More Than 250 Solutions for
C# 3.0 Programmers

O’RE"_I_Y® Jay Hilyard & Stephen Teilhet

C# 3.0 Cookbook™

Other Microsoft .NET resources from 0’Reilly

Related titles

.NET Books
Resource Center

OREILLY* =

ONDotnet.com r

DIVE DEEP INTO .NET (R

Conferences

O’REILLY NETWORK
Safari
Bookshelf.

Building a Web 2.0 Portal Programming ASP.NET
with ASP.NET 3.5 Programming C#

C# 3.0 Design Patterns Visual C# 2005: A

Learning C# Developer’s Notebook™

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in docu-
menting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

THIRD EDITION

C# 3.0 Cookbook

Jay Hilyard and Stephen Teilhet

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

(# 3.0 Cookbook™, Third Edition
by Jay Hilyard and Stephen Teilhet

Copyright © 2008 Jay Hilyard and Stephen Teilhet. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn Cover Designer: Karen Montgomery
Production Editor: Adam Witwer Interior Designer: David Futato
Production Services: nSight, Inc. lllustrators: Robert Romano and Jessamyn Read
Printing History:
January 2004: First Edition.
January 2006: Second Edition.

December 2007: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, C# 3.0 Cookbook, the image of a garter snake,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 0-596-51610-X
ISBN-13: 978-0-596-51610-9
(M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

To Brooke
My wife, my best friend, and the most supportive
person I know. This one was for you;

you earned it.

—]Jay Hilyard

To my loving wife Kandis and my two wonderful

sons, Patrick and Nicholas.

—Stephen Teilhet

Preface ...

Table of Conten

1. Language Integrated Query (LINQ)

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Query a Message Queue

Using Set Semantics with Data

Reuse Parameterized Queries with LINQ to SQL

Sort Results in a Culture-Sensitive Manner

Adding Functional Extensions for Use with LINQ

Query and Join Across Data Repositories

Querying Configuration Files with LINQ

Creating XML Straight from a Database

Being Selective About Your Query Results

Using LINQ with Collections That Don’t Support [Enumerable<T>

2. StringsandCharacters,

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

Determining the Kind of Character a Char Contains
Controlling Case Sensitivity When Comparing Two Characters
Finding the Location of All Occurrences of a String

Within Another String

Controlling Case Sensitivity When Comparing Two Strings
Comparing a String to the Beginning or End of a Second String
Inserting Text into a String

Removing or Replacing Characters Within a String

Encoding Binary Data As Base64

Decoding a Base64-Encoded Binary

Converting a String Returned As a Byte[| Back into a String
Passing a String to a Method That Accepts Only a Byte] |

ts

10
12
16
19
22
31
33

36
40

42
46
47
49
51
53
54
56
57

vii

2.12 Converting Strings to Other Types 59

2.13 Creating a Delimited String 62
2.14 Extracting Items from a Delimited String 63
2.15 Tterating over Each Character in a String 64
2.16 Pruning Characters from the Head and/or Tail of a String 65
2.17 Testing a String for Null or Empty 66
2.18 Appending a Line 67
3. CassesandStructures 68
3.1 Creating Union-Type Structures 70
3.2 Making a Type Sortable 72
3.3 Making a Type Searchable 77
3.4 Indirectly Overloading the +=, -=, /=, and *= Operators 80
3.5 Indirectly Overloading the &&, ||, and ?: Operators 82
3.6 Making Error-Free Expressions 85
3.7 Reducing Your Boolean Logic 88
3.8 Converting Between Simple Types in a Programming

Language-Agnostic Manner 91

3.9 Determining When to Use the cast Operator, the as Operator,
or the is Operator 97
3.10 Casting with the as Operator 99
3.11 Determining a Variable’s Type with the is Operator 101
3.12 Returning Multiple Items from a Method 104
3.13 Parsing Command-Line Parameters 106
3.14 Initializing a Constant Field at Runtime 117
3.15 Building Cloneable Classes 120
3.16 Assuring an Object’s Disposal 124
3.17 Disposing of Unmanaged Resources 126
3.18 Determining Where Boxing and Unboxing Occur 133
4. GENEKICS i i 137
4.1 Deciding When and Where to Use Generics 137
4.2 Understanding Generic Types 138
4.3 Replacing the ArrayList with Its Generic Counterpart 146
4.4 Replacing the Stack and Queue with Their Generic Counterparts 150
4.5 Using a Linked List 155
4.6 Creating a Value Type That Can Be Initialized to Null 158
4.7 Reversing the Contents of a Sorted List 160
4.8 Making Read-Only Collections the Generic Way 162

viii | Table of Contents

4.9 Replacing the Hashtable with Its Generic Counterpart
4.10 Using foreach with Generic Dictionary Types
4.11 Constraining Type Arguments
4.12 Initializing Generic Variables to Their Default Values

5. Collections
5.1 Swapping Two Elements in an Array
5.2 Reversing an Array Quickly
5.3 Writing a More Flexible StackTrace Class
5.4 Determining the Number of Times an Item Appears in a List<T>
5.5 Retrieving All Instances of a Specific Item in a List<T>
5.6 Inserting and Removing Items from an Array
5.7 Keeping Your List<T> Sorted
5.8 Sorting a Dictionary’s Keys and/or Values
5.9 Creating a Dictionary with Max and Min Value Boundaries
5.10 Storing Snapshots of Lists in an Array
5.11 Persisting a Collection Between Application Sessions
5.12 Testing Every Element in an Array or List<T>
5.13 Performing an Action on Each Element in an Array or List<T>
5.14 Creating a Read-Only Array or List<T>

6. lterators, Partial Types, and Partial Methods
6.1 Creating an Iterator on a Generic Type
6.2 Creating an Iterator on a Nongeneric Type
6.3 Creating Custom Enumerators
6.4 Implementing Iterator Logic
6.5 Forcing an Iterator to Stop Iterating
6.6 Dealing with Finally Blocks and Iterators
6.7 Implementing Nested foreach Functionality in a Class
6.8 Organizing Your Interface Implementations
6.9 Generating Code That Is No Longer in Your Main Code Paths
6.10 Adding Hooks to Generated Entities

7. ExceptionHandling
7.1 Knowing When to Catch and Rethrow Exceptions
7.2 Assuring Exceptions Are Not Lost When Using Finally Blocks
7.3 Handling Exceptions Thrown from Methods Invoked via Reflection
7.4 Preventing Unhandled Exceptions
7.5 Getting Exception Information

164
168
169
173

177
178
181
182
185
188
191
193
194
198
199
201
202
204

207
209
211
215
218
220
224
229
234
237

247
248
251
254
256

Table of Contents

| ix

8. Diagnostics

9. Delegates, Events, and Lambda Expressions

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

7.14

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1

9.2

9.3

9.4

9.5
9.6
9.7
9.8
9.9
9.10
9.11

Getting to the Root of a Problem Quickly

Creating a New Exception Type

Obtaining a Stack Trace

Breaking on a First-Chance Exception

Handling Exceptions Thrown from an Asynchronous Delegate
Giving Exceptions the Extra Info They Need with Exception.Data
Dealing with Unhandled Exceptions in WinForms Applications
Dealing with Unhandled Exceptions in Windows Presentation
Foundation (WPF) Applications

Analyzing Exceptions for Common Errors

Providing Fine-Grained Control over Debugging/Tracing Output
Determining Whether a Process Has Stopped Responding

Using Event Logs in Your Application

Searching Event Log Entries

Watching the Event Log for a Specific Entry

Implementing a Simple Performance Counter

Enabling and Disabling Complex Tracing Code

Capturing Standard Output for a Process

Creating Custom Debugging Displays for Your Classes

Controlling When and If a Delegate Fires Within a
Multicast Delegate

Obtaining Return Values from Each Delegate in a
Multicast Delegate

Handling Exceptions Individually for Each Delegate in a
Multicast Delegate

Converting Delegate Invocation from Synchronous to
Asynchronous

An Advanced Interface Search Mechanism

Observing Additions and Modifications to Dictionaries
Using Lambda Expressions

Set Up Event Handlers Without the Mess

Using Different Parameter Modifiers in Lambda Expressions
Using Closures in C#

Performing Multiple Operations on a List Using Functors

260
261
269
272
275
277
279

281
283

287
290
292
299
302
304
307
311
313

318

322

324

327
330
332
344
348
352
356
361

X

Table of Contents

10. RegularExpressions,

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

Enumerating Matches

Extracting Groups from a MatchCollection

Verifying the Syntax of a Regular Expression

Quickly Finding Only the Last Match in a String
Augmenting the Basic String Replacement Function
Implementing a Better Tokenizer

Counting Lines of Text

Returning the Entire Line in Which a Match Is Found
Finding a Particular Occurrence of a Match

Using Common Patterns

11. DataStructuresand Algorithms

111
11.2
11.3
11.4
11.5
11.6

Creating a Hash Code for a Data Type
Creating a Priority Queue

Creating a One-to-Many Map (MultiMap)
Creating a Binary Search Tree

Creating an n-ary Tree

Using a HashSet Object

12. Filesystem /0

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15

Manipulating File Attributes

Renaming a File

Outputting a Platform-Independent EOL Character
Manipulating Directory Attributes

