns the namespace URI.

The QName Type

The QName type represents qualifi ed names of XML objects, which are the combination of a
namespace and a local name. You can create a new QName object manually using the QName
constructor and passing in either a name or a Namespace object and a name, as shown here:

var wrox = new Namespace(“wrox”, “http://www.wrox.com/”);
var wroxMessage = new QName(wrox, “message”); //represents “wrox:message”

QNameTypeExample01.htm

After the object is created, it has two properties that can be accessed: uri and localName. The
uri property returns the URI of the namespace specifi ed when the object is created (or an empty
string if no namespace is specifi ed), and the localName property returns the local name part of the
qualifi ed name, as the following example shows:

alert(wroxMessage.uri); //”http://www.wrox.com/”
alert(wroxMessage.localName); //”message”

QNameTypeExample01.htm

These properties are read-only and cause an error if you try to change their values. The QName object
overrides the toString() object to return a string in the form uri::localName, such as “http://
www.wrox.com/::message” in the previous example.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 675c19.indd 675 12/8/11 11:01:12 AM12/8/11 11:01:12 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

676 ❘ CHAPTER 19 ECMASCRIPT FOR XML

When parsing an XML structure, QName objects are created automatically for XML objects that
represent elements or attributes. You can use the XML object’s name() method to return a reference
to the QName object associated with the XML object, as in this example:

var xml = <wrox:root xmlns:wrox=”http://www.wrox.com/”>
 <wrox:message>Hello World!</wrox:message>
 </wrox:root>;

var wroxRoot = xml.name();
alert(wroxRoot.uri); //”http://www.wrox.com/”
alert(wroxRoot.localName); //”root”

QNameTypeExample02.htm

A QName object is created for each element and attribute in an XML structure even when no namespace
information is specifi ed.

You can change the qualifi ed name of an XML object by using the setName() method and passing in
a new QName object, as shown here:

xml.setName(new QName(“newroot”));

This method typically is used when changing the tag name of an element or an attribute name that
is part of a namespace. If the name isn’t part of a namespace, you can change the local name by
simply using the setLocalName() method like this:

xml.setLocalName(“newtagname”);

GENERAL USAGE

When an XML object, elements, attributes, and text are assembled into an object hierarchy, you
can then navigate the structure by using dot notation along with attribute and tag names. Each
child element is represented as a property of its parent, with the property name being equal to
the child element’s local name. If that child element contains only text, then it is returned
whenever the property is accessed, as in the following example:

var employee = <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>;
alert(employee.name); //”Nicholas C. Zakas”

The <name/> element in this code contains only text. That text is retrieved via employee.name,
which navigates to the <name/> element and returns it. Since the toString() method is called
implicitly when passed into an alert, the text contained within <name/> is displayed. This ability
makes it trivial to access text data contained within an XML document. If there’s more than one
element with the same tag name, an XMLList is returned. Consider the following example:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 676c19.indd 676 12/8/11 11:01:13 AM12/8/11 11:01:13 AM

http://www.wrox.com
http://www.wrox.com

General Usage ❘ 677

var employees = <employees>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
 <employee position=“Salesperson“>
 <name>Jim Smith</name>
 </employee>
</employees>;

alert(employees.employee[0].name); //”Nicholas C. Zakas”
alert(employees.employee[1].name); //”Jim Smith”

This example accesses each <employee/> element and outputs the value of their <name/> elements.
If you aren’t sure of a child element’s local name or if you want to retrieve all child elements
regardless of their name, you can use an asterisk (*), as shown here:

var allChildren = employees.*; //return all children regardless of local name
alert(employees.*[0].name); //”Nicholas C. Zakas”

UsageExample01.htm

As with other properties, the asterisk may return either a single XML object or an XMLList object,
depending on the XML structure.

The child() method behaves in the exact same way as property access. Any property name or
index can be passed into the child() method and it will return the same value. Consider this
example:

var firstChild = employees.child(0); //same as employees.*[0]
var employeeList = employees.child(“employee”); //same as employees.employee
var allChildren = employees.child(“*”); //same as employees.*

For added convenience, a children() method is provided that always returns all child elements.
Here’s an example:

var allChildren = employees.children(); //same as employees.*

There is also an elements() method, which behaves similar to child() with the exception that it
will return only XML objects that represent elements. For example:

var employeeList = employees.elements(“employee”); //same as employees.employee
var allChildren = employees.elements(“*”); //same as employees.*

These methods provide a more familiar syntax for JavaScript developers to access XML data.

Child elements can be removed by using the delete operator, as shown here:

delete employees.employee[0];
alert(employees.employee.length()); //1

This is one of the major advantages of treating child nodes as properties.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 677c19.indd 677 12/8/11 11:01:13 AM12/8/11 11:01:13 AM

678 ❘ CHAPTER 19 ECMASCRIPT FOR XML

Accessing Attributes

Attributes can also be accessed using dot notation, although the syntax is slightly augmented. To
differentiate an attribute name from a child-element tag name, you must prepend an “at” character
(@) before the name. This syntax is borrowed from XPath, which also uses @ to differentiate between
attributes and character names. The result is a syntax that looks a little strange, as you can see in
this example:

var employees = <employees>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
 <employee position=”Salesperson”>
 <name>Jim Smith</name>
 </employee>
</employees>;

alert(employees.employee[0].@position); //”Software Engineer”

AttributesExample01.htm

As with elements, each attribute is represented as a property that can be accessed using this
shorthand notation. An XML object representing the attribute is returned and its toString() method
always returns the attribute value. To get the attribute name, use the name() method of the object.

You can also use the child() method to access an attribute by passing in the name of the attribute
prefi xed with @, as shown here:

alert(employees.employee[0].child(“@position”)); //”Software Engineer”

AttributesExample01.htm

Since any XML object property name can be used with child(), the @ character is necessary to
distinguish between tag names and attribute names.

It’s possible to access only attributes by using the attribute() method and passing in the name
of the attribute. Unlike child(), there is no need to prefi x the attribute name with an @ character.
Here’s an example:

alert(employees.employee[0].attribute(“position”)); //”Software Engineer”

AttributesExample01.htm

These three ways of accessing properties are available on both XML and XMLList types. When used
on an XML object, an XML object representing the attribute is returned; when used on an XMLList
object, an XMLList is returned containing attribute XML objects for all elements in the list. In
the previous example, for instance, employees.employee.@position will return an XMLList

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 678c19.indd 678 12/8/11 11:01:14 AM12/8/11 11:01:14 AM

General Usage ❘ 679

containing two objects — one for the position attribute on the fi rst <employee/> element and one
for the second.

To retrieve all attributes in an XML or XMLList object, you can use the attributes() method. This
method returns an XMLList of objects representing all attributes. This is the same as using the @*
pattern, as illustrated in this example:

//both lines get all attributes
var atts1 = employees.employee[0].@*;
var atts2 = employees.employee[0].attributes();

Changing attribute values in E4X is as simple as changing a property value. Simply assign a new
value to the property like this:

employees.employee[0].@position = “Author”; //change position attribute

The change is then refl ected internally, so when you serialize the XML object, the attribute value
is updated. This same technique can be used to add new attributes, as shown in the following
example:

employees.employee[0].@experience = “8 years”; //add experience attribute
employees.employee[0].@manager = “Jim Smith”; //add manager attribute

Since attributes act like any other ECMAScript properties, you can also remove attributes by using
the delete operator as follows:

delete employees.employee[0].@position; //delete position attribute

Property access for attributes allows for very simple interaction with the underlying XML structure.

Other Node Types

E4X is capable of representing all parts of an XML document, including comments and processing
instructions. By default, E4X will not parse comments or processing instructions, so they won’t
show up in the object hierarchy. To force the parser to recognize them, you must set the following
two properties on the XML constructor:

XML.ignoreComments = false;
XML.ignoreProcessingInstructions = false;

With these fl ags set, E4X parses comments and processing instructions into the XML structure.

Since the XML type represents all of the node types, it’s necessary to have a way to tell them apart.
The nodeKind() method indicates what type of node an XML object represents and returns “text”,
“element”, “comment”, “processing-instruction”, or “attribute”. Consider the following
XML object:

c19.indd 679c19.indd 679 12/8/11 11:01:15 AM12/8/11 11:01:15 AM

680 ❘ CHAPTER 19 ECMASCRIPT FOR XML

var employees = <employees>
 <?Dont forget the donuts?>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
 <!-- just added -->
 <employee position=”Salesperson”>
 <name>Jim Smith</name>
 </employee>
</employees>;

Given this XML, the following table shows what nodeKind() returns, depending on which node is
in scope.

STATEMENT RETURNS

employees.nodeKind() “element”

employees.*[0].nodeKind() “processing-instruction”

employees.employee[0].@position.nodeKind() “attribute”

employees.employee[0].nodeKind() “element”

employees.*[2].nodeKind() “comment”

employees.employee[0].name.*[0].nodeKind() “text”

The nodeKind() method can’t be called on an XMLList that has more than one XML object in it;
doing so throws an error.

It’s possible to retrieve just the nodes of a particular type by using one of the following methods:

attributes() — Returns all the attributes of an XML object.

comments() — Returns all the child comments of an XML object.

elements(tagName) — Returns all the child elements of an XML object. You can fi lter the
results by providing the tagName of the elements you want to return.

processingInstructions(name) — Returns all the child processing instructions of an
XML object. You can fi lter the results by providing the name of the processing instructions to
return.

text() — Returns all text node children of an XML object.

Each of these methods returns an XMLList containing the appropriate XML objects.

You can determine if an XML object contains just text or more complex content by using the
hasSimpleContent() and hasComplexContent() methods. The former returns true if there are
only text nodes as children, whereas the latter returns true if there are any child nodes that aren’t
text nodes. Here’s an example:

alert(employees.employee[0].hasComplexContent()); //true
alert(employees.employee[0].hasSimpleContent()); //false

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 680c19.indd 680 12/8/11 11:01:15 AM12/8/11 11:01:15 AM

General Usage ❘ 681

alert(employees.employee[0].name.hasComplexContent()); //false
alert(employees.employee[0].name.hasSimpleContent()); //true

These methods, used in conjunction with the others, can aid in the querying of an XML structure
for relevant data.

Querying

In truth, E4X provides a querying syntax that is similar in many ways to XPath. The simple
act of retrieving element or attribute values is a basic type of query. The XML objects that represent
various parts of an XML structure aren’t created until a query is made. In effect, all properties of
XML or XMLList objects are simply parts of a query. This means referencing a property that doesn’t
represent a part of the XML structure still returns an XMLList, it just has nothing in it.
For example, if the following code is run against the previous XML example, nothing will be
returned:

var cats = employees.cat;
alert(cats.length()); //0

QueryingExample01.htm

This query looks for <cat/> elements under <employees/>. The fi rst line returns an XMLList with
nothing in it. Such behavior allows for querying without worrying about exceptions occurring.

Most of the previous example dealt with direct children of nodes using dot notation. You can
expand the query to all descendants by using two dots, as shown here:

var allDescendants = employees..*; //get all descendants of <employees/>

In this code, all descendants of the <employees/> element are returned. The results are limited to
elements, text, comments, and processing instructions, with the latter two included based only on
the fl ags specifi ed on the XML constructor (discussed in the preceding section); attributes will not be
included. To retrieve only elements of a specifi c tag name, replace the asterisk with the actual tag
name as follows:

var allNames = employees..name; //get all <name/> descendants of <employees/>

The same queries can be executed using the descendants() method. When used without any
arguments, this method returns all descendants (which is the same as using ..*), or you can also
supply a name as an argument to limit the results. Here are examples of both:

var allDescendants = employees.descendants(); //all descendants
var allNames = employees.descendants(“name”); //all <name/> descendants

It is possible to retrieve all attributes of all descendants using either of the following:

var allAttributes = employees..@*; //get all attributes on descendants
var allAttributes2 = employees.descendants(“@*”); //same

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 681c19.indd 681 12/8/11 11:01:16 AM12/8/11 11:01:16 AM

682 ❘ CHAPTER 19 ECMASCRIPT FOR XML

As with element descendants, you can limit the results by supplying a full attribute name instead of
an asterisk. For example:

var allAttributes = employees..@position; //get all position attributes
var allAttributes2 = employees.descendants(“@position”); //same

In addition to accessing descendants, you can specify a condition that must be met. For instance, to
return all <employee/> elements where the position attribute is “salesperson”, you can use the
following query:

var salespeople = employees.employee.(@position == “Salesperson”);

This syntax can also be used to change parts of the XML structure. For example, you can change the
position attribute of the fi rst salesperson to “Senior Salesperson” with just the following line:

employees.employee.(@position == “Salesperson”)[0].@position= “Senior Salesperson”;

Note that the expression in parentheses returns an XMLList containing the results, so the brackets
return the fi rst item upon which the @position property is written.

You can travel back up the XML structure by using the parent() method, which returns the XML
object representing the XML object’s parent. If called on an XMLList, the parent() method returns
the common parent of all objects in the list. Consider this example:

var employees2 = employees.employee.parent();

Here, the employees2 variable contains the same value as the employees variable. The parent()
method is most useful when dealing with an XML object of unknown origin.

XML Construction and Manipulation

There are numerous options for getting XML data into an XML object. As discussed earlier, you can
pass in an XML string to the XML constructor or use an XML literal. XML literals can be made
more useful by embedding JavaScript variables within curly braces: {}. A variable can be used
anywhere within an XML literal, such as in this example:

var tagName = “color”;
var color = “red”;
var xml = <{tagName}>{color}</{tagName}>;

alert(xml.toXMLString()); //”<color>red</color>

XMLConstructionExample01.htm

In this code, both the tag name and the text value of the XML literal are specifi ed using variables
inserted with curly braces. This capability makes it easy to build up XML structures without string
concatenation.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 682c19.indd 682 12/8/11 11:01:17 AM12/8/11 11:01:17 AM

General Usage ❘ 683

E4X also makes it easy to build up an entire XML structure using standard JavaScript syntax. As
mentioned previously, most operations are queries and won’t throw an error even if the elements
or attributes don’t exist. Taking that one step further, if you assign a value to a nonexistent element or
attribute, E4X will create the underlying structure fi rst and then do the assignment. Here’s an example:

var employees = <employees/>;
employees.employee.name = “Nicholas C. Zakas”;
employees.employee.@position = “Software Engineer”;

XMLConstructionExample02.htm

This example begins with an <employees/> element and then builds on it. The second line creates
an <employee/> element and a <name/> element inside it, assigning a text value. The next line adds
the position attribute and assigns a value to it. In the end, the structure is as follows:

<employees>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
</employees>

It’s then possible to add a second <employee/> element using the + operator, like this:

employees.employee += <employee position=”Salesperson”>
 <name>Jim Smith</name>
 </employee>;

XMLConstructionExample02.htm

This results in a fi nal XML structure, as follows:

<employees>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
 <employee position=“Salesperson“>
 <name>Jim Smith</name>
 </employee>
</employees>

Aside from this basic XML construction syntax, the following DOM-like methods are also available:

appendChild(child) — Appends the given child to the end of the XMLList representing
the node’s children.

copy() — Returns a duplicate of the XML object.

insertChildAfter(refNode, child) — Inserts child after refNode in the XMLList
representing the node’s children.

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 683c19.indd 683 12/8/11 11:01:17 AM12/8/11 11:01:17 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

684 ❘ CHAPTER 19 ECMASCRIPT FOR XML

insertChildBefore(refNode, child) — Inserts child before refNode in the XMLList
representing the node’s children.

prependChild(child) — Inserts the given child at the beginning of the XMLList
representing the node’s children.

replace(propertyName, value) — Replaces the property named propertyName, which
may be an element or an attribute, with the given value.

setChildren(children) — Replaces all current children with children, which may be an
XML object or an XMLList object.

These methods are incredibly useful and easy to use. The following code illustrates some of these
methods:

var employees = <employees>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
 <employee position=”Salesperson”>
 <name>Jim Smith</name>
 </employee>
</employees>;

employees.appendChild(<employee position=”Vice President”>
 <name>Benjamin Anderson</name>
 </employee>);

employees.prependChild(<employee position=”User Interface Designer”>
 <name>Michael Johnson</name>
 </employee>);

employees.insertChildBefore(employees.child(2),
 <employee position=”Human Resources Manager”>
 <name>Margaret Jones</name>
 </employee>);

employees.setChildren(<employee position=”President”>
 <name>Richard McMichael</name>
 </employee> +
 <employee position=”Vice President”>
 <name>Rebecca Smith</name>
 </employee>);

XMLConstructionExample03.htm

First, the code adds a vice president named Benjamin Anderson to the bottom of the list of
employees. Second, a user interface designer named Michael Johnson is added to the top of the list
of employees. Third, a human resources manager named Margaret Jones is added just before the
employee in position 2, which at this point is Jim Smith (because Michael Johnson and Nicholas C.
Zakas now come before him). Finally, all the children are replaced with the president, Richard
McMichael, and the new vice president, Rebecca Smith. The resulting XML looks like this:

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 684c19.indd 684 12/8/11 11:01:18 AM12/8/11 11:01:18 AM

General Usage ❘ 685

<employees>
 <employee position=”President”>
 <name>Richard McMichael</name>
 </employee>
 <employee position=”Vice President”>
 <name>Rebecca Smith</name>
 </employee>
</employees>

Using these techniques and methods, you can perform any DOM-style operation using E4X.

Parsing and Serialization Options

The way E4X parses and serializes data is controlled by several settings on the XML constructor. The
following three settings are related to XML parsing:

ignoreComments — Indicates that the parser should ignore comments in the markup. This
is set to true by default.

ignoreProcessingInstructions — Indicates that the parser should ignore processing
instructions in the markup. This is set to true by default.

ignoreWhitespace — Indicates that the parser should ignore white space in between
elements rather than create text nodes to represent it. This is set to true by default.

These three settings affect parsing of XML strings passed into the XML constructor, as well as
XML literals.

Additionally, the following two settings are related to the serialization of XML data:

prettyIndent — Indicates the number of spaces used per indent when serializing XML.
The default is 2.

prettyPrinting — Indicates that the XML should be output in a human-readable format,
with each element on a new line and children indented. This is set to true by default.

These settings affect the output from toString() and toXMLString().

All fi ve of the settings are stored in a settings object that can be retrieved using the settings()
method of the XML constructor, as in this example:

var settings = XML.settings();
alert(settings.ignoreWhitespace); //true
alert(settings.ignoreComments); //true

ParsingAndSerializationExample01.htm

Multiple settings can be assigned at once by passing an object into the setSettings() method
containing all fi ve settings. This is useful when you want to change settings temporarily, as in the
following example:

var settings = XML.settings();
XML.prettyIndent = 8;

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 685c19.indd 685 12/8/11 11:01:19 AM12/8/11 11:01:19 AM

686 ❘ CHAPTER 19 ECMASCRIPT FOR XML

XML.ignoreComments = false;

//do some processing

XML.setSettings(settings); //reset to previous settings

You can always get an object containing the default settings by using the defaultSettings()
method, so you can reset the settings at any time using the following line:

XML.setSettings(XML.defaultSettings());

Namespaces

E4X makes namespaces quite easy to use. As discussed previously, you can retrieve a Namespace
object for a particular prefi x using the namespace() method. You can also set the namespace for a
given element by using the setNamespace() method and passing in a Namespace object. Here’s an
example:

var messages = <messages>
 <message>Hello world!</message>
</messages>;
messages.setNamespace(new Namespace(”wrox”, ”http://www.wrox.com/”));

When setNamespace() is called, the namespace gets applied to only the element on which it was
called. Serializing the messages variable results in the following:

<wrox:messages xmlns:wrox=”http://www.wrox.com/”>
 <message>Hello world!</message>
</wrox:messages>

The <messages/> element gets prefi xed with the wrox namespace because of the call to
setNamespace(), whereas the <message/> element remains unchanged.

To simply add a namespace declaration without changing the element, use the addNamespace()
method and pass in a Namespace object, as in this example:

messages.addNamespace(new Namespace(“wrox”, “http://www.wrox.com/”));

When this code is applied to the original messages XML, the following XML structure is created:

<messages xmlns:wrox=”http://www.wrox.com/”>
 <message>Hello world!</message>
</messages>

By calling removeNamespace() and passing in a Namespace object, you can remove the namespace
declaration for the namespace with the given namespace prefi x and URI; it is not necessary to pass
in the exact Namespace object representing the namespace. Consider this example:

messages.removeNamespace(new Namespace(“wrox”, “http://www.wrox.com/”));

c19.indd 686c19.indd 686 12/8/11 11:01:19 AM12/8/11 11:01:19 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

General Usage ❘ 687

This code removes the wrox namespace. Note that qualifi ed names referencing the prefi x will not be
affected.

There are two methods that return an array of the Namespace object related to a node. The fi rst
is namespaceDeclarations(), which returns an array of all namespaces that are declared on the
given node. The second is inScopeNamespaces(), which returns an array of all namespaces that are
in the scope of the given node, meaning they have been declared either on the node itself or on an
ancestor node. Consider this example:

var messages = <messages xmlns:wrox=”http://www.wrox.com/”>
 <message>Hello world!</message>
</messages>;

alert(messages.namespaceDeclarations()); //”http://www.wrox.com”
alert(messages.inScopeNamespaces()); //”,http://www.wrox.com”

alert(messages.message.namespaceDeclarations()); //””
alert(messages.message.inScopeNamespaces()); //”,http://www.wrox.com”

Here, the <message/> element returns an array containing one namespace when namespace
Declarations() is called, and an array with two namespaces when inScopeNamespaces()
is called. The two in-scope namespaces are the default namespace (represented by an empty
string) and the wrox namespace. When these methods are called on the <message/> element,
namespaceDeclarations() returns an empty array, whereas inScopeNamespaces() returns the
same results.

A Namespace object can also be used to query an XML structure for elements in a specifi c
namespace by using the double colon (::). For example, to retrieve all <message/> elements
contained in the wrox namespace, you could use the following:

var messages = <messages xmlns:wrox=”http://www.wrox.com/”>
 <wrox:message>Hello world!</wrox:message>
</messages>;
var wroxNS = new Namespace(”wrox”, ”http://www.wrox.com/”);
var wroxMessages = messages.wroxNS::message;

The double colon indicates the namespace in which the element to be returned should exist. Note
that it is the name of the JavaScript variable that is used, not the namespace prefi x.

You can also set the default namespace for all XML objects created within a given scope. To do
so, use the default xml namespace statement and assign either a Namespace object or simply a
namespace URI. Here’s an example:

default xml namespace = “http://www.wrox.com/”;

function doSomething(){

 //set default namespace just for this function
 default xml namespace = new Namespace(“your”, “http://www.yourdomain.com”);

}

c19.indd 687c19.indd 687 12/8/11 11:01:20 AM12/8/11 11:01:20 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

688 ❘ CHAPTER 19 ECMASCRIPT FOR XML

The default XML namespace for the global scope is not set. This statement is useful when all XML
data within a given scope will be using a specifi c namespace, avoiding constant references to the
namespace itself.

OTHER CHANGES

To work seamlessly with standard ECMAScript, E4X makes some changes to the base language.
One change is the introduction of the for-each-in loop. As opposed to the for-in loop, which
iterates over each property and returns the property name, the for-each-in loop iterates over each
property and returns the value of the property, as this example illustrates:

var employees = <employees>
 <employee position=”Software Engineer”>
 <name>Nicholas C. Zakas</name>
 </employee>
 <employee position=”Salesperson”>
 <name>Jim Smith</name>
 </employee>
 </employees>;

for each (var child in employees){
 alert(child.toXMLString());
}

ForEachInExample01.htm

The for-each-in loop in this example fi lls the child variable with each child node of
<employees/>, which may include comments, processing instructions, and/or text nodes. Attributes
aren’t returned in the loop unless you use an XMLList of attributes, such as the following:

for each (var attribute in employees.@*){ //iterate over attributes
 alert(attribute);
}

Even though the for-each-in loop is defi ned as part of E4X, it can also be used on normal arrays
and objects, as shown here:

var colors = [“red”,”green”,”blue”];
for each(var color in colors){
 alert(color);
}

ForEachInExample01.htm

For arrays, the for-each-in loop returns each array item. For non-XML objects, it returns the value
of each property.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c19.indd 688c19.indd 688 12/8/11 11:01:20 AM12/8/11 11:01:20 AM

Summary ❘ 689

E4X also adds a global function called isXMLName() that accepts a string and returns true if the name
is a valid local name for an element or attribute. This is provided as a convenience to developers who
may be using unknown string data to construct XML data structures. Here’s an example:

alert(isXMLName(“color”)); //true
alert(isXMLName(“hello world”)); //false

If you are unsure of the origin of a string that should be used as a local name, it’s best to use
isXMLName() fi rst to determine if the string is valid or will cause an error.

The last change to standard ECMAScript is to the typeof operator. When used on an XML object
or an XMLList object, typeof returns the string “xml”. This differs from when it is used on other
objects, in which case it returns “object”, as shown here:

var xml = new XML();
var list = new XMLList();
var object = {};

alert(typeof xml); //”xml”
alert(typeof list); //”xml”
alert(typeof object); //”object”

In most cases, it is unnecessary to distinguish between XML and XMLList objects. Since both types are
considered primitives in E4X, you cannot use the instanceof operator to make this distinction either.

ENABLING FULL E4X

Because E4X does many things differently than standard JavaScript, Firefox enables only the parts
that work best when E4X is intermixed with other code. To fully enable E4X, you need to set the
type attribute of the <script> tag to “text/javascript;e4x=1”, as in this example:

<script type=”text/javascript;e4x=1” src=”e4x_file.js”></script>

When this switch is turned on, full E4X support is enabled, including the proper parsing of
embedded comments and CData sections in E4X literals. Using comments and/or CData sections
without full E4X enabled results in syntax errors.

SUMMARY

ECMAScript for XML (E4X) is an extension to ECMAScript defi ned in the ECMA-357
specifi cation. The purpose of E4X is to provide syntax for working with XML data that is more like
that of standard ECMAScript. E4X has the following characteristics:

Unlike the DOM, there is only one type to represent all of the different node types present
in XML.

The XML object encapsulates data and the behavior necessary for all nodes. To represent a
collection of multiple nodes, the specifi cation defi nes an XMLList object.

➤

➤

c19.indd 689c19.indd 689 12/8/11 11:01:21 AM12/8/11 11:01:21 AM

690 ❘ CHAPTER 19 ECMASCRIPT FOR XML

Two other types, Namespace and QName, are present to represent namespaces and qualifi ed
names, respectively.

E4X changes standard ECMAScript syntax as follows to allow for easier querying of an XML
structure:

Using two dots (..) indicates that all descendants should be matched, whereas using the @
character indicates that one or more attributes should be returned.

The asterisk character (*) represents a wildcard that can match any node of the given type.

All of these queries can also be accomplished via a series of methods that perform the same
operation.

By the end of 2011, Firefox was the only browser to support E4X. Though no other browser vendors
have committed to implementing E4X, it has gained a certain amount of popularity on the server
with the BEA Workshop for WebLogic and YQL from Yahoo!.

➤

➤

➤

➤

c19.indd 690c19.indd 690 12/8/11 11:01:21 AM12/8/11 11:01:21 AM

JSON

WHAT’S IN THIS CHAPTER?

Understanding JSON syntax

JSON parsing

JSON serialization

There was a time when XML was the de facto standard for transmitting structured data
over the Internet. The fi rst iteration of web services was largely XML-based, highlighting its
target of server-to-server communication. XML was not, however, without its detractors.
Some believed that the language was overly verbose and redundant. Several solutions arose to
counter these problems, but the Web had already started moving in a new direction.

Douglas Crockford fi rst specifi ed JavaScript Object Notation (JSON) as IETF RFC 4627 in
2006 even though it was in use as early as 2001. JSON is a strict subset of JavaScript, making
use of several patterns found in JavaScript to represent structured data. Crockford put forth
JSON as a better alternative to XML for accessing structured data in JavaScript, since it could
be passed directly to eval() and didn’t require the creation of a DOM.

The most important thing to understand about JSON is that it is a data format, not a
programming language. JSON is not a part of JavaScript even though they share syntax.
JSON is also not solely used by JavaScript, since it is a data format. There are parsers and
serializers available in many programming languages.

SYNTAX

JSON syntax allows the representation of three types of values:

Simple Values — Strings, numbers, Booleans, and null can all be represented
in JSON using the same syntax as JavaScript. The special value undefined is
not supported.

➤

➤

➤

➤

20

c20.indd 691c20.indd 691 12/8/11 11:01:48 AM12/8/11 11:01:48 AM

692 ❘ CHAPTER 20 JSON

Objects — The fi rst complex data type, objects represent ordered key-value pairs. Each
value may be a primitive type or a complex type.

Arrays — The second complex data type, arrays represent an ordered list of values that
are accessible via a numeric index. The values may be of any type, including simple values,
objects, and even other arrays.

There are no variables, functions, or object instances in JSON. JSON is all about representing
structured data, and although it shares syntax with JavaScript, it should not be confused with
JavaScript paradigms.

Simple Values

In its simplest form, JSON represents a small number of simple values. For example, the following
is valid JSON:

5

This is JSON that represents the number 5. Likewise, the following is also valid JSON representing
a string:

“Hello world!”

The big difference between JavaScript strings and JSON strings is that JSON strings must use
double quotes to be valid (single quotes causes a syntax error).

Boolean values and null are valid exactly as they are as stand-alone JSON. In practice, however,
JSON is most often used to represent more complex data structures of which simple values represent
just part of the overall information.

Objects

Objects are represented using a slight modifi cation of object literal notation. Object literals in
JavaScript look like this:

var person = {
 name: “Nicholas”,
 age: 29
};

While this is the standard way that developers create object literals, it’s the quoted property format
that is used in JSON. The following is exactly the same as the previous example:

var object = {
 “name”: “Nicholas”,
 “age”: 29
};

➤

➤

c20.indd 692c20.indd 692 12/8/11 11:01:51 AM12/8/11 11:01:51 AM

The JSON representation of this same object is then:

{
 “name”: “Nicholas”,
 “age”: 29
}

There are a couple of differences from the JavaScript example. First, there is no variable declaration
(variables don’t exist in JSON). Second, there is no trailing semicolon (not needed since this isn’t a
JavaScript statement). Once again, the quotes around the property name are required to be valid JSON.
The value can be any simple or complex value, allowing you to embed objects within objects, such as:

{
 “name”: “Nicholas”,
 “age”: 29,
 “school”: {
 “name”: “Merrimack College”,
 “location”: “North Andover, MA”
 }
}

This example embeds school information into the top-level object. Even though there are two
properties called “name”, they are in two different objects and so are allowed. You do want to avoid
having two properties of the same name in the same object.

Unlike JavaScript, object property names in JSON must always be double-quoted. It’s a common
mistake to hand-code JSON without these double quotes or using single quotes.

Arrays

 The second complex type in JSON is the array. Arrays are represented in JSON using array literal
notation from JavaScript. For example, this is an array in JavaScript:

var values = [25, “hi”, true];

You can represent this same array in JSON using a similar syntax:

[25, “hi”, true]

Note once again the absence of a variable or a semicolon. Arrays and objects can be used together to
represent more complex collections of data, such as:

[
 {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 3,
 year: 2011
 },

Syntax ❘ 693

c20.indd 693c20.indd 693 12/8/11 11:01:51 AM12/8/11 11:01:51 AM

694 ❘ CHAPTER 20 JSON

 {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 2,
 year: 2009
 },
 {
 “title”: “Professional Ajax”,
 “authors”: [
 “Nicholas C. Zakas”,
 “Jeremy McPeak”,
 “Joe Fawcett”
],
 edition: 2,
 year: 2008
 },
 {
 “title”: “Professional Ajax”,
 “authors”: [
 “Nicholas C. Zakas”,
 “Jeremy McPeak”,
 “Joe Fawcett”
],
 edition: 1,
 year: 2007
 },
 {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 1,
 year: 2006
 }
]

This array contains a number of objects representing books. Each object has several keys, one of
which is “authors”, which is another array. Objects and arrays are typically top-level parts of a
JSON data structure (even though this is not required) and can be used to create a large number of
data structures.

PARSING AND SERIALIZATION

JSON’s rise to popularity was not necessarily because it used familiar syntax. More so, it was
because the data could be parsed into a usable object in JavaScript. This stood in stark contrast to
XML that was parsed into a DOM document, making extraction of data into a bit of a chore for
JavaScript developers. For example, the JSON code in the previous section contains a list of books,
and you can easily get the title of the third book via:

books[2].title

c20.indd 694c20.indd 694 12/8/11 11:01:51 AM12/8/11 11:01:51 AM

This assumes that the data structure was stored in a variable named books. Compare this to a
typical walk through a DOM structure:

doc.getElementsByTagName(“book”)[2].getAttribute(“title”)

With all of the extra method calls, it’s no wonder that JSON became incredibly popular with
JavaScript developers. After that, JSON went on to become the de facto standard for web services.

The JSON Object

Early JSON parsers did little more than use JavaScript’s eval() function. Since JSON is a subset
of JavaScript’s syntax, eval() could parse, interpret, and return the data as JavaScript objects and
arrays. ECMAScript 5 formalized JSON parsing under a native global called JSON. This object is
supported in Internet Explorer 8+, Firefox 3.5+, Safari 4+, Chrome, and Opera 10.5+. A shim for
older browsers can be found at https://github.com/douglascrockford/JSON-js. It’s important
not to use eval() alone for evaluating JSON in older browsers because of the risk of executable
code. The JSON shim is the best option for browsers without native JSON parsing.

The JSON object has two methods: stringify() and parse(). In simple usage, these methods
serialize JavaScript objects into a JSON string and parse JSON into a native JavaScript value,
respectively. For example:

var book = {
 title: “Professional JavaScript”,
 authors: [
 “Nicholas C. Zakas”
],
 edition: 3,
 year: 2011
 };

var jsonText = JSON.stringify(book);

JSONStringifyExample01.htm

This example serializes a JavaScript object into a JSON string using JSON.stringify() and stores
it in jsonText. By default, JSON.stringify() outputs a JSON string without any extra white space
or indentation, so the value stored in jsonText is:

{“title”:”Professional JavaScript”,”authors”:[“Nicholas C. Zakas”],”edition”:3,
“year”:2011}

When serializing a JavaScript object, all functions and prototype members are intentionally omitted
from the result. Additionally, any property whose value is undefined is also skipped. You’re left
with just a representation of the instance properties that are one of the JSON data types.

A JSON string can be passed directly into JSON.parse() and it creates an appropriate JavaScript
value. For example, you can create an object similar to the book object using this code:

var bookCopy = JSON.parse(jsonText);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Parsing and Serialization ❘ 695

c20.indd 695c20.indd 695 12/8/11 11:01:52 AM12/8/11 11:01:52 AM

696 ❘ CHAPTER 20 JSON

Note that book and bookCopy are each separate objects without any relationship to one another
even though they do share the same properties.

An error is thrown if the text passed into JSON.parse() is not valid JSON.

Serialization Options

The JSON.stringify() method actually accepts two arguments in addition to the object to
serialize. These arguments allow you to specify alternate ways to serialize a JavaScript object. The
fi rst argument is a fi lter, which can be either an array or a function, and the second argument is
an option for indenting the resulting JSON string. When used separately or together, this provides
some very useful functionality for controlling JSON serialization.

Filtering Results

If the argument is an array, then JSON.stringify()will include only object properties that are
listed in the array. Consider the following:

var book = {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 3,
 year: 2011
 };

var jsonText = JSON.stringify(book, [“title”, “edition”]);

JSONStringifyExample01.htm

The second argument to JSON.stringify() is an array with two strings: “title” and “edition”.
These correspond to properties in the object being serialized, and so only those properties appear in
the resulting JSON string:

{“title”:”Professional JavaScript”,”edition”:3}

When the second argument is a function, the behavior is slightly different. The provided function
receives two arguments: the property key name and the property value. You can look at the key to
determine what to do with the property. The key is always a string but might be an empty string if a
value isn’t part of a key-value pair.

In order to change the serialization of the object, return the value that should be included for that
key. Keep in mind that returning undefined will result in the property being omitted from the
result. Here’s an example:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c20.indd 696c20.indd 696 12/8/11 11:01:53 AM12/8/11 11:01:53 AM

var book = {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 3,
 year: 2011
 };

var jsonText = JSON.stringify(book, function(key, value){
 switch(key){
 case “authors”:
 return value.join(“,”)

 case “year”:
 return 5000;

 case “edition”:
 return undefi ned;

 default:
 return value;
 }
});

JSONStringifyExample02.htm

The function fi lters based on the key. The “authors” key is translated from an array to a string, the
“year” key is set to 5000, and the “edition” key is removed altogether by returning undefined.
It’s important to provide a default behavior that returns the passed-in value so that all other values
are passed through to the result. The fi rst call to this function actually has key equal to an empty
string and the value set to the book object. The resulting JSON string is:

{“title”:”Professional JavaScript”,”authors”:”Nicholas C. Zakas”,”year”:5000}

Keep in mind that fi lters apply to all objects contained in the object to be serialized, so an array of
multiple objects with these properties will result in every object including only the “title” and
“edition” properties.

Firefox 3.5–3.6 had a bug in its implementation of JSON.stringify() when a function was used as
the second argument. The function can act only as a fi lter: returning undefined means the property
is skipped, while returning anything else causes the property to be included. This behavior was fi xed
in Firefox 4.

String Indentation

The third argument of JSON.stringify() controls indentation and white space. When this
argument is a number, it represents the number of spaces to indent each level. For example, to
indent each level by four spaces, use the following:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Parsing and Serialization ❘ 697

c20.indd 697c20.indd 697 12/8/11 11:01:53 AM12/8/11 11:01:53 AM

698 ❘ CHAPTER 20 JSON

var book = {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 3,
 year: 2011
 };

var jsonText = JSON.stringify(book, null, 4);

JSONStringifyExample03.htm

The string stored in jsonText is:

{
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 “edition”: 3,
 “year”: 2011
}

You may have noticed that JSON.stringify() also inserts new lines into the JSON string for easier
reading. This happens for all valid indentation argument values. (Indentation without new lines
isn’t very useful.) The maximum numeric indentation value is 10; passing in a value larger than 10
automatically sets the value to 10.

If the indentation argument is a string instead of a number, then the string is used as the indentation
character for the JSON string instead of a space. Using a string, you can set the indentation character
to be a tab or something completely arbitrary like two dashes:

var jsonText = JSON.stringify(book, null, “ — -”);

The jsonText value then becomes:

{
--”title”: “Professional JavaScript”,
--”authors”: [
----”Nicholas C. Zakas”
--],
--”edition”: 3,
--”year”: 2011
}

There is a ten-character limit on the indentation string to use. If a string longer than ten characters
is used, then it is truncated to the fi rst ten characters.

The toJSON() Method

Sometimes objects need custom JSON serialization above and beyond what JSON.stringify()
can do. In those cases, you can add a toJSON() method to the object and have it return the

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c20.indd 698c20.indd 698 12/8/11 11:01:54 AM12/8/11 11:01:54 AM

proper JSON representation for itself. In fact, the native Date object has a toJSON() method that
automatically converts JavaScript Date objects into an ISO 8601 date string (essentially, the same as
calling toISOString() on the Date object).

A toJSON() method can be added to any object, for example:

var book = {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 3,
 year: 2011,
 toJSON: function(){
 return this.title;
 }
 };

var jsonText = JSON.stringify(book);

JSONStringifyExample05.htm

This code defi nes a toJSON() method on the book object that simply returns the title of the book.
Similar to the Date object, this object is serialized to a simple string instead of an object. You can
return any serialization value from toJSON(), and it will work appropriately. Returning undefined
causes the value to become null if the object is embedded in another object or else is just undefined
if the object is top-level.

The toJSON() method can be used in addition to the fi lter function, and so it’s important to
understand the order in which the various parts of a serialization process take place. When an
object is passed into JSON.stringify(), the following steps are taken:

 1. Call the toJSON() method if it’s available to retrieve the actual value. Use the default
serialization otherwise.

 2. If the second argument is provided, apply the fi lter. The value that is passed into a fi lter
function will be the value returned from step 1.

 3. Each value from step 2 is serialized appropriately.

 4. If the third argument is provided, format appropriately.

It’s important to understand this order when deciding whether to create a toJSON() method or to
use a fi lter function or to do both.

Parsing Options

The JSON.parse() method also accepts an additional argument, which is a function that is called
on each key-value pair. The function is called a reviver function to distinguish it from the replacer
(fi lter) function that JSON.stringify() accepts, even though the format is exactly the same: the
function receives two arguments, the key and the value, and needs to return a value.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Parsing and Serialization ❘ 699

c20.indd 699c20.indd 699 12/8/11 11:01:54 AM12/8/11 11:01:54 AM

700 ❘ CHAPTER 20 JSON

If the reviver function returns undefined, then the key is removed from the result; if it returns any
other value, that value is inserted into the result. A very common use of the reviver function is to
turn date strings into Date objects. For example:

var book = {
 “title”: “Professional JavaScript”,
 “authors”: [
 “Nicholas C. Zakas”
],
 edition: 3,
 year: 2011,
 releaseDate: new Date(2011, 11, 1)
 };

var jsonText = JSON.stringify(book);

var bookCopy = JSON.parse(jsonText, function(key, value){
 if (key == “releaseDate”){
 return new Date(value);
 } else {
 return value;
 }
});

alert(bookCopy.releaseDate.getFullYear());

JSONParseExample02.htm

This code starts with the addition of a releaseDate property to the book object, which is a Date. The
object is serialized to get a valid JSON string and then parsed back into an object, bookCopy.
The reviver function looks for the “releaseDate” key and, when found, creates a new Date object
based on that string. The resulting bookCopy.releaseDate property is then a Date object so the
getFullYear() method can be called.

SUMMARY

JSON is a lightweight data format designed to easily represent complex data structures. The format
uses a subset of JavaScript syntax to represent objects, arrays, strings, numbers, Booleans, and
null. Even though XML can handle the same job, JSON is less verbose and has better support
in JavaScript.

ECMAScript 5 defi nes a native JSON object that is used for serialization of objects into JSON format
and for parsing JSON data into JavaScript objects. The JSON.stringify() and JSON.parse()
methods are used for these two operations, respectively. Both methods have a number of options
that allow you to change the default behavior to fi lter or otherwise modify the process.

The native JSON object is well supported across browsers, including Internet Explorer 8+,
Firefox 3.5+, Safari 4+, Opera 10.5, and Chrome.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c20.indd 700c20.indd 700 12/8/11 11:01:55 AM12/8/11 11:01:55 AM

Ajax and Comet

WHAT’S IN THIS CHAPTER?

Using the XMLHttpRequest object

Working with XMLHttpRequest events

Cross-domain Ajax restrictions

In 2005, Jesse James Garrett penned an online article titled “Ajax: A New Approach to Web
Applications” (www.adaptivepath.com/ideas/essays/archives/000385.php). This article
outlined a technique that he referred to as Ajax, short for Asynchronous JavaScript+XML.
The technique consisted of making server requests for additional data without unloading the
web page, resulting in a better user experience. Garrett explained how this technique could
be used to change the traditional click-and-wait paradigm that the Web had been stuck in since
its inception.

The key technology pushing Ajax forward was the XMLHttpRequest (XHR) object, fi rst
invented by Microsoft and then duplicated by other browser vendors. Prior to the introduction
of XHR, Ajax-style communication had to be accomplished through a number of hacks,
mostly using hidden frames or iframes. XHR introduced a streamlined interface for making
server requests and evaluating the responses. This allowed for asynchronous retrieval of
additional information from the server, meaning that a user click didn’t have to refresh the
page to retrieve more data. Instead, an XHR object could be used to retrieve the data and then
the data could be inserted into the page using the DOM. And despite the mention of XML
in the name, Ajax communication is format-agnostic; the technique is about retrieving data
from the server without refreshing a page, not necessarily about XML.

The technique that Garrett referred to as Ajax had, in fact, been around for some time.
Typically called remote scripting prior to Garrett’s article, such browser-server communication
has been possible since 1998 using different techniques. Early on, server requests could be
made from JavaScript through an intermediary, such as a Java applet or Flash movie. The XHR

➤

➤

➤

21

c21.indd 701c21.indd 701 12/8/11 11:02:43 AM12/8/11 11:02:43 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

702 ❘ CHAPTER 21 AJAX AND COMET

object brought native browser communication capabilities to developers, reducing the amount of
work necessary to achieve the result.

Renamed as Ajax, the popularity of browser-server communication exploded in late 2005 and
early 2006. A renewed interest in JavaScript and the Web in general brought new techniques and
patterns for using these capabilities. Therefore, the XHR object is now a necessary tool in every web
developer’s tool kit.

THE XMLHttpRequest OBJECT

Internet Explorer 5 was the fi rst browser to introduce the XHR object. It did so through the use of
an ActiveX object included as part of the MSXML library. As such, three versions of the XHR object
may be used in the browser: MSXML2.XMLHttp, MSXML2.XMLHttp.3.0, and MXSML2.XMLHttp.6.0.
Using an XHR object with the MSXML library requires a function similar to the one used for
creating XML documents in Chapter 18, as shown in the following example:

//function for IE versions prior to 7
function createXHR(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”],
 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
}

This function tries to create the most recent version of the XHR object that is available on Internet
Explorer.

Internet Explorer 7+, Firefox, Opera, Chrome, and Safari all support a native XHR object that can
be created using the XMLHttpRequest constructor as follows:

var xhr = new XMLHttpRequest();

If you need only support Internet Explorer versions 7 and later, then you can forego the previous
function in favor of using the native XHR implementation. If, on the other hand, you must extend
support to earlier versions of Internet Explorer, the createXHR() function can be augmented to
check for the native XHR object, as shown here:

c21.indd 702c21.indd 702 12/8/11 11:02:46 AM12/8/11 11:02:46 AM

function createXHR(){
 if (typeof XMLHttpRequest != “undefi ned”){
 return new XMLHttpRequest();
 } else if (typeof ActiveXObject != “undefi ned”){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”],
 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
 } else {
 throw new Error(“No XHR object available.”);
 }
}

XHRExample01.htm

The new code in this function fi rst checks for the native XHR object and, if found, returns a new
instance. If the native object isn’t found, then it checks for ActiveX support. An error is thrown
if neither option is available. You can then create an XHR object using the following code in all
browsers:

var xhr = createXHR();

Since the XHR implementation in each browser is compatible with the original Internet Explorer
version, you can use the created xhr object the same way in all browsers.

XHR Usage

To begin using an XHR object, you will fi rst call the method open(), which accepts three
arguments: the type of request to be sent (“get”, “post”, and so on), the URL for the request, and
a Boolean value indicating if the request should be sent asynchronously. Here’s an example:

xhr.open(“get”, “example.php”, false);

This line opens a synchronous GET request for example.php. There are a couple of things to note
about this code. First, the URL is relative to the page on which the code is called, although an
absolute path can be given as well. Second, the call to open() does not actually send the request; it
simply prepares a request to be sent.

The XMLHttpRequest Object ❘ 703

c21.indd 703c21.indd 703 12/8/11 11:02:47 AM12/8/11 11:02:47 AM

704 ❘ CHAPTER 21 AJAX AND COMET

To send the specifi ed request, you must call the send() method as follows:

xhr.open(“get”, “example.txt”, false);
xhr.send(null);

XHRExample01.htm

The send() method accepts a single argument, which is data to be sent as the body of the request.
If no body data needs to be sent, you must pass in null, because this argument is required for some
browsers. Once send() is called, the request is dispatched to the server.

Since this request is synchronous, the JavaScript code will wait for the response to return before
continuing execution. When a response is received, the XHR object properties are fi lled with data.
The relevant properties are as follows:

responseText — The text that was returned as the body of the response.

responseXML — Contains an XML DOM document with the response data if the response
has a content type of “text/xml” or “application/xml”.

status — The HTTP status of the response.

statusText — The description of the HTTP status.

When a response is received, the fi rst step is to check the status property to ensure that the response
was returned successfully. Generally, HTTP status codes in the 200s are considered successful and
some content will be available in responseText and possibly in responseXML if the content type is
correct. In addition, the status code of 304 indicates that a resource hasn’t been modifi ed and is being
served from the browser’s cache, which also means a response is available. To ensure that a proper
response was received, you should check for all of these statuses, as shown here:

xhr.open(“get”, “example.txt”, false);
xhr.send(null);

if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
} else {
 alert(“Request was unsuccessful: “ + xhr.status);
}

XHRExample01.htm

This code displays either the content returned from the server or an error message, depending on the
status code that was returned. It’s recommended to always check the status property to determine

➤

➤

➤

➤

You can access only URLs that exist on the same origin, which means the same
domain, using the same port, and with the same protocol. If the URL specifi es any
of these differently than the page making the request, a security error is thrown.

c21.indd 704c21.indd 704 12/8/11 11:02:47 AM12/8/11 11:02:47 AM

the best course of action and to avoid using statusText for this purpose, because the latter has
proven to be unreliable across browsers. The responseText property is always fi lled with the body of
the response, regardless of the content type, whereas responseXML will be null for non-XML data.

Several browsers incorrectly report a 204 status code. ActiveX versions of XHR
in Internet Explorer set status to 1223 when a 204 is retrieved, and native
XHR objects in Internet Explorer normalize 204 to 200. Opera reports a
status of 0 when a 204 is retrieved.

Although it’s possible to make synchronous requests such as this one, most of the time it’s better to
make asynchronous requests that allow JavaScript code execution to continue without waiting for
the response. The XHR object has a readyState property that indicates what phase of the request/
response cycle is currently active. The possible values are as follows:

0 — Uninitialized. The open() method hasn’t been called yet.

1 — Open. The open() method has been called but send() has not been called.

2 — Sent. The send() method has been called but no response has been received.

3 — Receiving. Some response data has been retrieved.

4 — Complete. All of the response data has been retrieved and is available.

Whenever the readyState changes from one value to another, the readystatechange event is
fi red. You can use this opportunity to check the value of readyState. Generally speaking, the only
readyState of interest is 4, which indicates that all of the data is ready. The onreadystatechange
event handler should be assigned prior to calling open() for cross-browser compatibility. Consider
the following example:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
};
xhr.open(“get”, “example.txt”, true);
xhr.send(null);

XHRAsyncExample01.htm

Note that this code uses the DOM Level 0 style of attaching an event handler to the XHR object,
because not all browsers support the DOM Level 2 style of event attachment. Unlike other event

➤

➤

➤

➤

➤

The XMLHttpRequest Object ❘ 705

c21.indd 705c21.indd 705 12/8/11 11:02:57 AM12/8/11 11:02:57 AM

706 ❘ CHAPTER 21 AJAX AND COMET

handlers, no event object is passed into the onreadystatechange event handler. Instead you must
use the XHR object itself to determine what to do next.

This example uses the xhr object inside the onreadystatechange event
handler instead of the this object because of scoping issues with the
onreadystatechange event handler. Using this may cause the function to fail
or cause an error, depending on the browser being used, so it’s safer to use the
actual XHR object-instance variable.

You can cancel an asynchronous request before a response is received by calling the abort()
method like this:

xhr.abort();

Calling this method makes the XHR object stop fi ring events and prevents access to any of the
response-related properties on the object. Once a request has been aborted, the XHR object should be
dereferenced. Because of memory issues, it’s not recommended to reuse an XHR object.

HTTP Headers

Every HTTP request and response sends along with it a group of header information that may or
may not be of interest to the developer. The XHR object exposes both types of headers — those on
the request and those on the response — through several methods.

By default, the following headers are sent when an XHR request is sent:

Accept — The content types that the browser can handle.

Accept-Charset — The character sets that the browser can display.

Accept-Encoding — The compression encodings handled by the browser.

Accept-Language — The languages the browser is running in.

Connection — The type of connection the browser is making with the server.

Cookie — Any cookies set on the page.

Host — The domain of the page making the request.

Referer — The URI of the page making the request. Note that this header is spelled incor-
rectly in the HTTP specifi cation and so must be spelled incorrectly for compatibility pur-
poses. (The correct spelling of this word is “referrer”.)

User-Agent — The browser’s user-agent string.

Although the exact request headers sent vary from browser to browser, these are the ones that are
generally sent. You can set additional request headers by using the setRequestHeader() method.
This method accepts two arguments: the name of the header and the value of the header. For request

➤

➤

➤

➤

➤

➤

➤

➤

➤

c21.indd 706c21.indd 706 12/8/11 11:03:02 AM12/8/11 11:03:02 AM

headers to be sent, setRequestHeader() must be called after open() but before send(), as in the
following example:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
};
xhr.open(“get”, “example.php”, true);
xhr.setRequestHeader(“MyHeader”, “MyValue”);
xhr.send(null);

XHRRequestHeadersExample01.htm

The server can read these custom request headers to determine an appropriate course of action. It’s
advisable to always use custom header names rather than those the browser normally sends, because
using the default ones may affect the server response. Some browsers will allow overwriting default
headers, but others will not.

You can retrieve the response headers from an XHR object by using the getResponseHeader()
method and passing in the name of the header to retrieve. It’s also possible to retrieve all headers as
a long string by using the getAllResponseHeaders() method. Here’s an example of both methods:

var myHeader = xhr.getResponseHeader(“MyHeader”);
var allHeaders xhr.getAllResponseHeaders();

Headers can be used to pass additional, structured data from the server to the browser. The
getAllResponseHeaders() method typically returns something along the lines of the following:

Date: Sun, 14 Nov 2004 18:04:03 GMT
Server: Apache/1.3.29 (Unix)
Vary: Accept
X-Powered-By: PHP/4.3.8
Connection: close
Content-Type: text/html; charset=iso-8859-1

This output allows you to parse the response headers to fi nd all of the header names that were sent
rather than check for the existence of each one individually.

GET Requests

The most common type of request to execute is a GET, which is typically made when the server is
being queried for some sort of information. If necessary, query-string arguments can be appended
to the end of the URL to pass information to the server. For XHR, this query string must be present
and encoded correctly on the URL that is passed into the open() method.

The XMLHttpRequest Object ❘ 707

c21.indd 707c21.indd 707 12/8/11 11:03:08 AM12/8/11 11:03:08 AM

708 ❘ CHAPTER 21 AJAX AND COMET

One of the most frequent errors made with GET requests is to have an improperly formatted query
string. Each query-string name and value must be encoded using encodeURIComponent() before
being attached to the URL, and all of the name-value pairs must be separated by an ampersand, as
in this example:

xhr.open(“get”, “example.php?name1=value1&name2=value2”, true);

The following function helps to add query-string arguments to the end of an existing URL:

function addURLParam(url, name, value) {
 url += (url.indexOf(“?”) == -1 ? “?” : “&”);
 url += encodeURIComponent(name) + “=” + encodeURIComponent(value);
 return url;
}

The addURLParam() function takes three arguments: the URL to add the parameters to, the
parameter name, and the parameter value. First, the function checks to see if the URL already
contains a question mark (to determine if other parameters already exist). If it doesn’t, then the
function appends a question mark; otherwise it adds an ampersand. Next the name and value are
encoded and appended to the end of the URL. The last step is to return the updated URL.

This function can be used to build up a URL for a request, as shown in the following example:

var url = “example.php”;

//add the arguments
url = addURLParam(url, “name”, “Nicholas”);
url = addURLParam(url, “book”, “Professional JavaScript”);

//initiate request
xhr.open(“get”, url, false);

Using the addURLParam() function here ensures that the query string is properly formed for use
with the XHR object.

POST Requests

The second most frequent type of request is POST, which is typically used to send data to the server
that should save data. Each POST request is expected to have data submitted as the body of the
request, whereas GET requests traditionally do not. The body of a POST request can contain a
very large amount of data, and that data can be in any format. You can initiate a POST request by
specifying post as the fi rst argument to the open() method. For example:

xhr.open(“post”, “example.php”, true);

The second part is to pass some data to the send() method. Since XHR was originally designed to
work primarily with XML, you can pass in an XML DOM document that will be serialized and
submitted as the request body. You can also pass in any string to send to the server.

By default, a POST request does not appear the same to the server as a web-form submission. Server
logic will need to read the raw post data to retrieve your data. You can, however, mimic a form

c21.indd 708c21.indd 708 12/8/11 11:03:08 AM12/8/11 11:03:08 AM

submission using XHR. The fi rst step is to set the Content-Type header to application/
x-www-form-urlencoded, which is the content type set when a form is submitted. The second step is
to create a string in the appropriate format. As discussed in Chapter 14, post data is sent in the same
format as a query string. If a form already on the page should be serialized and sent to the server via
XHR, you can use the serialize() function from Chapter 14 to create the string, as shown here:

function submitData(){
 var xhr = createXHR();
 xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
 };

 xhr.open(“post”, “postexample.php”, true);
 xhr.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);
 var form = document.getElementById(“user-info”);
 xhr.send(serialize(form));
}

XHRPostExample01.htm

In this function, form data from a form with the ID “user-info” is serialized and sent to the
server. The PHP fi le postexample.php can then retrieve the posted data via $_POST. Consider this
example:

<?php
 header(“Content-Type: text/plain”);
 echo <<<EOF
Name: {$_POST[‘user-name’]}
Email: {$_POST[‘user-email’]}
EOF;
?>

postexample.php

Without including the Content-Type header, the data will not appear in the $_POST superglobal —
you’d need to use $HTTP_RAW_POST_DATA to access it.

POST requests have more overhead associated with them than do GET requests.
In terms of performance, GET requests can be up to two times faster than POST
requests sending the same amount of data.

The XMLHttpRequest Object ❘ 709

c21.indd 709c21.indd 709 12/8/11 11:03:09 AM12/8/11 11:03:09 AM

710 ❘ CHAPTER 21 AJAX AND COMET

XMLHttpRequest LEVEL 2

The popularity of the XHR object as a de facto standard led to the creation of offi cial specifi cations
from the W3C to govern its behavior. XMLHttpRequest Level 1 simply defi ned the already existing
implementation details of the XHR object. XMLHttpRequest Level 2 went on to evolve the XHR
object further. Not all browsers have implemented all parts of the Level 2 specifi cation, but all
browsers have implemented some of the functionality.

The FormData Type

The serialization of form data is frequently needed in modern web applications, and so the
XMLHttpRequest Level 2 specifi cation introduces the FormData type. The FormData type makes
it easy to both serialize existing forms and create data in the same format as a form for easy
transmission via XHR. The following creates a FormData object and populates it with some data:

var data = new FormData();
data.append(“name”, “Nicholas”);

The append() method accepts two arguments, a key and a value, essentially the name of a form
fi eld and the value that the fi eld contains. You can add as many of these pairs as you would like. It’s
also possible to prepopulate the key-value pairs with data that exists in a form element by passing in
the form element to the FormData constructor:

var data = new FormData(document.forms[0]);

Once you have an instance of FormData, it can be passed directly into the XHR send() method, as
in this example:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
};

xhr.open(“post”, “postexample.php”, true);
var form = document.getElementById(“user-info”);
xhr.send(new FormData(form));

XHRFormDataExample01.htm

One of the conveniences of the FormData type is that you don’t need to explicitly set any request
headers on the XHR object. The XHR object recognizes the passed-in data type as an instance of
FormData and confi gures the headers appropriately.

c21.indd 710c21.indd 710 12/8/11 11:03:15 AM12/8/11 11:03:15 AM

The FormData type is supported in Firefox 4+, Safari 5+, Chrome, and WebKit for Android 3+.

Timeouts

In Internet Explorer 8, the XHR object was augmented to include a timeout property that indicates
the number of milliseconds the request should wait for a response before aborting. When the
timeout property is set to a number and the response is not received within that number of
milliseconds, a timeout event is fi red and the ontimeout event handler is called. This functionality
was later added into the XMLHttpRequest Level 2 specifi cation. Here’s an example:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 try {
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 } catch (ex){
 //assume handled by ontimeout
 }
 }
};

xhr.open(“get”, “timeout.php”, true);
xhr.timeout = 1000; //set timeout for 1 second (IE 8+ only)
xhr.ontimeout = function(){
 alert(“Request did not return in a second.”);
};
xhr.send(null);

XHRTimeoutExample01.htm

This example illustrates the use of the timeout property. Setting it equal to 1000 milliseconds
means that if the request doesn’t return in 1 second or less, the request is aborted. When that
happens, the ontimeout event handler is called. The readyState is still changed to 4, which means
the onreadystatechange event handler is called. However, an error occurs if you try to access the
status property after a timeout has occurred. To protect against this, encapsulate the code that
checks the status property in a try-catch statement.

Internet Explorer 8+ is still, as of the time of this writing, the only browser to support timeouts.

The overrideMimeType() Method

Firefox fi rst introduced overrideMimeType() as a way to override the MIME type of an XHR
response. This was later added to XMLHttpRequest Level 2. Since the returned MIME type for a

XMLHttpRequest Level 2 ❘ 711

c21.indd 711c21.indd 711 12/8/11 11:03:15 AM12/8/11 11:03:15 AM

712 ❘ CHAPTER 21 AJAX AND COMET

response determines how the response is handled by the XHR object, having a way to override the
type returned by the server is a useful addition.

Consider the case where the server sends a MIME type of text/plain that actually contains XML.
This would result in the responseXML property being null even though the data is actually XML.
By calling overrideMimeType(), you can ensure the response is treated as XML instead of plain
text:

var xhr = createXHR();
xhr.open(“get”, “text.php”, true);
xhr.overrideMimeType(“text/xml”);
xhr.send(null);

This example forces the XHR object to treat the response as XML instead of plain text. The call
to overrideMimeType() must happen before the call to send() in order to correctly override the
response MIME type.

The overrideMimeType() method is supported in Firefox, Safari 4+, Opera 10.5+, and Chrome.

PROGRESS EVENTS

The Progress Events specifi cation is a W3C Working Draft defi ning events for client-server
communication. These events were fi rst targeted at XHR explicitly but have now also made their
way into other similar APIs. There are six progress events:

loadstart — Fires when the fi rst byte of the response has been received.

progress — Fires repeatedly as a response is being received.

error — Fires when there was an error attempting the request.

abort — Fires when the connection was terminated by calling abort().

load — Fires when the response has been fully received.

loadend — Fires when the communication is complete and after fi ring error, abort, or
load.

Each request begins with the loadstart event being fi red; followed by one or more progress
events; then one of error, abort, or load; fi nally ending with loadend.

The fi rst fi ve events are supported in Firefox 3.5+, Safari 4+, Chrome, Safari for iOS, and WebKit
for Android. Opera, as of version 11, and Internet Explorer 8+ support only the load. No browsers
currently support the loadend event.

Most of these events are straightforward, but there are two that have some subtleties to be aware of.

