

C# 3.0 Cookbook ™

Other Microsoft .NET resources from O’Reilly

Related titles Building a Web 2.0 Portal
with ASP.NET 3.5

C# 3.0 Design Patterns

Learning C#

Programming ASP.NET

Programming C#

Visual C# 2005: A
Developer’s Notebook™

.NET Books
Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in docu-
menting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

C# 3.0 Cookbook™

THIRD EDITION

Jay Hilyard and Stephen Teilhet

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

C# 3.0 Cookbook™, Third Edition
by Jay Hilyard and Stephen Teilhet

Copyright © 2008 Jay Hilyard and Stephen Teilhet. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Adam Witwer
Production Services: nSight, Inc.

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

January 2004: First Edition.

January 2006: Second Edition.

December 2007: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, C# 3.0 Cookbook, the image of a garter snake,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 0-596-51610-X

ISBN-13: 978-0-596-51610-9

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

To Brooke

My wife, my best friend, and the most supportive

person I know. This one was for you;

you earned it.

—Jay Hilyard

To my loving wife Kandis and my two wonderful

sons, Patrick and Nicholas.

—Stephen Teilhet

vii

Table of Contents

Preface . xvii

1. Language Integrated Query (LINQ) . 1
1.1 Query a Message Queue 2
1.2 Using Set Semantics with Data 5
1.3 Reuse Parameterized Queries with LINQ to SQL 8
1.4 Sort Results in a Culture-Sensitive Manner 10
1.5 Adding Functional Extensions for Use with LINQ 12
1.6 Query and Join Across Data Repositories 16
1.7 Querying Configuration Files with LINQ 19
1.8 Creating XML Straight from a Database 22
1.9 Being Selective About Your Query Results 31

1.10 Using LINQ with Collections That Don’t Support IEnumerable<T> 33

2. Strings and Characters . 36
2.1 Determining the Kind of Character a Char Contains 36
2.2 Controlling Case Sensitivity When Comparing Two Characters 40
2.3 Finding the Location of All Occurrences of a String

Within Another String 42
2.4 Controlling Case Sensitivity When Comparing Two Strings 46
2.5 Comparing a String to the Beginning or End of a Second String 47
2.6 Inserting Text into a String 49
2.7 Removing or Replacing Characters Within a String 51
2.8 Encoding Binary Data As Base64 53
2.9 Decoding a Base64-Encoded Binary 54

2.10 Converting a String Returned As a Byte[] Back into a String 56
2.11 Passing a String to a Method That Accepts Only a Byte[] 57

viii | Table of Contents

2.12 Converting Strings to Other Types 59
2.13 Creating a Delimited String 62
2.14 Extracting Items from a Delimited String 63
2.15 Iterating over Each Character in a String 64
2.16 Pruning Characters from the Head and/or Tail of a String 65
2.17 Testing a String for Null or Empty 66
2.18 Appending a Line 67

3. Classes and Structures . 68
3.1 Creating Union-Type Structures 70
3.2 Making a Type Sortable 72
3.3 Making a Type Searchable 77
3.4 Indirectly Overloading the +=, -=, /=, and *= Operators 80
3.5 Indirectly Overloading the &&, ||, and ?: Operators 82
3.6 Making Error-Free Expressions 85
3.7 Reducing Your Boolean Logic 88
3.8 Converting Between Simple Types in a Programming

Language-Agnostic Manner 91
3.9 Determining When to Use the cast Operator, the as Operator,

or the is Operator 97
3.10 Casting with the as Operator 99
3.11 Determining a Variable’s Type with the is Operator 101
3.12 Returning Multiple Items from a Method 104
3.13 Parsing Command-Line Parameters 106
3.14 Initializing a Constant Field at Runtime 117
3.15 Building Cloneable Classes 120
3.16 Assuring an Object’s Disposal 124
3.17 Disposing of Unmanaged Resources 126
3.18 Determining Where Boxing and Unboxing Occur 133

4. Generics . 137
4.1 Deciding When and Where to Use Generics 137
4.2 Understanding Generic Types 138
4.3 Replacing the ArrayList with Its Generic Counterpart 146
4.4 Replacing the Stack and Queue with Their Generic Counterparts 150
4.5 Using a Linked List 155
4.6 Creating a Value Type That Can Be Initialized to Null 158
4.7 Reversing the Contents of a Sorted List 160
4.8 Making Read-Only Collections the Generic Way 162

Table of Contents | ix

4.9 Replacing the Hashtable with Its Generic Counterpart 164
4.10 Using foreach with Generic Dictionary Types 168
4.11 Constraining Type Arguments 169
4.12 Initializing Generic Variables to Their Default Values 173

5. Collections . 175
5.1 Swapping Two Elements in an Array 177
5.2 Reversing an Array Quickly 178
5.3 Writing a More Flexible StackTrace Class 181
5.4 Determining the Number of Times an Item Appears in a List<T> 182
5.5 Retrieving All Instances of a Specific Item in a List<T> 185
5.6 Inserting and Removing Items from an Array 188
5.7 Keeping Your List<T> Sorted 191
5.8 Sorting a Dictionary’s Keys and/or Values 193
5.9 Creating a Dictionary with Max and Min Value Boundaries 194

5.10 Storing Snapshots of Lists in an Array 198
5.11 Persisting a Collection Between Application Sessions 199
5.12 Testing Every Element in an Array or List<T> 201
5.13 Performing an Action on Each Element in an Array or List<T> 202
5.14 Creating a Read-Only Array or List<T> 204

6. Iterators, Partial Types, and Partial Methods . 206
6.1 Creating an Iterator on a Generic Type 207
6.2 Creating an Iterator on a Nongeneric Type 209
6.3 Creating Custom Enumerators 211
6.4 Implementing Iterator Logic 215
6.5 Forcing an Iterator to Stop Iterating 218
6.6 Dealing with Finally Blocks and Iterators 220
6.7 Implementing Nested foreach Functionality in a Class 224
6.8 Organizing Your Interface Implementations 229
6.9 Generating Code That Is No Longer in Your Main Code Paths 234

6.10 Adding Hooks to Generated Entities 237

7. Exception Handling . 240
7.1 Knowing When to Catch and Rethrow Exceptions 247
7.2 Assuring Exceptions Are Not Lost When Using Finally Blocks 248
7.3 Handling Exceptions Thrown from Methods Invoked via Reflection 251
7.4 Preventing Unhandled Exceptions 254
7.5 Getting Exception Information 256

x | Table of Contents

7.6 Getting to the Root of a Problem Quickly 260
7.7 Creating a New Exception Type 261
7.8 Obtaining a Stack Trace 269
7.9 Breaking on a First-Chance Exception 272

7.10 Handling Exceptions Thrown from an Asynchronous Delegate 275
7.11 Giving Exceptions the Extra Info They Need with Exception.Data 277
7.12 Dealing with Unhandled Exceptions in WinForms Applications 279
7.13 Dealing with Unhandled Exceptions in Windows Presentation

Foundation (WPF) Applications 281
7.14 Analyzing Exceptions for Common Errors 283

8. Diagnostics . 286
8.1 Providing Fine-Grained Control over Debugging/Tracing Output 287
8.2 Determining Whether a Process Has Stopped Responding 290
8.3 Using Event Logs in Your Application 292
8.4 Searching Event Log Entries 299
8.5 Watching the Event Log for a Specific Entry 302
8.6 Implementing a Simple Performance Counter 304
8.7 Enabling and Disabling Complex Tracing Code 307
8.8 Capturing Standard Output for a Process 311
8.9 Creating Custom Debugging Displays for Your Classes 313

9. Delegates, Events, and Lambda Expressions . 316
9.1 Controlling When and If a Delegate Fires Within a

Multicast Delegate 318
9.2 Obtaining Return Values from Each Delegate in a

Multicast Delegate 322
9.3 Handling Exceptions Individually for Each Delegate in a

Multicast Delegate 324
9.4 Converting Delegate Invocation from Synchronous to

Asynchronous 327
9.5 An Advanced Interface Search Mechanism 330
9.6 Observing Additions and Modifications to Dictionaries 332
9.7 Using Lambda Expressions 344
9.8 Set Up Event Handlers Without the Mess 348
9.9 Using Different Parameter Modifiers in Lambda Expressions 352

9.10 Using Closures in C# 356
9.11 Performing Multiple Operations on a List Using Functors 361

Table of Contents | xi

10. Regular Expressions . 366
10.1 Enumerating Matches 367
10.2 Extracting Groups from a MatchCollection 370
10.3 Verifying the Syntax of a Regular Expression 373
10.4 Quickly Finding Only the Last Match in a String 375
10.5 Augmenting the Basic String Replacement Function 376
10.6 Implementing a Better Tokenizer 379
10.7 Counting Lines of Text 380
10.8 Returning the Entire Line in Which a Match Is Found 383
10.9 Finding a Particular Occurrence of a Match 387

10.10 Using Common Patterns 389

11. Data Structures and Algorithms . 394
11.1 Creating a Hash Code for a Data Type 394
11.2 Creating a Priority Queue 402
11.3 Creating a One-to-Many Map (MultiMap) 410
11.4 Creating a Binary Search Tree 418
11.5 Creating an n-ary Tree 432
11.6 Using a HashSet Object 444

12. Filesystem I/O . 449
12.1 Manipulating File Attributes 450
12.2 Renaming a File 452
12.3 Outputting a Platform-Independent EOL Character 453
12.4 Manipulating Directory Attributes 455
12.5 Renaming a Directory 457
12.6 Searching for Directories or Files Using Wildcards 459
12.7 Obtaining the Directory Tree 464
12.8 Parsing a Path 466
12.9 Parsing Paths in Environment Variables 468

12.10 Launching and Interacting with Console Utilities 469
12.11 Locking Subsections of a File 471
12.12 Waiting for an Action to Occur in the Filesystem 474
12.13 Comparing Version Information of Two Executable Modules 477
12.14 Querying Information for All Drives on a System 479
12.15 Compressing and Decompressing Your Files 482

xii | Table of Contents

13. Reflection . 489
13.1 Listing Referenced Assemblies 490
13.2 Listing Exported Types 492
13.3 Finding Overridden Methods 493
13.4 Finding Members in an Assembly 499
13.5 Determining and Obtaining Nested Types Within an Assembly 500
13.6 Displaying the Inheritance Hierarchy for a Type 501
13.7 Finding the Subclasses of a Type 504
13.8 Finding All Serializable Types Within an Assembly 505
13.9 Dynamically Invoking Members 507

13.10 Determining If a Type or Method Is Generic 511
13.11 Accessing Local Variable Information 512
13.12 Creating a Generic Type 514

14. Web . 516
14.1 Converting an IP Address to a Hostname 516
14.2 Converting a Hostname to an IP Address 517
14.3 Parsing a URI 518
14.4 Handling Web Server Errors 522
14.5 Communicating with a Web Server 524
14.6 Going Through a Proxy 525
14.7 Obtaining the HTML from a URL 527
14.8 Using the Web Browser Control 528
14.9 Tying Database Tables to the Cache 530

14.10 Prebuilding an ASP.NET Web Site Programmatically 532
14.11 Escaping and Unescaping Data for the Web 535
14.12 Using the UriBuilder Class 537
14.13 Inspect and Change Your Web Application Configuration 539
14.14 Using Cached Results When Working with HTTP for

Faster Performance 541
14.15 Checking Out a Web Server’s Custom Error Pages 543

15. XML . 548
15.1 Reading and Accessing XML Data in Document Order 548
15.2 Reading XML on the Web 552
15.3 Querying the Contents of an XML Document 554
15.4 Validating XML 558
15.5 Creating an XML Document Programmatically 564
15.6 Detecting Changes to an XML Document 566

Table of Contents | xiii

15.7 Handling Invalid Characters in an XML String 569
15.8 Transforming XML 572
15.9 Tearing Apart an XML Document 579

15.10 Putting Together an XML Document 585
15.11 Validating Modified XML Documents Without Reloading 591
15.12 Extending Transformations 595
15.13 Getting Your Schemas in Bulk from Existing XML Files 599
15.14 Passing Parameters to Transformations 601

16. Networking . 606
16.1 Writing a TCP Server 606
16.2 Writing a TCP Client 612
16.3 Simulating Form Execution 615
16.4 Transferring Data via HTTP 619
16.5 Using Named Pipes to Communicate 621
16.6 Pinging Programmatically 629
16.7 Send SMTP Mail Using the SMTP Service 631
16.8 Use Sockets to Scan the Ports on a Machine 636
16.9 Use the Current Internet Connection Settings 641

16.10 Transferring Files Using FTP 648

17. Security . 651
17.1 Controlling Access to Types in a Local Assembly 651
17.2 Encrypting/Decrypting a String 661
17.3 Encrypting and Decrypting a File 665
17.4 Cleaning Up Cryptography Information 670
17.5 Verifying That a String Remains Uncorrupted

Following Transmission 672
17.6 Storing Data Securely 676
17.7 Making a Security Assert Safe 683
17.8 Verifying That an Assembly Has Been Granted Specific Permissions 685
17.9 Minimizing the Attack Surface of an Assembly 687

17.10 Obtaining Security/Audit Information 688
17.11 Granting/Revoking Access to a File or Registry Key 693
17.12 Protecting String Data with Secure Strings 696
17.13 Securing Stream Data 699
17.14 Encrypting web.config Information 708
17.15 Obtaining the Full Reason a SecurityException Was Thrown 710
17.16 Achieving Secure Unicode Encoding 712
17.17 Obtaining a Safer File Handle 713

xiv | Table of Contents

18. Threading and Synchronization . 716
18.1 Creating Per-Thread Static Fields 716
18.2 Providing Thread-Safe Access to Class Members 719
18.3 Preventing Silent Thread Termination 725
18.4 Being Notified of the Completion of an Asynchronous Delegate 727
18.5 Storing Thread-Specific Data Privately 730
18.6 Granting Multiple Access to Resources with a Semaphore 734
18.7 Synchronizing Multiple Processes with the Mutex 738
18.8 Using Events to Make Threads Cooperate 750
18.9 Get the Naming Rights for Your Events 752

18.10 Performing Atomic Operations Among Threads 755
18.11 Optimizing Read-Mostly Access 757

19. Toolbox . 770
19.1 Dealing with Operating System Shutdown, Power Management,

or User Session Changes 770
19.2 Controlling a Service 775
19.3 List What Processes an Assembly Is Loaded In 778
19.4 Using Message Queues on a Local Workstation 780
19.5 Finding the Path to the Current Framework Version 783
19.6 Determining the Versions of an Assembly That Are

Registered in the Global Assembly Cache (GAC) 784
19.7 Capturing Output from the Standard Output Stream 787
19.8 Running Code in Its Own AppDomain 789
19.9 Determining the Operating System and Service Pack

Version of the Current Operating System 791

20. Numbers and Enumerations . 793
20.1 Converting Between Degrees and Radians 795
20.2 Using the Bitwise Complement Operator with Various Data Types 796
20.3 Converting a Number in Another Base to Base10 797
20.4 Determining Whether a String Is a Valid Number 798
20.5 Rounding a Floating-Point Value 799
20.6 Choosing a Rounding Algorithm 800
20.7 Converting Between Temperature Scales 801
20.8 Safely Performing a Narrowing Numeric Cast 802
20.9 Displaying an Enumeration Value As a String 804

Table of Contents | xv

20.10 Converting Plain Text to an Equivalent Enumeration Value 807
20.11 Testing for a Valid Enumeration Value 808
20.12 Testing for a Valid Enumeration of Flags 810
20.13 Using Enumerated Members in a Bit Mask 812
20.14 Determining Whether One or More Enumeration Flags Are Set 815
20.15 Determining the Integral Part of a Decimal or Double 819

Index . 821

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvii

(-ch

Preface

C# is a language targeted at developers for the Microsoft .NET platform who have
already worked with a C-like language such as C, C++, or Java. Unlike previous ver-
sions of C or C++ for the Microsoft Windows platform, C# code runs under a man-
aged execution environment. Microsoft portrays C# as a modern and innovative
language for .NET development and continues to deliver on that with new features
such as Language Integrated Query (LINQ). The new features in C# 3.0 allow for
more of a declarative and functional style of programming, when that is appropriate,
while it still has great object-oriented features as well. The main idea is to use the
style of programming that fits your problem, and C# will support your endeavor.

C# allows you to perform many C/C++-like functions, such as direct memory access
via pointers and operator overloading, that are not supported in Visual Basic .NET.
C# is the system-level programming language for .NET. You can still do great appli-
cation-level work in C#, but it really shines when you need to build code a little
closer to the Framework.

If you have seen C#, you may have noticed that it looks a lot like Java; Java pro-
grammers will feel very much at home in C# once they learn the Framework SDK.
C# can also be a great language for Visual Basic .NET programmers when they need
a little more control over what the code is doing and don’t want to have to write
C++ to gain an advantage. On the Web, you’ll find a large community of people
doing really neat things with C# and tons of sample code on sites such as http://
www.codeplex.com and http://www.codeproject.com.

We started writing this book together based on programming problems we ran into
when we were first learning C# and have continued to expand it based on new chal-
lenges and capabilities in the language. In this edition, we have reworked the
approach of many solutions to take advantage of LINQ and have also created
entirely new solutions based on LINQ and the other new features in C# 3.0. We
hope that it will help you get past some of the common (and not-so-common) pit-
falls and initial questions everyone has when learning a new language as well as the
slightly off-the-beaten-path items that come up during a development cycle. There

http://www.codeplex.com
http://www.codeplex.com
http://www.codeproject.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

are recipes addressing things we found missing from the .NET Framework Class
Library (FCL), even though Microsoft has provided tons of functionality to keep
folks from reinventing the wheel. Some of these solutions you might immediately
use, and some may never darken your door, but we hope this book helps you get the
most out of C# and the .NET Framework.

The book is laid out with respect to the types of problems you will solve as you
progress through your life as a C# programmer. These solutions are called recipes;
each recipe consists of a single problem, its solution, a discussion of the solution and
other relevant related information, and finally, where you can look for more informa-
tion about the classes used from the FCL, other books addressing this topic, related
articles, and other recipes. The question-answer format provides complete solutions
to problems, making the book easy to read and use. Nearly every recipe contains a
complete, documented code sample, showing you how to solve the specific prob-
lem, as well as a discussion of how the underlying technology works and a list of
alternatives, limitations, and other considerations when appropriate.

Who This Book Is For
You don’t have to be an experienced C# or .NET developer to use this book—it is
designed for users of all levels. This book provides solutions to problems that devel-
opers face every day as well as some that may come along less frequently. The reci-
pes are targeted at the real-world developer who needs to solve problems now, not
learn lots of theory before being able to solve the problem. While reference or tuto-
rial books can teach general concepts, they do not generally provide the help you
need in solving real-world problems. We choose to teach by example, the natural
way for most people to learn.

The majority of the problems addressed in this book are frequently faced by C#
developers, but some of the more advanced problems call for more intricate solu-
tions that combine many techniques. Each recipe is designed to help you quickly
understand the problem, learn how to solve it, and find out any potential trade-offs
or ramifications to help you solve your problems quickly, efficiently, and with mini-
mal effort.