Renaming a Directory

Searching for Directories or Files Using Wildcards
Obtaining the Directory Tree

Parsing a Path

Parsing Paths in Environment Variables

Launching and Interacting with Console Urtilities
Locking Subsections of a File

Waiting for an Action to Occur in the Filesystem
Comparing Version Information of Two Executable Modules
Querying Information for All Drives on a System
Compressing and Decompressing Your Files

367
370
373
375
376
379
380
383
387
389

394
402
410
418
432
444

450
452
453
455
457
459
464
466
468
469
471
474
477
479
482

Table of Contents

| xi

13. Reflection ... o 489

13.1 Listing Referenced Assemblies 490
13.2 Listing Exported Types 492
13.3 Finding Overridden Methods 493
13.4 Finding Members in an Assembly 499
13.5 Determining and Obtaining Nested Types Within an Assembly 500
13.6 Displaying the Inheritance Hierarchy for a Type 501
13.7 Finding the Subclasses of a Type 504
13.8 Finding All Serializable Types Within an Assembly 505
13.9 Dynamically Invoking Members 507
13.10 Determining If a Type or Method Is Generic 511
13.11 Accessing Local Variable Information 512
13.12 Creating a Generic Type 514
14, Web .. 516
14.1 Converting an IP Address to a Hostname 516
14.2 Converting a Hostname to an IP Address 517
14.3 Parsing a URI 518
14.4 Handling Web Server Errors 522
14.5 Communicating with a Web Server 524
14.6 Going Through a Proxy 525
14.7 Obtaining the HTML from a URL 527
14.8 Using the Web Browser Control 528
14.9 Tying Database Tables to the Cache 530
14.10 Prebuilding an ASP.NET Web Site Programmatically 532
14.11 Escaping and Unescaping Data for the Web 535
14.12 Using the UriBuilder Class 537
14.13 Inspect and Change Your Web Application Configuration 539
14.14 Using Cached Results When Working with HTTP for
Faster Performance 541
14.15 Checking Out a Web Server’s Custom Error Pages 543
15, XML 548
15.1 Reading and Accessing XML Data in Document Order 548
15.2 Reading XML on the Web 552
15.3 Querying the Contents of an XML Document 554
15.4 Validating XML 558
15.5 Creating an XML Document Programmatically 564
15.6 Detecting Changes to an XML Document 566

xii | Tableof Contents

15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14

16. Networking

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10

17. Security

17.1
17.2
17.3
17.4
17.5

17.6
17.7
17.8
17.9
17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17

Handling Invalid Characters in an XML String
Transforming XML

Tearing Apart an XML Document

Putting Together an XML Document

Validating Modified XML Documents Without Reloading
Extending Transformations

Getting Your Schemas in Bulk from Existing XML Files
Passing Parameters to Transformations

Writing a TCP Server

Writing a TCP Client

Simulating Form Execution

Transferring Data via HTTP

Using Named Pipes to Communicate
Pinging Programmatically

Send SMTP Mail Using the SMTP Service
Use Sockets to Scan the Ports on a Machine
Use the Current Internet Connection Settings
Transferring Files Using FTP

Controlling Access to Types in a Local Assembly
Encrypting/Decrypting a String

Encrypting and Decrypting a File

Cleaning Up Cryptography Information
Verifying That a String Remains Uncorrupted
Following Transmission

Storing Data Securely

Making a Security Assert Safe

Verifying That an Assembly Has Been Granted Specific Permissions

Minimizing the Attack Surface of an Assembly
Obtaining Security/Audit Information
Granting/Revoking Access to a File or Registry Key
Protecting String Data with Secure Strings
Securing Stream Data

Encrypting web.config Information

Obtaining the Full Reason a SecurityException Was Thrown

Achieving Secure Unicode Encoding
Obtaining a Safer File Handle

569
572
579
585
591
595
599
601

606
612
615
619
621
629
631
636
641
648

651
661
665
670

672
676
683
685
687
688
693
696
699
708
710
712
713

Table of Contents

| xiii

18. Threading and Synchronization

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11

Creating Per-Thread Static Fields

Providing Thread-Safe Access to Class Members
Preventing Silent Thread Termination

Being Notified of the Completion of an Asynchronous Delegate
Storing Thread-Specific Data Privately

Granting Multiple Access to Resources with a Semaphore
Synchronizing Multiple Processes with the Mutex

Using Events to Make Threads Cooperate

Get the Naming Rights for Your Events

Performing Atomic Operations Among Threads
Optimizing Read-Mostly Access

19, ToolboXo

19.1

19.2
19.3
19.4
19.5
19.6

19.7
19.8
19.9

Dealing with Operating System Shutdown, Power Management,
or User Session Changes

Controlling a Service

List What Processes an Assembly Is Loaded In
Using Message Queues on a Local Workstation
Finding the Path to the Current Framework Version
Determining the Versions of an Assembly That Are
Registered in the Global Assembly Cache (GAC)
Capturing Output from the Standard Output Stream
Running Code in Its Own AppDomain

Determining the Operating System and Service Pack
Version of the Current Operating System

20. Numbersand Enumerations

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

Converting Between Degrees and Radians

Using the Bitwise Complement Operator with Various Data Types
Converting a Number in Another Base to Base10

Determining Whether a String Is a Valid Number

Rounding a Floating-Point Value

Choosing a Rounding Algorithm

Converting Between Temperature Scales

Safely Performing a Narrowing Numeric Cast

Displaying an Enumeration Value As a String

716
719
725
727
730
734
738
750
752
755
757

770
775
778
780
783

784
787
789

791

795
796
797
798
799
800
801
802
804

Xiv

Table of Contents

20.10 Converting Plain Text to an Equivalent Enumeration Value 807

20.11 Testing for a Valid Enumeration Value 808

20.12 Testing for a Valid Enumeration of Flags 810

20.13 Using Enumerated Members in a Bit Mask 812

20.14 Determining Whether One or More Enumeration Flags Are Set 815

20.15 Determining the Integral Part of a Decimal or Double 819

Index 821
Table of Contents | xv

Preface

C# is a language targeted at developers for the Microsoft .NET platform who have
already worked with a C-like language such as C, C++, or Java. Unlike previous ver-
sions of C or C++ for the Microsoft Windows platform, C# code runs under a man-
aged execution environment. Microsoft portrays C# as a modern and innovative
language for .NET development and continues to deliver on that with new features
such as Language Integrated Query (LINQ). The new features in C# 3.0 allow for
more of a declarative and functional style of programming, when that is appropriate,
while it still has great object-oriented features as well. The main idea is to use the
style of programming that fits your problem, and C# will support your endeavor.

C# allows you to perform many C/C++-like functions, such as direct memory access
via pointers and operator overloading, that are not supported in Visual Basic .NET.
C# is the system-level programming language for .NET. You can still do great appli-
cation-level work in C#, but it really shines when you need to build code a little
closer to the Framework.

If you have seen C#, you may have noticed that it looks a lot like Java; Java pro-
grammers will feel very much at home in C# once they learn the Framework SDK.
C# can also be a great language for Visual Basic .NET programmers when they need
a little more control over what the code is doing and don’t want to have to write
C++ to gain an advantage. On the Web, you’ll find a large community of people
doing really neat things with C# and tons of sample code on sites such as http:/
www.codeplex.com and http://www.codeproject.com.

We started writing this book together based on programming problems we ran into
when we were first learning C# and have continued to expand it based on new chal-
lenges and capabilities in the language. In this edition, we have reworked the
approach of many solutions to take advantage of LINQ and have also created
entirely new solutions based on LINQ and the other new features in C# 3.0. We
hope that it will help you get past some of the common (and not-so-common) pit-
falls and initial questions everyone has when learning a new language as well as the
slightly off-the-beaten-path items that come up during a development cycle. There

Xvii

http://www.codeplex.com
http://www.codeplex.com
http://www.codeproject.com

are recipes addressing things we found missing from the .NET Framework Class
Library (FCL), even though Microsoft has provided tons of functionality to keep
folks from reinventing the wheel. Some of these solutions you might immediately
use, and some may never darken your door, but we hope this book helps you get the
most out of C# and the .NET Framework.

The book is laid out with respect to the types of problems you will solve as you
progress through your life as a C# programmer. These solutions are called recipes;
each recipe consists of a single problem, its solution, a discussion of the solution and
other relevant related information, and finally, where you can look for more informa-
tion about the classes used from the FCL, other books addressing this topic, related
articles, and other recipes. The question-answer format provides complete solutions
to problems, making the book easy to read and use. Nearly every recipe contains a
complete, documented code sample, showing you how to solve the specific prob-
lem, as well as a discussion of how the underlying technology works and a list of
alternatives, limitations, and other considerations when appropriate.

Who This Book Is For

You don’t have to be an experienced C# or .NET developer to use this book—it is
designed for users of all levels. This book provides solutions to problems that devel-
opers face every day as well as some that may come along less frequently. The reci-
pes are targeted at the real-world developer who needs to solve problems now, not
learn lots of theory before being able to solve the problem. While reference or tuto-
rial books can teach general concepts, they do not generally provide the help you
need in solving real-world problems. We choose to teach by example, the natural
way for most people to learn.