The load Event

When Firefox fi rst implemented a version of the XHR object, it sought to simplify the interaction
model. To that end, the load event was introduced as a replacement for the readystatechange

➤

➤

➤

➤

➤

➤

c21.indd 712c21.indd 712 12/8/11 11:03:16 AM12/8/11 11:03:16 AM

event. The load event fi res as soon as the response has been completely received, eliminating the
need to check the readyState property. The onload event handler receives an event object whose
target property is set to the XHR object instance, and all of the XHR object properties and methods
are available from within. However, not all browsers properly implement the event object for this
event, necessitating the use of the XHR object variable itself, as shown in the following example:

var xhr = createXHR();
xhr.onload = function(){
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
};
xhr.open(“get”, “altevents.php”, true);
xhr.send(null);

XHRProgressEventExample01.htm

As long as a response is received from the server, regardless of the status, the load event will fi re.
This means you must check the status property to determine if the appropriate data is available.
The load event is supported by Firefox, Opera, Chrome, and Safari.

The progress Event

Another XHR innovation from Mozilla is the progress event, which fi res periodically as the
browser receives new data. The onprogress event listener receives an event object whose target
is the XHR object and contains three additional properties: lengthComputable, a Boolean indicating
if progress information is available; position, which is the number of bytes that have already been
received; and totalSize, which is the total number of expected bytes as defi ned by the Content-
Length response header. With that information, you can provide a progress indicator to the user.
The following code includes an example of how this is done:

var xhr = createXHR();
xhr.onload = function(event){
 if ((xhr.status >= 200 && xhr.status < 300) ||
 xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
};
xhr.onprogress = function(event){
 var divStatus = document.getElementById(“status”);
 if (event.lengthComputable){
 divStatus.innerHTML = “Received “ + event.position + “ of “ +
 event.totalSize +
“ bytes”;
 }

Progress Events ❘ 713

c21.indd 713c21.indd 713 12/8/11 11:03:17 AM12/8/11 11:03:17 AM

714 ❘ CHAPTER 21 AJAX AND COMET

};

xhr.open(“get”, “altevents.php”, true);
xhr.send(null);

XHRProgressEventExample01.htm

For proper execution, the onprogress event handler must be attached prior to calling open(). In
the preceding example, an HTML element is fi lled with status information every time the progress
event is fi red. Assuming that the response has a Content-Length header, you can also use this
information to calculate the percentage of the response that has already been received.

CROSS-ORIGIN RESOURCE SHARING

One of the major limitations of Ajax communication via XHR is the cross-origin security policy. By
default, XHR objects can access resources only on the domain from which the containing web page
originates. This security feature prevents some malicious behavior. However, the need for legitimate
cross-origin access was great enough for solutions to begin appearing in browsers.

Cross-Origin Resource Sharing (CORS) is a W3C Working Draft that defi nes how the browser and
server must communicate when accessing sources across origins. The basic idea behind CORS is
to use custom HTTP headers to allow both the browser and the server to know enough about each
other to determine if the request or response should succeed or fail.

For a simple request, one that uses either GET or POST with no custom headers and whose body is
text/plain, the request is sent with an extra header called Origin. The Origin header contains the origin
(protocol, domain name, and port) of the requesting page so that the server can easily determine
whether or not it should serve a response. An example Origin header might look like this:

Origin: http://www.nczonline.net

If the server decides that the request should be allowed, it sends an Access-Control-Allow-Origin
header echoing back the same origin that was sent or “*” if it’s a public resource. For example:

Access-Control-Allow-Origin: http://www.nczonline.net

If this header is missing, or the origins don’t match, then the browser disallows the request. If all
is well, then the browser processes the request. Note that neither the requests nor the responses
include cookie information.

CORS in Internet Explorer

Microsoft introduced the XDomainRequest (XDR) type in Internet Explorer 8. This object works
in a manner similar to XHR but in a way that is safe and secure for cross-domain communication.
The XDR object implements part of the CORS specifi cation. Here are some of the ways that XDR
differs from XHR:

c21.indd 714c21.indd 714 12/8/11 11:03:17 AM12/8/11 11:03:17 AM

Cookies are neither sent with requests nor received with responses.

There is no access to set request headers other than Content-Type.

There is no access to response headers.

Only GET and POST requests are supported.

These changes mitigate issues related to cross-site request forgery (CSRF) and cross-site scripting
(XSS) attacks. The resource being requested can dynamically decide whether to set the Access-
Control-Allow-Origin header based on any data it deems appropriate: user-agent, referrer, and so
on. As part of the request, an Origin header is sent with a value indicating the origin domain of the
request, allowing the remote resource to recognize an XDR request explicitly.

XDR object usage looks very similar to XHR object use. You create a new instance of
XDomainRequest, call the open() method, and then call the send() method. Unlike the open()
method on XHR objects, the one on XDR objects accepts only two arguments: the request type
and the URL.

All XDR requests are executed asynchronously, and there is no way to create a synchronous request.
When a request has returned, a load event fi res and the responseText property is fi lled with the
response, as follows:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};
xdr.open(“get”, “http://www.somewhere-else.com/page/”);
xdr.send(null);

XDomainRequestExample01.htm

When the response is received, you have access to only the raw text of the response; there is no way
to determine the status code of the response. The load event is fi red for all valid responses and an
error event is fi red for all failures, including the lack of an Access-Control-Allow-Origin header
on the response. Unfortunately, you receive no additional information about the error that occurred,
so just knowing that the request was unsuccessful must be enough. To detect an error, assign an
onerror event handler, as shown in this example:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};
xdr.onerror = function(){
 alert(“An error occurred.”);
};
xdr.open(“get”, “http://www.somewhere-else.com/page/”);
xdr.send(null);

XDomainRequestExample01.htm

➤

➤

➤

➤

Cross-Origin Resource Sharing ❘ 715

c21.indd 715c21.indd 715 12/8/11 11:03:18 AM12/8/11 11:03:18 AM

716 ❘ CHAPTER 21 AJAX AND COMET

You can stop a request before it returns by calling abort() as follows:

xdr.abort(); //stop the request

Also similar to XHR, the XDR object supports the timeout property and the ontimeout event
handler. Here’s an example:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};
xdr.onerror = function(){
 alert(“An error occurred.”);
};
xdr.timeout = 1000;
xdr.ontimeout = function(){
 alert(“Request took too long.”);
};
xdr.open(“get”, “http://www.somewhere-else.com/page/”);
xdr.send(null);

This example times out after one second, at which point the ontimeout event handler is called.

To allow for POST requests, the XDR object exposes a contentType property that can be used to
indicate the format of the posted data, as shown in this example:

var xdr = new XDomainRequest();
xdr.onload = function(){
 alert(xdr.responseText);
};
xdr.onerror = function(){
 alert(“An error occurred.”);
};
xdr.open(“post”, “http://www.somewhere-else.com/page/”);
xdr.contentType = “application/x-www-form-urlencoded”;
xdr.send(“name1=value1&name2=value2”);

This property is the only access to header information through the XDR object.

CORS in Other Browsers

Firefox 3.5+, Safari 4+, Chrome, Safari for iOS, and WebKit for Android all support CORS natively
through the XMLHttpRequest object. When attempting to open a resource on a different origin, this
behavior automatically gets triggered without any extra code. To make a request to a resource on

Because there are so many ways an XDR request can fail, you should always
use an onerror event handler to capture the occurrence; otherwise it will fail
silently.

c21.indd 716c21.indd 716 12/8/11 11:03:19 AM12/8/11 11:03:19 AM

another domain, the standard XHR object is used with an absolute URL specifi ed in open(), such
as this:

var xhr = createXHR();
xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 if ((xhr.status >= 200 && xhr.status < 300) || xhr.status == 304){
 alert(xhr.responseText);
 } else {
 alert(“Request was unsuccessful: “ + xhr.status);
 }
 }
};
xhr.open(“get”, “http://www.somewhere-else.com/page/”, true);
xhr.send(null);

Unlike the XDR object in Internet Explorer, the cross-domain XHR object allows access to the
status and statusText properties and allows synchronous requests. There are some additional
limitations on a cross-domain XHR object that are necessary for security purposes. They are as
follows:

Custom headers cannot be set using setRequestHeader().

Cookies are neither sent nor received.

The getAllResponseHeaders() method always returns an empty string.

Since the same interface is used for both same- and cross-domain requests, it’s best to always use
a relative URL when accessing a local resource, and an absolute URL when accessing a remote
resource. This disambiguates the use case and can prevent problems such as limiting access to
header and/or cookie information for local resources.

Prefl ighted Requests

CORS allows the use of custom headers, methods other than GET or POST, and different body
content types through a transparent mechanism of server verifi cation called prefl ighted requests.
When you try to make a request with one of the advanced options, a “prefl ight” request is made to
the server. This request uses the OPTIONS method and sends the following headers:

Origin — Same as in simple requests.

Access-Control-Request-Method — The method that the request wants to use.

Access-Control-Request-Headers — (Optional) A comma-separated list of the custom
headers being used.

Here’s an example assuming a POST request with a custom header called NCZ:

Origin: http://www.nczonline.net
Access-Control-Request-Method: POST
Access-Control-Request-Headers: NCZ

➤

➤

➤

➤

➤

➤

Cross-Origin Resource Sharing ❘ 717

c21.indd 717c21.indd 717 12/8/11 11:03:24 AM12/8/11 11:03:24 AM

718 ❘ CHAPTER 21 AJAX AND COMET

During this request, the server can determine whether or not it will allow requests of this type. The
server communicates this to the browser by sending the following headers in the response:

Access-Control-Allow-Origin — Same as in simple requests.

Access-Control-Allow-Methods — A comma-separated list of allowed methods.

Access-Control-Allow-Headers — A comma-separated list of headers that the server will
allow.

Access-Control-Max-Age — The amount of time in seconds that this prefl ight request
should be cached for.

For example:

Access-Control-Allow-Origin: http://www.nczonline.net
Access-Control-Allow-Methods: POST, GET
Access-Control-Allow-Headers: NCZ
Access-Control-Max-Age: 1728000

Once a prefl ight request has been made, the result is cached for the period of time specifi ed in the
response; you’ll only incur the cost of an extra HTTP request the fi rst time a request of this type is made.

Firefox 3.5+, Safari 4+, and Chrome all support prefl ighted requests; Internet Explorer through
version 10 does not.

Credentialed Requests

By default, cross-origin requests do not provide credentials (cookies, HTTP authentication, and
client-side SSL certifi cates). You can specify that a request should send credentials by setting the
withCredentials property to true. If the server allows credentialed requests, then it responds with
the following HTTP header:

Access-Control-Allow-Credentials: true

If a credentialed request is sent and this header is not sent as part of the response, then the browser
doesn’t pass the response to JavaScript (responseText is an empty string, status is 0, and
onerror() is invoked). Note that the server can also send this HTTP header as part of the prefl ight
response to indicate that the origin is allowed to send credentialed requests.

Firefox 3.5+, Safari 4+, and Chrome all support the withCredentials property. Internet Explorer
through version 10 still does not.

Cross-Browser CORS

Even though all browsers don’t natively support the same level of CORS, all supporting browsers
do support simple (nonprefl ighted, noncredentialed) requests, so it makes sense to have a cross-
browser solution. The easiest way to determine if the XHR object supports CORS is to check for
the existence of the withCredentials property. You can then couple with the existence of the
XDomainRequest object to cover all browsers:

➤

➤

➤

➤

c21.indd 718c21.indd 718 12/8/11 11:03:25 AM12/8/11 11:03:25 AM

function createCORSRequest(method, url){
 var xhr = new XMLHttpRequest();
 if (“withCredentials” in xhr){
 xhr.open(method, url, true);
 } else if (typeof XDomainRequest != “undefined”){
 xhr = new XDomainRequest();
 xhr.open(method, url);
 } else {
 xhr = null;
 }
 return xhr;
}

var request = createCORSRequest(“get”, “http://www.somewhere-else.com/page/”);
if (request){
 request.onload = function(){
 //do something with request.responseText
 };
 request.send();
}

CrossBrowserCORSRequestExample01.htm

The XMLHttpRequest object in Firefox, Safari, and Chrome has similar enough interfaces to the
Internet Explorer XDomainRequest object that this pattern works fairly well. The common interface
properties/methods are:

abort() — Use to stop a request that’s already in progress.

onerror — Use instead of onreadystatechange to detect errors.

onload — Use instead of onreadystatechange to detect successes.

responseText — Use to get contents of response.

send() — Use to send the request.

Each of these can be used on the object returned from createCORSRequest() and will work the
same in each browser.

ALTERNATE CROSS-DOMAIN TECHNIQUES

Before CORS came about, achieving cross-domain Ajax communication was a bit trickier.
Developers came to rely on parts of the DOM that could perform cross-domain requests as a simple
way to make certain types of requests without using the XHR object. Despite the ubiquity of
CORS, these techniques are still popular because they don’t involve changes on the server.

Image Pings

One of the fi rst techniques for cross-domain communication was through the use of the
tag. Images can be loaded cross-domain by any page without worrying about restrictions. This

➤

➤

➤

➤

➤

Alternate Cross-Domain Techniques ❘ 719

c21.indd 719c21.indd 719 12/8/11 11:03:25 AM12/8/11 11:03:25 AM

720 ❘ CHAPTER 21 AJAX AND COMET

is the main way that online advertisements track views. As discussed in Chapter 13, you can also
dynamically create images and use their onload and onerror event handlers to tell you when the
response has been received.

Dynamically creating images is often used for image pings. Image pings are simple, cross-domain,
one-way communication with the server. The data is sent via query-string arguments and the
response can be anything, though typically it’s a pixel image or a 204 response. The browser can’t
get any specifi c data back from an image ping but it can tell when the response has been received by
listening for the load and error events. Here’s a simple example:

var img = new Image();
img.onload = img.onerror = function(){
 alert(“Done!”);
};
img.src = “http://www.example.com/test?name=Nicholas”;

ImagePingExample01.htm

This example creates a new instance of Image and then assigns both the onload and the onerror
event handlers to the same function. This ensures that regardless of the response, you’ll be notifi ed
when the request has completed. The request begins when the src property is set and this example
is sending along a name parameter.

Image pings are frequently used for tracking user clicks on a page or dynamic ad impressions. The
two main downsides to image pings are that you can only send GET requests and you cannot access
the response text from the server. This is why image pings are best used for one-way communication
between the browser and the server.

JSONP

JSONP is short for “JSON with padding” and is a special variant of JSON that has become popular
for web services. JSONP looks just like JSON except that the data is wrapped within what looks
like a function call. For example:

callback({ “name”: “Nicholas” });

The JSONP format is made up of two parts: the callback and the data. The callback is the function
that should be called on the page when the response has been received. Typically the name of the
callback is specifi ed as part of the request. The data is simply the JSON data to pass to the function.
A typical JSONP request looks like this:

http://freegeoip.net/json/?callback=handleResponse

This URL is for a JSONP geolocation service. It’s quite common to have the callback parameter
specifi ed as query-string argument for JSONP services, and in this case, I’ve specifi ed the callback
function name to be handleResponse().

JSONP is used through dynamic <script> elements (see Chapter 13 for details), assigning the src
to a cross-domain URL. The <script> element, similar to , is capable of loading resources

c21.indd 720c21.indd 720 12/8/11 11:03:26 AM12/8/11 11:03:26 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

from other domains without restriction. Because JSONP is valid JavaScript, the JSONP response
gets pulled into the page and executed immediately upon completion. Here’s an example:

function handleResponse(response){
 alert(“You’re at IP address “ + response.ip + “, which is in “ +
 response.city + “, “ + response.region_name);
}

var script = document.createElement(“script”);
script.src = “http://freegeoip.net/json/?callback=handleResponse”;
document.body.insertBefore(script, document.body.firstChild);

JSONPExample01.htm

This example displays your IP address and location information from the geolocation service.

JSONP is very popular for web developers because of its simplicity and ease of use. Its advantage over
image pings is that you can access the response text directly, allowing bidirectional communication
between browser and server. There are, however, a couple of downsides to using JSONP.

First, you’re pulling executable code into your page from another domain. If that domain isn’t
trusted, it could very easily swap the response for something more malicious, and you would have
no recourse aside from removing the JSONP call altogether. When using a web service that you
don’t operate, make sure that it comes from a trusted source.

The second downside is that there is no easy way to determine that a JSONP request has failed.
Although HTML5 has specifi ed an onerror event handler for <script> elements, it hasn’t yet
been implemented by any browser. Developers frequently used timers to see if a response has or has
not been received within a set amount of time, but even this is tricky because not every user has the
same connection speed and bandwidth.

Comet

Comet is a term coined by Alex Russell to describe a more advanced Ajax technique sometimes
referred to as server push. Whereas Ajax is described as the page requesting data from the server,
Comet is described as the server pushing data to the page. This approach allows information to
come into the page in a manner closer to real time, making it ideal for information such as sports
scores or stock market prices.

There are two popular approaches to Comet:
long polling and streaming. Long polling is
a new spin on traditional polling (also called
short polling) where the browser sends a
request to the server in regular intervals to
see if there’s any data. Figure 21-1 shows a
timeline of how short polling works.

Long polling fl ips short polling around. The
page initiates a request to the server and the server holds that connection open until it has data
to send. Once the data is sent, the connection is closed by the browser and a new connection is

Alternate Cross-Domain Techniques ❘ 721

Browser

Request Response

Server

FIGURE 21-1

c21.indd 721c21.indd 721 12/8/11 11:03:26 AM12/8/11 11:03:26 AM

722 ❘ CHAPTER 21 AJAX AND COMET

immediately opened up to the server. This
process continues for as long as the page is
open in the browser. Figure 21-2 shows a
timeline of how long polling works.

In both short polling and long polling, the
browser needs to initiate the connection to
the server before data can be received. The big
difference is how the server handles sending
data back. Short polling sends a response
immediately regardless of the data availability, while long polling waits to send a response. The
advantage of polling techniques is that all browsers support this through the XHR object and using
setTimeout(). You just need to manage when the requests are sent.

The second popular approach for Comet is HTTP streaming. Streaming is different than either
polling technique, because it uses a single HTTP connection for the entire lifetime of the page.
The browser sends a request to the server and the server holds that connection open, periodically
sending data through the connection to the server. For example, a PHP server might have a script
that looks like this:

<?php
 $i = 0;
 while(true){

 //output some data and then flush the output buffer immediately
 echo “Number is $i”;
 flush();

 //wait a few seconds
 sleep(10);

 $i++;
 }

All server-side languages support the notion of printing to the output buffer and then fl ushing
(sending the contents of the output buffer to the client). This is the core of HTTP streaming.

The XHR object can be used to achieve HTTP streaming in Firefox, Safari, Opera, and Chrome
by listening for the readystatechange event and focusing on readyState 3. A readyState of 3
will fi re periodically in all of these browsers as data is being received from the server. At that point,
the responseText property contains all of the data received, which means you need to slice off the
newest piece by keeping track of what was sent previously. An HTTP streaming implementation
using XHR looks like this:

function createStreamingClient(url, progress, finished){

 var xhr = new XMLHttpRequest(),
 received = 0;

 xhr.open(“get”, url, true);
 xhr.onreadystatechange = function(){

Browser

Request Response

Server

FIGURE 21-2

c21.indd 722c21.indd 722 12/8/11 11:03:27 AM12/8/11 11:03:27 AM

 var result;

 if (xhr.readyState == 3){

 //get only the new data and adjust counter
 result = xhr.responseText.substring(received);
 received += result.length;

 //call the progress callback
 progress(result);

 } else if (xhr.readyState == 4){
 finished(xhr.responseText);
 }
 };
 xhr.send(null);
 return xhr;
}

var client = createStreamingClient(“streaming.php”, function(data){
 alert(“Received: “ + data);
 }, function(data){
 alert(“Done!”);
 });

HTTPStreamingExample01.htm

The createStreamingClient() function accepts three arguments: the URL to connect to, the
function to call when more data has been received, and the function to call when the connection has
closed. You may or may not want to restart a connection once it has been closed, so it’s good to keep
track of that.

Whenever the readystatechange event is fi red and the readyState is 3, the responseText is sliced
to return only the most recent data. The received variable keeps track of how many characters
have already been processed, incrementing each time readyState 3 is processed. Then, the
progress callback function is executed and the new data is passed in. When the readyState is 4,
the fi nished callback is executed and the entire content of the response is passed in.

Even though this example is relatively simple and works in most browsers (Internet Explorer being
the exception), the management of connections for Comet patterns is easy to get wrong and requires
time to perfect. The browser community believes that Comet is an important part of the Web’s
future, and so two new interfaces were created to make Comet easier.

Server-Sent Events

Server-Sent Events (SSE) is an API and pattern for read-only Comet interactions. The SSE API
creates a one-way HTTP connection to the server through which the server can pass as much or
as little information as necessary. The server response must have a MIME type of text/event-
stream and outputs the information in a specifi c format that the browser API consumes and makes
available through JavaScript. SSE supports short polling, long polling, and HTTP streaming and, as

Alternate Cross-Domain Techniques ❘ 723

c21.indd 723c21.indd 723 12/8/11 11:03:28 AM12/8/11 11:03:28 AM

724 ❘ CHAPTER 21 AJAX AND COMET

such, automatically determines when to reconnect to the server if it gets disconnected. The result is
an extremely simple and useful API that makes Comet easy.

Server-Sent Events are supported in Firefox 6+, Safari 5+, Opera 11+, Chrome, and Safari for iOS 4+.

The API

The JavaScript API for SSE is similar to other recent JavaScript messaging APIs. To subscribe to a
new event stream, you start by creating a new EventSource object and pass in the entry point:

var source = new EventSource(“myevents.php”);

Note that the referenced URL must be on the same origin (scheme, domain, and port) as the page in
which the object is created. The EventSource instance has a readyState property that is set to 0
to indicate it’s connecting to the server, 1 to indicate an open connection, and 2 to indicate a closed
connection.

There are also three events:

open, which is fi red when the connection is established

message, which is fi red when a new event is received from the server

error, which is fi red when no connection can be made

In general usage, the onmessage event handler is likely the one you’ll use the most:

source.onmessage = function(event){
 var data = event.data;
 //do something with the data
};

Information sent back from the server is returned via event.data as a string.

By default, the EventSource object will attempt to keep the connection alive with the server. If
the connection is closed, a reconnect is attempted. This means that Server-Sent Events work with
long polling and HTTP streaming. You can force the object to disconnect immediately and stop
attempting to reconnect by calling the close() method:

source.close();

The Event Stream

The server events are sent along a long-lasting HTTP response with a MIME type of text/event-
stream. The format of the response is plain text and, in its simplest form, is made up of the prefi x
data: followed by text, such as:

data: foo

data: bar

data: foo
data: bar

➤

➤

➤

c21.indd 724c21.indd 724 12/8/11 11:03:28 AM12/8/11 11:03:28 AM

The fi rst part of this stream fi res a message event with event.data set to “foo”; the second part
fi res a message event with event.data set to “bar”; the third fi res a message event with event.
data set to “foo\nbar” (note the newline character in between). When there are two or more
consecutive lines beginning with data:, it is interpreted as a multiline piece of data and the values
are concatenated together with a newline character. The message event is never fi red until a blank
line is encountered after a line containing data:, so be certain to include that extra newline when
generating the event stream on the server.

You can also associate an ID with a particular event by including an id: line before or after the
data: line(s):

data: foo
id: 1

By setting an ID, the EventSource object keeps track of the last event fi red. If the connection
is dropped, a special HTTP header called Last-Event-ID is sent along with the request so that
the server can determine which event is appropriate to fi re next. This is important for keeping
sequential pieces of data in the correct order over multiple connections.

Web Sockets

Web Sockets is one of the most talked-about new browser APIs. The goal of Web Sockets is
to provide full-duplex, bidirectional communication with the server over a single, long-lasting
connection. When a Web Socket is created in JavaScript, an HTTP request is sent to the server to
initiate a connection. When the server responds, the connection uses HTTP upgrade to switch from
HTTP to the Web Socket protocol. This means that Web Sockets cannot be implemented with a
standard HTTP server and must use a specialized server supporting the protocol to work properly.

Since Web Sockets uses a custom protocol, the URL scheme is slightly different. Instead of using
the http:// or https:// schemes, there are ws:// for an unsecured connection and wss:// for a
secured connection. When specifying a Web Socket URL, you must include the scheme since other
schemes may be supported in the future.

The advantage of using a custom protocol over HTTP is that very small amounts of data,
unencumbered by the byte overhead of HTTP, can be sent between the client and the server. Using
smaller data packets makes Web Sockets ideal for mobile applications where bandwidth and latency
are a problem. The disadvantage of using a custom protocol is that it has taken longer to defi ne
protocol than the JavaScript API. Web Sockets has been stalled repeatedly as people have found
issues with the protocol, in terms of both consistency and security. Firefox 4 and Opera 11 both had
Web Sockets enabled by default but disabled it just before release because of security concerns. Web
Sockets are now supported in Firefox 6+, Safari 5+, Chrome, and Safari for iOS 4+.

The API

To create a new Web Socket, instantiate a WebSocket object and pass in the URL that will provide
the connection:

var socket = new WebSocket(“ws://www.example.com/server.php”);

Alternate Cross-Domain Techniques ❘ 725

c21.indd 725c21.indd 725 12/8/11 11:03:29 AM12/8/11 11:03:29 AM

726 ❘ CHAPTER 21 AJAX AND COMET

Note that you must pass in an absolute URL to the WebSocket constructor. The same-origin policy
does not apply to Web Sockets, so you can open a connection to any site. It is completely up to the
server whether or not it will communicate with a page from a particular origin. (It can determine
from where the request originated using information in the handshake.)

The browser attempts to create the connection as soon as the WebSocket object is instantiated.
Similar to XHR, WebSocket has a readyState property that indicates the current state. The values,
however, are different from those for XHR and are as follows:

WebSocket.OPENING (0) — The connection is being established.

WebSocket.OPEN (1) — The connection has been established.

WebSocket.CLOSING (2) — The connection is beginning to close.

WebSocket.CLOSE (3) — The connection is closed.

There is no readystatechange event for WebSocket; however, there are other events that
correspond to the various states. The readyState always starts at 0.

You can close a Web Socket connection at any time using the close() method:

socket.close();

Upon calling close(), the readyState immediately changes to 2 (closing) and will transition to 3
when complete.

Sending/Receiving Data

Once a Web Socket is open, you can both send data over and receive data from the connection. To
send data to the server, use the send() method and pass in any string, for example:

var socket = new WebSocket(“ws://www.example.com/server.php”);
socket.send(“Hello world!”);

Since Web Sockets can only send plain text over the connection, you’ll need to serialize more
complex data structures before sending them over the connection. The following serializes data into
a JSON string and then sends the string to the server:

var message = {
 time: new Date(),
 text: “Hello world!”,
 clientId: “asdfp8734rew”
};

socket.send(JSON.stringify(message));

The server would then need to parse the returned JSON to access the data.

When the server sends a message to the client, a message event is fi red on the WebSocket object.
The message event works similar to other messaging protocols, with the payload available through
the event.data property:

➤

➤

➤

➤

c21.indd 726c21.indd 726 12/8/11 11:03:29 AM12/8/11 11:03:29 AM

socket.onmessage = function(event){
 var data = event.data;

 //do something with data
};

As with data that is sent to the server via send(), data returned in event.data is always a string. If
you are expecting another data format, then you must manually parse the data.

Other Events

The WebSocket object has three more events that fi re during the lifetime of the connection:

open — Fires when the connection has been successfully made.

error — Fires when an error occurs. The connection is unable to persist.

close — Fires when the connection is closed.

The WebSocket object doesn’t support DOM Level 2 event listeners, so you need to use DOM
Level 0 style event handlers for each:

var socket = new WebSocket(“ws://www.example.com/server.php”);

socket.onopen = function(){
 alert(“Connection established.”);
};

socket.onerror = function(){
 alert(“Connection error.”);
};

socket.onclose = function(){
 alert(“Connection closed.”);
};

Of these three events, only the close event has additional information on the event object. There
are three additional properties on the event object: wasClean, a Boolean indicating if the connection
was closed cleanly; code, a numeric status code sent from the server; and reason, a string
containing a message sent from the server. You may want to use this information either to display to
the user or to log for analytics:

socket.onclose = function(event){
 console.log(“Was clean? “ + event.wasClean + “ Code=” + event.code + “ Reason=”
 + event.reason);
};

SSE versus Web Sockets

When determining whether to use SSE or Web Sockets for a particular use case, you can take
several factors into account. First, do you have the fl exibility to set up a Web Socket server? Since
the Web Socket protocol is not HTTP, your existing web servers may not be capable of Web Socket

➤

➤

➤

Alternate Cross-Domain Techniques ❘ 727

c21.indd 727c21.indd 727 12/8/11 11:03:30 AM12/8/11 11:03:30 AM

728 ❘ CHAPTER 21 AJAX AND COMET

communication. SSE works over normal HTTP, so you may be able to use your existing web servers
to perform this type of communication.

The second question to ask is whether you need bidirectional communication. If the use case
requires only read-only access to server data (such as sports scores), then SSE may be easier
to implement. If the use case requires full bidirectional support (such as a chat room), then
Web Sockets may be a better choice. Keep in mind that you can still implement bidirectional
communication with a combination of XHR and SSE should Web Sockets not be an option for you.

SECURITY

There has been a lot published about Ajax and Comet security; in fact, there are entire books
dedicated to the topic. Security considerations for large-scale Ajax applications are vast, but there
are some basic things to understand about Ajax security in general.

First, any URL that can be accessed via XHR can also be accessed by a browser or a server. For
example, consider the following URL:

/getuserinfo.php?id=23

If a request is made to this URL, it will presumably return some data about a user whose ID is 23.
There is nothing to stop someone from changing the URL to a user ID of 24 or 56 or any other
value. The getuserinfo.php fi le must know whether the requestor actually has access to the data
that is being requested; otherwise you have left the server wide open to relay data about anyone.

When an unauthorized system is able to access a resource, it is considered a cross-site request forgery
(CSRF) attack. The unauthorized system is making itself appear to be legitimate to the server
handling the request. Ajax applications, large and small, have been affected by CSRF attacks ranging
from benign proof-of-vulnerability attacks to malicious data-stealing or data-destroying attacks.

The prevailing theory of how to secure URLs accessed via XHR is to validate that the sender has
access to the resource. This can be done in the following ways:

Requiring SSL to access resources that can be requested via XHR.

Requiring a computed token to be sent along with every request.

Please recognize that the following are ineffective against CSRF attacks:

Requiring a POST instead of a GET — This is easily changed.

Using the referrer as a determination of origin — Referrers are easily spoofed.

Validating based on cookie information — Also easily spoofed.

The XHR object offers something that seems secure at fi rst glance but ultimately is quite insecure. The
open() method actually has two more arguments: a username and a password that should be sent along
with the request. This can be used to send requests to pages via SSL on a server, as in this example:

xhr.open(“get”, “example.php”, true, “username”, “password”); //AVOID!!!!!

➤

➤

➤

➤

➤

c21.indd 728c21.indd 728 12/8/11 11:03:30 AM12/8/11 11:03:30 AM

SUMMARY

Ajax is a method for retrieving data from the server without refreshing the current page. Ajax has
the following characteristics:

The central object responsible for the growth of Ajax is the XMLHttpRequest (XHR) object.

This object was created by Microsoft and fi rst introduced in Internet Explorer 5 as a way to
retrieve XML data from the server in JavaScript.

Since that time, Firefox, Safari, Chrome, and Opera have all duplicated the implementation,
and the W3C has written a specifi cation defi ning the XHR behavior, making XHR a Web
standard.

Though there are some differences in implementations, the basic usage of the XHR object is
relatively normalized across all browsers and can therefore safely be used in web applications.

One of the major constraints on XHR is the same-origin policy that limits communication to the
same domain, using the same port, and with the same protocol. Any attempts to access resources
outside of these restrictions cause a security error, unless an approved cross-domain solution is used.
The solution is called Cross-Origin Resource Sharing (CORS) and is supported in Internet Explorer
8+ through the XDomainRequest object and other browsers natively through the XHR object.
Image pings and JSONP are other techniques for cross-domain communication, though they are less
robust than CORS.

Comet is an extension of Ajax where the server is able to push data to the client almost in real time.
There are two primary approaches to Comet: long polling and HTTP streaming. All browsers
support long polling, while only some natively support HTTP streaming. Server-Sent Events (SSE) is
a browser API for Comet interactions that supports both long polling and HTTP streaming.

Web Sockets are a full-duplex, bidirectional communication channel with the server. Unlike other
solutions, Web Sockets do not use HTTP but rather use a custom protocol designed to deliver small
pieces of data quickly. This requires a different web server but gives a speed advantage.

The buzz around Ajax and Comet encouraged more developers to learn JavaScript and helped usher
in a resurgence of interest in web development. Ajax-related concepts are still relatively new and will
undoubtedly continue to evolve.

➤

➤

➤

➤

Even though this username/password feature is possible, you should avoid using
this feature. Storing usernames and passwords in JavaScript is highly insecure,
because anyone with a JavaScript debugger can view what is stored in the
variables, exposing your username and password in plain text.

The topic of Ajax is substantial, and a full discussion is beyond the scope of this
book. For further information on this topic, read Professional Ajax, 2nd Edition
(Wiley, 2007; ISBN: 978-0-470-10949-6).

Summary ❘ 729

c21.indd 729c21.indd 729 12/8/11 11:03:31 AM12/8/11 11:03:31 AM

c21.indd 730c21.indd 730 12/8/11 11:03:41 AM12/8/11 11:03:41 AM

Advanced Techniques

WHAT’S IN THIS CHAPTER?

Using advanced functions

Tamper-proofi ng your objects

Yielding with timers

JavaScript is an incredibly fl exible language that can be used in a variety of styles.
Typically, JavaScript is used in either a procedural manner or an object-oriented one. The
language, however, is capable of much more intricate and interesting patterns because of
its dynamic nature. These techniques make use of ECMAScript language features, BOM
extensions, and DOM functionality to achieve powerful results.

ADVANCED FUNCTIONS

Functions are one of the most interesting parts of JavaScript. They can be quite simple and
procedural in nature, or they can be quite complex and dynamic. Additional functionality can
be achieved through the use of closures. Furthermore, function pointers are very easy to work
with, since all functions are objects. All of this makes JavaScript functions both interesting
and powerful. The following sections outline some of the advanced ways that functions can be
used in JavaScript.

Safe Type Detection

JavaScript’s built-in type detection mechanisms aren’t foolproof and, in fact, can sometimes
give both false positives and false negatives. The typeof operator, for example, has several
quirks that can make it unreliable in detecting certain types of data. Since Safari (through
version 4) returns “function” when typeof is applied to a regular expression, it’s diffi cult to
defi nitively determine if a value is a function.

➤

➤

➤

22

c22.indd 731c22.indd 731 12/8/11 11:04:20 AM12/8/11 11:04:20 AM

732 ❘ CHAPTER 22 ADVANCED TECHNIQUES

The instanceof operator is also problematic in that it’s diffi cult to use when multiple global
scopes are present, such as when there are multiple frames. The classic example of this problem, as
mentioned in Chapter 5, is attempting to identify an object as an array using the following code:

var isArray = value instanceof Array;

This code returns true only if value is an array and was created in the same global scope as the
Array constructor. (Remember, Array is a property of window.) If value is an array from another
frame, this code returns false.

Yet another problem with type detection comes when trying to determine if an object is a native
implementation or a developer-defi ned one. This problem came to the forefront as browsers began
to natively implement the JSON object. Since many were already using Douglas Crockford’s JSON
library, which defi ned a global JSON object, developers struggled to determine which object was
present on the page.

The solution to all of these problems is the same. The native toString() method of Object can
be called with any value to return a string in the format “[object NativeConstructorName]”. Each
object has an internal [[Class]] property that specifi es the constructor name that is returned as
part of this string. For example:

alert(Object.prototype.toString.call(value)); //”[object Array]”

Since the native constructor name for arrays is the same regardless of the global context in which it
was created, using toString() returns a consistent value. This allows you to create a function such as:

function isArray(value){
 return Object.prototype.toString.call(value) == “[object Array]”;
}

The same approach can be used to determine if a value is a native function or regular expression:

function isFunction(value){
 return Object.prototype.toString.call(value) == “[object Function]”;
}
function isRegExp(value){
 return Object.prototype.toString.call(value) == “[object RegExp]”;
}

Note that isFunction() will return false in Internet Explorer for any functions that are implemented
as COM objects rather than native JavaScript functions (see Chapter 10 for further details).

This technique is also largely in use for identifying the native JSON object. The toString() method
of Object can’t determine constructor names for nonnative constructors, so any objects that are
instances of developer-defi ned constructors return “[object Object]”. Several JavaScript libraries
contain code similar to the following:

var isNativeJSON = window.JSON && Object.prototype.toString.call(JSON) ==
“[object JSON]”;

c22.indd 732c22.indd 732 12/8/11 11:04:23 AM12/8/11 11:04:23 AM

Being able to discern the difference between native and nonnative JavaScript objects is very
important in web development to ensure you know the available capabilities of an object. This
technique can be used on any object to defi nitively make this determination.

Advanced Functions ❘ 733

Keep in mind that it’s possible to assign Object.prototype.toString() to a
different value. The technique discussed in this section assumes that Object
.prototype.toString() is the native version and has not been overwritten by
a developer.

Scope-Safe Constructors

Chapter 6 covered the defi nition and usage of constructors for defi ning custom objects. You’ll recall
that a constructor is simply a function that is called using the new operator. When used in this way, the
this object used inside the constructor points to the newly created object instance, as in this example:

function Person(name, age, job){
 this.name = name;
 this.age = age;
 this.job = job;
}

var person = new Person(“Nicholas”, 29, “Software Engineer”);

ScopeSafeConstructorsExample01.htm

In this example, the Person constructor assigns three properties using the this object: name, age,
and job. When used with the new operator, a new Person object is created, and the properties
are assigned onto it. The problem occurs when the constructor is called without the new operator.
Since the this object is bound at runtime, calling Person() directly maps this to the global object
(window), resulting in accidental augmentation of the wrong object. For example:

var person = Person(“Nicholas”, 29, “Software Engineer”);
alert(window.name); //”Nicholas”
alert(window.age); //29
alert(window.job); //”Software Engineer”

ScopeSafeConstructorsExample01.htm

Here, the window object has been augmented with the three properties intended for a Person
instance, because the constructor was called as a regular function, omitting the new operator.
This issue occurs as a result of late binding of the this object, which was resolved to window in this
case. Since the name property of window is used to identify link targets and frames, this accidental
overwriting of the property could lead to other errors on the page. The solution is to create a scope-
safe constructor.

c22.indd 733c22.indd 733 12/8/11 11:04:23 AM12/8/11 11:04:23 AM

734 ❘ CHAPTER 22 ADVANCED TECHNIQUES

Scope-safe constructors fi rst check to ensure that the this object is an instance of the correct type
before applying any changes. If not, then a new instance is created and returned. Consider this example:

function Person(name, age, job){
 if (this instanceof Person){
 this.name = name;
 this.age = age;
 this.job = job;
 } else {
 return new Person(name, age, job);
 }
}

var person1 = Person(“Nicholas”, 29, “Software Engineer”);
alert(window.name); //””
alert(person1.name); //”Nicholas”

var person2 = new Person(“Shelby”, 34, “Ergonomist”);
alert(person2.name); //”Shelby”

ScopeSafeConstructorsExample02.htm

The Person constructor in this code adds an if statement that checks to ensure that the this object
is an instance of Person, which indicates that either the new operator was used or the constructor
was called in the context of an existing Person instance. In either case, the object initialization
continues as usual. If this is not an instance of Person, then the constructor is called again with
the new operator and that value is returned. The result is that calling the Person constructor
either with or without the new operator returns a new instance of Person, avoiding any accidental
property setting on the global object.

There is a caveat to scope-safe constructors. By implementing this pattern, you are locking down the
context in which the constructor can be called. If you’re using the constructor-stealing pattern of
inheritance without also using prototype chaining, your inheritance may break. Here is an example:

function Polygon(sides){
 if (this instanceof Polygon) {
 this.sides = sides;
 this.getArea = function(){
 return 0;
 };
 } else {
 return new Polygon(sides);
 }
}

function Rectangle(width, height){
 Polygon.call(this, 2);
 this.width = width;
 this.height = height;
 this.getArea = function(){
 return this.width * this.height;
 };
}

c22.indd 734c22.indd 734 12/8/11 11:04:28 AM12/8/11 11:04:28 AM

var rect = new Rectangle(5, 10);
alert(rect.sides); //undefined

ScopeSafeConstructorsExample03.htm

In this code, the Polygon constructor is scope-safe, whereas the Rectangle constructor is not.
When a new instance of Rectangle is created, it should inherit the sides property from Polygon
through the use of Polygon.call(). However, since the Polygon constructor is scope-safe, the
this object is not an instance of Polygon, so a new Polygon object is created and returned.
The this object in the Rectangle constructor is not augmented, and the value returned from
Polygon.call() is not used, so there is no sides property on the Rectangle instance.

This issue resolves itself if prototype chaining or parasitic combination is used with constructor
stealing. Consider the following example:

function Polygon(sides){
 if (this instanceof Polygon) {
 this.sides = sides;
 this.getArea = function(){
 return 0;
 };
 } else {
 return new Polygon(sides);
 }
}

function Rectangle(width, height){
 Polygon.call(this, 2);
 this.width = width;
 this.height = height;
 this.getArea = function(){
 return this.width * this.height;
 };
}

Rectangle.prototype = new Polygon();

var rect = new Rectangle(5, 10);
alert(rect.sides); //2

ScopeSafeConstructorsExample04.htm

In this rewritten code, an instance of Rectangle is also an instance of Polygon, so Polygon.call()
works as it should, ultimately adding a sides property to the Rectangle instance.

Scope-safe constructors are helpful in environments where multiple developers are writing
JavaScript code to run on the same page. In that context, accidental changes to the global object
may result in errors that are often diffi cult to track down. Scope-safe constructors are recommended
as a best practice unless you’re implementing inheritance based solely on constructor stealing.

Advanced Functions ❘ 735

c22.indd 735c22.indd 735 12/8/11 11:04:29 AM12/8/11 11:04:29 AM

736 ❘ CHAPTER 22 ADVANCED TECHNIQUES

Lazy Loading Functions

Because of differences in browser behavior, most JavaScript code contains a signifi cant amount
of if statements that fork execution toward code that should succeed. Consider the following
createXHR() function from the previous chapter:

function createXHR(){
 if (typeof XMLHttpRequest != “undefined”){
 return new XMLHttpRequest();
 } else if (typeof ActiveXObject != “undefined”){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”],
 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
 } else {
 throw new Error(”No XHR object available.”);
 }
}

Every time createXHR() is called, it goes through and checks which capability is supported for the
browser. First it checks for native XHR, then it tests for ActiveX-based XHR, and fi nally it throws
an error if neither is found. This happens each and every time the function is called, even though
the result of this branching won’t change from call to call: if the browser supports native XHR, it
supports native XHR always, so the test becomes unnecessary. Code going through even a single if
statement is slower than code with no if statements, so the code could run faster if the if statement
weren’t necessary every time. The solution is a technique called lazy loading.

Lazy loading means that the branching of function execution happens only once. There are two
ways to accomplish lazy loading, the fi rst is by manipulating the function the fi rst time it is called.
During that fi rst call, the function is overwritten with another function that executes in the
appropriate way such that any future calls to the function needn’t go through the execution branch.
For example, the createXHR() function can be rewritten to use lazy loading in this way:

function createXHR(){
 if (typeof XMLHttpRequest != “undefined”){
 createXHR = function(){
 return new XMLHttpRequest();
 };

c22.indd 736c22.indd 736 12/8/11 11:04:29 AM12/8/11 11:04:29 AM

 } else if (typeof ActiveXObject != “undefined”){
 createXHR = function(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”],
 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
 };
 } else {
 createXHR = function(){
 throw new Error(“No XHR object available.”);
 };
 }

 return createXHR();
}

LazyLoadingExample01.htm

In the lazy loading version of createXHR(), each branch of the if statement assigns a different
function to the createXHR variable, effectively overwriting the original function. The last step
is then to call the newly assigned function. The next time createXHR() is called, it will call the
assigned function directly so the if statements won’t be reevaluated.

The second lazy loading pattern is to assign the appropriate function immediately when the function
is declared. So instead of taking a slight performance hit when the function is called for the fi rst
time, there’s a slight performance hit when the code is loaded for the fi rst time. Here’s the previous
example written using this pattern:

var createXHR = (function(){
 if (typeof XMLHttpRequest != “undefined”){
 return function(){
 return new XMLHttpRequest();
 };
 } else if (typeof ActiveXObject != “undefined”){
 return function(){
 if (typeof arguments.callee.activeXString != “string”){
 var versions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”,
 “MSXML2.XMLHttp”],

Advanced Functions ❘ 737

c22.indd 737c22.indd 737 12/8/11 11:04:30 AM12/8/11 11:04:30 AM

738 ❘ CHAPTER 22 ADVANCED TECHNIQUES

 i, len;

 for (i=0,len=versions.length; i < len; i++){
 try {
 new ActiveXObject(versions[i]);
 arguments.callee.activeXString = versions[i];
 break;
 } catch (ex){
 //skip
 }
 }
 }

 return new ActiveXObject(arguments.callee.activeXString);
 };
 } else {
 return function(){
 throw new Error(“No XHR object available.”);
 };
 }
})();

LazyLoadingExample02.htm

The approach used in this example is to create an anonymous, self-executing function that
determines which of the different function implementations should be used. Note that the logic
is exactly the same. The only things that have changed are the fi rst line (using var to defi ne the
function), the addition of the self-executing anonymous function, and that each branch now returns
the correct function defi nition so that it gets assigned to createXHR() immediately.

Lazy loading functions have an advantage in that you pay a performance penalty just once for
forking the code. Which pattern is right for you is up to your unique requirements, but both
patterns offer the advantage of ensuring that unnecessary code isn’t being executed all the time.

Function Binding

An advanced technique that has become increasingly popular is function binding. Function binding
involves creating a function that calls another function with a specifi c this value and with specifi c
arguments. This technique is often used in conjunction with callbacks and event handlers to
preserve code execution context while passing functions around as variables. Consider the following
example:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message);
 }
};

var btn = document.getElementById(”my-btn”);
EventUtil.addHandler(btn, ”click”, handler.handleClick);

c22.indd 738c22.indd 738 12/8/11 11:04:31 AM12/8/11 11:04:31 AM

In this example, an object called handler is created. The handler.handleClick() method is
assigned as an event handler to a DOM button. When the button is clicked, the function is called,
and an alert is displayed. Even though it may seem as if the alert should display “Event handled”,
it actually displays “undefined”. The problem is that the context of handler.handleClick() is
not being saved, so the this object ends up pointing to the DOM button instead of handler in most
browsers. (In Internet Explorer through version 8, this points to window.) You can fi x this problem
using a closure, as shown in the following example:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message);
 }
};

var btn = document.getElementById(”my-btn”);
EventUtil.addHandler(btn, “click”, function(event){
 handler.handleClick(event);
});

This solution uses a closure to call handler.handleClick() directly inside the onclick event
handler. Of course, this is a very specifi c solution to this specifi c piece of code. Creating multiple
closures can lead to code that is diffi cult to understand and debug. Therefore, many JavaScript
libraries have implemented a function that can bind a function to a specifi c context. Typically, this
function is called bind().

A simple bind() function takes a function and a context, returning a function that calls the given
function in the given context with all arguments intact. The syntax is as follows:

function bind(fn, context){
 return function(){
 return fn.apply(context, arguments);
 };
}

FunctionBindingExample01.htm

This function is deceptively simple but is actually quite powerful. A closure is created within bind()
that calls the passed-in function by using apply() and passing in the context object and the
arguments. Note that the arguments object, as used here, is for the inner function, not for bind().
When the returned function is called, it executes the passed-in function in the given context and
passes along all arguments. The bind() function is used as follows:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message);
 }

Advanced Functions ❘ 739

c22.indd 739c22.indd 739 12/8/11 11:04:31 AM12/8/11 11:04:31 AM

740 ❘ CHAPTER 22 ADVANCED TECHNIQUES

};

var btn = document.getElementById(”my-btn”);
EventUtil.addHandler(btn, “click”, bind(handler.handleClick, handler));

FunctionBindingExample01.htm

In this example, the bind() function is used to create a function that can be passed into
EventUtil.addHandler(), maintaining the context. The event object is also passed through to the
function, as shown here:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message + “:” + event.type);
 }
};

var btn = document.getElementById(“my-btn”);
EventUtil.addHandler(btn, “click”, bind(handler.handleClick, handler));

FunctionBindingExample01.htm

The handler.handleClick() method gets passed the event object as usual, since all arguments are
passed through the bound function directly to it.

ECMAScript 5 introduced a native bind() method on all functions to make this process even easier.
Instead of defi ning your own bind() function, you can call the method directly on the function
itself. For example:

var handler = {
 message: “Event handled”,

 handleClick: function(event){
 alert(this.message + “:” + event.type);
 }
};

var btn = document.getElementById(“my-btn”);
EventUtil.addHandler(btn, “click”, handler.handleClick.bind(handler));

FunctionBindingExample02.htm

The native bind() method works similarly to the one previously described in that you pass in the
object that should be the value of this. The native bind() method is available in Internet Explorer
9+, Firefox 4+, and Chrome.

Bound functions are useful whenever a function pointer must be passed as a value and that function
needs to be executed in a particular context. They are most commonly used for event handlers and

c22.indd 740c22.indd 740 12/8/11 11:04:32 AM12/8/11 11:04:32 AM

with setTimeout() and setInterval(). However, bound functions have more overhead than
regular functions — they require more memory and are slightly slower because of multiple function
calls — so it’s best to use them only when necessary.

Function Currying

A topic closely related to function binding is function currying, which creates functions that have
one or more arguments already set (also called partial function application). The basic approach is
the same as function binding: use a closure to return a new function. The difference with currying
is that this new function also sets some arguments to be passed in when the function is called.
Consider the following example:

function add(num1, num2){
 return num1 + num2;
}

function curriedAdd(num2){
 return add(5, num2);
}

alert(add(2, 3)); //5
alert(curriedAdd(3)); //8

This code defi nes two functions: add() and curriedAdd(). The latter is essentially a version of
add() that sets the fi rst argument to 5 in all cases. Even though curriedAdd() is not technically a
curried function, it demonstrates the concept quite well.

Curried functions are typically created dynamically by calling another function and passing in the
function to curry and the arguments to supply. The following function is a generic way to create
curried functions:

function curry(fn){
 var args = Array.prototype.slice.call(arguments, 1);
 return function(){
 var innerArgs = Array.prototype.slice.call(arguments),
 finalArgs = args.concat(innerArgs);
 return fn.apply(null, finalArgs);
 };
}

FunctionCurryingExample01.htm

The curry() function’s primary job is to arrange the arguments of the returned function in the
appropriate order. The fi rst argument to curry() is the function that should be curried; all other
arguments are the values to pass in. In order to get all arguments after the fi rst one, the slice()
method is called on the arguments object, and an argument of 1 is passed in, indicating that the
returned array’s fi rst item should be the second argument. The args array then contains arguments
from the outer function. For the inner function, the innerArgs array is created to contain all
of the arguments that were passed in (once again using slice()). With the arguments from the

Advanced Functions ❘ 741

c22.indd 741c22.indd 741 12/8/11 11:04:32 AM12/8/11 11:04:32 AM

742 ❘ CHAPTER 22 ADVANCED TECHNIQUES

outer function and inner function now stored in arrays, you can use the concat() method to
combine them into finalArgs and then pass the result into the function, using apply(). Note that
this function doesn’t take context into account, so the call to apply() passes in null as the fi rst
argument. The curry() function can be used as follows:

function add(num1, num2){
 return num1 + num2;
}

var curriedAdd = curry(add, 5);
alert(curriedAdd(3)); //8

FunctionCurryingExample01.htm

In this example, a curried version of add() is created that has the fi rst argument bound to 5. When
curriedAdd() is called and 3 is passed in, the 3 becomes the second argument of add(), while the
fi rst is still 5, resulting in the sum of 8. You can also provide all function arguments, as shown in
this example:

function add(num1, num2){
 return num1 + num2;
}

var curriedAdd = curry(add, 5, 12);
alert(curriedAdd()); //17

FunctionCurryingExample01.htm

Here, the curried add() function provides both arguments, so there’s no need to pass them in later.

Function currying is often included as part of function binding, creating a more complex bind()
function. For example:

function bind(fn, context){
 var args = Array.prototype.slice.call(arguments, 2);
 return function(){
 var innerArgs = Array.prototype.slice.call(arguments),
 finalArgs = args.concat(innerArgs);
 return fn.apply(context, fi nalArgs);
 };
}

FunctionCurryingExample02.htm

The major changes from the curry() function are the number of arguments passed into the
function and how that affects the result of the code. Whereas curry() simply accepts a function to
wrap, bind() accepts the function and a context object. That means the arguments for the bound
function start at the third argument instead of the second, which changes the fi rst call to slice().
The only other change is to pass in the context object to apply() on the third-to-last line. When

c22.indd 742c22.indd 742 12/8/11 11:04:33 AM12/8/11 11:04:33 AM

bind() is used, it returns a function that is bound to the given context and may have some number
of its arguments set already. This can be useful when you want to pass arguments into an event
handler in addition to the event object, such as this.

var handler = {
 message: “Event handled”,

 handleClick: function(name, event){
 alert(this.message + “:” + name + “:” + event.type);
 }
};

var btn = document.getElementById(“my-btn”);
EventUtil.addHandler(btn, “click”, bind(handler.handleClick, handler,
“my-btn”));

FunctionCurryingExample02.htm

In this updated example, the handler.handleClick() method accepts two arguments: the name
of the element that you’re working with and the event object. The name is passed into the bind()
function as the third argument and then gets passed through to handler.handleClick(), which
also receives the event object.

The ECMAScript 5 bind() method also implements function currying. Just pass in the additional
arguments after the value for this:

var handler = {
 message: “Event handled”,

 handleClick: function(name, event){
 alert(this.message + “:” + name + “:” + event.type);
 }
};

var btn = document.getElementById(“my-btn”);
EventUtil.addHandler(btn, “click”, handler.handleClick.bind(handler, “my-btn”));

FunctionCurryingExample03.htm

Curried and bound functions provide powerful dynamic function creation in JavaScript. The use
of either bind() or curry() is determined by the requirement of a context object or the lack of
one, respectively. They can both be used to create complex algorithms and functionality, although
neither should be overused, because each function creates additional overhead.

TAMPER-PROOF OBJECTS

One of the long-lamented downsides of JavaScript is its shared nature: every object can be modifi ed
by any code running in the same context. This can lead to developers accidentally overwriting
each other’s code or, worse, overwriting a native object with incompatible changes. ECMAScript 5
sought to address this problem by allowing you to create tamper-proof objects.

Tamper-Proof Objects ❘ 743

c22.indd 743c22.indd 743 12/8/11 11:04:34 AM12/8/11 11:04:34 AM

744 ❘ CHAPTER 22 ADVANCED TECHNIQUES

Chapter 6 discussed the nature of properties on objects and how you can manually set each
property’s [[Configurable]], [[Writable]], [[Enumerable]], [[Value]], [[Get]], and
[[Set]] attributes to alter how the property behaves. In a similar manner, ECMAScript 5 adds
several methods that allow you to specify how an entire object behaves.

One thing to keep in mind: once an object has been made tamper-proof, the operation cannot be undone.

Nonextensible Objects

By default, all objects in JavaScript are extensible, meaning that you can add additional properties
and methods to the object at any time. For example, I can defi ne an object and then later decide to
add another property to it, such as:

var person = { name: “Nicholas” };
person.age = 29;

Even though the person object is fully defi ned on the fi rst line, the second line is able to add an
additional property. The Object.preventExtensions() method changes this behavior so that new
properties and methods cannot be added to the object. For example:

var person = { name: “Nicholas” };
Object.preventExtensions(person);

person.age = 29;
alert(person.age); //undefined

NonExtensibleObjectsExample01.htm

After the call to Object.preventExtensions(), the person object can no longer have new
properties or methods added. In nonstrict mode, an attempt to add a new object member is silently
ignored, so the result of person.age is undefined. In strict mode, attempting to add an object
member that doesn’t allow extension causes an error to be thrown.

Even though the object cannot have new members added, all of the existing members remain
unaffected. You can still modify and delete already-existing members. It’s also possible to determine
that an object can’t have extensions by using the Object.isExtensible() method:

var person = { name: “Nicholas” };
alert(Object.isExtensible(person)); //true

Object.preventExtensions(person);
alert(Object.isExtensible(person)); //false

NonExtensibleObjectsExample02.htm

Sealed Objects

The next level of protection for objects in ECMAScript 5 is a sealed object. Sealed objects aren’t
extensible and existing object members have their [[Configurable]] attribute set to false. This
means properties and methods can’t be deleted as data properties cannot be changed to accessor
properties or vice versa using Object.defineProperty(). Property values can still be changed.

c22.indd 744c22.indd 744 12/8/11 11:04:34 AM12/8/11 11:04:34 AM

You can seal an object by using the Object.seal() method:

var person = { name: “Nicholas” };
Object.seal(person);

person.age = 29;
alert(person.age); //undefined

delete person.name;
alert(person.name); //”Nicholas”

SealedObjectsExample01.htm

In this example, the attempt to add an age property is ignored. The attempt to delete the name
property is also ignored, and so the value remains intact. This is the behavior for nonstrict mode. In
strict mode, attempting to add or delete an object member throws an error.

You can determine if an object is sealed by using Object.isSealed(). Since a sealed object is also
not extensible, sealed objects also return false for Object.isExtensible():

var person = { name: “Nicholas” };
alert(Object.isExtensible(person)); //true
alert(Object.isSealed(person)); //false

Object.seal(person);
alert(Object.isExtensible(person)); //false
alert(Object.isSealed(person)); //true

SealedObjectsExample02.htm

Frozen Objects

The strictest type of tamper-proof object is a frozen object. Frozen objects aren’t extensible and are
sealed, and also data properties have their [[Writable]] attribute set to false. Accessor properties
may still be written to but only if a [[Set]] function has been defi ned. ECMAScript 5 defi nes
Object.freeze() to allow freezing of objects:

var person = { name: “Nicholas” };
Object.freeze(person);

person.age = 29;
alert(person.age); //undefined

delete person.name;
alert(person.name); //”Nicholas”

person.name = ”Greg”;
alert(person.name); //”Nicholas”

FrozenObjectsExample01.htm

Tamper-Proof Objects ❘ 745

c22.indd 745c22.indd 745 12/8/11 11:04:35 AM12/8/11 11:04:35 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

746 ❘ CHAPTER 22 ADVANCED TECHNIQUES

As with preventing extensions and sealing, attempts to perform disallowed operations on a frozen
object are ignored in nonstrict mode and throw an error in strict mode.

There is also an Object.isFrozen() method to detect frozen objects. Since frozen objects are both
sealed and extensible, they also return false for Object.isExtensible() and true for Object
.isSealed():

var person = { name: “Nicholas” };
alert(Object.isExtensible(person)); //true
alert(Object.isSealed(person)); //false
alert(Object.isFrozen(person)); //false

Object.freeze(person);
alert(Object.isExtensible(person)); //false
alert(Object.isSealed(person)); //true
alert(Object.isFrozen(person)); //true

FrozenObjectsExample02.htm

Frozen objects are especially useful for library authors. A very common problem with JavaScript
libraries is when people accidentally (or intentionally) change the main library object. Freezing the
main library object (or sealing) can help to prevent some of these errors.

ADVANCED TIMERS

Timers created using setTimeout() or setInterval() can be used to achieve interesting and useful
functionality. Despite the common misconception that timers in JavaScript are actually threads,
JavaScript runs in a single-threaded environment. Timers, then, simply schedule code execution
to happen at some point in the future. The timing of execution is not guaranteed, because other
code may control the JavaScript process at different times during the page life cycle. Code running
when the page is downloaded, event handlers, and Ajax callbacks all must use the same thread for
execution. It’s the browser’s job to sort out which code has priority at what point in time.

It helps to think of JavaScript as running on a timeline. When a page is loading, the fi rst code to
be executed is any code included using a <script> element. This often is simply function and
variable declarations to be used later during the page life cycle, but sometimes it can contain initial
data processing. After that point, the JavaScript process waits for more code to execute. When the
process isn’t busy, the next code to be triggered is executed immediately. For instance, an onclick
event handler is executed immediately when a button is clicked, as long as the JavaScript process
isn’t executing any other code. The timeline for such a page might look like Figure 22-1.

JavaScript Process Timeline

Initial page load

0 100 200 300 400 500

Time in milliseconds

600 700 800

Idle handleClick()

FIGURE 22-1

c22.indd 746c22.indd 746 12/8/11 11:04:35 AM12/8/11 11:04:35 AM

Alongside the main JavaScript execution process, there is a queue of code that should be executed
the next time the process is idle. As the page goes through its life cycle, code is added to the queue
in the order in which it should be executed. When a button is clicked, for example, its event handler
code is added to the queue and executed at the next possible moment. When an Ajax response is
received, the callback function code is added to the queue. No code is executed immediately in
JavaScript; it is executed as soon as the process is idle.

Timers work with this queue by inserting code when a particular amount of time has passed. Note
that adding code to the queue doesn’t mean it’s executed immediately; it simply means that it will
be executed as soon as possible. Setting a timer for execution in 150 milliseconds doesn’t mean that
the code will be executed in 150 milliseconds; it means that the code will be added to the queue in
150 milliseconds. If nothing else is in the queue at that point in time, the timer code will be executed,
giving the appearance that the code executed exactly when specifi ed. At other times, the code may
take signifi cantly longer to execute.

Consider the following code:

var btn = document.getElementById(“my-btn”);
btn.onclick = function(){
 setTimeout(function(){
 document.getElementById(“message”).style.visibility = “visible”;
 }, 250);

 //other code
};

Here, an event handler is set up for a button. The event handler sets a timer to be called in 250
milliseconds. When the button is clicked, the onclick event handler is fi rst added to the queue. When
it is executed, the timer is set, and 250 milliseconds later, the specifi ed code is added to the queue for
execution. In effect, the call to setTimeout() says that some code should be executed later.

The most important thing to remember about timers is that the specifi ed interval indicates when the
timer’s code will be added to the queue, not when the code will actually be executed. If the onclick
event handler in the previous example took 300 milliseconds to execute, then the timer’s code would
execute, at the earliest, 300 milliseconds after the timer was set. All code in the queue must wait
until the JavaScript process is free before it can be executed, regardless of how it was added to the
queue (see Figure 22-2).

JavaScript Process Timeline

onclick

0

5

100 200

255

300 400 500

Timer code added to queue

Timer created with interval of 250

600 700 800

timer code Idle

FIGURE 22-2

Advanced Timers ❘ 747

c22.indd 747c22.indd 747 12/8/11 11:04:36 AM12/8/11 11:04:36 AM

748 ❘ CHAPTER 22 ADVANCED TECHNIQUES

As you can see from Figure 22-2, even though the timer code was added at the 255-millisecond
mark, it cannot be executed at that time because the onclick event handler is still running. The
timer code’s fi rst opportunity to be executed is at the 300-millisecond mark, after the onclick
event handler has fi nished.