To save you even the effort of typing in the solution, we provide the sample code for
the book on the O’Reilly web site to facilitate the “editor inheritance” mode of devel-
opment (copy and paste) as well as to help less-experienced developers see good pro-
gramming practice in action. The sample code provides a running test harness that
exercises each of the solutions, but enough of the code is provided in each solution
in the book to allow you to implement the solution without the sample code. The
sample code is available from the book’s catalog page: http://www.oreilly.com/
catalog/9780596516109.

http://www.oreilly.com/catalog/9780596516109
http://www.oreilly.com/catalog/9780596516109

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

What You Need to Use This Book
To run the samples in this book, you need a computer running Windows XP or later.
A few of the networking and XML solutions require Microsoft Internet Information
Server (IIS) Version 5.1 or later, and the FTP recipes in the Networking chapter
require a locally configured FTP server.

To open and compile the samples in this book, you need Visual Studio .NET 2008. If
you are proficient with the downloadable Framework SDK and its command-line
compilers, you should not have any trouble following the text of this book and the
code samples.

Platform Notes
The solutions in this book were developed using Visual Studio .NET 2008. The dif-
ferences between C# 3.0 and C# 2.0 are significant, and the sample code has
changed from the second edition to reflect that.

It is worth mentioning that although C# is now at version 3.0, the .NET Framework
has progressed to version 3.5. .NET 3.0 introduced Windows Communication Foun-
dation, Windows Presentation Foundation, and Windows Workflow Foundation as
additional functionality to the 2.0 framework base, but C# was not changed. Now in
C# 3.0, there is a bunch of new functionality, mostly due to LINQ and the ability to
do more functional programming.

How This Book Is Organized
This book is organized into 20 chapters, each of which focuses on a particular topic
in creating C# solutions. The following paragraphs summarize each chapter to give
you an overview of this book’s contents:

Chapter 1, Language Integrated Query (LINQ)
This chapter covers Language Integrated Query (LINQ) and its usage with
objects, ADO.NET, and XML. There are recipes using many of the Standard
Query Operators and showing how to use some of the query operators that are
not keywords in the language, but are still quite powerful.

Chapter 2, Strings and Characters
This chapter covers both the String and Char data types. Recipes show such
things as how to compare strings in various ways, encode/decode strings, break
strings apart, and put them back together again.

Chapter 3, Classes and Structures
This large chapter contains recipes dealing with both class and structure data
types. This chapter covers a wide range of recipes, from design patterns to con-
verting a class to a full-blown command-line argument-processing system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

Chapter 4, Generics
This chapter focuses on the generics capacity in C#, which allows you to have
code operate uniformly on values of different types. There are recipes to help
your general understanding of generics as well as when they are appropriate to
use, what support is provided in the Framework for them, and how to create
custom implementations of collections using generics.

Chapter 5, Collections
This chapter examines recipes that make use of collections. The collection reci-
pes make use of—as well as extend the functionality of—the array (single, multi,
and jagged), the List<T>, and the Hashtable. The generic-based collections are
explored, and the various ways to create your own strongly typed collection are
also discussed.

Chapter 6, Iterators, Partial Types, and Partial Methods
In this chapter, two of the features of C# are used to solve very different pro-
gramming problems. We show how you can implement iterators for generic and
nongeneric types and implement foreach functionality using iterators, as well as
custom iterator implementations. The other feature of C# in this chapter is par-
tial types and methods. We show how you can use partial types and methods to
do such things as better segmenting your code and how to generate code that is
more easily extensible.

Chapter 7, Exception Handling
The recipes in this chapter focus on the best ways to implement exception han-
dling in your application. Preventing unhandled exceptions, reading and display-
ing stack traces, and throwing/rethrowing exceptions are included recipes. In
addition, specific recipes show how to overcome some tricky situations, such as
exceptions from late-bound called methods.

Chapter 8, Diagnostics
This chapter presents recipes that use data types that fall under the System.
Diagnostics namespace. Recipes deal with the Trace/Debug classes, event logs,
processes, performance counters, and custom debugger displays for your types.

Chapter 9, Delegates, Events, and Lambda Expressions
This chapter’s recipes show how delegates, events, and lambda expressions can
be used in your applications. Recipes allow manipulation of delegates that call
more than one method, synchronous delegates, and asynchronous delegates.
Lambda expressions are explored, and recipes show their usage in place of old-
style delegates as well as their use in implementing closures and functors.

Chapter 10, Regular Expressions
This chapter covers a useful set of classes that are employed to run regular
expressions against strings. Recipes enumerate regular expression matches,
break up strings into tokens, find/replace characters, and verify the syntax of a
regular expression. We also include a recipe that contains many common regu-
lar expression patterns.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Chapter 11, Data Structures and Algorithms
This chapter ventures a bit outside of what is provided for you in the .NET
Framework Class Library and implements certain data structures and algo-
rithms that are not in the FCL, or possibly are not in existence exactly the way
you would like to use them, but are ones that you have used to solve problems
before. Items such as queues, maps, trees, and hashes are examined.

Chapter 12, Filesystem I/O
This chapter deals with file system interactions in four distinct ways. The first
way is to look at typical file interactions; the second way looks at directory- or
folder-based interactions; the third way deals with paths and temporary files;
and the fourth way deals with advanced file system I/O topics.

Chapter 13, Reflection
This chapter shows ways to use the built-in assembly inspection system pro-
vided by the .NET Framework to determine what types, interfaces, and meth-
ods are implemented within an assembly and how to access them in a late-
bound fashion.

Chapter 14, Web
This chapter covers accessing a web site and its content as well as programmati-
cally determining web site configuration. Among the recipes in this chapter are
using the web browser control and setting up caching triggers to refresh cached
data when a database table changes.

Chapter 15, XML
If you use .NET, it is likely that you will be dealing with XML to one degree or
another; in this chapter, we explore some of the uses for XML and how to
program against it using LINQ to XML, the XmlReader/XmlWriter, and Xml-
Document. There are examples using both XPath and XSLT, and topics such as
the validation of XML and transformation of XML to HTML are shown.

Chapter 16, Networking
This chapter explores the connectivity options provided by the .NET Frame-
work and how to programmatically access network resources. Recipes for using
TCP/IP directly, named pipes for communication, building your own port scan-
ner, and more are covered here.

Chapter 17, Security
There are many ways to write secure code and protect data using the .NET
Framework, and in this chapter, we explore areas such as controlling access to
types, encryption and decryption, securely storing data, and using program-
matic and declarative security.

Chapter 18, Threading and Synchronization
This chapter addresses the subject of using multiple threads of execution in a .NET
program and issues such as how to implement threading in your application, pro-
tecting resources from and allowing safe concurrent access, storing per-thread data,
and how to use the synchronization primitives in .NET to write thread-safe code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Chapter 19, Toolbox
This chapter has recipes for those random sorts of operations that developers
run into over and over again, such as determining locations of system resources,
sending email, and working with services. It also covers some less frequently
accessed but helpful application pieces such as message queuing, running code
in a separate AppDomain, and finding the versions of assemblies in the GAC.

Chapter 20, Numbers and Enumerations
This chapter focuses on the numeric and enumeration data types used in C#
code. Recipes cover such things as numeric conversions, using bitwise operators
on numbers, and testing strings to determine whether they contain a numeric
value. The display, conversion, and testing of enumeration types and recipes on
using enumerations that consist of bit flags are also shown.

In some cases, certain recipes are related. In these cases, the See Also section of the
recipe as well as some text in the Discussion will note the relationships.

What Was Left Out
This book is not a reference or a primer about C#. Some good primers and reference
books are C# in a Nutshell, C# Language Pocket Reference, and Learning C#, all
titles available from O’Reilly. The MSDN Library is also invaluable. It is included
with Visual Studio .NET 2008 and available online at http://msdn.microsoft.com/
library/default.asp.

This book is not about how to use Visual Studio .NET 2008 to build, compile, and
deploy applications. See Mastering Visual Studio .NET (O’Reilly) for excellent cover-
age of these topics.

Conventions Used in This Book
This book uses the following typographic conventions:

Italic
Used for URLs, names of directories and files, options, and occasionally for
emphasis.

Constant width
Used for program listings and for code items such as commands, options,
switches, variables, attributes, keys, functions, types, classes, namespaces,
methods, modules, properties, parameters, values, objects, events, event han-
dlers, XML tags, HTML tags, macros, the contents of files, and the output from
commands.

Constant width bold
Used in program listings to highlight an important part of the code.

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

Constant width italic
Used to indicate replaceable parts of code.

//…
Ellipses in C# code indicate text that has been omitted for clarity.

<!--…-->
Ellipses in XML Schemas and documents’ code indicate text that has been omit-
ted for clarity.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

About the Code
Nearly every recipe in this book contains one or more code samples. These samples
are included in a single solution and are pieces of code and whole projects that are
immediately usable in your application. Most of the code samples are written within
a class or structure, making it easier to use within your applications. In addition to
this, any using directives are included for each recipe so that you will not have to
search for which ones to include in your code.

Complete error handling is included only in critical areas, such as input parameters.
This allows you to easily see what is correct input and what is not. Many recipes
omit error handling. This makes the solution easier to understand by focusing on the
key concepts.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C# 3.0 Cookbook, Third Edition,
by Jay Hilyard and Stephen Teilhet. Copyright 2008 Jay Hilyard and Stephen Teil-
het, 978-0-596-51610-9.”

If you feel your use of code examples falls outside fair use or the preceding permis-
sion, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address any comments or questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596516109

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, it means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technical books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596516109
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxv

Acknowledgments
This book began for us as we started exploring C# 3.0 and noticing how it could
change the applications we were working on. With the advent of C# 3.0 and the new
features such as LINQ, we took the opportunity to reexamine how we did things in
the first two editions to see how we could improve the existing recipes as well as
learn better ways of accomplishing programming tasks with C#. Sadly, during the
process, the NuMega lab of Compuware was closed and the development commu-
nity lost a talented team of tool developers. Jay has continued at Newmarket Interna-
tional, pushing software forward with .NET, while Steve moved on to Ounce Labs,
where his focus is on software security. We continue to learn an incredible amount
about C# and the Framework in general while, in this edition, we work hard to help
bring you a better understanding of how C# has evolved and how it can help you do
your job better.

This book would have been impossible without the following people, and we’d like
to acknowledge all of their efforts.

Our appreciation goes out to John Osborn (our editor), Kyley Caldwell, and Laurel
Ruma, who kept us on schedule and did a great job in getting this book finished and
on the shelves in a compressed timeframe. Thank you for all of your efforts.

We extend our gratitude to Eric Lippert for going above and beyond what is
expected of a technical editor. This book would have been impossible to do without
your valuable feedback, and we both thank you for it. Thanks for making this a
“Fabulous Adventure in Coding.”

Thanks to the technical reviewers Gustavo Cavalcanti, Mickey Gousset, Andrew
Siemer, David Patrick, Miles Whitener, Brian Peek, and Peter Jones. This book
would definitely not be as good without all of you.

From Jay Hilyard
Thanks to Steve Teilhet for his ideas, friendship, and generally calm demeanor,
which helped me get past the challenging stages of the book. I always enjoy working
with you, even though most of it was on nights and weekends.

Thanks to my wife Brooke. A book is a work that requires tremendous support and I
have been blessed to have you with me on this journey. There is no way I could have
done this without you. Thank you, and I love you!

Thanks to my sons, Owen and Andrew, who make me smile and laugh when I don’t
think I can. You are excellent boys, and I am tremendously proud of both of you and
love you very much.

Thanks to Phil and Gail for their understanding and being there to help in ways that
only grandparents can, and thanks to my Mom for that monthly dose of sanity.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxvi | Preface

Thanks to Wes for being a good uncle when I was busy.

Thanks to Tim Pelletier, Scott Cronshaw, Bill Bolevic, Melissa Field, Mike Kennie,
Jeremy Streeter, Bob & Liz Blais, Stu Savage, Matt Jurkoic, Dave Bennett, Rich
Tasker, Lance Simpson, Robert Provencal, and Shawn McGowan for being an awe-
some team of people to work with. 10X here we come.

Thanks to Kristen Acheson for being a great friend and part of the family.

Thanks to my Patriots crew (Brian, Spencer, Chip, Jon, and Darren) for being there
to help me blow off steam.

Thanks to the Oyster River Poker Players (Tom Bebbington, Seth Fiermonti, Gavin
Webb, John Clifford, Ben Chandran, Adam Gilsdorf, Nick Issak, and Ted Loth-
stein) for the nights off and for not taking too much of my money while my mind
was elsewhere. Pass the Sun Chips.

Finally, thanks again to my family and friends for asking about a book they don’t
understand and for being excited for me.

From Steve Teilhet
I’m proud to count Jay Hilyard as a good friend, excellent coworker, and hardwork-
ing coauthor. It’s not every day that you find a person who is not only a trusted
friend, but you also work so well with. Thank you for everything.

Kandis Teilhet, my wife, was there every step of the way to give me the strength to
persevere and finish this work. Words cannot express my love for you.

Patrick and Nicholas Teilhet, my two sons, made the rough patches smooth. I
couldn’t wish for two better sons.

My mom and dad, who are always there to listen and support.

The Ounce Lab team, Tom Conner, Larry Rose, David Larochelle, Caleb Davis, Rob-
ert Wiener, Ryan Berg, Cristian Bolovan, Dinis Cruz, Bruce Mayhew, and all the oth-
ers that made my transition from the closing of the NuMega Lab to the Ounce Lab
fun and exciting. It’s not easy changing jobs while writing a book. I thank you all for
the help and support.

1

Chapter 1 CHAPTER 1

Language Integrated Query (LINQ)1

1.0 Introduction
Language Integrated Query (LINQ) is a new way to access data from many different
sources. LINQ provides a single querying model that can operate against different
data domains individually or all together in a single query. LINQ brings the ability to
query data to .NET languages, and some of the languages have provided extensions
to make its use even more intuitive. One of these languages is C#; there are a num-
ber of extensions to the language in C# 3.0 that help to facilitate querying in a rich
and intuitive manner.

Traditional object-oriented programming is based on an imperative style wherein the
developer describes in detail not only what they want to happen, but also describes a
majority of the detail regarding exactly how this should be performed through code.
LINQ helps to take coding down a more declarative path that facilitates describing
what the developer wants to do instead of describing how to accomplish the goal in
detail. LINQ also enables a more functional style of programming. These changes
can dramatically shorten the amount of code it takes to perform some tasks. That
said, object-oriented programming is still very much alive and well in C# and .NET,
but for the first time the language is offering the chance to choose the style of pro-
gramming based on your needs. Note, however, that LINQ will not fit into every sce-
nario and is not a replacement for good design or practice. You can write bad code
using LINQ just as you can write bad object-oriented or procedural code. The trick,
like it always has been, is to figure out when it is appropriate to use which technique.

The initial version of LINQ encompasses a number of data domains as listed here:

• LINQ to Objects

• LINQ to XML

• LINQ to ADO.NET

• LINQ to SQL / LINQ to DataSet / LINQ to Entities

2 | Chapter 1: Language Integrated Query (LINQ)

There are a number of other “LINQ to” implementations currently under develop-
ment, but these are Microsoft’s initial offerings. A few of the others in development
are LINQ to SharePoint, LINQ to LDAP, and even a LINQ to Amazon implementa-
tion. The only one of the initial Microsoft set that won’t be ready immediately with
the release of Visual Studio 2008 is LINQ to Entities, or the ADO.NET Entity Frame-
work, as it is also known. LINQ to Entities will be released shortly after Visual Stu-
dio 2008.

As you begin your examination of LINQ, it is easy to begin to think of it as a new
object relational mapping layer, or some neat new widgets on IEnumerable<T>, or a
new XML API, or even just an excuse to not write SQL directly anymore. You can do
any of these things, but we would encourage you to think of LINQ as how your pro-
gram asks for, calculates, or transforms sets of data from both single and disparate
sources. It takes a bit of time and playing with LINQ for its functionality to click, but
once it does, you will be surprised at what you can do with it. This chapter begins to
show some of what is possible with LINQ and will hopefully start you down the path
toward thinking of which of your scenarios are applicable to this new capability in C#.

1.1 Query a Message Queue

Problem
You want to be able to query for messages with specific criteria from an existing mes-
sage queue.

Solution
Write a query using LINQ to retrieve messages using the System.Messaging.
MessageQueue type:

 // open an existing message queue
 string queuePath = @".\private$\LINQMQ";
 MessageQueue messageQueue = new MessageQueue(queuePath);
 BinaryMessageFormatter messageFormatter = new BinaryMessageFormatter();

 var query = from Message msg in messageQueue
 // The first assignment to msg.Formatter is so that we can touch the
 // Message object. It assigns the BinaryMessageFormatter to each message
 // instance so that it can be read to determine if it matches the criteria.
 // Next, a check is performed that the formatter was correctly assigned
 // by performing an equality check, which satisfies the Where clause's need
 // for a boolean result while still executing the assignment of the formatter.
 where ((msg.Formatter = messageFormatter) == messageFormatter) &&
 int.Parse(msg.Label) > 5 &&
 msg.Body.ToString().Contains('D')
 orderby msg.Body.ToString() descending
 select msg;

Query a Message Queue | 3

 // Check our results for messages with a label > 5 and containing a 'D' in the name
 foreach (var msg in query)
 {
 Console.WriteLine("Label: " + msg.Label + " Body: " + msg.Body);
 }

The query retrieves the data from the MessageQueue by selecting the messages where
the Label is a number greater than 5 and the message body contains a capital letter
“D”. These messages are then returned sorted by the message body in descending
order.

Discussion
There are a number of new keywords in this code using LINQ that were not previ-
ously used to access a message queue:

var
Instructs the compiler to infer the type of the variable from the right side of the
statement. In essence, the type of the variable is determined by what is on the
right side of the operator separating the var keyword and the expression. This
allows for implicitly typed local variables.

from
The from keyword sets out the source collection to query against and a range
variable to represent a single element from that collection. It is always the first
clause in a query operation. This may seem counterintuitive if you are used to
SQL and expect select to be first, but if you consider that first we need what to
work on before we determine what to return, it makes sense. If we weren’t used
to how SQL does this already, it would be SQL that seems counterintuitive.

where
The where keyword specifies the constraints by which the elements to return are
filtered. Each condition must evaluate to a Boolean result, and when all expres-
sions evaluate to true, the element of the collection is allowed to be selected.

orderby
This keyword indicates that the result set should be sorted according to the
criteria specified. The default order is ascending, and elements use the default
comparer.

select
Allows the projection of an entire element from the collection, the construction
of a new type with parts of that element and other calculated values, or a sub-
collection of items into the result.

The messageQueue collection is of type System.Messaging.MessageQueue, which imple-
ments the IEnumerable interface. This is important, as the LINQ methods provided
need a set or collection to implement at least IEnumerable for it to work with that set
or collection. It would be possible to implement a set of extension methods that did

4 | Chapter 1: Language Integrated Query (LINQ)

not need IEnumerable, but most people will not have the need to. It is even better
when the set or collection implements IEnumerable<T>, as LINQ then knows the type
of element in the set or collection that it is working with, but in this case,
MessageQueue has been in the framework for a while and isn’t likely to change, so the
query provides the element type Message, as shown in the “from” line:

 var query = from Message msg in messageQueue

For more about this, see Recipe 1.1.