The majority of the problems addressed in this book are frequently faced by C#
developers, but some of the more advanced problems call for more intricate solu-
tions that combine many techniques. Each recipe is designed to help you quickly
understand the problem, learn how to solve it, and find out any potential trade-offs
or ramifications to help you solve your problems quickly, efficiently, and with mini-
mal effort.

To save you even the effort of typing in the solution, we provide the sample code for
the book on the O’Reilly web site to facilitate the “editor inheritance” mode of devel-
opment (copy and paste) as well as to help less-experienced developers see good pro-
gramming practice in action. The sample code provides a running test harness that
exercises each of the solutions, but enough of the code is provided in each solution
in the book to allow you to implement the solution without the sample code. The
sample code is available from the book’s catalog page: http://www.oreilly.com/
catalog/9780596516109.

xvii | Preface

http://www.oreilly.com/catalog/9780596516109
http://www.oreilly.com/catalog/9780596516109

What You Need to Use This Book

To run the samples in this book, you need a computer running Windows XP or later.
A few of the networking and XML solutions require Microsoft Internet Information
Server (IIS) Version 5.1 or later, and the FTP recipes in the Networking chapter
require a locally configured FTP server.

To open and compile the samples in this book, you need Visual Studio .NET 2008. If
you are proficient with the downloadable Framework SDK and its command-line
compilers, you should not have any trouble following the text of this book and the
code samples.

Platform Notes

The solutions in this book were developed using Visual Studio .NET 2008. The dif-
ferences between C# 3.0 and C# 2.0 are significant, and the sample code has
changed from the second edition to reflect that.

It is worth mentioning that although C# is now at version 3.0, the .NET Framework
has progressed to version 3.5. .NET 3.0 introduced Windows Communication Foun-
dation, Windows Presentation Foundation, and Windows Workflow Foundation as
additional functionality to the 2.0 framework base, but C# was not changed. Now in
C# 3.0, there is a bunch of new functionality, mostly due to LINQ and the ability to
do more functional programming.

How This Book Is Organized

This book is organized into 20 chapters, each of which focuses on a particular topic
in creating C# solutions. The following paragraphs summarize each chapter to give
you an overview of this book’s contents:

Chapter 1, Language Integrated Query (LINQ)
This chapter covers Language Integrated Query (LINQ) and its usage with
objects, ADO.NET, and XML. There are recipes using many of the Standard
Query Operators and showing how to use some of the query operators that are
not keywords in the language, but are still quite powerful.

Chapter 2, Strings and Characters
This chapter covers both the String and Char data types. Recipes show such
things as how to compare strings in various ways, encode/decode strings, break
strings apart, and put them back together again.

Chapter 3, Classes and Structures
This large chapter contains recipes dealing with both class and structure data
types. This chapter covers a wide range of recipes, from design patterns to con-
verting a class to a full-blown command-line argument-processing system.

Preface | xix

Chapter 4, Generics

This chapter focuses on the generics capacity in C#, which allows you to have
code operate uniformly on values of different types. There are recipes to help
your general understanding of generics as well as when they are appropriate to
use, what support is provided in the Framework for them, and how to create
custom implementations of collections using generics.

Chapter 5, Collections

This chapter examines recipes that make use of collections. The collection reci-
pes make use of—as well as extend the functionality of—the array (single, muldi,
and jagged), the List<T>, and the Hashtable. The generic-based collections are
explored, and the various ways to create your own strongly typed collection are
also discussed.

Chapter 6, Iterators, Partial Types, and Partial Methods

In this chapter, two of the features of C# are used to solve very different pro-
gramming problems. We show how you can implement iterators for generic and
nongeneric types and implement foreach functionality using iterators, as well as
custom iterator implementations. The other feature of C# in this chapter is par-
tial types and methods. We show how you can use partial types and methods to
do such things as better segmenting your code and how to generate code that is
more easily extensible.

Chapter 7, Exception Handling

The recipes in this chapter focus on the best ways to implement exception han-
dling in your application. Preventing unhandled exceptions, reading and display-
ing stack traces, and throwing/rethrowing exceptions are included recipes. In
addition, specific recipes show how to overcome some tricky situations, such as
exceptions from late-bound called methods.

Chapter 8, Diagnostics

This chapter presents recipes that use data types that fall under the System.
Diagnostics namespace. Recipes deal with the Trace/Debug classes, event logs,
processes, performance counters, and custom debugger displays for your types.

Chapter 9, Delegates, Events, and Lambda Expressions

This chapter’s recipes show how delegates, events, and lambda expressions can
be used in your applications. Recipes allow manipulation of delegates that call
more than one method, synchronous delegates, and asynchronous delegates.
Lambda expressions are explored, and recipes show their usage in place of old-
style delegates as well as their use in implementing closures and functors.

Chapter 10, Regular Expressions

This chapter covers a useful set of classes that are employed to run regular
expressions against strings. Recipes enumerate regular expression matches,
break up strings into tokens, find/replace characters, and verity the syntax of a
regular expression. We also include a recipe that contains many common regu-
lar expression patterns.

XX

Preface

Chapter 11, Data Structures and Algorithms
This chapter ventures a bit outside of what is provided for you in the .NET
Framework Class Library and implements certain data structures and algo-
rithms that are not in the FCL, or possibly are not in existence exactly the way
you would like to use them, but are ones that you have used to solve problems
before. Items such as queues, maps, trees, and hashes are examined.

Chapter 12, Filesystem I/O
This chapter deals with file system interactions in four distinct ways. The first
way is to look at typical file interactions; the second way looks at directory- or
folder-based interactions; the third way deals with paths and temporary files;
and the fourth way deals with advanced file system 1/O topics.

Chapter 13, Reflection
This chapter shows ways to use the built-in assembly inspection system pro-
vided by the .NET Framework to determine what types, interfaces, and meth-
ods are implemented within an assembly and how to access them in a late-
bound fashion.

Chapter 14, Web
This chapter covers accessing a web site and its content as well as programmati-
cally determining web site configuration. Among the recipes in this chapter are
using the web browser control and setting up caching triggers to refresh cached
data when a database table changes.

Chapter 15, XML
If you use .NET, it is likely that you will be dealing with XML to one degree or
another; in this chapter, we explore some of the uses for XML and how to
program against it using LINQ to XML, the XmlReader/XmlWriter, and Xml-
Document. There are examples using both XPath and XSLT, and topics such as
the validation of XML and transformation of XML to HTML are shown.

Chapter 16, Networking
This chapter explores the connectivity options provided by the .NET Frame-
work and how to programmatically access network resources. Recipes for using
TCP/IP directly, named pipes for communication, building your own port scan-
ner, and more are covered here.

Chapter 17, Security
There are many ways to write secure code and protect data using the .NET
Framework, and in this chapter, we explore areas such as controlling access to
types, encryption and decryption, securely storing data, and using program-
matic and declarative security.

Chapter 18, Threading and Synchronization
This chapter addresses the subject of using multiple threads of execution in a .NET
program and issues such as how to implement threading in your application, pro-
tecting resources from and allowing safe concurrent access, storing per-thread data,
and how to use the synchronization primitives in .NET to write thread-safe code.

Preface | xxi

Chapter 19, Toolbox
This chapter has recipes for those random sorts of operations that developers
run into over and over again, such as determining locations of system resources,
sending email, and working with services. It also covers some less frequently
accessed but helpful application pieces such as message queuing, running code
in a separate AppDomain, and finding the versions of assemblies in the GAC.

Chapter 20, Numbers and Enumerations
This chapter focuses on the numeric and enumeration data types used in C#
code. Recipes cover such things as numeric conversions, using bitwise operators
on numbers, and testing strings to determine whether they contain a numeric
value. The display, conversion, and testing of enumeration types and recipes on
using enumerations that consist of bit flags are also shown.

In some cases, certain recipes are related. In these cases, the See Also section of the
recipe as well as some text in the Discussion will note the relationships.

What Was Left Qut

This book is not a reference or a primer about C#. Some good primers and reference
books are C# in a Nutshell, C# Language Pocket Reference, and Learning C#, all
titles available from O’Reilly. The MSDN Library is also invaluable. It is included
with Visual Studio .NET 2008 and available online at http://msdn.microsoft.com/
library/default.asp.

This book is not about how to use Visual Studio .NET 2008 to build, compile, and
deploy applications. See Mastering Visual Studio .NET (O’Reilly) for excellent cover-
age of these topics.

Conventions Used in This Book

This book uses the following typographic conventions:

Italic
Used for URLs, names of directories and files, options, and occasionally for
emphasis.

Constant width
Used for program listings and for code items such as commands, options,
switches, variables, attributes, keys, functions, types, classes, namespaces,
methods, modules, properties, parameters, values, objects, events, event han-
dlers, XML tags, HTML tags, macros, the contents of files, and the output from
commands.

Constant width bold
Used in program listings to highlight an important part of the code.

xxii | Preface

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp

Constant width italic
Used to indicate replaceable parts of code.
/...
Ellipses in C# code indicate text that has been omitted for clarity.
<>
Ellipses in XML Schemas and documents’ code indicate text that has been omit-
ted for clarity.