Firefox’s implementation of timers actually allows you to determine how far behind a timer has
slipped. It does so by passing in the differential between the time that it was executed and the
interval specifi ed. Here is an example:

//works in Firefox only
setTimeout(function(diff){
 if (diff > 0) {
 //call is late
 } else if (diff < 0){
 //call is early
 } else {
 //call is on time
 }
}, 250);

When the execution of one set of code is complete, the JavaScript process yields for a short amount
of time so that other processes on the page can be executed. Since the JavaScript process blocks
other page processes, these small breaks are necessary to prevent the user interface from locking
(which can still happen during long-running code). Setting a timer ensures that there will be at least
one process break before the timer code is executed.

Repeating Timers

Timers created using setInterval() ensure regular injection of timer code into the queue. The
problem with this approach is that the timer code may not fi nish execution before the code is added
to the queue again. The result would be that the timer code is run multiple times in a row, with no
amount of time between them. Fortunately, JavaScript engines are smart enough to avoid this issue.
When using setInterval(), timer code is added to the queue only if there are no other instances of
the timer code already in the queue. This ensures that the time between additions of the timer code
to the queue is, at a minimum, the specifi ed interval.

The downside to this regulation of repeating timers is twofold: (1) intervals may be skipped, and
(2) intervals may be smaller than expected between multiple timer-code executions. Suppose you
have a situation where an onclick event handler sets a repeating timer using setInterval() at any
interval of 200 milliseconds. If the event handler takes a little over 300 milliseconds to complete, and
the timer code takes about the same amount of time, you’ll end up with both a skipped interval
and timer code running back-to-back (see Figure 22-3).

c22.indd 748c22.indd 748 12/8/11 11:04:37 AM12/8/11 11:04:37 AM

The fi rst timer in this example is added to the queue at 205 milliseconds but can’t be executed until
after the 300-millisecond mark. While the timer code is being executed, another copy is added to
the queue at 405 milliseconds. At the next interval, 605 milliseconds, the fi rst timer code is still
being executed, and there is already one instance of the timer code in the queue. As a result, timer
code is not added to the queue at that point. The timer code added at 405 milliseconds is then
executed right after the timer code that was added at 5 milliseconds.

To avoid the two downfalls of repeating timers with setInterval(), you can use chained
setTimeout() calls in the following pattern:

setTimeout(function(){

 //processing

 setTimeout(arguments.callee, interval);

}, interval);

This pattern chains calls to setTimeout(), creating a new timer each time the function is executed.
The second call to setTimeout() uses arguments.callee to get a reference to the currently
executing function and set another timer for it. The advantage is that new timer code isn’t inserted
into the queue until the previous timer code has been executed, ensuring that there won’t be any
dropped intervals. Furthermore, you are guaranteed that the next time the timer code is executed, it
will be in at least the interval specifi ed, avoiding back-to-back runs. This pattern is used most often
for repeating timers, as in this example:

setTimeout(function(){

 var div = document.getElementById(“myDiv”),
 left = parseInt(div.style.left) + 5;
 div.style.left = left + ”px”;

 if (left < 200){
 setTimeout(arguments.callee, 50);

JavaScript Process Timeline

onclick

0

5

100 200

205
405

605

300 400 500

Timer code added to queue

Timer code added to queue
Timer code queueing skipped

Repeating timer created with interval of 200

600 700 800

Timer code Timer code

FIGURE 22-3

Advanced Timers ❘ 749

c22.indd 749c22.indd 749 12/8/11 11:04:37 AM12/8/11 11:04:37 AM

750 ❘ CHAPTER 22 ADVANCED TECHNIQUES

 }

}, 50);

RepeatingTimersExample.htm

This code moves a <div> element to the right every time the timer code executes, stopping when the
left coordinate is at 200 pixels. It’s quite common to use this pattern for JavaScript animation.

Each browser window, tab, or frame has its own code execution queue. This
means that the timing of cross-frame or cross-window JavaScript calls may
result in race conditions when code is executed synchronously. Whenever this
type of communication is necessary, it’s a good idea to create a timer on the
receiving frame or window to execute the code.

Yielding Processes

JavaScript running in a browser has a fi nite amount of resources allocated to it. Unlike desktop
applications, which often have free rein over the amount of memory and processor time they
can command, JavaScript is severely restricted to ensure that malicious web programmers can’t
bring down a user’s computer. One of these restrictions is the long-running script limit, which
prevents code from running if it takes longer than a certain amount of time or a certain number of
statements. If you reach that limit, the user is presented with a browser error dialog indicating that
a script is taking too long to execute and asking whether the user would like to allow it to continue
processing or stop. It’s the goal of all JavaScript developers to ensure that the user never sees this
confusing message from the browser. Timers are one way to work around this limitation.

Long-running script problems typically result from one of two issues: long, deeply nested function
calls or loops that are doing a lot of processing. Of these two, the latter is an easier problem to
solve. Long-running loops typically follow this pattern:

for (var i=0, len=data.length; i < len; i++){
 process(data[i]);
}

The problem with this pattern is that the number of items to process is unknown until runtime.
If process() takes 100 milliseconds to complete, an array of two items may not be cause for worry,
but an array of ten results in the script running for a second to complete. The amount of time it
takes to completely execute this loop is directly related to the number of items in the array. And
since JavaScript execution is a blocking operation, the longer a script takes to run, the longer users
are left unable to interact with the page.

c22.indd 750c22.indd 750 12/8/11 11:04:38 AM12/8/11 11:04:38 AM

Before unrolling the loop, you need to answer these two important questions:

 1. Does the processing have to be done synchronously? If the processing of this data is
blocking something else from fi nishing, then you may not want to touch it. However,
if you can answer a defi nitive “no” to this question, then it’s a good candidate for deferring
some processing until later.

 2. Does the data have to be processed sequentially? Oftentimes, an array of values is just a
convenient way to group and iterate over items regardless of the order. If the order of the
items has no signifi cance, then it’s likely that you can postpone some processing until later.

When you fi nd a loop is taking a signifi cant amount of time to complete, and you can answer “no”
to either of the previous two questions, you can split the loop using timers. This is a technique called
array chunking, whereby processing of the array happens in small chunks, most often one at a time.
The basic idea is to create a queue of items to process, use timers to pull the next item to process,
process it, and then set another timer. The basic pattern looks like this:

setTimeout(function(){

 //get next item and process it
 var item = array.shift();
 process(item);

 //if there’s more items, set another timeout
 if(array.length > 0){
 setTimeout(arguments.callee, 100);
 }
}, 100);

In the array chunking pattern, the array variable is essentially a “to do” list of items to process.
Using the shift() method, you retrieve the next item in the queue to process and pass it in to
a function. If there are still items in the queue, then another timer is set, calling the same
anonymous function via arguments.callee. You can accomplish array chunking easily, using
the following function:

function chunk(array, process, context){
 setTimeout(function(){
 var item = array.shift();
 process.call(context, item);

 if (array.length > 0){
 setTimeout(arguments.callee, 100);
 }
 }, 100);
}

ArrayChunkingExample.htm

The chunk() method accepts three arguments: the array of items to process, a function to use to
process the items, and an optional context in which to run the function. Inside the function is a
duplication of the basic pattern described previously, with the process() function being called

Advanced Timers ❘ 751

c22.indd 751c22.indd 751 12/8/11 11:04:48 AM12/8/11 11:04:48 AM

752 ❘ CHAPTER 22 ADVANCED TECHNIQUES

via call() so that a proper context can be set if necessary. The interval of the timers is set to 100
milliseconds, which gives the JavaScript process time to go idle between item processing events. This
interval can be changed based on your needs, although 100 milliseconds works well in most cases.
The function can be used as follows:

var data = [12,123,1234,453,436,23,23,5,4123,45,346,5634,2234,345,342];

function printValue(item){
 var div = document.getElementById(“myDiv”);
 div.innerHTML += item + ”
”;
}

chunk(data, printValue);

ArrayChunkingExample.htm

This example outputs each value in the data array to a <div> element by using the printValue()
function. Since the function exists in the global scope, there’s no need to pass in a context object
to chunk().

Something to be aware of is that the array passed into chunk() is used as a queue, so the items in
the array change as the data is processed. If you want to keep the original array intact, you should
pass a clone of the array into chunk(), such as in this example:

chunk(data.concat(), printValue);

When the concat() method is called on an array without any arguments, it returns an array with
the same items as the original. In this way, you can be assured that the original array is not changed
by the function.

The importance of array chunking is that it splits the processing of multiple items into separate
code on the execution queue. Other browser processes are given a chance to run after each item is
processed, and you’ll avoid long-running script errors.

Whenever you have a function that takes over 50 milliseconds to complete, it’s
best to see if you can split up the job into a number of smaller ones that can be
used with timers.

Function Throttling

Some calculations and processes are more expensive in the browser than others. For instance,
DOM manipulations require more memory and CPU time than non-DOM interactions. Attempting
to perform too many DOM-related operations in sequence can cause the browser to hang, and
sometimes crash. This tends to happen frequently in Internet Explorer when using an onresize event
handler, which fi res repeatedly as the browser is being resized. Attempting DOM manipulations inside
the onresize event handler can make the browser crash because of the frequency of the changes
being calculated. To get around this problem, you can throttle the function call by using timers.

c22.indd 752c22.indd 752 12/8/11 11:04:49 AM12/8/11 11:04:49 AM

The basic idea behind function throttling is that some code should not be executed repeatedly
without a break. The fi rst time the function is called, a timer is created that will run the code after
a specifi ed interval. When the function is called a second time, it clears the previous timer and sets
another. If the previous timer has already executed, then it is of no consequence. However, if the
previous timer hasn’t executed, it is essentially replaced by a newer timer. The goal is to execute the
function only after the requests to execute it have subsided for some amount of time. The following
is a basic representation of this pattern:

var processor = {
 timeoutId: null,

 //method that actually performs the processing
 performProcessing: function(){
 //actual processing code
 },

 //method that is called to initiate processing
 process: function(){
 clearTimeout(this.timeoutId);

 var that = this;
 this.timeoutId = setTimeout(function(){
 that.performProcessing();
 }, 100);
 }
};

//try to start processing
processor.process();

In this code, an object called processor is created. There are two methods on this object: process()
and performProcessing(). The former is the one that should be called to initiate any processing, and
the latter actually performs the processing that should be done. When process() is called, the fi rst step
is to clear the stored timeoutId to prevent any previous calls from being executed. Then, a new
timer is created to call performProcessing(). Since the context of the function used in setTimeout()
is always window, it’s necessary to store a reference to this so that it can be used later.

The interval is set to 100 milliseconds, which means that performProcessing() will not be called
until at least 100 milliseconds after the last call to process(). So if process() is called 20 times
within 100 milliseconds, performProcessing() will still be called only once.

This pattern can be simplifi ed by using a throttle() function that automatically sets up the timer
setting/clearing functionality, as in the following example:

function throttle(method, context) {
 clearTimeout(method.tId);
 method.tId= setTimeout(function(){
 method.call(context);
 }, 100);
}

ThrottlingExample.htm

Advanced Timers ❘ 753

c22.indd 753c22.indd 753 12/8/11 11:04:55 AM12/8/11 11:04:55 AM

754 ❘ CHAPTER 22 ADVANCED TECHNIQUES

The throttle() function accepts two arguments: the function to execute and the scope in
which to execute it. The function fi rst clears any timer that was set previously. The timer ID
is stored on the tId property of the function, which may not exist the fi rst time the method is
passed into throttle(). Next, a new timer is created, and its ID is stored in the method’s tId
property. If this is the fi rst time that throttle() is being called with this method, then the
code creates the property. The timer code uses call() to ensure that the method is executed
in the appropriate context. If the second argument isn’t supplied, then the method is executed in
the global scope.

As mentioned previously, throttling is most often used during the resize event. If you are changing
the layout of the page based on this event, it is best to throttle the processing to ensure that the
browser doesn’t do too many calculations in a short period of time. For example, consider having
a <div> element that should have its height changed so that it’s always equal to its width. The
JavaScript to effect this change may look something like this:

window.onresize = function(){
 var div = document.getElementById(“myDiv”);
 div.style.height = div.offsetWidth + “px”;
};

This very simple example shows a couple of things that may slow down the browser. First, the
offsetWidth property is being calculated, which may be a complex calculation when there are
enough CSS styles applied to the element and the rest of the page. Second, setting the height of
an element requires a refl ow of the page to take these changes into account. Once again, this can
require multiple calculations if the page has many elements and a moderate amount of CSS applied.
The throttle() function can help, as shown in this example:

function resizeDiv(){
 var div = document.getElementById(“myDiv”);
 div.style.height = div.offsetWidth + ”px”;
}

window.onresize = function(){
 throttle(resizeDiv);
};

ThrottlingExample.htm

Here, the resizing functionality has been moved into a separate function called resizeDiv(). The
onresize event handler then calls throttle() and passes in the resizeDiv() function, instead
of calling resizeDiv() directly. In many cases, there is no perceivable difference to the user, even
though the calculation savings for the browser can be quite large.

Throttling should be used whenever there is code that should be executed only periodically,
but you cannot control the rate at which the execution is requested. The throttle() function
presented here uses an interval of 100 milliseconds, but that can be changed, depending on
your needs.

c22.indd 754c22.indd 754 12/8/11 11:04:55 AM12/8/11 11:04:55 AM

CUSTOM EVENTS

Earlier in this book, you learned that events are the primary way in which JavaScript interacts with
the browser. Events are a type of design pattern called an observer, which is a technique for creating
loosely coupled code. The idea is that objects can publish events indicating when an interesting
moment in the object’s life cycle occurs. Other objects can then observe that object, waiting for
these interesting moments to occur and responding by running code.

The observer pattern is made up of two types of objects: a subject and an observer. The subject is
responsible for publishing events, and the observer simply observes the subject by subscribing to
these events. A key concept for this pattern is that the subject doesn’t know anything about the
observer, meaning that it can exist and function appropriately even if the observer isn’t present.
The observer, on the other hand, knows about the subject and registers callbacks (event handlers)
for the subject’s events. When you’re dealing with the DOM, a DOM element is the subject and your
event-handling code is the observer.

Events are a very common way to interact with the DOM, but they can also be used in non-DOM
code through implementing custom events. The idea behind custom events is to create an object
that manages events, allowing others to listen to those events. A basic type that implements this
functionality can be defi ned as follows:

function EventTarget(){
 this.handlers = {};
}

EventTarget.prototype = {
 constructor: EventTarget,

 addHandler: function(type, handler){
 if (typeof this.handlers[type] == “undefined”){
 this.handlers[type] = [];
 }

 this.handlers[type].push(handler);
 },

 fire: function(event){
 if (!event.target){
 event.target = this;
 }
 if (this.handlers[event.type] instanceof Array){
 var handlers = this.handlers[event.type];
 for (var i=0, len=handlers.length; i < len; i++){
 handlers[i](event);
 }
 }
 },

 removeHandler: function(type, handler){
 if (this.handlers[type] instanceof Array){
 var handlers = this.handlers[type];
 for (var i=0, len=handlers.length; i < len; i++){

Custom Events ❘ 755

c22.indd 755c22.indd 755 12/8/11 11:04:56 AM12/8/11 11:04:56 AM

756 ❘ CHAPTER 22 ADVANCED TECHNIQUES

 if (handlers[i] === handler){
 break;
 }
 }

 handlers.splice(i, 1);
 }
 }
};

EventTarget.js

The EventTarget type has a single property, handlers, which is used to store the event handlers.
There are also three methods: addHandler(), which registers an event handler for a given type of
event; fire(), which fi res an event; and removeHandler(), which unregisters an event handler for
an event type.

The addHandler() method accepts two arguments: the event type and a function used to handle the
event. When this method is called, a check is made to see if an array for the event type already exists
on the handlers property. If not, then one is created. The handler is then added to the end of the
array, using push().

When an event must be fi red, the fire() method is called. This method accepts a single argument,
which is an object containing at least a type property. The fire() method begins by setting a
target property on the event object, if one isn’t already specifi ed. Then it simply looks for an array
of handlers for the event type and calls each function, passing in the event object. Because these
are custom events, it’s up to you to determine what the additional information on the event object
should be.

The removeHandler() method is a companion to addHandler() and accepts the same arguments:
the type of event and the event handler. This method searches through the event handler array to
fi nd the location of the handler to remove. When it’s found, the break operator is used to exit the
for loop. The splice() method is then used to remove just that item from the array.

Custom events using the EventTarget type can then be used as follows:

function handleMessage(event){
 alert(“Message received: “ + event.message);
}

//create a new object
var target = new EventTarget();

//add an event handler
target.addHandler(“message”, handleMessage);

//fire the event
target.fire({ type: “message”, message: “Hello world!”});

//remove the handler

c22.indd 756c22.indd 756 12/8/11 11:04:57 AM12/8/11 11:04:57 AM

target.removeHandler(“message”, handleMessage);

//try again - there should be no handler
target.fire({ type: “message”, message: “Hello world!”});

EventTargetExample01.htm

In this code, the handleMessage() function is defi ned to handle a message event. It accepts the
event object and outputs the message property. The target object’s addHandler() method is
called, passing in “message” and the handleMessage() function. On the next line, fire() is called
with an object literal containing two properties: type and message. This calls the event handlers for
the message event so an alert will be displayed (from handleMessage()). The event handler is then
removed so that when the event is fi red again, no alert will be displayed.

Because this functionality is encapsulated in a custom type, other objects can inherit this behavior
by inheriting from EventTarget, as in this example:

function Person(name, age){
 EventTarget.call(this);
 this.name = name;
 this.age = age;
}

inheritPrototype(Person,EventTarget);

Person.prototype.say = function(message){
 this.fire({type: “message”, message: message});
};

EventTargetExample02.htm

The Person type uses parasitic combination inheritance (see Chapter 6) to inherit from
EventTarget. Whenever the say() method is called, an event is fi red with the details of a
message. It’s common for the fire() method to be called during other methods of a type and
quite uncommon for it to be called publicly. This code can then be used as follows:

function handleMessage(event){
 alert(event.target.name + “ says: “ + event.message);
}

//create new person
var person = new Person(“Nicholas”, 29);

//add an event handler
person.addHandler(“message”, handleMessage);

//call a method on the object, which fires the message event
person.say(”Hi there.”);

EventTargetExample02.htm

Custom Events ❘ 757

c22.indd 757c22.indd 757 12/8/11 11:04:57 AM12/8/11 11:04:57 AM

758 ❘ CHAPTER 22 ADVANCED TECHNIQUES

The handleMessage() function in this example displays an alert with the person’s name (retrieved
via event.target.name) and the message text. When the say() method is called with a message,
the message event is fi red. That, in turn, calls the handleMessage() function and displays the alert.

Custom events are useful when there are multiple parts of your code that interact with each other at
particular moments in time. If each object has references to all the others, the code becomes tightly
coupled, and maintenance becomes diffi cult, because a change to one object affects others. Using
custom events helps to decouple related objects, keeping functionality insulated. In many cases,
the code that fi res the events and the code that listens for the events are completely separate.

DRAG AND DROP

One of the most popular user interface patterns on computers is drag and drop. The idea is simple:
click and hold a mouse button over an item, move the mouse to another area, and release the mouse
button to “drop” the item there. The popularity of the drag-and-drop interface extends to the Web,
where it has become a popular alternative to more traditional confi guration interfaces.

The basic idea for drag and drop is simple: create an absolutely positioned element that can be
moved with the mouse. This technique has its origins in a classic web trick called the cursor trail.
A cursor trail was an image or multiple images that shadowed mouse pointer movements on the page.
The basic code for a single-item cursor trail involves setting an onmousemove event handler on the
document that always moves a given element to the cursor position, as in this example:

EventUtil.addHandler(document, “mousemove”, function(event){
 var myDiv = document.getElementById(“myDiv”);
 myDiv.style.left = event.clientX + ”px”;
 myDiv.style.top = event.clientY + ”px”;
});

DragAndDropExample01.htm

In this example, an element’s left and top coordinates are set equal to the event object’s clientX
and clientY properties, which places the element at the cursor’s position in the viewport. The
effect is an element that follows the cursor around the page whenever it’s moved. To implement drag
and drop, you need only implement this functionality at the correct point in time (when the mouse
button is pushed down) and remove it later (when the mouse button is released). A very simple drag-
and-drop interface can be implemented using the following code:

var DragDrop = function(){

 var dragging = null;

 function handleEvent(event){

 //get event and target
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 //determine the type of event

c22.indd 758c22.indd 758 12/8/11 11:04:58 AM12/8/11 11:04:58 AM

 switch(event.type){
 case “mousedown”:
 if (target.className.indexOf(“draggable”) > -1){
 dragging = target;
 }
 break;

 case “mousemove”:
 if (dragging !== null){

 //assign location
 dragging.style.left = event.clientX + “px”;
 dragging.style.top = event.clientY + “px”;
 }
 break;

 case “mouseup”:
 dragging = null;
 break;
 }
 };

 //public interface
 return {
 enable: function(){
 EventUtil.addHandler(document, “mousedown”, handleEvent);
 EventUtil.addHandler(document, “mousemove”, handleEvent);
 EventUtil.addHandler(document, “mouseup”, handleEvent);
 },

 disable: function(){
 EventUtil.removeHandler(document, “mousedown”, handleEvent);
 EventUtil.removeHandler(document, “mousemove”, handleEvent);
 EventUtil.removeHandler(document, “mouseup”, handleEvent);
 }
 }
}();

DragAndDropExample02.htm

The DragDrop object encapsulates all of the basic drag-and-drop functionality. It is a singleton
object that uses the module pattern to hide some of its implementation details. The dragging
variable starts out as null and will be fi lled with the element that is being dragged, so when this
variable isn’t null, you know that something is being dragged. The handleEvent() function
handles all three mouse events for the drag-and-drop functionality. It starts by retrieving references
to the event object and the event target. After that, a switch statement determines which event
type was fi red. When a mousedown event occurs, the class of the target is checked to see if it
contains a class of “draggable” and if so, the target is assigned to dragging. This technique
allows draggable elements to easily be indicated through markup instead of JavaScript.

The mousemove case for handleEvent() is the same as the previous code, with the exception that a
check is made to see if dragging is null. When it’s not null, dragging is known to be the element

Drag and Drop ❘ 759

c22.indd 759c22.indd 759 12/8/11 11:04:59 AM12/8/11 11:04:59 AM

760 ❘ CHAPTER 22 ADVANCED TECHNIQUES

that’s being dragged, so it is repositioned appropriately. The mouseup case simply resets dragging to
null, which effectively negates the mousemove event.

There are two public methods on DragDrop: enable() and disable(), which simply attach and
detach all event handlers, respectively. These methods provide an additional measure of control over
the drag-and-drop functionality.

To use the DragDrop object, just include it on a page and call enable(). Drag and drop will
automatically be enabled for all elements with a class containing “draggable”, as in this example:

<div class=”draggable” style=”position:absolute; background:red”></div>

Note that for drag and drop to work with an element, it must be absolutely positioned.

Fixing Drag Functionality

When you try out this example, you’ll notice that the upper-left corner of the element always lines
up with the cursor. The result is a little jarring to
users, because the element seems to jump when the
mouse begins to move. Ideally, the action should
look as if the element has been “picked up” by
the cursor, meaning that the point where the user
clicked should be where the cursor remains while
the element is being dragged (see Figure 22-4).

Some additional calculations are necessary to
achieve the desired effect. To do so, you need
to calculate the difference between the upper-
left corner of the element and the cursor location. That
difference needs to be determined when the mousedown
event occurs, and carried through until the mouseup event
occurs. By comparing the clientX and clientY properties
of event to the offsetLeft and offsetTop properties of
the element, you can fi gure out how much more space is
needed both horizontally and vertically (see Figure 22-5).

In order to store the differences in the x and y positions,
you need a couple more variables. These variables, diffX
and diffY, need to be used in the onmousemove event
handler to properly position the element, as shown
in the following example:

var DragDrop = function(){

 var dragging = null,
 diffX = 0,
 diffY = 0;

 function handleEvent(event){

 //get event and target

User initially clicks here When being dragged,
the cursor ends up here

FIGURE 22-4

FIGURE 22-5

c22.indd 760c22.indd 760 12/8/11 11:04:59 AM12/8/11 11:04:59 AM

 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 //determine the type of event
 switch(event.type){
 case “mousedown”:
 if (target.className.indexOf(“draggable”) > -1){
 dragging = target;
 diffX = event.clientX - target.offsetLeft;
 diffY = event.clientY - target.offsetTop;
 }
 break;

 case “mousemove”:
 if (dragging !== null){

 //assign location
 dragging.style.left = (event.clientX - diffX) + “px”;
 dragging.style.top = (event.clientY - diffY) + “px”;

 }
 break;

 case “mouseup”:
 dragging = null;
 break;
 }
 };

 //public interface
 return {
 enable: function(){
 EventUtil.addHandler(document, “mousedown”, handleEvent);
 EventUtil.addHandler(document, “mousemove”, handleEvent);
 EventUtil.addHandler(document, “mouseup”, handleEvent);
 },

 disable: function(){
 EventUtil.removeHandler(document, “mousedown”, handleEvent);
 EventUtil.removeHandler(document, “mousemove”, handleEvent);
 EventUtil.removeHandler(document, “mouseup”, handleEvent);
 }
 }
}();

DragAndDropExample03.htm

The diffX and diffY variables are private, because they are needed only by the handleEvent()
function. When a mousedown event occurs, they are calculated by subtracting offsetLeft from the
target’s clientX and offsetTop from the target’s clientY. These give you the amount that needs
to be subtracted from each dimension when the mousemove event is fi red. The result is a smoother
dragging experience that behaves much more in the way that the user expects.

Drag and Drop ❘ 761

c22.indd 761c22.indd 761 12/8/11 11:05:00 AM12/8/11 11:05:00 AM

762 ❘ CHAPTER 22 ADVANCED TECHNIQUES

Adding Custom Events

The drag-and-drop functionality can’t really be used in an application unless you know when the
dragging occurs. To this point, the code provides no way to indicate that a drag has been started,
is in progress, or has ended. Custom events can be used to indicate when each of these occurs,
allowing other parts of the application to interact with the drag-and-drop functionality.

Since the DragDrop object is a singleton using the module pattern, some changes are necessary to
use the EventTarget type. First, a new EventTarget object is created, then the enable() and
disable() methods are added, and fi nally the object is returned. Consider the following:

var DragDrop = function(){

 var dragdrop = new EventTarget(),
 dragging = null,
 diffX = 0,
 diffY = 0;

 function handleEvent(event){

 //get event and target
 event = EventUtil.getEvent(event);
 var target = EventUtil.getTarget(event);

 //determine the type of event
 switch(event.type){
 case “mousedown”:
 if (target.className.indexOf(“draggable”) > -1){
 dragging = target;
 diffX = event.clientX - target.offsetLeft;
 diffY = event.clientY - target.offsetTop;
 dragdrop.fi re({type:”dragstart”, target: dragging,
 x: event.clientX, y: event.clientY});
 }
 break;

 case “mousemove”:
 if (dragging !== null){

 //assign location
 dragging.style.left = (event.clientX - diffX) + “px”;
 dragging.style.top = (event.clientY - diffY) + “px”;

 //fi re custom event
 dragdrop.fi re({type:”drag”, target: dragging,
 x: event.clientX, y: event.clientY});
 }
 break;

 case “mouseup”:
 dragdrop.fi re({type:”dragend”, target: dragging,
 x: event.clientX, y: event.clientY});
 dragging = null;
 break;

c22.indd 762c22.indd 762 12/8/11 11:05:00 AM12/8/11 11:05:00 AM

 }
 };

 //public interface
 dragdrop.enable = function(){
 EventUtil.addHandler(document, “mousedown”, handleEvent);
 EventUtil.addHandler(document, “mousemove”, handleEvent);
 EventUtil.addHandler(document, “mouseup”, handleEvent);
 };

 dragdrop.disable = function(){
 EventUtil.removeHandler(document, “mousedown”, handleEvent);
 EventUtil.removeHandler(document, “mousemove”, handleEvent);
 EventUtil.removeHandler(document, “mouseup”, handleEvent);
 };

 return dragdrop;
}();

DragAndDropExample04.htm

This code defi nes three events: dragstart, drag, and dragend. Each of these events sets the dragged
element as the target and provides x and y properties to indicate its current position. These are
fi red on the dragdrop object, which later is augmented with the enable() and disable() methods
before being returned. This slight change in the module pattern allows the DragDrop object to
support events such as the following:

DragDrop.addHandler(“dragstart”, function(event){
 var status = document.getElementById(“status”);
 status.innerHTML = “Started dragging “ + event.target.id;
});

DragDrop.addHandler(“drag”, function(event){
 var status = document.getElementById(“status”);
 status.innerHTML += “
Dragged “ + event.target.id + “ to (“ + event.x +
 “,” + event.y + “)”;
});

DragDrop.addHandler(“dragend”, function(event){
 var status = document.getElementById(“status”);
 status.innerHTML += “
Dropped “ + event.target.id + “ at (“ + event.x +
 “,” + event.y + “)”;
});

DragAndDropExample04.htm

Here, event handlers are added for each event of the DragDrop object. An element is used to display
the current state and location of the dragged element. Once the element is dropped, you have a
listing of all the intermediate steps it took since it was initially dragged.

Adding custom events to DragDrop makes it a more robust object that can be used to manage
complex drag-and-drop functionality in a web application.

Drag and Drop ❘ 763

c22.indd 763c22.indd 763 12/8/11 11:05:01 AM12/8/11 11:05:01 AM

764 ❘ CHAPTER 22 ADVANCED TECHNIQUES

SUMMARY

Functions in JavaScript are quite powerful, because they are fi rst-class objects. Using closures and
function context switching, you can use functions in a number of powerful ways. For example:

It’s possible to create scope-safe constructors, ensuring that a constructor called without the
new operator will not change the wrong context object.

You can use lazy loading functions by delaying any code forking until the fi rst time that the
function is called.

Function binding allows you to create functions that are always run in a specifi c context,
and function currying allows you to create functions that have some of their arguments
already fi lled in.

Combining binding and currying gives you a way to execute any function, in any context,
and with any arguments.

ECMAScript 5 allows you to create tamper-proof objects in a number of different ways:

Nonextensible objects don’t allow new properties or methods to be added to the object.

Sealed objects are nonextensible and also don’t allow existing properties and methods to
be deleted.

Frozen objects are sealed and also don’t allow the overwriting of object members.

Timers can be created in JavaScript using setTimeout() or setInterval()as follows:

Timer code is placed into a holding area until the interval has been reached, at which point
the code is added to the JavaScript process queue to be executed the next time the JavaScript
process is idle.

Every time a piece of code executes completely, there is a brief amount of idle time to allow
other browser processes to complete.

This behavior means that timers can be used to split up long-running scripts into smaller
chunks that can be executed at a later time. Doing so helps the web application to be
more responsive to user interaction.

The observer pattern is used quite often in JavaScript in the form of events. Although events are
used frequently with the DOM, they can also be used in your own code by implementing custom
events. Using custom events helps to decouple different parts of code from one another, allowing
easier maintenance and reducing the chances of introducing an error by changing what seems to be
isolated code.

Drag and drop is a popular user-interface paradigm for both desktop and web applications,
allowing users to easily rearrange or confi gure things in an intuitive way. This type of functionality
can be created in JavaScript using mouse events and some simple calculations. Combining drag-
and-drop behavior with custom events creates a reusable framework that can be applied in many
different ways.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c22.indd 764c22.indd 764 12/8/11 11:05:01 AM12/8/11 11:05:01 AM

Offl ine Applications
and Client-Side Storage

WHAT’S IN THIS CHAPTER?

Setting up offl ine detection

Using the offl ine cache

Storing data in the browser

One of HTML5’s focus areas is enabling offl ine web applications. An offl ine web application
still works even when there is no Internet connection available to the device. This focus is
based on the desire of web application developers to better compete with traditional client
applications that may be used so long as the device has power.

For web applications, creating an offl ine experience requires several steps. The fi rst step is to
ensure that the application knows whether an Internet connection is available or not in order
to perform the correct operation. Then, the application still needs to have access to a subset of
resources (images, JavaScript, CSS, and so on) in order to continue working properly. The last
piece is a local data storage area that can be written to and read from regardless of Internet
availability. HTML5 and other associated JavaScript APIs make offl ine applications a reality.

OFFLINE DETECTION

Since the fi rst step for offl ine applications is to know whether or not the device is offl ine, HTML5
defi nes a navigator.onLine property that is true when an Internet connection is available or
false when it’s not. The idea is that the browser should be aware if the network is available or not
and return an appropriate indicator. In practice, navigator.onLine is a bit quirky across browsers:

Internet Explorer 6+ and Safari 5+ correctly detect that the network connection has
been lost and switch navigator.onLine to false.

➤

➤

➤

➤

23

c23.indd 765c23.indd 765 12/8/11 11:05:37 AM12/8/11 11:05:37 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

766 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

Firefox 3+ and Opera 10.6+ support navigator.onLine, but you must manually set the
browser to work in offl ine mode via the File ➪ Work Offl ine menu item.

Chrome through version 11 permanently has navigator.onLine set to true. There is an
open bug to fi x this.

Given these compatibility issues, navigator.onLine cannot be used as the sole determinant for
network connectivity. Even so, it is useful in case errors do occur during requests. You can check the
status as follows:

if (navigator.onLine){
 //work as usual
} else {
 //perform offline behavior
}

OnLineExample01.htm

Along with navigator.onLine, HTML5 defi nes two events to better track when the network is
available or not: online and offline. Each event is fi red as the network status changes from online
to offl ine or vice versa, respectively. These events fi re on the window object:

EventUtil.addHandler(window, “online”, function(){
 alert(“Online”);
});
EventUtil.addHandler(window, “offline”, function(){
 alert(“Offline”);
});

OnlineEventsExample01.htm

For determining if an application is offl ine, it’s best to start by looking at navigator.onLine to
get the initial state when the page is loaded. After that, it’s best to use the events to determine when
network connectivity changes. The navigator.onLine property also changes as the events fi re, but
you would need to manually poll for changes to this property to detect a network change.

Offl ine detection is supported in Internet Explorer 6+ (navigator.onLine only), Firefox 3, Safari 4,
Opera 10.6, Chrome, Safari for iOS 3.2, and WebKit for Android.

APPLICATION CACHE

The HTML5 application cache, or appcache for short, is designed specifi cally for use with offl ine
web applications. The appcache is a cache area separate from the normal browser cache. You specify
what should be stored in the page’s appcache by providing a manifest fi le listing the resources to
download and cache. Here’s a simple manifest fi le:

CACHE MANIFEST
#Comment

file.js
file.css

➤

➤

c23.indd 766c23.indd 766 12/8/11 11:05:39 AM12/8/11 11:05:39 AM

Application Cache ❘ 767

In its simplest form, a manifest fi le lists out the resources to be downloaded so that they are
available offl ine.

There are a lot of options for setting up this fi le, and these are beyond the scope of
this book. Please see http://html5doctor.com/go-offline-with-application
-cache/ for a full description of the options.

The manifest fi le is associated with a page by specifying its path in the manifest attribute of
<html>, for example:

<html manifest=”/offline.manifest”>

This code indicates that /offline.manifest contains the manifest fi le. The fi le must be served with
a content type of text/cache-manifest to be used.

While the appcache is primarily a way for designated resources to be cached for offl ine use, it does
have a JavaScript API that allows you to determine what the appcache is doing. The primary object
for this is applicationCache. This object has one property, status, which indicates the current
status of the appcache as one of the following constants:

0 for uncached, meaning that there is no appcache associated with the page.

1 for idle, meaning the appcache is not being updated.

2 for checking, meaning the appcache manifest fi le is being downloaded and checked for
updates.

3 for downloading, meaning the appcache is downloading resources specifi ed in the
manifest fi le.

4 for update ready, meaning that the appcache was updated with new resources and all
resources are downloaded and may be put into use via swapCache().

5 for obsolete, meaning the appcache manifest fi le is no longer available and so the
appcache is no longer valid for the page.

There are also a large number of events associated with the appcache to indicate when its status has
changed. The events are:

checking — Fires when the browser begins looking for an update to the appcache.

error — Fires if there’s an error at any point in the checking or downloading sequence.

noupdate — Fires after checking if the appcache manifest hasn’t changed.

downloading — Fires when the appcache resources begin downloading.

progress — Fires repeatedly as fi les are being downloaded into the appcache.

updateready — Fires when a new version of the page’s appcache has been downloaded and
is ready for use with swapCache().

cached — Fires when the appcache is complete and ready for use.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c23.indd 767c23.indd 767 12/8/11 11:05:40 AM12/8/11 11:05:40 AM

768 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

These events fi re generally in this order when the page is loaded. You can also trigger the appcache
to go through this sequence of checking for updates again by calling update():

applicationCache.update();

Once update() is called, the appcache goes to check if the manifest fi le is updated (fi res checking)
and then proceeds as if the page had just been loaded. If the cached event fi res, it means the new
appcache contents are ready for use and no further action is necessary. If the updateready event fi res,
that means a new version of the appcache is available and you need to enable it using swapCache():

EventUtil.addHandler(applicationCache, “updateready”, function(){
 applicationCache.swapCache();
});

The HTML5 appcache is supported in Firefox 3+, Safari 4+, Opera 10.6, Chrome, Safari for
iOS 3.2+, and WebKit for Android. Firefox through version 4 throws an error when swapCache()
is called.

DATA STORAGE

Along with the emergence of web applications came a call for the ability to store user information
directly on the client. The idea is logical: information pertaining to a specifi c user should live on
that user’s machine. Whether that is login information, preferences, or other data, web application
providers found themselves searching for ways to store data on the client. The fi rst solution to this
problem came in the form of cookies, a creation of the old Netscape Communications Corporation
and described in a specifi cation titled Persistent Client State: HTTP Cookies (still available at
http://curl.haxx.se/rfc/cookie_spec.html). Today, cookies are just one option available for
storing data on the client.

Cookies

HTTP cookies, commonly just called cookies, were originally intended to store session information
on the client. The specifi cation called for the server to send a Set-Cookie HTTP header containing
session information as part of any response to an HTTP request. For instance, the headers of a
server response may look like this:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=value
Other-header: other-header-value

This HTTP response sets a cookie with the name of “name” and a value of “value”. Both the name
and the value are URL-encoded when sent. Browsers store such session information and send it back
to the server via the Cookie HTTP header for every request after that point, such as the following:

GET /index.html HTTP/1.1
Cookie: name=value
Other-header: other-header-value

c23.indd 768c23.indd 768 12/8/11 11:05:51 AM12/8/11 11:05:51 AM

Data Storage ❘ 769

This extra information being sent back to the server can be used to uniquely identify the client from
which the request was sent.

Restrictions

Cookies are, by nature, tied to a specifi c domain. When a cookie is set, it is sent along with requests
to the same domain from which it was created. This restriction ensures that information stored in
cookies is available only to approved recipients and cannot be accessed by other domains.

Since cookies are stored on the client computer, restrictions have been put in place to ensure that
cookies can’t be used maliciously and that they won’t take up too much disk space. The total
number of cookies per domain is limited, although it varies from browser to browser. For example:

Internet Explorer 6 and lower enforced a limit of 20 cookies per domain.

Internet Explorer 7 and later have a limit of 50 cookies per domain. Internet Explorer 7
initially shipped with support for a maximum of 20 cookies per domain, but that was later
updated with a patch from Microsoft.

Firefox limits cookies to 50 per domain.

Opera limits cookies to 30 per domain.

Safari and Chrome have no hard limit on the number of cookies per domain.

When cookies are set above the per-domain limit, the browser starts to eliminate previously set
cookies. Internet Explorer and Opera begin by removing the least recently used (LRU) cookie
to allow space for the newly set cookie. Firefox seemingly randomly decides which cookies to
eliminate, so it’s very important to mind the cookie limit to avoid unintended consequences.

There are also limitations as to the size of cookies in browsers. Most browsers have a byte-count
limit of around 4096 bytes, give or take a byte. For best cross-browser compatibility, it’s best to
keep the total cookie size to 4095 bytes or less. The size limit applies to all cookies for a domain,
not per cookie.

If you attempt to create a cookie that exceeds the maximum cookie size, the cookie is silently
dropped. Note that one character typically takes one byte, unless you’re using multibyte characters.

Cookie Parts

Cookies are made up of the following pieces of information stored by the browser:

Name — A unique name to identify the cookie. Cookie names are case-insensitive, so
myCookie and MyCookie are considered to be the same. In practice, however, it’s always best
to treat the cookie names as case-sensitive because some server software may treat them as
such. The cookie name must be URL-encoded.

Value — The string value stored in the cookie. This value must also be URL-encoded.

Domain — The domain for which the cookie is valid. All requests sent from a resource at this
domain will include the cookie information. This value can include a subdomain (such as
www.wrox.com) or exclude it (such as .wrox.com, which is valid for all subdomains of wrox
.com). If not explicitly set, the domain is assumed to be the one from which the cookie was set.

➤

➤

➤

➤

➤

➤

➤

➤

c23.indd 769c23.indd 769 12/8/11 11:05:51 AM12/8/11 11:05:51 AM

http://www.wrox.com

770 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

Path — The path within the specifi ed domain for which the cookie should be sent to the
server. For example, you can specify that the cookie be accessible only from http://
www.wrox.com/books/ so pages at http://www.wrox.com won’t send the cookie information,
even though the request comes from the same domain.

Expiration — A time stamp indicating when the cookie should be deleted (that is, when it
should stop being sent to the server). By default, all cookies are deleted when the browser
session ends; however, it is possible to set another time for the deletion. This value is set as
a date in GMT format (Wdy, DD-Mon-YYYY HH:MM:SS GMT) and specifi es an exact
time when the cookie should be deleted. Because of this, a cookie can remain on a user’s
machine even after the browser is closed. Cookies can be deleted immediately by setting an
expiration date that has already occurred.

Secure fl ag — When specifi ed, the cookie information is sent to the server only if an SSL
connection is used. For instance, requests to https://www.wrox.com should send cookie
information, whereas requests to http://www.wrox.com should not.

Each piece of information is specifi ed as part of the Set-Cookie header using a semicolon-space
combination to separate each section, as shown in the following example:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=value; expires=Mon, 22-Jan-07 07:10:24 GMT; domain=.wrox.com
Other-header: other-header-value

This header specifi es a cookie called “name” that expires on Monday, January 22, 2007, at 7:10:24
GMT and is valid for www.wrox.com and any other subdomains of wrox.com such as p2p
.wrox.com.

The secure fl ag is the only part of a cookie that is not a name-value pair; the word “secure” is
simply included. Consider the following example:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=value; domain=.wrox.com; path=/; secure
Other-header: other-header-value

Here, a cookie is created that is valid for all subdomains of wrox.com and all pages on that domain
(as specifi ed by the path argument). This cookie can be transmitted only over an SSL connection
because the secure fl ag is included.

It’s important to note that the domain, path, expiration date, and secure fl ag are indications to the
browser as to when the cookie should be sent with a request. These arguments are not actually sent
as part of the cookie information to the server; only the name-value pairs are sent.

Cookies in JavaScript

Dealing with cookies in JavaScript is a little complicated because of a notoriously poor interface,
the BOM’s document.cookie property. This property is unique in that it behaves very differently
depending on how it is used. When used to retrieve the property value, document.cookie returns

➤

➤

➤

c23.indd 770c23.indd 770 12/8/11 11:05:52 AM12/8/11 11:05:52 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

Data Storage ❘ 771

a string of all cookies available to the page (based on the domain, path, expiration, and security
settings of the cookies) as a series of name-value pairs separated by semicolons, as in the following
example:

name1=value1;name2=value2;name3=value3

All of the names and values are URL-encoded and so must be decoded via decodeURIComponent().

When used to set a value, the document.cookie property can be set to a new cookie string. That
cookie string is interpreted and added to the existing set of cookies. Setting document.cookie does
not overwrite any cookies unless the name of the cookie being set is already in use. The format to
set a cookie is as follows, which is the same format used by the Set-Cookie header:

name=value; expires=expiration_time; path=domain_path; domain=domain_name; secure

Of these parameters, only the cookie’s name and value are required. Here’s a simple example:

document.cookie = “name=Nicholas”;

This code creates a session cookie called “name” that has a value of “Nicholas”. This cookie will be
sent every time the client makes a request to the server; it will be deleted when the browser is closed.
Although this will work, as there are no characters that need to be encoded in either the name or the
value, it’s a best practice to always use encodeURIComponent() when setting a cookie, as shown in
the following example:

document.cookie = encodeURIComponent(“name”) + “=” +
 encodeURIComponent(“Nicholas”);

To specify additional information about the created cookie, just append it to the string in the same
format as the Set-Cookie header, like this:

document.cookie = encodeURIComponent(“name”) + “=” +
 encodeURIComponent(“Nicholas”) + “; domain=.wrox.com;
path=/”;

Since the reading and writing of cookies in JavaScript isn’t very straightforward, functions are often
used to simplify cookie functionality. There are three basic cookie operations: reading, writing, and
deleting. These are all represented in the CookieUtil object as follows:

var CookieUtil = {

 get: function (name){
 var cookieName = encodeURIComponent(name) + “=”,
 cookieStart = document.cookie.indexOf(cookieName),
 cookieValue = null;

 if (cookieStart > -1){
 var cookieEnd = document.cookie.indexOf(“;”, cookieStart);
 if (cookieEnd == -1){
 cookieEnd = document.cookie.length;
 }
 cookieValue = decodeURIComponent(document.cookie.substring(cookieStart

c23.indd 771c23.indd 771 12/8/11 11:05:53 AM12/8/11 11:05:53 AM

772 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

 + cookieName.length, cookieEnd));
 }

 return cookieValue;
 },

 set: function (name, value, expires, path, domain, secure) {
 var cookieText = encodeURIComponent(name) + “=” +
 encodeURIComponent(value);

 if (expires instanceof Date) {
 cookieText += “; expires=” + expires.toGMTString();
 }

 if (path) {
 cookieText += “; path=” + path;
 }

 if (domain) {
 cookieText += “; domain=” + domain;
 }

 if (secure) {
 cookieText += “; secure”;
 }

 document.cookie = cookieText;
 },

 unset: function (name, path, domain, secure){
 this.set(name, “”, new Date(0), path, domain, secure);
 }

};

CookieUtil.js

The CookieUtil.get() method retrieves the value of a cookie with the given name. To do so, it looks
for the occurrence of the cookie name followed by an equal sign in document.cookie. If that pattern
is found, then indexOf() is used to fi nd the next semicolon after that location (which indicates the
end of the cookie). If the semicolon isn’t found, this means that the cookie is the last one in the string,
so the entire rest of the string should be considered the cookie value. This value is decoded using
decodeURIComponent() and returned. In the case where the cookie isn’t found, null is returned.

The CookieUtil.set() method sets a cookie on the page and accepts several arguments: the name
of the cookie, the value of the cookie, an optional Date object indicating when the cookie should be
deleted, an optional URL path for the cookie, an optional domain for the cookie, and an optional
Boolean value indicating if the secure fl ag should be added. The arguments are in the order in
which they are most frequently used, and only the fi rst two are required. Inside the method, the
name and value are URL-encoded using encodeURIComponent(), and then the other options are
checked. If the expires argument is a Date object, then an expires option is added using the Date
object’s toGMTString() method to format the date correctly. The rest of the method simply builds
up the cookie string and sets it to document.cookie.

c23.indd 772c23.indd 772 12/8/11 11:05:53 AM12/8/11 11:05:53 AM

Data Storage ❘ 773

There is no direct way to remove existing cookies. Instead, you need to set the cookie again — with
the same path, domain, and secure options — and set its expiration date to some time in the past. The
CookieUtil.unset() method handles this case. It accepts four arguments: the name of the cookie to
remove, an optional path argument, an optional domain argument, and an optional secure argument.

These arguments are passed through to CookieUtil.set() with the value set to a blank string and
the expiration date set to January 1, 1970 (the value of a Date object initialized to 0 milliseconds).
Doing so ensures that the cookie is removed.

These methods can be used as follows:

//set cookies
CookieUtil.set(“name”, “Nicholas”);
CookieUtil.set(“book”, “Professional JavaScript”);

//read the values
alert(CookieUtil.get(“name”)); //”Nicholas”
alert(CookieUtil.get(“book”)); //”Professional JavaScript”

//remove the cookies
CookieUtil.unset(“name”);
CookieUtil.unset(“book”);

//set a cookie with path, domain, and expiration date
CookieUtil.set(“name”, “Nicholas”, “/books/projs/”, “www.wrox.com”,
 new Date(“January 1, 2010”));

//delete that same cookie
CookieUtil.unset(“name”, “/books/projs/”, “www.wrox.com”);

//set a secure cookie
CookieUtil.set(“name”, “Nicholas”, null, null, null, true);

CookieExample01.htm

These methods make using cookies to store data on the client easier by handling the parsing and
cookie string construction tasks.

Subcookies

To get around the per-domain cookie limit imposed by browsers, some developers use a concept
called subcookies. Subcookies are smaller pieces of data stored within a single cookie. The idea is to
use the cookie’s value to store multiple name-value pairs within a single cookie. The most common
format for subcookies is as follows:

name=name1=value1&name2=value2&name3=value3&name4=value4&name5=value5

Subcookies tend to be formatted in query string format. These values can then be stored and accessed
using a single cookie, rather than using a different cookie for each name-value pair. The result is that
more structured data can be stored by a website or web application without reaching the per-domain
cookie limit.

c23.indd 773c23.indd 773 12/8/11 11:05:54 AM12/8/11 11:05:54 AM

http://www.wrox.com
http://www.wrox.com

774 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

To work with subcookies, you need a new set of methods. The parsing and serialization of
subcookies are slightly different and a bit more complicated because of the expected subcookie
usage. To get a subcookie, for example, you need to follow the same basic steps to get a cookie, but
before decoding the value, you need to fi nd the subcookie information as follows:

var SubCookieUtil = {

 get: function (name, subName){
 var subCookies = this.getAll(name);
 if (subCookies){
 return subCookies[subName];
 } else {
 return null;
 }
 },

 getAll: function(name){
 var cookieName = encodeURIComponent(name) + “=”,
 cookieStart = document.cookie.indexOf(cookieName),
 cookieValue = null,
 cookieEnd,
 subCookies,
 i,
 parts,
 result = {};

 if (cookieStart > -1){
 cookieEnd = document.cookie.indexOf(“;”, cookieStart);
 if (cookieEnd == -1){
 cookieEnd = document.cookie.length;
 }
 cookieValue = document.cookie.substring(cookieStart +
 cookieName.length, cookieEnd);

 if (cookieValue.length > 0){
 subCookies = cookieValue.split(“&”);

 for (i=0, len=subCookies.length; i < len; i++){
 parts = subCookies[i].split(“=”);
 result[decodeURIComponent(parts[0])] =
 decodeURIComponent(parts[1]);
 }

 return result;
 }
 }

 return null;
 },

 //more code here
};

SubCookieUtil.js

c23.indd 774c23.indd 774 12/8/11 11:05:54 AM12/8/11 11:05:54 AM

Data Storage ❘ 775

There are two methods for retrieving subcookies: get() and getAll(). Whereas get() retrieves
a single subcookie value, getAll() retrieves all subcookies and returns them in an object whose
properties are equal to the subcookie names and the values are equal to the subcookie values. The
get() method accepts two arguments: the name of the cookie and the name of the subcookie.
It simply calls getAll() to retrieve all of the subcookies and then returns just the one of interest
(or null if the cookie doesn’t exist).

The SubCookieUtil.getAll() method is very similar to CookieUtil.get() in the way it parses
a cookie value. The difference is that the cookie value isn’t immediately decoded. Instead, it is split
on the ampersand character to get all subcookies into an array. Then, each subcookie is split on
the equal sign so that the fi rst item in the parts array is the subcookie name, and the second is the
subcookie value. Both items are decoded using decodeURIComponent() and assigned on the result
object, which is returned as the method value. If the cookie doesn’t exist, then null is returned.

These methods can be used as follows:

//assume document.cookie=data=name=Nicholas&book=Professional%20JavaScript

//get all subcookies
var data = SubCookieUtil.getAll(“data”);
alert(data.name); //”Nicholas”
alert(data.book); //”Professional JavaScript”

//get subcookies individually
alert(SubCookieUtil.get(“data”, “name”)); //”Nicholas”
alert(SubCookieUtil.get(“data”, “book”)); //”Professional JavaScript”

SubCookiesExample01.htm

To write subcookies, you can use two methods: set() and setAll(). The following code shows
their constructs:

var SubCookieUtil = {

 set: function (name, subName, value, expires, path, domain, secure) {
 var subcookies = this.getAll(name) || {};
 subcookies[subName] = value;
 this.setAll(name, subcookies, expires, path, domain, secure);
 },

 setAll: function(name, subcookies, expires, path, domain, secure){

 var cookieText = encodeURIComponent(name) + “=”,
 subcookieParts = new Array(),
 subName;

 for (subName in subcookies){
 if (subName.length > 0 && subcookies.hasOwnProperty(subName)){
 subcookieParts.push(encodeURIComponent(subName) + “=” +
 encodeURIComponent(subcookies[subName]));
 }

c23.indd 775c23.indd 775 12/8/11 11:05:55 AM12/8/11 11:05:55 AM

776 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

 }

 if (cookieParts.length > 0){
 cookieText += subcookieParts.join(“&”);

 if (expires instanceof Date) {
 cookieText += “; expires=” + expires.toGMTString();
 }

 if (path) {
 cookieText += “; path=” + path;
 }

 if (domain) {
 cookieText += “; domain=” + domain;
 }

 if (secure) {
 cookieText += “; secure”;
 }
 } else {
 cookieText += “; expires=” + (new Date(0)).toGMTString();
 }

 document.cookie = cookieText;

 },

 //more code here
};

SubCookieUtil.js

The set() method accepts seven arguments: the cookie name, the subcookie name, the subcookie
value, an optional Date object for the cookie expiration day/time, an optional cookie path, an
optional cookie domain, and an optional Boolean secure fl ag. All of the optional arguments refer
to the cookie itself and not to the subcookie. In order to store multiple subcookies in the same
cookie, the path, domain, and secure fl ag must be the same; the expiration date refers to the entire
cookie and can be set whenever an individual subcookie is written. Inside the method, the fi rst step
is to retrieve all of the subcookies for the given cookie name. The logical OR operator is used to set
subcookies to a new object if getAll() returns null. After that, the subcookie value is set on the
subcookies object and then passed into setAll().

The setAll() method accepts six arguments: the cookie name, an object containing all
of the subcookies, and then the rest of the optional arguments used in set(). This method
iterates over the properties of the second argument using a for-in loop. To ensure that the
appropriate data is saved, use the hasOwnProperty() method to ensure that only the instance
properties are serialized into subcookies. Since it’s possible to have a property name equal to the
empty string, the length of the property name is also checked before being added to the result.
Each subcookie name-value pair is added to the subcookieParts array so that they can later be

c23.indd 776c23.indd 776 12/8/11 11:05:55 AM12/8/11 11:05:55 AM

Data Storage ❘ 777

easily joined with an ampersand using the join() method. The rest of the method is the same as
CookieUtil.set().

These methods can be used as follows:

//assume document.cookie=data=name=Nicholas&book=Professional%20JavaScript

//set two subcookies
SubCookieUtil.set(“data”, “name”, “Nicholas”);
SubCookieUtil.set(“data”, “book”, “Professional JavaScript”);

//set all subcookies with expiration date
SubCookieUtil.setAll(“data”, { name: “Nicholas”, book: “Professional JavaScript” },
 new Date(“January 1, 2010”));

//change the value of name and change expiration date for cookie
SubCookieUtil.set(“data”, “name”, “Michael”, new Date(“February 1, 2010”));

SubCookiesExample01.htm

The last group of subcookie methods has to do with removing subcookies. Regular cookies are
removed by setting the expiration date to some time in the past, but subcookies cannot be removed
as easily. In order to remove a subcookie, you need to retrieve all subcookies contained within the
cookie, eliminate just the one that is meant to be removed, and then set the value of the cookie back
with the remaining subcookie values. Consider the following:

var SubCookieUtil = {

 //more code here

 unset: function (name, subName, path, domain, secure){
 var subcookies = this.getAll(name);
 if (subcookies){
 delete subcookies[subName];
 this.setAll(name, subcookies, null, path, domain, secure);
 }
 },

 unsetAll: function(name, path, domain, secure){
 this.setAll(name, null, new Date(0), path, domain, secure);
 }

};

SubCookieUtil.js

The two methods defi ned here serve two different purposes. The unset() method is used to remove
a single subcookie from a cookie while leaving the rest intact; whereas the unsetAll() method is the
equivalent of CookieUtil.unset(), which removes the entire cookie. As with set() and setAll(),

c23.indd 777c23.indd 777 12/8/11 11:05:56 AM12/8/11 11:05:56 AM

778 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

the path, domain, and secure fl ag must match the options with which a cookie was created. These
methods can be used as follows:

//just remove the “name” subcookie
SubCookieUtil.unset(“data”, “name”);

//remove the entire cookie
SubCookieUtil.unsetAll(“data”);

If you are concerned about reaching the per-domain cookie limit in your work, subcookies are an
attractive alternative. You will have to more closely monitor the size of your cookies to stay within
the individual cookie size limit.

Cookie Considerations

There is also a type of cookie called HTTP-only. HTTP-only cookies can be set either from the
browser or from the server but can be read only from the server, because JavaScript cannot get the
value of HTTP-only cookies.

Since all cookies are sent as request headers from the browser, storing a large amount of information
in cookies can affect the overall performance of browser requests to a particular domain. The larger
the cookie information, the longer it will take to complete the request to the server. Even though
the browser places size limits on cookies, it’s a good idea to store as little information as possible in
cookies, to avoid performance implications.

The restrictions on and nature of cookies make them less than ideal for storing large amounts of
information, which is why other approaches have emerged.

It is strongly recommended to avoid storing important or sensitive data in cookies.
Cookie data is not stored in a secure environment, so any data contained within
may be accessible by others. You should avoid storing data such as credit card
numbers or personal addresses in cookies.

Internet Explorer User Data

In Internet Explorer 5, Microsoft introduced the concept of persistent user data via a custom
behavior. User data allows you to store up to 128KB of data per document and up to 1MB of data
per domain. To use persistent user data, you fi rst must specify the userData behavior as shown here
on an element using CSS:

<div style=”behavior:url(#default#userData)” id=”dataStore”></div>

Once an element is using the userData behavior, you can save data onto it using the setAttribute()
method. In order to commit the data into the browser cache, you must then call save() and pass
in the name of the data store to save to. The data store name is completely arbitrary and is used to
differentiate between different sets of data. Consider the following example:

c23.indd 778c23.indd 778 12/8/11 11:05:57 AM12/8/11 11:05:57 AM

Data Storage ❘ 779

var dataStore = document.getElementById(“dataStore”);
dataStore.setAttribute(“name”, “Nicholas”);
dataStore.setAttribute(“book”, “Professional JavaScript”);
dataStore.save(“BookInfo”);

UserDataExample01.htm

In this code, two pieces of information are saved on the <div> element. After setAttribute() is
used to store that data, the save() method is called with a data store name of “BookInfo”. The
next time the page is loaded, you can use the load() method with the data store name to retrieve
the data as follows:

dataStore.load(“BookInfo”);
alert(dataStore.getAttribute(“name”)); //”Nicholas”
alert(dataStore.getAttribute(“book”)); //”Professional JavaScript”

UserDataExample01.htm

The call to load() retrieves all of the information from the “BookInfo” data store and makes it
available on the element; the information is not available until explicitly loaded. If getAttribute()
is called for a name that either doesn’t exist or hasn’t been loaded, then null is returned.

You can explicitly remove data from the element by using the removeAttribute() method and
passing in the attribute name. Once removed, save() must be called again, to commit the changes
as shown here:

dataStore.removeAttribute(“name”);
dataStore.removeAttribute(“book”);
dataStore.save(“BookInfo”);

UserDataExample01.htm

This code removes two data attributes and then saves those changes to the cache.

The accessibility restrictions on Internet Explorer user data are similar to the restrictions on cookies.
In order to access a data store, the page on which the script is running must be from the same
domain, on the same directory path, and using the same protocol as the script that saved data to the
store. Unlike with cookies, you cannot change accessibility restrictions on user data to a wider range
of consumers. Also unlike cookies, user data persists across sessions by default and doesn’t expire;
data needs to be specifi cally removed using removeAttribute() in order to free up space.

As with cookies, Internet Explorer user data is not secure and should not be
used to store sensitive information.

c23.indd 779c23.indd 779 12/8/11 11:06:02 AM12/8/11 11:06:02 AM

780 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

Web Storage

Web Storage was fi rst described in the Web Applications 1.0 specifi cation of the Web Hypertext
Application Technical Working Group (WHAT-WG). The initial work from this specifi cation eventually
became part of HTML5 before being split into its own specifi cation. Its intent is to overcome some
of the limitations imposed by cookies when data is needed strictly on the client side, with no need to
continuously send data back to the server. The two primary goals of Web Storage are:

To provide a way to store session data outside of cookies.

To provide a mechanism for storing large amounts of data that persists across sessions.

The original Web Storage specifi cation includes defi nitions for two objects: localStorage and
globalStorage. These objects are available as a property of window in Internet Explorer 8+,
Firefox 3.5+, Safari 3.1+, Chrome 4+, and Opera 10.5+.

➤

➤

Firefox 2 and 3 had partial implementations of Web Storage that were based on
earlier work where an object called globalStorage was implemented instead of
localStorage.

The Storage Type

The Storage type is designed to hold name-value pairs up to a maximum size (determined by
the browser). An instance of Storage acts like any other object and has the following additional
methods:

clear() — Removes all values; not implemented in Firefox.

getItem(name) — Retrieves the value for the given name.

key(index) — Retrieves the name of the value in the given numeric position.

removeItem(name) — Removes the name-value pair identifi ed by name.

setItem(name, value) — Sets the value for the given name.

The getItem(), removeItem(), and setItem() methods can be called directly or indirectly by
manipulating the Storage object. Since each item is stored on the object as a property, you can simply
read values by accessing the property with dot or bracket notation, set the value by doing the same,
or remove it by using the delete operator. Even so, it’s generally recommended to use the methods
instead of property access to ensure you don’t end up overwriting one of the already available object
members with a key.

You can determine how many name-value pairs are in a Storage object by using the length property.
It’s not possible to determine the size of all data in the object, although Internet Explorer 8
provides a remainingSpace property that retrieves the amount of space, in bytes, that is still
available for storage.

➤

➤

➤

➤

➤

c23.indd 780c23.indd 780 12/8/11 11:06:08 AM12/8/11 11:06:08 AM

Data Storage ❘ 781

The sessionStorage Object

The sessionStorage object stores data only for a session, meaning that the data is stored until
the browser is closed. This is the equivalent of a session cookie that disappears when the browser is
closed. Data stored on sessionStorage persists across page refreshes and may also be available if
the browser crashes and is restarted, depending on the browser vendor. (Firefox and WebKit support
this, but Internet Explorer does not.)