In the Solution, the messages in the queue have been sent with the use of the
BinaryFormatter. To be able to query against them correctly, the Formatter property
must be set on each Message before it is examined as part of the where clause:

 // The first assignment to msg.Formatter is so that we can touch the
 // Message object. It assigns the BinaryMessageFormatter to each message
 // instance so that it can be read to determine if it matches the criteria.
 // This is done, and then it checks that the formatter was correctly assigned
 // by performing an equality check, which satisfies the Where clause's need
 // for a boolean result, while still executing the assignment of the formatter.
 where ((msg.Formatter = messageFormatter) == messageFormatter) &&

There are two uses of the var keyword in the solution code:

 var query = from Message msg in messageQueue
 ...

 foreach (var msg in query)
 ...

The first usage infers that an IEnumerable<Message> will be returned and assigned to
the query variable. The second usage infers that the type of msg is Message because the
query variable is of type IEnumerable<Message> and the msg variable is an element
from that IEnumerable.

It is also worth noting that when performing operations in a query, actual C# code
can be used to determine the conditions, and there is more than just the predeter-
mined set of operators. In the where clause of this query, both int.Parse and string.
Contains are used to help filter messages:

 int.Parse(msg.Label) > 5 &&
 msg.Body.ToString().Contains('D')

See Also
Recipe 1.9, and the “MessageQueue class,” “Implicitly typed local variable,” “from
keyword,” “where keyword,” “orderby keyword,” and “select keyword” topics in the
MSDN documentation.

Using Set Semantics with Data | 5

1.2 Using Set Semantics with Data

Problem
You would like to work with your collections using set operations for union, inter-
sections, exceptions, and distinct items.

Solution
Use the Set operators provided as part of the Standard Query Operators to perform
those operations.

Distinct:

 IEnumerable<string> whoLoggedIn =
 dailySecurityLog.Where(logEntry => logEntry.Contains("logged in")).Distinct(
);

Union:

 // Union
 Console.WriteLine("Employees for all projects");
 var allProjectEmployees = project1.Union(project2.Union(project3));

Intersection:

 // Intersect
 Console.WriteLine("Employees on every project");
 var everyProjectEmployees = project1.Intersect(project2.Intersect(project3));

Exception:

 Console.WriteLine("Employees on only one project");
 var onlyProjectEmployees = allProjectEmployees.Except(unionIntersect);

Discussion
The Standard Query Operators are the set of methods that represent the LINQ pat-
tern. This set includes operators to perform many different types of operations, such
as filtering, projection, sorting, grouping, and many others, including set operations.

The set operations for the Standard Query Operators are:

• Distinct

• Union

• Intersect

• Except

The Distinct operator extracts all nonduplicate items from the collection or result set
being worked with. Say, for example, that we had a set of strings representing login
and logout behavior for a terminal services box for today:

 // Distinct
 string[] dailySecurityLog = {

6 | Chapter 1: Language Integrated Query (LINQ)

 "Bob logged in",
 "Bob logged out",
 "Bob logged in",
 "Bill logged in",
 "Melissa logged in",
 "Bob logged out",
 "Bill logged out",
 "Bill logged in",
 "Tim logged in",
 "Scott logged in",
 "Scott logged out",
 "Dave logged in",
 "Tim logged out",
 "Bob logged in",
 "Dave logged out"};

From that collection, we would like to determine the list of people who logged in to
the box today. Since people can log in and log out many times during the course of a
day or remain logged in for the whole day, we need to eliminate the duplicate login
entries. Distinct is an extension method on the System.Linq.Enumerable class (which
implements the Standard Query Operators) that can be called on the string array
(which supports IEnumerable) in order to get the distinct set of items from the set.
For more information on extension methods, see Recipe 1.4. The set is produced by
using another of the Standard Query Operators: Where. Where takes a lambda expres-
sion that determines the filter criteria for the set and examines each string in the
IEnumerable<string> to determine if the string has “logged in.” Lambda expressions
are inline statements (similar to anonymous methods) that can be used in place of a
delegate. See Chapter 9 for more on lambda expressions. If the strings do, then they
are selected. Distinct narrows down the set of strings further to eliminate duplicate
“logged in” records, leaving only one per user:

 IEnumerable<string> whoLoggedIn =
 dailySecurityLog.Where(logEntry => logEntry.Contains("logged in")).Distinct(
);
 Console.WriteLine("Everyone who logged in today:");
 foreach (string who in whoLoggedIn)
 {
 Console.WriteLine(who);
 }

To make things a bit more interesting, for the rest of the operators, we will work
with sets of employees on various projects in a company. An Employee is a pretty sim-
ple class with a Name and overrides for ToString, Equals, and GetHashCode, as shown
here:

public class Employee
{
 public string Name { get; set; }
 public override string ToString()
 {
 return this.Name;
 }

Using Set Semantics with Data | 7

 public override bool Equals(object obj)
 {
 return this.GetHashCode().Equals(obj.GetHashCode());
 }
 public override int GetHashCode()
 {
 return this.Name.GetHashCode();
 }
}

You might wonder why Equals and GetHashCode are overloaded for such a simple
class. The reason is that when LINQ performs comparisons of elements in the sets or
collections, it uses the default comparison, which in turn uses Equals and
GetHashCode to determine if one instance of a reference type is the same as another. If
you do not provide the semantics in the reference type class to provide the same hash
code or equals value when the data for two instances of the object is the same, then
the instances will, by default, be different, as two reference types have different hash
codes by default. We override that so that if the Name is the same for each Employee,
the hash code and the equals will both correctly identify the instances as the same.
There are also overloads for the set operators that take a custom comparer, which
would also allow you to make this determination even for classes for which you can’t
make the changes to Equals and GetHashCode.

Having done this, we can now assign Employees to projects like so:

 Employee[] project1 = {
 new Employee(){ Name = "Bob" },
 new Employee(){ Name = "Bill" },
 new Employee(){ Name = "Melissa" },
 new Employee(){ Name = "Shawn" } };
 Employee[] project2 = {
 new Employee(){ Name = "Shawn" },
 new Employee(){ Name = "Tim" },
 new Employee(){ Name = "Scott" } };
 Employee[] project3 = {
 new Employee(){ Name = "Bob" },
 new Employee(){ Name = "Dave" },
 new Employee(){ Name = "Tim" },
 new Employee(){ Name = "Shawn" } };

To find all employees on all projects, use Union to get all nonduplicate Employees in
all three projects and write them out:

 // Union
 Console.WriteLine("Employees for all projects:");
 var allProjectEmployees = project1.Union(project2.Union(project3));
 foreach (Employee employee in allProjectEmployees)
 {
 Console.WriteLine(employee);
 }

8 | Chapter 1: Language Integrated Query (LINQ)

We can then use Intersect to get the Employees on every project:

 // Intersect
 Console.WriteLine("Employees on every project:");
 var everyProjectEmployees = project1.Intersect(project2.Intersect(project3));
 foreach (Employee employee in everyProjectEmployees)
 {
 Console.WriteLine(employee);
 }

Finally, we can use a combination of Union and Except to find Employees that are only
on one project:

 // Except
 var intersect1_3 = project1.Intersect(project3);
 var intersect1_2 = project1.Intersect(project2);
 var intersect2_3 = project2.Intersect(project3);
 var unionIntersect = intersect1_2.Union(intersect1_3).Union(intersect2_3);

 Console.WriteLine("Employees on only one project:");
 var onlyProjectEmployees = allProjectEmployees.Except(unionIntersect);
 foreach (Employee employee in onlyProjectEmployees)
 {
 Console.WriteLine(employee);
 }

See Also
The “Standard Query Operators,” “Distinct method,” “Union method,” “Intersect
method,” and “Except method” topics in the MSDN documentation.

1.3 Reuse Parameterized Queries with LINQ to SQL

Problem
You need to execute the same parameterized query multiple times with different
parameter values, but you want to avoid the overhead of parsing the query expres-
sion tree to build the parameterized SQL each time the query executes.

Solution
Use the CompiledQuery.Compile method to build an expression tree that will not have
to be parsed each time the query is executed with new parameters:

var GetEmployees =
CompiledQuery.Compile((Northwind db, string ac, string ttl) =>

 from employee in db.Employees
 where employee.HomePhone.Contains(ac) &&
 employee.Title == ttl
 select employee);

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);

Reuse Parameterized Queries with LINQ to SQL | 9

The first time the query executes is when it actually compiles (where GetEmployees is
called the first time in the foreach loop). Every other iteration in this loop and in the
next loop use the compiled version, avoiding the expression tree parsing:

foreach (var employee in GetEmployees(dataContext, "(206)", "Sales Representative"))
{
 Console.WriteLine("{0} {1}",
 employee.FirstName, employee.LastName);
}

foreach (var employee in GetEmployees(dataContext, "(71)", "Sales Manager"))
{
 Console.WriteLine("{0} {1}",
 employee.FirstName, employee.LastName);
}

Discussion
We used var for the query declaration, as it was cleaner, but what var actually is in
this case is:

Func<Northwind, string, string, IQueryable<Employees>>

which is the delegate signature for the lambda expression we created that contains
the query. That’s right, all this crazy new query stuff, and we just instantiated a dele-
gate. To be fair, the Func delegate was brought about in the System namespace as part
of LINQ, so do not dismay, we are still doing cool new stuff!

This illustrates that we are not returning an IEnumerable or IQueryable based result
set from Compile, but rather an expression tree. This is the expression tree that repre-
sents the potential for a query rather than the query itself. Once we have that tree,
LINQ to SQL then has to perform the conversion from the tree to actual SQL that
can run against the database. Interestingly enough, if we had put a call to string.
Format in as part of detecting the area code in the home phone number, we would get
a NotSupportedException that informs us that string.Format can’t be translated to
SQL:

 where employee.HomePhone.Contains(string.Format("({0})",ac)) &&

System.NotSupportedException:
Method 'System.String Format(System.String,System.Object)'
 has no supported translation to SQL.

This is understandable, as SQL has no concept of .NET Framework methods for per-
forming actions, but it is something to keep in mind as you design your queries that
this is a limitation when using LINQ to SQL.

After the first execution, the query is compiled, and for every iteration after that, we
do not pay the transformation cost for turning the expression tree into the parame-
terized SQL.

10 | Chapter 1: Language Integrated Query (LINQ)

Compiling your queries is something that should be done for parameterized queries
that get a lot of traffic, but if a query is infrequently used, it may not be worth the
effort. As always, profile your code to see the areas where this could be useful.

See Also
The “CompiledQuery.Compile method” and “Expression Trees” topics in the
MSDN documentation.

1.4 Sort Results in a Culture-Sensitive Manner

Problem
You want to ensure that when you sort in a query, the sort order is for an application-
specific culture that may not be the same as the current thread’s current culture.

Solution
Use the overload of the OrderBy query operator, which accepts a custom comparer in
order to specify the culture in which to perform comparisons:

// Create CultureInfo for Danish in Denmark.
CultureInfo danish = new CultureInfo("da-DK");

CultureStringComparer comparer = new CultureStringComparer(danish,CompareOptions.
None);
var query = names.OrderBy(n => n, comparer);

Discussion
Handling localization issues such as sorting for a specific culture is a relatively trivial
task in .NET if the current culture of the current thread is the culture you want to
use. The framework classes that assist in handling culture issues in C# are accessed
by including the System.Globalization namespace. This namespace would be
included in order to make the code in the solution run. One example of not using the
thread current culture would be in an application that needs to display a sorted list
of words in Danish on a version of Windows XP that is set for U.S. English. The cur-
rent thread in the application may have a CultureInfo for “en-US” and, by default,
the sort order for OrderBy will use the current culture sort settings. To specify that
this list should sort according to Danish rules, a bit of work is necessary in the form
of a custom comparer:

CultureStringComparer comparer = new CultureStringComparer(danish,CompareOptions.
None);

The comparer variable is an instance of a custom comparer class
(CultureStringComparer) defined as implementing the IComparer<T> interface special-
ized for strings. This class is used to provide the culture settings for the sort order:

Sort Results in a Culture-Sensitive Manner | 11

public class CultureStringComparer : IComparer<string>
{
 private CultureStringComparer()
 {
 }

 public CultureStringComparer(CultureInfo cultureInfo, CompareOptions options)
 {
 if (cultureInfo == null)
 throw new ArgumentNullException("cultureInfo");

 CurrentCultureInfo = cultureInfo;
 Options = options;
 }

 public int Compare(string x, string y)
 {
 return CurrentCultureInfo.CompareInfo.Compare(x, y, Options);
 }

 public CultureInfo CurrentCultureInfo { get; set; }

 public CompareOptions Options { get; set; }
}

To demonstrate how this could be used, first we compile a list of words to order by.
Since the Danish language treats the character “Æ” as an individual letter, sorting it
after “Z” in the alphabet, and the English language treats the character “Æ” as a spe-
cial symbol, sorting it before the letter “A” in the alphabet, this will demonstrate the
sort difference:

string[] names = { "Jello", "Apple", "Bar", "Æble", "Forsooth", "Orange", "Zanzibar"
};

Now, we can set up the CultureInfos for both Danish and U.S. English and call
OrderBy with the comparer specific to each culture. This query is not using the query
expression syntax, but rather uses the functional style of IEnumerable<string>.
OrderBy():

// Create CultureInfo for Danish in Denmark.
CultureInfo danish = new CultureInfo("da-DK");
// Create CultureInfo for English in the U.S.
CultureInfo american = new CultureInfo("en-US");

CultureStringComparer comparer = new CultureStringComparer(danish,CompareOptions.
None);
var query = names.OrderBy(n => n, comparer);
Console.WriteLine("Ordered by specific culture : " + comparer.CurrentCultureInfo.
Name);
foreach (string name in query)
{
 Console.WriteLine(name);
}

12 | Chapter 1: Language Integrated Query (LINQ)

comparer.CurrentCultureInfo = american;
query = names.OrderBy(n => n, comparer);
Console.WriteLine("Ordered by specific culture : " + comparer.CurrentCultureInfo.
Name);
foreach (string name in query)
{
 Console.WriteLine(name);
}

The output results below show that the word Æble is last in the Danish list and first
in the U.S. English list:

Ordered by specific culture : da-DK
Apple
Bar
Forsooth
Jello
Orange
Zanzibar
Æble
Ordered by specific culture : en-US
Æble
Apple
Bar
Forsooth
Jello
Orange
Zanzibar

See Also
The “OrderBy,” “CultureInfo,” and “IComparer<T>” topics in the MSDN
documentation.

1.5 Adding Functional Extensions for Use with LINQ

Problem
There are operations you perform on collections frequently that currently reside in
utility classes. You would like to be able to have these operations be used on collec-
tions in a more seamless manner than having to pass the reference to the collection
to the utility class.

Solution
Use extension methods to help achieve a more functional style of programming for
your collection operations. For example, to add a weighted moving average calcula-
tion operation to numeric collections, implement a set of WeightedMovingAverage
extension methods in a static class and then call them as part of those collections:

Adding Functional Extensions for Use with LINQ | 13

decimal[] prices = new decimal[10] { 13.5M, 17.8M, 92.3M, 0.1M, 15.7M,
 19.99M, 9.08M, 6.33M, 2.1M, 14.88M };
Console.WriteLine(prices.WeightedMovingAverage());

double[] dprices = new double[10] { 13.5, 17.8, 92.3, 0.1, 15.7,
 19.99, 9.08, 6.33, 2.1, 14.88 };
Console.WriteLine(dprices.WeightedMovingAverage());

float[] fprices = new float[10] { 13.5F, 17.8F, 92.3F, 0.1F, 15.7F,
 19.99F, 9.08F, 6.33F, 2.1F, 14.88F };
Console.WriteLine(fprices.WeightedMovingAverage());

int[] iprices = new int[10] { 13, 17, 92, 0, 15,
 19, 9, 6, 2, 14 };
Console.WriteLine(iprices.WeightedMovingAverage());

long[] lprices = new long[10] { 13, 17, 92, 0, 15,
 19, 9, 6, 2, 14 };
Console.WriteLine(lprices.WeightedMovingAverage());

To provide WeightedMovingAverage for the full range of numeric types, methods for
both the nullable and non-nullable numeric types are provided in the
LinqExtensions class:

public static class LinqExtensions
{
 public static decimal? WeightedMovingAverage(this IEnumerable<decimal?> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");

 decimal aggregate = 0.0M;
 decimal weight;
 int item = 1;
 // count how many items are not null and use that
 // as the weighting factor
 int count = source.Count(val => val.HasValue);
 foreach (var nullable in source)
 {
 if (nullable.HasValue)
 {
 weight = item / count;
 aggregate += nullable.GetValueOrDefault() * weight;
 count++;
 }
 }
 if (count > 0)
 {
 return new decimal?(aggregate / count);
 }
 return null;
 }

14 | Chapter 1: Language Integrated Query (LINQ)

 // The same method pattern as above is followed for each of the other
 // types and their nullable counterparts (double / double?, int / int?, etc.)

 #region Extend Average...

}

Discussion
Extension methods allow you to create operations that appear to be part of a collec-
tion. They are static methods that can be called as if they were instance methods,
allowing you to extend existing types. Extension methods must also be declared in
static classes that are not nested. Once a static class is defined with extension meth-
ods, the using directive for the namespace of the class makes those extensions avail-
able in the source file.

It is worth noting that if an instance method exists with the same sig-
nature as the extension method, the extension method will never be
called. Conflicting extension method declarations will resolve to the
method in the closest enclosing namespace.

You cannot use extension methods to create:

• Properties (get and set methods)

• Operators (+, –, = , etc…)

• Events

Declaring an extension method is done by specifying the this keyword in front of the
first parameter of a method declaration, and the type of that parameter is the type
being extended. For example, in the Nullable<decimal> version of the
WeightedMovingAverage method, collections that support IEnumerable<decimal?> (or
IEnumerable<Nullable<decimal>>) are supported:

 public static decimal? WeightedMovingAverage(this IEnumerable<decimal?> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");

 decimal aggregate = 0.0M;
 decimal weight;
 int item = 1;
 // count how many items are not null and use that
 // as the weighting factor
 int count = source.Count(val => val.HasValue);
 foreach (var nullable in source)
 {
 if (nullable.HasValue)

Adding Functional Extensions for Use with LINQ | 15

 {
 weight = item / count;
 aggregate += nullable.GetValueOrDefault() * weight;
 count++;
 }
 }
 if (count > 0)
 {
 return new decimal?(aggregate / count);
 }
 return null;
 }

The extension methods that support much of the LINQ functionality are on the
System.Linq.Extensions class, including an Average method. The Average method has
most of the numeric types but did not provide an overload for short (Int16). That’s
easily rectified by adding them ourselves for short and Nullable<short>:

 #region Extend Average
 public static double? Average(this IEnumerable<short?> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");

 double aggregate = 0.0;
 int count = 0;
 foreach (var nullable in source)
 {
 if (nullable.HasValue)
 {
 aggregate += nullable.GetValueOrDefault();
 count++;
 }
 }
 if (count > 0)
 {
 return new double?(aggregate / count);
 }
 return null;
 }
 public static double Average(this IEnumerable<short> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");

 double aggregate = 0.0;
 // use the count of the items from the source
 int count = source.Count();
 foreach (var value in source)
 {
 aggregate += value;
 }
 if (count > 0)
 {

16 | Chapter 1: Language Integrated Query (LINQ)

 return aggregate / count;
 }
 else
 return 0.0;
 }
 public static double? Average<TSource>(this IEnumerable<TSource> source,
 Func<TSource, short?> selector)
 {
 return source.Select<TSource, short?>(selector).Average();
 }
 public static double Average<TSource>(this IEnumerable<TSource> source,
 Func<TSource, short> selector)
 {
 return source.Select<TSource, short>(selector).Average();
 }
 #endregion // Extend Average

We can then call Average on short-based collections just like WeightedMovingAverage:

 short[] sprices = new short[10] { 13, 17, 92, 0, 15, 19, 9, 6, 2, 14 };
 Console.WriteLine(sprices.WeightedMovingAverage());
 // System.Linq.Extensions doesn't implement Average for short but we do for them!
 Console.WriteLine(sprices.Average());

See Also
The “Extension methods” topic in the MSDN documentation.