N
MG
N

This icon indicates a tip, suggestion, or general note.
as

oWy

This icon indicates a warning or caution.

About the Code

Nearly every recipe in this book contains one or more code samples. These samples
are included in a single solution and are pieces of code and whole projects that are
immediately usable in your application. Most of the code samples are written within
a class or structure, making it easier to use within your applications. In addition to
this, any using directives are included for each recipe so that you will not have to
search for which ones to include in your code.

Complete error handling is included only in critical areas, such as input parameters.
This allows you to easily see what is correct input and what is not. Many recipes
omit error handling. This makes the solution easier to understand by focusing on the
key concepts.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

Preface | xxiii

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C# 3.0 Cookbook, Third Edition,
by Jay Hilyard and Stephen Teilhet. Copyright 2008 Jay Hilyard and Stephen Teil-
het, 978-0-596-51610-9.”

If you feel your use of code examples falls outside fair use or the preceding permis-
sion, feel free to contact us at permissions@oreilly.com.

Comments and Questions

Please address any comments or questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596516109
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/fwww.oreilly.com

Safari® Books Online

... When you see a Safari® Books Online icon on the cover of your

Safarl favorite technology book, it means the book is available online
ot through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technical books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

xxiv | Preface

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596516109
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

Acknowledgments

This book began for us as we started exploring C# 3.0 and noticing how it could
change the applications we were working on. With the advent of C# 3.0 and the new
features such as LINQ, we took the opportunity to reexamine how we did things in
the first two editions to see how we could improve the existing recipes as well as
learn better ways of accomplishing programming tasks with C#. Sadly, during the
process, the NuMega lab of Compuware was closed and the development commu-
nity lost a talented team of tool developers. Jay has continued at Newmarket Interna-
tional, pushing software forward with .NET, while Steve moved on to Ounce Labs,
where his focus is on software security. We continue to learn an incredible amount
about C# and the Framework in general while, in this edition, we work hard to help
bring you a better understanding of how C# has evolved and how it can help you do
your job better.

This book would have been impossible without the following people, and we’d like
to acknowledge all of their efforts.

Our appreciation goes out to John Osborn (our editor), Kyley Caldwell, and Laurel
Ruma, who kept us on schedule and did a great job in getting this book finished and
on the shelves in a compressed timeframe. Thank you for all of your efforts.

We extend our gratitude to Eric Lippert for going above and beyond what is
expected of a technical editor. This book would have been impossible to do without
your valuable feedback, and we both thank you for it. Thanks for making this a
“Fabulous Adventure in Coding.”

Thanks to the technical reviewers Gustavo Cavalcanti, Mickey Gousset, Andrew
Siemer, David Patrick, Miles Whitener, Brian Peek, and Peter Jones. This book
would definitely not be as good without all of you.

From Jay Hilyard

Thanks to Steve Teilhet for his ideas, friendship, and generally calm demeanor,
which helped me get past the challenging stages of the book. I always enjoy working
with you, even though most of it was on nights and weekends.

Thanks to my wife Brooke. A book is a work that requires tremendous support and I
have been blessed to have you with me on this journey. There is no way I could have
done this without you. Thank you, and I love you!

Thanks to my sons, Owen and Andrew, who make me smile and laugh when I don’t
think I can. You are excellent boys, and I am tremendously proud of both of you and
love you very much.

Thanks to Phil and Gail for their understanding and being there to help in ways that
only grandparents can, and thanks to my Mom for that monthly dose of sanity.

Preface | xxv

Thanks to Wes for being a good uncle when I was busy.

Thanks to Tim Pelletier, Scott Cronshaw, Bill Bolevic, Melissa Field, Mike Kennie,
Jeremy Streeter, Bob & Liz Blais, Stu Savage, Matt Jurkoic, Dave Bennett, Rich
Tasker, Lance Simpson, Robert Provencal, and Shawn McGowan for being an awe-
some team of people to work with. 10X here we come.

Thanks to Kristen Acheson for being a great friend and part of the family.

Thanks to my Patriots crew (Brian, Spencer, Chip, Jon, and Darren) for being there
to help me blow off steam.

Thanks to the Oyster River Poker Players (Tom Bebbington, Seth Fiermonti, Gavin
Webb, John Clifford, Ben Chandran, Adam Gilsdorf, Nick Issak, and Ted Loth-
stein) for the nights off and for not taking too much of my money while my mind
was elsewhere. Pass the Sun Chips.

Finally, thanks again to my family and friends for asking about a book they don’t
understand and for being excited for me.

From Steve Teilhet

I’'m proud to count Jay Hilyard as a good friend, excellent coworker, and hardwork-
ing coauthor. It’s not every day that you find a person who is not only a trusted
friend, but you also work so well with. Thank you for everything.

Kandis Teilhet, my wife, was there every step of the way to give me the strength to
persevere and finish this work. Words cannot express my love for you.

Patrick and Nicholas Teilhet, my two sons, made the rough patches smooth. I
couldn’t wish for two better sons.

My mom and dad, who are always there to listen and support.

The Ounce Lab team, Tom Conner, Larry Rose, David Larochelle, Caleb Davis, Rob-
ert Wiener, Ryan Berg, Cristian Bolovan, Dinis Cruz, Bruce Mayhew, and all the oth-
ers that made my transition from the closing of the NuMega Lab to the Ounce Lab
fun and exciting. It’s not easy changing jobs while writing a book. I thank you all for
the help and support.

xxvi | Preface

CHAPTER 1
Language Integrated Query (LINQ)

1.0 Introduction

Language Integrated Query (LINQ) is a new way to access data from many different
sources. LINQ provides a single querying model that can operate against different
data domains individually or all together in a single query. LINQ brings the ability to
query data to .NET languages, and some of the languages have provided extensions
to make its use even more intuitive. One of these languages is C#:; there are a num-
ber of extensions to the language in C# 3.0 that help to facilitate querying in a rich
and intuitive manner.

Traditional object-oriented programming is based on an imperative style wherein the
developer describes in detail not only what they want to happen, but also describes a
majority of the detail regarding exactly how this should be performed through code.
LINQ helps to take coding down a more declarative path that facilitates describing
what the developer wants to do instead of describing how to accomplish the goal in
detail. LINQ also enables a more functional style of programming. These changes
can dramatically shorten the amount of code it takes to perform some tasks. That
said, object-oriented programming is still very much alive and well in C# and .NET,
but for the first time the language is offering the chance to choose the style of pro-
gramming based on your needs. Note, however, that LINQ will not fit into every sce-
nario and is not a replacement for good design or practice. You can write bad code
using LINQ just as you can write bad object-oriented or procedural code. The trick,
like it always has been, is to figure out when it is appropriate to use which technique.

The initial version of LINQ encompasses a number of data domains as listed here:
* LINQ to Objects
« LINQ to XML
« LINQ to ADO.NET
e LINQ to SQL / LINQ to DataSet / LINQ to Entities

There are a number of other “LINQ to” implementations currently under develop-
ment, but these are Microsoft’s initial offerings. A few of the others in development
are LINQ to SharePoint, LINQ to LDAP, and even a LINQ to Amazon implementa-
tion. The only one of the initial Microsoft set that won’t be ready immediately with
the release of Visual Studio 2008 is LINQ to Entities, or the ADO.NET Entity Frame-
work, as it is also known. LINQ to Entities will be released shortly after Visual Stu-
dio 2008.

As you begin your examination of LINQ), it is easy to begin to think of it as a new
object relational mapping layer, or some neat new widgets on IEnumerable<Ts, or a
new XML API, or even just an excuse to not write SQL directly anymore. You can do
any of these things, but we would encourage you to think of LINQ as how your pro-
gram asks for, calculates, or transforms sets of data from both single and disparate
sources. It takes a bit of time and playing with LINQ for its functionality to click, but
once it does, you will be surprised at what you can do with it. This chapter begins to
show some of what is possible with LINQ and will hopefully start you down the path
toward thinking of which of your scenarios are applicable to this new capability in C#.

1.1 Query a Message Queue

Problem

You want to be able to query for messages with specific criteria from an existing mes-
sage queue.

Solution

Write a query using LINQ to retrieve messages using the System.Messaging.
MessageQueue type:

// open an existing message queue

string queuePath = @".\private$\LINOMQ";

MessageQueue messageQueue = new MessageQueue(queuePath);
BinaryMessageFormatter messageFormatter = new BinaryMessageFormatter();

var query = from Message msg in messageQueue
// The first assignment to msg.Formatter is so that we can touch the
// Message object. It assigns the BinaryMessageFormatter to each message
// instance so that it can be read to determine if it matches the criteria.
// Next, a check is performed that the formatter was correctly assigned
// by performing an equality check, which satisfies the Where clause's need
// for a boolean result while still executing the assignment of the formatter.
where ((msg.Formatter = messageFormatter) == messageFormatter) 8&&
int.Parse(msg.Label) > 5 8&
msg.Body.ToString().Contains('D")
orderby msg.Body.ToString() descending
select msg;

2 | Chapter1: Language Integrated Query (LINQ)

// Check our results for messages with a label > 5 and containing a 'D' in the name
foreach (var msg in query)

{
}

The query retrieves the data from the MessageQueue by selecting the messages where
the Label is a number greater than 5 and the message body contains a capital letter
“D”. These messages are then returned sorted by the message body in descending
order.