Because the sessionStorage object is tied to a server session, it isn’t available when a fi le is run
locally. Data stored on sessionStorage is accessible only from the page that initially placed the
data onto the object, making it of limited use for multipage applications.

Since the sessionStorage object is an instance of Storage, you can assign data onto it either by
using setItem() or by assigning a new property directly. Here’s an example of each of these methods:

//store data using method
sessionStorage.setItem(“name”, “Nicholas”);

//store data using property
sessionStorage.book = “Professional JavaScript”;

SessionStorageExample01.htm

Writing to storage has slight differences from browser to browser. Firefox and WebKit implement
storage writing synchronously, so data added to storage is committed right away. The Internet
Explorer implementation writes data asynchronously, so there may be a lag between the time when
data is assigned and the time that the data is written to disk. For small amounts of data, the difference
is negligible. For large amounts of data, you’ll notice that JavaScript in Internet Explorer resumes
execution faster than in other browsers, because it offl oads the actual disk write process.

You can force disk writing to occur in Internet Explorer 8 by using the begin() method before
assigning any new data, and the commit() method after all assignments have been made. Consider
the following example:

//IE8 only
sessionStorage.begin();
sessionStorage.name = “Nicholas”;
sessionStorage.book = “Professional JavaScript”;
sessionStorage.commit();

This code ensures that the values for “name” and “book” are written as soon as commit() is called.
The call to begin() ensures that no disk writes will occur while the code is executed. For small
amounts of data, this process isn’t necessary; however, you may wish to consider this transactional
approach for larger amounts of data such as documents.

The Storage type is capable of storing only strings. Nonstring data is converted
into a string before being stored.

c23.indd 781c23.indd 781 12/8/11 11:06:13 AM12/8/11 11:06:13 AM

782 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

When data exists on sessionStorage, it can be retrieved either by using getItem() or by accessing
the property name directly. Here’s an example of each of these methods:

//get data using method
var name = sessionStorage.getItem(“name”);

//get data using property
var book = sessionStorage.book;

SessionStorageExample01.htm

You can iterate over the values in sessionStorage using a combination of the length property and
key() method, as shown here:

for (var i=0, len = sessionStorage.length; i < len; i++){
 var key = sessionStorage.key(i);
 var value = sessionStorage.getItem(key);
 alert(key + “=” + value);
}

SessionStorageExample01.htm

The name-value pairs in sessionStorage can be accessed sequentially by fi rst retrieving the
name of the data in the given position via key() and then using that name to retrieve the value via
getItem().

It’s also possible to iterate over the values in sessionStorage using a for-in loop:

for (var key in sessionStorage){
 var value = sessionStorage.getItem(key);
 alert(key + “=” + value);
}

Each time through the loop, key is fi lled with another name in sessionStorage; none of the built-
in methods or the length property will be returned.

To remove data from sessionStorage, you can use either the delete operator on the object
property or the removeItem() method. Here’s an example of each of these methods:

//use delete to remove a value - won’t work in WebKit
delete sessionStorage.name;

//use method to remove a value
sessionStorage.removeItem(“book”);

SessionStorageExample01.htm

It’s worth noting that as of the time of this writing, the delete operator doesn’t remove data in
WebKit, whereas removeItem() works correctly across all supporting browsers.

c23.indd 782c23.indd 782 12/8/11 11:06:18 AM12/8/11 11:06:18 AM

Data Storage ❘ 783

The sessionStorage object should be used primarily for small pieces of data that are valid only for
a session. If you need to persist data across sessions, then either globalStorage or localStorage is
more appropriate.

The globalStorage Object

The globalStorage object is implemented in Firefox 2. As part of the original Web Storage
specifi cation, its purpose is to persist data across sessions and with specifi c access restrictions. In order
to use globalStorage, you need to specify the domains for which the data should be available. This
is done using a property via bracket notation, as shown in the following example:

//save value
globalStorage[“wrox.com”].name = “Nicholas”;

//get value
var name = globalStorage[“wrox.com”].name;

GlobalStorageExample01.htm

Here, a storage area for the domain wrox.com is accessed. Whereas the globalStorage object itself
is not an instance of Storage, the globalStorage[“wrox.com”] specifi cation is and can be used
accordingly. This storage area is accessible from wrox.com and all subdomains. You can limit the
subdomain by specifying it as follows:

//save value
globalStorage[“www.wrox.com”].name = “Nicholas”;

//get value
var name = globalStorage[“www.wrox.com”].name;

GlobalStorageExample01.htm

The storage area specifi ed here is accessible only from a page on www.wrox.com, excluding other
subdomains.

Some browsers allow more general access restrictions, such as those limited only by top-level
domains (TLDs) or by allowing global access, such as in the following example:

//store data that is accessible to everyone - AVOID!
globalStorage[“”].name = “Nicholas”;

//store data available only to domains ending with .net - AVOID!
globalStorage[“net”].name = “Nicholas”;

Even though these are supported, it is recommended to avoid using generally accessible data stores,
to prevent possible security issues. It’s also possible that because of security concerns, this ability
will be either removed or severely limited in the future, so applications should not rely on this type
of functionality. Always specify a domain name when using globalStorage.

c23.indd 783c23.indd 783 12/8/11 11:06:19 AM12/8/11 11:06:19 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

784 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

Access to globalStorage areas is limited by the domain, protocol, and port of the page making
the request. For instance, if data is stored for wrox.com while using the HTTPS protocol, a page on
wrox.com accessed via HTTP cannot access that information. Likewise, a page accessed via port
80 cannot share data with a page on the same domain and use the same protocol that is accessed on
port 8080. This is similar to the same-origin policy for Ajax requests.

Each property of globalStorage is an instance of Storage. Therefore, it can be used as in the
following example:

globalStorage[“www.wrox.com“].name = “Nicholas“;
globalStorage[“www.wrox.com“].book = “Professional JavaScript“;

globalStorage[“www.wrox.com“].removeItem(“name“);

var book = globalStorage[“www.wrox.com“].getItem(“book“);

GlobalStorageExample01.htm

If you aren’t certain of the domain name to use ahead of time, it may be safer to use location.host
as the property name. For example:

globalStorage[location.host].name = “Nicholas”;
var book = globalStorage[location.host].getItem(“book”);

GlobalStorageExample01.htm

The data stored in a globalStorage property remains on disk until it’s removed via either
removeItem() or delete, or until the user clears the browser’s cache. This makes globalStorage
ideal for storing documents on the client or persisting user settings.

The localStorage Object

The localStorage object superceded globalStorage in the revised HTML5 specifi cation as a way
to store persistent client-side data. Unlike with globalStorage, you cannot specify any accessibility
rules on localStorage; the rules are already set. In order to access the same localStorage object,
pages must be served from the same domain (subdomains aren’t valid), using the same protocol, and
on the same port. This is effectively the same as globalStorage[location.host].

Since localStorage is an instance of Storage, it can be used in the same manner as
sessionStorage. Here are some examples:

//store data using method
localStorage.setItem(“name”, “Nicholas”);

//store data using property
localStorage.book = “Professional JavaScript”;

//get data using method

c23.indd 784c23.indd 784 12/8/11 11:06:19 AM12/8/11 11:06:19 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

Data Storage ❘ 785

var name = localStorage.getItem(“name”);

//get data using property
var book = localStorage.book;

LocalStorageExample01.htm

Data that is stored in localStorage follows the same rules as data stored in globalStorage,
because the data is persisted until it is specifi cally removed via JavaScript or the user clears the
browser’s cache.

To equalize for browsers that support only globalStorage, you can use the following function:

function getLocalStorage(){
 if (typeof localStorage == “object”){
 return localStorage;
 } else if (typeof globalStorage == “object”){
 return globalStorage[location.host];
 } else {
 throw new Error(“Local storage not available.”);
 }
}

GlobalAndLocalStorageExample01.htm

Then, the following initial call to the function is all that is necessary to identify the correct location
for data:

var storage = getLocalStorage();

GlobalAndLocalStorageExample01.htm

After determining which Storage object to use, you can easily continue storing and retrieving data
with the same access rules across all browsers that support Web Storage.

The storage Event

Whenever a change is made to a Storage object, the storage event is fi red on the document. This
occurs for every value set using either properties or setItem(), every value removal using either delete
or removeItem(), and every call to clear(). The event object has the following four properties:

domain — The domain for which the storage changed.

key — The key that was set or removed.

newValue — The value that the key was set to, or null if the key was removed.

oldValue — The value prior to the key being changed.

Of these four properties, Internet Explorer 8 and Firefox have implemented only the domain property.
WebKit doesn’t support the storage event as of the date of this writing.

➤

➤

➤

➤

c23.indd 785c23.indd 785 12/8/11 11:06:20 AM12/8/11 11:06:20 AM

786 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

You can listen for the storage event using the following code:

EventUtil.addHandler(document, “storage”, function(event){
 alert(“Storage changed for “ + event.domain);
});

StorageEventExample01.htm

The storage event is fi red for all changes to sessionStorage and localStorage but doesn’t
distinguish between them.

Limits and Restrictions

As with other client-side data storage solutions, Web Storage also has limitations. These limitations
are browser-specifi c. Generally speaking, the size limit for client-side data is set on a per-origin
(protocol, domain, and port) basis, so each origin has a fi xed amount of space in which to store its
data. Analyzing the origin of the page that is storing the data enforces this restriction.

Most desktop browsers have a 5MB per-origin limit for localStorage. Chrome and Safari have a
per-origin limit of 2.5MB. Safari for iOS and WebKit for Android also have a limit of 2.5MB.

The limits for sessionStorage vary across browsers. Many browsers have no limit on
sessionStorage data, while Chrome, Safari, Safari for iOS, and WebKit for Android have a limit
of 2.5MB. Internet Explorer 8+ and Opera have a limit of 5MB for sessionStorage.

For more information about Web Storage limits, please see the Web Storage Support Test at
http://dev-test.nemikor.com/web-storage/support-test/.

IndexedDB

The Indexed Database API, IndexedDB for short, is a structured data store in the browser. IndexedDB
came about as an alternative to the now-deprecated Web SQL Database API (not covered in this book
because of its deprecated state). The idea behind IndexedDB was to create an API that easily allowed
the storing and retrieval of JavaScript objects while still allowing querying and searching.

IndexedDB is designed to be almost completely asynchronous. As a result, most operations are
performed as requests that will execute later and produce either a successful result or an error.
Nearly every IndexedDB operation requires you to attach onerror and onsuccess event handlers to
determine the outcome.

Once fully supported, there will be a global indexedDB object that serves as the API host. While the
API is still in fl ux, browsers are using vendor prefi xes, so the object in Internet Explorer 10 is called
msIndexedDB, in Firefox 4 it’s called mozIndexedDB, and in Chrome it’s called webkitIndexedDB.
This section uses indexedDB in the examples for clarity, so you may need to include the following
code before each example:

var indexedDB = window.indexedDB || window.msIndexedDB || window.mozIndexedDB ||
window.webkitIndexedDB;

IndexedDBExample01.htm

c23.indd 786c23.indd 786 12/8/11 11:06:21 AM12/8/11 11:06:21 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Data Storage ❘ 787

Databases

IndexedDB is a database similar to databases you’ve probably used before such as MySQL or Web SQL
Database. The big difference is that IndexedDB uses object stores instead of tables to keep track of data.
An IndexedDB database is simply a collection of object stores grouped under a common name.

The fi rst step to using a database is to open it using indexedDB.open() and passing in the name
of the database to open. If a database with the given name already exists, then a request is made
to open it; if the database doesn’t exist, then a request is made to create and open it. The call to
indexDB.open() returns an instance of IDBRequest onto which you can attach onerror and
onsuccess event handlers. Here’s an example:

var request, database;

request = indexedDB.open(“admin”);
request.onerror = function(event){
 alert(“Something bad happened while trying to open: “ +
 event.target.errorCode);
};
request.onsuccess = function(event){
 database = event.target.result;
};

IndexedDBExample01.htm

In both event handlers, event.target points to request, so these may be used interchangeably. If
the onsuccess event handler is called, then the database instance object (IDBDatabase) is available
in event.target.result and stored in the database variable. From this point on, all requests
to work with the database are made through the database object itself. If an error occurs, an
error code stored in event.target.errorCode indicates the nature of the problem as one of the
following (these error codes apply to all operations):

IDBDatabaseException.UNKNOWN_ERR (1) — The error is unexpected and doesn’t fall into
an available category.

IDBDatabaseException.NON_TRANSIENT_ERR (2) — The operation is not allowed.

IDBDatabaseException.NOT_FOUND_ERR (3) — The database on which to perform the
operation is not found.

IDBDatabaseException.CONSTRAINT_ERR (4) — A database constraint was violated.

IDBDatabaseException.DATA_ERR (5) — Data provided for the transaction doesn’t fulfi ll
the requirements.

IDBDatabaseException.NOT_ALLOWED_ERR (6) — The operation is not allowed.

IDBDatabaseException.TRANSACTION_INACTIVE_ERR (7) — An attempt was made to
reuse an already completed transaction.

IDBDatabaseException.ABORT_ERR (8) — The request was aborted and so did not succeed.

IDBDatabaseException.READ_ONLY_ERR (9) — Attempt to write or otherwise change data
while in read-only mode.

➤

➤

➤

➤

➤

➤

➤

➤

➤

c23.indd 787c23.indd 787 12/8/11 11:06:21 AM12/8/11 11:06:21 AM

788 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

IDBDatabaseException.TIMEOUT_ERR (10) — The operation could not be completed in the
amount of time available.

IDBDatabaseException.QUOTA_ERR (11) — Not enough remaining disk space.

By default, a database has no version associated with it, so it’s a good idea to set the initial version
when starting out. To do so, call the setVersion() method and pass in the version as a string.
Once again, this creates a request object on which you’ll need to assign event handlers:

if (database.version != “1.0”){
 request = database.setVersion(“1.0”);
 request.onerror = function(event){
 alert(“Something bad happened while trying to set version: “ +
 event.target.errorCode);
 };
 request.onsuccess = function(event){
 alert(“Database initialization complete. Database name: “ + database.name +
 “, Version: “ + database.version);
 };
} else {
 alert(“Database already initialized. Database name: “ + database.name +
 “, Version: “ + database.version);
}

IndexedDBExample01.htm

This example tries to set the version of the database to “1.0”. The fi rst line checks the version
property to see if the database version has already been set. If not, then setVersion() is called to
create the version change request. If that request is successful, then a message is displayed indicating
that the version change is complete. (In a real implementation, this is where you would set up your
object stores. See the next section for details.)

If the database version is already “1.0”, then a message is displayed stating that the database has
already been initialized. This basic pattern is how you can tell if the database you want to use has
already been set up with appropriate object stores or not. Over the course of a web application, you
may have many different versions of the database as you update and modify the data structures.

Object Stores

Once you have established a connection to the database, the next step is to interact with object stores.
If the database version doesn’t match the one you expect then you likely will need to create an object
store. Before creating an object store, however, it’s important to think about the type of data you
want to store.

Suppose that you’d like to store user records containing username, password, and so on. The object
to hold a single record may look like this:

var user = {
 username: “007”,
 firstName: “James”,
 lastName: “Bond”,
 password: “foo”
};

➤

➤

c23.indd 788c23.indd 788 12/8/11 11:06:22 AM12/8/11 11:06:22 AM

Data Storage ❘ 789

Looking at this object, you can easily see that an appropriate key for this object store is the
username property. A username must be globally unique, and it’s probably the way you’ll be
accessing data most of the time. This is important because you must specify a key when creating an
object store. Here’s how you would create an object store for these users:

var store = db.createObjectStore(“users”, { keyPath: “username” });

 IndexedDBExample02.htm

The keyPath property of the second argument indicates the property name of the stored objects that
should be used as a key.

Since you now have a reference to the object store, it’s possible to populate it with data using either
add() or put(). Both of these methods accept a single argument, the object to store, and save the
object into the object store. The difference between these two occurs only when an object with
the same key already exists in the object store. In that case, add() will cause an error while put()
will simply overwrite the object. More simply, think of add() as being used for inserting new values
while put() is used for updating values. So to initialize an object store for the fi rst time, you may
want to do something like this:

//where users is an array of new users
var i=0,
 len = users.length;

while(i < len){
 store.add(users[i++]);
}

IndexedDBExample02.htm

Each call to add() or put() creates a new update request for the object store. If you want
verifi cation that the request completed successfully, you can store the request object in a variable
and assign onerror and onsuccess event handlers:

//where users is an array of new users
var i=0,
 request,
 requests = [],
 len = users.length;

while(i < len){
 request = store.add(users[i++]);
 request.onerror = function(){
 //handle error
 };
 request.onsuccess = function(){
 //handle success
 };
 requests.push(request);
}

Once the object store is created and fi lled with data, it’s time to start querying.

c23.indd 789c23.indd 789 12/8/11 11:06:23 AM12/8/11 11:06:23 AM

790 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

Transactions

Past the creation step of an object store, all further operations are done through transactions. A
transaction is created using the transaction() method on the database object. Any time you want
to read or change data, a transaction is used to group all changes together. In its simplest form, you
create a new transaction as follows:

var transaction = db.transaction();

With no arguments specifi ed, you have read-only access to all object stores in the database. To be
more optimal, you can specify one or more object store names that you want to access:

var transaction = db.transaction(“users”);

This ensures that only information about the users object store is loaded and available during the
transaction. If you want access to more than one object store, the fi rst argument can also be an
array of strings:

var transaction = db.transaction([“users”, “anotherStore”]);

As mentioned previously, each of these transactions accesses data in a read-only manner. To change
that, you must pass in a second argument indicating the access mode. These constants are accessible on
IDBTransaction as READ_ONLY (0), READ_WRITE (1), and VERSION_CHANGE (2). While Internet Explorer
10+ and Firefox 4+ implement IDBTransaction, Chrome supports it via webkitIDBTransaction, so
the following code is necessary to normalize the interface:

var IDBTransaction = window.IDBTransaction || window.webkitIDBTransaction;

IndexedDBExample03.htm

With that setup, you can specify the second argument to transaction():

var transaction = db.transaction(“users”, IDBTransaction.READ_WRITE);

IndexedDBExample03.htm

This transaction is capable of both reading and writing into the users object store.

Once you have a reference to the transaction, you can access a particular object store using the
objectStore() method and passing in the store name you want to work with. You can then use
add() and put() as before, as well as get() to retrieve values, delete() to remove an object, and
clear() to remove all objects. The get() and delete() methods each accept an object key as their
argument, and all fi ve of these methods create a new request object. For example:

c23.indd 790c23.indd 790 12/8/11 11:06:23 AM12/8/11 11:06:23 AM

Data Storage ❘ 791

var request = db.transaction(“users”).objectStore(“users”).get(“007”);
request.onerror = function(event){
 alert(“Did not get the object!”);
};
request.onsuccess = function(event){
 var result = event.target.result;
 alert(result.firstName); //”James”
};

IndexedDBExample02.htm

Because any number of requests can be completed as part of a single transaction, the transaction
object itself also has event handlers: onerror and oncomplete. These are used to provide
transaction-level state information:

transaction.onerror = function(event){
 //entire transaction was cancelled
};

transaction.oncomplete = function(event){
 //entire transaction completed successfully
};

Keep in mind that the event object for oncomplete doesn’t give you access to any data returned by
get() requests, so you still need an onsuccess event handler for those types of requests.

Querying with Cursors

Transactions can be used directly to retrieve a single item with a known key. When you want to
retrieve multiple items, you need to create a cursor within the transaction. A cursor is a pointer into
a result set. Unlike traditional database queries, a cursor doesn’t gather all of the result set up front.
Instead, a cursor points to the fi rst result and doesn’t try to fi nd the next until instructed to do so.

Cursors are created using the openCursor() method on an object store. As with other operations
with IndexedDB, the return value of openCursor() is a request, so you must assign onsuccess and
onerror event handlers. For example:

var store = db.transaction(“users”).objectStore(“users”),
 request = store.openCursor();

request.onsuccess = function(event){
 //handle success
};

request.onfailure = function(event){
 //handle failure
};

IndexedDBExample04.htm

c23.indd 791c23.indd 791 12/8/11 11:06:24 AM12/8/11 11:06:24 AM

792 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

When the onsuccess event handler is called, the next item in the object store is accessible via
event.target.result, which holds an instance of IDBCursor when there is a next item or null
when there are no further items. The IDBCursor instance has several properties:

direction — A numeric value indicating the direction the cursor should travel in.
The default is IDBCursor.NEXT (0) for next. Other values include IDBCursor.NEXT_
NO_DUPLICATE (1) for next without duplicates, IDBCursor.PREV (2) for previous, and
IDBCursor.PREV_NO_DUPLICATE (3) for previous without duplicates.

key — The key for the object.

value — The actual object.

primaryKey — The key being used by the cursor. Could be the object key or an index key
(discussed later).

You can retrieve information about a single result using the following:

request.onsuccess = function(event){
 var cursor = event.target.result;
 if (cursor){ //always check
 console.log(“Key: “ + cursor.key + “, Value: “ +
 JSON.stringify(cursor.value));
 }
};

Keep in mind that cursor.value in this example is an object, which is why it is JSON encoded
before being displayed.

A cursor can be used to update an individual record. The update() method updates the current
cursor value with the specifi ed object. As with other such operations, the call to update() creates a
new request, so you need to assign onsuccess and onerror if you want to know the result:

request.onsuccess = function(event){
 var cursor = event.target.result,
 value,
 updateRequest;

 if (cursor){ //always check
 if (cursor.key == “foo”){
 value = cursor.value; //get current value
 value.password = “magic!”; //update the password

 updateRequest = cursor.update(value); //request the update be saved
 updateRequest.onsuccess = function(){
 //handle success;
 };
 updateRequest.onfailure = function(){
 //handle failure
 };
 }
 }
};

➤

➤

➤

➤

c23.indd 792c23.indd 792 12/8/11 11:06:25 AM12/8/11 11:06:25 AM

Data Storage ❘ 793

You can also delete the item at that position by calling delete(). As with update(), this also
creates a request:

request.onsuccess = function(event){
 var cursor = event.target.result,
 value,
 deleteRequest;

 if (cursor){ //always check
 if (cursor.key == “foo”){
 deleteRequest = cursor.delete(); //request the value be deleted
 deleteRequest.onsuccess = function(){
 //handle success;
 };
 deleteRequest.onfailure = function(){
 //handle failure
 };
 }
 }
};

Both update() and delete() will throw errors if the transaction doesn’t have permission to modify
the object store.

Each cursor makes only one request by default. To make another request, you must call one of the
following methods:

continue(key) — Moves to the next item in the result set. The argument key is optional.
When not specifi ed, the cursor just moves to the next item; when provided, the cursor will
move to the specifi ed key.

advance(count) — Moves the cursor ahead by count number of items.

Each of these methods causes the cursor to reuse the same request, so the same onsuccess and
onfailure event handlers are reused until no longer needed. For example, the following iterates
over all items in an object store:

request.onsuccess = function(event){
 var cursor = event.target.result;
 if (cursor){ //always check
 console.log(“Key: “ + cursor.key + “, Value: “ +
 JSON.stringify(cursor.value));
 cursor.continue(); //go to the next one
 } else {
 console.log(“Done!”);
 }
};

The call to continue() triggers another request and onsuccess is called again. When there are
no more items to iterate over, onsuccess is called one last time with event.target.result equal
to null.

➤

➤

c23.indd 793c23.indd 793 12/8/11 11:06:25 AM12/8/11 11:06:25 AM

794 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

Key Ranges

Working with cursors may seem suboptimal since you’re limited in the ways data can be retrieved.
Key ranges are used to make working with cursors a little more manageable. A key range is
represented by an instance of IDBKeyRange. The standard version is IDBKeyRange, which is
supported in Internet Explorer 10+ and Firefox 4+, while Chrome supports this type with
webkitIDBKeyRange. As with other types related to IndexedDB, you’ll fi rst need to create a local
copy, taking these differences into account:

var IDBKeyRange = window.IDBKeyRange || window.webkitIDBKeyRange;

There are four different ways to specify key ranges. The fi rst is to use the only() method and pass
in the key you want to retrieve:

var onlyRange = IDBKeyRange.only(“007”);

This range ensures that only the value with a key of “007” will be retrieved. A cursor created using
this range is similar to directly accessing an object store and calling get(“007”).

The second type of range defi nes a lower bound for the result set. The lower bound indicates the
item at which the cursor should start. For example, the following key range ensures the cursor starts
at the key “007” and continues until the end:

//start at item “007”, go to the end
var lowerRange = IDBKeyRange.lowerBound(“007”);

If you want to start at the item immediately following the value at “007”, then you can pass in a
second argument of true:

//start at item after “007”, go to the end
var lowerRange = IDBKeyRange.lowerBound(“007”, true);

The third type of range is an upper bound, indicating the key you don’t want to go past by using the
upperBound() method. The following key ensures that the cursor starts at the beginning and stops
when it gets to the value with key “ace”:

//start at beginning, go to “ace”
var upperRange = IDBKeyRange.upperBound(“ace”);

If you don’t want to include the given key, then pass in true as the second argument:

//start at beginning, go to the item just before “ace”
var upperRange = IDBKeyRange.upperBound(“ace”, true);

To specify both a lower and an upper bound, use the bound() method. This method accepts
four arguments, the lower bound key, the upper bound key, an optional Boolean indicating to
skip the lower bound, and an optional Boolean indicating to skip the upper bound. Here are some
examples:

c23.indd 794c23.indd 794 12/8/11 11:06:26 AM12/8/11 11:06:26 AM

Data Storage ❘ 795

//start at “007”, go to “ace”
var boundRange = IDBKeyRange.bound(“007”, “ace”);

//start at item after “007”, go to “ace”
var boundRange = IDBKeyRange.bound(“007”, “ace”, true);

//start at item after “007”, go to item before “ace”
var boundRange = IDBKeyRange.bound(“007”, “ace”, true, true);

//start at “007”, go to item before “ace”
var boundRange = IDBKeyRange.bound(“007”, “ace”, false, true);

Once you have defi ned a range, pass it into the openCursor() method and you’ll create a cursor
that stays within the constraints:

var store = db.transaction(“users”).objectStore(“users”),
 range = IDBKeyRange.bound(“007”, “ace”);
 request = store.openCursor(range);

request.onsuccess = function(event){
 var cursor = event.target.result;
 if (cursor){ //always check
 console.log(“Key: “ + cursor.key + “, Value: “ +
 JSON.stringify(cursor.value));
 cursor.continue(); //go to the next one
 } else {
 console.log(“Done!”);
 }
};

This example outputs only the values between keys “007” and “ace”, which are fewer than the
previous section’s example.

Setting Cursor Direction

There are actually two arguments to openCursor(). The fi rst is an instance of IDBKeyRange and
the second is a numeric value indicating the direction. These constants are specifi ed as constants on
IDBCursor as discussed in the querying section. Firefox 4+ and Chrome once again have different
implementations, so the fi rst step is to normalize the differences locally:

var IDBCursor = window.IDBCursor || window.webkitIDBCursor;

Normally cursors start at the fi rst item in the object store and progress toward the last with each
call to continue() or advance(). These cursors have the default direction value of IDBCursor
.NEXT. If there are duplicates in the object store, you may want to have a cursor that skips over the
duplicates. You can do so by passing IDBCursor.NEXT_NO_DUPLICATE into openCursor() as the
second argument:

var store = db.transaction(“users”).objectStore(“users”),
 request = store.openCursor(null, IDBCursor.NEXT_NO_DUPLICATE);

c23.indd 795c23.indd 795 12/8/11 11:06:26 AM12/8/11 11:06:26 AM

796 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

Note that the fi rst argument to openCursor() is null, which indicates that the default key range of
all values should be used. This cursor will iterate through the items in the object store starting from
the fi rst item and moving toward the last while skipping any duplicates.

You can also create a cursor that moves backward through the object store, starting at the last
item and moving toward the fi rst by passing in either IDBCursor.PREV or IDBCursor.PREV_NO_
DUPLICATE (the latter, of course, to avoid duplicates). For example:

var store = db.transaction(“users”).objectStore(“users”),
 request = store.openCursor(null, IDBCursor.PREV);

IndexedDBExample05.htm

When you open a cursor using IDBCursor.PREV or IDBCursor.PREV_NO_DUPLICATE, each call to
continue() or advance() moves the cursor backward through the object store instead of forward.

Indexes

For some data sets, you may want to specify more than one key for an object store. For example, if
you’re tracking users by both a user ID and a username, you may want to access records using either
piece of data. To do so, you would likely consider the user ID as the primary key and create an
index on the username.

To create a new index, fi rst retrieve a reference to the object store and then call createIndex(), as
in this example:

var store = db.transaction(“users”).objectStore(“users”),
 index = store.createIndex(“username”, “username”, { unique: true });

The fi rst argument to createIndex() is the name of the index, the second is the name of the
property to index, and third is an options object containing the key unique. This option should
always be specifi ed so as to indicate whether or not the key is unique across all records. Since
username may not be duplicated, this index is not unique.

The returned value from createIndex() is an instance of IDBIndex. You can also retrieve the same
instance via the index() method on an object store. For example, to use an already existing index
named “username”, the code would be:

var store = db.transaction(“users”).objectStore(“users”),
 index = store.index(“username”);

An index acts a lot like an object store. You can create a new cursor on the index using the
openCursor() method, which works exactly the same as openCursor() on an object store except that
the result.key property is fi lled in with the index key instead of the primary key. Here’s an example:

var store = db.transaction(“users”).objectStore(“users”),
 index = store.index(“username”),
 request = index.openCursor();

request.onsuccess = function(event){

c23.indd 796c23.indd 796 12/8/11 11:06:27 AM12/8/11 11:06:27 AM

Data Storage ❘ 797

 //handle success
};

An index can also create a special cursor that returns just the primary key for each record using the
openKeyCursor() method, which accepts the same arguments as openCursor(). The big difference
is that event.result.key is the index key and event.result.value is the primary key instead of
the entire record.

var store = db.transaction(“users”).objectStore(“users”),
 index = store.index(“username”),
 request = index.openKeyCursor();

request.onsuccess = function(event){
 //handle success
 //event.result.key is the index key, event.result.value is the primary key
};

You can also retrieve a single value from an index by using get() and passing in the index key,
which creates a new request:

var store = db.transaction(“users”).objectStore(“users”),
 index = store.index(“username”),
 request = index.get(“007”);

request.onsuccess = function(event){
 //handle success
};

request.onfailure = function(event){
 //handle failure
};

To retrieve just the primary key for a given index key, use the getKey() method. This also creates a
new request but result.value is equal to the primary key value rather than the entire record:

var store = db.transaction(“users”).objectStore(“users”),
 index = store.index(“username”),
 request = index.getKey(“007”);

request.onsuccess = function(event){
 //handle success
 //event.result.key is the index key, event.result.value is the primary key
};

In the onsuccess event handler in this example, event.result.value would be the user ID.

At any point in time, you can retrieve information about the index by using properties on the
IDBIndex object:

name — The name of the index.

keyPath — The property path that was passed into createIndex().

➤

➤

c23.indd 797c23.indd 797 12/8/11 11:06:27 AM12/8/11 11:06:27 AM

798 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

objectStore — The object store that this index works on.

unique — A Boolean indicating if the index key is unique.

The object store itself also tracks the indexes by name in the indexNames property. This makes it
easy to fi gure out which indexes already exist on an object using the following code:

var store = db.transaction(“users”).objectStore(“users”),
 indexNames = store.indexNames,
 index,
 i = 0,
 len = indexNames.length;

while(i < len){
 index = store.index(indexNames[i++]);
 console.log(“Index name: “ + index.name + “, KeyPath: “ + index.keyPath +
 “, Unique: “ + index.unique);
}

This code iterates over each index and outputs its information to the console.

An index can be deleted by calling the deleteIndex() method on an object store and passing in the
name of the index:

var store = db.transaction(“users”).objectStore(“users”);
store.deleteIndex(“username”);

Since deleting an index doesn’t touch the data in the object store, the operation happens without any
callbacks.

Concurrency Issues

While IndexedDB is an asynchronous API inside of a web page, there are still concurrency issues. If
the same web page is open in two different browser tabs at the same time, it’s possible that one may
attempt to upgrade the database before the other is ready. The problematic operation is in setting
the database to a new version, and so calls to setVersion() can be completed only when there is
just one tab in the browser using the database.

When you fi rst open a database, it’s important to assign an onversionchange event handler. This
callback is executed when another tab from the same origin calls setVersion(). The best response
to this event is to immediately close the database so that the version upgrade can be completed. For
example:

var request, database;

request = indexedDB.open(“admin”);
request.onsuccess = function(event){
 database = event.target.result;

 database.onversionchange = function(){
 database.close();
 };
};

➤

➤

c23.indd 798c23.indd 798 12/8/11 11:06:28 AM12/8/11 11:06:28 AM

Summary ❘ 799

You should assign onversionchange after every successful opening of a database.

When you are calling setVersion(), it’s also important to assign an onblocked event handler to
the request. This event handler executes when another tab has the database open while you’re trying
to update the version. In that case, you may want to inform the user to close all other tabs before
attempting to retry setVersion(). For example:

var request = database.setVersion(“2.0”);
request.onblocked = function(){
 alert(“Please close all other tabs and try again.”);
};

request.onsuccess = function(){
 //handle success, continue on
};

Remember, onversionchange will have been called in the other tab(s) as well.

By always assigning these event handlers, you will ensure your web application will be able to better
handle concurrency issues related to IndexedDB.

Limits and Restrictions

Many of the restrictions on IndexedDB are exactly the same as those for Web Storage. First, IndexedDB
databases are tied to the origin (protocol, domain, and port) of the page, so the information cannot be
shared across domains. This means there is a completely separate data store for www.wrox.com as for
p2p.wrox.com.

Second, there is a limit to the amount of data that can be stored per origin. The current limit in
Firefox 4+ is 50MB per origin while Chrome has a limit of 5MB. Firefox for mobile has a limit of
5MB and will ask the user for permission to store more than that if the quota is exceeded.

Firefox imposes an extra limitation that local fi les cannot access IndexedDB databases at all.
Chrome doesn’t have this restriction. When running the examples from this book locally, be sure to
use Chrome.

SUMMARY

Offl ine web applications and client-side data storage are a big part of the Web’s future. Browsers
now have the ability to detect when a user has gone offl ine and fi re events in JavaScript so that your
application can respond. The application cache allows you to specify which fi les should be made
available offl ine. A JavaScript API is available for determining what the application cache state is
and how it may be changing.

This chapter also covered the following aspects of client-side storage:

Traditionally, such storage was limited to using cookies, small pieces of information that
could be set from the client or server and transmitted along with every request.

JavaScript provides access to cookies through document.cookie.

➤

➤

c23.indd 799c23.indd 799 12/8/11 11:06:29 AM12/8/11 11:06:29 AM

http://www.wrox.com

800 ❘ CHAPTER 23 OFFLINE APPLICATIONS AND CLIENT-SIDE STORAGE

The limitations placed on cookies make them okay for storing small amounts of data but
ineffi cient for storing large amounts.

Internet Explorer provides a behavior called user data that can be applied to an element on the page
as follows:

Once applied, the element can load data from a named data store and make the information
accessible via the getAttribute(), setAttribute(), and removeAttribute() methods.

The data must be explicitly saved to a named data store using the save() method for it to
persist between sessions.

Web Storage defi nes two objects to save data: sessionStorage and localStorage. The former is
used strictly to save data within a browser session, because the data is removed once the browser is
closed. The latter is used to persist data across sessions and based on cross-domain security policies.

IndexedDB is a structured data storage mechanism similar to an SQL database. Instead of storing
data in tables, data is stored in object stores. Object stores are created by defi ning a key and then
adding data. Cursors are used to query object stores for particular pieces of data, and indexes may
be created for faster lookups on particular properties.

With all of these options available, it’s possible to store a signifi cant amount of data on the client
machine using JavaScript. You should use care not to store sensitive information, because the data
cache isn’t encrypted.

➤

➤

➤

c23.indd 800c23.indd 800 12/8/11 11:06:29 AM12/8/11 11:06:29 AM

Best Practices

WHAT’S IN THIS CHAPTER?

Writing maintainable code

Ensuring code performance

Deploying code to production

The discipline of web development has grown at an extraordinary rate since 2000. What
used to be a virtual Wild West, where just about anything was acceptable, has evolved into a
complete discipline with research and established best practices. As simple websites grew into
more complex web applications, and web hobbyists became paid professionals, the world of
web development was fi lled with information about the latest techniques and development
approaches. JavaScript, in particular, was the benefi ciary of a lot of research and conjecture.
Best practices for JavaScript fall into several categories and are handled at different points in
the development process.

MAINTAINABILITY

In early websites, JavaScript was used primarily for small effects or form validation. Today’s
web applications are fi lled with thousands of lines of JavaScript executing all types of
complicated processes. This evolution requires that developers take maintainability into
account. As with software engineers in more traditional disciplines, JavaScript developers are
hired to create value for their company, and they do that not just by delivering products on
time but also by developing intellectual property that continues to add value long after.

Writing maintainable code is important, because most developers spend a large amount of
their time maintaining other people’s code. It’s a truly rare occurrence to be able to develop
new code from scratch; it’s often the case that you must build on work that someone else has
done. Making sure that your code is maintainable ensures that other developers can perform
their jobs as well as possible.

➤

➤

➤

24

c24.indd 801c24.indd 801 12/8/11 11:07:04 AM12/8/11 11:07:04 AM

802 ❘ CHAPTER 24 BEST PRACTICES

What Is Maintainable Code?

Maintainable code has several characteristics. In general, code is said to be maintainable when it is
all of the following:

Understandable — Someone else can pick up the code and fi gure out its purpose and general
approach without a walk-through by the original developer.

Intuitive — Things in the code just seem to make sense, no matter how complex the
operation.

Adaptable — The code is written in such a way that variances in data don’t require a
complete rewrite.

Extendable — Care has been given in the code architecture to allow extension of the core
functionality in the future.

Debuggable — When something goes wrong, the code gives you enough information to
identify the issue as directly as possible.

Being able to write maintainable JavaScript code is an important skill for professionals. This is the
difference between hobbyists who hack together a site over the weekend and professional developers
who really know their craft.

Code Conventions

One of the simplest ways to start writing maintainable code is to come up with code conventions
for the JavaScript that you write. Code conventions have been developed for most programming
languages, and a quick Internet search is likely to turn up thousands of documents. Professional
organizations have long instituted code conventions for developers in an attempt to make code more
maintainable for everyone. The best-run open-source projects have strict code convention requirements
that allow everyone in the community to easily understand how code is organized.

Code conventions are important for JavaScript because of the language’s adaptability. Unlike most
object-oriented languages, JavaScript doesn’t force developers into defi ning everything as objects.
The language can support any number of programming styles, from traditional object-oriented
approaches to declarative approaches to functional approaches. A quick review of several
open-source JavaScript libraries can easily yield multiple approaches to creating objects, defi ning
methods, and managing the environment.

The following sections discuss the generalities of how to develop code conventions. These topics are
important to address, although the way in which they are addressed may differ, depending on your
individual needs.

➤

➤

➤

➤

➤

Note that the concept of maintainable code is not unique to JavaScript. Some of
these concepts apply broadly to any programming language, although there are
some JavaScript-specifi c concepts as well.

c24.indd 802c24.indd 802 12/8/11 11:07:07 AM12/8/11 11:07:07 AM

Maintainability ❘ 803

Readability

For code to be maintainable, it must fi rst be readable. Readability has to do with the way the code is
formatted as a text fi le. A large part of readability has to do with the indentation of the code. When
everyone is using the same indentation scheme, code across an entire project becomes much easier to
read. Indentation is usually done by using a number of spaces instead of by using the tab character,
which is typically displayed differently by different text editors. A good general indentation size is
four spaces, although you may decide to use less or more.

Another part of readability is comments. In most programming languages, it’s an accepted practice
to comment each method. Because of JavaScript’s ability to create functions at any point in the
code, this is often overlooked. Because of this, it is perhaps even more important to document each
function in JavaScript. Generally speaking, the places that should be commented in your code are as
follows:

Functions and methods — Each function or method should include a comment that describes
its purpose and possibly the algorithm being used to accomplish the task. It’s also important
to state assumptions that are being made, what the arguments represent, and whether or not
the function returns a value (since this is not discernible from a function defi nition).

Large sections of code — Multiple lines of code that are all used to accomplish a single task
should be preceded with a comment describing the task.

Complex algorithms — If you’re using a unique approach to solve a problem, explain how
you are doing it as a comment. This will not only help others who are looking at your code
but also help you the next time you look at it.

Hacks — Because of browser differences, JavaScript code typically contains some hacks.
Don’t assume that someone else who is looking at the code will understand the browser
issue that such a hack is working around. If you need to do something differently
because one of the browsers can’t use the normal way, put that in a comment. It reduces
the likelihood that someone will come along, see your hack, and “fi x” it, inadvertently
introducing the bug that you had already worked around.

Indentation and comments create more readable code that is easier to maintain in the future.

Variable and Function Naming

The proper naming of variables and functions in code is vital to making it understandable and
maintainable. Since many JavaScript developers began as hobbyists, there’s a tendency to use
nonsensical names such as “foo” and “bar” for variables and names such as “doSomething”
for functions. A professional JavaScript developer must overcome these old habits to create
maintainable code. General rules for naming are as follows:

Variable names should be nouns, such as “car” or “person”.

Function names should begin with a verb, such as getName(). Functions that return
Boolean values typically begin with is, as in isEnabled().

Use logical names for both variables and functions, without worrying about the length. Length
can be mitigated through postprocessing and compression (discussed later in this chapter).

➤

➤

➤

➤

➤

➤

➤

c24.indd 803c24.indd 803 12/8/11 11:07:17 AM12/8/11 11:07:17 AM

804 ❘ CHAPTER 24 BEST PRACTICES

It’s imperative to avoid useless variable names that don’t indicate the type of data they contain. With
proper naming, code reads like a narrative of what is happening, making it easier to understand.

Variable Type Transparency

Since variables are loosely typed in JavaScript, it is easy to lose track of the type of data that a
variable should contain. Proper naming mitigates this to some point, but it may not be enough in all
cases. There are three ways to indicate the data type of a variable.

The fi rst way is through initialization. When a variable is defi ned, it should be initialized to a value
that indicates how it will be used in the future. For example, a variable that will hold a Boolean
should be initialized to either true or false, and a variable to hold numbers should be initialized to
a number, as in the following example:

//variable type indicated by initialization
var found = false; //Boolean
var count = -1; //number
var name = “”; //string
var person = null; //object

Initialization to a particular data type is a good indication of a variable’s type. The downside of
initialization is that it cannot be used with function arguments in the function declaration.

The second way to indicate a variable’s type is to use Hungarian notation. Hungarian notation
prepends one or more characters to the beginning of a variable to indicate the data type. This
notation is popular among scripted languages and was, for quite some time, the preferred format for
JavaScript as well. The most traditional Hungarian notation format for JavaScript prepends a single
character for the basic data types: “o” for objects, “s” for strings, “i” for integers, “f” for fl oats,
and “b” for Booleans. Here’s an example:

//Hungarian notation used to indicate data type
var bFound; //Boolean
var iCount; //integer
var sName; //string
var oPerson; //object

Hungarian notation for JavaScript is advantageous in that it can be used equally well for function
arguments. The downside of Hungarian notation is that it makes code somewhat less readable,
interrupting the intuitive, sentence-like nature of code that is accomplished without it. For this
reason, Hungarian notation has started to fall out of favor among some developers.

The last way to indicate variable type is to use type comments. Type comments are placed right after
the variable name but before any initialization. The idea is to place a comment indicating the data
type right by the variable, as in this example:

//type comments used to indicate type
var found /*:Boolean*/ = false;
var count /*:int*/ = 10;
var name /*:String*/ = “Nicholas”;
var person /*:Object*/ = null;

c24.indd 804c24.indd 804 12/8/11 11:07:18 AM12/8/11 11:07:18 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Maintainability ❘ 805

Type comments maintain the overall readability of code while injecting type information at the
same time. The downside of type comments is that you cannot comment out large blocks of code
using multiline comments, because the type comments are also multiline comments that will
interfere, as this example demonstrates:

//The following won’t work correctly
/*
var found /*:Boolean*/ = false;
var count /*:int*/ = 10;
var name /*:String*/ = “Nicholas”;
var person /*:Object*/ = null;
*/

Here, the intent was to comment out all of the variables using a multiline comment. The type
comments interfere with this because the fi rst instance of /* (second line) is matched with the fi rst
instance of */ (third line), which will cause a syntax error. If you want to comment out lines of code
using type comments, it’s best to use single-line comments on each line (many editors will do this
for you).

These are the three most common ways to indicate the data type of variables. Each has advantages
and disadvantages for you to evaluate before deciding on one. The important thing is to decide
which works best for your project and use it consistently.

Loose Coupling

Whenever parts of an application depend too closely on one another, the code becomes too tightly
coupled and hard to maintain. The typical problem arises when objects refer directly to one another
in such a way that a change to one always requires a change to the other. Tightly coupled software is
diffi cult to maintain and invariably has to be rewritten frequently.

Because of the technologies involved, there are several ways in which web applications can become
too tightly coupled. It’s important to be aware of this and to try to maintain loosely coupled code
whenever possible.

Decouple HTML/JavaScript

One of the most common types of coupling is HTML/JavaScript coupling. On the Web, HTML and
JavaScript each represent a different layer of the solution: HTML is the data, and JavaScript is the
behavior. Because they are intended to interact, there are a number of different ways to tie these two
technologies together. Unfortunately, there are some ways that too tightly couple HTML and JavaScript.

JavaScript that appears inline in HTML, either using a <script> element with inline code or using
HTML attributes to assign event handlers, is too tightly coupled. Consider the following code examples:

<!-- tightly coupled HTML/JavaScript using <script> -->
<script type=”text/javascript”>
 document.write(“Hello world!”);
</script>

<!-- tightly coupled HTML/JavaScript using event handler attribute -->
<input type=”button” value=”Click Me” onclick=”doSomething()” />

c24.indd 805c24.indd 805 12/8/11 11:07:18 AM12/8/11 11:07:18 AM

806 ❘ CHAPTER 24 BEST PRACTICES

Although these are both technically correct, in practice they tightly couple the HTML representing
the data with the JavaScript that defi nes the behavior. Ideally, HTML and JavaScript should be
completely separate, with the JavaScript being included via external fi les and attaching behavior
using the DOM.

When HTML and JavaScript are too tightly coupled, a JavaScript error means fi rst determining
whether the error occurred in the HTML portion of the solution or in a JavaScript fi le. It also
introduces new types of errors related to the availability of code. In this example, the button may be
clicked before the doSomething() function is available, causing a JavaScript error. Maintainability
is affected because any change to the button’s behavior requires touching both the HTML and the
JavaScript, when it should require only the latter.

HTML and JavaScript can also be too tightly coupled when the reverse is true: HTML is contained
within JavaScript. This usually occurs when using innerHTML to insert a chunk of HTML text into
the page, as in this example:

//tight coupling of HTML to JavaScript
function insertMessage(msg){
 var container = document.getElementById(“container”);
 container.innerHTML = “<div class=\”msg\”><p class=\”post\”>” + msg + “</p>” +
 “<p>Latest message above.</p></div>”;
}

Generally speaking, you should avoid creating large amounts of HTML in JavaScript. This, once
again, has to do with keeping the layers separate and being able to easily identify the source of
errors. When using this example code, a problem with page layout may be related to dynamically
created HTML that is improperly formatted. However, locating the error may be diffi cult, because
you would typically fi rst view the source of the page to look for the offending HTML but wouldn’t
fi nd it there because it’s dynamically generated. Changes to the data or layout would also require
changes to the JavaScript, which indicates that the two layers are too tightly coupled.

HTML rendering should be kept separate from JavaScript as much as possible. When JavaScript
is used to insert data, it should do so without inserting markup whenever possible. Markup can
typically be included and hidden when the entire page is rendered such that JavaScript can be used
to display the markup later, instead of generating it. Another approach is to make an Ajax request to
retrieve additional HTML to be displayed; this approach allows the same rendering layer (PHP, JSP,
Ruby, and so on) to output the markup, instead of embedding it in JavaScript.

Decoupling HTML and JavaScript can save time during debugging, by making it easier to identify
the source of errors, and it also eases maintainability: changes to behavior occur only in JavaScript
fi les, whereas changes to markup occur only in rendering fi les.

Decouple CSS/JavaScript

Another layer of the web tier is CSS, which is primarily responsible for the display of a page.
JavaScript and CSS are closely related: they are both layers on top of HTML and as such are often
used together. As with HTML and JavaScript, however, it’s possible for CSS and JavaScript to be
too tightly coupled. The most common example of tight coupling is using JavaScript to change
individual styles, as shown here:

c24.indd 806c24.indd 806 12/8/11 11:07:19 AM12/8/11 11:07:19 AM

Maintainability ❘ 807

//tight coupling of CSS to JavaScript
element.style.color = “red”;
element.style.backgroundColor = “blue”;

Since CSS is responsible for the display of a page, any trouble with the display should be addressable
by looking just at CSS fi les. However, when JavaScript is used to change individual styles, such
as color, it adds a second location that must be checked and possibly changed. The result is that
JavaScript is somewhat responsible for the display of the page and a tight coupling with CSS. If the
styles need to change in the future, both the CSS and the JavaScript fi les may require changes. This
creates a maintenance nightmare for developers. A cleaner separation between the layers is needed.

Modern web applications use JavaScript to change styles frequently, so although it’s not possible
to completely decouple CSS and JavaScript, the coupling can be made looser. This is done by
dynamically changing classes instead of individual styles, as in the following example:

//loose coupling of CSS to JavaScript
element.className = “edit”;

By changing only the CSS class of an element, you allow most of the style information to remain
strictly in the CSS. JavaScript can be used to change the class, but it’s not directly affecting the style
of the element. As long as the correct class is applied, then any display issues can be tracked directly
to CSS and not to JavaScript.

The second type of tight coupling is valid only in Internet Explorer (but not in Internet Explorer 8+
running in standards mode), where it’s possible to embed JavaScript in CSS via expressions, as in
this example:

/* tight coupling of JavaScript to CSS */
div {
 width: expression(document.body.offsetWidth - 10 + “px”);
}

Expressions are typically avoided because they’re not cross-browser-compatible. They should also
be avoided because of the tight coupling between JavaScript and CSS that they introduce. When you
use expressions, it’s possible that a JavaScript error can occur in CSS. Developers who have tried to
track down a JavaScript error due to CSS expressions can tell you how long it took before they even
considered looking at the CSS for the source of the error.

Once again, the importance of keeping a good separation of layers is paramount. The only source
for display issues should be CSS, and the only source for behavior issues should be JavaScript.
Keeping a loose coupling between these layers makes your entire application more maintainable.

Decouple Application Logic/Event Handlers

Every web application is typically fi lled with lots of event handlers listening for numerous different
events. Few of them, however, take care to separate application logic from event handlers. Consider
the following example:

function handleKeyPress(event){
 event = EventUtil.getEvent(event);
 if (event.keyCode == 13){

c24.indd 807c24.indd 807 12/8/11 11:07:19 AM12/8/11 11:07:19 AM

808 ❘ CHAPTER 24 BEST PRACTICES

 var target = EventUtil.getTarget(event);
 var value = 5 * parseInt(target.value);
 if (value > 10){
 document.getElementById(“error-msg”).style.display = “block”;
 }
 }
}

This event handler contains application logic in addition to handling the event. The problem with this
approach is twofold. First, there is no way to cause the application logic to occur other than through
the event, which makes it diffi cult to debug. What if the anticipated result didn’t occur? Does that
mean that the event handler wasn’t called or that the application logic failed? Second, if a subsequent
event causes the same application logic to occur, you’ll need to duplicate the functionality or else
extract it into a separate function. Either way, it requires more changes to be made than are really
necessary.

A better approach is to separate the application logic from event handlers, so that each handles just
what it’s supposed to. An event handler should interrogate the event object for relevant information
and then pass that information to some method that handles the application logic. For example, the
previous code can be rewritten like this:

function validateValue(value){
 value = 5 * parseInt(value);
 if (value > 10){
 document.getElementById(“error-msg”).style.display = “block”;
 }
}

function handleKeyPress(event){
 event = EventUtil.getEvent(event);
 if (event.keyCode == 13){
 var target = EventUtil.getTarget(event);
 validateValue(target.value);
 }
}

This updated code properly separates the application logic from the event handler. The
handleKeyPress() function checks to be sure that the Enter key was pressed (event.keyCode is
13), and then gets the target of the event and passes the value property into the validateValue()
function, which contains the application logic. Note that there is nothing in validateValue() that
depends on any event handler logic whatsoever; it just receives a value and can do everything else
based on that value.

Separating application logic from event handlers has several benefi ts. First, it allows you to easily
change the events that trigger certain processes with a minimal amount of effort. If a mouse click
initially caused the processing to occur, but now a key press should do the same, it’s quite easy
to make that change. Second, you can test code without attaching events, making it easier to create
unit tests or to automate application fl ow.

c24.indd 808c24.indd 808 12/8/11 11:07:20 AM12/8/11 11:07:20 AM

Maintainability ❘ 809

Here are a few rules to keep in mind for loose coupling of application and business logic:

Don’t pass the event object into other methods; pass only the data from the event object
that you need.

Every action that is possible in the application should be possible without executing an
event handler.

Event handlers should process the event and then hand off processing to application logic.

Keeping this approach in mind is a huge maintainability win in any code base, opening up
numerous possibilities for testing and further development.

Programming Practices

Writing maintainable JavaScript isn’t just about how the code is formatted; it’s also about what the
code does. Web applications created in an enterprise environment are often worked on by numerous
people at the same time. The goal in these situations is to ensure that the browser environment in
which everyone is working has constant and unchanging rules. To achieve this, developers should
adhere to certain programming practices.

Respect Object Ownership

The dynamic nature of JavaScript means that almost anything can be modifi ed at any point in
time. It’s been said that nothing in JavaScript is sacred, as you’re unable to mark something as fi nal
or constant. This changed somewhat with ECMAScript 5’s introduction of tamper-proof objects
(discussed in Chapter 22), but by default, all objects can be modifi ed. In other languages, objects and
classes are immutable when you don’t have the actual source code. JavaScript allows you to modify
any object at any time, making it possible to override default behaviors in unanticipated ways.
Because the language doesn’t impose limits, it’s important and necessary for developers to do so.

Perhaps the most important programming practice in an enterprise environment is to respect object
ownership, which means that you don’t modify objects that don’t belong to you. Put simply: if
you’re not responsible for the creation or maintenance of an object, its constructor, or its methods,
you shouldn’t be making changes to it. More specifi cally:

Don’t add properties to instances or prototypes.

Don’t add methods to instances or prototypes.

Don’t redefi ne existing methods.

The problem is that developers assume that the browser environment works in a certain way.
Changes to objects that are used by multiple people mean that errors will occur. If someone expects a
function called stopEvent() to cancel the default behavior for an event, and you change it so it does
that and also attaches other event handlers, it is certain that problems will follow. Other developers
are assuming that the function just does what it did originally, so their usage will be incorrect and
possibly harmful, because they don’t know the side effects.

These rules apply not only to custom types and objects but also to native types and objects such as
Object, String, document, window, and so on. The potential issues here are even more perilous
because browser vendors may change these objects in unannounced and unanticipated ways.

➤

➤

➤

➤

➤

➤

c24.indd 809c24.indd 809 12/8/11 11:07:20 AM12/8/11 11:07:20 AM

810 ❘ CHAPTER 24 BEST PRACTICES

An example of this occurred in the popular Prototype JavaScript library, which implemented the
getElementsByClassName() method on the document object, returning an instance of Array that had
also been augmented to include a method called each(). John Resig outlined on his blog the sequence of
events that caused the issue. In his post (http://ejohn.org/blog/getelementsbyclassname
-pre-prototype-16/), he noted that the problem occurred when browsers began to natively implement
getElementsByClassName(), which returns not an Array but rather a NodeList that doesn’t have an
each() method. Developers using the Prototype library had gotten used to writing code such as this:

document.getElementsByClassName(“selected”).each(Element.hide);

Although this code worked fi ne in browsers that didn’t implement getElementsByClassName()
natively, it caused an error in the ones that did, as a result of the return value differences. You
cannot anticipate how browser vendors will change native objects in the future, so modifying them
in any way can lead to issues down the road when your implementation clashes with theirs.

The best approach, therefore, is to never modify objects you don’t own. You own an object only when
you created it yourself, such as a custom type or object literal. You don’t own Array, document, or
so on, because they were there before your code executed. You can still create new functionality for
objects by doing the following:

Create a new object with the functionality you need, and let it interact with the object of interest.

Create a custom type that inherits from the type you want to modify. You can then modify
the custom type with the additional functionality.

Many JavaScript libraries now subscribe to this theory of development, allowing them to grow and
adapt even as browsers continually change.

Avoid Globals

Closely related to respecting object ownership is avoiding global variables and functions whenever
possible. Once again, this has to do with creating a consistent and maintainable environment in
which scripts will be executed. At most, a single global variable should be created on which other
objects and functions exist. Consider the following:

//two globals - AVOID!!!
var name = “Nicholas”;
function sayName(){
 alert(name);
}

This code contains two globals: the variable name and the function sayName(). These can easily be
created on an object that contains both, as in this example:

//one global - preferred
var MyApplication = {
 name: “Nicholas”,
 sayName: function(){
 alert(this.name);
 }
};

➤

➤

c24.indd 810c24.indd 810 12/8/11 11:07:21 AM12/8/11 11:07:21 AM

Maintainability ❘ 811

This rewritten version of the code introduces a single global object, MyApplication, onto
which both name and sayName() are attached. Doing so clears up a couple of issues that existed
in the previous code. First, the variable name overwrites the window.name property, which
possibly interferes with other functionality. Second, it helps to clear up confusion over where the
functionality lives. Calling MyApplication.sayName() is a logical hint that any issues with the
code can be identifi ed by looking at the code in which MyApplication is defi ned.

An extension of the single global approach is the concept of namespacing, popularized by the
Yahoo! User Interface (YUI) library. Namespacing involves creating an object to hold functionality.
In the 2.x version of YUI, there were several namespaces onto which functionality was attached.
Here are some examples:

YAHOO.util.Dom — Methods for manipulating the DOM.

YAHOO.util.Event — Methods for interacting with events.

YAHOO.lang — Methods for helping with low-level language features.

For YUI, the single global object YAHOO serves as a container onto which other objects are defi ned.
Whenever objects are used simply to group together functionality in this manner, they are called
namespaces. The entire YUI library is built on this concept, allowing it to coexist on the same page
with any other JavaScript library.

The important part of namespacing is to decide on a global object name that everyone agrees to use
and that is unique enough that others aren’t likely to use it as well. In most cases, this can be the
name of the company for which you’re developing the code, such as YAHOO or Wrox. You can then
start creating namespaces to group your functionality, as in this example:

//create global object
var Wrox = {};

//create namespace for Professional JavaScript
Wrox.ProJS = {};

//attach other objects used in the book
Wrox.ProJS.EventUtil = { ... };
Wrox.ProJS.CookieUtil = { ... };

In this example, Wrox is the global on which namespaces are created. If all code for this book
is placed under the Wrox.ProJS namespace, it leaves other authors to add their code onto the
Wrox object as well. As long as everyone follows this pattern, there’s no reason to be worried that
someone else will also write an object called EventUtil or CookieUtil, because it will exist on a
different namespace. Consider this example:

//create namespace for Professional Ajax
Wrox.ProAjax = {};

//attach other objects used in the book
Wrox.ProAjax.EventUtil = { ... };
Wrox.ProAjax.CookieUtil = { ... };

➤

➤

➤

c24.indd 811c24.indd 811 12/8/11 11:07:22 AM12/8/11 11:07:22 AM

812 ❘ CHAPTER 24 BEST PRACTICES

//you can still access the ProJS one
Wrox.ProJS.EventUtil.addHandler(...);

//and the ProAjax one separately
Wrox.ProAjax.EventUtil.addHandler(...);

Although namespacing requires a little more code, it is worth the trade-off for maintainability
purposes. Namespacing helps ensure that your code can work on a page with other code in a
nonharmful way.

Avoid Null Comparisons

Since JavaScript doesn’t do any automatic type checking, it becomes the developer’s responsibility.
As a result, very little type checking actually gets done in JavaScript code. The most common type
check is to see if a value is null. Unfortunately, checking a value against null is overused and
frequently leads to errors due to insuffi cient type checking. Consider the following:

function sortArray(values){
 if (values != null){ //AVOID!!
 values.sort(comparator);
 }
}

The purpose of this function is to sort an array with a given comparator. The values argument
must be an array for the function to execute correctly, but the if statement simply checks to see that
values isn’t null. There are several values that can make it past the if statement, including any
string or any number, which would then cause the function to throw an error.

Realistically, null comparisons are rarely good enough to be used. Values should be checked for
what they are expected to be, not for what they aren’t expected to be. For example, in the previous
code, the values argument is expected to be an array, so you should be checking to see if it is an
array, rather than checking to see if it’s not null. The function can be rewritten more appropriately
as follows:

function sortArray(values){
 if (values instanceof Array){ //preferred
 values.sort(comparator);
 }
}

This version of the function protects against all invalid values and doesn’t need to use null at all.

This technique for identifying an array doesn’t work properly in a multiframe
web page, because each frame has its own global object and, therefore, its own
Array constructor. If you are passing arrays from one frame to another, you may
want to test for the existence of the sort() method instead.

c24.indd 812c24.indd 812 12/8/11 11:07:22 AM12/8/11 11:07:22 AM

Maintainability ❘ 813

If you see a null comparison in code, try replacing it using one of the following techniques:

If the value should be a reference type, use the instanceof operator to check its
constructor.

If the value should be a primitive type, use the typeof operator to check its type.

If you’re expecting an object with a specifi c method name, use the typeof operator to
ensure that a method with the given name exists on the object.

The fewer null comparisons in code, the easier it is to determine the purpose of the code and to
eliminate unnecessary errors.

Use Constants

Even though JavaScript doesn’t have a formal concept of constants, they are still useful. The idea
is to isolate data from application logic in such a way that it can be changed without risking the
introduction of errors. Consider the following:

function validate(value){
 if (!value){
 alert(“Invalid value!”);
 location.href = “/errors/invalid.php”;
 }
}

There are two pieces of data in this function: the message displayed to the user and the URL.
Strings that are displayed in the user interface should always be extracted in such a way as to allow
for internationalization. URLs should also be extracted, because they have a tendency to change
as an application grows. Basically, each of these has a possibility of changing for one reason or
another, and a change would mean going into the function and changing code there. Any time
you’re changing application logic code, you open up the possibility of creating errors. You can
insulate application logic from data changes by extracting data into constants that are defi ned
separately. Consider the following example:

var Constants = {
 INVALID_VALUE_MSG: “Invalid value!”,
 INVALID_VALUE_URL: “/errors/invalid.php”
};

function validate(value){
 if (!value){
 alert(Constants.INVALID_VALUE_MSG);
 location.href = Constants.INVALID_VALUE_URL;
 }
}

In this rewritten version of the code, both the message and the URL have been defi ned on a
Constants object; the function then references these values. This setup allows the data to change
without your ever needing to touch the function that uses it. The Constants object could even be
defi ned in a completely separate fi le, and that fi le could be generated by some process that includes
the correct values based on internationalization settings.