1.6 Query and Join Across Data Repositories

Problem
You have two sets of data from different data domains, and you want to be able to
combine the data and work with it.

Solution
Use LINQ to bridge across the disparate data domains. LINQ is intended to be used
in the same manner across different data domains and supports combining those sets
of data with join syntax.

To demonstrate this, we will join an XML file full of Categories with the data from a
database (Northwind) with Products and combine the two to create a new set of data
for product information that holds the product name, the category description, and
the category name:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);
ProductsTableAdapter adapter = new ProductsTableAdapter();
Products products = new Products();
adapter.Fill(products._Products);

Query and Join Across Data Repositories | 17

XElement xmlCategories = XElement.Load("Categories.xml");

var expr = from product in products._Products
 where product.Units_In_Stock > 100
 join xc in xmlCategories.Elements("Category")
 on product.Category_ID equals int.Parse(xc.Attribute("CategoryID").Value)
 select new
 {
 ProductName = product.Product_Name,
 Category = xc.Attribute("CategoryName").Value,
 CategoryDescription = xc.Attribute("Description").Value
 };

foreach (var productInfo in expr)
{
 Console.WriteLine("ProductName: " + productInfo.ProductName +
 " Category: " + productInfo.Category +
 " Category Description: " + productInfo.CategoryDescription);
}

The new set of data is printed to the console, but this could easily have been rerouted
to another method, transformed in another query, or written out to a third data
format:

ProductName: Grandma's Boysenberry Spread Category: Condiments Category Description:
Sweet and savory sauces, relishes, spreads, and seasonings
ProductName: Gustaf's Knäckebröd Category: Grains/Cereals Category Description:
Breads, crackers, pasta, and cereal
ProductName: Geitost Category: Dairy Products Category Description: Cheeses
ProductName: Sasquatch Ale Category: Beverages Category Description: Soft drinks,
coffees, teas, beer, and ale
ProductName: Inlagd Sill Category: Seafood Category Description: Seaweed and fish
ProductName: Boston Crab Meat Category: Seafood Category Description: Seaweed and
fish
ProductName: Pâté chinois Category: Meat/Poultry Category Description: Prepared meats
ProductName: Sirop d'érable Category: Condiments Category Description: Sweet and
savory sauces, relishes, spreads, and seasonings
ProductName: Röd Kaviar Category: Seafood Category Description: Seaweed and fish
ProductName: Rhönbräu Klosterbier Category: Beverages Category Description: Soft
drinks, coffees, teas, beer, and ale

Discussion
The solution combines data from two different data domains: XML and a SQL Data-
base. To do this before LINQ, you would have to not only create a third data reposi-
tory by hand to hold the result, but you would also have to write the specific code for
each domain to query that domain for its part of the data (XPath for XML; SQL for
database) and then manually transform the result sets from each domain into the
new data repository. LINQ gives the ability to write the query to combine the two
sets of data, automatically constructs a type via projecting a new Anonymous Type,
and places the pertinent data in the new type, all in the same syntax. Not only does

18 | Chapter 1: Language Integrated Query (LINQ)

this simplify the code, but it allows you to concentrate more on getting the data you
want and less on exactly how to read both data domains.

This example uses both LINQ to DataSet and LINQ to XML to access the multiple
data domains:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);
ProductsTableAdapter adapter = new ProductsTableAdapter();
Products products = new Products();
adapter.Fill(products._Products);

XElement xmlCategories = XElement.Load("Categories.xml");

Northwind is a DataContext class. A DataContext is analogous to an ADO.NET
Connection and Command object rolled into one. You use it to establish your connec-
tion, execute queries, or access tables directly via Entity Classes. A DataContext can
be generated directly from the database through Visual Studio by adding a new
“LINQ to SQL Classes” item or from the command line using the SQLMetal.exe. This
provides access to the local Northwind database for the query. A Products DataSet is
loaded from the Products table in the Northwind database for use in the query. For
more on DataContext, see Recipe 1.6.

The Northwind DataContext can be generated using SQLMetal.exe using the following
command line syntax:

SqlMetal /server:. /database:Northwind /code:Northwind.cs

XElement is one of the main classes in LINQ to XML. It enables the loading of exist-
ing XML, creation of new XML, or retrieving of the XML text for the element via
ToString. Example 1-1 shows the Categories.xml file that will be loaded. For more
on XElement and LINQ to XML, see Chapter 15.

Example 1-1. Categories.xml

<?xml version="1.0" encoding="utf-8"?>
<Categories>
 <Category CategoryID="1" CategoryName="Beverages" Description="Soft drinks, coffees,
teas, beer, and ale" />
<Category CategoryID="2" CategoryName="Condiments" Description="Sweet and savory sauces,

relishes, spreads, and seasonings" />
 <Category CategoryID="3" CategoryName="Confections" Description="Desserts, candies,
sweetbreads" />
 <Category CategoryID="4" CategoryName="Dairy Products" Description="Cheeses" />
 <Category CategoryID="5" CategoryName="Grains/Cereals" Description="Breads, crackers,
pasta, and cereal" />
 <Category CategoryID="6" CategoryName="Meat/Poultry" Description="Prepared meats" />
 <Category CategoryID="7" CategoryName="Produce" Description="Dried fruit and bean curd"
/>
 <Category CategoryID="8" CategoryName="Seafood" Description="Seaweed and fish" />
</Categories>

Querying Configuration Files with LINQ | 19

The two sets of data are joined using LINQ and, in particular, the join keyword. The
data is joined by matching the category id in the products table with the category id
in the xml file to combine the data. In SQL terms, the join keyword represents an
inner join:

var expr = from product in products._Products
 where product.Units_In_Stock > 100
 join xc in xmlCategories.Elements("Category")
 on product.Category_ID equals int.Parse(xc.Attribute("CategoryID").Value)

Once the join result is complete, a new type is projected using the select keyword:

 select new
 {
 ProductName = product.Product_Name,
 Category = xc.Attribute("CategoryName").Value,
 CategoryDescription = xc.Attribute("Description").Value
 };

This allows us to combine different data elements from the two sets of data to make
a third set that can look completely different than either of the original two.

Doing joins on two sets of database data would be a bad idea, as the database can do
this much faster for those sets, but when you need to join disparate data sets, LINQ
can lend a helping hand.

See Also
The “join keyword,” “System.Data.Linq.DataContext,” and “XElement” topics in
the MSDN documentation.

1.7 Querying Configuration Files with LINQ

Problem
Sets of data can be stored in many different locations, such as configuration files.
You want to be able to query your configuration files for sets of information.

Solution
Use LINQ to query against the configuration sections. In the example below, this is
done by retrieving all chapter titles with even numbers and the word “and” in the
title from the custom configuration section containing chapter information:

CSharpRecipesConfigurationSection recipeConfig =
 ConfigurationManager.GetSection("CSharpRecipesConfiguration") as
CSharpRecipesConfigurationSection;

var expr = from ChapterConfigurationElement chapter in
 recipeConfig.Chapters.OfType<ChapterConfigurationElement>()
 where (chapter.Title.Contains("and")) && ((int.Parse(chapter.Number) % 2)
== 0)

20 | Chapter 1: Language Integrated Query (LINQ)

 select new
 {
 ChapterNumber = "Chapter " + chapter.Number,
 chapter.Title
 };

foreach (var chapterInfo in expr)
{
 Console.WriteLine(chapterInfo.ChapterNumber + ": " + chapterInfo.Title);
}

The configuration section being queried looks like this:

 <CSharpRecipesConfiguration CurrentEdition="3">
 <Chapters>
 <add Number="1" Title="Language Integrated Query (LINQ)"/>
 <add Number="2" Title="Strings and Characters"/>
 <add Number="3" Title="Classes and Structures"/>
 <add Number="4" Title="Generics"/>
 <add Number="5" Title="Collections"/>
 <add Number="6" Title="Iterators, Partial Types and Partial Methods"/>
 <add Number="7" Title="Exception Handling"/>
 <add Number="8" Title="Diagnostics"/>
 <add Number="9" Title="Delegates, Events, and Functional Programming"/>
 <add Number="10" Title="Regular Expressions"/>
 <add Number="11" Title="Data Structures & Algorithms"/>
 <add Number="12" Title="Filesystem I/O"/>
 <add Number="13" Title="Reflection"/>
 <add Number="14" Title="Web"/>
 <add Number="15" Title="XML"/>
 <add Number="16" Title="Networking"/>
 <add Number="17" Title="Security"/>
 <add Number="18" Title="Threading and Synchronization"/>
 <add Number="19" Title="Toolbox"/>
 <add Number="20" Title="Numbers & Enumerations"/>
 </Chapters>
 <Editions>
 <add Number="1" PublicationYear="2004"/>
 <add Number="2" PublicationYear="2006"/>
 <add Number="3" PublicationYear="2007"/>
 </Editions>
 </CSharpRecipesConfiguration>

The output from the query is:

Chapter 2: Strings and Characters
Chapter 6: Iterators, Partial Types and Partial Methods
Chapter 18: Threading and Synchronization

Discussion
Configuration files in .NET play a significant role in achieving manageability and
ease of deployment for .NET-based applications. It can be challenging to get all of
the various settings right in the hierarchy of configuration files that can affect an

Querying Configuration Files with LINQ | 21

application, so understanding how to write utilities to programmatically check con-
figuration file settings is of great use during development, testing, deployment, and
ongoing management of an application.

To access the configuration types, you will need to reference the
System.Configuration assembly.

Even though the ConfigurationElementCollection class (the base of sets of data in
configuration files) only supports IEnumerable and not IEnumerable<T>, we can still
use it to get the elements we need by using the OfType<ChapterConfigurationElement>
method on the collection, which selects elements of that type from the collection:

var expr = from ChapterConfigurationElement chapter in
 recipeConfig.Chapters.OfType<ChapterConfigurationElement>()

ChapterConfigurationElement is a custom configuration section class that holds the
chapter number and title:

/// <summary>
/// Holds the information about a chapter in the configuration file
/// </summary>
public class ChapterConfigurationElement : ConfigurationElement
{
 /// <summary>
 /// Default constructor
 /// </summary>
 public ChapterConfigurationElement()
 {
 }

 /// <summary>
 /// The number of the Chapter
 /// </summary>
 [ConfigurationProperty("Number", IsRequired=true)]
 public string Number
 {
 get { return (string)this["Number"]; }
 set { this["Number"] = value; }
 }

 /// <summary>
 /// The title of the Chapter
 /// </summary>
 [ConfigurationProperty("Title", IsRequired=true)]
 public string Title
 {
 get { return (string)this["Title"]; }
 set { this["Title"] = value; }
 }
}

22 | Chapter 1: Language Integrated Query (LINQ)

This technique can be used on the standard configuration files such as machine.
config as well. This example determines which sections in machine.config require
access permissions. For this collection, OfType<ConfigurationSection> is used, as this
is a standard section:

System.Configuration.Configuration machineConfig =
 ConfigurationManager.OpenMachineConfiguration();

var query = from ConfigurationSection section in machineConfig.Sections.
OfType<ConfigurationSection>()
 where section.SectionInformation.RequirePermission
 select section;

foreach (ConfigurationSection section in query)
{
 Console.WriteLine(section.SectionInformation.Name);
}

The sections detected will look something like this:

system.data
windows
system.webServer
mscorlib
system.data.oledb
system.data.oracleclient
system.data.sqlclient
configProtectedData
satelliteassemblies
system.data.dataset
startup
system.data.odbc
system.diagnostics
runtime
system.codedom
system.runtime.remoting
assemblyBinding
system.windows.forms

See Also
The “Enumerable.OfType,method,” “ConfigurationSectionCollection,class” and
“ConfigurationElementCollection class” topics in the MSDN documentation.

1.8 Creating XML Straight from a Database

Problem
You want to be able to take a set of data from a database and represent it as XML.

Creating XML Straight from a Database | 23

Solution
Use LINQ to SQL and LINQ to XML to retrieve and transform the data all in one
query. In this case, we will select the top five customers in the Northwind database
whose contact is the owner and those owners who placed orders totaling more than
$10,000, then create XML containing the company name, contact name, phone
number, and total amount of the orders. Finally, the results are written out to the
BigSpenders.xml file:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);
// Log the generated SQL to the console
dataContext.Log = Console.Out;

var bigSpenders = new XElement("BigSpenders",
 from top5 in
 (
 from customer in
 (
 from c in dataContext.Customers
 // get the customers where the contact is the owner
 // and they placed orders
 where c.ContactTitle.Contains("Owner")
 && c.Orders.Count > 0
 join orderData in
 (
 from c in dataContext.Customers
 // get the customers where the contact is the owner
 // and they placed orders
 where c.ContactTitle.Contains("Owner")
 && c.Orders.Count > 0
 from o in c.Orders
 // get the order details
 join od in dataContext.OrderDetails
 on o.OrderID equals od.OrderID
 select new
 {
 c.CompanyName,
 c.CustomerID,
 o.OrderID,
 // have to calc order value from orderdetails
 //(UnitPrice*Quantity as Total)- (Total*Discount)
 // as NetOrderTotal
 NetOrderTotal = (
 (((double)od.UnitPrice) * od.Quantity) -
 ((((double)od.UnitPrice) * od.Quantity) * od.
Discount))
 }
)
 on c.CustomerID equals orderData.CustomerID
 into customerOrders
 select new
 {
 c.CompanyName,

24 | Chapter 1: Language Integrated Query (LINQ)

 c.ContactName,
 c.Phone,
 // Get the total amount spent by the customer
 TotalSpend = customerOrders.Sum(order => order.NetOrderTotal)
 }
)
 // place focus on the customers that spent > 10000
 where customer.TotalSpend > 10000
 orderby customer.TotalSpend descending
 // only take the top five spenders
 select customer).Take(5)
)
 // format the data as XML
 select new XElement("Customer",
 new XAttribute("companyName", top5.CompanyName),
 new XAttribute("contactName", top5.ContactName),
 new XAttribute("phoneNumber", top5.Phone),
 new XAttribute("amountSpent", top5.TotalSpend)));

using (XmlWriter writer = XmlWriter.Create("BigSpenders.xml"))
{
 bigSpenders.WriteTo(writer);
}

When building larger queries, you may find it is sometimes easier to
use the functional approach (.Join()) to building up the query instead
of the query expression manner (join x on y equals z) if you have done
more C# than SQL.

Discussion
LINQ to SQL is the part of LINQ to ADO.NET that facilitates rapid database devel-
opment. It is targeted at the scenarios where you want to program almost directly
against the database schema. Most of these scenarios have one-to-one correlations
between strongly typed classes and database tables. If you are in more of an enter-
prise development scenario with lots of stored procedures and databases that have
moved away from “one table equals one entity” scenarios, you would want to look
into LINQ to Entities.

To use LINQ to SQL, there are two design tools to help you get started, the visual
designer for LINQ to SQL in Visual Studio 2008 and the command line utility
SqlMetal.exe in the SDK. You can access the visual designer by adding a new or
opening an existing “LINQ to SQL Classes” item (*.dbml file) to the project, which
opens the designer. Both of these help you to build out the DataContext and Entity
Classes for your database that can then be used with LINQ (or other programming
constructs if you wish). A DataContext is analogous to an ADO.NET Connection and
Command object rolled into one. You use it to establish your connection, execute que-
ries, or access tables directly via Entity Classes. The Northwind Data Context is a

Creating XML Straight from a Database | 25

strongly typed instance of a DataContext generated by SqlMetal and is partially
shown here:

public partial class Northwind : System.Data.Linq.DataContext
{

 private static System.Data.Linq.Mapping.MappingSource mappingSource = new
AttributeMappingSource();

 #region Extensibility Method Definitions
 /// removed code for extensibility points for clarity
 #endregion

 static Northwind()
 {
 }

 public Northwind(string connection) :
 base(connection, mappingSource)
 {
 OnCreated();
 }

 public Northwind(System.Data.IDbConnection connection) :
 base(connection, mappingSource)
 {
 OnCreated();
 }

 public Northwind(string connection, System.Data.Linq.Mapping.MappingSource
mappingSource) :
 base(connection, mappingSource)
 {
 OnCreated();
 }

 public Northwind(System.Data.IDbConnection connection, System.Data.Linq.
Mapping.MappingSource mappingSource) :
 base(connection, mappingSource)
 {
 OnCreated();
 }

 public System.Data.Linq.Table<Customers> Customers
 {
 get
 {
 return this.GetTable<Customers>();
 }
 }
 // More Table<EntityClass> definitions, one for each table in the database
}

26 | Chapter 1: Language Integrated Query (LINQ)

The Entity Class definitions for the Northwind database are all present in the gener-
ated code as well, with each table having an Entity Class defined for it. The Entity
Classes are indicated by the Table attribute with no parameters. This means that the
name of the Entity Class matches the table name:

[Table()]
public partial class Customers : INotifyPropertyChanging, INotifyPropertyChanged
{

 #region Extensibility Method Definitions
 partial void OnLoaded();
 partial void OnValidate();
 partial void OnCreated();
 partial void OnCustomerIDChanging(string value);
 partial void OnCustomerIDChanged();
 // more extensibility methods to indicate change states for each property...
 #endregion

 public event PropertyChangingEventHandler PropertyChanging;

 public event PropertyChangedEventHandler PropertyChanged;

The standard property change notifications are implemented via
INotifyPropertyChanging and INotifyPropertyChanged and have PropertyChanging
and PropertyChanged events for conveying the change to a property. There are also a
set of partial methods that will report when a specific property is modified on this
Entity Class if the partial method is implemented in another partial class definition
for the Entity Class. If no other partial class definition is found, the compiler will
remove those notifications. Partial methods enable the declaration of a method sig-
nature in one file of a partial class declaration and the implementation of the method
in another. If the signature is found but the implementation is not, the signature is
removed by the compiler.

The properties in the Entity Class match up to the columns in the database via the
Column attribute, where the Name value is the database column name and the Storage
value is the internal storage for the class of the data. Events for the property changes
are wired into the setter for the property:

[Column(Name="Company Name", Storage="_CompanyName", DbType="NVarChar(40) NOT
NULL", CanBeNull=false)]
 public string CompanyName
 {
 get
 {
 return this._CompanyName;
 }
 set
 {
 if ((this._CompanyName != value))
 {
 this.OnCompanyNameChanging(value);

Creating XML Straight from a Database | 27

 this.SendPropertyChanging();
 this._CompanyName = value;
 this.SendPropertyChanged("CompanyName");
 this.OnCompanyNameChanged();
 }
 }
 }

For a one-to-many child relationship, an EntitySet<T> of the child Entity Class is
declared with an Association attribute. The Association attribute specifies the rela-
tionship information between the parent and child Entity Classes, as shown here for
the Orders property on Customer:

 [Association(Name="Orders_FK00", Storage="_Orders", ThisKey="CustomerID",
OtherKey="CustomerID", DeleteRule="NO ACTION")]
 public EntitySet<Orders> Orders
 {
 get
 {
 return this._Orders;
 }
 set
 {
 this._Orders.Assign(value);
 }
 }

LINQ to SQL covers much more than what has been shown here; we encourage you
to investigate it more, but let’s now see the other data domain we are dealing with:
LINQ to XML.