Console.Writeline("Label: " + msg.Label + " Body: " + msg.Body);

Discussion

There are a number of new keywords in this code using LINQ that were not previ-
ously used to access a message queue:

var
Instructs the compiler to infer the type of the variable from the right side of the
statement. In essence, the type of the variable is determined by what is on the
right side of the operator separating the var keyword and the expression. This
allows for implicitly typed local variables.

from
The from keyword sets out the source collection to query against and a range
variable to represent a single element from that collection. It is always the first
clause in a query operation. This may seem counterintuitive if you are used to
SQL and expect select to be first, but if you consider that first we need what to
work on before we determine what to return, it makes sense. If we weren’t used
to how SQL does this already, it would be SQL that seems counterintuitive.

where
The where keyword specifies the constraints by which the elements to return are
filtered. Each condition must evaluate to a Boolean result, and when all expres-
sions evaluate to true, the element of the collection is allowed to be selected.

orderby
This keyword indicates that the result set should be sorted according to the
criteria specified. The default order is ascending, and elements use the default
comparer.

select
Allows the projection of an entire element from the collection, the construction
of a new type with parts of that element and other calculated values, or a sub-
collection of items into the result.

The messageQueue collection is of type System.Messaging.MessageQueue, which imple-
ments the IEnumerable interface. This is important, as the LINQ methods provided
need a set or collection to implement at least IEnumerable for it to work with that set
or collection. It would be possible to implement a set of extension methods that did

Query aMessage Queue | 3

not need IEnumerable, but most people will not have the need to. It is even better
when the set or collection implements IEnumerable<T>, as LINQ then knows the type
of element in the set or collection that it is working with, but in this case,
MessageQueue has been in the framework for a while and isn’t likely to change, so the
query provides the element type Message, as shown in the “from” line:

var query = from Message msg in messageQueue
For more about this, see Recipe 1.1.

In the Solution, the messages in the queue have been sent with the use of the
BinaryFormatter. To be able to query against them correctly, the Formatter property
must be set on each Message before it is examined as part of the where clause:

// The first assignment to msg.Formatter is so that we can touch the

// Message object. It assigns the BinaryMessageFormatter to each message

// instance so that it can be read to determine if it matches the criteria.

// This is done, and then it checks that the formatter was correctly assigned

// by performing an equality check, which satisfies the Where clause's need

// for a boolean result, while still executing the assignment of the formatter.

where ((msg.Formatter = messageFormatter) == messageFormatter) &&

There are two uses of the var keyword in the solution code:

var query = from Message msg in messageQueue

foreach (var msg in query)

The first usage infers that an IEnumerable<Message> will be returned and assigned to
the query variable. The second usage infers that the type of msg is Message because the
query variable is of type IEnumerable<Message> and the msg variable is an element
from that IEnumerable.

It is also worth noting that when performing operations in a query, actual C# code
can be used to determine the conditions, and there is more than just the predeter-
mined set of operators. In the where clause of this query, both int.Parse and string.
Contains are used to help filter messages:

int.Parse(msg.Label) > 5 8&
msg.Body.ToString().Contains('D")

See Also

Recipe 1.9, and the “MessageQueue class,” “Implicitly typed local variable,” “from
keyword,” “where keyword,” “orderby keyword,” and “select keyword” topics in the
MSDN documentation.

4 | Chapter1: Language Integrated Query (LINQ)

1.2 Using Set Semantics with Data

Problem

You would like to work with your collections using set operations for union, inter-
sections, exceptions, and distinct items.

Solution

Use the Set operators provided as part of the Standard Query Operators to perform
those operations.
Distinct:

IEnumerable<string> whologgedIn =
dailySecuritylog.Where(logEntry => logEntry.Contains("logged in")).Distinct(

)s

Union:

// Union

Console.WriteLine("Employees for all projects");

var allProjectEmployees = projectl.Union(project2.Union(project3));
Intersection:

// Intersect

Console.Writeline("Employees on every project");

var everyProjectEmployees = projecti.Intersect(project2.Intersect(project3));
Exception:

Console.WriteLine("Employees on only one project");

var onlyProjectEmployees = allProjectEmployees.Except(unionIntersect);
Discussion

The Standard Query Operators are the set of methods that represent the LINQ pat-
tern. This set includes operators to perform many different types of operations, such
as filtering, projection, sorting, grouping, and many others, including set operations.

The set operations for the Standard Query Operators are:
* Distinct
* Union
* Intersect
* Except
The Distinct operator extracts all nonduplicate items from the collection or result set

being worked with. Say, for example, that we had a set of strings representing login
and logout behavior for a terminal services box for today:

// Distinct
string[] dailySecuritylog = {

Using Set Semantics withData | 5

"Bob logged in",
"Bob logged out",
"Bob logged in",
"Bill logged in",
"Melissa logged in",
"Bob logged out",
"Bill logged out",
"Bill logged in",
"Tim logged in",
"Scott logged in",
"Scott logged out",
"Dave logged in",
"Tim logged out",
"Bob logged in",
"Dave logged out"};

From that collection, we would like to determine the list of people who logged in to
the box today. Since people can log in and log out many times during the course of a
day or remain logged in for the whole day, we need to eliminate the duplicate login
entries. Distinct is an extension method on the System.Ling.Enumerable class (which
implements the Standard Query Operators) that can be called on the string array
(which supports IEnumerable) in order to get the distinct set of items from the set.
For more information on extension methods, see Recipe 1.4. The set is produced by
using another of the Standard Query Operators: Where. Where takes a lambda expres-
sion that determines the filter criteria for the set and examines each string in the
IEnumerable<string> to determine if the string has “logged in.” Lambda expressions
are inline statements (similar to anonymous methods) that can be used in place of a
delegate. See Chapter 9 for more on lambda expressions. If the strings do, then they
are selected. Distinct narrows down the set of strings further to eliminate duplicate
“logged in” records, leaving only one per user:

IEnumerable<string> whologgedIn =

dailySecuritylog.Where(logEntry => logEntry.Contains("logged in")).Distinct(
& Console.Writeline("Everyone who logged in today:");
foreach (string who in whologgedIn)

{
}

To make things a bit more interesting, for the rest of the operators, we will work
with sets of employees on various projects in a company. An Employee is a pretty sim-
ple class with a Name and overrides for ToString, Equals, and GetHashCode, as shown
here:

Console.WritelLine(who);

public class Employee

{
public string Name { get; set; }
public override string ToString()

{
}

return this.Name;

6 | Chapter1: Language Integrated Query (LINQ)

public override bool Equals(object obj)

{
return this.GetHashCode().Equals(obj.CGetHashCode());
}
public override int GetHashCode()
{
return this.Name.GetHashCode();
}

}

You might wonder why Equals and GetHashCode are overloaded for such a simple
class. The reason is that when LINQ performs comparisons of elements in the sets or
collections, it uses the default comparison, which in turn uses Equals and
GetHashCode to determine if one instance of a reference type is the same as another. If
you do not provide the semantics in the reference type class to provide the same hash
code or equals value when the data for two instances of the object is the same, then
the instances will, by default, be different, as two reference types have different hash
codes by default. We override that so that if the Name is the same for each Employee,
the hash code and the equals will both correctly identify the instances as the same.
There are also overloads for the set operators that take a custom comparer, which
would also allow you to make this determination even for classes for which you can’t
make the changes to Equals and GetHashCode.

Having done this, we can now assign Employees to projects like so:

Employee[] projectl = {
new Employee
new Employee
new Employee
new Employee

Employee[] project2 = {
new Employee(){ Name = "Shawn" },
new Employee(){ Name = "Tim" },
new Employee(){ Name = "Scott" } };

Employee[] project3 = {
new Employee
new Employee
new Employee
new Employee

{ Name = "Bob" },

{ Name = "Bill" },

{ Name = "Melissa" },
{ Name = "Shawn" } };

A~~~
—

){ Name = "Bob" },
){ Name = "Dave" },
){ Name = "Tim" },
){ Name = "Shawn" } };

~ o~~~

To find all employees on all projects, use Union to get all nonduplicate Employees in
all three projects and write them out:

// Union

Console.WriteLine("Employees for all projects:");

var allProjectEmployees = projectl.Union(project2.Union(project3));
foreach (Employee employee in allProjectEmployees)

{
}

Console.WritelLine(employee);

Using Set Semantics withData | 7

We can then use Intersect to get the Employees on every project:

// Intersect

Console.WriteLine("Employees on every project:");

var everyProjectEmployees = projecti.Intersect(project2.Intersect(project3));
foreach (Employee employee in everyProjectEmployees)

{
}

Finally, we can use a combination of Union and Except to find Employees that are only
on one project:

Console.Writeline(employee);

// Except

var intersectl 3 = projecti.Intersect(project3);

var intersectl 2 = projecti.Intersect(project2);

var intersect2 3 = project2.Intersect(project3);

var unionIntersect = intersecti 2.Union(intersecti_3).Union(intersect2_3);

Console.WriteLine("Employees on only one project:");
var onlyProjectEmployees = allProjectEmployees.Except(unionIntersect);

foreach (Employee employee in onlyProjectEmployees)

{
}

See Also

The “Standard Query Operators,” “Distinct method,” “Union method,” “Intersect
method,” and “Except method” topics in the MSDN documentation.