➤

➤

➤

c24.indd 813c24.indd 813 12/8/11 11:07:27 AM12/8/11 11:07:27 AM

814 ❘ CHAPTER 24 BEST PRACTICES

The key is to separate data from the logic that uses it. The types of values to look for are as follows:

Repeated values — Any values that are used in more than one place should be extracted
into a constant. This limits the chance of errors when one value is changed but others are
not. This includes CSS class names.

User interface strings — Any strings that are to be displayed to the user should be extracted
for easier internationalization.

URLs — Resource locations tend to change frequently in web applications, so having a
common place to store all URLs is recommended.

Any value that may change — Any time you’re using a literal value in code, ask yourself
if this value might change in the future. If the answer is yes, then the value should be
extracted into a constant.

Using constants is an important technique for enterprise JavaScript development, because it makes
code more maintainable and keeps it safe from data changes.

PERFORMANCE

The amount of JavaScript developers now write per web page has grown dramatically since the
language was fi rst introduced. With that increase came concerns over the runtime execution of
JavaScript code. JavaScript was originally an interpreted language, so the speed of execution was
signifi cantly slower than it was for compiled languages. Chrome was the fi rst browser to introduce
an optimizing engine that compiles JavaScript into native code. Since then, all other major browsers
have followed suit and have implemented JavaScript compilation.

Even with the move to compiled JavaScript, it’s still possible to write slow code. However, there are
some basic patterns that, when followed, ensure the fastest possible execution of code.

Be Scope-Aware

Chapter 4 discussed the concept of scopes in JavaScript and how the scope chain works. As the
number of scopes in the scope chain increases, so does the amount of time it takes to access
variables outside of the current scope. It is always slower to access a global variable than it is to
access a local variable, because the scope chain must be traversed. Anything you can do to decrease
the amount of time spent traversing the scope chain will increase overall script performance.

Avoid Global Lookups

Perhaps the most important thing you can do to improve the performance of your scripts is to be
wary of global lookups. Global variables and functions are always more expensive to use than local
ones because they involve a scope chain lookup. Consider the following function:

function updateUI(){
 var imgs = document.getElementsByTagName(“img”);
 for (var i=0, len=imgs.length; i < len; i++){

➤

➤

➤

➤

c24.indd 814c24.indd 814 12/8/11 11:07:28 AM12/8/11 11:07:28 AM

Performance ❘ 815

 imgs[i].title = document.title + ” image ” + i;
 }

 var msg = document.getElementById(“msg”);
 msg.innerHTML = ”Update complete.”;
}

This function may look perfectly fi ne, but it has three references to the global document object. If
there are multiple images on the page, the document reference in the for loop could get executed
dozens or hundreds of times, each time requiring a scope chain lookup. By creating a local variable
that points to the document object, you can increase the performance of this function by limiting
the number of global lookups to just one:

function updateUI(){
 var doc = document;
 var imgs = doc.getElementsByTagName(“img”);
 for (var i=0, len=imgs.length; i < len; i++){
 imgs[i].title = doc.title + ” image ” + i;
 }

 var msg = doc.getElementById(”msg”);
 msg.innerHTML = ”Update complete.”;
}

Here, the document object is fi rst stored in the local doc variable. The doc variable is then used in
place of document throughout the rest of the code. There’s only one global lookup in this function,
compared to the previous version, ensuring that it will run faster.

A good rule of thumb is to store any global object that is used more than once in a function as a
local variable.

Avoid the with Statement

The with statement should be avoided where performance is important. Similar to functions, the
with statement creates its own scope and therefore increases the length of the scope chain for code
executed within it. Code executed within a with statement is guaranteed to run slower than code
executing outside, because of the extra steps in the scope chain lookup.

It is rare that the with statement is required, because it is mostly used to eliminate extra characters.
In most cases, a local variable can be used to accomplish the same thing without introducing a new
scope. Here is an example:

function updateBody(){
 with(document.body){
 alert(tagName);
 innerHTML = “Hello world!”;
 }
}

c24.indd 815c24.indd 815 12/8/11 11:07:28 AM12/8/11 11:07:28 AM

816 ❘ CHAPTER 24 BEST PRACTICES

The with statement in this code enables you to use document.body more easily. The same effect can
be achieved by using a local variable, as follows:

function updateBody(){
 var body = document.body;
 alert(body.tagName);
 body.innerHTML = “Hello world!”;
}

Although this code is slightly longer, it reads better than the with statement, ensuring that you
know the object to which tagName and innerHTML belong. This code also saves global lookups by
storing document.body in a local variable.

Choose the Right Approach

As with other languages, part of the performance equation has to do with the algorithm or
approach used to solve the problem. Skilled developers know from experience which approaches
are likely to achieve better performance results. Many of the techniques and approaches that are
typically used in other programming languages can also be used in JavaScript.

Avoid Unnecessary Property Lookup

In computer science, the complexity of algorithms is represented using O notation. The simplest, and
fastest, algorithm is a constant value or O(1). After that, the algorithms just get more complex and
take longer to execute. The following table lists the common types of algorithms found in JavaScript.

NOTATION NAME DESCRIPTION

O(1) Constant Amount of time to execute remains constant no matter the number

of values. Represents simple values and values stored in variables.

O(log n) Logarithmic Amount of time to execute is related to the number of values, but

each value need not be retrieved for the algorithm to complete.

Example: binary search.

O(n) Linear Amount of time to execute is directly related to the number of

values. Example: iterating over all items in an array.

O(n2) Quadratic Amount of time to execute is related to the number of values

such that each value must be retrieved at least n times. Example:

insertion sort.

Constant values, or O(1), refer to both literals and values that are stored in variables. The notation
O(1) indicates that the amount of time necessary to retrieve a constant value remains the same
regardless of the number of values. Retrieving a constant value is an extremely effi cient process and
so is quite fast. Consider the following:

var value = 5;
var sum = 10 + value;
alert(sum);

c24.indd 816c24.indd 816 12/8/11 11:07:29 AM12/8/11 11:07:29 AM

Performance ❘ 817

This code performs four constant value lookups: the number 5, the variable value, the number 10,
and the variable sum. The overall complexity of this code is then considered to be O(1).

Accessing array items is also an O(1) operation in JavaScript, performing just as well as a simple
variable lookup. So the following code is just as effi cient as the previous example:

var values = [5, 10];
var sum = values[0] + values[1];
alert(sum);

Using variables and arrays is more effi cient than accessing properties on objects, which is an O(n)
operation. Every property lookup on an object takes longer than accessing a variable or array,
because a search must be done for a property of that name up the prototype chain. Put simply, the
more property lookups there are, the slower the execution time. Consider the following:

var values = { first: 5, second: 10};
var sum = values.first + values.second;
alert(sum);

This code uses two property lookups to calculate the value of sum. Doing one or two property
lookups may not result in signifi cant performance issues, but doing hundreds or thousands will
defi nitely slow down execution.

Be wary of multiple property lookups to retrieve a single value. For example, consider the following:

var query = window.location.href.substring(window.location.href.indexOf(“?”));

In this code, there are six property lookups: three for window.location.href.substring() and
three for window.location.href.indexOf(). You can easily identify property lookups by counting
the number of dots in the code. This code is especially ineffi cient because the window.location
.href value is being used twice, so the same lookup is done twice.

Whenever an object property is being used more than once, store it in a local variable. You’ll still
take the initial O(n) hit to access the value the fi rst time, but every subsequent access will be O(1),
which more than makes up for it. For example, the previous code can be rewritten as follows:

var url = window.location.href;
var query = url.substring(url.indexOf(“?”));

This version of the code has only four property lookups, a savings of 33 percent over the original.
Making this kind of optimization in a large script is likely to lead to larger gains.

Generally speaking, any time you can decrease the complexity of an algorithm, you should. Replace
as many property lookups as possible by using local variables to store the values. Furthermore, if
you have an option to access something as a numeric array position or a named property (such as
with NodeList objects), use the numeric position.

Optimize Loops

Loops are one of the most common constructs in programming and, as such, are found frequently
in JavaScript. Optimizing these loops is an important part of the performance optimization process,

c24.indd 817c24.indd 817 12/8/11 11:07:30 AM12/8/11 11:07:30 AM

818 ❘ CHAPTER 24 BEST PRACTICES

since they run the same code repeatedly, automatically increasing execution time. There’s been a
great deal of research done into loop optimization for other languages, and these techniques also
apply to JavaScript. The basic optimization steps for a loop are as follows:

 1. Decrement iterators — Most loops are created with an iterator that starts at 0 and is
incremented up to a certain value. In many cases, it’s more effi cient to start the iterator at
the maximum number and decrement each time through the loop.

 2. Simplify the terminal condition — Since the terminal condition is evaluated each time
through the loop, it should be as fast as possible. This means avoiding property lookups or
other O(n) operations.

 3. Simplify the loop body — The body of the loop is executed the most, so make sure it’s as
optimized as possible. Make sure there’s no intensive computation being performed that
could easily be moved to outside the loop.

 4. Use posttest loops — The most commonly used loops are for and while, both of which
are pretest loops. Posttest loops, such as do-while, avoid the initial evaluation of the
terminal condition and tend to run faster.

These changes are best illustrated with an example. The following is a basic for loop:

for (var i=0; i < values.length; i++){
 process(values[i]);
}

This code increments the variable i from 0 up to the total number of items in the values array.
Assuming that the order in which the values are processed is irrelevant, the loop can be changed to
decrement i instead, as follows:

for (var i=values.length-1; i >= 0; i--){
 process(values[i]);
}

Here, the variable i is decremented each time through the loop. In the process, the terminal
condition is simplifi ed by removing the O(n) call to values.length and replacing it with the O(1)
call of 0. Since the loop body has only a single statement, it can’t be optimized further. However,
the loop itself can be changed into a posttest loop like this:

var i=values.length-1;
if (i > -1){
 do {
 process(values[i]);
 }while(--i >= 0);
}

The primary optimization here is combining the terminal condition and the decrement operator into
a single statement. At this point, any further optimization would have to be done to the process()
function itself because the loop is fully optimized.

c24.indd 818c24.indd 818 12/8/11 11:07:30 AM12/8/11 11:07:30 AM

Performance ❘ 819

Keep in mind that using a posttest loop works only when you’re certain that there will always be
at least one value to process. An empty array causes an unnecessary trip through the loop that a
pre-test loop would otherwise avoid.

Unrolling Loops

When the number of times through a loop is fi nite, it is often faster to eliminate the loop altogether
and replace it with multiple function calls. Consider the loop from the previous example. If the
length of the array will always be the same, it may be more optimal to simply call process() on
each item, as in the following code:

//eliminated the loop
process(values[0]);
process(values[1]);
process(values[2]);

This example assumes that there are only three items in the values array and simply calls process()
directly on each item. Unrolling loops in this way eliminates the overhead of setting up a loop and
processing a terminal condition, making the code run faster.

If the number of iterations through the loop can’t be determined ahead of time, you may want to
consider using a technique called Duff’s device. The technique is named after its creator, Tom Duff, who
fi rst proposed using it in the C programming language. Jeff Greenberg is credited with implementing
Duff’s device in JavaScript. The basic idea of Duff’s device is to unroll a loop into a series of statements
by calculating the number of iterations as a multiple of 8. Consider the following code example:

//credit: Jeff Greenberg for JS implementation of Duff’s Device
//assumes values.length > 0
var iterations = Math.ceil(values.length / 8);
var startAt = values.length % 8;
var i = 0;

do {
 switch(startAt){
 case 0: process(values[i++]);
 case 7: process(values[i++]);
 case 6: process(values[i++]);
 case 5: process(values[i++]);
 case 4: process(values[i++]);
 case 3: process(values[i++]);
 case 2: process(values[i++]);
 case 1: process(values[i++]);
 }
 startAt = 0;
} while (--iterations > 0);

This implementation of Duff’s device starts by calculating how many iterations through the loop
need to take place by dividing the total number of items in the values array by 8. The ceiling
function is then used to ensure that the result is a whole number. The startAt variable holds the
number of items that wouldn’t be processed if the iterations were based solely on dividing by 8.
When the loop executes for the fi rst time, the startAt variable is checked to see how many extra

c24.indd 819c24.indd 819 12/8/11 11:07:31 AM12/8/11 11:07:31 AM

820 ❘ CHAPTER 24 BEST PRACTICES

calls should be made. For instance, if there are 10 values in the array, startAt would be equal to
2, so process() would be called only twice the fi rst time through the loop. At the bottom of the
loop, startAt is reset to 0 so that each subsequent time through the loop results in eight calls to
process(). This unrolling speeds up processing of large data sets.

The book Speed Up Your Site by Andrew B. King (New Riders, 2003) proposed an even faster Duff’s
device technique that separated the do-while loop into two separate loops. Here’s an example:

//credit: Speed Up Your Site (New Riders, 2003)
var iterations = Math.floor(values.length / 8);
var leftover = values.length % 8;
var i = 0;

if (leftover > 0){
 do {
 process(values[i++]);
 } while (--leftover > 0);
}

do {
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
} while (--iterations > 0);

In this implementation, the leftover count that wouldn’t have been handled in the loop when
simply dividing by 8 is handled in an initial loop. Once those extra items are processed, execution
continues in the main loop that calls process() eight times. This approach is almost 40 percent
faster than the original Duff’s device implementation.

Unrolling loops can yield big savings for large data sets but may not be worth the extra effort
for small data sets. The trade-off is that it takes more code to accomplish the same task, which is
typically not worth it when large data sets aren’t being processed.

Avoid Double Interpretation

Double interpretation penalties exist when JavaScript code tries to interpret JavaScript code.
This situation arises when using the eval() function or the Function constructor or when using
setTimeout() with a string argument. Here are some examples:

//evaluate some code - AVOID!!
eval(“alert(‘Hello world!’)”);

//create a new function - AVOID!!
var sayHi = new Function(“alert(‘Hello world!’)”);

//set a timeout - AVOID!!
setTimeout(“alert(‘Hello world!’)”, 500);

c24.indd 820c24.indd 820 12/8/11 11:07:31 AM12/8/11 11:07:31 AM

Performance ❘ 821

In each of these instances, a string containing JavaScript code has to be interpreted. This can’t be
done during the initial parsing phase because the code is contained in a string, which means a new
parser has to be started while the JavaScript code is running to parse the new code. Instantiating a
new parser has considerable overhead, so the code runs slower than if it were included natively.

There are workarounds for all of these instances. It’s rare that eval() is absolutely necessary, so try
to avoid it whenever possible. In this case, the code could just be included inline. For the Function
constructor, the code can be rewritten as a regular function quite easily, and the setTimeout() call
can pass in a function as the fi rst argument. Here are some examples:

//fixed
alert(‘Hello world!’);

//create a new function - fixed
var sayHi = function(){
 alert(‘Hello world!’);
};

//set a timeout - fixed
setTimeout(function(){
 alert(‘Hello world!’);
}, 500);

To increase the performance of your code, avoid using strings that need to be interpreted as
JavaScript whenever possible.

Other Performance Considerations

There are a few other things to consider when evaluating the performance of your script. The
following aren’t major issues, but they can make a difference when used frequently:

Native methods are fast — Whenever possible, use a native method instead of one written
in JavaScript. Native methods are written in compiled languages such as C or C++ and thus
run much faster than those in JavaScript. The most often forgotten methods in JavaScript
are the complex mathematical operations available on the Math object; these methods
always run faster than any JavaScript equivalent for calculating sine, cosine, and so on.

Switch statements are fast — If you have a complex series of if-else statements, converting it
to a single switch statement can result in faster code. You can further improve the performance
of switch statements by organizing the cases in the order of most likely to least likely.

Bitwise operators are fast — When performing mathematical operations, bitwise
operations are always faster than any Boolean or numeric arithmetic. Selectively replacing
arithmetic operations with bitwise operations can greatly improve the performance of
complex calculations. Operations such as modulus, logical AND, and logical OR are good
candidates to be replaced with bitwise operations.

Minimize Statement Count

The number of statements in JavaScript code affects the speed with which the operations are
performed. A single statement can complete multiple operations faster than multiple statements each

➤

➤

➤

c24.indd 821c24.indd 821 12/8/11 11:07:32 AM12/8/11 11:07:32 AM

822 ❘ CHAPTER 24 BEST PRACTICES

performing a single operation. The task, then, is to seek out statements that can be combined in order
to decrease the execution time of the overall script. To do so, you can look for several patterns.

Multiple Variable Declarations

One area in which developers tend to create too many statements is in the declaration of multiple
variables. It’s quite common to see code declaring multiple variables using multiple var statements,
such as the following:

//four statements - wasteful
var count = 5;
var color = “blue”;
var values = [1,2,3];
var now = new Date();

In strongly typed languages, variables of different data types must be declared in separate
statements. In JavaScript, however, all variables can be declared using a single var statement. The
preceding code can be rewritten as follows:

//one statement
var count = 5,
 color = “blue”,
 values = [1,2,3],
 now = new Date();

Here, the variable declarations use a single var statement and are separated by commas. This is
an optimization that is easy to make in most cases and performs much faster than declaring each
variable separately.

Insert Iterative Values

Any time you are using an iterative value (that is, a value that is being incremented or decremented
at various locations), combine statements whenever possible. Consider the following code snippet:

var name = values[i];
i++;

Each of the two preceding statements has a single purpose: the fi rst retrieves a value from values
and stores it in name; the second increments the variable i. These can be combined into a single
statement by inserting the iterative value into the fi rst statement, as shown here:

var name = values[i++];

This single statement accomplishes the same thing as the previous two statements. Because the
increment operator is postfi x, the value of i isn’t incremented until after the rest of the statement
executes. Whenever you have a similar situation, try to insert the iterative value into the last
statement that uses it.

c24.indd 822c24.indd 822 12/8/11 11:07:32 AM12/8/11 11:07:32 AM

Performance ❘ 823

Use Array and Object Literals

Throughout this book, you’ve seen two ways of creating arrays and objects: using a constructor or
using a literal. Using constructors always leads to more statements than are necessary to insert items
or defi ne properties, whereas literals complete all operations in a single statement. Consider the
following example:

//four statements to create and initialize array - wasteful
var values = new Array();
values[0] = 123;
values[1] = 456;
values[2] = 789;

//four statements to create and initialize object - wasteful
var person = new Object();
person.name = “Nicholas”;
person.age = 29;
person.sayName = function(){
 alert(this.name);
};

In this code, an array and an object are created and initialized. Each requires four statements: one to
call the constructor and three to assign data. These can easily be converted to use literals as follows:

//one statement to create and initialize array
var values = [123, 456, 789];

//one statement to create and initialize object
var person = {
 name : “Nicholas”,
 age : 29,
 sayName : function(){
 alert(this.name);
 }
};

This rewritten code contains only two statements: one to create and initialize the array, and one to
create and initialize the object. What previously took eight statements now takes only two, reducing
the statement count by 75 percent. The value of these optimizations is even greater in codebases that
contain thousands of lines of JavaScript.

Whenever possible, replace your array and object declarations with their literal representation to
eliminate unnecessary statements.

There is a slight performance penalty for using literals in Internet Explorer 6
and earlier. These issues are resolved in Internet Explorer 7.

c24.indd 823c24.indd 823 12/8/11 11:07:33 AM12/8/11 11:07:33 AM

824 ❘ CHAPTER 24 BEST PRACTICES

Optimize DOM Interactions

Of all the parts of JavaScript, the DOM is without a doubt the slowest part. DOM manipulations
and interactions take a large amount of time because they often require rerendering all or part of
the page. Furthermore, seemingly trivial operations can take longer to execute because the DOM
manages so much information. Understanding how to optimize interactions with the DOM can
greatly increase the speed with which scripts complete.

Minimize Live Updates

Whenever you access part of the DOM that is part of the displayed page, you are performing a
live update. Live updates are so called because they involve immediate (live) updates of the page’s
display to the user. Every change, whether it be inserting a single character or removing an entire
section, incurs a performance penalty as the browser recalculates thousands of measurements to
perform the update. The more live updates you perform, the longer it will take for the code to
completely execute. The fewer live updates necessary to complete an operation, the faster the code
will be. Consider the following example:

var list = document.getElementById(“myList”),
 item,
 i;

for (i=0; i < 10; i++) {
 item = document.createElement(”li”);
 list.appendChild(item);
 item.appendChild(document.createTextNode(”Item ” + i));
}

This code adds 10 items to a list. For each item that is added, there are two live updates: one to add
the element and another to add the text node to it. Since 10 items are being added, that’s a
total of 20 live updates to complete this operation.

To fi x this performance bottleneck, you need to reduce the number of live updates. There are
generally two approaches to this. The fi rst is to remove the list from the page, perform the updates,
and then reinsert the list into the same position. This approach is not ideal because it can cause
unnecessary fl ickering as the page updates each time. The second approach is to use a document
fragment to build up the DOM structure and then add it to the list element. This approach avoids
live updates and page fl ickering. Consider the following:

var list = document.getElementById(“myList”),
 fragment = document.createDocumentFragment(),
 item,
 i

for (i=0; i < 10; i++) {
 item = document.createElement(“li”);
 fragment.appendChild(item);
 item.appendChild(document.createTextNode(“Item “ + i));
}

list.appendChild(fragment);

c24.indd 824c24.indd 824 12/8/11 11:07:38 AM12/8/11 11:07:38 AM

Performance ❘ 825

There is only one live update in this example, and it occurs after all items have been created. The
document fragment is used as a temporary placeholder for the newly created items. All items are
then added to the list, using appendChild(). Remember, when a document fragment is passed in
to appendChild(), all of the children of the fragment are appended to the parent, but the fragment
itself is never added.

Whenever updates to the DOM are necessary, consider using a document fragment to build up the
DOM structure before adding it to the live document.

Use innerHTML

There are two ways to create new DOM nodes on the page: using DOM methods such as
createElement() and appendChild(), and using innerHTML. For small DOM changes, the two
techniques perform roughly the same. For large DOM changes, however, using innerHTML is much
faster than creating the same DOM structure using standard DOM methods.

When innerHTML is set to a value, an HTML parser is created behind the scenes, and the DOM
structure is created using the native DOM calls rather than JavaScript-based DOM calls. The native
methods execute much faster, since they are compiled rather than interpreted. The previous example
can be rewritten to use innerHTML like this:

var list = document.getElementById(“myList”),
 html = ””,
 i;

for (i=0; i < 10; i++) {
 html += ”Item ” + i + ””;
}

list.innerHTML = html;

This code constructs an HTML string and then assigns it to list.innerHTML, which creates
the appropriate DOM structure. Although there is always a small performance hit for string
concatenation, this technique still performs faster than performing multiple DOM manipulations.

The key to using innerHTML, as with other DOM operations, is to minimize the number of times it
is called. For instance, the following code uses innerHTML too much for this operation:

var list = document.getElementById(“myList”),
 i;

for (i=0; i < 10; i++) {
 list.innerHTML += ”Item ” + i + ””; //AVOID!!!
}

The problem with this code is that innerHTML is called each time through the loop, which is
incredibly ineffi cient. A call to innerHTML is, in fact, a live update and should be treated as such. It’s
far faster to build up a string and call innerHTML once than it is to call innerHTML multiple times.

c24.indd 825c24.indd 825 12/8/11 11:07:38 AM12/8/11 11:07:38 AM

826 ❘ CHAPTER 24 BEST PRACTICES

Use Event Delegation

Most web applications make extensive use of event handlers for user interaction. There is a direct
relationship between the number of event handlers on a page and the speed with which the page
responds to user interaction. To mitigate these penalties, you should use event delegation whenever
possible.

Event delegation, as discussed in Chapter 13, takes advantage of events that bubble. Any event that
bubbles can be handled not just at the event target but also at any of the target’s ancestors. Using
this knowledge, you can attach event handlers at a high level that are responsible for handling events
for multiple targets. Whenever possible, attach an event handler at the document level that can
handle events for the entire page.

Beware of HTMLCollections

The pitfalls of HTMLCollection objects have been discussed throughout this book, because
they are a big performance sink for web applications. Keep in mind that any time you access
an HTMLCollection, whether it be a property or a method, you are performing a query on the
document, and that querying is quite expensive. Minimizing the number of times you access an
HTMLCollection can greatly improve the performance of a script.

Perhaps the most important area in which to optimize HTMLCollection access is loops. Moving
the length calculation into the initialization portion of a for loop was discussed previously. Now
consider this example:

var images = document.getElementsByTagName(“img”),
 i, len;

for (i=0, len=images.length; i < len; i++){
 //process
}

The key here is that the length is stored in the len variable instead of constantly accessing the
length property of the HTMLCollection. When using an HTMLCollection in a loop, you should
make your next step a retrieval of a reference to the item you’ll be using, as shown here, so as to
avoid calling the HTMLCollection multiple times in the loop body:

var images = document.getElementsByTagName(“img”),
 image,
 i, len;

for (i=0, len=images.length; i < len; i++){
 image = images[i];
 //process
}

This code adds the image variable, which stores the current image. Once this is complete, there
should be no further reason to access the images HTMLCollection inside the loop.

c24.indd 826c24.indd 826 12/8/11 11:07:39 AM12/8/11 11:07:39 AM

Deployment ❘ 827

When writing JavaScript, it’s important to realize when HTMLCollection objects are being
returned, so you can minimize accessing them. An HTMLCollection object is returned when any of
the following occurs:

A call to getElementsByTagName() is made.

The childNodes property of an element is retrieved.

The attributes property of an element is retrieved.

A special collection is accessed, such as document.forms, document.images, and so forth.

Understanding when you’re using HTMLCollection objects and making sure you’re using them
appropriately can greatly speed up code execution.

DEPLOYMENT

Perhaps the most important part of any JavaScript solution is the fi nal deployment to the website
or web application in production. You’ve done a lot of work before this point, architecting and
optimizing a solution for general consumption. It’s time to move out of the development environment
and into the Web, where real users can interact with it. Before you do so, however, there are a
number of issues that need to be addressed.

Build Process

One of the most important things you can do to ready JavaScript code for deployment is to develop
some type of build process around it. The typical pattern for developing software is write-compile-test,
in that you write the code, compile it, and then run it to ensure that it works. Since JavaScript is not a
compiled language, the pattern has become write-test, where the code you write is the same code you
test in the browser. The problem with this approach is that it’s not optimal; the code you write should
not be passed, untouched, to the browser, for the following reasons:

Intellectual property issues — If you put the fully commented source code online, it’s easier
for others to fi gure out what you’re doing, reuse it, and potentially fi gure out security holes.

File size — You write code in a way that makes it easy to read, which is good for
maintainability but bad for performance. The browser doesn’t benefi t from the extra white
space, indentation, or verbose function and variable names.

Code organization — The way you organize code for maintainability isn’t necessarily the
best way to deliver it to the browser.

For these reasons, it’s best to defi ne a build process for your JavaScript fi les.

A build process starts by defi ning a logical structure for storing your fi les in source control. It’s best
to avoid having a single fi le that contains all of your JavaScript. Instead, follow the pattern that is
typically taken in object-oriented languages: separate each object or custom type into its own fi le.
Doing so ensures that each fi le contains just the minimum amount of code, making it easier to make
changes without introducing errors. Additionally, in environments that use concurrent source control
systems such as CVS or Subversion, this reduces the risk of confl icts during merge operations.

➤

➤

➤

➤

➤

➤

➤

c24.indd 827c24.indd 827 12/8/11 11:07:39 AM12/8/11 11:07:39 AM

828 ❘ CHAPTER 24 BEST PRACTICES

Keep in mind that separating your code into multiple fi les is for maintainability and not for
deployment. For deployment, you’ll want to combine the source fi les into one or more rollup
fi les. It’s recommended that web applications use the smallest number of JavaScript fi les possible,
because HTTP requests are some of the main performance bottlenecks on the Web. Keep in mind
that including a JavaScript fi le via the <script> tag is a blocking operation that stops all other
downloads while the code is downloaded and executed. Therefore, try to logically group JavaScript
code into deployment fi les.

Once you’ve organized your fi le and directory structure, and determined what should be in your
deployment fi les, you’ll want to create a build system. The Ant build tool (http://ant.apache
.org) was created to automate Java build processes but has gained popularity with web application
developers because of its ease of use and coverage by software engineers, such as Julien Lecomte,
who have written tutorials explaining how to use Ant for JavaScript and CSS build automation
(Lecomte’s article can be found at www.julienlecomte.net/blog/2007/09/16/).

Ant is ideal for a JavaScript build system because of its simple fi le-manipulation capabilities. For
example, you can easily get a list of all fi les in a directory and then combine them into a single fi le,
as shown here:

<project name=”JavaScript Project” default=”js.concatenate”>

 <!-- the directory to output to -->
 <property name=”build.dir” value=”./js” />

 <!-- the directory containing the source files -->
 <property name=”src.dir” value=”./dev/src” />

 <!-- Target to concatenate all JS files -->
 <!-- Credit: Julien Lecomte, http://www.julienlecomte.net/blog/2007/09/16/ -->
 <target name=”js.concatenate”>
 <concat destfile=”${build.dir}/output.js”>
 <filelist dir=”${src.dir}/js” files=”a.js, b.js”/>
 <fileset dir=”${src.dir}/js” includes=”*.js” excludes=”a.js, b.js”/>
 </concat>
 </target>

</project>

SampleAntDir/build.xml

This build.xml fi le defi nes two properties: a build directory into which the fi nal fi le should be
output and a source directory where the JavaScript source fi les exist. The target js.concatenate
uses the <concat> element to specify a list of fi les that should be concatenated and the location
where the resulting fi le should be output. The <filelist> element is used to indicate that the fi les
a.js and b.js should be fi rst in the concatenated fi le, and the <fileset> element indicates that all
of the other fi les in the directory, with the exception of a.js and b.js, should be added afterwards.
The resulting fi le will be output to /js/output.js.

c24.indd 828c24.indd 828 12/8/11 11:07:40 AM12/8/11 11:07:40 AM

Deployment ❘ 829

With Ant installed, you can go to the directory in which this build.xml fi le exists, and run this
code snippet:

ant

The build process is then kicked off, and the concatenated fi le is produced. If there are other targets
in the fi le, you can execute just the js.concatenate target, using the following code:

ant js.concatenate

Depending on your needs, the build process can be changed to include more or less steps.
Introducing the build step to your development cycle gives you a location where you can add more
processing for JavaScript fi les prior to deployment.

Validation

Even though IDEs that understand and support JavaScript are starting to appear, most developers
still check their syntax by running code in a browser. There are a couple of problems with this
approach. First, this validation can’t be easily automated or ported from system to system. Second,
aside from syntax errors, problems are encountered only when code is executed, leaving it possible
for errors to occur. There are several tools available to help identify potential issues with JavaScript
code, the most popular being Douglas Crockford’s JSLint (www.jslint.com).

JSLint looks for syntax errors and common coding errors in JavaScript code. Some of the potential
issues it surfaces are as follows:

Use of eval()

Use of undeclared variables

Omission of semicolons

Improper line breaks

Incorrect comma usage

Omission of braces around statements

Omission of break in switch cases

Variables being declared twice

Use of with

Incorrect use of equals (instead of double- or triple-equals)

Unreachable code

The online version is available for easy access, but it can also be run on the command line using the
Java-based Rhino JavaScript engine (www.mozilla.org/rhino/). To run JSLint on the command line,
you fi rst must download Rhino and then download the Rhino version of JSLint from www.jslint
.com/rhino/. Once it is installed, you can run JSLint on the command line using the following syntax:

java -jar rhino-1.6R7.jar jslint.js [input files]

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c24.indd 829c24.indd 829 12/8/11 11:07:41 AM12/8/11 11:07:41 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

830 ❘ CHAPTER 24 BEST PRACTICES

Here is an example:

java -jar rhino-1.6R7.jar jslint.js a.js b.js c.js

If there are any syntax issues or potential errors in the given fi les, a report is output with the errors
and warnings. If there are no issues, then the code completes without displaying any messages.

You can run JSLint as part of your build process using Ant with a target such as this:

<target name=”js.verify”>
 <apply executable=”java” parallel=”false”>
 <fileset dir=”${build.dir}” includes=”output.js”/>
 <arg line=”-jar”/>
 <arg path=”${rhino.jar}”/>
 <arg path=”${jslint.js}” />
 <srcfile/>
 </apply>
</target>

SampleAntDir/build.xml

This target assumes that the location of the Rhino jar fi le is specifi ed in a property called
rhino.jar, and the location of the JSLint Rhino fi le is specifi ed as a property called jslint.js.
The output.js fi le is passed into JSLint to be verifi ed and will output any issues that it fi nds.

Adding code validation to your development cycle helps to avoid errors down the road. It’s
recommended that developers add some type of code validation to the build process as a way of
identifying potential issues before they become errors.

A list of JavaScript code validators can be found in Appendix D.

Compression

When talking about JavaScript fi le compression, you’re really talking about two things: code size
and wire weight. Code size refers to the number of bytes that need to be parsed by the browser,
and wire weight refers to the number of bytes that are actually transmitted from the server to the
browser. In the early days of web development, these two numbers were almost always identical,
because source fi les were transmitted, unchanged, from server to client. In today’s Web, however,
the two are rarely equal and realistically should never be.

File Compression

Because JavaScript isn’t compiled into byte code and is actually transmitted as source code, the code
fi les often contain additional information and formatting that isn’t necessary for browser execution.
Comments, extra white space, and long variable or function names improve readability for developers

c24.indd 830c24.indd 830 12/8/11 11:07:41 AM12/8/11 11:07:41 AM

Deployment ❘ 831

but are unnecessary extra bytes when sent to the browser. You can, however, decrease the fi le size using
a compressor tool.

Compressors typically perform some or all of the following steps:

Remove extra white space (including line breaks)

Remove all comments

Shorten variable names

There are many compressors available for JavaScript (a full list is included in Appendix D), but
the best is arguably the YUI Compressor, available at http://developer.yahoo.com/yui/
compressor/. The YUI Compressor uses the Rhino JavaScript parser to tokenize JavaScript code.
This token stream can then be used to create an optimal version of the code without white space or
comments. Unlike regular expression-based compressors, the YUI Compressor is guaranteed to not
introduce syntax errors and can therefore safely shorten local variable names.

The YUI Compressor comes as a Java jar fi le named yuicompressor-x.y.z.jar, where x.y.z is
the version number. At the time of this writing, 2.4.6 is the most recent version. You can execute the
YUI Compressor using the following command-line format:

java -jar yuicompressor-x.y.z.jar [options] [input file]

Options for the YUI Compressor are listed in the following table.

OPTION DESCRIPTION

-h Displays help information.

-o outputFile Specifi es the name of the output fi le. If not included, the output fi le name

is the input fi le name appended with “-min”. For example, an input fi le of

input.js would produce input-min.js.

--line-break column Indicates to include a line break after the column number of characters. By

default, the compressed fi le is output on one line, which may cause issues in

some source control systems.

-v, --verbose Verbose mode. Outputs hints for better compression and warnings.

--charset charset Indicates the character set that the input fi le is in. The output fi le will use the

same character set.

--nomunge Turns off local variable name replacement.

--disable-

optimizations

Turns off YUI Compressor’s micro-optimizations.

--preserve-semi Preserves unnecessary semicolons that would otherwise have been

removed.

➤

➤

➤

c24.indd 831c24.indd 831 12/8/11 11:07:47 AM12/8/11 11:07:47 AM

832 ❘ CHAPTER 24 BEST PRACTICES

For example, the following can be used to compress the CookieUtil.js fi le into a fi le named simply
cookie.js:

java -jar yuicompressor-2.3.5.jar -o cookie.js CookieUtil.js

The YUI Compressor can also be used from Ant by calling the java executable directly, as in this
example:

<!-- Credit: Julien Lecomte, http://www.julienlecomte.net/blog/2007/09/16/ -->
<target name=”js.compress”>
 <apply executable=”java” parallel=”false”>
 <fileset dir=”${build.dir}” includes=”output.js”/>
 <arg line=”-jar”/>
 <arg path=”${yuicompressor.jar}”/>
 <arg line=”-o ${build.dir}/output-min.js”/>
 <srcfile/>
 </apply>
</target>

SampleAntDir/build.xml

This target includes a single fi le, the output.js fi le created as part of the build process, and passes
it to the YUI Compressor. The output fi le is specifi ed as output-min.js in the same directory. This
assumes that the property yuicompressor.jar contains the location of the YUI Compressor jar
fi le. You can run this target using the following command:

ant js.compress

All JavaScript fi les should be compressed using the YUI Compressor or a similar tool before being
deployed to a production environment. Adding a step in your build process to compress JavaScript
fi les is an easy way to ensure that this always happens.

HTTP Compression

Wire weight refers to the actual number of bytes sent from the server to the browser. The number of
bytes doesn’t necessarily have to be the same as the code size, because of the compression capabilities
of both the server and the browser. All of the fi ve major web browsers — Internet Explorer, Firefox,
Safari, Chrome, and Opera — support client-side decompression of resources that they receive. The
server is therefore able to compress JavaScript fi les using server-dependent capabilities. As part of
the server response, a header is included indicating that the fi le has been compressed using a given
format. The browser then looks at the header to determine that the fi le is compressed, and then
decompresses it using the appropriate format. The result is that the amount of bytes transferred over
the network is signifi cantly less than the original code size.

For the Apache web server, there are two modules that make HTTP compression easy: mod_gzip
(for Apache 1.3.x) and mod_deflate (for Apache 2.0.x). For mod_gzip, you can enable automatic
compression of JavaScript fi les by adding the following line to either your httpd.conf fi le or a
.htaccess fi le:

c24.indd 832c24.indd 832 12/8/11 11:07:47 AM12/8/11 11:07:47 AM

Summary ❘ 833

#Tell mod_gzip to include any file ending with .js
mod_gzip_item_include file \.js$

This line tells mod_gzip to compress any fi le ending with .js that is requested from the browser.
Assuming that all of your JavaScript fi les end with .js, this will compress every request and apply
the appropriate headers to indicate that the contents have been compressed. For more information
about mod_gzip, visit the project site at www.sourceforge.net/projects/mod-gzip/.

For mod_deflate, you can similarly include a single line to ensure that the JavaScript fi les
are compressed before being sent. Place the following line in either your httpd.conf fi le or a
.htaccess fi le:

#Tell mod_deflate to include all JavaScript files
AddOutputFilterByType DEFLATE application/x-javascript

Note that this line uses the MIME type of the response to determine whether or not to compress it.
Remember that even though text/javascript is used for the type attribute of <script>, JavaScript
fi les are typically served with a MIME type of application/x-javascript. For more information
on mod_deflate, visit http://httpd.apache.org/docs/2.0/mod/mod_deflate.html.

Both mod_gzip and mod_deflate result in savings of around 70 percent of the original fi le size of
JavaScript fi les. This is largely due to the fact that JavaScript fi les are plain text and can therefore be
compressed very effi ciently. Decreasing the wire weight of your fi les decreases the amount of time
it takes to transmit to the browser. Keep in mind that there is a slight trade-off, because the server
must spend time compressing the fi les on each request, and the browser must take some time to
decompress the fi les once they arrive. Generally speaking, however, the trade-off is well worth it.

Most web servers, both open source and commercial, have some HTTP compression
capabilities. Please consult the documentation for your server to determine how to
confi gure compression properly.

SUMMARY

As JavaScript development has matured, best practices have emerged. What once was considered
a hobby is now a legitimate profession and, as such, has experienced the type of research into
maintainability, performance, and deployment traditionally done for other programming languages.

Maintainability in JavaScript has to do partially with the following code conventions:

Code conventions from other languages may be used to determine when to comment and
how to indent, but JavaScript requires some special conventions to make up for the loosely
typed nature of the language.

Since JavaScript must coexist with HTML and CSS, it’s also important to let each wholly
defi ne its purpose: JavaScript should defi ne behavior, HTML should defi ne content, and
CSS should defi ne appearance.

➤

➤

c24.indd 833c24.indd 833 12/8/11 11:07:48 AM12/8/11 11:07:48 AM

834 ❘ CHAPTER 24 BEST PRACTICES

Any mixing of these responsibilities can lead to diffi cult-to-debug errors and maintenance
issues.

As the amount of JavaScript has increased in web applications, performance has become more
important. Therefore, you should keep these things in mind:

The amount of time it takes JavaScript to execute directly affects the overall performance of
a web page, so its importance cannot be dismissed.

A lot of the performance recommendations for C-based languages also apply to JavaScript
relating to loop performance and using switch statements instead of if.

Another important thing to remember is that DOM interactions are expensive, so you
should limit the number of DOM operations.

The last step in the process is deployment. Here are some key points discussed in this chapter:

To aid in deployment, you should set up a build process that combines JavaScript fi les into a
small number of fi les (ideally just one).

Having a build process also gives you the opportunity to automatically run additional
processes and fi lters on the source code. You can, for example, run a JavaScript verifi er to
ensure that there are no syntax errors or potential issues with the code.

It’s also recommended to use a compressor to get the fi le as small as possible before
deployment.

Coupling that with HTTP compression ensures that the JavaScript fi les are as small as
possible and will have the least possible impact on overall page performance.

➤

➤

➤

➤

➤

➤

➤

➤

c24.indd 834c24.indd 834 12/8/11 11:07:53 AM12/8/11 11:07:53 AM

Emerging APIs

WHAT’S IN THIS CHAPTER?

Creating smooth animations

Working with fi les

Background JavaScript with Web Workers

The introduction of HTML5 also spurred a tremendous growth in JavaScript APIs aimed at
the future of web applications. These APIs are not part of the HTML5 specifi cation but rather
exist in their own specifi cations that are often bundled “HTML5 Related APIs”. All of the
APIs in this chapter are still undergoing a fair amount of work and are not fully stable.

Despite that, browsers have already begun implementing the various APIs, and web application
developers have begun using them. You’ll note that many of these APIs have browser-specifi c
prefi xes in front of them, such as “ms” for Microsoft or “webkit” for Chrome and Safari.
These prefi xes allow browsers to experiment with new APIs while they are still in development,
knowing that the fi nal, nonprefi xed version will be consistent with other browsers.

requestAnimationFrame()

For a long time, timers and intervals have been the state of the art for JavaScript-based
animations. While CSS transitions and animations make some animations easy for web
developers, little has changed in the world of JavaScript-based animation over the years.
Firefox 4 was the fi rst browser to include a new API for JavaScript animations called
mozRequestAnimationFrame(). This method indicates to the browser that an animation
is taking place so that the browser may, in turn, determine the best way to schedule a redraw.

➤

➤

➤

25

c25.indd 835c25.indd 835 12/8/11 11:10:10 AM12/8/11 11:10:10 AM

836 ❘ CHAPTER 25 EMERGING APIS

Early Animation Loops

The typical way to create animations in JavaScript is to use setInterval() to manage all
animations. A basic animation loop using setInterval() looks like this:

(function(){
 function updateAnimations(){
 doAnimation1();
 doAnimation2();
 //etc.
 }

 setInterval(updateAnimations, 100);
})();

To build out a small animation library, the updateAnimations() method would cycle through the
running animations and make the appropriate changes to each one (for example, both a news ticker
and a progress bar running together). If there are no animations to update, the method can exit
without doing anything and perhaps even stop the animation loop until more animations are ready
for updating.

The tricky part about this animation loop is knowing what the delay should be. The interval has to
be short enough to handle a variety of different animation types smoothly but long enough so as
to produce changes the browser can actually render. Most computer monitors refresh at a rate of 60
Hz, which basically means there’s a repaint 60 times per second. Most browsers cap their repaints
so they do not attempt to repaint any more frequently than that, knowing that the end user gets no
improvement in experience.

Therefore, the best interval for the smoothest animation is 1000ms / 60, or about 17ms. You’ll see
the smoothest animation at this rate, because you’re more closely mirroring what the browser is
capable of doing. Multiple animations may need to be throttled so as not to complete too quickly
when using an animation loop with a 17ms interval.

Even though setInterval()-based animation loops are more effi cient than having multiple sets of
setTimeout()-based loops, there are still problems. Neither setInterval() nor setTimeout() are
intended to be precise. The delay you specify as the second argument is only an indication of when
the code is added in the browser’s UI thread queue for possible execution. If there are other jobs
in the queue ahead of it, then that code waits to be executed. In short: the millisecond delay is
not an indication of when the code will be executed, only an indication of when the job will
be queued. If the UI thread is busy, perhaps dealing with user actions, then that code will not
execute immediately.

Problems with Intervals

Understanding when the next frame will be drawn is key to smooth animations, and until recently,
there was no way to guarantee when the next frame would be drawn in a browser. As <canvas>
became popular and new browser-based games emerged, developers became increasingly frustrated
with the inaccuracy of setInterval() and setTimeout().

c25.indd 836c25.indd 836 12/8/11 11:10:13 AM12/8/11 11:10:13 AM

Exacerbating these problems is the timer resolution of the browser. Timers are not accurate to the
millisecond. Here are some common timer resolutions:

Internet Explorer 8 and earlier have a timer resolution of 15.625ms.

Internet Explorer 9 and later have a timer resolution of 4ms.

Firefox and Safari have a timer resolution of ~10ms.

Chrome has a timer resolution of 4ms.

Internet Explorer prior to version 9 has a timer resolution of 15.625ms, so any value between 0 and
15 could be either 0 or 15 but nothing else. Internet Explorer 9 improved timer resolution to 4ms,
but that’s still not very specifi c when it comes to animations. Chrome’s timer resolution is 4ms,
while Firefox’s and Safari’s is 10ms. Complicating matters more, browsers have started to throttle
timers for tabs that are in the background or inactive. So even if you set your interval for optimum
display, you’re still only getting close to the timing you want.

mozRequestAnimationFrame

Robert O’Callahan of Mozilla was thinking about this problem and came up with a unique
solution. He pointed out that CSS transitions and animations benefi t from the browser knowing
that some animation should be happening, and so fi gured out the correct interval at which to refresh
the UI. With JavaScript animations, the browser has no idea that an animation is taking place. His
solution was to create a new method, called mozRequestAnimationFrame() that indicates to the
browser that some JavaScript code is performing an animation. This allows the browser to optimize
appropriately after running some code.

The mozRequestAnimationFrame() method accepts a single argument, which is a function to call
prior to repainting the screen. This function is where you make appropriate changes to DOM styles
that will be refl ected with the next repaint. In order to create an animation loop, you can chain
multiple calls to mozRequestAnimationFrame() together in the same way previously done with
setTimeout(). For example:

function updateProgress(){
 var div = document.getElementById(“status”);
 div.style.width = (parseInt(div.style.width, 10) + 5) + “%”;

 if (div.style.left != “100%”){
 mozRequestAnimationFrame(updateProgress);
 }
}

mozRequestAnimationFrame(updateProgress);

Since mozRequestAnimationFrame()runs the given function only once, you need to call it again
manually the next time you want to make a UI change for the animation. You also need to manage
when to stop the animation in the same way. The result is a very smooth animation.

So far, mozRequestAnimationFrame() has solved the problem of browsers not knowing when a
JavaScript animation is happening and the problem of not knowing the best interval, but what about

➤

➤

➤

➤

RequestAnimationFrame() ❘ 837

c25.indd 837c25.indd 837 12/8/11 11:10:13 AM12/8/11 11:10:13 AM

838 ❘ CHAPTER 25 EMERGING APIS

the problem of not knowing when your code will actually execute? That’s also covered with the
same solution.

The function you pass into mozRequestAnimationFrame() actually receives an argument, which
is a time code (in milliseconds since January 1, 1970) for when the next repaint will actually occur.
This is a very important point: mozRequestAnimationFrame() actually schedules a repaint for
some known point in the future and can tell you when that is. You’re then able to determine how
best to adjust your animation.

In order to determine how much time has passed since the last repaint, you can query
mozAnimationStartTime, which contains the time code for the last repaint. Subtracting this value
from the time passed into the callback allows you to fi gure out exactly how much time will have
passed before your next set of changes are drawn to the screen. The typical pattern for using these
values is as follows:

function draw(timestamp){

 //calculate difference since last repaint
 var diff = timestamp - startTime;

 //use diff to determine correct next step

 //reset startTime to this repaint
 startTime = timestamp;

 //draw again
 mozRequestAnimationFrame(draw);
}

var startTime = mozAnimationStartTime;
mozRequestAnimationFrame(draw);

The key is to make the fi rst call to mozAnimationStartTime outside of the callback that is passed to
mozRequestAnimationFrame(). If you call mozAnimationStartTime inside of the callback, it will
be equal to the time code that is passed in as an argument.

webkitRequestAnimationFrame and msRequestAnimationFrame

Chrome and Internet Explorer 10+ have also created their own implementations
of mozRequestAnimationFrame() called webkitRequestAnimationFrame() and
msRequestAnimationFrame(), respectively. These versions are slightly different from the Firefox
version in two ways. First, there isn’t a time code passed into the callback function, so you don’t
know when the next repaint will occur. Second, Chrome adds a second, optional argument that is
the DOM element where the changes will occur. So if you know the repaint will occur only inside of
one particular element on the page, you can limit the repaint to just that area.

It should come as no surprise that there is no equivalent to mozAnimationStartTime, since that
information without the time of the next paint is not very useful. There is, however, a Chrome-
specifi c method called webkitCancelAnimationFrame(), which cancels the previously scheduled
repaint.

c25.indd 838c25.indd 838 12/8/11 11:10:14 AM12/8/11 11:10:14 AM

If you don’t need precise time differences, you can create an animation loop for Firefox 4+, Internet
Explorer 10+, and Chrome with the following pattern:

(function(){

 function draw(timestamp){

 //calculate difference since last repaint
 var drawStart = (timestamp || Date.now()),
 diff = drawStart - startTime;

 //use diff to determine correct next step

 //reset startTime to this repaint
 startTime = drawStart;

 //draw again
 requestAnimationFrame(draw);
 }

 var requestAnimationFrame = window.requestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.msRequestAnimationFrame,
 startTime = window.mozAnimationStartTime || Date.now();
 requestAnimationFrame(draw);
})();

This pattern uses the available features to create an animation loop with some idea of how much
time has passed. In Firefox, this uses the time code information that is available, while Chrome and
Internet Explorer default to the less-accurate Date object. When using this pattern, you will get a
general idea from the time difference of how much time has passed, but it certainly isn’t going to tell
you the next time a repaint will occur in Chrome or Internet Explorer. Still, it’s better to have some
idea of how much time has passed rather than no idea.

By checking for the standard function name fi rst and then the browser-specifi c ones, this animation
loop will continue to work in the future.

The requestAnimationFrame() API is now being drafted as a new recommendation by the W3C
and is being worked on jointly by Mozilla and Google as part of the Web Performance Group.

PAGE VISIBILITY API

A major pain point for web developers is knowing when users are actually interacting with the
page. If a page is minimized or hidden behind another tab, it may not make sense to continue
functionality such as polling the server for updates or performing animations. The Page Visibility
API aims to give developers information about whether or not the page is visible to the user.

The API itself is very simple, consisting of three parts:

document.hidden — A Boolean value indicating if the page is hidden from view. This may
mean the page is in a background tab or that the browser is minimized.

➤

Page Visibility API ❘ 839

c25.indd 839c25.indd 839 12/8/11 11:10:14 AM12/8/11 11:10:14 AM

840 ❘ CHAPTER 25 EMERGING APIS

document.visibilityState — A value indicating one of four states:

The page is in a background tab or the browser is minimized.

The page is in the foreground tab.

The actual page is hidden, but a preview of the page is visible (such as in Windows 7
when moving the mouse over an icon in the taskbar shows a preview).

The page is being prerendered off screen.

visibilitychange event — This event fi res when a document changes from hidden to
visible or vice versa.

As of the time of this writing, only Internet Explorer 10 and Chrome have implemented the Page
Visibility API. Internet Explorer has prefi xed everything with “ms” while Chrome has prefi xed
everything with “webkit”. So document.hidden is implemented as document.msHidden in Internet
Explorer and document.webkitHidden in Chrome. The best way to check for support is with this code:

function isHiddenSupported(){
 return typeof (document.hidden || document.msHidden ||
 document.webkitHidden) != “undefined”;
}

PageVisibilityAPIExample01.htm

Similarly, you can check to see if the page is hidden by using the same construct:

if (document.hidden || document.msHidden || document.webKitHidden){
 //page is hidden
} else {
 //page is not hidden
}

PageVisibilityAPIExample01.htm

Note that this code will indicate that the page is not hidden in unsupported browsers, which is the
intentional behavior of the API for backwards compatibility.

To be notifi ed when the page changes from visible to hidden or hidden to visible, you can listen for
the visibilitychange event. In Internet Explorer, this event is called msvisibilitychange and in
Chrome it’s called webkitvisibilitychange. In order for this event to work in both browsers, you
need to assign the same event handler to each event, as in this example:

function handleVisibilityChange(){
 var output = document.getElementById(“output”),
 msg;

 if (document.hidden || document.msHidden || document.webkitHidden){
 msg = “Page is now hidden.” + (new Date()) + “
”;
 } else {
 msg = “Page is now visible.” + (new Date()) + “
”;

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c25.indd 840c25.indd 840 12/8/11 11:10:14 AM12/8/11 11:10:14 AM

 }

 output.innerHTML += msg;

}

//need to add to both
EventUtil.addHandler(document, “msvisibilitychange”, handleVisibilityChange);
EventUtil.addHandler(document, “webkitvisibilitychange”, handleVisibilityChange);

PageVisibilityAPIExample01.htm

This code works well in both Internet Explorer and Chrome. Furthermore, this part of the API is
relatively stable, so it’s safe to use the code in real web applications.

The biggest difference between the implementations is with document.visibilityState. Internet
Explorer 10 PR 2’s document.msVisibilityState is a numeric value representing one of four
constants:

 1. document.MS_PAGE_HIDDEN (0)

 2. document.MS_PAGE_VISIBLE (1)

 3. document.MS_PAGE_PREVIEW (2)

 4. document.MS_PAGE_PRERENDER (3)

In Chrome, document.webkitVisibilityState is one of three possible string values:

 1. “hidden”

 2. “visible”

 3. “prerender”

Chrome does not feature constants for each state, though the fi nal implementation will likely
contain them.

Because of these differences, it’s recommended to not rely on the vendor-prefi xed version of
document.visibilityState and instead stick to using document.hidden.

GEOLOCATION API

One of the most interesting, and well-supported, new APIs is geolocation. Geolocation allows
JavaScript to access information about the user’s current position. Of course, this can be done only
if the user explicitly allows that information to be shared with the page. Whenever a page tries to
access geolocation information, the browser displays a dialog asking for permission to share that
information. Figure 25-1 shows the dialog as shown in Chrome.

FIGURE 25-1

Geolocation API ❘ 841

c25.indd 841c25.indd 841 12/8/11 11:10:15 AM12/8/11 11:10:15 AM

842 ❘ CHAPTER 25 EMERGING APIS

The Geolocation API is implemented as navigator.geolocation and has three methods. The fi rst
method is getCurrentPosition(), which triggers the confi rmation dialog to allow access to the
geolocation information. This method accepts three arguments: a success callback function, an
optional failure callback function, and an optional options object.

The success callback receives a Position object as its only argument, and that object has two
properties: coords and timestamp. The coords object must contain the following information
about the location:

latitude — The latitude given in degrees.

longitude — The longitude given in degrees.

accuracy — The accuracy of the coordinates in meters. The higher the number, the less
accurate.

A browser may also optionally include the following properties:

altitude — The height of the position in meters or null if not available.

altitudeAccuracy — The accuracy of the altitude in meters. The higher the number, the
less accurate.

heading — The compass direction in degrees, where 0 degrees is true north. If the direction
can’t be determined, the value is NaN.

speed — The velocity in meters per second or null if the information can’t be determined.

In practice, most web applications tend to use latitude and longitude more frequently than the
other properties. For example, a common use is to draw a location of the user on a map:

navigator.geolocation.getCurrentPosition(function(position){
 drawMapCenteredAt(position.coords.latitude, positions.coords.longitude);
});

The failure callback also receives an argument when called. The argument is an object that has two
properties: message and code. The message property is a human-readable error message explaining
why the error occurred, while the code property is a numeric value indicating the type of error: user
denied permission (1), position isn’t available (2), or timeout (3). In practice, most web applications
simply log such errors but don’t necessarily change the user interface as a result. For example:

navigator.geolocation.getCurrentPosition(function(position){
 drawMapCenteredAt(position.coords.latitude, positions.coords.longitude);
}, function(error){
 console.log(“Error code: “ + error.code);
 console.log(“Error message: “ + error.message);
});

The third argument to getCurrentPosition() is an options object for the type of information. There
are three options that can be set: enableHighAccuracy, which is a Boolean value indicating that the
best possible position is requested; timeout, which is the amount of time in milliseconds to wait for
the position to be determined; and maximumAge, which is the number of milliseconds that the last
coordinates can be used before a new location should be determined. For example:

➤

➤

➤

➤

➤

➤

➤

c25.indd 842c25.indd 842 12/8/11 11:10:15 AM12/8/11 11:10:15 AM

navigator.geolocation.getCurrentPosition(function(position){
 drawMapCenteredAt(position.coords.latitude, positions.coords.longitude);
}, function(error){
 console.log(“Error code: “ + error.code);
 console.log(“Error message: “ + error.message);
}, {
 enableHighAccuracy: true,
 timeout: 5000,
 maximumAge: 25000
});

All three options are optional and may be provided on their own or in combination with the others.
Unless you really need very accurate information, it’s advisable to keep enableHighAccuracy as
false (the default). Enabling this option may require more time and in mobile devices may require
the use of more power. Similarly, if you’re not actively tracking the user’s position, then maximumAge
can be set to Infinity to always use the last coordinates.

If you want to track the user’s position, you can use another method called watchPosition(). This
method accepts the exact same arguments as getCurrentPosition(). In practice, watchPosition()
is the same as calling getCurrentPosition() periodically. Upon fi rst calling the method, the current
position is retrieved and the success or error callback executed. After that, watchPosition() waits
for a signal from the system that the position has changed (it does not poll the position).

The call to watchPosition() returns a numeric identifi er that is used to track the watch operation.
This value can be used to cancel the watch by passing it to the clearWatch() method (similar to
using setTimeout() and clearTimeout()). For example:

var watchId = navigator.geolocation.watchPosition(function(position){
 drawMapCenteredAt(position.coords.latitude, positions.coords.longitude);
}, function(error){
 console.log(“Error code: “ + error.code);
 console.log(“Error message: “ + error.message);
});

clearWatch(watchId);

This example calls watchPosition() and stores the returned identifi er in watchId. Later, watchId
is passed to clearWatch() to cancel the watch operation.

Geolocation is supported in Internet Explorer 9+, Firefox 3.5+, Opera 10.6+, Safari 5+, Chrome,
Safari for iOS, and WebKit for Android. For an excellent geolocation example, see http://
html5demos.com/geo.

FILE API

One of the major pain points of web applications has been the inability to interact with fi les on a user’s
computer. Since before 2000, the only way to deal with fi les was to place <input type=”file”>
into a form and leave it at that. The File API is designed to give web developers access to fi les on the
client computer in a secure manner that allows for better interaction with those fi les. The File API is
supported in Internet Explorer 10+, Firefox 4+, Safari 5.0.5+, Opera 11.1+, and Chrome.

File API ❘ 843

c25.indd 843c25.indd 843 12/8/11 11:10:15 AM12/8/11 11:10:15 AM

844 ❘ CHAPTER 25 EMERGING APIS

The File API is still based around the fi le input fi eld of a form but adds the ability to access the fi le
information directly. HTML5 adds a files collection to DOM for the fi le input element. When one
or more fi les are selected in the fi eld, the files collection contains a sequence of File objects that
represent each fi le. Each File object has several read-only properties, including:

name — The fi le name on the local system.

size — The size of the fi le in bytes.

type — A string containing the MIME type of the fi le.

lastModifiedDate — A string representing the last time the fi le was modifi ed. This
property has been implemented only in Chrome.

For instance, you can retrieve information about each fi le selected by listening for the change event
and then looking at the files collection:

var filesList = document.getElementById(“files-list”);
EventUtil.addHandler(filesList, “change”, function(event){
 var files = EventUtil.getTarget(event).files,
 i = 0,
 len = files.length;

 while (i < len){
 console.log(files[i].name + “ (“ + files[i].type + “, “ + files[i].size +
 “ bytes)”);
 i++;
 }
});

FileAPIExample01.htm

This example simply outputs the information about each fi le to the console. This ability alone is a
big step forward for web applications, but the File API goes further by allowing you to actually read
data from the fi les via the FileReader type.

The FileReader Type

The FileReader type represents an asynchronous fi le reading mechanism. You can think of FileReader
as similar to XMLHttpRequest, only it is used for reading fi les from the fi lesystem as opposed to reading
data from the server. The FileReader type offers several methods to read in fi le data:

readAsText(file, encoding) — Reads the fi le as plain text and stores the text in the
result property. The second argument, the encoding type, is optional.

readAsDataURL(file) — Reads the fi le and stores a data URI representing the fi les in the
result property.

readAsBinaryString(file) — Reads the fi le and stores a string where each character
represents a byte in the result property.

readAsArrayBuffer(file) — Reads the fi le and stores an ArrayBuffer containing the fi le
contents in the result property.

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c25.indd 844c25.indd 844 12/8/11 11:10:16 AM12/8/11 11:10:16 AM

These various ways of reading in a fi le allow for maximum fl exibility in dealing with the fi le data.
For instance, you may wish to read an image as a data URI in order to display it back to the user, or
you may wish to read a fi le as text in order to parse it.

Since the read happens asynchronously, there are several events published by each FileReader.
The three most useful events are progress, error, and load, which indicate when more data is
available, when an error occurred, and when the fi le is fully read, respectively.

The progress event fi res roughly every 50ms and has the same information available as the XHR
progress event: lengthComputable, loaded, and total. Additionally, the FileReader’s result
property is readable during the progress event even though it may not contain all of the data yet.

The error event fi res if the fi le cannot be read for some reason. When the error event fi res, the error
property of the FileReader is fi lled in. This object has a single property, code, which is an error code
of 1 (fi le not found), 2 (security error), 3 (read was aborted), 4 (fi le isn’t readable), or 5 (encoding error).