LINQ to XML is not only how you perform queries against XML; it is a more devel-
oper-friendly way to work with XML. One of the main classes in LINQ to XML is
XElement. XElement allows you to create XML in a manner that more closely resem-
bles the structure of the XML itself. This may not seem like a big deal, but when you
can see the XML taking shape in your code, it makes it easier to know where you are.
(Ever forget which XmlWriter.WriteEndElement you were on? We have!) You can get
more details and examples about using XElement in Chapter 15, so we won’t go much
further into it here, but as you can see, it is very easy to build up XML in a query.

The first part of the query deals with setting up the main XML element
“BigSpenders”, getting the initial set of customers where the contact is the owner:

var bigSpenders = new XElement("BigSpenders",
 from top5 in
 (
 (from customer in
 (
 from c in dataContext.Customers
 // get the customers where the contact is the owner
 // and they placed orders
 where c.ContactTitle.Contains("Owner")
 && c.Orders.Count > 0

28 | Chapter 1: Language Integrated Query (LINQ)

The middle of the query deals with joining the order and order detail information
with the customer information to get the NetOrderTotal for the order. It also creates
order data containing that value and the customer and order ids and the customer
name. We need the NetOrderTotal in the last part of the query, so stay tuned!

 join orderData in
 (
 from c in dataContext.Customers
 // get the customers where the contact is the owner
 // and they placed orders
 where c.ContactTitle.Contains("Owner")
 && c.Orders.Count > 0
 from o in c.Orders
 // get the order details
 join od in dataContext.OrderDetails
 on o.OrderID equals od.OrderID
 select new
 {
 c.CompanyName,
 c.CustomerID,
 o.OrderID,
 // have to calc order value from orderdetails
 //(UnitPrice*Quantity as Total)-
 (Total*Discount)
 // as NetOrderTotal

NetOrderTotal = (
 (((double)od.UnitPrice) * od.Quantity) -
 ((((double)od.UnitPrice) * od.Quantity) * od.Discount))
 }
)
 on c.CustomerID equals orderData.CustomerID
 into customerOrders

The last part of the query determines the TotalSpend for that customer across all
orders using the Sum function on NetOrderTotal for the generated customerOrders
collection. The last criteria evaluated is that only the top five customers with a
TotalSpend value > 10000 are selected by using the Take function. Take is the equiva-
lent to TOP in SQL. The records are then used to construct one inner Customer ele-
ment with attributes that nest inside the BigSpenders root element started in the first
part of the query:

 select new
 {
 c.CompanyName,
 c.ContactName,
 c.Phone,
 // Get the total amount spent by the customer
 TotalSpend = customerOrders.Sum(order => order.
NetOrderTotal)
 }
)
 // only worry about customers that spent > 10000

Creating XML Straight from a Database | 29

 where customer.TotalSpend > 10000
 orderby customer.TotalSpend descending
 // only take the top 5 spenders
 select customer).Take(5)
)
 // format the data as XML
 select new XElement("Customer",
 new XAttribute("companyName", top5.CompanyName),
 new XAttribute("contactName", top5.ContactName),
 new XAttribute("phoneNumber", top5.Phone),
 new XAttribute("amountSpent", top5.TotalSpend)));

It is much easier to build large-nested queries as individual queries
first and then put them together once you are sure the inner query is
working.

At this point, for all of the code here, nothing has happened yet. That’s right, until
the query is accessed, nothing happens through the magic of deferred execution.
LINQ has constructed a query expression, but nothing has talked to the database;
there is no XML in memory, nada. Once the WriteTo method is called on the
bigSpenders query expression, then the query is evaluated by LINQ to SQL, and the
XML is constructed. The WriteTo method writes out the constructed XML to the
XmlWriter provided, and we are done:

 using (XmlWriter writer = XmlWriter.Create("BigSpenders.xml"))
 {
 bigSpenders.WriteTo(writer);
 }

If you are interested in what that SQL will look like, connect the DataContext.Log
property to a TextWriter (like the console):

// Log the generated SQL to the console
dataContext.Log = Console.Out;

This query generates SQL that looks like this:

Generated SQL for query - output via DataContext.Log
SELECT [t10].[CompanyName], [t10].[ContactName], [t10].[Phone], [t10].[TotalSpend]
FROM (
 SELECT TOP (5) [t0].[Company Name] AS [CompanyName], [t0].[Contact Name] AS
[ContactName], [t0].[Phone], [t9].[value] AS [TotalSpend]
 FROM [Customers] AS [t0]
 OUTER APPLY (
 SELECT COUNT(*) AS [value]
 FROM [Orders] AS [t1]
 WHERE [t1].[Customer ID] = [t0].[Customer ID]
) AS [t2]
 OUTER APPLY (
 SELECT SUM([t8].[value]) AS [value]
 FROM (
 SELECT [t3].[Customer ID], [t6].[Order ID],

30 | Chapter 1: Language Integrated Query (LINQ)

 ([t7].[Unit Price] *
 (CONVERT(Decimal(29,4),[t7].[Quantity]))) - ([t7].[Unit Price] *
 (CONVERT(Decimal(29,4),[t7].[Quantity])) *
 (CONVERT(Decimal(29,4),[t7].[Discount]))) AS [value],
 [t7].[Order ID] AS [Order ID2],
 [t3].[Contact Title] AS [ContactTitle],
 [t5].[value] AS [value2],
 [t6].[Customer ID] AS [CustomerID]
 FROM [Customers] AS [t3]
 OUTER APPLY (
 SELECT COUNT(*) AS [value]
 FROM [Orders] AS [t4]
 WHERE [t4].[Customer ID] = [t3].[Customer ID]
) AS [t5]
 CROSS JOIN [Orders] AS [t6]
 CROSS JOIN [Order Details] AS [t7]
) AS [t8]
 WHERE ([t0].[Customer ID] = [t8].[Customer ID]) AND ([t8].[Order ID] = [
t8].[Order ID2]) AND ([t8].[ContactTitle] LIKE @p0) AND ([t8].[value2] > @p1) AN
D ([t8].[CustomerID] = [t8].[Customer ID])
) AS [t9]
 WHERE ([t9].[value] > @p2) AND ([t0].[Contact Title] LIKE @p3) AND ([t2].[va
lue] > @p4)
 ORDER BY [t9].[value] DESC
) AS [t10]
ORDER BY [t10].[TotalSpend] DESC
-- @p0: Input String (Size = 0; Prec = 0; Scale = 0) [%Owner%]
-- @p1: Input Int32 (Size = 0; Prec = 0; Scale = 0) [0]
-- @p2: Input Decimal (Size = 0; Prec = 29; Scale = 4) [10000]
-- @p3: Input String (Size = 0; Prec = 0; Scale = 0) [%Owner%]
-- @p4: Input Int32 (Size = 0; Prec = 0; Scale = 0) [0]
-- Context: SqlProvider(SqlCE) Model: AttributedMetaModel Build: 3.5.20706.1

The final XML is shown below:

<BigSpenders>
 <Customer companyName="Folk och fä HB" contactName="Maria Larsson"
 phoneNumber="0695-34 67 21" amountSpent="39805.162472039461" />
 <Customer companyName="White Clover Markets" contactName="Karl Jablonski"
 phoneNumber="(206) 555-4112" amountSpent="35957.604972146451" />
 <Customer companyName="Bon app'" contactName="Laurence Lebihan"
 phoneNumber="91.24.45.40" amountSpent="22311.577472746558" />
 <Customer companyName="LINO-Delicateses" contactName="Felipe Izquierdo"
 phoneNumber="(8) 34-56-12" amountSpent="20458.544984650609" />
 <Customer companyName="Simons bistro" contactName="Jytte Petersen"
 phoneNumber="31 12 34 56" amountSpent="18978.777493602414" />
</BigSpenders>

See Also
The “The Three Parts of a LINQ Query,” “DataContext.Log, property,” “DataContext
class,” “XElement class,” and “LINQ to SQL” topics in the MSDN documentation.

Being Selective About Your Query Results | 31

1.9 Being Selective About Your Query Results

Problem
You want to be able to get a dynamic subset of a query result.

Solution
Use the TakeWhile extension method to retrieve all results until the criteria is
matched:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);

var query =
 dataContext.Suppliers.GroupJoin(dataContext.Products,
 s => s.SupplierID, p => p.SupplierID,
 (s, products) => new
 {
 s.CompanyName,
 s.ContactName,
 s.Phone,
 Products = products
 }).OrderByDescending(supplierData => supplierData.Products.Count())

.TakeWhile(supplierData => supplierData.Products.Count() > 3);

Console.WriteLine("Suppliers that provide more than three products: {0}", query.
Count());
foreach (var supplierData in query)
{
 Console.WriteLine(" Company Name : {0}",supplierData.CompanyName);
 Console.WriteLine(" Contact Name : {0}", supplierData.ContactName);
 Console.WriteLine(" Contact Phone : {0}", supplierData.Phone);
 Console.WriteLine(" Products Supplied : {0}", supplierData.Products.Count());
 foreach (var productData in supplierData.Products)
 {
 Console.WriteLine(" Product: " + productData.ProductName);
 }
}

You can also use the SkipWhile extension method to retrieve all results once the crite-
ria are matched:

Northwind dataContext = new Northwind(Settings.Default.NorthwindConnectionString);

var query =
 dataContext.Suppliers.GroupJoin(dataContext.Products,
 s => s.SupplierID, p => p.SupplierID,
 (s, products) => new
 {
 s.CompanyName,
 s.ContactName,
 s.Phone,

32 | Chapter 1: Language Integrated Query (LINQ)

 Products = products
 }).OrderByDescending(supplierData => supplierData.Products.Count())

.SkipWhile(supplierData =>
 {
 return supplierData.Products.Count() > 3;
 });

Console.WriteLine("Suppliers that provide three or less products: {0}",
 query.Count());
foreach (var supplierData in query)
{
 Console.WriteLine(" Company Name : {0}",supplierData.CompanyName);
 Console.WriteLine(" Contact Name : {0}", supplierData.ContactName);
 Console.WriteLine(" Contact Phone : {0}", supplierData.Phone);
 Console.WriteLine(" Products Supplied : {0}", supplierData.Products.Count());
 foreach (var productData in supplierData.Products)
 {
 Console.WriteLine(" Product: " + productData.ProductName);
 }
}

Discussion
In this example using LINQ to SQL, the number of products each supplier provides
is determined, and the result set is sorted in descending order by product count:

var query =
 dataContext.Suppliers.GroupJoin(dataContext.Products,
 s => s.SupplierID, p => p.SupplierID,
 (s, products) => new
 {
 s.CompanyName,
 s.ContactName,
 s.Phone,
 Products = products
 }).OrderByDescending(supplierData => supplierData.Products.Count())

From that result, the supplier data for suppliers is only accepted into the final result
set if they provide more than 3 products and the results are displayed. TakeWhile is
used with a lambda expression to determine if the product count is greater than 3,
and if so, the supplier is accepted into the result set:

.TakeWhile(supplierData =>
 {
 return supplierData.Products.Count() > 3;
 });

If SkipWhile was used instead, all of the suppliers that provide 3 or fewer products
would be returned:

.SkipWhile(supplierData =>
 {
 return supplierData.Products.Count() > 3;
 });

Using LINQ with Collections That Don’t Support IEnumerable<T> | 33

Being able to write code-based conditions allows for more flexibility than the regular
Take and Skip methods, which are absolute based on record count, but keep in mind
that once the condition is hit for either TakeWhile or SkipWhile, you get all records
after that, which is why sorting the result set before using these is important.

The query also uses GroupJoin, which is comparable to a SQL LEFT or RIGHT
OUTER JOIN, but the result is not flattened. GroupJoin produces a hierarchical
result set instead of a tabular one, which is used to get the collection of Products by
Supplier in this example:

 dataContext.Suppliers.GroupJoin(dataContext.Products,
 s => s.SupplierID, p => p.SupplierID,

See Also
The “Enumerable.TakeWhile method,” “Enumerable.SkipWhile method,” and
“Enumerable.GroupJoin method” topics in the MSDN documentation.

1.10 Using LINQ with Collections That Don’t Support
IEnumerable<T>

Problem
There are a whole bunch of collections that don’t support the generic versions of
IEnumerable or ICollection but that do support the original nongeneric versions of
the IEnumerable or ICollection interfaces, and you would like to be able to query
those collections using LINQ.

Solution
The type cannot be inferred from the original IEnumeration or ICollection inter-
faces, so it must be provided using either the OfType<T> or Cast<T> extension meth-
ods or by specifying the type in the from clause, which inserts a Cast<T> for you.
The first example uses Cast<XmlNode> to let LINQ know that the elements in the
XmlNodeList returned from XmlDocument.SelectNodes are of type XmlNode. For an
example of how to use the OfType<T> extension method, see the Discussion section:

// Make some XML with some types that you can use with LINQ
// that don't support IEnumerable<T> directly
XElement xmlFragment = new XElement("NonGenericLinqableTypes",
 new XElement("IEnumerable",
 new XElement("System.Collections",
 new XElement("ArrayList"),
 new XElement("BitArray"),
 new XElement("Hashtable"),
 new XElement("Queue"),
 new XElement("SortedList"),
 new XElement("Stack")),

34 | Chapter 1: Language Integrated Query (LINQ)

 new XElement("System.Net",
 new XElement("CredentialCache")),
 new XElement("System.Xml",
 new XElement("XmlNodeList")),
 new XElement("System.Xml.XPath",
 new XElement("XPathNodeIterator"))),
 new XElement("ICollection",
 new XElement("System.Diagnostics",
 new XElement("EventLogEntryCollection")),
 new XElement("System.Net",
 new XElement("CookieCollection")),
 new XElement("System.Security.AccessControl",
 new XElement("GenericAcl")),
 new XElement("System.Security",
 new XElement("PermissionSet"))));

XmlDocument doc = new XmlDocument();
doc.LoadXml(xmlFragment.ToString());

// Select the names of the nodes under IEnumerable that have children and are
// named System.Collections and contain a capital S and return that list in
descending order
var query = from node in doc.SelectNodes("/NonGenericLinqableTypes/IEnumerable/*").
Cast<XmlNode>()
 where node.HasChildNodes &&
 node.Name == "System.Collections"
 from XmlNode xmlNode in node.ChildNodes
 where xmlNode.Name.Contains('S')
 orderby xmlNode.Name descending
 select xmlNode.Name;

foreach (string name in query)
{
 Console.WriteLine(name);
}

The second example works against the Application event log and retrieves the errors
that occurred in the last 6 hours. The type of the element in the collection
(EventLogEntry) is provided next to the from keyword, which allows LINQ to infer
the rest of the information it needs about the collection element type:

EventLog log = new EventLog("Application");
var query = from EventLogEntry entry in log.Entries
 where entry.EntryType == EventLogEntryType.Error &&
 entry.TimeGenerated > DateTime.Now.Subtract(new TimeSpan(6, 0, 0))
 select entry.Message;

Console.WriteLine("There were " + query.Count<string>() +
 " Application Event Log error messages in the last 6 hours!");
foreach (string message in query)
{
 Console.WriteLine(message);
}

Using LINQ with Collections That Don’t Support IEnumerable<T> | 35

Discussion
Cast<T> will transform the IEnumerable into IEnumerable<T> so that LINQ can access
each of the items in the collection in a strongly typed manner. Before using Cast<T>,
it would behoove you to check that all elements of the collection really are of type T,
or you will get an InvalidCastException if the type of the element is not convertible
to the type T specified, because all elements will be cast using the type. Placing the
type of the element next to the from keyword acts just like a Cast<T>:

ArrayList stuff = new ArrayList();
stuff.Add(DateTime.Now);
stuff.Add(DateTime.Now);
stuff.Add(1);
stuff.Add(DateTime.Now);

var expr = from item in stuff.Cast<DateTime>()
 select item;
// attempting to cast the third element throws InvalidCastException
foreach (DateTime item in expr)
{
 Console.WriteLine(item);
}

Note that again because of the deferred execution semantics that the
exception that occurs with Cast<T> or from only happens once that ele-
ment has been iterated to.

Another way to approach this issue would be to use OfType<T>, as it will only return
the elements of a specific type and not try to cast elements from one type to another:

var expr = from item in stuff.OfType<DateTime>()
 select item;
// only three elements, all DateTime returned. No exceptions
foreach (DateTime item in expr)
{
 Console.WriteLine(item);
}

See Also
The “OfType<TResult> method” and “Cast<TResult> method” topics in the
MSDN documentation.

36

Chapter 2CHAPTER 2

Strings and Characters 2

2.0 Introduction
String usage abounds in just about all types of applications. The System.String type
is a reference type, unlike System.Char, which is a value type and therefore derives
from System.ValueType. The string alias is built into C# and can be used instead of
the full name.

The Framework Class Library (FCL) does not stop with just the String class; there is
also a System.Text.StringBuilder class for performing string manipulations and the
System.Text.RegularExpressions namespace for searching strings. This chapter will
cover the String class, the System.Text.StringBuilder class, and the Char structure.

The System.Text.StringBuilder class provides an easy, performance-friendly method
of manipulating string objects. Even though this class duplicates much of the func-
tionality of a String class, the StringBuilder class is fundamentally different in that
the string contained within the StringBuilder object can actually be modified—you
cannot modify a string object. However, this duplicated functionality provides a
more efficient manipulation of strings than is obtainable by using the String class.

2.1 Determining the Kind of Character a Char
Contains

Problem
You have a variable of type char and wish to determine the kind of character it con-
tains—a letter, digit, number, punctuation character, control character, separator
character, symbol, whitespace, or surrogate character (i.e., Unicode characters with a
value greater than 64K). Similarly, you have a string variable and want to determine
the kind of character in one or more positions within this string.

Determining the Kind of Character a Char Contains | 37

Solution
To determine the value of a char, use the built-in static methods on the System.Char
structure shown here:

 Char.IsControl Char.IsDigit
 Char.IsLetter Char.IsNumber
 Char.IsPunctuation Char.IsSeparator
 Char.IsSurrogate Char.IsSymbol
 Char.IsWhitespace

Discussion
The following examples demonstrate how to use the methods shown in the Solution
section in an extension method to return the kind of a character. First, create an enu-
meration to define the various types of characters:

 public enum CharKind
 {
 Digit,
 Letter,
 Number,
 Punctuation,
 Unknown
 }

Next, create the extension method that contains the logic to determine the kind of a
character and to return a CharKind enumeration value indicating that type:

 static class CharStrExtMethods
 {
 public static CharKind GetCharKind(this char theChar)
 {
 if (Char.IsLetter(theChar))
 {
 return CharKind.Letter;
 }
 else if (Char.IsNumber(theChar))
 {
 return CharKind.Number;
 }
 else if (Char.IsPunctuation(theChar))
 {
 return CharKind.Punctuation;
 }
 else
 {
 return CharKind.Unknown;
 }
 }
 }

38 | Chapter 2: Strings and Characters

The GetCharKind extension method performs a series of tests on a character using the
Char type’s built-in static methods. An enumeration of all the different types of char-
acters is defined and is returned by the GetCharKind method.