Console.WritelLine(employee);

1.3 Reuse Parameterized Queries with LINQ to SQL

Problem

You need to execute the same parameterized query multiple times with different
parameter values, but you want to avoid the overhead of parsing the query expres-
sion tree to build the parameterized SQL each time the query executes.

Solution

Use the CompiledQuery.Compile method to build an expression tree that will not have
to be parsed each time the query is executed with new parameters:

var GetEmployees =
CompiledQuery.Compile((Northwind db, string ac, string ttl) =>
from employee in db.Employees
where employee.HomePhone.Contains(ac) &&
employee.Title == ttl
select employee);

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);

8 | Chapter1: Language Integrated Query (LINQ)

The first time the query executes is when it actually compiles (where GetEmployees is
called the first time in the foreach loop). Every other iteration in this loop and in the
next loop use the compiled version, avoiding the expression tree parsing:

foreach (var employee in GetEmployees(dataContext, "(206)", "Sales Representative"))

{
Console.WritelLine("{0} {1}",
employee.FirstName, employee.LastName);

}

foreach (var employee in GetEmployees(dataContext, "(71)", "Sales Manager"))

{
Console.WritelLine("{0} {1}",
employee.FirstName, employee.LastName);

}
Discussion

We used var for the query declaration, as it was cleaner, but what var actually is in
this case is:

Func<Northwind, string, string, IQueryable<Employees>>

which is the delegate signature for the lambda expression we created that contains
the query. That’s right, all this crazy new query stuff, and we just instantiated a dele-
gate. To be fair, the Func delegate was brought about in the System namespace as part
of LINQ, so do not dismay, we are still doing cool new stuff!

This illustrates that we are not returning an IEnumerable or IQueryable based result
set from Compile, but rather an expression tree. This is the expression tree that repre-
sents the potential for a query rather than the query itself. Once we have that tree,
LINQ to SQL then has to perform the conversion from the tree to actual SQL that
can run against the database. Interestingly enough, if we had put a call to string.
Format in as part of detecting the area code in the home phone number, we would get
a NotSupportedException that informs us that string.Format can’t be translated to

SQL:

where employee.HomePhone.Contains(string.Format("({0})",ac)) 8&

System.NotSupportedException:
Method 'System.String Format(System.String,System.Object)’
has no supported translation to SQL.
This is understandable, as SQL has no concept of .NET Framework methods for per-
forming actions, but it is something to keep in mind as you design your queries that
this is a limitation when using LINQ to SQL.

After the first execution, the query is compiled, and for every iteration after that, we
do not pay the transformation cost for turning the expression tree into the parame-
terized SQL.

Reuse Parameterized Queries with LINQtoSQL | 9

Compiling your queries is something that should be done for parameterized queries
that get a lot of traffic, but if a query is infrequently used, it may not be worth the
effort. As always, profile your code to see the areas where this could be useful.

See Also

The “CompiledQuery.Compile method” and “Expression Trees” topics in the
MSDN documentation.

1.4 Sort Results in a Culture-Sensitive Manner

Problem

You want to ensure that when you sort in a query, the sort order is for an application-
specific culture that may not be the same as the current thread’s current culture.

Solution

Use the overload of the OrderBy query operator, which accepts a custom comparer in
order to specify the culture in which to perform comparisons:

// Create CultureInfo for Danish in Denmark.
CultureInfo danish = new CultureInfo("da-DK");

CultureStringComparer comparer = new CultureStringComparer(danish,CompareOptions.
None);
var query = names.OrderBy(n => n, comparer);

Discussion

Handling localization issues such as sorting for a specific culture is a relatively trivial
task in .NET if the current culture of the current thread is the culture you want to
use. The framework classes that assist in handling culture issues in C# are accessed
by including the System.Globalization namespace. This namespace would be
included in order to make the code in the solution run. One example of not using the
thread current culture would be in an application that needs to display a sorted list
of words in Danish on a version of Windows XP that is set for U.S. English. The cur-
rent thread in the application may have a CultureInfo for “en-US” and, by default,
the sort order for OrderBy will use the current culture sort settings. To specify that
this list should sort according to Danish rules, a bit of work is necessary in the form
of a custom comparer:

CultureStringComparer comparer = new CultureStringComparer(danish,CompareOptions.

None);
The comparer variable is an instance of a custom comparer class
(CultureStringComparer) defined as implementing the IComparer<T> interface special-
ized for strings. This class is used to provide the culture settings for the sort order:

10 | Chapter1: Language Integrated Query (LINQ)

public class CultureStringComparer : IComparer<string>

{
private CultureStringComparer()
{
}
public CultureStringComparer(CultureInfo cultureInfo, CompareOptions options)
{
if (cultureInfo == null)
throw new ArgumentNullException("cultureInfo");
CurrentCultureInfo = culturelnfo;
Options = options;
}
public int Compare(string x, string y)
{
return CurrentCultureInfo.CompareInfo.Compare(x, y, Options);
}
public CultureInfo CurrentCultureInfo { get; set; }
public CompareOptions Options { get; set; }
}

To demonstrate how this could be used, first we compile a list of words to order by.
Since the Danish language treats the character “&” as an individual letter, sorting it
after “Z” in the alphabet, and the English language treats the character “/” as a spe-
cial symbol, sorting it before the letter “A” in the alphabet, this will demonstrate the
sort difference:

string[] names = { "Jello", "Apple", "Bar", "Able", "Forsooth", "Orange", "Zanzibar"

1
Now, we can set up the CultureInfos for both Danish and U.S. English and call
OrderBy with the comparer specific to each culture. This query is not using the query
expression syntax, but rather uses the functional style of IEnumerable<string>.
OrderBy():

// Create CultureInfo for Danish in Denmark.

CultureInfo danish = new CultureInfo("da-DK");

// Create CultureInfo for English in the U.S.
CultureInfo american = new CultureInfo("en-US");

CultureStringComparer comparer = new CultureStringComparer(danish,CompareOptions.

None);

var query = names.OrderBy(n => n, comparer);

Console.WritelLine("Ordered by specific culture : " + comparer.CurrentCultureInfo.
Name) ;

foreach (string name in query)

{

Console.WritelLine(name);

}

Sort Results in a Culture-Sensitive Manner | 11

comparer.CurrentCultureInfo = american;

query = names.OrderBy(n => n, comparer);

Console.Writeline("Ordered by specific culture : " + comparer.CurrentCultureInfo.
Name) ;

foreach (string name in query)

{

}

The output results below show that the word Z&ble is last in the Danish list and first
in the U.S. English list:

Ordered by specific culture : da-DK
Apple

Bar

Forsooth

Jello

Orange

Zanzibar

Able

Ordered by specific culture : en-US
Able

Apple

Bar

Forsooth

Jello

Orange

Zanzibar

Console.WriteLine(name);

See Also

The “OrderBy,” “Culturelnfo,” and “IComparer<T>” topics in the MSDN
documentation.

1.5 Adding Functional Extensions for Use with LINQ

Problem

There are operations you perform on collections frequently that currently reside in
utility classes. You would like to be able to have these operations be used on collec-
tions in a more seamless manner than having to pass the reference to the collection
to the utility class.

Solution

Use extension methods to help achieve a more functional style of programming for
your collection operations. For example, to add a weighted moving average calcula-
tion operation to numeric collections, implement a set of WeightedMovingAverage
extension methods in a static class and then call them as part of those collections:

12 | Chapter1: Language Integrated Query (LINQ)

decimal[] prices = new decimal[10] { 13.5M, 17.8M, 92.3M, 0.1M, 15.7M,
19.99M, 9.08M, 6.33M, 2.1M, 14.88M };
Console.WriteLine(prices.WeightedMovingAverage());

double[] dprices = new double[10] { 13.5, 17.8, 92.3, 0.1, 15.7,
19.99, 9.08, 6.33, 2.1, 14.88 };
Console.Writeline(dprices.WeightedMovingAverage());

float[] fprices = new float[10] { 13.5F, 17.8F, 92.3F, 0.1F, 15.7F,
19.99F, 9.08F, 6.33F, 2.1F, 14.88F };
Console.Writeline(fprices.WeightedMovingAverage());

int[] iprices = new int[10] { 13, 17, 92, 0, 15,
19, 9, 6, 2, 14 };
Console.Writeline(iprices.WeightedMovingAverage());

long[] lprices = new long[10] { 13, 17, 92, 0, 15,
19) 9) 6) 2) 14 };
Console.Writeline(lprices.WeightedMovingAverage());

To provide WeightedMovingAverage for the full range of numeric types, methods for
both the nullable and non-nullable numeric types are provided in the
LingExtensions class:

public static class LingExtensions
{
public static decimal? WeightedMovingAverage(this IEnumerable<decimal?> source)
{
if (source == null)
throw new ArgumentNullException("source");

decimal aggregate = 0.0M;
decimal weight;
int item = 1;
// count how many items are not null and use that
// as the weighting factor
int count = source.Count(val => val.HasValue);
foreach (var nullable in source)
{
if (nullable.HasValue)
{
weight = item / count;
aggregate += nullable.GetValueOrDefault() * weight;
count++;
}
}
if (count > 0)

{
}

return null;

return new decimal?(aggregate / count);

Adding Functional Extensions for Usewith LINQ | 13

// The same method pattern as above is followed for each of the other
// types and their nullable counterparts (double / double?, int / int?, etc.)