The load event fi res when the fi le has been successfully loaded; it will not fi re if the error event has
fi red. Here’s an example using all three events:

var filesList = document.getElementById(“files-list”);
EventUtil.addHandler(filesList, “change”, function(event){
 var info = “”,
 output = document.getElementById(“output”),
 progress = document.getElementById(“progress”),
 files = EventUtil.getTarget(event).files,
 type = “default”,
 reader = new FileReader();

 if (/image/.test(files[0].type)){
 reader.readAsDataURL(files[0]);
 type = “image”;
 } else {
 reader.readAsText(files[0]);
 type = “text”;
 }

 reader.onerror = function(){
 output.innerHTML = “Could not read file, error code is “ +
 reader.error.code;
 };

 reader.onprogress = function(event){
 if (event.lengthComputable){
 progress.innerHTML = event.loaded + “/” + event.total;
 }
 };

 reader.onload = function(){

 var html = “”;

 switch(type){
 case “image”:
 html = “”;
 break;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

File API ❘ 845

c25.indd 845c25.indd 845 12/8/11 11:10:16 AM12/8/11 11:10:16 AM

846 ❘ CHAPTER 25 EMERGING APIS

 case “text”:
 html = reader.result;
 break;

 }
 output.innerHTML = html;
 };
});

FileAPIExample02.htm

This code reads a fi le from a form fi eld and displays it on the page. If the fi le has a MIME type
indicating it’s an image, then a data URI is requested and, upon load, this data URI is inserted as
an image into the page. If the fi le is not an image, then it is read in as a string and output as is into
the page. The progress event is used to track and display the bytes of data being read, while the
error event watches for any errors.

You can stop a read in progress by calling the abort() method, in which case an abort event is
fi red. After the fi ring of load, error, or abort, an event called loadend is fi red. The loadend event
indicates that all reading has fi nished for any of the three reasons.

The readAsText() and readAsDataURL() methods are supported across all implementing browsers.
Internet Explorer 10 PR2 does not implement readAsBinaryString() or readAsArrayBuffer().

Partial Reads

In some cases you may want to read only parts of a fi le instead of the whole fi le. To that end, the
File object has a method called slice(), which is implemented as mozSlice() in Firefox and
webkitSlice() in Chrome; Safari as of version 5.1 does not implement this method. The slice()
method accepts two arguments: the starting byte and the number of bytes to read. This method
returns an instance of Blob, which is actually the super type of File. The following function
normalizes slice() across the various implementations:

function blobSlice(blob, startByte, length){
 if (blob.slice){
 return blob.slice(startByte, length);
 } else if (blob.webkitSlice){
 return blob.webkitSlice(startByte, length);
 } else if (blob.mozSlice){
 return blob.mozSlice(startByte, length);
 } else {
 return null;
 }
}

FileAPIExample03.htm

A Blob also has size and type properties, as well as the slice() method for further cutting down
the data. You can read from a Blob by using a FileReader as well. This example reads just the fi rst
32 bytes from a fi le:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c25.indd 846c25.indd 846 12/8/11 11:10:17 AM12/8/11 11:10:17 AM

var filesList = document.getElementById(“files-list”);
EventUtil.addHandler(filesList, “change”, function(event){
 var info = “”,
 output = document.getElementById(“output”),
 progress = document.getElementById(“progress”),
 files = EventUtil.getTarget(event).files,
 reader = new FileReader(),
 blob = blobSlice(fi les[0], 0, 32);

 if (blob){
 reader.readAsText(blob);

 reader.onerror = function(){
 output.innerHTML = “Could not read file, error code is “ +
 reader.error.code;
 };

 reader.onload = function(){
 output.innerHTML = reader.result;
 };
 } else {
 alert(“Your browser doesn’t support slice().”);
 }
});

FileAPIExample03.htm

Reading just parts of a fi le can save time, especially when you’re just looking for a specifi c piece of
data, such as a fi le header.

Object URLs

Object URLs, also sometimes called blob URLs, are URLs that reference data stored in a File or
Blob. The advantage of object URLs is that you don’t need to read the fi le contents into JavaScript
in order to use them. Instead, you simply provide the object URL in the appropriate place. To create
an object URL, use the window.URL.createObjectURL() method and pass in the File or Blob
object. Chrome implements this as window.webkitURL.createObjectURL(), so the following
function can be used to normalize this functionality:

function createObjectURL(blob){
 if (window.URL){
 return window.URL.createObjectURL(blob);
 } else if (window.webkitURL){
 return window.webkitURL.createObjectURL(blob);
 } else {
 return null;
 }
}

FileAPIExample04.htm

Available for
download on
Wrox.com

Available for
download on
Wrox.com

File API ❘ 847

c25.indd 847c25.indd 847 12/8/11 11:10:17 AM12/8/11 11:10:17 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

848 ❘ CHAPTER 25 EMERGING APIS

The return value of this function is a string that points to a memory address. Because the string is a
URL, it can be used in the DOM. For example, the following displays an image fi le on the page:

var filesList = document.getElementById(“files-list”);
EventUtil.addHandler(filesList, “change”, function(event){
 var info = “”,
 output = document.getElementById(“output”),
 progress = document.getElementById(“progress”),
 files = EventUtil.getTarget(event).files,
 reader = new FileReader(),
 url = createObjectURL(fi les[0]);

 if (url){
 if (/image/.test(files[0].type)){
 output.innerHTML = “”;
 } else {
 output.innerHTML = “Not an image.”;
 }
 } else {
 output.innerHTML = “Your browser doesn’t support object URLs.”;
 }
});

FileAPIExample04.htm

By feeding the object URL directly into an tag, there is no need to read the data into JavaScript
fi rst. Instead, the tag goes directly to the memory location and reads the data into the page.

Once the data is no longer needed, it’s best to free up the memory associated with it. Memory
cannot be freed as long as an object URL is in use. You can indicate that the object URL is no
longer needed by passing it to window.URL.revokeObjectURL() (window.webkitURL
.revokeObjectURL() in Chrome). To handle both implementations, use this function:

function revokeObjectURL(url){
 if (window.URL){
 window.URL.revokeObjectURL(url);
 } else if (window.webkitURL){
 window.webkitURL.revokeObjectURL(url);
 }
}

All object URLs are freed from memory automatically when the page is unloaded. Still, it is best to
free each object URL as it is no longer needed to ensure the memory footprint of the page remains
as low as possible.

Object URLs are supported in Internet Explorer 10+, Firefox 4+, and Chrome.

Drag-and-Drop File Reading

Combining the HTML5 Drag-and-Drop API with the File API allows you to create interesting
interfaces for the reading of fi le information. After creating a custom drop target on a page, you can

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c25.indd 848c25.indd 848 12/8/11 11:10:18 AM12/8/11 11:10:18 AM

drag fi les from the desktop and drop them onto the drop target. This fi res the drop event just like
dragging and dropping an image or link would. The fi les being dropped are available on event
.dataTransfer.files, which is a list of File objects just like those available on a fi le input fi eld.

The following example prints out information about fi les that are dropped on a custom drop target
in the page:

var droptarget = document.getElementById(“droptarget”);

function handleEvent(event){
 var info = “”,
 output = document.getElementById(“output”),
 files, i, len;

 EventUtil.preventDefault(event);

 if (event.type == “drop”){
 fi les = event.dataTransfer.fi les;
 i = 0;
 len = files.length;

 while (i < len){
 info += files[i].name + “ (“ + files[i].type + “, “ + files[i].size +
 “ bytes)
”;
 i++;
 }

 output.innerHTML = info;
 }
}

EventUtil.addHandler(droptarget, “dragenter”, handleEvent);
EventUtil.addHandler(droptarget, “dragover”, handleEvent);
EventUtil.addHandler(droptarget, “drop”, handleEvent);

FileAPIExample05.htm

As with earlier drag-and-drop examples, you must cancel the default behavior of dragenter,
dragover, and drop. During the drop event, the fi les become available on event.dataTransfer
.files, and you can read their information at that time. One of the more popular ways to take
advantage of this functionality is in a drag-and-drop fi le upload system using XMLHttpRequest.

File Upload with XHR

Since the File API gives you access to the contents of a fi le, it follows that you can use this to upload
fi les directly to the server using XHR. Of course, you can very easily upload the contents of a fi le by
passing the data into the send() method and using a POST request. However, then you would be
passing the contents of the fi le, which you would need to grab on the server and save into another
fi le. Ideally, you want to upload the fi le as if it were part of a form submission.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

File API ❘ 849

c25.indd 849c25.indd 849 12/8/11 11:10:18 AM12/8/11 11:10:18 AM

850 ❘ CHAPTER 25 EMERGING APIS

This can be done quite easily using the FormData type, fi rst introduced in Chapter 21. Create a
new FormData object and pass any File object as the value to the append() method. Then, pass
the FormData object to the XHR send() method and you’ve successfully mimicked uploading a fi le
using a form:

var droptarget = document.getElementById(“droptarget”);

function handleEvent(event){
 var info = “”,
 output = document.getElementById(“output”),
 data, xhr,
 files, i, len;

 EventUtil.preventDefault(event);

 if (event.type == “drop”){
 data = new FormData();
 files = event.dataTransfer.files;
 i = 0;
 len = files.length;

 while (i < len){
 data.append(“fi le” + i, fi les[i]);
 i++;
 }

 xhr = new XMLHttpRequest();
 xhr.open(“post”, “FileAPIExample06Upload.php”, true);
 xhr.onreadystatechange = function(){
 if (xhr.readyState == 4){
 alert(xhr.responseText);
 }
 };
 xhr.send(data);
 }
}

EventUtil.addHandler(droptarget, “dragenter”, handleEvent);
EventUtil.addHandler(droptarget, “dragover”, handleEvent);
EventUtil.addHandler(droptarget, “drop”, handleEvent);

FileAPIExample06.htm

This example creates a FormData object with keys for each fi le, such as fi le0, fi le1, fi le2. Note
that no extra processing is necessary for specifying a fi le as a form value. There’s no need to use a
FileReader, just pass in the File object itself.

Using FormData to upload fi les ensures that everything is handled as if it were a normal form on
the server. That means useful shortcuts like the PHP $_FILES array are still available on the server
for uploading fi les. Firefox 4+, Safari 5+, and Chrome all support FormData and uploading fi les in
this way.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c25.indd 850c25.indd 850 12/8/11 11:10:18 AM12/8/11 11:10:18 AM

WEB TIMING

Page performance is always an area of concern for web developers. Up until recently, the only way
to measure in-page performance characteristics was through increasingly complex and clever uses
of the JavaScript Date object. The Web Timing API changes that by exposing internal browser
metrics through a JavaScript API, allowing developers to directly access this information and do
as they please with it. Unlike other APIs in this chapter, Web Timing is actually already a W3C
Recommendation, though its adoption by browsers is relatively slow.

The center of Web Timing is the window.performance object. All metrics related to the page, both
those already defi ned and those in the future, exist on this object. The Web Timing specifi cation
starts by defi ning two properties of performance.

The performance.navigation property is an object containing multiple properties relating to the
page navigation. The properties are:

redirectCount — The number of redirects before the page was loaded.

type — A numeric constant for the type of navigation that has just occurred:

performance.navigation.TYPE_NAVIGATE (0) — The page was loaded for the
fi rst time.

performance.navigation.TYPE_RELOAD (1) — The page was reloaded.

performance.navigation.TYPE_BACK_FORWARD (2) — The page was navigated to
using either the Back or the Forward button.

The performance.timing property, on the other hand, provides numerous properties that are simply
time stamps (number of milliseconds since the epoch) of when various events occurred. The properties are:

navigationStart — When navigation to a page begins.

unloadEventStart — When the unload event for the previous page started. This is fi lled in
only if the previous page is of the same origin as the new page; otherwise, it is 0.

unloadEventEnd — When the unload event for the previous page completed. This is
fi lled in only if the previous page is of the same origin as the new page; otherwise, it is 0.

redirectStart — When a redirect was started for the current page, but only if the redirect
happens within the same origin. Otherwise, this value is 0.

redirectEnd — When a redirect was ended for the current page, but only if the redirect
happens within the same origin. Otherwise, this value is 0.

fetchStart — When the page begins to be fetched via HTTP GET.

domainLookupStart — When the DNS lookup for the page begins.

domainLookupEnd — When the DNS lookup for the page ends.

connectStart — When the browser attempts to connect to the server.

connectEnd — When the browser successfully connected to the server.

secureConnectionStart — When an SSL connection was attempted from the browser.
This value is 0 when SSL is not used.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Web Timing ❘ 851

c25.indd 851c25.indd 851 12/8/11 11:10:19 AM12/8/11 11:10:19 AM

852 ❘ CHAPTER 25 EMERGING APIS

requestStart — When the browser starts requesting the page.

responseStart — When the browser receives the fi rst byte from the page.

responseEnd — When the browser has received all of the page.

domLoading — When document.readyState changed to “loading”.

domInteractive — When document.readyState changed to “interactive”.

domContentLoadedEventStart — When the DOMContentLoaded event is about to fi re.

domContentLoadedEventEnd — When the DOMContentLoaded event has fi red and executed
all event handlers.

domComplete — When document.readyState changed to “complete”.

loadEventStart — When the load event is just about to fi re.

loadEventEnd — When the load event has fi red and all event handlers have executed.

Using the difference between various times can give you a good idea about how a page is being
loaded into the browser and where the potential bottlenecks are hiding. For an excellent example of
the Web Timing API, visit http://webtimingdemo.appspot.com/.

The Web Timing API is supported in Internet Explorer 10+ and Chrome.

WEB WORKERS

As web applications continue to increase in complexity, the need to do complex calculations has also
increased. Long-running JavaScript processes cause the browser to freeze the user interface, which
can be experienced as a “frozen” screen to the user. Web Workers solve this problem by executing
JavaScript behind the scenes. Browsers may choose to implement Web Workers in any number
of ways, including threads, background processes, and processes run on other processor cores.
The actual implementation details aren’t as important as the freedom to run JavaScript without
negatively affecting the user interface.

Web Workers are currently supported in Internet Explorer 10+, Firefox 3.5+, Safari 4+, Opera
10.6+, Chrome, and Safari for iOS 5.

Using a Worker

You can create a new Web Worker by instantiating a Worker object and passing in the fi le name
containing JavaScript that the worker should execute. For example:

var worker = new Worker(“stufftodo.js”);

This line of code causes the browser to download stufftodo.js but the worker doesn’t actually
start until it receives a message. You pass a message to the worker using the postMessage() method
(similar to XDM):

worker.postMessage(“start!”);

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c25.indd 852c25.indd 852 12/8/11 11:10:19 AM12/8/11 11:10:19 AM

The message can be any serializable value, though unlike XDM, all supporting browsers accept object
arguments for postMessage() (Safari 4 was the last browser to support Web Workers and only
support string messages). So you can feel free to pass data in as any sort of object, as in this example:

worker.postMessage({
 type: “command”,
 message: “start!”
});

Generally speaking, any values that can be serialized into JSON structures can also be passed using
postMessage(). This means that, as with XDM, values are copied into workers rather than passed
directly.

The worker communicates back to the page through two events: message and error. The message
event behaves the same as in XDM, with data from the worker arriving through event.data. This
data may also be any type of serializable value:

worker.onmessage = function(event){
 var data = event.data;

 //do something with data
}

The error event is the way that the worker indicates it could not complete a given task. It fi res when
an error occurs during JavaScript execution inside of the worker. The event object for the error
event has three properties: file name, which is the fi le name in which the error occurred; lineno,
which is the line number of the error in that fi le; and message, which is the complete error message.

worker.onerror = function(event){
 console.log(“ERROR: “ + event.filename + “ (“ + event.lineno + “): “ +
 event.message);
};

It’s a good idea to always provide an onerror event handler for Web Workers, even if it does
nothing else but log an error. Otherwise, workers will silently fail when an error occurs.

You can completely stop a worker at any point in time by calling the terminate() method. Doing
so means that the worker is stopped immediately and does not fi nish any remaining processing
(error and message events are not fi red).

worker.terminate(); //stop the worker immediately

Worker Global Scope

The most important thing to understand about a Web Worker is that its JavaScript is executed in a
completely different scope than code in the web page. There is a different global object and different
objects and methods available inside of a Web Worker. Inside of a Web Worker, there is no access to
the DOM and, indeed, no way to affect the appearance of a page in any way.

Web Workers ❘ 853

c25.indd 853c25.indd 853 12/8/11 11:10:20 AM12/8/11 11:10:20 AM

854 ❘ CHAPTER 25 EMERGING APIS

The global object inside of a Web Worker is the worker object itself. That means accessing either
this or self in the global scope will result in accessing the working object. There is also a minimal
environment inside of the worker to allow it to process data:

A minimal navigator object containing onLine, appName, appVersion, userAgent, and
platform properties.

A read-only location object.

setTimeout(), setInterval(), clearTimeout(), and clearInterval().

The XMLHttpRequest constructor.

As you can see, the environment of a worker is quite limited as compared to the page environment.

When a page calls postMessage() on a worker, that data is transmitted asynchronously to the
worker and results in a message event fi ring inside of the worker. So to respond to data that is sent
from a page, you must create an onmessage event handler:

//inside worker code
self.onmessage = function(event){
 var data = event.data;

 //do something with the data
};

Keep in mind that self in this example is actually a reference to the worker inside of the worker
global scope (a different object than the instance of Worker inside the page). Once the worker
has fi nished processing, data can be sent back to the page by calling postMessage() as well. For
example, the following assumes that an array of numbers is passed in and needs to be sorted. The
sorted array is then passed back to the page:

//inside worker code
self.onmessage = function(event){
 var data = event.data;

 //remember, by default sort() does a string comparison
 data.sort(function(a, b){
 return a – b;
 });
 self.postMessage(data);
};

WebWorkerExample01.js

Messaging data back and forth is how a page and a worker communicate with one another. Calling
postMessage() inside the worker results in an asynchronous message event fi ring on the instance
of Worker in the page. If a page wanted to use this worker, it would do so as follows:

//in the page
var data = [23,4,7,9,2,14,6,651,87,41,7798,24],
 worker = new Worker(“WebWorkerExample01.js”);

worker.onmessage = function(event){

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c25.indd 854c25.indd 854 12/8/11 11:10:20 AM12/8/11 11:10:20 AM

 var data = event.data;

 //do something with the resulting array
};

//send the array to the worker for sorting
worker.postMessage(data);

WebWorkerExample01.htm

Sorting is exactly the kind of time-intensive operation that may be useful to offl oad into a worker
so as not to block the user interface. Other examples are image processing, such as converting an
image to grayscale, and cryptographic operations.

A worker may also stop itself completely at any time by calling the close() method. This is similar
to the terminate() method that can be called from the page in that no further events are fi red:

//inside worker code
self.close();

Including Other Scripts

Without the ability to create a new <script> element dynamically, it may seem impossible to add
new scripts into a worker. Luckily, the worker global scope takes this into account and provides
a method called importScripts(). This method accepts one or more URLs from which to load
JavaScript. All of the loading is done synchronously, so code after importScripts() isn’t executed
until after all of the scripts have been loaded and executed. For example:

//inside worker code
importScripts(“file1.js”, “file2.js”);

Even though file2.js may fi nish downloading before file1.js, they will be executed in the order
in which they are specifi ed. The scripts are executed in the worker global scope, so if they make use
of page-specifi c JavaScript, then they may not work in a worker. Typically, worker code is a highly
specialized piece of code rather than something that is shared with a page.

The Future of Web Workers

There’s a lot of work still being done on the Web Workers specifi cation. The workers discussed in this
section are now called dedicated workers, in that they are dedicated to a particular page and cannot
be shared. The specifi cation introduced a concept of shared workers, where a single worker may be
shared by the same page opened in multiple tabs in a browser. While Safari 5, Chrome, and Opera
10.6 support shared workers, the specifi cation is not yet fi nal and may or may not undergo changes.

Debates over what should and should not be accessible inside of workers also continue. Some believe
that workers should have access to every data store that the page has access to, meaning that the
workers should have access to not just XHR but also localStorage, sessionStorage, Indexed DB,
Web Sockets, Server-Sent Events, and so on. There seems to be signifi cant support in this direction,
so there will likely be some changes made to allow more in the worker global scope.

Web Workers ❘ 855

c25.indd 855c25.indd 855 12/8/11 11:10:20 AM12/8/11 11:10:20 AM

856 ❘ CHAPTER 25 EMERGING APIS

SUMMARY

Alongside HTML5 is a collection of JavaScript APIs that, while technically not part of the
specifi cation, tend to be lumped in with the HTML5 JavaScript APIs. Many of these APIs are still
being defi ned but have gained cross-browser support such that they are worth talking about now.

requestAnimationFrame() seeks to optimize JavaScript-based animations by signaling
when an animation is running. This allows the browser to optimize the screen redraws.

The Page Visibility API gives you insights into when the user is viewing the page and when
the page is hidden from view.

The Geolocation API is a way to determine, with permission, the user’s location. This
functionality is very popular for mobile web applications.

The File API allows JavaScript to read data from fi les to either display, process, or upload
those fi les. Combined with the HTML5 drag-and-drop functionality, you can easily create
drag-and-drop fi le uploads.

Web Timing gives you valuable performance insights into page load and render times.

Web Workers allow you to run asynchronous JavaScript that will not block the user
interface. This is very useful for complex calculations and data processing that would
otherwise take up a lot of time and interfere with the user’s ability to use the page.

➤

➤

➤

➤

➤

➤

c25.indd 856c25.indd 856 12/8/11 11:10:21 AM12/8/11 11:10:21 AM

ECMAScript Harmony

With the renewed interest in web development since 2004, conversations began taking place
among browser vendors and other interested parties as to how JavaScript should evolve. Work
on the fourth edition of ECMA-262 began based largely on two competing proposals: one for
Netscape’s JavaScript 2.0 and the other for Microsoft’s JScript.NET. Instead of competing
in the browser realm, the parties converged back into ECMA to hammer out a proposal for a
new language based on JavaScript. Initially, work began on a proposal called ECMAScript 4,
and for a long time, this seemed like the next evolutionary step for JavaScript. When a
counterproposal called ECMAScript 3.1 was later introduced, it threw the future of JavaScript
into question. After much debate, it was determined that ECMAScript 3.1 would be the next
step for JavaScript and that a further effort, code-named Harmony, would seek to reconcile
some features from ECMAScript 4 into ECMAScript 3.1.

ECMAScript 3.1 was ultimately renamed to ECMAScript 5 and standardized fairly
quickly. The details of ECMAScript 5 have been covered throughout this book. As soon as
ECMAScript 5 was fi nalized, work immediately began on Harmony. Harmony tries to keep to
the spirit of ECMAScript 5, in making more incremental changes rather than radical language
changes. While the details of Harmony, aka ECMAScript 6, are still developing as of 2011,
there are several parts of the specifi cation that have been fi nished. This appendix covers the
parts of Harmony that will defi nitely make it into the fi nal specifi cation, though, keep in mind
that the details of the fi nal implementations may change from what’s presented here.

GENERAL CHANGES

Harmony introduces several basic changes to ECMAScript. These aren’t major changes for the
language but rather the closing of some of the curiously open gaps in functionality.

A

bapp01.indd 857bapp01.indd 857 12/8/11 12:58:03 PM12/8/11 12:58:03 PM

858 ❘ APPENDIX A ECMASCRIPT HARMONY

Constants

One of the glaring weaknesses of JavaScript is its lack of formal constants. To rectify this, developers
added constants as part of Harmony via the const keyword. Used in a manner similar to var, the const
declaration lets you defi ne a variable whose value cannot be changed once initialized. Here is the usage:

const MAX_SIZE = 25;

Constants may be defi ned anywhere a variable can be defi ned. Constant names cannot be the same
as variable or function names declared in the same scope, so the following causes an error:

const FLAG = true;
var FLAG = false; //error!

Aside from having immutable values, constants can be used just like any other variable. Any attempt
to change the value is simply ignored, as shown here:

const FLAG = true;
FLAG = false;
alert(FLAG); //true

Constants are supported in Firefox, Safari 3+, Opera 9+, and Chrome. In Safari and Opera, const
acts just like var in that values can still be changed.

Block-Level and Other Scopes

One of the constant reminders throughout this book has been that JavaScript has no concept of
block-level scope. This means that variables defi ned inside statement blocks act as if they were
defi ned in the containing function. Harmony introduces the concept of block-level scoping through
the introduction of the let keyword.

Similarly to const and var, a let declaration can be used at any point to defi ne a variable and
initialize its value. The difference is that the variable defi ned with let will disappear once execution
has moved outside the block in which it was defi ned. For example, it’s quite common to use the
following construct:

for (var i=0; i < 10; i++) {
 //do something
}

alert(i); //10

When the variable i is declared in this code, it is declared as local to the function in which the code
resides. This means that the variable is still accessible after the for loop has fi nished executing. If
let were used instead of var, the variable i would not exist after the loop completed. Consider the
following:

for (let i=0; i < 10; i++) {
 //do something
}

alert(i); //Error! i is undefi ned

bapp01.indd 858bapp01.indd 858 12/8/11 12:58:06 PM12/8/11 12:58:06 PM

Functions ❘ 859

If this code were to be executed, the last line would cause an error since the defi nition of i is
removed as soon as the for loop completes. The result is an error, because you cannot perform any
operations on an undeclared variable.

There are other ways to use let as well. You can create a let statement that specifi cally defi nes
variables that should be used only with the next block of code, as in this example:

var num = 5;

let (num=10, multiplier=2){
 alert(num * multiplier); //20
}

alert(num); //5

In this code, the let statement defi nes an area within which the num variable is equal to 10 and
the multiplier variable is equal to 2. This defi nition of num overrides the previously declared value
using var, so within the let statement the result of multiplying by the multiplier is 20. Outside
the let statement, the value of num remains 5. Since each let statement creates its own scope, the
variable values inside it have no bearing on the values outside.

You can use a similar syntax to create a let expression where variable values are set only for a
single expression. Here is an example:

var result = let(num=10, multiplier=2) num * multiplier;
alert(result); //20

Here, a let expression is used to calculate a value using two variables. The value is then stored in
the result variable. After that point, the variables num and multiplier no longer exist.

Using block-level scopes in JavaScript gives you more control over which variables exist at what
point during code execution.

FUNCTIONS

Most code is written in functions, so Harmony focuses on ways to improve functions and make
them easier to use. As with other parts of Harmony, these changes focus on pain points for
developers and implementers.

Rest and Spread Arguments

In Harmony, the arguments object is no more; you can’t access undeclared arguments in it at all.
There is, however, a way to indicate that you are expecting a variable number of arguments to be
passed in through the use of rest arguments. Rest arguments are indicated by three dots followed
by an identifi er. This allows you to defi ne the arguments that you know will be passed in and then
collect the rest into an array. Here is an example:

bapp01.indd 859bapp01.indd 859 12/8/11 12:58:07 PM12/8/11 12:58:07 PM

860 ❘ APPENDIX A ECMASCRIPT HARMONY

function sum(num1, num2, ...nums){
 var result = num1 + num2;
 for (let i=0, len=nums.length; i < len; i++){
 result += nums[i];
 }
 return result;
}

var result = sum(1, 2, 3, 4, 5, 6);

This code defi nes a sum() method that accepts at least two arguments. It can accept additional
arguments, and all of the remaining arguments are stored in the nums array. Unlike the arguments
object, rest arguments are stored in an instance of Array, so all array methods are available. The
rest arguments object is always an instance of Array, even if there are no rest arguments passed into
the function.

Closely related to rest arguments are spread arguments. Spread arguments allow you to pass in
an array and have each item be mapped to a particular argument in the function. The notation
for spread arguments is the same as rest arguments, prepending three dots to a value. The only
difference is that spread arguments take place at the time a function is called, whereas rest
arguments are used at the time a function is defi ned. For example, instead of passing in individual
numbers to the sum() method, you could use spread arguments as shown here:

var result = sum(...[1, 2, 3, 4, 5, 6]);

In this code, an array of arguments is passed to sum() as spread arguments. This example is the
functional equivalent of the following:

var result = sum.apply(this, [1, 2, 3, 4, 5, 6]);

Default Argument Values

All arguments in an ECMAScript function are considered optional, since no check is done against
the number of arguments that have been passed in. However, instead of manually checking to
see which arguments have been provided, you can specify default values for arguments. If the
arguments aren’t formally passed in, then they get the given value.

To specify a default value for an argument, just add an equal sign and the default value after the
argument defi nition, as in this example:

function sum(num1, num2=0){
 return num1 + num2;
}

var result1 = sum(5);
var result2 = sum(5, 5);

The sum() function accepts two arguments, but the second one is optional and gets a default value
of 0. The beauty of optional arguments is that it frees you from needing to check to see if the
value was passed in and then using a special value; all of that is done for you.

bapp01.indd 860bapp01.indd 860 12/8/11 12:58:07 PM12/8/11 12:58:07 PM

Arrays and Other Structures ❘ 861

Generators

A generator is an object that generates a sequence of values one at a time. With Harmony, you can
create a generator by defi ning a function that returns a specifi c value using the yield operator.
When a function is called that uses yield, a new Generator instance is created and returned. The
next() method can then be called to retrieve the fi rst value of the generator. When this happens,
the original function is executed and stops execution when it comes to yield, returning the
specifi ed value. In this way, yield works in a similar manner to return. If next() is called again,
code execution continues at the next statement following yield and then continues to run until
yield is encountered again, at which point a new value is returned. Here is an example:

function myNumbers(){
 for (var i=0; i < 10; i++){
 yield i * 2;
 }
}

var generator = myNumbers();

try {
 while(true){
 document.write(generator.next() + “
”);
 }
} catch(ex){
 //intentionally blank
} finally {
 generator.close();
}

When the function myNumbers() is called, a generator is returned. The myNumbers() function itself
is very simple, containing a for loop that yields a value each time through the loop. Each call to
next() causes another trip through the for loop and returns the next value. The fi rst value is 0, the
second is 2, the third is 4, and so on. When myNumbers() completes without calling yield (after
the fi nal loop iteration), calling next() throws a StopIteration error. So to output all numbers in
the generator, a while loop is wrapped in a try-catch statement to prevent the error from stopping
code execution.

If a generator is no longer needed, it’s best to call the close() method. Doing so ensures that
the rest of the original function is executed, including any finally blocks related to try-catch
statements.

Generators are useful when a sequence of values needs to be produced and each subsequent value is
somehow related to the previous one.

ARRAYS AND OTHER STRUCTURES

Another area of focus for Harmony is arrays. Arrays are one of the most frequently used data
structures in JavaScript, and creating more intuitive and powerful ways to work with arrays was a
priority for the language.

bapp01.indd 861bapp01.indd 861 12/8/11 12:58:08 PM12/8/11 12:58:08 PM

862 ❘ APPENDIX A ECMASCRIPT HARMONY

Iterators

An iterator is an object that iterates over a sequence of values and returns them one at a time. When
you use a for loop or a for-in loop, you’re typically iterating over values and processing them
one at a time. Iterators provide the ability to do the same without using a loop. Harmony supports
iterators for all types of objects.

To create an iterator for an object, use the Iterator constructor and pass in the object whose values
should be iterated over. The next() method is used to retrieve the next value in the sequence. By
default, this method returns an array whose fi rst item is the index of the value (for arrays) or the
name of the property (for objects) and whose second item is the value. When no further values are
available, calling next() throws a StopIteration error. Here is an example:

var person = {
 name: “Nicholas”,
 age: 29
};
var iterator = new Iterator(person);

try {
 while(true){
 let value = iterator.next();
 document.write(value.join(“:”) + “
”);
 }
} catch(ex){
 //intentionally blank
}

This code creates an iterator for the person object. The fi rst time next() is called, the array
[“name”, “Nicholas”] is returned, and the second call returns [”age”, 29]. The output from
this code is as follows:

name:Nicholas
age:29

When an iterator is created for a nonarray object, the properties are returned in the same order as
they would be in a for-in loop. This also means that only instance properties are returned, and the
order in which the properties are returned varies upon implementation. Iterators created for arrays
act in a similar manner, iterating over each position in the array, as shown here:

var colors = [“red”, “green”, “blue”];
var iterator = new Iterator(colors);

try {
 while(true){
 let value = iterator.next();
 document.write(value.join(“:”) + “
”);
 }
} catch(ex){

}

bapp01.indd 862bapp01.indd 862 12/8/11 12:58:08 PM12/8/11 12:58:08 PM

Arrays and Other Structures ❘ 863

The output from this code is as follows:

0:red
1:green
2:blue

You can force only the property name or index to be returned from next() by passing a second
argument, true, into the Iterator constructor, as shown here:

var iterator = new Iterator(colors, true);

With the second argument passed, each call to next() will return only the index of the value
instead of an array containing both the index and the value.

It’s possible to create your own iterators for custom types by defi ning the special
method __iterator__(), which must return an object that has a next() method.
This method will be called when an instance of your custom type is passed as an
argument to the Iterator constructor.

Array Comprehensions

Array comprehensions are a way to initialize an array with specifi c values meeting certain criteria.
This feature, introduced in Harmony, is a popular language construct in Python. The basic form of
array comprehensions in JavaScript is as follows:

array = [value for each (variable in values) condition];

The value is the actual value to be included in the fi nal array. This value is based on all the values in
the values array. The for each construct loops over each value in values and stores the value
in variable. If the optional condition is met, then value is added to the resulting array. Here is an
example:

//original array
var numbers = [0,1,2,3,4,5,6,7,8,9,10];

//just copy all items into a new array
var duplicate = [i for each (i in numbers)];

//get just the even numbers
var evens = [i for each (i in numbers) if (i % 2 == 0)];

//multiply every value by 2
var doubled = [i*2 for each (i in numbers)];

//multiply every odd number by 3
var tripledOdds = [i*3 for each (i in numbers) if (i % 2 > 0)];

bapp01.indd 863bapp01.indd 863 12/8/11 12:58:09 PM12/8/11 12:58:09 PM

864 ❘ APPENDIX A ECMASCRIPT HARMONY

All of the array comprehensions in this code use i as a variable to iterate over all values in numbers.
Some of them use conditions to fi lter the results of the array. Essentially, if the condition evaluates to
true, the value is added to the array. The syntax is a little different from traditional JavaScript but is
more succinct than writing your own for loop to accomplish the same task. Firefox (version 2 and
later) is the only browser to implement this feature, and it requires the type attribute of the <script>
element to be “application/javascript;version=1.7” to enable it.

The values portion of an array comprehension can also be a generator or an
iterator.

Destructuring Assignments

It’s quite common to have a group of values from which you want to extract one or more into
individual variables. Consider the value returned from an iterator’s next() method, which is an
array containing the property name and value. In order to store each in its own variable, it would
require two statements, as in this example:

var nextValue = [“color”, “red”];
var name = nextValue[0];
var value = nextValue[1];

A destructuring assignment allows you to assign both array items into variables using a single
statement such as this:

var [name, value] = [“color”, “red”];
alert(name); //”color”
alert(value); //”red”

In traditional JavaScript syntax, an array literal cannot be on the left side of an assignment.
Destructuring assignment introduces this syntax to indicate that the variables contained in the array
to the left of the equal sign should be assigned the values contained in the array to the right of the
equal sign. The result is that name is fi lled with “color” and value is fi lled with “red”.

If you don’t want all of the values, you can provide variables just for the ones you want, as in this
example:

var [, value] = [“color”, “red”];
alert(value); //”red”

Here, only the variable value is assigned, and it receives the value “red”.

You can use destructuring assignment in creative ways, such as to swap the values of two variables.
In ECMAScript 3, swapping the values of two variables is typically done like this:

var value1 = 5;
var value2 = 10;

var temp = value1;

bapp01.indd 864bapp01.indd 864 12/8/11 12:58:19 PM12/8/11 12:58:19 PM

New Object Types ❘ 865

value1 = value2;
value2 = temp;

You can eliminate the need for the temp variable by using a destructuring array assignment, as in
this example:

var value1 = 5;
var value2 = 10;

[value2, value1] = [value1, value2];

Destructuring assignment can also be accomplished with objects, like this:

var person = {
 name: “Nicholas”,
 age: 29
};

var { name: personName, age: personAge } = person;

alert(personName); //”Nicholas”
alert(personAge); //29

As with array literals, when an object literal occurs to the left of an equal sign, it’s considered to
be a destructuring assignment. This statement actually defi nes two variables, personName and
personAge, that are fi lled with the matching information from the variable person. As with arrays,
you can pick and choose which values to retrieve, as shown here:

var { age: personAge } = person;
alert(personAge); //29

This modifi ed code retrieves only the age property from the person object.

NEW OBJECT TYPES

Harmony introduces several new object types to the language. These object types focus on
providing functionality that was previously available only to the JavaScript engine.

Proxy Objects

Harmony introduces the concept of proxies to JavaScript. A proxy is an object that presents an
interface that doesn’t necessarily act on the proxy object itself. For example, setting a property on
a proxy object might actually call a function on another object. Proxies are a useful abstraction
mechanism for exposing only a subset of information through an API while maintaining complete
control over the data source.

bapp01.indd 865bapp01.indd 865 12/8/11 12:58:25 PM12/8/11 12:58:25 PM

866 ❘ APPENDIX A ECMASCRIPT HARMONY

A proxy object is created using the Proxy.create() method and passing in a handler object and
optional prototype object:

var proxy = Proxy.create(handler);

//create proxy that has a prototype of myObject
var proxy = Proxy.create(handler, myObject);

The handler object comprises properties that defi ne traps. Traps are functions that handle (trap)
native functionality so that it can be handled in another way. There are seven fundamental traps
that are considered important to implement for all proxies to ensure that the proxy object works in
a predictable way without throwing errors:

getOwnPropertyDescriptor — A function to call when Object
.getOwnPropertyDescriptor() is called on the proxy. The function receives the property
name as an argument. Should return a property descriptor or null if the property doesn’t exist.

getPropertyDescriptor — A function to call when Object.getPropertyDescriptor()
is called on the proxy. (This is a new method in Harmony.) The function receives the
property name as an argument. Should return a property descriptor or null if the property
doesn’t exist.

getOwnPropertyNames — A function to call when Object.getOwnPropertyNames() is
called on the proxy. The function receives the property name as an argument. Should return
an array of strings.

getPropertyNames — A function to call when Object.getPropertyNames() is called on
the proxy. (This is a new method in Harmony.) The function receives the property name as
an argument. Should return an array of strings.

defineProperty — A function to call when Object.defineProperty() is called on the
proxy. The function receives the property name and the property descriptor as arguments.

delete — Defi nes a function that is called when the delete operator is used on a property
of the object. The property name is passed in as an argument. Return true to indicate that
the deletion succeeded or false if not.

fix — Defi nes a function that is called when Object.freeze(), Object.seal(), or
Object.preventExtensions() is called. Return undefined to throw an error when one of
these methods is called on the proxy.

In addition to the fundamental traps, there are also six derived traps. Unlike fundamental traps,
failing to defi ne one or more derived traps will not cause errors. Each derived trap overrides a
default JavaScript behavior.

has — Defi nes a function that is called when the in operator is used on the object, such
as “name” in object. The property name is passed in as an argument. Return true to
indicate the property is contained on the object, false if not.

hasOwn — Defi nes a function that is called when the hasOwnProperty() method is called
on the proxy. The property name is passed in as an argument. Return true to indicate the
property is contained on the object, false if not.

➤

➤

➤

➤

➤

➤

➤

➤

➤

bapp01.indd 866bapp01.indd 866 12/8/11 12:58:25 PM12/8/11 12:58:25 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

New Object Types ❘ 867

get — Defi nes a function that is called when a property is read. The function receives
two arguments, the object reference being read from and the property name. The object
reference may be the proxy itself or may be an object inheriting from the proxy.

set — Defi nes a function that is called when a property is written to. The function receives
three arguments, the object reference being written to, the property name, and the property
value. As with get, the object reference may be the proxy itself or may be an object
inheriting from the proxy.

enumerate — Defi nes a function that is called when the proxy is placed in a for-in loop.
The function must return an array of strings containing the appropriate property names to
be used in the for-in loop.

keys — Defi nes a function that is called when Object.keys() is called on the proxy. As
with enumerate, this function must return an array of strings.

Proxies are primarily used when you need to expose an API while keeping some underlying data
from being manipulated directly. For example, suppose you want to implement a traditional stack
data type. Even though arrays can act as stacks, you want to ensure that people use only push(),
pop(), and length. In this case, you can create a proxy that works on an array but exposes only
those three object members:

/*
 * Another ES6 Proxy experiment. This one creates a stack whose underlying
 * implementation is an array. The proxy is used to filter out everything
 * but “push”, “pop”, and “length” from the interface, making it a pure
 * stack where you can’t manipulate the contents.
 */

var Stack = (function(){

 var stack = [],
 allowed = [“push”, “pop”, “length”];

 return Proxy.create({
 get: function(receiver, name){;
 if (allowed.indexOf(name) > -1){
 if(typeof stack[name] == “function”){
 return stack[name].bind(stack);
 } else {
 return stack[name];
 }
 } else {
 return undefined;
 }
 }

 });

});

var mystack = new Stack();

mystack.push(“hi”);

➤

➤

➤

➤

bapp01.indd 867bapp01.indd 867 12/8/11 12:58:26 PM12/8/11 12:58:26 PM

868 ❘ APPENDIX A ECMASCRIPT HARMONY

mystack.push(“goodbye”);

console.log(mystack.length); //1

console.log(mystack[0]); //undefined
console.log(mystack.pop()); //”goodbye”

This code creates a constructor called Stack. Instead of working on this, the Stack constructor
returns a proxy object that works on an array. The get trap is the only one defi ned, and it simply
checks an array of allowed properties before returning the value. All disallowed properties end up
returning undefi ned when referenced while push(), pop(), and length work as expected. The key
piece of this code is the declaration of the get trap, which fi lters the object member retrieval based
on the allowed members. If the member is a function, then it returns a bound version of the function
so that it operates on the underlying array object instead of the proxy object itself.

Proxy Functions

In addition to creating proxy objects, you can also create proxy functions in Harmony. A proxy
function is the same as a proxy object except that it is executable. Proxy functions are created by
using the Proxy.createFunction() method and passing in a handler object, a call trap function,
and an optional constructor trap function. For example:

var proxy = Proxy.createFunction(handler, function(){}, function(){});

The handler object has the same available traps as with proxy objects. The call trap function is the
code to execute when the proxy function is executed, such as proxy(). The constructor trap is
the code to execute when the proxy function is called using the new operator, such as new proxy().
If the constructor trap is not defi ned, then the call trap is used for the constructor trap as well.

Map and Set

The Map type, also called simple map, has a singular purpose: to store a list of key-value pairs.
Developers typically use generic objects for this purpose, but that comes at a cost as keys can easily
be confused with native properties. Simple maps keep keys and values separate from the object’s
properties to provide safer storage for this information. Some example usage:

var map = new Map();

map.set(“name”, “Nicholas”);
map.set(“book”, “Professional JavaScript”);

console.log(map.has(“name”)); //true
console.log(map.get(“name”)); //”Nicholas”

map.delete(“name”);

The basic API for simple maps is made up of get(), set(), has(), and delete(), each doing
exactly what the name indicates. Keys can be primitive values for reference values.

bapp01.indd 868bapp01.indd 868 12/8/11 12:58:26 PM12/8/11 12:58:26 PM

New Object Types ❘ 869

Related to simple maps is the Set type. A set is simply a collection of items of which there are no
duplicates. Unlike simple maps, sets are only keys and have no related value associated with them.
The basic API has add() for adding items, has() for checking the existence of items, and delete()
for removing items. Some example usage:

var set = new Set();
set.add(“name”);

console.log(set.has(“name”)); //true
set.delete(“name”);

console.log(set.has(“name”)); //false

The specifi cation for both Map and Set are incomplete as of October 2011, so the details here may
change before the JavaScript engines begin implementing them.

WeakMap

The WeakMap type is interesting in that it’s the fi rst ECMAScript feature that allows you to know
when an object has been completely dereferenced. A WeakMap works in a similar manner to a simple
map where you store a key-value pair. The big difference for a WeakMap is that the key must be
an object and when the object no longer exists, the associated key-value pair is removed from the
WeakMap. For example:

var key = {},
 map = new WeakMap();

map.set(key, “Hello!”);

//dereference the key so the value is also removed
key = null;

The use case for WeakMaps is as yet unclear, but this construct also appears in Java as WeakHashMap
and so this brings another data structure option to JavaScript.

StructType

One of the acknowledged downsides of JavaScript is the use of a single data type to represent all
numbers. WebGL introduced typed arrays to help this problem, and ECMAScript 6 introduces
typed structures to further integrate more numeric data types into the language. A struct type is
analogous to a struct in C, where you combine multiple properties into a single record. Struct types
in JavaScript allow you to create similar data structures by specifying properties and the type of
data they contain. The initial implementation defi nes several block types:

uint8 — unsigned 8-bit integer

int8 — signed 8-bit integer

uint16 — unsigned 16-bit integer

int16 — signed 16-bit integer

➤

➤

➤

➤

bapp01.indd 869bapp01.indd 869 12/8/11 12:58:27 PM12/8/11 12:58:27 PM

870 ❘ APPENDIX A ECMASCRIPT HARMONY

uint32 — unsigned 32-bit integer

int32 — signed 32-bit integer

float32 — 32-bit fl oating point

float64 — 64-bit fl oating point

Block types contain a single value, and there are expected to be more than these initial eight added
in the future.

A struct type is created by instantiating StructType with property defi nitions in the form of an
object literal. For example:

var Size = new StructType({ width: uint32, height: uint32 });

This code creates a new struct type called Size with two properties: width and height. Each
property holds an unsigned 32-bit integer. The variable Size is actually a constructor that can be
used just like an object constructor. You initialize an instance of a struct type by passing an object
literal with the property values into the constructor:

var boxSize = new Size({ width: 80, height: 60 });
console.log(boxSize.width); //80
console.log(boxSize.height); //60

Here, a new instance of Size is created with a width of 80 and a height of 60. These properties
can be written to and read from but always must contain 32-bit unsigned integers.

It’s possible to create more complex struct types by having each property defi ned as another struct
type. For example:

var Location = new StructType({ x: int32, y: int32 });
var Box = new StructType({ size: Size, location: Location });

var boxInfo = new Box({ size: { width:80, height:60 }, location: { x: 0, y: 0 }});
console.log(boxInfo.size.width); //80

This example creates a simple struct type called Location and a complex struct type called Box,
whose properties are defi ned as struct types. The Box constructor still accepts an object literal defi ning
the values for each property and will type-check to ensure the values are the correct data type.

ArrayType

Closely related to struct type is array type. An array type allows creation of an array whose values
are limited to a specifi c type, very similar to WebGL typed arrays. To create a new array type, call
the ArrayType constructor and pass in the type of data it should hold and how many items will be
in the array. For example:

var SizeArray = new ArrayType(Size, 2);
var boxes = new BoxArray([{ width: 80, height: 60 }, { width: 50, height: 50 }]);

➤

➤

➤

➤

bapp01.indd 870bapp01.indd 870 12/8/11 12:58:27 PM12/8/11 12:58:27 PM

Classes ❘ 871

This code creates a new array type called SizeArray that is initialized to hold instances of Size
with an allotment of two spaces in the array. Array types are initialized by passing in an array
containing the data that should be converted, allowing literals to be passed in and coerced into the
correct data type (as with struct types).

CLASSES

Developers have long clamored for an easy way to defi ne Java-like classes in JavaScript, and
ECMAScript 6 fi nally introduces this functionality into the language. Classes are syntactic sugar
that overlay the current constructor- and prototype-based approach to types. Consider the following
type defi nition:

function Person(name, age){
 this.name = name;
 this.age = age;
}

Person.prototype.sayName = function(){
 alert(this.name);
};

Person.prototype.getOlder = function(years){
 this.age += years;
};

The equivalent using the new class syntax is:

class Person {

 constructor(name, age){
 public name = name;
 public age = age;
 }

 sayName(){
 alert(this.name);
 }

 getOlder(years){
 this.age += years;
 }

}

The new class syntax begins with the keyword class followed by the name of the type. Inside
the braces is where properties and methods are created. Methods no longer require the function
keyword; instead just use the name of the method followed by parentheses. If the method is named
constructor, then it acts as the constructor function for the class (the same as the Person function
in the prior code). All other methods and properties defi ned within the class braces are applied to
the prototype, so in this case, sayName() and getOlder() both end up on Person.prototype.

bapp01.indd 871bapp01.indd 871 12/8/11 12:58:28 PM12/8/11 12:58:28 PM

872 ❘ APPENDIX A ECMASCRIPT HARMONY

Within the constructor function, variables preceded by the keywords public or private are created
as instance properties of the object. Both name and age are defi ned as public properties in this
example.

Private Members

The classes proposal supports private members by default, both on the instance and on the
prototype. The private keyword indicates that a member is private and cannot be accessed from
outside of a class’s methods. In order to access private members, a special syntax is used where
the private() function is called on this and then the property may be accessed. For example, the
following changes the Person class to have a private age property.

class Person {

 constructor(name, age){
 public name = name;
 private age = age;
 }

 sayName(){
 alert(this.name);
 }

 getOlder(years){
 private(this).age += years;
 }

}

The syntax for accessing private properties is still being debated and will likely change in the future.

Getters/Setters

The new class syntax allows you to defi ne getters and setters for properties directly, avoiding the
extra step of calling Object.defineProperty(). The syntax is the same as for methods but has a
preceding get or set keyword. For example:

class Person {

 constructor(name, age){
 public name = name;
 public age = age;
 private innerTitle = “”;

 get title(){
 return innerTitle;
 }

 set title(value){
 innerTitle = value;
 }

bapp01.indd 872bapp01.indd 872 12/8/11 12:58:28 PM12/8/11 12:58:28 PM

Classes ❘ 873

 }

 sayName(){
 alert(this.name);
 }

 getOlder(years){
 this.age += years;
 }

}

This version of the Person class defi nes a getter and a setter for the title property. Each function
operates on the innerTitle variable that is defi ned in the constructor. Getters and setters for
prototype properties are also possible by using the same syntax outside of the constructor function.

Inheritance

A key advantage of using classes over the more traditional JavaScript syntax is the ease with which
inheritance is achieved. Instead of worrying about constructor stealing and prototype chaining, a
simple syntax that is shared with other languages is used: the extends keyword. For example:

class Employee extends Person {
 constructor(name, age){
 super(name,age);
 }
}

This code creates a new Employee class as a subclass of Person. The prototype chaining occurs
behind the scenes and constructor stealing is now formally supported by using the super()
function. The preceding code is the logical equivalent of the following:

function Employee(name, age){
 Person.call(this, name, age);
}

Employee.prototype = new Person();

In addition to this style of inheritance, classes can also specify an object to assign directly as its
prototype by using the prototype keyword in place of extends:

var basePerson = {
 sayName: function(){
 alert(this.name);
 },

 getOlder: function(years){
 this.age += years;
 }
};

class Employee prototype basePerson {

bapp01.indd 873bapp01.indd 873 12/8/11 12:58:29 PM12/8/11 12:58:29 PM

874 ❘ APPENDIX A ECMASCRIPT HARMONY

 constructor(name, age){
 public name = name;
 public age = age;
 }
}

In this example, Employee.prototype is assigned to the basePerson object directly, allowing for
the same type of inheritance currently achieved through Object.create().

MODULES

Modules (or namespaces or packages) are a popular concept in organizing JavaScript applications.
Each module contains specifi c, unique functionality that is self-contained and separable from other
modules. Though several ad hoc module formats have emerged in JavaScript, ECMAScript 6 seeks
to formalize how modules are created and managed.

Modules operate in their own top-level execution context and so cannot pollute the global execution
context in which they’re imported. By default, all variables, functions, classes, and so on declared
within a module are private to that module. You indicate that a member should be exposed to the
outside world by using the export keyword in front of it. For example:

module MyModule {
 //export this stuff
 export let myobject = {};
 export function hello(){ alert(“hello”); };

 //keep this stuff hidden
 function goodbye(){
 //...
 }
}

This module exports an object called myobject and a function called hello(). The module is
used elsewhere, in a page or in another module, but imports one or both of the available members.
Importation is accomplished using the import command:

//import just myobject
import myobject from MyModule;
console.log(myobject);

//import everything
import * from MyModule;
console.log(myobject);
console.log(hello);

//explicitly named imports
import {myobject, hello} from MyModule;
console.log(myobject);
console.log(hello);

//no import – use module directly

bapp01.indd 874bapp01.indd 874 12/8/11 12:58:29 PM12/8/11 12:58:29 PM

Modules ❘ 875

console.log(MyModule.myobject);
console.log(MyModule.hello);

If the execution context has access to a module, then the module may be accessed directly to
get the members that it’s exporting. The process of importing simply brings individual members
into the current execution context so that they may be accessed without referencing the module
directly.

External Modules

Modules may be included dynamically by providing a URL from which the module is to be loaded.
To do so, just add the URL after the module declaration:

module MyModule from “mymodule.js”;
import myobject from MyModule;

This declaration instructs the JavaScript engine to download mymodule.js and load the module
named MyModule from it. Note that this call is blocking — the JavaScript engine will not continue
processing code until the URL is downloaded and evaluated.

If you want to include something that the module exports without bringing in the entire module,
you can specify that using the import directive:

import myobject from “mymodule.js”;

Overall, modules are just a way to group together related functionality and protect the global scope
from pollution.

bapp01.indd 875bapp01.indd 875 12/8/11 12:58:30 PM12/8/11 12:58:30 PM

bapp01.indd 876bapp01.indd 876 12/8/11 12:58:30 PM12/8/11 12:58:30 PM

Strict Mode

ECMAScript 5 was the fi rst to introduce the concept of strict mode. Strict mode allows you
to opt-in to stricter checking for JavaScript error conditions either globally or locally within
a single function. The advantage of strict mode is that you’ll be informed of errors earlier, so
some of the ECMAScript quirks that cause programming errors will be caught immediately.

The rules of strict mode are important to understand, as the next version of ECMAScript will
start with a base of strict mode. Strict mode is supported in Internet Explorer 10+, Firefox 4+,
Safari 5.1+, and Chrome.

OPTING-IN

To opt-in to strict mode, use the strict mode pragma, which is simply a string that isn’t assigned
to any variable:

“use strict”;

Using this syntax, which is valid even in ECMAScript 3, allows seamless fallback for JavaScript
engines that don’t support strict mode. The engines that support strict mode will enable it,
while engines that don’t will simply ignore the pragma as an unassigned string literal.

When the pragma is applied globally, outside of a function, strict mode is enabled for the entire
script. That means adding the pragma to a single script that is concatenated with other scripts
into a single fi le puts all JavaScript in the fi le into strict mode.

You can also turn on strict mode within a function only, such as:

function doSomething(){
 “use strict”;

 //other processing
}

B

Bapp02.indd 877Bapp02.indd 877 12/8/11 12:58:52 PM12/8/11 12:58:52 PM

878 ❘ APPENDIX B STRICT MODE

If you don’t have complete control over all of the scripts on a page, then it’s advisable to enable strict
mode only within specifi c functions for which it has been tested.

VARIABLES

How and when variables get created is different in strict mode. The fi rst change disallows accidental
creation of global variables. In nonstrict mode, the following creates a global variable:

//Variable is not declared
//Non-strict mode: creates a global
//Strict mode: Throws a ReferenceError

message = “Hello world!”;

Even though message isn’t preceded by the var keyword and isn’t explicitly defi ned as a property of
the global object, it is still automatically created as a global. In strict mode, assigning a value to an
undeclared variable throws a ReferenceError when the code is executed.

A related change is the inability to call delete on a variable. Nonstrict mode allows this and may
silently fail (returning false). In strict mode, an attempt to delete a variable causes an error:

//Deleting a variable
//Non-strict mode: Fails silently
//Strict mode: Throws a ReferenceError

var color = “red”;
delete color;

Strict mode also imposes restrictions on variable names. Specifi cally, it disallows variables named
implements, interface, let, package, private, protected, public, static, and yield. These
are now reserved words that are intended for use in future ECMAScript editions. Any attempt to
use these as variable names while in strict mode will result in a syntax error.

OBJECTS

In strict mode, object manipulation is more likely to throw errors than in nonstrict mode. Strict
mode tends to throw errors in situations where nonstrict mode silently fails, increasing the
likelihood of catching an error early on in development.

To begin, there are several cases where attempting to manipulate an object property will throw an error:

Assigning a value to a read-only property throws a TypeError.

Using delete on a nonconfi gurable property throws a TypeError.

Attempting to add a property to a nonextensible object throws a TypeError.

➤

➤

➤

Bapp02.indd 878Bapp02.indd 878 12/8/11 12:58:55 PM12/8/11 12:58:55 PM

Another restriction on objects has to do with declaring them via object literals. When using an
object literal, property names must be unique. For instance:

//Two properties with the same name
//Non-strict mode: No error, second property wins
//Strict mode: Throws a syntax error

var person = {
 name: “Nicholas”,
 name: “Greg”
 };

The object literal for person has two properties called name in this code. The second property is the
one that ends up on person in nonstrict mode. In strict mode, this is a syntax error.

FUNCTIONS

First, strict mode requires that named function arguments be unique. Consider the following:

//Duplicate named arguments
//Non-strict mode: No error, only second argument works
//Strict mode: Throws a SyntaxError

function sum (num, num){
 //do something
}

In nonstrict mode, this function declaration doesn’t throw an error. You’ll be able to access the
second num argument only by name while the fi rst is accessible only through arguments.

The arguments object also has a slight behavior change in strict mode. In nonstrict mode, changes
to a named argument are also refl ected in the arguments object, whereas strict mode ensures that
each are completely separate. For example:

//Change to named argument value
//Non-strict mode: Change is reflected in arguments
//Strict mode: Change is not reflected in arguments

function showValue(value){
 value = “Foo”;
 alert(value); //”Foo”
 alert(arguments[0]); //Non-strict mode: “Foo”
 //Strict mode: “Hi”
}

showValue(“Hi”);

Functions ❘ 879

Bapp02.indd 879Bapp02.indd 879 12/8/11 12:58:55 PM12/8/11 12:58:55 PM

880 ❘ APPENDIX B STRICT MODE

In this code, the function showValue() has a single named argument called value. The function is
called with an argument of “Hi”, which is assigned to value. Inside the function, value is changed
to “Foo”. In nonstrict mode, this also changes the value in arguments[0], but in strict mode they
are kept separate.

Another change is the elimination of arguments.callee and arguments.caller. In nonstrict
mode, these refer to the function itself and the calling function, respectively. In strict mode,
attempting to access either property throws a TypeError. For example:

//Attempt to access arguments.callee
//Non-strict mode: Works as expected
//Strict mode: Throws a TypeError

function factorial(num){
 if (num <= 1) {
 return 1;
 } else {
 return num * arguments.callee(num-1)
 }
}

var result = factorial(5);

Similarly, the caller and arguments properties of a function now throw a TypeError when an
attempt is made to read or write them. So in this example, attempts to access factorial.caller
and factorial.callee would also throw an error.

Also, as with variables, strict mode imposes restrictions on function names, disallowing functions
named implements, interface, let, package, private, protected, public, static, and yield.

The last change to functions is disallowing function declarations unless they are at the top level of a script
or function. That means functions declared, for instance, in an if statement are now a syntax error:

//Function declaration in an if statement
//Non-strict mode: Function hoisted outside of if statement
//Strict mode: Throws a syntax error

if (true){
 function doSomething(){
 //...
 }
}

This syntax is tolerated on all browsers in nonstrict mode but will now throw a syntax error in
strict mode.

EVAL()

The much-maligned eval() function receives an upgrade in strict mode. The biggest change to eval()
is that it will no longer create variables or functions in the containing context. For example:

Bapp02.indd 880Bapp02.indd 880 12/8/11 12:58:56 PM12/8/11 12:58:56 PM

//eval() used to create a variable
//Non-strict mode: Alert displays 10
//Strict mode: Throws an ReferenceError when alert(x) is called

function doSomething(){
 eval(“var x=10”);
 alert(x);
}

When run in nonstrict mode, this code creates a local variable x in the function doSomething() and
that value is then displayed using alert(). In strict mode, the call to eval() does not create the
variable x inside of doSomething() and so the call to alert() throws a ReferenceError because x
is undeclared.

Variables and functions can be declared inside of eval(), but they remain inside a special scope
that is used while code is being evaluated and then destroyed once completed. So the following code
works without any errors:

“use strict”;
var result = eval(“var x=10, y=11; x+y”);
alert(result); //21

The variables x and y are declared inside of eval() and are added together before returning their
value. The result variable then contains 21, the result of adding x and y, even though x and y no
longer exist by the time alert() is called.

EVAL AND ARGUMENTS

Strict mode now explicitly disallows using eval and arguments as identifi ers and manipulating
their values. For example:

//Redefining eval and arguments as variables
//Non-strict mode: Okay, no error.
//Strict-mode: Throws syntax error

var eval = 10;
var arguments = “Hello world!”;

In nonstrict mode, you can overwrite eval and assign arguments to a value. In strict mode, this
causes a syntax error. You can’t use either as an identifi er, which means all of the following use
cases throw a syntax error:

Declaration using var

Assignment to another value

Attempts to change the contained value, such as using ++

Used as function names

➤

➤

➤

➤

eval and arguments ❘ 881

Bapp02.indd 881Bapp02.indd 881 12/8/11 12:58:56 PM12/8/11 12:58:56 PM

882 ❘ APPENDIX B STRICT MODE

Used as named function arguments

Used as exception name in try-catch statement

COERCION OF THIS

One of the biggest security issues, and indeed one of the most confusing aspects of JavaScript,
is how the value of this is coerced in certain situations. When using the apply() or call()
methods of a function, a null or undefined value is coerced to the global object in nonstrict mode.
In strict mode, the this value for a function is always used as specifi ed, regardless of the value.
For example:

//Access a property
//Non-strict mode: Accesses the global property
//Strict mode: Throws an error because this is null

var color = “red”;

function displayColor(){
 alert(this.color);
}

displayColor.call(null);

This code passes null to displayColor.call(), which in nonstrict mode means the this value of the
function is the global object. The result is an alert displaying “red”. In strict mode, the this value of
the function is null, so it throws an error when attempting to access a property of a null object.

OTHER CHANGES

There are several other changes to strict mode of which you need to be aware. The fi rst is the elimination
of the with statement. The with statement changes how identifi ers are resolved and has been removed
from strict mode as a simplifi cation. An attempt to use with in strict mode results in a syntax error.

//Use of the with statement
//Non-strict mode: Allowed
//Strict mode: Throws a syntax error

with(location){
 alert(href);
}

Strict mode also eliminates the octal literal from JavaScript. Octal literals begin with a zero and
have traditionally been the source of many errors. An octal literal is now considered invalid syntax
in strict mode.