If, however, a character in a string needs to be evaluated, use the overloaded static
methods on the char structure. The following code modifies the GetCharKind exten-
sion method to operate on a string variable while accepting a character position in
that string as an argument to the extension method. The character position deter-
mines which character in the string is evaluated:

 static class CharStrExtMethods
 {
 public static CharKind GetCharKindInString(this string theString,
 int charPosition)
 {
 if (Char.IsLetter(theString, charPosition))
 {
 return CharKind.Letter;
 }
 else if (Char.IsNumber(theString, charPosition))
 {
 return CharKind.Number;
 }
 else if (Char.IsPunctuation(theString, charPosition))
 {
 return CharKind.Punctuation;
 }
 else
 {
 return CharKind.Unknown;
 }
 }
 }

The following code example determines whether the fifth character (the
charPosition parameter is zero-based) in the string is a digit:

 string data = "abcdefg";
 if (string.GetCharKindInString(4) == CharKind.Digit) {...}

Table 2-1 describes each of the static Char methods.

Table 2-1. Char methods

Char method Description

IsControl A control code in the ranges \U007F, \U0000–\U001F, and \U0080–\U009F.

IsDigit Any decimal digit in the range 0–9 in all Unicode locales.

IsLetter Any alphabetic letter.

IsNumber Any decimal digit or hexadecimal digit; this includes digits such as superscripts, subscripts, etc.

IsPunctuation Any punctuation character.

IsSeparator A space separating words, a line separator, or a paragraph separator.

Determining the Kind of Character a Char Contains | 39

In Version 2.0 of the .NET Framework, a few extra Is* functions were added to aug-
ment the existing methods. If the character in question is a letter (i.e., the IsLetter
method returns true), you can determine if the letter is uppercase or lowercase by
using the methods in Table 2-2.

If the character in question is a surrogate (i.e., the IsSurrogate method returns true),
you can use the methods in Table 2-3 to get more information on the surrogate
character.

In addition to these surrogate methods, an additional method, IsSurrogatePair,
returns true only if two characters create a surrogate pair—that is, one character is a
high surrogate and one character is a low surrogate.

The final addition to this group of methods is the IsLetterOrDigit method, which
returns true only if the character in question is either a letter or a digit. To determine
if the character is either a letter or a digit, use the IsLetter and IsDigit methods.

IsSurrogate Any surrogate character in the range \UD800–\UDFFF.

IsSymbol Any mathematical, currency, or other symbol character. Includes characters that modify surrounding
characters.

IsWhitespace Any space character and the following characters:

\U0009

\U000A

\U000B

\U000C

\U000D

\U0085

\U2028

\U2029

Table 2-2. Uppercase and lowercase Char methods

Char method Description

IsLower A character that is lowercase

IsUpper A character that is uppercase

Table 2-3. Surrogate Char methods

Char method Description

IsHighSurrogate A character that is in the range \UD800 to \UDBFF

IsLowSurrogate A character that is in the range \UDC00 to \UDFFF

Table 2-1. Char methods (continued)

Char method Description

40 | Chapter 2: Strings and Characters

See Also
The “Char Structure” topic in the MSDN documentation.

2.2 Controlling Case Sensitivity When Comparing
Two Characters

Problem
You need to compare two characters for equality, but you need the flexibility of per-
forming a case-sensitive or case-insensitive comparison.

Solution
Create extension methods on the char type and use the Equals instance method on
the char structure to compare the two characters:

 static class CharStrExtMethods
 {
 public static bool IsCharEqual(this char firstChar, char secondChar)
 {
 return (IsCharEqual(firstChar, secondChar, false));
 }

 public static bool IsCharEqual(this char firstChar, char secondChar,
 bool caseSensitiveCompare)
 {
 if (caseSensitiveCompare)
 {
 return (firstChar.Equals(secondChar));
 }
 else
 {
 return (char.ToUpperInvariant(firstChar).Equals(
 char.ToUpperInvariant(secondChar)));
 }
 }

 public static bool IsCharEqual(this char firstChar, CultureInfo firstCharCulture,
 char secondChar, CultureInfo secondCharCulture)
 {
 return (IsCharEqual(firstChar, firstCharCulture,
 secondChar, secondCharCulture, false));
 }

 public static bool IsCharEqual(this char firstChar, CultureInfo firstCharCulture,
 char secondChar, CultureInfo secondCharCulture,
 bool caseSensitiveCompare)
 {
 if (caseSensitiveCompare)

Controlling Case Sensitivity When Comparing Two Characters | 41

 {
 return (firstChar.Equals(secondChar));
 }
 else
 {
 return (char.ToUpper(firstChar, firstCharCulture).Equals
 (char.ToUpper(secondChar, secondCharCulture)));
 }
 }
 }

The first overloaded IsCharEqual extension method takes only one parameter, which
is the character to be compared against the value contained in the current char
instance. This extension method then calls the second IsCharEqual method with two
parameters. The last parameter on this extension method call defaults to false so
that when this method is called, you do not have to pass in a value for the
caseSensitiveCompare parameter—it will automatically default to false.

You can further extend the overloaded IsCharEqual extension methods to handle the
culture of the characters passed in to it. The addition of the CultureInfo parameters
to these extension methods allows you to pass in the culture information for the
strings that you are calling ToUpperInvariant on. This information allows the
ToUpperInvariant method to correctly uppercase the character based in the culture-
specific details of the character (i.e., the language, region, etc., of the character).

Discussion
Using the ToUpperInvariant method in conjunction with the Equals method on the
String class allows you to choose whether to take into account the case of the strings
when comparing them. The ToUpperInvariant method changes any lowercase charac-
ters to uppercase using the rules built in to the invariant culture. That is, the case
change is unaffected by the current culture. If you require the character data to be
uppercased in a culturally aware way, use the IsCharEqual method, which accepts a
CultureInfo object.

To perform a case-sensitive comparison of two char variables, simply use the Equals
method, which, by default, performs a case-sensitive comparison. Performing a case-
insensitive comparison requires that both characters be converted to their uppercase
values before the Equals method is invoked. Setting both characters to their upper-
case equivalents removes any case sensitivity between the character values, and they
can be compared using the case-sensitive Equals comparison method as if it were a
case-insensitive comparison.

Note that you must include the following using directives to compile this code:

 using System;
 using System.Globalization;

42 | Chapter 2: Strings and Characters

2.3 Finding the Location of All Occurrences of a
String Within Another String

Problem
You need to search a string for every occurrence of a specific string. In addition, the
case sensitivity, or insensitivity, of the search needs to be controlled.

Solution
Using IndexOf or IndexOfAny in a loop, you can determine how many occurrences of
a character or string exist as well as their locations within the string. To find each
occurrence of a string in another string using a case-sensitive search, use the follow-
ing code:

 using System;
 using System.Collections;
 using System.Collections.Generic;

 static class CharStrExtMethods
 {
 public static int[] FindAll(this string matchStr, string searchedStr,
 int startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;
 List<int> foundItems = new List<int>();

 do
 {
 foundPos = searchedStr.IndexOf(matchStr, startPos, StringComparison.
Ordinal);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.
ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }
 }

If the FindAll extension method is called with the following parameters:

 string data = "Red";
 int[] allOccurrences = data.FindAll("BlueTealRedredGreenRedYellow", 0);

Finding the Location of All Occurrences of a String Within Another String | 43

the string “Red” is found at locations 8 and 19 in the string searchedStr. This code
uses the IndexOf method inside a loop to iterate through each found matchStr string
in the searchStr string.

To find a character in a string using a case-sensitive search, use the following code:

 static class CharStrExtMethods
 {
 public static int[] FindAll(this char MatchChar, string searchedStr,
 int startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;
 List<int> foundItems = new List<int>();

 do
 {
 foundPos = searchedStr.IndexOf(MatchChar, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.
ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }
 }

If the FindAll extension method is called with the following parameters:

 char data = "r";
 int[] allOccurrences = data.FindAll("BlueTealRedredGreenRedYellow", 0);

the character “r” is found at locations 11 and 15 in the string searchedStr. This code
uses the IndexOf method inside a do loop to iterate through each found matchChar
character in the searchStr string. Overloading the FindAll method to accept either a
char or string type avoids the performance hit by creating an entirely new string
object from the passed in char object.

To find each occurrence of a string in another string using a case-insensitive search,
use the following code:

 static class CharStrExtMethods
 {
 public static int[] FindAny(this string matchStr, string searchedStr, int
startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;

44 | Chapter 2: Strings and Characters

 List<int> foundItems = new List<int>();

 // Factor out case-sensitivity
 searchedStr = searchedStr.ToUpperInvariant();
 matchStr = matchStr.ToUpperInvariant();

 do
 {
 foundPos = searchedStr.IndexOf(matchStr, startPos,
StringComparison.Ordinal);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);
 Console.WriteLine("Found item at position: " + foundPos.
ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }
 }

If the FindAny extension method is called with the following parameters:

 string data = "Red";
 int[] allOccurrences = data.FindAny("BlueTealRedredGreenRedYellow", 0);

the string “Red” is found at locations 8, 11, and 19 in the string searchedStr. This
code uses the IndexOf method inside a loop to iterate through each found matchStr
string in the searchStr string. The search is rendered case-insensitive by using the
ToUpperInvariant method on both the searchedStr and the matchStr strings.

To find a set of characters in a string, use the following code:

 static class CharStrExtMethods
 {
 public static int[] FindAny(this char[] MatchCharArray, string
searchedStr,
 int startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;
 List<int> foundItems = new List<int>();

 do
 {
 foundPos = searchedStr.IndexOfAny(MatchCharArray, startPos,
 StringComparison.Ordinal);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

Finding the Location of All Occurrences of a String Within Another String | 45

 Console.WriteLine("Found item at position: " + foundPos.
ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }
 }

If the FindAll extension method is called with the following parameters:

 char[] data = new char[] {'R', 'r'};
 int[] allOccurrences = data.FindAny("BlueTealRedredGreenRedYellow", 0);

the characters ‘r’ or ‘R’ are found at locations 8, 11, 15, and 19 in the string
searchedStr. This code uses the IndexOfAny method inside a loop to iterate through
each found matchStr string in the searchStr string. The search is rendered case-
insensitive by using an array of char containing all characters, both uppercase and
lowercase, to be searched for.

Discussion
In the example code, the foundPos variable contains the location of the found charac-
ter/string within the searchedStr string. The startPos variable contains the next posi-
tion at which to start the search. Either the IndexOf or IndexOfAny method is used to
perform the actual searching. The count variable simply counts the number of times
the character/string was found in the searchedStr string.

The example uses a do loop so that the IndexOf or IndexOfAny operation is executed
at least one time before the check in the while clause is performed. This check deter-
mines whether there are any more character/string matches to be found in the
searchedStr string. This loop terminates when foundPos returns -1 (meaning that no
more character/strings can be found in the searchedStr string) or when an out-of-
bounds condition exists. When foundPos equals -1, there are no more instances of
the match value in the searchedStr string; therefore, you can exit the loop. If, how-
ever, the startPos overshoots the last character element of the searchedStr string, an
out-of-bounds condition exists and an exception is thrown. To prevent this, always
check to make sure that any positioning variables that are modified inside of the
loop, such as the startPos variable, are within their intended bounds.

Once a match is found by the IndexOf or IndexOfAny method, the if statement body
is executed to increment the count variable by one and to move the startPos beyond
the previously found match. The count variable is incremented by one to indicate
that another match was found. The startPos is increased to the starting position of
the last match found plus 1. Adding 1 is necessary so that you do not keep matching
the same character/string that was previously matched, which will cause an infinite
loop to occur in the code if at least one match is found in the searchedStr string. To
see this behavior, remove the +1 from the code.

46 | Chapter 2: Strings and Characters

There is one potential problem with this code. Consider the case where:

 searchedStr = "aaaa";
 matchStr = "aa";

The code contained in this recipe will match “aa” three times:

 (aa)aa
 a(aa)a
 aa(aa)

This situation may be fine for some applications but not if you need it to return only
the following matches:

 (aa)aa
 aa(aa)

To do this, change the following line in the while loop:

 startPos = foundPos + 1;

to this:

 startPos = foundPos + matchStr.Length;

This code moves the startPos pointer beyond the first matched string, disallowing
any internal matches.

To convert this code to use a while loop rather than a do loop, the foundPos variable
must be initialized to 0, and the while loop expression should be as follows:

 while (foundPos >= 0 && startPos < searchStr.Length)
 {
 foundPos = searchedStr.IndexOf(matchChar, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 }
 }

See Also
The “String.IndexOf Method” and “String.IndexOfAny Method” topics in the
MSDN documentation.

2.4 Controlling Case Sensitivity When Comparing
Two Strings

Problem
You need to compare the contents of two strings for equality. In addition, the case
sensitivity of the comparison needs to be controlled.

Comparing a String to the Beginning or End of a Second String | 47

Solution
Use the Compare static method on the String class to compare the two strings.
Whether the comparison is case-insensitive is determined by the third parameter of
one of its overloads. For example:

 string lowerCase = "abc";
 string upperCase = "AbC";
 int caseInsensitiveResult = string.Compare(lowerCase, upperCase,
 StringComparison.CurrentCultureIgnoreCase);
 int caseSensitiveResult = string.Compare(lowerCase,
 StringComparison.CurrentCulture);

The caseSensitiveResult value is -1 (indicating that lowerCase is “less than”
upperCase) and the caseInsensitiveResult is zero (indicating that lowerCase “equals”
upperCase).

Discussion
Using the static string.Compare method allows you the freedom to choose whether to
take into account the case of the strings when comparing them. This method returns
an integer indicating the lexical relationship between the two strings. A zero means
that the two strings are equal, a negative number means that the first string is less
than the second string, and a positive number indicates that the first string is greater
than the second string.

By setting the last parameter of this method (the comparisonType parameter) to either
StringComparison.CurrentCultureIgnoreCase or StringComparison.CurrentCulture,
you can determine whether the Compare method takes into account the case of both
strings when comparing. Setting this parameter to StringComparison.CurrentCulture
forces a case-sensitive comparison; setting it to StringComparison.CurrentCulture-
IgnoreCase forces a case-insensitive comparison. In the case of the overloaded ver-
sion of the method with no comparisonType parameter, comparisons are always case-
sensitive.

See Also
The “String.Compare Method” topic in the MSDN documentation.

2.5 Comparing a String to the Beginning or End of a
Second String

Problem
You need to determine whether a string is at the head or tail of a second string. In
addition, the case sensitivity of the search needs to be controlled.

48 | Chapter 2: Strings and Characters

Solution
Use the EndsWith or StartsWith instance method on a string object. Comparisons
with EndsWith and StartsWith are always case-sensitive. The following code com-
pares the value in the string variable head to the beginning of the string Test:

 string head = "str";
 string test = "strVarName";
 bool isFound = test.StartsWith(head, StringComparison.Ordinal);

The following example compares the value in the string variable tail to the end of
the string test:

 string tail = "Name";
 string test = "strVarName";
 bool isFound = test.EndsWith(tail, StringComparison.Ordinal);

In both examples, the isFound Boolean variable is set to true, since each string is
found in test.

To do a case-insensitive comparison, employ the static string.Compare method. The
following two examples modify the previous two examples by performing a case-
insensitive comparison. The first is equivalent to a case-insensitive StartsWith string
search:

 string head = "str";
 string test = "strVarName";
 int location = string.Compare(head, 0, test, 0, head.Length, true,
 System.Threading.Thread.CurrentThread.
CurrentCulture);

The second is equivalent to a case-insensitive EndsWith string search:

 string tail = "Name";
 string test = "strVarName";
 if (tail.Length <= test.Length)
 {
 int location = string.Compare(tail, 0, test, (test.Length - tail.Length),
 tail.Length, true);
 }
 else
 {
 location = -1;
 }

Note that with the last two examples that use the Compare method, if a zero is
returned, then the search succeeded. If a -1 is returned, the search failed. The follow-
ing code compares the value in the string variable head to the beginning of the string
Test with case-sensitivity turned off:

 string head = "str";
 string test = "strVarName";
 bool isFound = test.StartsWith(head, true,
 System.Threading.Thread.CurrentThread.CurrentCulture);

Inserting Text into a String | 49

The following example compares the value in the string variable tail to the end of
the string test, also with case-sensitivity turned off:

 string tail = "Name";
 string test = "strVarName";
 bool isFound = test.EndsWith(tail, true,
 System.Threading.Thread.CurrentThread.CurrentCulture);

Discussion
Use the StartsWith or EndsWith instance methods to do a case-sensitive search for a
particular string at the beginning or end of a string. The equivalent case-insensitive
comparison requires the use the overloaded StartsWith and EndsWith instance meth-
ods that accept a Boolean value to turn off case-sensitivity.

See Also
The “String.StartsWith Method,” “String.EndsWith Method,” and “String.Compare
Method” topics in the MSDN documentation.

2.6 Inserting Text into a String

Problem
You have some text (either a char or a string value) that needs to be inserted at a
specific location inside of a second string.

Solution
Using the Insert instance method of the String class, a string or char can easily be
inserted into a string. For example, in the code fragment:

 string sourceString = "The Inserted Text is here -><-";

 sourceString = sourceString.Insert(28, "Insert-This");
 Console.WriteLine(sourceString);

the string sourceString is inserted between the > and < characters in a second string.
The result is:

 The Inserted Text is here ->Insert-This<-

Inserting a single character into sourceString between the > and < characters is
shown here:

 string sourceString = "The Inserted Text is here -><-";
 char insertChar = '1';

 sourceString = sourceString.Insert(28, Convert.ToString(insertChar));
 Console.WriteLine(sourceString);

50 | Chapter 2: Strings and Characters

There is no overloaded method for Insert that takes a char value, so converting the
char to a string of length one is the next best solution.

Discussion
There are two ways of inserting strings into other strings, unless, of course, you are
using the regular expression classes. The first involves using the Insert instance
method on the String class. This method is also slower than the others since strings
are immutable, and, therefore, a new string object must be created to hold the mod-
ified value. In this recipe, the reference to the old string object is then changed to
point to the new string object. Note that the Insert method leaves the original
string untouched and creates a new string object with the inserted characters.

To add flexibility and speed to your string insertions, use the Insert instance method
on the StringBuilder class. This method is overloaded to accept all of the built-in
types. In addition, the StringBuilder object optimizes string insertion by operating
on mutable arrays of characters, lists of immutable strings, and other techniques to
defer the creation of new immutable strings until the last possible moment. This
insertion will modify the state of the array of characters within the StringBuilder
object.

If you use the StringBuilder class instead of the String class to insert a string, your
code appears as:

 StringBuilder sourceString =
 new StringBuilder("The Inserted Text is here -><-");
 sourceString.Insert (28, "Insert-This");
 Console.WriteLine(sourceString);

The character insertion example changes to the following code:

 char charToInsert = '1';
 StringBuilder sourceString =
 new StringBuilder("The Inserted Text is here -><-");
 sourceString.Insert (28, charToInsert);
 Console.WriteLine(sourceString);

Note that when using the StringBuilder class, you must also use the System.Text
namespace or at least fully qualify the usage of the class in your code.

See Also
The “String.Insert Method” topic in the MSDN documentation.

Removing or Replacing Characters Within a String | 51

2.7 Removing or Replacing Characters Within a
String

Problem
You have some text within a string that needs to be either removed or replaced with
a different character or string. Since the replacing operation is somewhat simple,
using a regular expression to aid in the replacing operation is not worth the over-
head.