#region Extend Average...

}
Discussion

Extension methods allow you to create operations that appear to be part of a collec-
tion. They are static methods that can be called as if they were instance methods,
allowing you to extend existing types. Extension methods must also be declared in
static classes that are not nested. Once a static class is defined with extension meth-
ods, the using directive for the namespace of the class makes those extensions avail-
able in the source file.

It is worth noting that if an instance method exists with the same sig-
as nature as the extension method, the extension method will never be
% called. Conflicting extension method declarations will resolve to the
method in the closest enclosing namespace.

You cannot use extension methods to create:

* Properties (get and set methods)
* Operators (+, —, =, etc...)

¢ Events

Declaring an extension method is done by specifying the this keyword in front of the
first parameter of a method declaration, and the type of that parameter is the type
being extended. For example, in the Nullable<decimal> version of the
WeightedMovingAverage method, collections that support IEnumerable<decimal?> (or
IEnumerable<Nullable<decimal>>) are supported:

public static decimal? WeightedMovingAverage(this IEnumerable<decimal?> source)
{
if (source == null)
throw new ArgumentNullException("source");

decimal aggregate = 0.0M;
decimal weight;
int item = 1;
// count how many items are not null and use that
// as the weighting factor
int count = source.Count(val => val.HasValue);
foreach (var nullable in source)
{
if (nullable.HasValue)

14 | Chapter1: Language Integrated Query (LINQ)

weight = item / count;
aggregate += nullable.CGetValueOrDefault() * weight;

count++;
}
}
if (count > 0)
{
return new decimal?(aggregate / count);
}

return null;

}

The extension methods that support much of the LINQ functionality are on the
System.Linqg.Extensions class, including an Average method. The Average method has
most of the numeric types but did not provide an overload for short (Int16). That’s
easily rectified by adding them ourselves for short and Nullable<shorts:

#region Extend Average
public static double? Average(this IEnumerable<short?> source)
{
if (source == null)
throw new ArgumentNullException("source");

double aggregate = 0.0;
int count = 0;
foreach (var nullable in source)
{
if (nullable.HasValue)
{
aggregate += nullable.GetValueOrDefault();
count++;
}
}
if (count > 0)

{
}

return null;

return new double?(aggregate / count);

}

public static double Average(this IEnumerable<short> source)
{
if (source == null)
throw new ArgumentNullException("source");

double aggregate = 0.0;

// use the count of the items from the source
int count = source.Count();

foreach (var value in source)

{

aggregate += value;

if (count > 0)

{

Adding Functional Extensions for Usewith LINQ | 15

return aggregate / count;
}
else
return 0.0;
}
public static double? Average<TSource>(this IEnumerable<TSource> source,
Func<TSource, short?> selector)

{
}

public static double Average<TSource>(this IEnumerable<TSource> source,
Func<TSource, short> selector)

return source.Select<TSource, short?>(selector).Average();

{
}

#endregion // Extend Average

return source.Select<TSource, short>(selector).Average();

We can then call Average on short-based collections just like WeightedMovingAverage:

short[] sprices = new short[10] { 13, 17, 92, 0, 15, 19, 9, 6, 2, 14 };
Console.WritelLine(sprices.WeightedMovingAverage());

// System.Ling.Extensions doesn't implement Average for short but we do for them!
Console.WriteLine(sprices.Average());

See Also

The “Extension methods” topic in the MSDN documentation.

1.6 Query and Join Across Data Repositories

Problem

You have two sets of data from different data domains, and you want to be able to
combine the data and work with it.

Solution

Use LINQ to bridge across the disparate data domains. LINQ is intended to be used
in the same manner across different data domains and supports combining those sets
of data with join syntax.

To demonstrate this, we will join an XML file full of Categories with the data from a
database (Northwind) with Products and combine the two to create a new set of data
for product information that holds the product name, the category description, and
the category name:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);
ProductsTableAdapter adapter = new ProductsTableAdapter();

Products products = new Products();

adapter.Fill(products. Products);

16

Chapter 1: Language Integrated Query (LINQ)

XElement xmlCategories = XElement.Load("Categories.xml");

var expr = from product in products._Products
where product.Units_In_Stock > 100
join xc in xmlCategories.Elements("Category")
on product.Category ID equals int.Parse(xc.Attribute("CategoryID").Value)
select new
{
ProductName = product.Product_Name,
Category = xc.Attribute("CategoryName").Value,
CategoryDescription = xc.Attribute("Description").Value

1
foreach (var productInfo in expr)
{
Console.WriteLine("ProductName: " + productInfo.ProductName +
" Category: " + productInfo.Category +
" Category Description: " + productInfo.CategoryDescription);
}

The new set of data is printed to the console, but this could easily have been rerouted
to another method, transformed in another query, or written out to a third data
format:

ProductName: Grandma's Boysenberry Spread Category: Condiments Category Description:
Sweet and savory sauces, relishes, spreads, and seasonings

ProductName: Gustaf's Kndckebrdd Category: Grains/Cereals Category Description:
Breads, crackers, pasta, and cereal

ProductName: Geitost Category: Dairy Products Category Description: Cheeses
ProductName: Sasquatch Ale Category: Beverages Category Description: Soft drinks,
coffees, teas, beer, and ale

ProductName: Inlagd Sill Category: Seafood Category Description: Seaweed and fish
ProductName: Boston Crab Meat Category: Seafood Category Description: Seaweed and
fish

ProductName: Paté chinois Category: Meat/Poultry Category Description: Prepared meats
ProductName: Sirop d'érable Category: Condiments Category Description: Sweet and
savory sauces, relishes, spreads, and seasonings

ProductName: RGd Kaviar Category: Seafood Category Description: Seaweed and fish
ProductName: Rhonbrdu Klosterbier Category: Beverages Category Description: Soft
drinks, coffees, teas, beer, and ale

Discussion

The solution combines data from two different data domains: XML and a SQL Data-
base. To do this before LINQ, you would have to not only create a third data reposi-
tory by hand to hold the result, but you would also have to write the specific code for
each domain to query that domain for its part of the data (XPath for XML; SQL for
database) and then manually transform the result sets from each domain into the
new data repository. LINQ gives the ability to write the query to combine the two
sets of data, automatically constructs a type via projecting a new Anonymous Type,
and places the pertinent data in the new type, all in the same syntax. Not only does

Query and Join Across Data Repositories | 17

this simplify the code, but it allows you to concentrate more on getting the data you
want and less on exactly how to read both data domains.

This example uses both LINQ to DataSet and LINQ to XML to access the multiple
data domains:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);
ProductsTableAdapter adapter = new ProductsTableAdapter();

Products products = new Products();

adapter.Fill(products. Products);

XElement xmlCategories = XElement.Load("Categories.xml");

Northwind is a DataContext class. A DataContext is analogous to an ADO.NET
Connection and Command object rolled into one. You use it to establish your connec-
tion, execute queries, or access tables directly via Entity Classes. A DataContext can
be generated directly from the database through Visual Studio by adding a new
“LINQ to SQL Classes” item or from the command line using the SQLMetal.exe. This
provides access to the local Northwind database for the query. A Products DataSet is
loaded from the Products table in the Northwind database for use in the query. For
more on DataContext, see Recipe 1.6.

The Northwind DataContext can be generated using SQLMetal.exe using the following
command line syntax:

SqlMetal /server:. /database:Northwind /code:Northwind.cs

XElement is one of the main classes in LINQ to XML. It enables the loading of exist-
ing XML, creation of new XML, or retrieving of the XML text for the element via
ToString. Example 1-1 shows the Categories.xml file that will be loaded. For more
on XElement and LINQ to XML, see Chapter 15.

Example 1-1. Categories.xml

<?xml version="1.0" encoding="utf-8"?>
<Categories>

<Category CategoryID="1" CategoryName="Beverages" Description="Soft drinks, coffees,
teas, beer, and ale" />

<Category CategoryID="2" CategoryName="Condiments" Description="Sweet and savory sauces,
relishes, spreads, and seasonings" />

<Category CategoryID="3" CategoryName="Confections" Description="Desserts, candies,
sweetbreads" />

<Category CategoryID="4" CategoryName="Dairy Products" Description="Cheeses" />

<Category CategoryID="5" CategoryName="Grains/Cereals" Description="Breads, crackers,
pasta, and cereal" />

<Category CategoryID="6" CategoryName="Meat/Poultry" Description="Prepared meats" />

<Category CategoryID="7" CategoryName="Produce" Description="Dried fruit and bean curd"
/>

<Category CategoryID="8" CategoryName="Seafood" Description="Seaweed and fish" />
</Categories>

18 | Chapter1: Language Integrated Query (LINQ)

The two sets of data are joined using LINQ and, in particular, the join keyword. The
data is joined by matching the category id in the products table with the category id
in the xml file to combine the data. In SQL terms, the join keyword represents an
inner join:
var expr = from product in products. Products
where product.Units_In_Stock > 100

join xc in xmlCategories.Elements("Category")
on product.Category ID equals int.Parse(xc.Attribute("CategoryID").vValue)

Once the join result is complete, a new type is projected using the select keyword:

select new

{

ProductName = product.Product_Name,
Category = xc.Attribute("CategoryName").Value,
CategoryDescription = xc.Attribute("Description”).Value
};
This allows us to combine different data elements from the two sets of data to make
a third set that can look completely different than either of the original two.