➤

➤

Bapp02.indd 882Bapp02.indd 882 12/8/11 12:58:57 PM12/8/11 12:58:57 PM

//Use of octal literal
//Non-strict mode: value is 8.
//Strict mode: throws a syntax error.

var value = 010;

As mentioned in the book, ECMAScript 5 also changed parseInt() for nonstrict mode, where
octal literals are now considered decimal literals with a leading zero. For example:

//Use of octal literal in parseInt()
//Non-strict mode: value is 8
//Strict mode: value is 10

var value = parseInt(“010”);

Other Changes ❘ 883

Bapp02.indd 883Bapp02.indd 883 12/8/11 12:58:57 PM12/8/11 12:58:57 PM

Bapp02.indd 884Bapp02.indd 884 12/8/11 12:58:57 PM12/8/11 12:58:57 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

JavaScript Libraries

JavaScript libraries help to bridge the gap between browser differences and provide easier access
to complex browser features. Libraries come in two forms: general and specialty. General
JavaScript libraries provide access to common browser functionality and can be used as the basis
for a web site or web application. Specialty libraries do only specifi c things and are intended
to be used for only parts of a web site or web application. This appendix provides an overview
of these libraries and some of their functionality, along with web sites that you can use as
additional resources.

GENERAL LIBRARIES

General JavaScript libraries provide functionality that spans across topics. All general libraries
seek to equalize browser interface and implementation differences by wrapping common
functionality with new APIs. Some of the APIs look similar to native functionality, whereas
others look completely different. General libraries typically provide interaction with the
DOM, support for Ajax, and utility methods that aid in common tasks.

Yahoo! User Interface Library (YUI)

Yahoo! User Interface Library (YUI) is an open-source JavaScript and CSS library designed
in an à la carte fashion. There isn’t just one fi le for this library; instead there are multiple
fi les provided in a variety of confi gurations, ensuring that you load only what you need. YUI
covers all aspects of JavaScript, from basic utilities and helper functions to full-blown widgets.
YUI has a dedicated team of software engineers at Yahoo! providing excellent documentation
and support.

License: BSD License

Web site: www.yuilibrary.com

C

bapp03.indd 885bapp03.indd 885 12/8/11 12:59:51 PM12/8/11 12:59:51 PM

886 ❘ APPENDIX C JAVASCRIPT LIBRARIES

Prototype

Prototype is an open-source library that provides simple APIs for common web tasks. Originally
developed for use in Ruby on Rails, Prototype is class-driven, aiming to provide class defi nition and
inheritance for JavaScript. To that end, Prototype provides a number of classes that encapsulate
common and complex functionality into simple API calls. As a single fi le, Prototype can be dropped
into any page with ease. It is written and maintained by Sam Stephenson.

License: MIT License and Creative Commons Attribution-Share Alike 3.0 Unported

Web site: www.prototypejs.org/

The Dojo Toolkit

In the Dojo Toolkit, an open-source library modeled on a package system, groups of functionality
are organized into packages that can be loaded on demand. Dojo provides a wide range of options
and confi gurations, covering almost anything you want to do with JavaScript. The Dojo Toolkit was
created by Alex Russell and is maintained by the employees and volunteers at the Dojo Foundation.

License: “New” BSD License or Academic Free License version 2.1

Web site: www.dojotoolkit.org/

MooTools

An open-source library designed to be compact and optimized, MooTools adds methods to native
JavaScript objects to provide new functionality on familiar interfaces and to provide new objects.
Its small size and simple API make MooTools a favorite among web developers.

License: MIT License

Web site: www.mootools.net/

jQuery

jQuery is an open-source library that provides a functional programming interface to JavaScript. It
is a complete library whose core is built around using CSS selectors to work with DOM elements.
Through call chaining, jQuery code looks more like a narrative description of what should
happen rather than JavaScript code. This style of code has become popular among designers and
prototypers. jQuery is written and maintained by John Resig.

License: MIT License or General Public License (GPL)

Web site: http://jquery.com/

MochiKit

An open-source library composed of several smaller utilities, MochiKit prides itself on being
well-documented and well-tested, having a large amount of API and example documentation and
hundreds of tests to ensure quality. MochiKit is written and maintained by Bob Ippolito.

bapp03.indd 886bapp03.indd 886 12/8/11 12:59:53 PM12/8/11 12:59:53 PM

License: MIT License or Academic Free License version 2.1

Web site: www.mochikit.com/

Underscore.js

While not strictly a general library, Underscore.js does provide some additional functionality for
functional programming in JavaScript. The documentation talks about Underscore.js as a complement
to jQuery, providing additional low-level functionality for working with objects, arrays, functions,
and other JavaScript data types. Underscore.js is maintained by Jeremy Ashkenas of DocumentCloud.

License: MIT License

Web site: http://documentcloud.github.com/underscore/

INTERNET APPLICATIONS

Internet application libraries are designed to ease the development of an entire web application.
Instead of providing small pieces to the application puzzle, they provide entire conceptual
frameworks for rapid application development. Though these libraries may contain some low-level
functionality, their goal is to help you develop web applications quickly.

Backbone.js

A minimal model-view-controller (MVC) open-source library built on top of Underscore.js,
Backbone.js is optimized for single-page applications, allowing you to easily update parts of the page
as application state changes. Backbone.js is maintained by Jeremy Ashkenas of DocumentCloud.

License: MIT License

Web site: http://documentcloud.github.com/backbone/

Rico

An open-source library that aims to make rich Internet-application development easier, Rico
provides utilities for Ajax, animations, and styles and widgets. The library is maintained by a small
team of volunteers, and development has slowed signifi cantly as of 2008.

License: Apache License version 2.0

Web site: http://openrico.org/

qooxdoo

qooxdoo is an open-source library that aims to help with the entire web-application development
cycle. qooxdoo implements its own versions of classes and interfaces to create a programming
model similar to traditional object-oriented (OO) languages. The library includes a full GUI toolkit
and compilers for simplifying the front-end build process. qooxdoo began as an internal library
for the 1&1 web-hosting company (www.1and1.com) and later was released under an open-source
license. 1&1 employs several full-time developers to maintain and develop the library.

Internet Applications ❘ 887

bapp03.indd 887bapp03.indd 887 12/8/11 12:59:54 PM12/8/11 12:59:54 PM

888 ❘ APPENDIX C JAVASCRIPT LIBRARIES

License: GNU Lesser General Public License (LGPL) or Eclipse Public License (EPL)

Web site: www.qooxdoo.org/

ANIMATION AND EFFECTS

Animation and other visual effects have become a big part of web development. Getting smooth
animation out of web pages is a nontrivial task, and several library developers have stepped up to
provide easy-to-use and smooth animation and effects. Many of the general JavaScript libraries
mentioned previously also feature animation.

script.aculo.us

A companion to Prototype, script.aculo.us provides easy access to cool animations using nothing
more than CSS and the DOM. Prototype must be loaded before script.aculo.us can be used.
script.aculo.us is one of the most popular effects libraries, being used by major web sites and web
applications around the world. The author, Thomas Fuchs, actively maintains script.aculo.us.

License: MIT License

Web site: http://script.aculo.us/

moo.fx

The moo.fx open-source animation library is designed to work on top of either Prototype or MooTools.
Its goal is to be as small as possible (the latest version is 3KB) and to allow developers to create
animations while writing as little code as necessary. moo.fx is included with MooTools by default; it
can also be downloaded separately for use with Prototype.

License: MIT License

Web site: http://moofx.mad4milk.net/

Lightbox

Lightbox, a JavaScript library for creating simple image overlays on any page, requires both Prototype
and script.aculo.us to create its visual effects. The basic idea is to allow users to view an image or a
series of images in an overlay without leaving the current page. The “lightbox” overlay is customizable
in both appearance and transitions. Lightbox is developed and maintained by Lokesh Dhakar.

License: Creative Commons Attribution 2.5 License

Web site: www.huddletogether.com/projects/lightbox2/

CRYPTOGRAPHY

As Ajax applications became more popular, there was an increasing need for cryptography on the
browser to secure communications. Fortunately, several people have implemented common security
algorithms in JavaScript. Most of these libraries aren’t offi cially supported by their authors but are
used widely nonetheless.

bapp03.indd 888bapp03.indd 888 12/8/11 12:59:54 PM12/8/11 12:59:54 PM

JavaScript MD5

JavaScript MD5 is an open-source library that implements MD4, MD5, and SHA-1 secure hash
functions. Author Paul Johnston and several other contributors have written this extensive library,
one fi le per algorithm, for use in web applications. The home page gives an overview of hash
functions and a brief discussion about vulnerabilities and appropriate uses.

License: BSD License

Web site: http://pajhome.org.uk/crypt/md5/

JavaScrypt

The JavaScrypt library implements MD5 and AES (256-bit) cryptography. JavaScrypt’s web site offers
lots of information about the history of cryptography and its usage in computers. Though lacking
basic documentation about integrating the library into your web application, JavaScrypt’s source code
is full of advanced mathematical manipulations and computations.

License: Public domain

Web site: www.fourmilab.ch/javascrypt/

Cryptography ❘ 889

bapp03.indd 889bapp03.indd 889 12/8/11 12:59:55 PM12/8/11 12:59:55 PM

bapp03.indd 890bapp03.indd 890 12/8/11 12:59:55 PM12/8/11 12:59:55 PM

JavaScript Tools

Writing JavaScript is a lot like writing in any other programming language, with tools designed
to make development easier. The number of tools available for JavaScript developers continues to
grow, making it much easier to locate problems, optimize, and deploy JavaScript-based solutions.
Some of the tools are designed to be used from JavaScript, whereas others can be run outside
the browser. This appendix provides an overview of some of these tools, as well as additional
resources for more information.

VALIDATORS

Part of the problem with JavaScript debugging is that there aren’t many IDEs that automatically
indicate syntax errors as you type. Most developers write some code and then load it into
a browser to look for errors. You can signifi cantly reduce the instances of such errors by
validating your JavaScript code before deployment. Validators check basic syntax and provide
warnings about style.

JSLint

JSLint is a JavaScript validator written by Douglas Crockford. It checks for syntax errors at a
core level, going with the lowest common denominator for cross-browser issues. (It follows the
strictest rules to ensure your code works everywhere.) You can enable Crockford’s warnings
about coding style, including code format, use of undeclared global variables, and more.
Even though JSLint is written in JavaScript, it can be run on the command line through the
Java-based Rhino interpreter, as well as through WScript and other JavaScript interpreters.
The web site provides custom versions for each command-line interpreter.

Price: Free

Web site: www.jslint.com/

D

bapp04.indd 891bapp04.indd 891 12/8/11 1:00:16 PM12/8/11 1:00:16 PM

892 ❘ APPENDIX D JAVASCRIPT TOOLS

JSHint

JSHint is a fork of JSLint that provides more customization as to the rules that are applied.
Like JSLint, it checks for syntax errors fi rst and then looks for problematic coding patterns. Each
JSLint check is also present in JSHint, but developers have better control over which rules to apply.
Also similar to JSLint, JSHint can be run on the command line using Rhino.

Price: Free

Web site: www.jshint.com/

JavaScript Lint

Completely unrelated to JSLint, JavaScript Lint is a C-based JavaScript validator written by Matthias
Miller. It uses SpiderMonkey, the JavaScript interpreter used by Firefox, to parse code and look
for syntax errors. The tool has a fairly large collection of options that enable additional warnings
about coding style, undeclared variables, and unreachable code. JavaScript Lint is available for both
Windows and Macintosh, and the source code is available as well.

Price: Free

Web site: www.javascriptlint.com/

MINIFIERS

An important part of the JavaScript build process is crunching the output to remove excess characters.
Doing so ensures that only the smallest number of bytes are transmitted to the browser for parsing
and ultimately speeds up the user experience. There are several such minifi ers available with varying
compression ratios.

JSMin

JSMin is a C-based cruncher written by Douglas Crockford that does basic JavaScript compression.
It primarily removes white space and comments to ensure that the resulting code can still be executed
without issues. JSMin is available as a Windows executable with source code available in C and
many other languages.

Price: Free

Web site: www.crockford.com/javascript/jsmin.html

Dojo ShrinkSafe

The same people responsible for the Dojo Toolkit have a tool called ShrinkSafe, which uses the
Rhino JavaScript interpreter to fi rst parse JavaScript code into a token stream and then use that to
safely crunch the code. As with JSMin, ShrinkSafe removes extra white space (but not line breaks)
and comments but also goes one step further and replaces the names of local variables with

bapp04.indd 892bapp04.indd 892 12/8/11 1:00:18 PM12/8/11 1:00:18 PM

two-character variable names instead. The result is smaller output than with JSMin without any
risk of introducing syntax errors.

Price: Free

Web site: http://shrinksafe.dojotoolkit.org/

YUI Compressor

The YUI team has a cruncher called the YUI Compressor. Similar to ShrinkSafe, the YUI Compressor
uses Rhino to parse JavaScript code into a token stream and then remove comments and white space
and replace variable names. Unlike ShrinkSafe, the YUI Compressor also removes line breaks and
performs several other micro-optimizations to save bytes here and there. Typically, fi les processed by
the YUI Compressor are smaller than those processed with either JSMin or ShrinkSafe.

Price: Free

Web site: http://yuilibrary.com/projects/yuicompressor

UNIT TESTING

Test-driven development (TDD) is a software-development process built around the use of unit
testing. Until recently, there weren’t many tools for unit testing in JavaScript. Now, most JavaScript
libraries use some form of unit testing on their own code, and some publish the unit-testing
framework for others to use.

JsUnit

The original JavaScript unit-testing library is not tied to any particular JavaScript library. JsUnit is
a port of the popular JUnit testing framework for Java. Tests are run in the page and may be set up
for automatic testing and submission of results to a server. The web site contains examples and basic
documentation.

Price: Free

Web site: www.jsunit.net/

YUI Test

Part of the Yahoo! User Interface Library (YUI), YUI Test can be used to test not only code using YUI
but also any JavaScript on your site or application. YUI Test includes simple and complex assertions, as
well as a way to simulate simple mouse and keyboard events. The framework is completely documented
on the Yahoo! Developer Network, including examples, API documentation, and more. Tests are run in
the browser, and results are output on the page. YUI uses YUI Test to test the entire library.

Price: Free

Web site: http://yuilibrary.com/projects/yuitest/

Unit Testing ❘ 893

bapp04.indd 893bapp04.indd 893 12/8/11 1:00:19 PM12/8/11 1:00:19 PM

894 ❘ APPENDIX D JAVASCRIPT TOOLS

Dojo Object Harness (DOH)

The Dojo Object Harness (DOH) began as the internal unit-testing tool for Dojo before being
released for everyone to use. As with the other frameworks, unit tests are run inside the browser.

Price: Free

Web site: www.dojotoolkit.org/

qUnit

qUnit is the unit-testing framework designed for use with jQuery. Indeed, jQuery itself uses qUnit
for all of its testing. Despite this, qUnit has no dependency on jQuery and can be used to test any
JavaScript code. qUnit prides itself on being a very simple unit-testing framework that lets people get
up and running easily.

Price: Free

Web site: https://github.com/jquery/qunit

DOCUMENTATION GENERATORS

Most IDEs include documentation generators for the primary language. Since JavaScript has no offi cial
IDE, documentation has traditionally been done by hand or through repurposing documentation
generators for other languages. However, there are now documentation generators specifi cally targeted
at JavaScript.

JsDoc Toolkit

The JsDoc Toolkit was one of the fi rst JavaScript documentation generators. It requires you to enter
Javadoc-like comments into the source code, which are then processed and output as HTML fi les.
You can customize the format of the HTML using one of the prebuilt JsDoc templates or you can
create your own. The JsDoc Toolkit is available as a Java package.

Price: Free

Web site: http://code.google.com/p/jsdoc-toolkit/

YUI Doc

YUI Doc is YUI’s documentation generator. The generator is written in Python, so it requires a
Python runtime environment to be installed. YUI Doc outputs HTML fi les with integrated property
and method searches implemented using the YUI’s Autocomplete widget. As with JsDoc, YUI Doc
requires Javadoc-like comments to be inserted into the source code. The default HTML can be
changed through the modifi cation of the default HTML template fi le and associated style sheet.

Price: Free

Web site: www.yuilibrary.com/projects/yuidoc/

bapp04.indd 894bapp04.indd 894 12/8/11 1:00:19 PM12/8/11 1:00:19 PM

AjaxDoc

The goal of AjaxDoc is slightly different from that of the previous generators. Instead of creating
HTML fi les for JavaScript documentation, it creates XML fi les in the same format as those
created for .NET languages, such as C# and Visual Basic .NET. Doing so allows standard .NET
documentation generators to create documentation as HTML fi les. AjaxDoc requires a format of
documentation comments that is similar to the documentation comments for all .NET languages.
AjaxDoc was created for use with ASP.NET Ajax solutions, but it can be used in standalone
projects as well.

Price: Free

Web site: www.codeplex.com/ajaxdoc/

SECURE EXECUTION ENVIRONMENTS

As mashups became more popular, there was a greater need to allow JavaScript from outside parties
to exist and function on the same page. This opens up several security issues regarding access to
restricted functionality. The following tools aim to create secure execution environments in which
JavaScript from a number of different sources can exist without interfering with one another.

ADsafe

Created by Douglas Crockford, ADsafe is a subset of JavaScript deemed safe for third-party scripts
to access. For code to run within ADsafe, the page must include the ADsafe JavaScript library and
be marked up in the ADsafe widget format. As a result, the code is assured to be safe for execution
on any page.

Price: Free

Web site: www.adsafe.org/

Caja

Caja takes a unique approach to secure JavaScript execution. Similar to ADsafe, Caja defi nes a
subset of JavaScript that can be used in a secure manner. Caja can then sanitize this JavaScript code
and verify that it is doing only what it’s supposed to. As part of the project, a language called Cajita
is available, which is an even smaller subset of JavaScript functionality. Caja is still in its infancy but
shows a lot of promise for allowing multiple scripts to run on the same page without the possibility
of malicious activity.

Price: Free

Web site: http://code.google.com/p/google-caja/

Secure Execution Environments ❘ 895

bapp04.indd 895bapp04.indd 895 12/8/11 1:00:20 PM12/8/11 1:00:20 PM

bapp04.indd 896bapp04.indd 896 12/8/11 1:00:21 PM12/8/11 1:00:21 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

897

Symbols

$$, 157
$&, 134, 157
$`, 134, 157
$’, 134, 157
+

add operator, 61–62
unary plus operator, 48–49

-
subtract operator, 62–63
unary minus operator, 48–49

/*, */ (block comment), 26
+= (add/assign), 68
& (bitwise AND operator), 52
| (bitwise OR operator), 52–53
^ (bitwise XOR operator), 53–54
-- (decrement operator), 46–48
/ (divide operator), 60
/= (divide/assign), 68
“ (double quotes)

JSON strings, 692
strings, 41–42

== (equal operator), 65–66
› (greater-than operator), 63–65
›= (greater-than-or-equal-to),

63–65
=== (identically equal operator),

66–67
++ (increment operator), 46–48
‹‹ (left shift), 54
‹‹= (left shift/assign), 68
‹ (less-than operator), 63–65
&& (logical AND operator),

57–58
! (logical NOT operator), 56–57
|| (logical OR operator), 58–59
%= (modulus assign), 68
% (modulus/remainder operator),

60–61
* (multiply operator), 59–60
*= (multiply/assign), 68
!== (not identically equal

operator), 66–67

!= (not-equal operator), 65–66
›› (signed right shift), 54–55
››= (signed right shift/assign), 68
// (single line comment), 26
‘ (single quotes), strings, 41–42
-= (subtract/assign), 68
››› (unsigned right shift),

55–56
›››= (unsigned right shift/

assign), 68
\ “, 42
\ ‘, 42
\\ (backslash), 42
\b (backspace), 42
\f (form feed), 42
\n (new line), 42
\r (carriage return), 42
\t (tab), 42
\unnnn, 42
\xnn, 42
~ (bitwise NOT operator), 51

A

AAC, 604
abort, 452, 601
abs(), 169
accessibility, 364, 459, 471,

779, 784
accessor properties, 176–178
acos(), 169
activation object, 91
adaptable, maintainable code, 802
add operator (+), 61–62
add/assign (+=), 68
addColorStop(), 565
addElement(), 598
addEventListener(), 438, 439,

440, 443
addHandler(), 441, 442, 740,

756, 757
additive operators, 61–63
addNamespace(), 686
addParameter(), 663, 664, 665

addTen(), 88
Adobe Flash, 3, 262, 263, 598,

602, 701
ADsafe, 895
advanced functions, 731–743
advanced JavaScript techniques,

731–764
advanced timers, 746–754
AES cryptography, 889
Ajax, 701–729

ASP.NET Ajax solutions, 895
Asynchronous JavaScript +

XML, 701
Comet, 721–723

security, 728–729
SSE, 723–725

communication errors,
627–628

CORS, 714–719
in browsers, 714–717
credentialed requests, 718
cross-browser, 718–719
GET requests, 703,

707–708, 709, 714,
715, 717, 718

in Internet Explorer,
714–716

POST requests, 708–709,
714, 715, 716, 717

prefl ighted requests,
717–718

textures, 587
cross-domain Ajax

communication techniques,
719–728

form serialization, 540–542
image pings, 719–721
Professional Ajax, 2nd

Edition (Wiley), 729
remote scripting, 701
security, 728–729
XHR, 701–712

createXHR(), 702, 703,
736, 737, 738

INDEX

bindex.indd 897bindex.indd 897 12/8/11 1:00:48 PM12/8/11 1:00:48 PM

Ajax (continued)
fi le uploads with,

849–850, 856
FormData type, 710–711
GET requests, 707–708
HTTP headers, 706–707
Level 1, 710
Level 2, 710
overrideMimeType(),

711–712
POST requests, 708–709
progress events, 712–714
send(), 704, 705, 708,

710, 712, 715, 850
timeouts, 711
usage, 703–706

“Ajax: A New Approach to Web
Applications” (Garrett), 701

AjaxDoc, 895
alert(), 32, 110, 111, 164, 187,

253, 881
alerts, debugging v., 630, 633
almost standards mode, 21–22. See

also standards mode
alpha, 576
anchor(), 161
AND

bitwise AND operator (&), 52
logical AND operator (&&),

57–58
Android

devices, 267, 287, 492
operating system, 299, 712
user-agent detection, 285–286

animation loops, 836
animation/visual effects

libraries, 888
mozRequestAnimation

Frame, 835, 837–839
requestAnimationFrame(),

835–839, 856
anonymous functions (lambda

functions), 218
block-level scoping, 228–230
closures v., 221

anotherfactorial(), 220
anotherSum(), 137
antialias, 576
APIs, 835–856

Constraint Validation, 530–531
Element Traversal,

360–361, 379
properties, 360–361
white space, 360

File API, 843–850, 856
Geolocation API,

841–843, 856

Indexed Database API,
786–799

Page Visibility API,
839–841, 856

requestAnimationFrame(),
835–839, 856

Selectors API, 357–360, 379
matchesSelector(),

359–360
querySelector(),

358, 359
querySelectorAll(),

358–359, 379
Web Timing, 851–852, 856
Web Workers, 852–855, 856

appendChild(), 314, 315, 318,
335, 344, 387, 420, 481, 482,
537, 636, 825

appendData(), 338
application cache, 766–768
application logic/event handlers,

decouple, 807–809
apply(), 144, 145, 146, 166, 167,

183, 207, 208, 739, 742, 882
arc(), 556, 557
arcTo(), 556
argument passing, 88–89
arguments, 80–83

default values, 860
rest, 859–860
spread, 859–860

arguments object, 80, 81, 82, 84,
88, 91, 141, 144, 145, 741,
860, 879

arrays, 106–122
conversion methods, 110–112
creating, 107–108
defi ned, 106–107
detecting, 110
ECMAScript Harmony,

861–865
iterative methods, 119–121
iterators, 862–863
JSON, 693–694
location methods, 118–119
manipulation methods,

116–118
null comparison, 812
queue methods, 113–114
raw image data, 568
reduction methods, 121–122
reordering methods, 114–116
safe type detection, 110, 621,

731–733
sizes, 109
stack methods, 112–113
typed, 571–576

array buffer views, 571–573
array chunking, 751
array comprehensions, 863–864
array literals

notation, 107–108
usage, 823

Array type, 106–122, 170
array types, 870–871
ArrayBuffer, 571
Ashkenas, Jeremy, 887
asin(), 170
ASP.NET Ajax solutions, 895
assert(), 635
assignment operators, 67–68
async attribute, 13, 17–18, 23
Asynchronous JavaScript + XML,

701. See also Ajax
asynchronous scripts, 17–18
atan(), 170
atan2(), 170
attachEvent(), 439–440, 447
Attr type, 345–346
attribute nodes, 345–346
attributes. See also specifi c attributes

accessing, E4X, 678–679
getting, 330–332
setting, 332–333
uniforms and, 581

attributes property, 333–335
‹audio› element, 598–605

Audio type, 604–605
codec support detection,

603–604
custom media players, 602–603
events, 601–602
properties, 599–601

Audio type, 604–605
automatic tab forward, 528–529
autoplay, 599

B

Backbone.js, 887
backcolor, 544
back-forward cache, 487
backslash (\\), 42
backspace (\b), 42
BaseComponent, 235, 236, 237
beforecopy, 526
beforecut, 526
beforepaste, 526
beforeunload, 483–484
beginPath(), 556
best practices

deployment, 827–833, 834
build process, 827–829

Ajax – best practices

898

bindex.indd 898bindex.indd 898 12/8/11 1:00:49 PM12/8/11 1:00:49 PM

compression, 830–833
validation, 829–830

maintainability, 801–814,
833–834

maintainable code,
802–809, 833–834

programming practices,
809–814

performance, 814–827, 834
bitwise operators, 821
double interpretation,

820–821
loop optimization,

817–819
minimize statement count,

821–823
native methods, 821
optimize DOM

interactions, 824–827
property lookup, 816–817
rolling loops, 819–820
scope-awareness, 814–816
switch statements, 821

bezierCurveTo(), 556
big(), 161
bind(), 146, 739, 740, 742, 743
bitwise AND operator (&), 52
bitwise NOT operator (~), 51
bitwise operators, 49–59, 821
bitwise OR operator (|), 52–53
bitwise XOR operator (^), 53–54
Blob, 846
blob URLs, 847–848
block comment (/*, */), 26
blocking characters, 525–526
block-level scopes, 93–96,

228–230, 858–859
blur(), 518
blur event, 458, 519, 520
‹body›, ‹script› elements in, 16
bold(), 161
bold, 544
BOM (Browser Object Model),

239–269
defi ned, 9–10
elements, 268–269
history object, 267–268
location object, 255–259
navigator object, 259–265
screen object, 265–267
window object, 165–166,

239–255
Boolean(), 34, 56, 69
Boolean operators, 56–59
Boolean type, 34–35, 146, 148–149
bracket notation, 106
brackets, square, 107, 108, 129, 174

break statement, 73–75
browser detection, 274–275.

See also client detection
Browser Object Model. See BOM
browsers. See also client detection;

specifi c browsers
CORS in, 714–717
cross-browser event handlers,

441–442
cross-browser event object,

449–451
cross-browser XML

processing, 649–650
cross-browser XPath, 657–660
cross-browser XSLT, 667–668
DOM support, 8–9
ECMAScript support, 5–6
error reporting, 607–614
history, user-agent detection,

277–286
identifying, 291–294
XML DOM support, 641–650
XPath support, 651–660
XSLT support, 660–668

bubbles, 443
buffered, 599
bufferedBytes, 599
bufferingRate, 599
bufferingThrottled, 599
buffers, WebGL, 579–580
build process, 827–829
buildUrl(), 93
built-in objects, 161–171, 215
‹button› element, 512
buttons, mouse events, 466–467

C

Caja, 895
Cajita, 895
call(), 145–146, 166, 183, 207,

208, 752, 754, 882
callee, 141, 220, 880
caller property, 142–143
callSomeFunction(), 139, 140
camel case, 26
cancelable, 443
cancelBubble, 447
canplay, 601
canplaythrough, 601
canPlayType(), 603
canshowcurrentframe, 601
‹canvas› element, 551–589

basic usage, 551–553
2D drawing context, 553–570

compositing, 569–570

defi ned, 588–589
fi lls, 553
gradients, 565–567
images, 563–564
paths, 556–557
patterns, 567
raw image data, 567–569
rectangles, 553–556
shadows, 564
strokes, 553
text, 557–559
transformations, 559–562

WebGL, 571–588
buffers, 579–580
constants, 577
context, 576–588
coordinates, 578–579
defi ned, 589
drawing, 584–586
errors, 580
GLSL, 580–584, 589
JavaScript v., 580
method names, 578
OpenGL, 571, 576, 577,

578, 579, 580, 581,
582, 587, 589

pixels, 587–588
shaders, 580–584
support, 588
textures, 587
3D drawing context, 551,

571, 589
triangles, 584–586
typed arrays, 571–576
typed views, 573–576
viewports, 578–579

CanvasGradient, 565
capability detection,

271–275, 306
browser detection v., 274–275
safe, 273–274

carriage return (\r), 42
Cascading Style Sheets. See CSS
case-sensitivity, 25–26
CDATASection type, 342–343
change event, 519, 520
changeColor(), 91, 92
character codes, keyboard

events, 474
character literals, 42–43
character methods, String

type, 152
character set properties,

HTML5, 366
characters, blocking, 525–526
charAt(), 152
charCodeAt(), 152

bezierCurveTo() – charCodeAt()

899

bindex.indd 899bindex.indd 899 12/8/11 1:00:50 PM12/8/11 1:00:50 PM

900

charset property – conditional operator

charset property, 13, 366,
398, 831

checkValidity(), 532–533
childElementCount, 360
children, element, 336–337
children property, 374
Chrome

DOM support, 9
ECMAScript support, 6
error reporting, 613–614
user-agent detection, 283–284

chunk(), 751–752
circular references, 97–98, 101,

227, 228
class attribute, 327, 330, 361,

362, 363, 364, 383
class keyword, 327, 871
classes. See also object-oriented

programming; reference types
class-related additions,

HTML5, 361–364
ECMAScript and, 173,

180, 215
ECMAScript Harmony,

871–874
getElementsByClassName(),

361–362, 810
reference types v., 103, 170

classical inheritance, 207–208
classList property, 362–364
className property, 327, 328,

330, 362, 364
clearColor(), 578
clearData(), 527, 598
clearInterval(), 252, 854
clearRect(), 553, 555
clearTimeout(), 252, 854
clearWatch(), 843
click event, 459
client coordinates, 461
client detection

capability detection,
271–275, 306

quirks detection, 275–276, 307
user-agent detection,

276–306, 307
client dimensions, elements,

403–404
client-side data storage. See also

offl ine web applications
cookies, 768–778

HTTP-only, 778
in JavaScript, 770–773
parts, 769–770
restrictions, 769
security considerations, 778
subcookies, 773–778

IndexedDB, 786–799
concurrency issues,

798–799
databases, 787–788
indexes, 796–798
key ranges, 794–795
limitations/restrictions,

799
object stores, 788–789
querying with cursors,

791–793
setting cursor direction,

795–796
transactions, 790–791

Internet Explorer persistent
user data, 778–779

Web Storage, 780–786
globalStorage object,

783–784
limitations/restrictions, 786
localStorage object,

784–785
sessionStorage object,

781–783
storage event, 785–786
Storage type, 780–781

clip(), 556
clipboard events, 526–528, 550
cloneNode(), 315, 316, 387, 390
cloning

DOM ranges, 424
Internet Explorer ranges, 428

close(), 248, 324, 326, 724,
855, 861

closePath(), 556
closures

anonymous functions v., 221
garbage collection and,

227–228
overview, 237–238
privileged methods, 231–233,

234, 235, 238
scope chains and, 221–224
this object, 225–227
variables and, 224–225

code
conventions, 802–805,

833–834
naming functions/

variables, 803–804
readability, 803

loosely coupled, 805–809
maintainable, 802–809
readability, 803
validation, 829–830

code injection, 164
code size, 830

coercion, of this value, 882
collapsing

DOM ranges, 422–423
Internet Explorer ranges, 427

COM (Component Object Model)
objects, 97, 98, 227, 228, 263,
273, 309, 312, 637, 638, 732

combination constructor/prototype
pattern, 197–198

combination inheritance, 209–210,
215

Comet, 721–723. See also Ajax
security, 728–729
SSE, 723–725

comma operator, 68
comment nodes, 341–342
Comment type, 341–342
comments

block comment (/*, */), 26
defi ned, 26
Javadoc-like, 894
readability, 803
single line comment (//), 26
type comments, 804–805

compareDocumentPosition(),
375, 376

comparing
DOM ranges, 423–424
Internet Explorer ranges,

427–428
comparison functions, 115–116
compatibility mode, 114, 280, 365
compatMode, 246, 365
complex selection

DOM ranges, 417–419
Internet Explorer ranges,

425–426
Component Object Model. See

COM objects
compositing, 569–570
composition events, 478–479
compositionend, 478
compositionstart, 478
compositionupdate, 478
compound assignment

operators, 68
compression, 830–833

fi le, 830–832
HTTP, 832–833
YUI Compressor,

831–832, 893
computed styles, 394–396
concat(), 116, 152–153,

742, 752
concurrency issues, IndexedDB,

798–799
conditional operator, 67

bindex.indd 900bindex.indd 900 12/8/11 1:00:51 PM12/8/11 1:00:51 PM

901

[[Confi gurable]] attribute – data storage

[[Configurable]] attribute, 174,
175, 177, 178, 240, 744

confirm(), 253, 254
conformance

DOM conformance detection,
323–324

ECMAScript, 4–5
console, log debugging messages to,

631–633
constants

best practice usage, 813–814
ECMAScript Harmony, 858
WebGL context, 577

Constraint Validation API,
HTML5, 530–534

construction/manipulation, XML,
682–685

constructor pattern, 181–184
durable, 200–201
hybrid constructor/prototype

pattern, 197–198
parasitic, 199–200

constructor stealing, 207–208
constructors

defi ned, 45, 103, 733
as functions, 182–183, 733
problems with, 183–184
scope-safe, 733–735

contains(), 374–376
contentDocument, 390
contenteditable, 543, 545,

549, 550
contentWindow, 390
context. See scopes
contextmenu, 482–483
continue statement, 73–75
controls, 599
conversions

arrays, 110–112
to Boolean values, 34
64-bit to 32-bit, 49–51
string case, 156
to strings, 43–44

convertToArray(), 313
cookies, 768–778

HTTP-only, 778
in JavaScript, 770–773
parts, 769–770
restrictions, 769
security considerations, 778
subcookies, 773–778

coordinates, WebGL, 578–579
copy, 526, 544
copy(), 683
CORS (Cross-Origin Resource

Sharing), 714–719

in browsers, 714–717
credentialed requests, 718
cross-browser, 718–719
GET requests, 703, 707–708,

709, 714, 715, 717, 718
in Internet Explorer, 714–716
POST requests, 708–709, 714,

715, 716, 717
prefl ighted requests, 717–718
textures, 587

cos(), 170
coupled code, loosely, 805–809
createAttribute(), 345, 346
createAttributeNS(), 385
createCDataSection(), 343
createComparisonFunction(),

141, 219, 221, 222, 223
createDocument(), 387–388,

641–642
createDocumentType(), 387–388
createElement(), 273, 335, 336,

825
createElementNS(), 385
createExpression(), 651
createFunctions(), 224, 225
createHTMLDocument(), 388
createLinearGradient(),

565, 566
createlink, 544
createNSResolver(), 651
createPerson(), 99, 180, 181
createRadialGradient(), 566
createRectLinearGradient(),

566
createStreamingClient(), 723
createTextNode(), 339
createTextRange(), 424,

523, 524
createXHR(), 702, 703, 736,

737, 738
createXSLTemplate(), 662–663
credentialed requests, 718
Crockford, Douglas, 200, 210, 211,

234, 691, 732, 829, 891, 892,
895

cross-browser CORS, 718–719
cross-browser event handlers,

441–442
cross-browser event object,

449–451
cross-browser XML processing,

649–650
cross-browser XPath, 657–660
cross-browser XSLT, 667–668
cross-document messaging (XDM)

JSON.stringify(), 592

postMessage(), 591–592,
852–853

security, 591, 606
Web Messaging, 593

cross-domain Ajax communication
techniques, 719–728

Cross-Origin Resource Sharing. See
CORS

cross-site request forgery (CSRF),
715, 728

cross-site scripting (XSS) attacks,
715

crunchers, 892–893
cryptography, libraries, 888–889
CSRF (cross-site request forgery),

715, 728
CSS (Cascading Style Sheets), 321.

See also style sheets
DOM Level 1 support, 7
JavaScript/CSS coupling,

806–807
rules, 398–401

creating, 399–400
deleting, 400–401

CSSStyleRule object, 398
CSSStyleSheet type, 396, 397
cssText property, 350, 392,

393, 398
curly braces

expression context, 104
statement context, 27, 104

currentLoop, 599
currentSrc, 599
currentTarget, 443
currentTime, 599
curry(), 741–743
cursors

cursor trail, 758
querying with, 791–793
setting cursor direction,

795–796
custom data attributes, HTML5,

366–367
custom events, 755–758
cut, 526, 544

D

data format, JSON as, 691
data properties, 174–176
data storage. See also offl ine web

applications
cookies, 768–778

HTTP-only, 778
in JavaScript, 770–773

bindex.indd 901bindex.indd 901 12/8/11 1:00:52 PM12/8/11 1:00:52 PM

902

data storage (continued)
parts, 769–770
restrictions, 769
security considerations, 778
subcookies, 773–778

IndexedDB, 786–799
concurrency issues,

798–799
databases, 787–788
indexes, 796–798
key ranges, 794–795
limitations/restrictions,

799
object stores, 788–789
querying with cursors,

791–793
setting cursor direction,

795–796
transactions, 790–791

Internet Explorer persistent
user data, 778–779

Web Storage, 780–786
globalStorage object,

783–784
limitations/restrictions, 786
localStorage object,

784–785
sessionStorage object,

781–783
storage event, 785–786
Storage type, 780–781

data types. See primitive types
databases, IndexedDB, 787–788
dataTransfer object,

595–598
dataunavailable, 601
Date type, 122–128, 170

date-formatting methods,
125–126

date-time component methods,
126–128

inherited methods, 124–125
date-formatting methods, 125–126
Date.now(), 124
Date.parse(), 122–123, 123
date-time component methods,

126–128
Date.UTC(), 122, 123
dblclick event, 459
debugging. See also error handling

alerts v., 630, 633
maintainable code, 802
script debugger, 608
shaders, 584
techniques, 630–635
validators, 891–892

decodeURI(), 163
decodeURIComponent(), 163
decoupling

CSS/JavaScript, 806–807
HTML/JavaScript, 805–806

decrement operator (--), 46–48
dedicated workers, 855
default argument values, 860
default prototypes, 203–204
defaultCharset property, 366
defaultPlaybackRate, 600
defaultView property, 387
defer attribute, 13, 16–17, 23
deferred scripts, ‹script› elements,

16–17
defineProperty, 866
defi ning multiple properties,

178–179
delete, 544
deleteData(), 338
deleteRule(), 397, 400
deletion, splice(), 117
deployment best practices,

827–833, 834
build process, 827–829
compression, 830–833
validation, 829–830

depth, 576
dereferencing variables, 99, 100, 101
derived traps, 866–867
descendants(), 681
destructuring assignments, 864–865
detach(), 424
detachEvent(), 439–440
detail, 443
detection

arrays, 110
offl ine web applications,

765–766
plug-ins, 262–264

device events, 490–494
devicemotion, 494
deviceorientation,

492–494
MozOrientation, 491–492
orientationchange,

490–491
devicemotion, 494
deviceorientation, 492–494
Dhakar, Lokesh, 888
DHTML (Dynamic HTML),

7, 8, 309
diff(), 80
displayInfo(), 106
divide operator (/), 60
divide/assign (/=), 68

doAdd(), 81, 82
document fragments, 344–345
document modes, 21–22, 373–374

almost standards mode, 21–22
quirks mode, 21–22, 245, 365,

373, 374, 392, 404, 405,
457, 462

standards mode, 21–22, 245,
246, 365, 373, 374, 392,
404, 405, 457, 462, 807

document object
document writing, 324–326
HTMLDocument instance, 316,

317, 318
special collections, 322–323

Document Object Model. See DOM
Document type, 316–326

constructor, 317
DOM Level 2 changes, 385
prototype, 317

document writing, 324–326
document.anchors, 322
document.applets, 322
documentation generators, 894–895
document.doctype, 317,

318, 343
document.domain, 319–320
documentElement property, 317
document.execCommand(), 543,

546, 547, 548, 550
document.forms, 322
DocumentFragment type, 344–345
document.head property, 365
document.hidden, 839, 840, 841
document.images, 323
document.links, 323
DocumentType type, 343–344

characteristics, 343
DOM Level 2 changes,

386–387
document.VisibilityState,

840, 841
DOH. See Dojo Object Harness
Dojo Object Harness (DOH), 894
Dojo ShrinkSafe, 892–893
Dojo Toolkit, 886, 892
DOM (Document Object Model),

309–355. See also events;
nodes
Attr type, 345–346
CDATASection type, 342–343
changes, 382–390
Comment type, 341–342
conformance detection,

323–324
defi ned, 6, 309

data storage – DOM (Document Object Model)

bindex.indd 902bindex.indd 902 12/8/11 1:00:53 PM12/8/11 1:00:53 PM

903

DOM events – dynamic styles, DOM

Document type, 316–326
DocumentFragment type,

344–345
DocumentType type, 343–344
dynamic scripts, 346–348,

400, 628
dynamic styles, 348–350,

400, 628
Element type, 326–337
event fl ow, 433–434
event object, 442–446
event simulation, 502–508
focus management, 364
interactions, optimizing,

824–827
‹link› element, 348–350
live update, 824–825
locating elements, 320–322
manipulations, performance

issues, 355
Node type, 310–316
NodeList objects, 353–354
other DOMs, 8
overview, 6–9
ranges, 415–424

clean up, 424
cloning, 424
collapsing, 422–423
comparing, 423–424
complex selection,

417–419
inserting content,

421–422
interacting with content,

419–421
simple selection, 416–417

reason for, 7
‹script› elements, 346–348
‹style› element, 348–350
styles, properties/methods,

392–394
support in browsers, 8–9
‹table› element, 350–353
Text type, 337–341
working with, 346–354

DOM events. See events
DOM extensions, 357–380

Element Traversal,
360–361, 379

properties, 360–361
white space, 360

growth of, 380
HTML5, 361–372, 380
proprietary, 372–379, 380
Selectors API, 357–360, 379

matchesSelector(),
359–360

querySelector(),
358, 359

querySelectorAll(),
358–359, 379

DOM Level 0
description, 8
event handlers, 437

DOM Level 1, 7–8, 309, 381
DOM Level 2

Core module, 381–387, 428
Document type, 385
DocumentType type, 386–387
Element type, 385–386
event handlers, 438–439
HTML module, 381, 388
NamedNodeMap, 386
specifi cations, 428
Styles module, 381,

390–401, 429
Traversal and Range module,

381, 408–428, 429
Views module, 381, 387–388
XML DOM support in

browsers, 641–642
DOM Level 3

compareDocument

Position(), 375, 376
Core, 382
description, 8
events, 451, 452, 458,

459, 471, 474, 475–476,
478, 502

isDefaultNamespace(), 384
isEqualNode(), 389
isSameNode(), 389
keyboard events, 475–476
lookupNamespaceURI(), 384
lookupPrefix(), 384
setUserData(), 389
textContent property, 377,

378
XPath, 651–656

DOMActivate, 452
DOMAttrModified, 479
DOMCharacterDataModified, 479
DOMContentLoaded, 484–485
DOMFocusIn event, 458
DOMFocusOut event, 458
DOMNodeInserted, 479
DOMNodeInserted

IntoDocument, 479
DOMNodeRemoved, 479
DOMNodeRemovedFrom

Document, 479
DOMParser type, 642–644
DOMSubtreeModified, 479
dot notation, 106

double interpretation, 820–821
double quotes (“)

JSON strings, 692
strings, 41–42

double-escaped metacharacters, 130
do-while statement, 70
drag, 593
drag-and-drop functionality

dataTransfer object,
595–598

drop targets, 594
dropEffect property,

596–597
effectAllowed property,

596–597
events, 593–594
fi le reading, 848–849
fi le uploads, 849–850, 856
mouse events, 758–764

dragDrop(), 597
DragDrop object, 759, 760, 762, 763
dragend, 593
dragenter, 594
draggability, 597
draggable attribute, 597
dragleave, 594
dragover, 594
dragstart, 593
drawArrays(), 584, 585
drawElements(), 579, 584, 585
drawImage(), 563
drawing. See also ‹canvas›

element
gradients, 565–567
images, 563–564
paths, 556–557
patterns, 567
rectangles, 553–556
shadows, 564
text, 557–559
WebGL, 584–586

drawing transformations, 559–562
dropEffect property, 596–597
Duff’s device, 819–820
durable constructor pattern,

200–201
durable objects, 200–201
duration, 600
durationchange, 601
Dynamic HTML (DHTML), 7, 8,

309
dynamic prototype pattern, 198–199
dynamic scripts, DOM, 346–348,

400, 628. See also ‹script›
elements

dynamic styles, DOM, 348–350,
400, 628

bindex.indd 903bindex.indd 903 12/8/11 1:00:54 PM12/8/11 1:00:54 PM

904

E

E4X. See ECMAScript for XML
ECMA (European Computer

Manufacturers Association), 2
ECMAScript. See also strict mode

classes and, 173, 180, 215
conformance, 4–5
defi nition, 3
editions, 3–4
elements, 83–84
JavaScript v., 3, 83
language basics, 25–84
OO languages v., 103
strict mode, 877
support in browsers, 5–6
syntax, 25–28
tamper-proof objects, 743–

746, 764, 809
try-catch statement, 607

ECMAScript for XML (E4X),
671–691
accessing attributes, 678–679
characteristics, 689–690
enabling, 689
general usage, 676–679
namespaces, 674–675,

686–688
node types, 679–691
parsing options, 685–686
purpose, 689
QName type, 675–676
querying, 681–682, 690
XML type, 672–673
XMLList type, 673–674

ECMAScript Harmony, 857–875
array comprehensions,

863–864
array types, 870–871
arrays, 861–865
block-level scope, 858–859
classes, 871–874
destructuring assignments,

864–865
functions, 859–861
general changes, 857–859
generators, 861
history, 857
inheritance, 873–874
iterators, 862–863
modules, 874–875
proxy functions, 868
proxy objects, 865–868
Set type, 869
simple maps, 868–869
struct types, 869–870

WeakMap type, 869
effectAllowed property, 596–597
Eich, Brendan, 2
Element Traversal, 360–361, 379

properties, 360–361
white space, 360

Element type, 326–337
description, 326
DOM Level 2 changes,

385–386
elements. See also media elements;

specifi c elements
attributes

getting, 330–332
setting, 332–333

children, 336–337
client dimensions, 403–404
creating, 335–336
dimensions, 401–408
HTML, 327–330
locating, DOM, 320–322
NoScope, 368–369
offset dimensions, 401–403
scoped, 368–369
scroll dimensions, 404–406
styles, accessing, 391–392

emerging APIs. See also APIs
File API, 843–850, 856
Geolocation API, 841–843,

856
Page Visibility API, 839–841,

856
requestAnimation

Frame(), 835–839, 856
Web Timing, 851–852, 856
Web Workers, 852–855, 856

emptied, 601
empty, 601
encodeURI(), 162–163
encodeURIComponent(), 162–163,

627, 708, 771, 772
ended, 600, 601
e-notation, 36, 150
entityReference

Expansion, 410
[[Enumerable]] attribute,

174, 175, 177, 178, 191, 194,
276, 744

equal
assignment operators,

67–68
equal operator (==), 65–66
greater-than-or-equal-to (›=),

63–65
identically equal operator

(===), 66–67

not identically equal operator
(!==), 66–67

not-equal operator (!=), 65–66
equal operator (==), 65–66
equality operators, 65–67
Error, 616
error, 452
error event, 622–623
error handling, 607, 614–640.

See also debugging
strategies, 623–630
try-catch statement,

615–619
ECMAScript, 607
error types, 616–618
finally clause, 616
throwing errors v.,

621–622
usage, 618–619

error reporting, browser, 607–614
Error type, 617
errors

communication, 627–628
data type, 625–627
fatal, 628–629
identifi cation, 623–628
IndexedDB databases,

787–788
Internet Explorer, 635–639

“invalid character,” 637
“member not found,”

637–638
“operation aborted,”

635–637
syntax, 638–639
“system cannot locate

resource specifi ed,” 639
unknown runtime, 638

logging, 629–630
nonfatal, 628–629
“object expected,” 607, 617
throwing, 619–622, 634–635
type coercion, 624–625
WebGL, 580

escaped metacharacters, 129–130
European Computer Manufacturers

Association. See ECMA
eval(), 163–164, 695, 820,

880–881
EvalError, 616
evaluate(), 651, 652, 653, 654,

655, 656, 658
events, 431–509. See also specifi c

events
‹audio› element, 601–602
clipboard, 526–528, 550

E4X – events

bindex.indd 904bindex.indd 904 12/8/11 1:00:55 PM12/8/11 1:00:55 PM

905

event bubbling – Flash

complexity, 431
composition, 478–479
custom, 755–758
defi ned, 431, 755
device, 490–494

devicemotion, 494
deviceorientation,

492–494
MozOrientation,

491–492
orientationchange,

490–491
DOM Level 3, 451, 452, 458,

459, 471, 474, 475–476,
478, 502

drag-and-drop, 593–594
error, 622–623
focus, 458–459
form fi eld, 519–520
gesture, 494–495, 497–498

gesturechange, 497
gestureend, 497
gesturestart, 497

history, 431
HTML5, 451, 482–490

beforeunload, 483–484
contextmenu, 482–483
DOMContentLoaded,

484–485
hashchange, 489–490
pagehide, 487–489
pageshow, 487–489
readystatechange,

485–487
keyboard, 471–478

character codes, 474
on devices, 477–478
DOM Level 3 changes,

475–476
key codes, 472–474
simulating, 504–506

load, 452–456
memory considerations, 509
mouse, 459–476

accessibility issues, 471
buttons, 466–467
client coordinates, 461
modifi er keys, 463–464
page coordinates, 462
related elements, 464–466
screen coordinates,

462–463
simulating, 503–504
touch device support,

470–471

mousewheel, 468–470
mutation, 479–482

node insertion, 481–482
node removal, 480–481

observer pattern, 431,
755, 764

performance considerations, 509
progress events, 712–714
proprietary, 431, 451, 494,

495, 509
simulation, 502–509
SSE, 723–725, 727–728
text, 472, 476–477
textInput, 471, 472,

476–477
touch, 494–497

touchcancel, 495
touchend, 495
touchmove, 495
touchstart, 495

UI, 452–457
‹video› element,

601–602
wheel, 451, 460

event bubbling, 432
event capturing, 433
event delegation, 498–500

defi ned, 498
performance, 826

event fl ow, 432–434
“Event Handler Scope”

(Smith), 436
event handlers (event listeners),

434–442
application logic/event handlers

coupling, 807–809
cloneNode(), 316
cross-browser, 441–442
defi ned, 434
DOM Level 0, 437
DOM Level 2, 438–439
HTML, 434–436
memory issues, 371
onerror, 622, 640, 715, 716,

720, 721, 791, 853
removing, 500–502

event listeners. See event
handlers

event object, 442–451
cross-browser, 449–451
DOM, 442–446
Internet Explorer, 447–449
methods, 443–444
properties, 443–444

eventPhase, 443

EventUtil object, 449, 453, 455,
469, 513

every(), 119, 120
exec(), 132–133, 134, 136, 156
execCommand(), 543, 546, 547,

548, 550
execution contexts. See scopes
exp(), 169
experimental-webgl, 576
expiration, cookies, 770
extendable, maintainable code, 802
Extensible HyperText Markup

Language. See XHTML
external fi les, ‹script› elements,

15–16, 20
external modules, 875

F

factorial(), 141, 142, 220
factorial functions, 141, 220
factory pattern, 180–181
fake URL, 606
fatal errors, 628–629
FIFO (fi rst-in fi rst-out), 113
File API, 843–850, 856
fi le compression, 830–832
fi le reading, drag-and-drop,

848–849
fi le uploads, with XHR,

849–850, 856
FileReader type, 844–846
fill(), 556
fillRect(), 553, 554, 556, 566
fi lls, 553
fillStyle, 553, 562
fillText(), 557, 558, 559
filter(), 119, 120
Firebug, 609–610, 631
Firefox

DOM support, 9
ECMAScript support, 6
enabling E4X, 689
error reporting, 609–610
Gecko rendering engine,

280–282
JavaScript version

progression, 10
firstChild(), 413, 414
firstElementChild, 360
fi rst-in fi rst-out (FIFO), 113
fixed(), 161
fl ags, regular expressions, 128–129
Flash, 3, 262, 263, 598, 602, 701

bindex.indd 905bindex.indd 905 12/8/11 1:00:56 PM12/8/11 1:00:56 PM

906

Float32Array – getSubValue()

Float32Array, 574
Float64Array, 574
fl oating-point values, 36–37
fl ow-control statements. See

statements
focus(), 517–518
focus event, 458
focus events, 458–459
focus management, 364
focusin event, 458
focusout event, 458
fontcolor(), 161
fontname, 544
fontsize(), 161
fontsize, 544
for statement, 71–72
forEach(), 119, 120
for-each-in loop, 688
forecolor, 544
for-in statement, 72–73
forms (web forms), 511–550

basics, 511–520
resetting, 513–514
rich text editing, 542–549, 550
select boxes, 534–539, 550

adding options, 537–538
creating, 534
moving options, 539
removing options,

538–539
reordering options, 539
selecting options, 536–537

submitting, 512–513
text boxes, 520–534

input fi ltering, 524–528
text selection,

521–524, 549
‹form› elements, 511–512
form feed (\f), 42
form fi elds, 514–520

automatic tab forward,
528–529

events, 519–520
methods, 517–518
properties, 516–517
validation, 530–534

form serialization, 540–542
formatblock, 544
FormData type, 710–711
fragment shaders, 580, 581
frames, window relationships and,

241–244
fromCharCode(), 161, 474, 525
frozen objects, 745–746
Fuchs, Thomas, 888
functions, 78–83, 136–146.

See also arguments

advanced, 731–743
arguments, 80–83
comparison, 115–116
constructors as, 182–183, 733
ECMAScript Harmony,

859–861
execution contexts,

90–91, 100
factorial, 141, 220
global, 810–812, 814–815
internals, 141–143
lazy loading, 736–738
loosely typed, 215
methods, 143–146
naming conventions,

803–804
as objects, 136, 143, 170
overloading, 83, 138
properties, 143–146
safe type detection, 110, 621,

731–733
strict mode, 80, 879–880
typeof operator, 31
as values, 139–141

function binding, 738–741
function currying, 741–743
function declaration hoisting,

138–139, 218
function declarations, 138–139,

217–218, 237
function expressions, 217–238

characteristics, 217–219
function declarations v.,

138–139, 217–218, 237
named, 139, 220, 221

function keyword, 78, 137, 217,
218, 229, 871

function names, 25, 92, 136, 137,
138, 139, 142, 803

function throttling, 752–754
Function type, 136–146, 170
fundamental traps, 866

G

game systems identifi cation,
301–302. See also user-agent
detection

garbage collection, 96–100
closures and, 227–228
mark-and-sweep, 96–97, 100
memory management, 99–100
performance issues, 98–99
reference counting,

97–98, 101
Garrett, James, 701

Gecko rendering engine, 280–282
general libraries, 885
generators, 861
Geolocation API, 841–843, 856
gesture events, 494–495, 497–498

gesturechange, 497
gestureend, 497
gesturestart, 497

[[Get]], 177, 744
GET requests, 703, 707–708, 709,

714, 715, 717, 718, 728, 851
getAttribute(), 330, 331, 332,

334, 345, 346, 779, 800
getAttributeNS(), 385
getBoundingClientRect(), 406,

407, 408
getColor(), 95, 96
getComputedStyle(), 394,

395, 429
getContext(), 552, 576, 577
getCurrentPosition(),

842, 843
getDate(), 127
getDay(), 127
getElement(), 272
getElementById(), 272, 320,

321, 357, 512
getElementsByClassName(),

361–362, 810
getElementsByName(), 322
getElementsByTagName(), 320,

321, 322, 337, 342, 357, 362,
365, 643, 827

getElementsByTagNameNS(), 385
getEvent(), 450
getFullYear(), 126
getHours(), 127
getImageData(), 567
getMilliseconds(), 128
getMinutes(), 127
getMonth(), 126
getNamedItem(), 333
getNamedItemNS(), 386
getOwnPropertyDescriptor, 179,

180, 189, 866
getOwnPropertyNames, 866
getPropertyCSSValue(), 392,

393, 394
getPropertyDescriptor, 866
getPropertyNames, 866
getPropertyValue(), 392,

393, 394
getSeconds(), 127
getSelection(), 547, 548
getStyleSheet(), 397, 398
getSubValue(), 203, 204,

205, 206

bindex.indd 906bindex.indd 906 12/8/11 1:00:57 PM12/8/11 1:00:57 PM

907

getSuperValue(), 203, 204,
205, 206

getTarget(), 449, 450
getters/setters, 872–873
getTime(), 126
getTimezoneOffset(), 128
getting attributes, 330–332
getUserData(), 389, 390
getUTCDate(), 127
getUTCDay(), 127
getUTCFullYear(), 126
getUTCHours(), 127
getUTCMilliseconds(), 128
getUTCMinutes(), 127
getUTCMonth(), 126
getUTCSeconds(), 127
gl, 576
gl.bindBuffer(), 579
gl.bufferData(), 579
glClear(), 578
gl.compileShader, 582
gl.createBuffer(), 579
gl.createShader(), 582
gl.createTexture(), 587
gl.drawArrays(), 585–586
gl.drawElements(), 585–586
gl.getAttribute

Location(), 583
gl.getError(), 580
gl.getProgram

Parameter(), 584
gl.getShader

Parameter(), 584
gl.getUniform

Location(), 583
global, RegExp instance

property, 131
global execution context, 90, 100
global lookups, 814–815
Global object, 162–166, 171

properties, 164–165
URI-encoding methods,

162–163
window object, 165–166,

239–255, 268
global variables/functions,

810–812, 814–815
globalAlpha, 569
globalCompositionOperation,

569–570
globalStorage object, 783–784
gl.shaderSource(), 582
GLSL. See OpenGL Shading

Language
GMT, 122, 123, 126, 770
go(), 267, 268

graphics. See ‹canvas› element
grayscale, 569
greater-than operator (›), 63–65
greater-than-or-equal-to (›=), 63–65

H

H.264, 604
handleKeyPress(), 808
handlers, registering, 264–265
handling errors. See error handling
Harmony. See ECMAScript

Harmony
hasAttribute(), 385, 542
hasAttributeNS(), 385
hasComplexContent(), 680
hasFeature(), 323, 324, 388, 389,

415, 466
hasFlash(), 264
hash tables, 173. See also objects
hashchange, 489–490
hasIEPlugin(), 263
hasOwnProperty(), 45, 188, 190,

191, 204, 658, 776, 866
hasPlugin(), 262
hasPrototypeProperty(),

190, 191
hasQuickTime(), 264
hasSimpleContent(), 680
head property, 365
height attribute, 552
Heikkinen, Ilmari, 569
hexadecimal format, 35, 39, 40, 41,

42, 395
hierarchy of nodes, 310
history object, 267–268, 605–606
history state management, 605–606
host objects, 45, 273, 274
HTML (HyperText Markup

Language). See also
elements; ‹script› elements;
XHTML
DHTML, 7, 8, 309
DOM Level 2 HTML module,

381, 388
event handlers, 434–436
HTML/JavaScript coupling,

805–806
methods, String type, 161
XHTML v., 18

HTML elements, 327–330
HTML5. See also APIs; ‹canvas›

element
character set properties, 366
class-related additions,

361–364

Constraint Validation API,
530–534

cross-document messaging
(XDM)
JSON.stringify(), 592
postMessage(), 591–

592, 852–853
Web Messaging, 593

custom data attributes,
366–367

DOM nodes, 361–372, 380
drag-and-drop functionality

dataTransfer object,
595–598

drop targets, 594
dropEffect property,

596–597
effectAllowed property,

596–597
events, 593–594
fi le reading, 848–849
fi le uploads, 849–850, 856

events, 451, 482–490
beforeunload, 483–484
contextmenu, 482–483
DOMContentLoaded,

484–485
hashchange, 489–490
pagehide, 487–489
pageshow, 487–489
readystatechange,

485–487
focus management, 364
history state management,

605–606
markup insertion

innerHTML property,
367–369

innerText property,
376–378

insertAdjacent

HTML(), 370–371
outerHTML property, 370,

371, 638
outerText property,

376, 378
media elements

‹audio›, 598–605
codec support detection,

603–604
custom media players,

602–603
‹video›, 598–605

scripting, 591–606
scrollIntoView(),

372, 379

getSuperValue() – HTML5

bindex.indd 907bindex.indd 907 12/8/11 1:00:58 PM12/8/11 1:00:58 PM

908

HTMLCollection objects, 321–323,
352, 826–827

HTMLDocument type
changes, 364–365
constructor, 317
createHTMLDocument(), 388
document object, 316,

317, 318
getElementsByName(), 322
prototype, 317

htmlEscape(), 159
HTMLFormElement type,

511–512. See also forms
HTMLFrameElement, 330, 390
HTMLIFrameElement, 330, 390
HTMLLinkElement, 329, 396
HTMLStyleElement, 329, 396
HTTP compression, 832–833
HTTP cookies. See cookies
HTTP headers, XHR, 706–707
HTTP streaming, 722–723,

724, 729
HTTP-only cookies, 778
Hungarian notation, 804
hybrid constructor/prototype

pattern, 197–198
HyperText Markup Language. See

HTML

I

identically equal operator (===),
66–67

identifi er lookup, 95–96
identifi ers, 26, 28, 29
IEEE 64 bit, 49, 574
IEEE-754–based numbers,

35, 37, 49
if statement, 69
iframes

document object, 390
HTMLIFrameElement,

330, 390
rich text editing, 542–549, 550
XDM, 593

ignoreCase, RegExp instance
property, 131

image pings, 719–721
images

draggable, 597
drawing, 563–564
raw image data, 567–569

‹img› tag, 719, 848
importNode(), 387
importScripts(), 855
in operator, 189–192

increment operator (++), 46–48
indent, 544
Indexed Database API

(IndexedDB), 786–799
concurrency issues, 798–799
databases, 787–788
indexes, 796–798
key ranges, 794–795
limitations/restrictions, 799
object stores, 788–789
querying with cursors,

791–793
setting cursor direction,

795–796
transactions, 790–791

indexes, 796–798
indexOf(), 118, 119, 154, 155
infi nity

add operator, 61
divide operator, 60
multiply operator, 60
range of values, 37
subtract operator, 63

inheritance, 201–215
classical, 207–208
combination, 209–210, 215
constructor stealing, 207–208
ECMAScript Harmony,

873–874
parasitic, 211–212, 216
parasitic combination,

212–215, 216
prototypal, 210–211
prototype chaining, 202–207,

215
pseudoclassical, 209–210

inherited methods, Date type,
124–125

inheritPrototype(), 214
inline JavaScript code, ‹script›

elements, 14–15, 20
innerHTML property, 367–369, 825
innerText property, 376–378
‹input› element, 512
input element types, 530–531
input fi ltering, 524–528
input patterns, 532
input property, 134–135
insertAdjacentHTML(), 370–371
insertBefore(), 314, 315, 344,

481, 538, 539
insertChildAfter(), 683
insertChildBefore(), 684
insertData(), 338
inserthorizontalrule, 544
insertimage, 544

insertion, splice(), 117
insertNode(), 421
insertorderedlist, 544
insertparagraph, 544
insertRule(), 397, 399, 400
insertunorderedlist, 544
instanceof operator, 90, 100,

110, 149, 151, 182, 193,
200, 204, 236, 618, 658,
689, 732, 813

instances, prototypes and, 204–205
Int8Array, 573
Int16Array, 573
Int32Array, 574
interacting with content

DOM ranges, 419–421
Internet Explorer ranges,

426–427
interacting with rich text, 543–547
internals, function, 141–143
Internet application libraries,

887–888
Internet Explorer

CORS in, 714–716
document modes, 373–374
DOM support, 9
ECMAScript support, 6
error reporting, 608–609
errors, 635–639

“invalid character,” 637
“member not found,”

637–638
“operation aborted,”

635–637
syntax, 638–639
“system cannot locate

resource specifi ed,” 639
unknown runtime, 638

event bubbling, 432
event handlers, 439–440
event object, 447–449
event simulation, 508–509
persistent user data, 778–779
ranges, 424–428

cloning, 428
collapsing, 427
comparing, 427–428
complex selection,

425–426
simple selection, 424–425

user-agent detection, 278–280
XML in, 644–649
XPath in, 656–657
XSLT in, 660–665

intervals, 251–253, 836–837
intuitive, maintainable code, 802

HTMLCollection objects – intuitive, maintainable code

bindex.indd 908bindex.indd 908 12/8/11 1:00:59 PM12/8/11 1:00:59 PM

909

“invalid character,” 637
iOS, user-agent detection, 285–286
iPad, 285, 299
iPhone, 285, 299, 305, 495
Ippolito, Bob, 886
isArray(), 110, 732
isDefaultNamespace(), 384
isEqualNode(), 389
isFinite(), 37, 162
isFunction(), 732
isHostMethod(), 274
isNaN(), 38, 162
isPrototypeOf(), 45, 186, 204,

205, 210, 215
isSameNode(), 389
isSupported(), 388
isXMLName(), 689
italic, 544
italics(), 161
item(), 312, 321
iterative methods, arrays, 119–121
iterators, 862–863

J

Javadoc-like comments, 894
JavaScript. See also BOM; DOM;

ECMAScript; JSON; XML
best practices

deployment, 827–833, 834
maintainability, 801–814,

833–834
performance, 814–827, 834

cookies in, 770–773
CSS/JavaScript coupling,

806–807
defi ned, 3, 11
documentation generators,

894–895
ECMAScript v., 3, 83
history, 1–2
HTML/JavaScript coupling,

805–806
overview, 1–11
parts, 11
secure execution

environments, 895
versions, 10–11
WebGL v., 580

JavaScript libraries, 885–889
animation/visual effects, 888
Backbone.js, 887
cryptography, 888–889
Dojo Toolkit, 886
general, 885
Internet application, 887–888

jQuery, 357, 886, 887, 894
Konqueror, 283
MochiKit, 886–887
moo.fx, 888
MooTools, 886
MSXML, 644, 660, 665,

669, 702
Prototype, 810, 886
qooxdoo, 887–888
Rico library, 887
script.aculo.us, 888
specialty, 885
Underscore.js, 887
Yahoo! User Interface Library,

811, 885, 893
JavaScript Lint, 892
JavaScript MD5 library, 889
JavaScript Object Notation. See

JSON
“JavaScript split bugs: Fixed!”