Solution
To remove a substring from a string, use the Remove instance method on the String
class. For example:

 string name = "Doe, John";
 name = name.Remove(3, 1);
 Console.WriteLine(name);

This code creates a new string and then sets the name variable to refer to it. The string
contained in name now looks like this:

 Doe John

If performance is critical, and particularly if the string removal operation occurs in a
loop so that the operation is performed multiple times, you can instead use the
Remove method of the StringBuilder object. The following code modifies the internal
state of the StringBuilder object that the str variable references so that its value
becomes 12345678:

 StringBuilder str = new StringBuilder("1234abc5678", 12);
 str.Remove(4, 3);
 Console.WriteLine(str);

To replace a delimiting character within a string, use the following code:

 string commaDelimitedString = "100,200,300,400,500";
 commaDelimitedString = commaDelimitedString.Replace(',', ':');
 Console.WriteLine(commaDelimitedString);

This code creates a new string and then makes the commaDelimitedString variable
refer to it. The string in commaDelimitedString now looks like this:

 100:200:300:400:500

To replace a placeholding string within a string, use the following code:

 string theName = "Mary";
 string theObject = "car";
 string ID = "This <ObjectPlaceholder> is the property of <NamePlaceholder>.";
 ID = ID.Replace("<ObjectPlaceholder>", theObject);
 ID = ID.Replace("<NamePlaceholder>", theName);
 Console.WriteLine(ID);

52 | Chapter 2: Strings and Characters

This code creates a new string and then makes the ID variable refer to it. The string in
ID now looks like this:

 This car is the property of Mary.

As when removing a portion of a string, you may, for performance reasons, choose to
use the Replace method of the StringBuilder class instead. For example:

 string newName = "John Doe";

 StringBuilder str = new StringBuilder("name = <NAME>");
 str.Replace("<NAME>", newName);
 Console.WriteLine(str.ToString());
 str.Replace('=', ':');
 Console.WriteLine(str.ToString());

 str = new StringBuilder("name1 = <FIRSTNAME>, name2 = <FIRSTNAME>");
 str.Replace("<FIRSTNAME>", newName, 7, 12);
 Console.WriteLine(str.ToString());
 str.Replace('=', ':', 0, 7);
 Console.WriteLine(str.ToString());

This code produces the following results:

 name = John Doe
 name : John Doe
 name1 = John Doe, name2 = <FIRSTNAME>
 name1 : John Doe, name2 = <FIRSTNAME>

Note that when using the StringBuilder class, you must use the System.Text
namespace.

Discussion
The String class provides two methods that allow easy removal and modification of
characters in a string: the Remove instance method and the Replace instance method.
The Remove method deletes a specified number of characters starting at a given loca-
tion within a string. This method returns a new string object containing the modi-
fied string.

The Replace instance method that the String class provides is very useful for remov-
ing characters from a string and replacing them with a new character or string. At
any point where the Replace method finds an instance of the string passed in as the
first parameter, it will replace it with the string passed in as the second parameter.
The Replace method is case-sensitive and returns a new string object containing the
modified string. If the string being searched for cannot be found in the original
string, the method returns a reference to the original string object.

The Replace and Remove methods on a string object always create a new string
object that contains the modified text. If this action hurts performance, consider
using the Replace and Remove methods on the StringBuilder class.

Encoding Binary Data As Base64 | 53

The Remove method of the StringBuilder class is not overloaded and is straight-
forward to use. Simply give it a starting position and the number of characters to
remove. This method returns a reference to the same instance of the StringBuilder
object with the Replace method that modified the string value.

The Replace method of the StringBuilder class allows for fast character or string
replacement to be performed on the original StringBuilder object. These methods
return a reference to the same instance of the StringBuilder object with the Replace
method that was called. If you are performing a replace operation that uses a format
string under your control, then you should use the AppendFormat method of the
StringBuilder class.

Note that this method is case-sensitive.

See Also
The “String.Replace Method,” “String.Remove Method,” “StringBuilder.Replace
Method,” and “StringBuilder.Remove Method” topics in the MSDN documentation.

2.8 Encoding Binary Data As Base64

Problem
You have a byte[] representing some binary information, such as a bitmap. You
need to encode this data into a string so that it can be sent over a binary-unfriendly
transport, such as email.

Solution
Using the static method Convert.ToBase64String on the Convert class, a byte[] may
be encoded to its String equivalent:

 using System;
 using System.IO;

 static class CharStrExtMethods
 {
 public static string Base64EncodeBytes(this byte[] inputBytes)
 {
 return (Convert.ToBase64String(inputBytes));
 }
 }

Discussion
Converting a string into its base64 representation has several uses. It allows binary
data to be embedded in nonbinary files such as XML, email messages, etc. Base64-
encoded data can also be transmitted via HTTP, GET, and POST requests in a more
compact format than hex encoding. It is important to understand that data that is

54 | Chapter 2: Strings and Characters

converted to base64 format is only obfuscated, not encrypted. To securely move data
from one place to another, you should use the cryptography algorithms available in
the FCL. For an example of using the FCL cryptography classes, see Recipe 17.5.

The Convert class makes encoding between a byte[] and a String a simple matter.
The parameters for this method are quite flexible. It provides the ability to start and
stop the conversion at any point in the input byte array.

To encode a bitmap file into a string that can be sent to some destination, you can
use the following code:

 byte[] image = null;
 using (FileStream fstrm = new FileStream(@"C:\WINNT\winnt.bmp",
 FileMode.Open, FileAccess.Read))
 {
 using (BinaryReader reader = new BinaryReader(fstrm))
 {
 image = new byte[reader.BaseStream.Length];
 for (int i = 0; i < reader.BaseStream.Length; i++)
 {
 image[i] = reader.ReadByte();
 }
 }
 }
 string bmpAsString = image.Base64EncodeBytes();

The MIME standard requires that each line of the base64-encoded
string be 76 characters in length. In order to send the bmpAsString
string as an embedded MIME attachment in an email message, you
must insert a CRLF on each 76-character boundary.

To decode an encoded string to a byte[], see Recipe 2.9.

See Also
Recipe 2.9, and the “Convert.ToBase64CharArray Method” topic in the MSDN
documentation.

2.9 Decoding a Base64-Encoded Binary

Problem
You have a String that contains information such as a bitmap encoded as base64.
You need to decode this data (which may have been embedded in an email message)
from a String into a byte[] so that you can access the original binary.

Decoding a Base64-Encoded Binary | 55

Solution
Using the static method Convert.FromBase64String on the Convert class, an encoded
String may be decoded to its equivalent byte[]:

 using System;

 static class CharStrExtMethods
 {
 public static byte[] Base64DecodeString(this string inputStr)
 {
 byte[] decodedByteArray =
 Convert.FromBase64String(inputStr);

 return (decodedByteArray);
 }
 }

Discussion
The static FromBase64String method on the Convert class makes decoding an
encoded base64 string a simple matter. This method returns a byte[] that contains
the decoded elements of the String.

If you receive a file via email, such as an image file (.bmp), that has been converted to
a string, you can convert it back into its original bitmap file using something like the
following:

 byte[] imageBytes = bmpAsString.Base64DecodeString();
 using (FileStream fstrm = new FileStream(@"C:\winnt_copy.bmp",
 FileMode.CreateNew, FileAccess.Write))
 {
 using (BinaryWriter writer = new BinaryWriter(fstrm))
 {
 writer.Write(imageBytes);
 }
 }

In this code, the bmpAsString variable was obtained from the code in the Discussion
section of Recipe 2.10. The imageBytes byte[] is the bmpAsString String converted
back to a byte[], which can then be written back to disk.

To encode a byte[] to a String, see Recipe 2.8.

See Also
Recipe 2.8, and the “Convert.FromBase64CharArray Method” topic in the MSDN
documentation.

56 | Chapter 2: Strings and Characters

2.10 Converting a String Returned As a Byte[] Back
into a String

Problem
Many methods in the FCL return a byte[] because they are providing a byte stream
service, but some applications need to pass strings over these byte stream services.
Some of these methods include:

 System.Diagnostics.EventLogEntry.Data
 System.IO.BinaryReader.Read
 System.IO.BinaryReader.ReadBytes
 System.IO.FileStream.Read
 System.IO.FileStream.BeginRead
 System.IO.MemoryStream // Constructor
 System.IO.MemoryStream.Read
 System.IO.MemoryStream.BeginRead
 System.Net.Sockets.Socket.Receive
 System.Net.Sockets.Socket.ReceiveFrom
 System.Net.Sockets.Socket.BeginReceive
 System.Net.Sockets.Socket.BeginReceiveFrom
 System.Net.Sockets.NetworkStream.Read
 System.Net.Sockets.NetworkStream.BeginRead
 System.Security.Cryptography.CryptoStream.Read
 System.Security.Cryptography.CryptoStream.BeginRead

In many cases, this byte[] might contain ASCII- or Unicode-encoded characters. You
need a way to recombine this byte[] to obtain the original string.

Solution
To convert a byte array of ASCII values to a complete string, use the following
method:

 string constructedString = Encoding.ASCII.GetString(characters);

To convert a byte array of Unicode values to a complete string, use the following
method:

 string constructedString = Encoding.Unicode.GetString(characters);

Discussion
The GetString method of the Encoding class (returned by the ASCII property) con-
verts 7-bit ASCII characters contained in a byte array to a string. Any value larger
than 127 (0x7F) will be ANDed with the value 127 (0x7F), and the resulting charac-
ter value will be displayed in the string. For example, if the byte[] contains the value
200 (0xC8), this value will be converted to 72 (0x48), and the character equivalent of
72 (0x48), (‘H’), will be displayed. The Encoding class can be found in the System.
Text namespace. The GetString method is overloaded to accept additional

Passing a String to a Method That Accepts Only a Byte[] | 57

arguments as well. The overloaded versions of the method convert all or part of a
string to ASCII and then store the result in a specified range inside a byte[].

The GetString method returns a string containing the converted byte[] of ASCII
characters.

The GetString method of the Encoding class (returned by the Unicode property) con-
verts Unicode characters into 16-bit Unicode values. The Encoding class can be found
in the System.Text namespace. The GetString method returns a string containing
the converted byte[] of Unicode characters.

See Also
The “ASCIIEncoding Class” and “UnicodeEncoding Class” topics in the MSDN
documentation.

2.11 Passing a String to a Method That Accepts Only a
Byte[]

Problem
Many methods in the FCL accept a byte[] consisting of characters instead of a
string. Some of these methods include:

 System.Diagnostics.EventLog.WriteEntry
 System.IO.BinaryWriter.Write
 System.IO.FileStream.Write
 System.IO.FileStream.BeginWrite
 System.IO.MemoryStream.Write
 System.IO.MemoryStream.BeginWrite
 System.Net.Sockets.Socket.Send
 System.Net.Sockets.Socket.SendTo
 System.Net.Sockets.Socket.BeginSend
 System.Net.Sockets.Socket.BeginSendTo
 System.Net.Sockets.NetworkStream.Write
 System.Net.Sockets.NetworkStream.BeginWrite
 System.Security.Cryptography.CryptoStream.Write
 System.Security.Cryptography.CryptoStream.BeginWrite

In many cases, you might have a string that you need to pass into one of these meth-
ods or some other method that accepts only a byte[]. You need a way to break up
this string into a byte[].

Solution
To convert a string to a byte[] of ASCII values, use the GetBytes method on the
Encoding class:

 byte[] retArray = Encoding.ASCII.GetBytes(characters);

58 | Chapter 2: Strings and Characters

To convert a string to a byte[] of Unicode values, use the GetBytes method on the
Encoding class:

 byte[] retArray = Encoding.Unicode.GetBytes(characters);

Discussion
The GetBytes method of the Encoding class (returned by the ASCII property) converts
ASCII characters—contained in either a char[] or a string—into a byte[] of 7-bit
ASCII values. Any value larger than 127 (0x7F) is converted to the ? character. The
Encoding class can be found in the System.Text namespace. The GetBytes method is
overloaded to accept additional arguments as well. The overloaded versions of the
method convert all or part of a string to ASCII and then store the result in a specified
range inside a byte[], which is returned to the caller.

The GetBytes method of the Encoding class (returned by the Unicode property) con-
verts Unicode characters into 16-bit Unicode values. The Encoding class can be found
in the System.Text namespace. The GetBytes method returns a byte[], each element
of which contains the Unicode value of a single character of the string.

A single Unicode character in the source string or in the source char[] corresponds
to two elements of the byte[]. For example, the following byte[] contains the ASCII
value of the letter S:

 byte[] sourceArray = {83};

However, for a byte[] to contain a Unicode representation of the letter S, it must
contain two elements. For example:

 byte[] sourceArray = {83, 0};

The Intel architecture uses a little-endian encoding, which means that the first
element is the least-significant byte, and the second element is the most-significant
byte. Other architectures may use big-endian encoding, which is the opposite of
little-endian encoding. The UnicodeEncoding class supports both big-endian and
little-endian encodings. Using the UnicodeEncoding instance constructor, you can
construct an instance that uses either big-endian or little-endian ordering. This is
accomplished by using one of the two following constructors:

 public UnicodeEncoding (bool bigEndian, bool byteOrderMark);
 public UnicodeEncoding (bool bigEndian, bool byteOrderMark,
 bool throwOnInvalidBytes);

The first parameter, bigEndian, accepts a Boolean argument. Set this argument to
true to use big-endian or false to use little-endian.

In addition, you have the option to indicate whether a byte order mark preamble
should be generated so that readers of the file will know which endianness is in use.

Converting Strings to Other Types | 59

See Also
The “ASCIIEncoding Class” and “UnicodeEncoding Class” topics in the MSDN
documentation.

2.12 Converting Strings to Other Types

Problem
You have a string that represents the equivalent value of a number ("12"), char
("a"), bool ("true"), or a color enumeration ("Red"). You need to convert this string
to its equivalent value type. Therefore, the number "12" would be converted to a
numeric value such as int, short, float, and so on. The string "a" would be con-
verted to a char value 'a', the string "true" would be converted to a bool value, and
the color "Red" could be converted to an enumeration value (if an enumeration were
defined that contained the element Red).

Solution
Use the Parse static method of the type that the string is to be converted to. To con-
vert a string containing a number to its numeric type, use the following code:

 // This code requires the use of the System and System.Globalization namespaces.

 string longString = "7654321";
 int actualInt = Int32.Parse(longString); // longString = 7654321
 string dblString = "-7654.321";
 double actualDbl = Double.Parse(dblString, NumberStyles.AllowDecimalPoint |
 NumberStyles.AllowLeadingSign); // dblString = "-7654.321"

To convert a string containing a Boolean value to a bool type, use the following code:

 // This code requires the use of the System namespace.

 string boolString = "true";
 bool actualBool = Boolean.Parse(boolString); // actualBool = true

To convert a string containing a char value to a char type, use the following code:

 // This code requires the use of the System namespace.

 string charString = "t";
 char actualChar = char.Parse(charString); // actualChar = 't'

To convert a string containing an enumeration value to an enumeration type, use the
following code:

 // This code requires the use of the System namespace.

 enum Colors
 {
 red, green, blue
 }

60 | Chapter 2: Strings and Characters

 string colorString = "blue";
 // Note that the Parse method below is a method defined by System.Enum,
 // not by Colors.
 Colors actualEnum = (Colors)Colors.Parse(typeof(Colors), colorString);
 // actualEnum = blue

Discussion
The static Parse method available on certain data types allows easy conversion from
a string value to the value of that specific value type. The Parse method is supported
by the types listed in Table 2-4.

Notice that these types are all value types; other types, such as IPAddress, also sup-
port the Parse method. In addition to the Parse methods that take a single string
parameter and convert it to the target data type, each numeric type has a second
overloaded version of the Parse method that includes a second parameter of type
System.Globalization.NumberStyles. This allows the Parse method to correctly han-
dle specific properties of numbers, such as leading or trailing signs, decimal points,
currency symbols, thousands separators, and so forth. NumberStyles is marked as a
flag-style enumeration, so you can bitwise OR more than one enumerated value
together to allow a group of styles to be used on the string.

The NumberStyles enumeration is defined as follows:

AllowCurrencySymbol
If the string contains a number with a currency symbol, it is parsed as currency;
otherwise, it is parsed as a number.

AllowDecimalPoint
Allows a decimal point in the number.

AllowExponent
Allows the number to be in exponential notation format.

AllowHexSpecifier
Allows characters that specify a hexadecimal number.

AllowLeadingSign
Allows a leading sign symbol.

AllowLeadingWhite
Ignores any leading whitespace.

Table 2-4. Data types that support the Parse method

Boolean Int16 Single

Byte Int32 UInt16

Decimal Int64 UInt32

Double SByte UInt64

Converting Strings to Other Types | 61

AllowParentheses
Allows parentheses.

AllowThousands
Allows group separators.

AllowTrailingSign
Allows a trailing sign symbol.

AllowTrailingWhite
Ignores any trailing whitespace.

Any
Applies any of the previous styles. This style simply ORs together all of the
preceding styles.

Currency
Same as the All style, except that the AllowExponent style is omitted.

Float
Equivalent to AllowLeadingWhite, AllowTrailingWhite, AllowLeadingSign, Allow-
DecimalPoint, and AllowExponent.

HexNumber
Equivalent to AllowLeadingWhite, AllowTrailingWhite, and AllowHexSpecifier.

Integer
Equivalent to AllowLeadingWhite, AllowTrailingWhite, and AllowLeadingSign.

None
Applies none of the styles.

Number
Equivalent to AllowLeadingWhite, AllowTrailingWhite, AllowLeadingSign, Allow-
TrailingSign, AllowDecimalPoint, and AllowThousands.

If the NumberStyle parameter is not supplied when it is required (as when, for
example, a numeric string includes a thousands separator) or if the NumberStyle enu-
meration is used on a string that does not contain a number in the supplied
NumberStyle format, a FormatException exception will be thrown. If the size of the
number in the string is too large or too small for the data type, an OverFlowException
exception will be thrown. Passing in a null for the SourceString parameter will
throw an ArgumentNullException exception.

The Parse method of the two non-numeric data types, bool and char, also deserve
some additional explanation. When calling Boolean.Parse, if a string value contains
anything except a value equal to the static properties Boolean.FalseString, Boolean.
TrueString, or the string literals "false" or "true" (which are case-insensitive), a
FormatException exception is thrown. Passing in a null for the SourceString parame-
ter throws an ArgumentNullException exception.

62 | Chapter 2: Strings and Characters

When invoking char.Parse, if a string value containing more than one character is
passed as its single argument, a FormatException exception is thrown. Passing in a
null for the string parameter throws an ArgumentNullException exception.

The static Enum.Parse method returns an Object of the same type as specified in the
first parameter of this method (EnumType). This value is viewed as an Object type and
must be cast to its correct enumeration type.

This method throws an ArgumentException exception if the Value parameter cannot
be matched to a string in the enumeration. An ArgumentNullException exception is
thrown if a null is passed in to the Value parameter.

If you do not want an exception to be thrown while attempting to convert a string to
a particular type, consider using the TryParse method in types in which it is avail-
able. This method will not throw an exception if the conversion fails. Instead, it
returns a Boolean true if the conversion succeeds and a false if the conversion fails.

2.13 Creating a Delimited String

Problem
You have an array of strings to format as delimited text and possibly to store in a text
file.