Doing joins on two sets of database data would be a bad idea, as the database can do
this much faster for those sets, but when you need to join disparate data sets, LINQ
can lend a helping hand.

See Also

The “join keyword,” “System.Data.Ling.DataContext,” and “XElement” topics in
the MSDN documentation.

1.7 Querying Configuration Files with LINQ

Problem

Sets of data can be stored in many different locations, such as configuration files.
You want to be able to query your configuration files for sets of information.

Solution

Use LINQ to query against the configuration sections. In the example below, this is

done by retrieving all chapter titles with even numbers and the word “and” in the

title from the custom configuration section containing chapter information:
CSharpRecipesConfigurationSection recipeConfig =

ConfigurationManager.GetSection("CSharpRecipesConfiguration") as
CSharpRecipesConfigurationSection;

var expr = from ChapterConfigurationElement chapter in
recipeConfig.Chapters.0fType<ChapterConfigurationElement>()
where (chapter.Title.Contains("and")) & ((int.Parse(chapter.Number) % 2)

Querying Configuration Fileswith LINQ | 19

select new

{
ChapterNumber = "Chapter " + chapter.Number,
chapter.Title
1
foreach (var chapterInfo in expr)
{
Console.Writeline(chapterInfo.ChapterNumber + ": " + chapterInfo.Title);
}

The configuration section being queried looks like this:

<CSharpRecipesConfiguration CurrentEdition="3">

<Chapters>
<add Number="1" Title="Language Integrated Query (LINQ)"/>
<add Number="2" Title="Strings and Characters"/>
<add Number="3" Title="Classes and Structures"/>
<add Number="4" Title="Generics"/>
<add Number="5" Title="Collections"/>
<add Number="6" Title="Iterators, Partial Types and Partial Methods"/>
<add Number="7" Title="Exception Handling"/>
<add Number="8" Title="Diagnostics"/>
<add Number="9" Title="Delegates, Events, and Functional Programming"/>
<add Number="10" Title="Regular Expressions"/>
<add Number="11" Title="Data Structures & Algorithms"/>
<add Number="12" Title="Filesystem I/0"/>
<add Number="13" Title="Reflection"/>
<add Number="14" Title="Web"/>
<add Number="15" Title="XML"/>
<add Number="16" Title="Networking"/>
<add Number="17" Title="Security"/>
<add Number="18" Title="Threading and Synchronization"/>
<add Number="19" Title="Toolbox"/>
<add Number="20" Title="Numbers & Enumerations"/>

</Chapters>

<Editions>
<add Number="1" PublicationYear="2004"/>
<add Number="2" PublicationYear="2006"/>
<add Number="3" PublicationYear="2007"/>

</Editions>

</CSharpRecipesConfiguration>

The output from the query is:

Chapter 2: Strings and Characters
Chapter 6: Iterators, Partial Types and Partial Methods
Chapter 18: Threading and Synchronization

Discussion

Configuration files in .NET play a significant role in achieving manageability and
ease of deployment for .NET-based applications. It can be challenging to get all of
the various settings right in the hierarchy of configuration files that can affect an

20 | Chapter1: Language Integrated Query (LINQ)

application, so understanding how to write utilities to programmatically check con-
figuration file settings is of great use during development, testing, deployment, and
ongoing management of an application.

A
To access the configuration types, you will need to reference the

as System.Configuration assembly.

Ny

(15N

Even though the ConfigurationElementCollection class (the base of sets of data in
configuration files) only supports IEnumerable and not IEnumerable<T>, we can still
use it to get the elements we need by using the 0fType<ChapterConfigurationElement>
method on the collection, which selects elements of that type from the collection:

var expr = from ChapterConfigurationElement chapter in

recipeConfig.Chapters.0fType<ChapterConfigurationElement> ()

ChapterConfigurationElement is a custom configuration section class that holds the
chapter number and title:

/// <summary>

/// Holds the information about a chapter in the configuration file

/// </summary>
public class ChapterConfigurationElement : ConfigurationElement

{

/// <summary>

/// Default constructor

/// </summary>

public ChapterConfigurationElement()

{

}

/// <summary>

/// The number of the Chapter

/// </summary>

[ConfigurationProperty("Number", IsRequired=true)]

public string Number

{
get { return (string)this["Number"]; }
set { this["Number"] = value; }

}

/// <summary>

/// The title of the Chapter

/// </summary>

[ConfigurationProperty("Title", IsRequired=true)]

public string Title

{
get { return (string)this["Title"]; }
set { this["Title"] = value; }

}

}

Querying Configuration Fileswith LINQ | 21

This technique can be used on the standard configuration files such as machine.
config as well. This example determines which sections in machine.config require
access permissions. For this collection, 0fType<ConfigurationSection> is used, as this
is a standard section:

System.Configuration.Configuration machineConfig =
ConfigurationManager.OpenMachineConfiguration();

var query = from ConfigurationSection section in machineConfig.Sections.
OfType<ConfigurationSection>()

where section.SectionInformation.RequirePermission

select section;

foreach (ConfigurationSection section in query)
{

}
The sections detected will look something like this:

Console.Writeline(section.SectionInformation.Name);

system.data

windows
system.webServer
mscorlib
system.data.oledb
system.data.oracleclient
system.data.sqlclient
configProtectedData
satelliteassemblies
system.data.dataset
startup
system.data.odbc
system.diagnostics
runtime

system.codedom
system.runtime.remoting
assemblyBinding
system.windows . forms

See Also

The “Enumerable.OfType,method,” “ConfigurationSectionCollection,class” and
“ConfigurationElementCollection class” topics in the MSDN documentation.

1.8 Creating XML Straight from a Database

Problem

You want to be able to take a set of data from a database and represent it as XML.

22 | Chapter1: Language Integrated Query (LINQ)

Solution

Use LINQ to SQL and LINQ to XML to retrieve and transform the data all in one
query. In this case, we will select the top five customers in the Northwind database
whose contact is the owner and those owners who placed orders totaling more than
$10,000, then create XML containing the company name, contact name, phone
number, and total amount of the orders. Finally, the results are written out to the
BigSpenders.xml file:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);
// Log the generated SQL to the console
dataContext.Log = Console.Out;

var bigSpenders = new XElement("BigSpenders",
from tops5 in
(
from customer in
(
from c in dataContext.Customers
// get the customers where the contact is the owner
// and they placed orders
where c.ContactTitle.Contains("Owner")
&8 c.Orders.Count > 0
join orderData in
(
from c in dataContext.Customers
// get the customers where the contact is the owner
// and they placed orders
where c.ContactTitle.Contains("Owner")
&8 c.Orders.Count > 0
from o in c.Orders
// get the order details
join od in dataContext.OrderDetails
on 0.0rderID equals od.OrderID
select new
{
c.CompanyName,
c.CustomerID,
0.0rderID,
// have to calc order value from orderdetails
//(UnitPrice*Quantity as Total)- (Total*Discount)
// as NetOrderTotal
NetOrderTotal = (
(((double)od.UnitPrice) * od.Quantity) -
((((double)od.UnitPrice) * od.Quantity) * od.
Discount))
}
)

on c.CustomerID equals orderData.CustomerID
into customerOrders
select new

{

c.CompanyName,

Creating XML Straight from a Database | 23

c.ContactName,
c.Phone,
// Get the total amount spent by the customer
TotalSpend = customerOrders.Sum(order => order.NetOrderTotal)
}
)

// place focus on the customers that spent > 10000
where customer.TotalSpend > 10000
orderby customer.TotalSpend descending
// only take the top five spenders
select customer).Take(5)
)
// format the data as XML
select new XElement("Customer",
new XAttribute("companyName", top5.CompanyName),
new XAttribute("contactName", top5.ContactName),
new XAttribute("phoneNumber", tops5.Phone),
new XAttribute("amountSpent", tops5.TotalSpend)));

usin MmLWriter writer = AmLWriter.(reate 1 enders.xm
ing (XmlWrit it XmlWriter.Create("BigSpend 1)

{

bigSpenders.WriteTo(writer);

When building larger queries, you may find it is sometimes easier to
use the functional approach (.Join()) to building up the query instead
W of the query expression manner (join x on y equals z) if you have done
* more C# than SQL.

Discussion

LINQ to SQL is the part of LINQ to ADO.NET that facilitates rapid database devel-
opment. It is targeted at the scenarios where you want to program almost directly
against the database schema. Most of these scenarios have one-to-one correla