(Levithan), 159
JavaScript tools, 891–895

documentation generators,
894–895

minifi ers, 892–893
secure execution

environments, 895
unit testing, 893–894
validators, 891–892

JavaScrypt library, 889
Johnston, Paul, 889
join(), 111, 112, 542, 777
JPEG encoding, 552
jQuery, 357, 886, 887, 894
.js extension, 15
JsDoc Toolkit, 894
JSHint, 892
JSLint, 829–830, 891
JSMin, 892
JSON (JavaScript Object Notation),

691–700
arrays, 693–694
as data format, 691
objects, 692–693, 695–696
parsing, 694–700
serialization, 694–700
simple values, 692
syntax, 691–694
XML v., 691, 700

JSON object, 4, 695–696, 700, 732
JSONP (JSON with padding),

721–722
JSON.parse(), 592, 695, 696,

699, 700
JSON.stringify(), 592, 695, 696,

697, 698, 699, 700

JsUnit, 893
justifycenter, 544
justifyleft, 544

K

key codes, 472–474
key ranges, 794–795
keyboard events, 471–478

character codes, 474
on devices, 477–478
DOM Level 3 changes, 475–476
key codes, 472–474
simulating, 504–506

keydown event, 471–472
keypress event, 471–472
keyup event, 471–472
keywords

identifi ers v., 26, 28, 29
list, 28–29

King, Andrew B., 820
Koch, Peter-Paul, 246
Konqueror, 283

L

labeled statements, 73
lambda functions. See anonymous

functions
language attribute, 14
lastChild(), 413
lastElementChild, 360
last-in fi rst-out (LIFO), 112, 113
lastindexOf(), 118, 119,

154, 155
lastMatch property, 134–135
lastParen property, 134–135
lazy loading functions, 736–738
left shift (‹‹), 54
left shift/assign (‹‹=), 68
leftContext property, 134–135
length property, 143–144
less-than operator (‹), 63–65
Levithan, Steven, 159
libraries, JavaScript, 885–889

animation/visual effects, 888
Backbone.js, 887
cryptography, 888–889
Dojo Toolkit, 886
general, 885
Internet application, 887–888
jQuery, 357, 886, 887, 894
Konqueror, 283
MochiKit, 886–887
moo.fx, 888
MooTools, 886

“invalid character” – libraries, JavaScript

bindex.indd 909bindex.indd 909 12/8/11 1:01:00 PM12/8/11 1:01:00 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

910

libraries, JavaScript – MIME types

libraries, JavaScript (continued)
MSXML, 644, 660, 665,

669, 702
Prototype, 810, 886
qooxdoo, 887–888
Rico library, 887
script.aculo.us, 888
specialty, 885
Underscore.js, 887
Yahoo! User Interface Library,

811, 885, 893
LIFO (last-in fi rst-out), 112, 113
Lightbox, 888
lines, WebGL, 584, 585
lineTo(), 556, 557
link(), 161
‹link› element, 348–350, 396
links, draggable, 597
listeners. See event handlers
live update, DOM, 824–825
LiveConnect, 632
load event, 452–456, 601, 712–713
loadeddata, 601
loadedmetadata, 601
loading XML fi les, Internet

Explorer, 647–648
loadstart, 601, 712
loadStyles(), 349
localeCompare(), 160
localStorage object, 784–785
locating elements, DOM, 320–322
location methods

arrays, 118–119
strings, 154–155

location object, 255–259
manipulating, 257–259
properties, 255–256
query string arguments,

256–257
log(), 169
logging debugging messages

to console, 631–633
to page, 633–634

logging errors, 629–630
logical AND operator (&&), 57–58
logical NOT operator (!), 56–57
logical OR operator (||), 58–59
long polling, 721
long-running script limit, 750
lookupNamespaceURI(), 384
lookupPrefix(), 384
lookups

global, 814–815
properties, 816–817

loop, 600
loops

animation, 836
break statement, 73–75
continue statement, 73–75
for-each-in, 688
for-in, 72–73
nested, 73, 74
optimization, 817–819
post-test, 70, 818, 819
pretest, 70, 71, 819
for statement, 71–72
unrolling, 819–820
while statement, 70

loosely coupled code, 805–809
application logic/event

handlers, 807–809
CSS/JavaScript, 806–807
HTML/JavaScript, 805–806

loosely typed
functions, 215
variables, 29, 30, 31, 85, 623,

625, 804, 833

M

maintainability, 801–814, 833–834
external fi les v. inline

JavaScript code, 20
maintainable code, 802–809

characteristics, 802
code conventions,

802–805, 833–834
programming practices,

809–814
constants, 813–814
global variables/functions,

810–812, 814–815
null comparisons,

812–813
object ownership, 809–810

“Making Image Filters with
Canvas” (Heikkinen), 569

malformed URLs, 627
manifest fi le, 766–768
manipulating

DOM, performance
issues, 355

location object, 257–259
nodes, 314–315
tables, 350–353

manipulation methods, arrays,
116–118

map(), 119, 120
Map type, 868–869
mark-and-sweep garbage collection,

96–97, 100

markup insertion
innerHTML property, 367–369
innerText property, 376–378
insertAdjacentHTML(),

370–371
outerHTML property, 370,

371, 638
outerText property, 376, 378

mashups, 201, 367, 593, 895
match(), 156–157
matchesSelector(), 359–360
Math object, 166–170, 171

max(), 167
methods, 167–170
min(), 167
properties, 166–167
rounding methods, 167–168

Math.ceil(), 167
Mathematical Markup Language

(MathML), 8
Math.floor(), 167
MathML (Mathematical Markup

Language), 8
Math.random(), 168–169
Math.round(), 168
max(), 167
MD4, 889
MD5, 889
measureText(), 559
media elements

‹audio›, 598–605
codec support detection,

603–604
custom media players,

602–603
‹video›, 598–605

media players, custom, 602–603
“member not found,” 637–638
memory management. See also

performance
event delegation, 498–500
event handler removal,

500–502
events, 509
garbage collection, 99–100
markup insertion, 371–372

metacharacters, 129–130
method names, WebGL, 578
methods. See specifi c methods
Michaux, Peter, 274
Microsoft.XmlDom, 644
Miller, Matthias, 892
MIME types, 14, 15, 20, 260, 261,

262, 263, 264, 265, 527, 552,
595, 603, 711, 712, 724, 833,
844, 846

bindex.indd 910bindex.indd 910 12/8/11 1:01:01 PM12/8/11 1:01:01 PM

911

mimicking block-level scoping,
228–230

min(), 167
minifi ers, 892–893
minus

decrement operator (--), 46–48
subtract operator (-), 62–63
unary minus operator (-),

48–49
mobile devices identifi cation,

298–301. See also user-agent
detection

mobile viewports, 246
MochiKit, 886–887
modifi er keys, 463–464
module pattern, 234–236, 762, 763
module-augmentation pattern,

236–237
modules, ECMAScript Harmony,

874–875
modulus operator (%), 60–61
modulus/assign (%=), 68
moo.fx, 888
MooTools, 886
Mosaic, 20, 277, 278
mouse events, 459–476. See also

specifi c mouse events
accessibility issues, 471
buttons, 466–467
client coordinates, 461
drag-and-drop functionality,

758–764
modifi er keys, 463–464
page coordinates, 462
related elements, 464–466
screen coordinates, 462–463
simulating, 503–504
touch device support, 470–471

mousedown event, 459, 460, 466,
467, 470, 471, 496, 500, 597,
759, 760

mouseenter event, 459, 460
mouseleave event, 459, 460
mousemove event, 459, 470, 471,

496, 593, 759, 760, 761
mouseout event, 445, 459, 464,

465, 466, 471, 500, 503, 594
mouseover event, 323, 434, 459,

464, 465, 471, 496, 500,
503, 594

mouseup event, 459, 460, 466, 467,
470, 500, 760

mousewheel event, 460,
468–470, 471

moveEnd(), 425, 426, 523
moveStart(), 425, 426, 523

moveTo(), 556, 557
moving options, 539
Mozilla Project, 5, 10, 284
MozOrientation, 491–492
mozRequestAnimationFrame, 835,

837–839
MP3, 604
msRequestAnimationFrame(),

838–839
msvisibilitychange, 840
MSXML, 644, 660, 665, 669, 702
MSXML.DOMDocument versions,

644–645
multiline property, 131, 134
multiplicative operators, 59–61
multiply operator (*), 59–60
multiply/assign (*=), 68
mutation events, 479–482

node insertion, 481–482
node removal, 480–481

muted, 600

N

$n, 158
named function expressions, 139,

220, 221
NamedNodeMap, 333, 343, 353, 386
namespace(), 675, 686
Namespace objects, 674–675
namespaceDeclarations(), 687
namespaces

defi ned, 811
E4X, 674–675, 686–688
global variables/functions v.,

811–812
modules v., 874–875
XML, 382–386, 655–656

naming conventions, variables/
functions, 803–804

NaN (not a number), 37–38
native methods, 821
native object prototypes, 196
navigating windows, 247–251
navigator object, 259–265

methods, 259–261
properties, 259–262

negative zero, 36
nested loops, 73, 74
Netscape Navigator

DOM support, 9
ECMAScript support, 6
JavaScript version

progression, 10
user-agent detection, 278–280

networkState, 600
new line (\n), 42
new operator

constructors and, 733
Object instances, 44,

103, 104
nextElementSibling, 360
nextNode(), 411, 412, 413
nextSibling(), 413, 414
Nintendo Wii, 301, 302, 475, 477
$nn, 158
NodeFilter type, 410
NodeIterator type, 410–413
nodeKind(), 679–680
NodeList objects, 312, 353–354
nodeName property, 311
nodes. See also DOM

attribute, 345–346
CDATASection, 342–343
children property, 374
comment, 341–342
contains(), 374–376
Document, 316–326
DocumentFragment, 344–345
DocumentType, 343–344
DOM Level 2 changes, 384
E4X and, 679–681
Element, 326–337
hierarchy, 310
HTML5, 361–372, 380
insertion, mutation events,

481–482
manipulating, 314–315
markup insertion

innerHTML property,
367–369

innerText property,
376–378

insertAdjacent

HTML(), 370–371
outerHTML property, 370,

371, 638
outerText property,

376, 378
relationships, 312–314,

375–376
removal, mutation events,

480–481
Text, 337–341

nodeValue property, 311
Nokia Nseries, 300
non-extensible objects, 744
nonfatal errors, 628–629
normalize(), 316, 340, 341
normalizing text nodes,

340–341

mimicking block-level scoping – normalizing text nodes

bindex.indd 911bindex.indd 911 12/8/11 1:01:02 PM12/8/11 1:01:02 PM

912

NoScope elements, 368–369
‹noscript› element, 22, 23
NOT

bitwise NOT operator (~), 51
logical NOT operator (!),

56–57
not a number. See NaN
not identically equal operator (!==),

66–67
not-equal operator (!=), 65–66
novalidate attribute, 533–534
null comparisons, 812–813
Null data type, 33–34
Number(), 38–39
Number type, 35–41

number conversions, 38–41
primitive wrapper, 146,

149–151
range of values, 37

O

O notation, 816–817
objects. See also reference types;

specifi c objects
built-in, 161–171, 215
COM, 97, 98, 227, 228,

263, 273, 309, 312, 637,
638, 732

constructor pattern, 181–184
durable, 200–201
hybrid constructor/

prototype pattern,
197–198

parasitic, 199–200
creating, 173–174
defi ned, 173
durable, 200–201
factory pattern, 180–181
frozen, 745–746
functions as, 136, 143, 170
as hash tables, 173
host, 45, 273, 274
JSON, 692–693, 695–696
NodeList, 312, 353–354
non-extensible, 744
ownership, respecting,

809–810
properties

accessor, 176–178
data, 174–176
defi ning multiple

properties, 178–179
reading property

attributes, 179–180
types of, 174

prototype pattern, 184–197
dynamic, 198–199
hybrid constructor/

prototype pattern,
197–198

reference types v., 103, 170,
173

sealed, 744–745
strict mode, 878–879
tamper-proof, 743–746,

764, 809
Object data type, 44–45, 104–106

methods, 45
new operator, 44, 103, 104
properties, 45

object defi nitions, 103. See also
reference types

“object expected,” 607, 617
object literals

notation, 104–105
usage, 823

object masquerading, 207
object stores, IndexedDB, 788–789
object URLs, 847–848
Object.defineProperty(), 176,

177, 178, 194, 744, 866, 875
Object.freeze(), 745, 866
object-oriented (OO) programming,

173–216
ECMAScript v., 103
inheritance, 201–215

classical, 207–208
combination,

209–210, 215
constructor stealing,

207–208
parasitic, 211–212, 216
parasitic combination,

212–215, 216
prototypal, 210–211
prototype chaining,

202–207, 215
pseudoclassical, 209–210

observer pattern, 431, 755, 764
O’Callahan, Robert, 837
octal literals, 35, 40, 882–883
offl ine web applications, 765–800

application cache, 766–768
data storage

cookies, 768–778
IndexedDB, 786–799
Internet Explorer

persistent user data,
778–779

Web Storage, 780–786
offl ine detection, 765–766

offset dimensions, 401–403
onerror event handler, 622, 640,

715, 716, 720, 721, 791, 853
onunload, 456, 489, 502
OO programming. See object-

oriented programming
open(), 325, 326, 639, 703–704
OpenGL, 571, 576, 577, 578, 579,

580, 581, 582, 587, 589. See
also WebGL

OpenGL Shading Language
(GLSL), 580–584, 589

OpenGL Shading Language (Rost),
582

opening windows, 247–251
open-source projects

Backbone.js, 887
code conventions, 802
Dojo Toolkit, 886
jQuery, 357, 886, 887, 894
Konqueror, 283
MochiKit, 886–887
MooTools, 886
Mozilla Project, 5, 10, 284
Prototype library, 810, 886
qooxdoo, 887–888
Rico library, 887
WebKit, 282
Yahoo! User Interface Library,

811, 885, 893
Opera

DOM support, 9
ECMAScript support, 6
error reporting, 612–613
user-agent detection, 284–285

“operation aborted,” 635–637
operators, 45–68. See also specifi c

operators
opting-in, to strict mode, 877–878
options. See also select boxes

adding, 537–538
moving, 539
removing, 538–539
reordering, 539
selecting, 536–537

OR
bitwise OR operator (|),

52–53
logical OR operator (||), 58–59

orientationchange, 490–491
outdent, 544
outerHTML property, 370,

371, 638
outerText property, 376, 378
overloading functions, 83, 138
overrideMimeType(), 711–712

NoScope elements – overrideMimeType()

bindex.indd 912bindex.indd 912 12/8/11 1:01:03 PM12/8/11 1:01:03 PM

913

page, logging debugging messages to – [[Prototype]]

P

page, logging debugging messages
to, 633–634

page coordinates, 462
Page Visibility API, 839–841, 856
pagehide, 487–489
pageshow, 487–489
parameters, XSLTProcessor,

666–667
parasitic combination inheritance,

212–215, 216
parasitic constructor pattern,

199–200
parasitic inheritance, 211–212, 216
parentNode(), 413
parentWindow, 387
parse(), 122–123, 592, 695, 696,

699, 700
parseError property, 646
parseFloat(), 41
parseFromString(), 642, 643
parseInt(), 39–41, 162,

239, 883
parseXml(), 649, 650
parsing

E4X, 685–686
JSON, 694–700

partial function application,
741–743

partial text selection, 523–524
passing values, to shaders,

583–584
paste, 526, 545
paths, 556–557
pattern attribute, 532
pattern matching, 133, 136,

156–159, 290, 297, 531. See
also regular expressions

patterns, 567
pause, 601
pause(), 602–603
paused, 600
performance

best practices, 814–827, 834
bitwise operators, 821
double interpretation,

820–821
event handler removal,

500–502
issues

DOM manipulations, 355
event delegation,

498–500, 826
events, 509
garbage collection, 98–99

markup insertion, DOM,
371–372

loop optimization, 817–819
minimize statement count,

821–823
native methods, 821
optimize DOM interactions,

824–827
property lookup, 816–817
rolling loops, 819–820
scope-awareness, 814–816
switch statements, 821

performance.navigation
property, 851

performance.timing property,
851–852

Perl, 1, 25, 59, 128, 136
Persistent Client State - HTTP

Cookies, 768
persistent user data, 778–779
Person(), 182, 183
PHP, 15, 42, 709, 722, 806, 850
pings, image, 719–721
pixels, reading, 587–588
platform identifi cation, 294–295.

See also user-agent detection
play, 601
play(), 602–603, 604–605
playbackRate, 600
played, 600
playing, 601
Playstation, 301, 302
plug-ins, detecting, 262–264
plus

add operator (+), 61–62
increment operator (++), 46–48
unary plus operator (+),

48–49
PNG encoding, 552
points, WebGL, 584, 585
pop(), 112–113
pop-up blockers, 250–251
pop-up windows, 247–250
positive zero, 36
POST requests, 639, 708–709, 714,

715, 716, 717, 728, 849
postMessage(), 591–592,

852–853
post-test loops, 70, 818, 819
pow(), 169
pragma, 27, 877
prefl ighted requests, 717–718
premultipliedAlpha, 576
prependChild(), 684
preserveDrawingBuffer, 576
pretest loops, 70, 71, 819

preventDefault(), 443, 445, 447,
448, 450, 482, 495, 513, 525

previousElementSibling, 360
previousNode(), 411, 412, 413
previousSibling(), 413
primitive types (data types), 31–45.

See also reference types; specifi c
data types
errors, 625–627
type checking, 625, 627, 640,

812, 870
typeof operator, 31, 89–90

primitive values, 85–90
copying, 86–87
defi ned, 85, 100
dynamic properties, 86
reference values v., 85

primitive wrapper types, 146–161,
170–171

private members, 231, 872
private variables, 231–234
privileged method, 231–233, 234,

235, 238
Professional Ajax, 2nd Edition

(Wiley), 729
programming practices, 809–814

constants, 813–814
global variables/functions,

810–812, 814–815
null comparisons, 812–813
object ownership, 809–810

progress, 601
progress event, 713–714
progress events, 712–714
Progress Events specifi cation, 712
prompt(), 253, 254
properties. See also objects; specifi c

properties
accessor, 176–178
data, 174–176
defi ning multiple properties,

178–179
lookup, 816–817
reading property attributes,

179–180
types of, 174

propertyIsEnumerable(), 45,
191, 204

proprietary DOM extensions,
372–379, 380

proprietary events, 431, 451, 494,
495, 509

prototypal inheritance,
210–211

[[Prototype]], 185, 186, 189,
195, 203, 204, 213

bindex.indd 913bindex.indd 913 12/8/11 1:01:04 PM12/8/11 1:01:04 PM

914

prototypes – replaceState()

prototypes
alternate syntax, 192–194
default, 203–204
dynamic nature, 194–196
how work, 185–189
instances and, 204–205
native object, 196
in operator and, 189–192
problems with, 196–197

prototype chaining, 202–207, 215
Prototype JavaScript library,

810, 886
prototype pattern, 184–197

dynamic, 198–199
hybrid constructor/prototype

pattern, 197–198
prototype property, 144, 184,

185, 187, 189, 190, 191, 193,
197, 215

proxy functions, 868
proxy objects, 865–868
pseudoclassical inheritance,

209–210
push(), 112–113
pushState(), 606
putImageData(), 569
Python, 863, 894

Q

QName type, 675–676
qooxdoo, 887–888
quadraticCurveTo(), 556
query string arguments, location

object, 256–257
queryCommandEnabled(), 546
queryCommandState(), 546
queryCommandValue(), 546
querying

with cursors, 791–793
E4X, 681–682, 690

querySelector(), 358, 359
querySelectorAll(),

358–359, 379
queue methods, arrays, 113–114
quirks detection, 275–276, 307
quirks mode, 21–22, 245, 365, 373,

374, 392, 404, 405, 457, 462
qUnit, 894

R

random(), 168–169
range of values, Number type, 37
RangeError, 616

ranges. See also Traversal and
Range module
DOM, 415–424

clean up, 424
cloning, 424
collapsing, 422–423
comparing, 423–424
complex selection,

417–419
inserting content, 421–422
interacting with content,

419–421
simple selection,

416–417
Internet Explorer, 424–428

cloning, 428
collapsing, 427
comparing, 427–428
complex selection,

425–426
simple selection, 424–425

ratechange, 601
raw image data, 567–569
readability, code conventions, 803
readAsArrayBuffer(), 844
readAsBinaryString(), 844
readAsDataURL(), 844
readAsText(), 844
reading pixels, 587–588
reading property attributes, 179–180
readPixels(), 587–588
readyState property, 365, 485,

486, 600, 601, 648, 705
readystatechange, 485–487
rect(), 556
rectangles, 553–556
recursive functions, 220–221, 237
reduce(), 121, 122
reduceRight(), 121, 122
reduction methods, arrays, 121–122
reference counting garbage

collection, 97–98, 101
reference types, 103–171. See also

primitive wrapper types
classes v., 103, 170
object defi nitions, 103
objects v., 103, 170, 173
primitive wrapper

types v., 147
reference values, 85–90. See also

objects
copying, 86–87
defi ned, 85, 100, 103
dynamic properties, 86
primitive values v., 85

ReferenceError, 616

refresh(), 264
RegExp constructor

properties, 134–136
regular expression creation,

129–130
RegExp instance

methods, 132–134
properties, 131

RegExp type, 128–136, 170
registerContentHandler(),

264–265
registering handlers, 264–265
registerProtocolHandler(),

264–265
regular expressions, 128–136

creating, 128–130
fl ags, 128–129
metacharacters, 129–130
support, 136
typeof operator, 31, 90

related elements, mouse events,
464–466

relational operators, 63–65
relationships, node, 312–314,

375–376
remainder operator (%), 60–61
remote scripting, 701. See

also Ajax
removeAttribute(), 330, 333,

334, 345, 346, 779, 800
removeAttributeNS(), 385
removeChild(), 315, 318, 480,

500, 538
removeEventListener(), 438,

439, 443
removeformat, 545
removeHandler(), 441, 442,

756, 757
removeNamedItem(), 333, 334
removeNamedItemNS(), 386
removeNamespace(), 686
removing event handlers, 500–502
removing options, 538–539
rendering engine, identifying,

286–291
reordering methods, arrays,

114–116
reordering options, 539
repeating timers, 748–750
replace(), 157, 158, 258,

269, 684
replaceChild(), 315, 318, 335,

480, 481, 500
replaceData(), 338
replacement, splice(), 117
replaceState(), 605–606

bindex.indd 914bindex.indd 914 12/8/11 1:01:05 PM12/8/11 1:01:05 PM

915

requestAnimationFrame() – setAttributeNodeNS()

requestAnimationFrame(),
835–839, 856

requests
credentialed, 718
GET, 703, 707–708, 709, 714,

715, 717, 718, 728, 851
POST, 639, 708–709, 714, 715,

716, 717, 728, 849
prefl ighted, 717–718

reserved words, 28–29. See also
keywords

resetting forms, 513–514
Resig, John, 810, 886
resize event, 452, 456–457
respect object ownership,

809–810
rest arguments, 859–860
retrieving selected text, 522
returnValue, 447
reverse(), 114, 115, 116,

626, 627
reverseSort(), 626, 627
RGB, 395, 553
Rhino, 829, 830, 831, 891, 892, 893
rich text editing, 542–549, 550
Rico library, 887
rightContext property, 134–135
Rost, Rani J., 582
rotate(), 560
rounding errors, 36–37
rounding methods, Math object,

167–168
Ruby, 806
Ruby on Rails, 886
Russell, Alex, 721, 886

S

Safari
DOM support, 9
ECMAScript support, 6
error reporting, 610–612
WebKit, 282–283

safe type detection, 110, 621,
731–733

sandbox, 593
save(), 562
sayHi(), 79, 80, 81, 144, 164, 194,

212, 218, 219
sayName(), 144, 174, 183, 184,

201, 810, 811
Scalable Vector Graphics (SVG), 8,

383, 385
scale(), 560
scope chains

augmentation, 92–93

closures and, 221–224
defi ned, 91
performance, 814

scoped element, 368–369
scopes (execution contexts), 90–96

block-level scopes, 93–96,
228–230, 858–859

defi ned, 90, 100
ECMAScript Harmony,

858–859
functions, 90–91, 100
global, 90, 100
performance v., 814–816
worker global scope, 853–855

scope-safe constructors, 733–735
screen coordinates, 462–463
screen object, 265–267
script debugging, 608
‹script› elements, 13–23

async attribute, 13, 17–18, 23
asynchronous scripts, 17–18
within ‹body›, 16
defer attribute, 13, 16–17, 23
deferred scripts, 16–17
deprecated syntax, 20
DOM and, 346–348
external fi les, 15–16, 20
inline JavaScript code, 14–15,

20
src attribute, 14, 15
type attribute, 14
XHTML, 18–19

script.aculo.us, 888
scripting forms. See forms
scroll dimensions, 404–406
scroll event, 452, 457
scrollByLines(), 379
scrollByPages(), 379
scrollIntoView(), 372, 379
scrollIntoViewIfNeeded(), 379
sealed objects, 744–745
search(), 157
secure execution environments, 895
security

Ajax/Comet, 728–729
code injection, 164
cookies, 778
CORS, 714
cross-document messaging,

591, 606
cryptography libraries, 888–889
CSRF, 715, 728
Internet Explorer persistent

user data, 779
memory management, 99
pop-up windows, 249–250

this value, coercion of, 882
Web Sockets, 725
XSS attacks, 715

seekable, 600
seeked, 601
seeking, 600, 601
select, 452
select boxes, 534–539, 550

creating, 534
options

adding, 537–538
moving, 539
removing, 538–539
reordering, 539
selecting, 536–537

select event, 521–522
selectall, 545
selecting options, 536–537
selecting text, 521–524, 549
selectNodes(), 656, 657, 659,

660, 669
Selectors API, 357–360, 379

matchesSelector(), 359–
360

querySelector(),
358, 359

querySelectorAll(), 358–
359, 379

selectSingleNode(), 656, 657,
658, 659, 660, 669

semicolon
JASON objects, 693
statements, 27

send(), 704, 705, 708, 710, 712,
715, 850

serialization
E4X, 685–686
Internet Explorer, 647
JSON, 694–700

serialize(), 541, 542, 709
serializeToString(), 644
serializeXml(), 650
server push, 721
Server-Sent Events (SSE),

723–725, 727–728
sessionStorage object,

781–783
set(), 772, 775, 776
[[Set]], 177, 744, 745
Set type, 869
setAll(), 775, 776, 777
setAttribute(), 330, 332,

333, 334, 345, 346, 521, 778,
779, 800

setAttributeNode(), 346
setAttributeNodeNS(), 386

bindex.indd 915bindex.indd 915 12/8/11 1:01:06 PM12/8/11 1:01:06 PM

916

setAttributeNS() – styles

setAttributeNS(), 386
setChildren(), 684
setData(), 527, 528, 595
setDate(), 127
setDragImage(), 598
setFullYear(), 126
setHours(), 127
setInterval(), 252, 836, 854
setMilliseconds(), 128
setMinutes(), 127
setMonth(), 127
setName(), 88, 89, 232, 234, 676
setNamedItem(), 333, 334
setNamedItemNS(), 386
setNamespace(), 686
setSelectionRange(), 523–524
setters/getters, 872–873
setTime(), 126
setTimeout(), 251–252, 638,

722, 741, 746, 747, 749, 753,
764, 820, 836, 837, 854

setting attributes, 332–333
setTransform(), 560
setUserData(), 389
setUTCDate(), 127
setUTCFullYear(), 126
setUTCHours(), 127
setUTCMilliseconds(), 128
setUTCMinutes(), 127
setUTCMonth(), 127
setUTCSeconds(), 128
SHA-1, 889
shaders, 580–584
shadowBlur, 564
shadowColor, 564
shadowOffsetX, 564
shadowOffsetY, 564
shadows, 564
shared workers, 855
shift(), 113, 751
short polling, 721
showMessage(), 435, 436
ShrinkSafe, 892–893
side effects, 21, 37, 46, 51, 87, 223,

224, 809
sign bit, 50
signed right shift (››), 54–55
signed right shift/assign (››=), 68
simple maps, 868–869
simple selection

DOM ranges, 416–417
Internet Explorer ranges,

424–425
simple values, JSON, 692
simulating events, 502–509

DOM event simulation,
502–508

Internet Explorer event
simulation, 508–509

keyboard events, 504–506
mouse events, 503–504

sin(), 170
single line comment (//), 26
single quotes (‘), strings, 41–42
singleton built-in objects, 161–171
singletons, 234–237, 238, 759, 762
64-bit to 32-bit conversion, 49–51
size, window objects, 245–246
slice(), 116–117, 153, 154, 312,

741, 742, 846
small(), 161
SMIL (Synchronized Multimedia

Integration Language), 8
Smith, Garrett, 436
social networking applications, 593
some(), 119, 120
sort(), 114, 115, 116, 140, 141,

196, 273, 620, 626, 812
source, RegExp instance

property, 131
special collections, document

object, 322–323
specialty libraries, 885
Speed Up Your Site (King), 820
splice(), 117–118, 756
split(), 159
splitText(), 338, 341, 342
splitting text nodes, 341
spoofi ng, 277, 728
spread arguments, 859–860
sqrt(), 169
square brackets, 107, 108, 129, 174
src attribute, 14, 15
src property, 600
srcElement, 447
SSE (Server-Sent Events), 723–725,

727–728
stack methods, arrays, 112–113
stalled, 602
standards mode, 21–22, 245, 246,

365, 373, 374, 392, 404, 405,
457, 462, 807

start, 600
startsWith(), 196
statements (fl ow-control

statements). See also specifi c
statements
count, minimizing, 821–823
curly braces, 27, 104
labeled, 73
semicolon and, 27
syntax, 27–28

static private variables, 232–234
stencil, 576

Stephenson, Sam, 886
stopImmediatePro

pagation(), 443
stopPropagation(), 444, 446,

447, 448, 449, 450, 451
storage event, 785–786
Storage type, 780–781
streaming, HTTP, 722–723,

724, 729
strict mode, 877–883

defi ned, 27
eval(), 163–164, 880–881
functions, 80, 879–880
object manipulation,

878–879
octal literals, 882–883
opting-in, 877–878
pragma, 27, 877
variables, 878

stride value, 586
strike(), 161
String(), 44, 62, 114
String type, 41–45

character methods, 152
HTML methods, 161
pattern matching methods,

156–159
primitive wrapper type, 146,

151–161
stringify(), 592, 695, 700
strings

case conversion, 156
character literals, 42–43
converting to, 43–44
double quotes (“), 41–42
JSON, 692
location methods, 154–155
manipulation methods,

152–154
nature of, 43
relational operators and, 64
single quotes (‘), 41–42

stroke(), 556, 557
strokeRect(), 553, 554, 556
strokes, 553
strokeStyle, 553
strokeText(), 557, 558, 559
struct types, 869–870
‹style› element, 348–350, 396
style sheets, 396–401

CSS rules, 398–401
creating, 399–400
deleting, 400–401

styles
accessing element styles,

391–392
computed, 394–396

bindex.indd 916bindex.indd 916 12/8/11 1:01:07 PM12/8/11 1:01:07 PM

917

StyleSheet property – try-catch statement

DOM, properties/methods,
392–394

DOM and, 348–350
DOM Level 2 Styles module,

381, 390–401, 429
StyleSheet property, 350, 396
sub(), 161
subarray(), 575
subcookies, 773–778
submitting forms, 512–513
substr(), 153, 154
substring(), 147, 153, 154, 196,

522, 523, 625
substringData(), 338
subtract operator (-), 62–63
subtract/assign (-=), 68
SubType, 202–203, 213
sum(), 79, 137, 144, 860
sup(), 161
SuperType, 202–203, 213
SVG (Scalable Vector Graphics), 8,

383, 385
switch statements, 76–78, 821
Synchronized Multimedia

Integration Language
(SMIL), 8

syntax
ECMAScript, 25–28
errors, Internet Explorer,

638–639
JSON, 691–694

SyntaxError, 617
“system cannot locate resource

specifi ed,” 639
system dialogs, 253–255

T

tab (\t), 42
tab forward behavior, 528–529
tabForward(), 529
‹table› element, 350–353
tables, manipulating, 350–353
tag placement, ‹script› elements, 16
tamper-proof objects, 743–746,

764, 809
tan(), 170
target, 444
targets, drop, 594
‹tbody›, 352, 353
test(), 30, 130, 131, 133, 134,

136, 288
test-driven development, 893
text

draggable, 597

drawing, 557–559
text boxes, 520–534

input fi ltering, 524–528
text selection, 521–524, 549

text events, 472, 476–477
text nodes, 337–341

creating, 339–340
normalizing, 340–341
splitting, 341

text selection, 521–524, 549
Text type, 337–341
‹textarea› element, 520–521
textContent property, 377, 378
textInput event, 471, 472,

476–477
textures, WebGL, 587
Theora, 604
32-bit conversion, 64-bit to, 49–51
this object, 225–227
this value, coercion of, 882
3D drawing context, 551, 571, 589.

See also WebGL
3D graphics languages, 571
throttle(), 753–754
throw operator, 619
throwing errors, 619–622,

634–635
tightly coupled software,

805–806
time-date component methods,

126–128
timeouts

intervals and, 251–253
XHR, 711

timers
advanced, 746–754
function throttling, 752–754
repeating, 748–750
setInterval(), 252,

836, 854
setTimeout(), 746, 747, 749,

753
yielding processes, 750–752

timeupdate, 602
toDataURL(), 552, 553, 563, 564
toDateString(), 125
toExponential(), 150, 151
toFixed(), 149, 150, 151
toGMTString(), 126, 772
toJSON(), 698–699
toLocaleDateString(), 126
toLocaleLowerCase(), 156
toLocaleString(), 45

arrays, 110–111
Date type, 124–125
functions, 146

Number type, 149
regular expressions, 133–134
String type, 151

toLocaleTimeString(), 126
toLocaleUpperCase(), 156
toLowerCase(), 156
tools, JavaScript, 891–895
toPrecision(), 150, 151
toString()

arrays, 110–111
converting to string, 43–44, 45
Date type, 124–125
functions, 146
Number type, 149
regular expressions, 133–134
String type, 151

totalBytes, 600
toTimeString(), 126
touch devices, mouse events,

470–471
touch events, 494–497

properties, 495–496
touchcancel, 495
touchend, 495
touchmove, 495
touchstart, 495

toUpperCase(), 156
toUTCString(), 126
toXMLString(), 672, 673,

674, 685
‹tr›, 352, 353
transactions, IndexedDB,

790–791
transform(), 560
transformNode(), 660–661
transformToDocument(), 665,

666, 667, 668
transformToFragment(), 665,

666, 667
translate(), 560
traps, proxy objects, 866–867
Traversal and Range module, 381,

408–428, 429
traversals, 408–415, 429

NodeIterator type, 410–413
TreeWalker, 413–415

TreeWalker, 413–415
triangles, WebGL, 584–586
trim(), 155–156
trusted, 444
try-catch statement, 615–619

ECMAScript, 607
error types, 616–618
finally clause, 616
throwing errors v., 621–622
usage, 618–619

bindex.indd 917bindex.indd 917 12/8/11 1:01:08 PM12/8/11 1:01:08 PM

918

2D drawing context – Web Storage

2D drawing context, 553–570.
See also WebGL
compositing, 569–570
defi ned, 588–589
fi lls, 553
gradients, 565–567
images, 563–564
paths, 556–557
patterns, 567
raw image data, 567–569
rectangles, 553–556
shadows, 564
strokes, 553
text, 557–559
transformations, 559–562

two’s complement, 50–51
type attribute, 14
type checking, 625, 627, 640, 812,

870
type coercion errors, 624–625
type comments, 804–805
type detection, safe, 110, 621,

731–733
type property, 443, 445, 447, 517,

531, 534, 540, 542, 756
typed arrays, 571–576
typed views, 573–576
TypeError, 617
typeof operator, 31, 89–90

U

UI events, 452–457
Uint8Array, 573
Uint16Array, 574
Uint32Array, 574
unary minus operator (-), 48–49
unary operators, 46–49
unary plus operator (+), 48–49
Undefi ned data type, 32–33
undefined value, 29, 32, 33, 34,

39, 44, 691
underline, 545
Underscore.js, 887
understandable, maintainable

code, 802
unexpected identifi er error, 139
uniforms, attributes and, 581
unit testing, 893–894
Universal Time Code. See UTC
unknown runtime error, 638
unlink, 545
unload event, 452, 456
unrolling loops, 819–820
unset(), 773, 777

unsetAll(), 777
unshift(), 113–114
unsigned integer, 51
unsigned right shift (›››), 55–56
unsigned right shift/

assign (›››=), 68
URI-encoding methods, Global

object, 162–163
URIError, 617
URLs

blob, 847–848
constants and, 813, 814
history object, 267
malformed, 627
XHR usage, 704, 728

user data, persistent, 778–779
userAgent, 261, 269, 854
user-agent detection, 276–306

defi ned, 307
history, 277–286
identifying

browsers, 291–294
game systems, 301–302
mobile devices, 298–301
platforms, 294–295
rendering engine, 286–291
Windows operating

systems, 295–298
script, 303–306
spoofi ng, 277
when to use, 306
working with, 286–302

UTC (Universal Time Code), 122,
126, 127, 128

V

validation
form fi elds, 530–534
JSLint, 829–830, 891

validators, 891–892
[[Value]] attribute, 175, 744
valueOf(), 39, 45

arrays, 110–111
Date type, 125
functions, 146
Number type, 149
String type, 151

values, functions as, 139–141
variable object, 90
variables

closures and, 224–225
complexities, 85
declaration, 94–95
dereferencing, 99, 100, 101

garbage collection, 96–100
global, 810–812, 814–815
loosely typed, 29, 30, 31, 85,

623, 625, 804, 833
naming conventions, 803–804
overview, 29–30
primitive values, 85–90
private, 231–234
reference values, 85–90
strict mode, 878
type transparency,

804–805
vertex shaders, 580–584
‹video› element, 598–605

codec support detection,
603–604

custom media players,
602–603

events, 601–602
properties, 599–601

videoHeight, 600
videoWidth, 600
viewports, WebGL, 578–579
views

array buffer, 571–573
typed, 573–576

visibilitychange event, 840
Visual Basic .NET, 895
visual effects/animation

libraries, 888
mozRequestAnimation

Frame, 835, 837–839
requestAnimation

Frame(), 835–839, 856
volume, 600
volumechange, 602
Vorbis, 604

W

waiting, 602
watchPosition(), 843
WAV, 604
WeakMap type, 869
web applications. See offl ine web

applications
web browsers. See browsers
web forms. See forms
Web Inspector, 613
Web Messaging, 593
Web Sockets, 725–728
Web Storage, 780–786

globalStorage object,
783–784

limitations/restrictions, 786

bindex.indd 918bindex.indd 918 12/8/11 1:01:09 PM12/8/11 1:01:09 PM

919

localStorage object,
784–785

sessionStorage object,
781–783

storage event, 785–786
Storage type, 780–781

Web Timing, 851–852, 856
Web Workers, 852–855, 856
WebGL, 571–588

buffers, 579–580
constants, 577
context, 576–588
coordinates, 578–579
defi ned, 589
drawing, 584–586
errors, 580
GLSL, 580–584, 589
JavaScript v., 580
method names, 578
OpenGL, 571, 576, 577, 578,

579, 580, 581, 582, 587, 589
pixels, 587–588
shaders, 580–584
support, 588
textures, 587
3D drawing context,

551, 571, 589
triangles, 584–586
typed arrays, 571–576
typed views, 573–576
viewports, 578–579

webgl, 576
WebKit, 282–283
webkitRequestAnimation

Frame(), 838–839
WebM, 604
whatToShow, 410–411
wheel events, 451, 460
while statement, 70
white space

Element Traversal, 360
JSON.stringify(), 697
semicolons, 27
trim(), 155

width attribute, 552
Wii, Nintendo, 301, 302,

475, 477
Wiley, Professional Ajax, 2nd

Edition, 729
window objects, 165–166, 239–255,

268. See also Global object

global scope, 240–241
intervals/timeouts, 251–253
system dialogs, 253–255

window.open(), 243, 247, 248,
249, 250, 251

windows
frames v., 241–244
navigating, 247–251
opening, 247–251
pop-up, 247–250
position, 244–245
size, 245–246

Windows Mobile, 241, 300, 301,
305, 492

Windows operating systems
identifi cation, 295–298. See
also user-agent detection

wire weight, 830
with statement, 75–76, 815–816
workers

dedicated, 855
global scope, 853–855
shared, 855

wrapper types. See primitive
wrapper types

[[Writable]] attribute, 175, 744,
745

write(), 324, 325, 326
writeln(), 324, 325, 326
writing, document, 324–326
WYSIWYG editing, 542

X

XDM. See cross-document
messaging

XHR (XMLHttpRequest), 701–712
createXHR(), 702, 703, 736,

737, 738
fi le uploads with, 849–850,

856
FormData type, 710–711
GET requests, 707–708
HTTP headers, 706–707
Level 1, 710
Level 2, 710
overrideMimeType(),

711–712
POST requests, 708–709
progress events, 712–714

send(), 704, 705, 708, 710,
712, 715, 850

timeouts, 711
usage, 703–706

XHTML (Extensible HyperText
Markup Language)
HTML v., 18
innerHTML property, 369
‹script› elements, 18–19
XML namespaces, 382–386

XML, 641–669. See also Ajax;
ECMAScript for XML;
elements
construction/manipulation,

E4X, 682–685
DOM support in browsers,

641–650
in Internet Explorer, 644–649
JSON v., 691
literals, 672, 673, 675,

682, 685
namespaces, 382–386,

655–656
XML type, 672–673
XMLHttpRequest. See XHR
XMLList type, 673–674
xmlns attribute, 382, 383,

384, 655
XMLSerializer type, 644,

650, 669
XPath support, browsers, 651–660
XPathResult values, 651–653
XSLT support, browsers, 660–668
XSLTProcessor type, 665–667
XSS (cross-site scripting)

attacks, 715

Y

Yahoo! User Interface Library
(YUI), 811, 885, 893

yielding processes, 750–752
YUI Compressor, 831–832, 893
YUI Doc, 894
YUI Test, 893

Z

zero, positive/negative, 36

Web Timing – zero, positive/negative

bindex.indd 919bindex.indd 919 12/8/11 1:01:10 PM12/8/11 1:01:10 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox27 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

badvert.indd 920badvert.indd 920 12/8/11 12:57:00 PM12/8/11 12:57:00 PM

http://www.safaribooksonline.com/wrox27

Related Wrox Books

Beginning iOS Application Development with HTML and JavaScript
ISBN: 978-1-1181-5900-2
Beginning-to-intermediate web developers who want to apply their existing HTML/CSS/
JavaScript skills to app development for the iPhone/iPad OS will love this book. The book
enables developers who know these core technologies to use what they already know and
get up to speed quickly. It introduces iOS development with web technologies, explains how
to enable and optimize websites for the iPhone and iPad, explores user interface design,
then moves into animation, special effects, building with web frameworks, and much more.

Beginning PhoneGap
ISBN: 978-1-1181-5665-0
PhoneGap is an open source solution, ideal for web developers wanting to build cross-platform
mobile apps without having to learn a new language. Using HTML, CSS, and Javascript,
Beginning PhoneGap allows you to jump into the mobile world and develop apps for iPhone,
Android, and the BlackBerry.

Beginning Building Mobile Application Development in the Cloud
ISBN: 978-1-1180-3469-9
The marketplace for apps is ever expanding, increasing the potential to make money. With this
guide, you’ll learn how to build cross-platform applications for mobile devices that are supported
by the power of Cloud-based services such as Amazon Web Services. An introduction to Cloud-
based applications explains how to use HTML5 to create cross-platform mobile apps and then
use Cloud services to enhance those apps. You’ll learn how to build your first app with HTML5
and set it up in the Cloud, while also discovering how to use jQuery to your advantage.

Professional XMPP Programming with JavaScript and jQuery
ISBN: 978-0-470-54071-8
XMPP is a robust protocol used for a wide range of applications, including instant messaging,
multi-user chat, voice and video conferencing, collaborative spaces, real-time gaming, data
synchronization, and search. This book teaches you how to harness the power of XMPP in
your own apps and presents you with all the tools you need to build the next generation of
apps using XMPP or add new features to your current apps. Featuring the JavaScript language
throughout and making use of the jQuery library, the book contains several XMPP apps of
increasing complexity that serve as ideal learning tools.

Related Wrox Books

Beginning iOS Application Development with HTML and JavaScript
ISBN: 978-1-1181-5900-2
Beginning-to-intermediate web developers who want to apply their existing HTML/CSS/
JavaScript skills to app development for the iPhone/iPad OS will love this book. The book
enables developers who know these core technologies to use what they already know and
get up to speed quickly. It introduces iOS development with web technologies, explains how
to enable and optimize websites for the iPhone and iPad, explores user interface design,
then moves into animation, special effects, building with web frameworks, and much more.

Beginning PhoneGap
ISBN: 978-1-1181-5665-0
PhoneGap is an open source solution, ideal for web developers wanting to build cross-platform
mobile apps without having to learn a new language. Using HTML, CSS, and Javascript,
Beginning PhoneGap allows you to jump into the mobile world and develop apps for iPhone,
Android, and the BlackBerry.

Beginning Building Mobile Application Development in the Cloud
ISBN: 978-1-1180-3469-9
The marketplace for apps is ever expanding, increasing the potential to make money. With this
guide, you’ll learn how to build cross-platform applications for mobile devices that are supported
by the power of Cloud-based services such as Amazon Web Services. An introduction to Cloud-
based applications explains how to use HTML5 to create cross-platform mobile apps and then
use Cloud services to enhance those apps. You’ll learn how to build your first app with HTML5
and set it up in the Cloud, while also discovering how to use jQuery to your advantage.

Professional XMPP Programming with JavaScript and jQuery
ISBN: 978-0-470-54071-8
XMPP is a robust protocol used for a wide range of applications, including instant messaging,
multi-user chat, voice and video conferencing, collaborative spaces, real-time gaming, data
synchronization, and search. This book teaches you how to harness the power of XMPP in
your own apps and presents you with all the tools you need to build the next generation of
apps using XMPP or add new features to your current apps. Featuring the JavaScript language
throughout and making use of the jQuery library, the book contains several XMPP apps of
increasing complexity that serve as ideal learning tools.

	Professional: JavaScript® for Web Developers
	Contents
	Foreword
	Introduction
	Chapter 1: What Is Javascript?
	A Short History
	JavaScript Implementations
	ECMAScript
	The Document Object Model (DOM)
	The Browser Object Model (BOM)

	JavaScript Versions
	Summary

	Chapter 2: Javascript In HTML
	The <script> Element
	Tag Placement
	Deferred Scripts
	Asynchronous Scripts
	Changes in XHTML
	Deprecated Syntax

	Inline Code versus External Files
	Document Modes
	The <noscript> Element
	Summary

	Chapter 3: Language Basics
	Syntax
	Case-sensitivity
	Identifiers
	Comments
	Strict Mode
	Statements

	Keywords and Reserved Words
	Variables
	Data Types
	The typeof Operator
	The Undefined Type
	The Null Type
	The Boolean Type
	The Number Type
	The String Type
	The Object Type

	Operators
	Unary Operators
	Bitwise Operators
	Boolean Operators
	Multiplicative Operators
	Additive Operators
	Relational Operators
	Equality Operators
	Conditional Operator
	Assignment Operators
	Comma Operator

	Statements
	The if Statement
	The do-while Statement
	The while Statement
	The for Statement
	The for-in Statement
	Labeled Statements
	The break and continue Statements
	The with Statement
	The switch Statement

	Functions
	Understanding Arguments
	No Overloading

	Summary

	Chapter 4: Variables, Scope, and Memory
	Primitive and Reference Values
	Dynamic Properties
	Copying Values
	Argument Passing
	Determining Type

	Execution Context and Scope
	Scope Chain Augmentation
	No Block-Level Scopes

	Garbage Collection
	Mark-and-Sweep
	Reference Counting
	Performance
	Managing Memory

	Summary

	Chapter 5: Reference Types
	The Object Type
	The Array Type
	Detecting Arrays
	Conversion Methods
	Stack Methods
	Queue Methods
	Reordering Methods
	Manipulation Methods
	Location Methods
	Iterative Methods
	Reduction Methods

	The Date Type
	Inherited Methods
	Date-Formatting Methods
	Date/Time Component Methods

	The RegExp Type
	RegExp Instance Properties
	RegExp Instance Methods
	RegExp Constructor Properties
	Pattern Limitations

	The Function Type
	No Overloading (Revisited)
	Function Declarations versus Function Expressions
	Functions as Values
	Function Internals
	Function Properties and Methods

	Primitive Wrapper Types
	The Boolean Type
	The Number Type
	The String Type

	Singleton Built-in Objects
	The Global Object
	The Math Object

	Summary

	Chapter 6: Object-Oriented Programming
	Understanding Objects
	Types of Properties
	Defining Multiple Properties
	Reading Property Attributes

	Object Creation
	The Factory Pattern
	The Constructor Pattern
	The Prototype Pattern
	Combination Constructor/Prototype Pattern
	Dynamic Prototype Pattern
	Parasitic Constructor Pattern
	Durable Constructor Pattern

	Inheritance
	Prototype Chaining
	Constructor Stealing
	Combination Inheritance
	Prototypal Inheritance
	Parasitic Inheritance
	Parasitic Combination Inheritance

	Summary

	Chapter 7: Function Expressions
	Recursion
	Closures
	Closures and Variables
	The this Object
	Memory Leaks

	Mimicking Block Scope
	Private Variables
	Static Private Variables
	The Module Pattern
	The Module- Augmentation Pattern

	Summary

	Chapter 8: The Browser Object Model
	The window Object
	The Global Scope
	Window Relationships and Frames
	Window Position
	Window Size
	Navigating and Opening Windows
	Intervals and Timeouts
	System Dialogs

	The location Object
	Query String Arguments
	Manipulating the Location

	The Navigator Object
	Detecting Plug-ins
	Registering Handlers

	The screen Object
	The history Object
	Summary

	Chapter 9: Client Detection
	Capability Detection
	Safer Capability Detection
	Capability Detection Is Not Browser Detection

	Quirks Detection
	User-Agent Detection
	History
	Working with User-Agent Detection
	The Complete Script
	Usage

	Summary

	Chapter 10: The Document Object Model
	Hierarchy of Nodes
	The Node Type
	The Document Type
	The Element Type
	The Text Type
	The Comment Type
	The CDATASection Type
	The DocumentType Type
	The DocumentFragment Type
	The Attr Type

	Working with the DOM
	Dynamic Scripts
	Dynamic Styles
	Manipulating Tables
	Using NodeLists

	Summary

	Chapter 11: Dom Extensions
	Selectors API
	The querySelector() Method
	The querySelectorAll() Method
	The matchesSelector() Method

	Element Traversal
	HTML5
	Class-Related Additions
	Focus Management
	Changes to HTMLDocument
	Character Set Properties
	Custom Data Attributes
	Markup Insertion
	The scrollIntoView() Method

	Proprietary Extensions
	Document Mode
	The children Property
	The contains() Method
	Markup Insertion
	Scrolling

	Summary

	Chapter 12: Dom Levels 2 and 3
	DOM Changes
	XML Namespaces
	Other Changes

	Styles
	Accessing Element Styles
	Working with Style Sheets
	Element Dimensions

	Traversals
	NodeIterator
	TreeWalker

	Ranges
	Ranges in the DOM
	Ranges in Internet Explorer 8 and Earlier

	Summary

	Chapter 13: Events
	Event Flow
	Event Bubbling
	Event Capturing
	DOM Event Flow

	Event Handlers
	HTML Event Handlers
	DOM Level 0 Event Handlers
	DOM Level 2 Event Handlers
	Internet Explorer Event Handlers
	Cross-Browser Event Handlers

	The Event Object
	The DOM Event Object
	The Internet Explorer Event Object
	Cross-Browser Event Object

	Event Types
	UI Events
	Focus Events
	Mouse and Wheel Events
	Keyboard and Text Events
	Composition Events
	Mutation Events
	HTML5 Events
	Device Events
	Touch and Gesture Events

	Memory and Performance
	Event Delegation
	Removing Event Handlers

	Simulating Events
	DOM Event Simulation
	Internet Explorer Event Simulation

	Summary

	Chapter 14: Scripting Forms
	Form Basics
	Submitting Forms
	Resetting Forms
	Form Fields

	Scripting Text Boxes
	Text Selection
	Input Filtering
	Automatic Tab Forward
	HTML5 Constraint Validation API

	Scripting Select Boxes
	Options Selection
	Adding Options
	Removing Options
	Moving and Reordering Options

	Form Serialization
	Rich Text Editing
	Using contenteditable
	Interacting with Rich Text
	Rich Text Selections
	Rich Text in Forms

	Summary

	Chapter 15: Graphics With Canvas
	Basic Usage
	The 2D Context
	Fills and Strokes
	Drawing Rectangles
	Drawing Paths
	Drawing Text
	Transformations
	Drawing Images
	Shadows
	Gradients
	Patterns
	Working with Image Data
	Compositing

	WebGL
	Typed Arrays
	The WebGL Context
	Support

	Summary

	Chapter 16: HTML5 Scripting
	Cross-Document Messaging
	Native Drag and Drop
	Drag-and-Drop Events
	Custom Drop Targets
	The dataTransfer Object
	DropEffect and effectAllowed
	Draggability
	Additional Members

	Media Elements
	Properties
	Events
	Custom Media Players
	Codec Support Detection
	The Audio Type

	History State Management
	Summary

	Chapter 17: Error Handling And Debugging
	Browser Error Reporting
	Internet Explorer
	Firefox
	Safari
	Opera
	Chrome

	Error Handling
	The try-catch Statement
	Throwing Errors
	The error Event
	Error-handling Strategies
	Identify Where Errors Might Occur
	Distinguishing between Fatal and Nonfatal Errors
	Log Errors to the Server

	Debugging Techniques
	Logging Messages to a Console
	Logging Messages to the Page
	Throwing Errors

	Common Internet Explorer Errors
	Operation Aborted
	Invalid Character
	Member Not Found
	Unknown Runtime Error
	Syntax Error
	The System Cannot Locate the Resource Specified

	Summary

	Chapter 18: XML in Javascript
	XML DOM Support in Browsers
	DOM Level 2 Core
	The DOMParser Type
	The XMLSerializer Type
	XML in Internet Explorer 8 and Earlier
	Cross-Browser XML Processing

	XPath Support in Browsers
	DOM Level 3 XPath
	XPath in Internet Explorer
	Cross-Browser XPath

	XSLT Support in Browsers
	XSLT in Internet Explorer
	The XSLTProcessor Type
	Cross-Browser XSLT

	Summary

	Chapter 19: Ecmascript for XML
	E4X Types
	The XML Type
	The XMLList Type
	The Namespace Type
	The QName Type

	General Usage
	Accessing Attributes
	Other Node Types
	Querying
	XML Construction and Manipulation
	Parsing and Serialization Options
	Namespaces

	Other Changes
	Enabling Full E4X
	Summary

	Chapter 20: JSON
	Syntax
	Simple Values
	Objects
	Arrays

	Parsing and Serialization
	The JSON Object
	Serialization Options
	Parsing Options

	Summary

	Chapter 21: Ajax and Comet
	The XMLHttpRequest Object
	XHR Usage
	HTTP Headers
	GET Requests
	POST Requests

	XMLHttpRequest Level 2
	The FormData Type
	Timeouts
	The overrideMimeType() Method

	Progress Events
	The load Event
	The progress Event

	Cross-Origin Resource Sharing
	CORS in Internet Explorer
	CORS in Other Browsers
	Preflighted Requests
	Credentialed Requests
	Cross-Browser CORS

	Alternate Cross-Domain Techniques
	Image Pings
	Comet
	Server-Sent Events
	Web Sockets
	SSE versus Web Sockets

	Security
	Summary

	Chapter 22: Advanced Techniques
	Advanced Functions
	Safe Type Detection
	Scope-Safe Constructors
	Lazy Loading Functions
	Function Binding
	Function Currying

	Tamper-Proof Objects
	Nonextensible Objects
	Sealed Objects
	Frozen Objects

	Advanced Timers
	Repeating Timers
	Yielding Processes
	Function Throttling

	Custom Events
	Drag and Drop
	Fixing Drag Functionality
	Adding Custom Events

	Summary

	Chapter 23: Offline Applications And Client-Side Storage
	Offline Detection
	Application Cache
	Data Storage
	Cookies
	Internet Explorer User Data
	Web Storage
	IndexedDB

	Summary

	Chapter 24: Best Practices
	Maintainability
	What Is Maintainable Code?
	Code Conventions
	Loose Coupling
	Programming Practices

	Performance
	Be Scope-Aware
	Choose the Right Approach
	Minimize Statement Count
	Optimize DOM Interactions

	Deployment
	Build Process
	Validation
	Compression

	Summary

	Chapter 25: Emerging APIs
	RequestAnimationFrame()
	Early Animation Loops
	Problems with Intervals
	mozRequestAnimationFrame
	webkitRequestAnimationFrame and msRequestAnimationFrame

	Page Visibility API
	Geolocation API
	File API
	The FileReader Type
	Partial Reads
	Object URLs
	Drag-and-Drop File Reading
	File Upload with XHR

	Web Timing
	Web Workers
	Using a Worker
	Worker Global Scope
	Including Other Scripts
	The Future of Web Workers

	Summary

	Appendix A: ECMAScript Harmony
	General Changes
	Constants
	Block-Level and Other Scopes

	Functions
	Rest and Spread Arguments
	Default Argument Values
	Generators

	Arrays and Other Structures
	Iterators
	Array Comprehensions
	Destructuring Assignments

	New Object Types
	Proxy Objects
	Proxy Functions
	Map and Set
	WeakMap
	StructType
	ArrayType

	Classes
	Private Members
	Getters/Setters
	Inheritance

	Modules
	External Modules

	Appendix B: Strict Mode
	Opting-in
	Variables
	Objects
	Functions
	eval()
	eval and arguments
	Coercion of this
	Other Changes

	Appendix C: JavaScript Libraries
	General Libraries
	Yahoo! User Interface Library (YUI)
	Prototype
	The Dojo Toolkit
	MooTools
	jQuery
	MochiKit
	Underscore.js

	Internet Applications
	Backbone.js
	Rico
	qooxdoo

	Animation and Effects
	script.aculo.us
	moo.fx
	Lightbox

	Cryptography
	JavaScript MD5
	JavaScrypt

	Appendix D: JavaScript Tools
	Validators
	JSLint
	JSHint
	JavaScript Lint

	Minifiers
	JSMin
	Dojo ShrinkSafe
	YUI Compressor

	Unit Testing
	JsUnit
	YUI Test
	Dojo Object Harness (DOH)
	qUnit

	Documentation Generators
	JsDoc Toolkit
	YUI Doc
	AjaxDoc

	Secure Execution Environments
	ADsafe
	Caja

	Index
	Advertisements