Solution
Using the static Join method of the String class, the array of strings can be easily
joined in as little as one line of code. For example:

 string[] infoArray = {"11", "12", "Checking", "111", "Savings"};
 string delimitedInfo = string.Join(",", infoArray);

This code sets the value of delimitedInfo to the following:

 11,12,Checking,111,Savings

Discussion
The Join method concatenates all the strings contained in a string array. Addition-
ally, a specified delimiting character(s) is inserted between each string in the array.
This method returns a single string object with the fully joined and delimited text.

Unlike the Split method of the String class, the Join method accepts only one
delimiting character at a time. In order to use multiple delimiting characters within a
string of values, subsequent Join operations must be performed on the information
until all of the data has been joined together into a single string. For example:

 string[] infoArray = {"11", "12", "Checking", "Savings"};
 string delimitedInfoBegin = string.Join(",", infoArray, 0, 2);
 string delimitedInfoEnd = string.Join(",", infoArray, 2, 2);

Extracting Items from a Delimited String | 63

 string[] delimitedInfoTotal = {delimitedInfoBegin,
 delimitedInfoEnd};
 string delimitedInfoFinal = string.Join(":", delimitedInfoTotal);
 Console.WriteLine(delimitedInfoFinal);

produces the following delimited string:

 11,12:Checking,Savings

See Also
The “String.Join Method” topic in the MSDN documentation.

2.14 Extracting Items from a Delimited String

Problem
You have a string, possibly from a text file, which is delimited by one or more char-
acters. You need to retrieve each piece of delimited information as easily as possible.

Solution
Using the Split instance method on the String class, you can place the delimited
information into an array in as little as a single line of code. For example:

 string delimitedInfo = "100,200,400,3,67";
 string[] discreteInfo = delimitedInfo.Split(new char[] {','});

 foreach (string Data in discreteInfo)
 Console.WriteLine(Data);

The string array discreteInfo holds the following values:

 100
 200
 400
 3
 67

Discussion
The Split method returns a string array with each element containing one discrete
piece of the delimited text split on the delimiting character(s).

In the solution, the string delimitedInfo is comma-delimited. However, it can be
delimited by any type of character or even by more than one character. When there is
more than one type of delimiter, use code like the following:

 string[] discreteInfo = delimitedInfo.Split(new char[] {',', ':', ' '});

This line splits the delimitedInfo string whenever one of the three delimiting charac-
ters (comma, colon, or space character) is found.

64 | Chapter 2: Strings and Characters

The Split method is case-sensitive. To split a string on the letter a in a case-
insensitive manner, use code like the following:

 string[] discreteInfo = delimitedInfo.Split(new char[] {'a', 'A'});

Now, anytime the letter a is encountered, no matter what its case, the Split method
views that character as a delimiter.

See Also
The “String.Join Method” topic in the MSDN documentation.

2.15 Iterating over Each Character in a String

Problem
You need to iterate over each character in a string efficiently in order to examine or
process each character.

Solution
C# provides two methods for iterating strings. The first is the foreach loop, which
can be used as follows:

 string testStr = "abc123";
 foreach (char c in testStr)
 {
 Console.WriteLine(c.ToString());
 }

This method is quick and easy. Unfortunately, it is somewhat less flexible than the
second method, which uses the for loop instead of a foreach loop to iterate over the
string. For example:

 string testStr = "abc123";
 for (int counter = 0; counter < testStr.Length; counter++)
 {
 Console.WriteLine(testStr[counter]);
 }

Discussion
The foreach loop is simpler and thus less error-prone, but it lacks flexibility. In
contrast, the for loop is slightly more complex, but it makes up for that in flexibility.

The for loop method uses the indexer of the string variable testStr to get the
character located at the position indicated by the counter loop index. Care must be
taken not to run over the bounds of the string array when using this type of looping
mechanism.

Pruning Characters from the Head and/or Tail of a String | 65

A for loop is flexible enough to change how looping over characters in a string is per-
formed. For example, the loop can be quickly modified to start and end at a specific
point in the string by simply changing the initializer and conditional expressions
of the for loop. Characters can be skipped by changing the iterator expression to
increment the counter variable by more than one. The string can also be iterated in
reverse order by changing the for loop expressions, as shown:

 for (int counter = testStr.Length - 1; counter >= 0; counter--)
 {
 Console.WriteLine(testStr[counter].ToString());
 }

The compiler optimizes the use of a foreach loop iterating through a
vector array—one that starts at zero and has only one dimension.
Converting a foreach loop to another type of loop, such as a for loop,
may not produce any noticeable increases in performance.

It should be noted that each of these methods was compiled using the /optimize
compiler option. Use of the /optimize flag will typically make the size of the com-
piled code smaller, not faster. The smaller the code, the faster it can load from disk
and the faster that it can be jitted.

2.16 Pruning Characters from the Head and/or Tail of
a String

Problem
You have a string with a specific set of characters, such as spaces, tabs, escaped sin-
gle/double quotes, any type of punctuation character(s), or some other character(s),
at the beginning and/or end of a string. You want a simple way to remove these
characters.

Solution
Use the Trim, TrimEnd, or TrimStart instance methods of the String class:

 string foo = "--TEST--";
 Console.WriteLine(foo.Trim(new char[] {'-'})); // Displays "TEST"

 foo = ",-TEST-,-";
 Console.WriteLine(foo.Trim(new char[] {'-',','})); // Displays "TEST"

 foo = "--TEST--";
 Console.WriteLine(foo.TrimStart(new char[] {'-'})); // Displays "TEST--"

 foo = ",-TEST-,-";
 Console.WriteLine(foo.TrimStart(new char[] {'-',','})); // Displays "TEST-,-"

66 | Chapter 2: Strings and Characters

 foo = "--TEST--";
 Console.WriteLine(foo.TrimEnd(new char[] {'-'})); // Displays "--TEST"

 foo = ",-TEST-,-";
 Console.WriteLine(foo.TrimEnd(new char[] {'-',','})); //Displays ",-TEST"

Discussion
The Trim method is most often used to eliminate whitespace at the beginning and
end of a string. In fact, if you call Trim without any parameters on a string variable,
this is exactly what happens. The Trim method is overloaded to allow you to remove
other types of characters from the beginning and end of a string. You can pass in a
char[] containing all the characters that you want removed from the beginning and
end of a string. Note that if the characters contained in this char[] are located some-
where in the middle of the string, they are not removed.

The TrimStart and TrimEnd methods remove characters at the beginning and end of a
string, respectively. These two methods are not overloaded, unlike the Trim method.
Rather, these two methods accept only a char[]. If you pass a null into either one of
these methods, only whitespace is removed from the beginning or the end of a string.

See Also
The “String.Trim Method,” “String.TrimStart Method,” and “String.TrimEnd
Method” topics in the MSDN documentation.

2.17 Testing a String for Null or Empty

Problem
You need a quick and easy way to check if a string is either null or of zero length.

Solution
Use the static IsNullOrEmpty method of the String class:

 bool stringTestResult = String.IsNullOrEmpty(testString);

Discussion
The IsNullOrEmpty method is a very convenient method in that it allows you to test a
string for null or zero length with a single method call. This method returns true if
the string passed in to it is equal to one of the following:

• Null

• String.Empty

Otherwise, this method returns false.

Appending a Line | 67

See Also
The “String.IsNullOrEmpty Method” topic in the MSDN documentation.

2.18 Appending a Line

Problem
You need to append a line, including a line terminator, to the current string.

Solution
Use the AppendLine method of the StringBuilder class:

 StringBuilder sb = new StringBuilder("First line of string");

 // Terminate the first line.
 sb.AppendLine();

 // Add a second line.
 sb.AppendLine("Second line of string");

This code will display the following:

 First line of string
 Second line of string

Discussion
The AppendLine method accepts a string and returns a reference to the same instance
of the StringBuilder object on which this method was called. The string that is
passed in to this method has a newline character or characters automatically
appended on to the end of this string. The newline character(s) is dependent on the
type of platform you are running. For example, Windows uses the \r\n carriage
return and line-feed characters to represent a newline; on a Unix system, the newline
consists of only the line-feed character \n. You do not need to worry about this, as
the AppendLine method knows which newline character(s) to apply.

If you simply want to add several blank lines to your string, you can call AppendLine
with no parameters. This effectively adds only a newline character to the current
string in the StringBuilder object on which it was called. Calling this method with
no parameter can also be used to add a newline character(s) to the current line, if the
current line has no newline character(s). For example, the code in the Solution added
a string with no newline character(s) to the instantiated StringBuilder object sb. You
can then call sb.AppendLine() to force a newline character to be appended to this
text.

See Also
The “StringBuilder.AppendLine Method” topic in the MSDN documentation.

68

Chapter 3CHAPTER 3

Classes and Structures 3

3.0 Introduction
Structures, like any other value type, implicitly inherit from System.ValueType. At
first glance, a structure is similar to a class, but it is actually very different. Knowing
when to use a structure over a class will help tremendously when designing an appli-
cation. Using a structure incorrectly can result in inefficient and hard-to-modify
code.

Structures have two performance advantages over reference types. First, if a struc-
ture is allocated on the stack (i.e., it is not contained within a reference type), access
to the structure and its data is somewhat faster than access to a reference type on the
heap. Reference-type objects must follow their reference onto the heap in order to
get at their data. However, this performance advantage pales in comparison to the
second performance advantage of structures; namely, that cleaning up the memory
allocated to a structure on the stack requires a simple change of the address to which
the stack pointer points, which is done at the return of a method call. This call is
extremely fast compared to allowing the garbage collector to automatically clean up
reference types for you in the managed heap; however, the cost of the garbage collec-
tor is deferred so that it’s not immediately noticeable.

The performance of structures falls short in comparison to that of classes when they
are passed by value to other methods. Because they reside on the stack, a structure
and its data have to be copied to a new local variable (the method’s parameter that is
used to receive the structure) when it is passed by value to a method. This copying
takes more time than passing a method a single reference to an object—unless the
structure is the same size as or smaller than the machine’s pointer size; thus, a struc-
ture with a size of 32 bits is just as cheap to pass as a reference (which happens to be
the size of a pointer) on a 32-bit machine. Keep this in mind when choosing between
a class and a structure. While creating, accessing, and destroying a class’s object may
take longer, it also might not balance the performance hit when a structure is passed

Introduction | 69

by value a large number of times to one or more methods. Keeping the size of the
structure small minimizes the performance hit of passing it around by value.

Concerning the object-oriented capabilities of classes and structures, classes have far
more flexibility. A structure cannot contain a user-defined default constructor, since
the C# compiler automatically provides a default constructor that initializes all the
fields in the structure to their default values. This is also why no field initializers can
be added to a structure. If you need to override the default field values, a structure
might not be the way to go. However, a parameterized constructor that initializes the
structure’s fields to any value that is necessary can be created.

Structures, like classes, can implement interfaces, but unlike classes, structures can-
not inherit from a class or a structure. This limitation precludes creating structure
hierarchies, as you can do with classes. Polymorphism, as implemented through an
abstract base class, is also prohibited when using a structure, since a structure can-
not inherit from another class with the exception of boxing to Object, ValueType, or
Enum.

Use a class if:

• Its identity is important. Structures get copied implicitly when being passed by
value into a method.

• It will have a large memory footprint.

• Its fields need initializers.

• You need to inherit from a base class.

• You need polymorphic behavior. That is, you need to implement an abstract
base class from which you will create several similar classes that inherit from this
abstract base class. (Note that polymorphism can be implemented via interfaces
as well, but it is usually not a good idea to place an interface on a value type,
since a boxing operation will occur if the structure is converted to the interface
type.) For more on polymorphism through interfaces, see Recipe 3.15.

Use a structure if:

• It will act like a primitive type (int, long, byte, etc.).

• It must have a small memory footprint.

• You are calling a P/Invoke method that requires a structure to be passed in by
value. Platform Invoke, or P/Invoke for short, allows managed code to call out to
an unmanaged method exposed from within a DLL. Many times, an unmanaged
DLL method requires a structure to be passed in to it; using a structure is an effi-
cient method of doing this and is the only way if the structure is being passed by
value.

• You need to avoid the overhead of garbage collection.

• Its fields need to be initialized only to their default values. This value would be
zero for numeric types, false for Boolean types, and null for reference types.

70 | Chapter 3: Classes and Structures

• You do not need to inherit from a base class (other than ValueType, from which
all structs inherit).

• You do not need polymorphic behavior.

Structures can also cause degradation in performance when they are passed to meth-
ods that require an object, such as any of the nongeneric collection types in the
Framework Class Library (FCL). Passing a structure (or any simple type, for that
matter) into a method requiring an object causes the structure to be boxed. Boxing is
wrapping a value type in an object. This operation is time-consuming and may
degrade performance.

3.1 Creating Union-Type Structures

Problem
You need to create a data type that behaves like a union type in C++. A union type is
useful mainly in interop scenarios in which the unmanaged code accepts and/or
returns a union type; we suggest that you do not use it in other situations.

Solution
Use a structure and mark it with the StructLayout attribute (specifying the
LayoutKind.Explicit layout kind in the constructor). In addition, mark each field in
the structure with the FieldOffset attribute. The following structure defines a union
in which a single signed numeric value can be stored:

 using System.Runtime.InteropServices;
 [StructLayoutAttribute(LayoutKind.Explicit)]
 struct SignedNumber
 {
 [FieldOffsetAttribute(0)]
 public sbyte Num1;
 [FieldOffsetAttribute(0)]
 public short Num2;
 [FieldOffsetAttribute(0)]
 public int Num3;
 [FieldOffsetAttribute(0)]
 public long Num4;
 [FieldOffsetAttribute(0)]
 public float Num5;
 [FieldOffsetAttribute(0)]
 public double Num6;
 [FieldOffsetAttribute(0)]
 public decimal Num7;
 }

The next structure is similar to the SignedNumber structure, except that it can contain
a String type in addition to the signed numeric value:

Creating Union-Type Structures | 71

 [StructLayoutAttribute(LayoutKind.Explicit)]
 struct SignedNumberWithText
 {
 [FieldOffsetAttribute(0)]
 public sbyte Num1;
 [FieldOffsetAttribute(0)]
 public short Num2;
 [FieldOffsetAttribute(0)]
 public int Num3;
 [FieldOffsetAttribute(0)]
 public long Num4;
 [FieldOffsetAttribute(0)]
 public float Num5;
 [FieldOffsetAttribute(0)]
 public double Num6;
 [FieldOffsetAttribute(0)]
 public decimal Num7;
 [FieldOffsetAttribute(16)]
 public string Text1;
 }

Discussion
Unions are structures usually found in C++ code; however, there is a way to dupli-
cate that type of structure using a C# structure data type. A union is a structure that
accepts more than one type at a specific location in memory for that structure. For
example, the SignedNumber structure is a union-type structure built using a C# struc-
ture. This structure accepts any type of signed numeric type (sbyte, int, long, etc.),
but it accepts this numeric type at only one location, or offset, within the structure.

Since StructLayoutAttribute can be applied to both structures and
classes, a class can also be used when creating a union data type.

Notice the FieldOffsetAttribute has the value zero passed to its constructor. This
denotes that this field will be offset by zero bytes from the beginning of the struc-
ture. This attribute is used in tandem with the StructLayoutAttribute to manually
enforce where the fields in this structure will start (that is, the offset from the begin-
ning of this structure in memory where each field will start). The
FieldOffsetAttribute can be used only with a StructLayoutAttribute set to
LayoutKind.Explicit. In addition, it cannot be used on static members within this
structure.

Unions can become problematic, since several types are essentially laid on top of one
another. The biggest problem is extracting the correct data type from a union struc-
ture. Consider what happens if you choose to store the long numeric value long.
MaxValue in the SignedNumber structure. Later, you might accidentally attempt to

72 | Chapter 3: Classes and Structures

extract a byte data type value from this same structure. In doing so, you will get back
only the first byte of the long value.

Another problem is starting fields at the correct offset. The SignedNumberWithText
union overlays numerous signed numeric data types at the zeroth offset. The last
field in this structure is laid out at the 16th byte offset from the beginning of this
structure in memory. If you accidentally overlay the string field Text1 on top of any
of the other signed numeric data types, you will get an exception at runtime. The
basic rule is that you are allowed to overlay a value type on another value type, but
you cannot overlay a reference type over a value type. If the Text1 field is marked
with the following attribute:

 [FieldOffsetAttribute(14)]

this exception is thrown at runtime (note that the compiler does not catch this
problem):

 An unhandled exception of type 'System.TypeLoadException' occurred in
 Chapter_Code.exe.

 Additional information: Could not load type Chapter_Code.SignedNumberWithText
from
 assembly 14 because it contains an object field at offset 14 that is incorrectly
 aligned or overlapped by a non-object field.

It is imperative to get the offsets correct when using complex unions in C#.

See Also
The “StructLayoutAttribute Class” topic in the MSDN documentation.

3.2 Making a Type Sortable

Problem
You have a data type that will be stored as elements in a List<T> or a
SortedList<K,V>. You would like to use the List<T>.Sort method or the internal sort-
ing mechanism of SortedList<K,V> to allow custom sorting of your data types in the
array. In addition, you may need to use this type in a SortedList collection.

Solution
Example 3-1 demonstrates how to implement the IComparable<T> interface. The
Square class shown in Example 3-1 implements this interface in such a way that the
List<T> and SortedList<K,V> collections can sort and search for these Square objects.

Making a Type Sortable | 73

Example 3-1. Making a type sortable by implementing IComparable<T>

public class Square : IComparable<Square>
{
 public Square(){}

 public Square(int height, int width)
 {
 this.Height = height;
 this.Width = width;
 }

 public int Height { get; set; }

 public int Width { get; set; }

 public int CompareTo(object obj)
 {
 Square square = obj as Square;
 if (square != null)
 return CompareTo(square);
 throw
 new ArgumentException("Both objects being compared must be of type Square.");
 }

 public override string ToString()
 {
 return ("Height:" + this.Height + " Width:" + this.Width);
 }

 public override bool Equals(object obj)
 {
 if (obj == null)
 return false;

 Square square = obj as Square;
 if(square != null)
 return this.Height == square.Height;
 return false;
 }

 public override int GetHashCode()
 {
 return this.Height.GetHashCode() | this.Width.GetHashCode();
 }

 public static bool operator ==(Square x, Square y)
 {
 return x.Equals(y);
 }
 public static bool operator !=(Square x, Square y)
 {
 return !(x == y);
 }

74 | Chapter 3: Classes and Structures

Discussion
By implementing the IComparable<T> interface on your class (or structure), you can
take advantage of the sorting routines of the List<T>, and SortedList<K,V> classes.
The algorithms for sorting are built into these classes; all you have to do is tell them
how to sort your classes via the code you implement in the IComparable<T>.CompareTo
method.

When a list of Square objects is sorted by calling the List<Square>.Sort method, the
list is sorted using the IComparable<Square> interface of the Square objects. The Add
method of the SortedList<K,V> class uses this interface to sort the objects as they are
being added to the SortedList<K,V>.

IComparer<T> is designed to solve the problem of allowing objects to be sorted based
on different criteria in different contexts. This interface also allows you to sort types
that you did not write. If you also wanted to sort the Square objects by height, you
could create a new class called CompareHeight, shown in Example 3-2, which would
also implement the IComparer<Square> interface.

 public static bool operator <(Square x, Square y)
 {
 return (x.CompareTo(y) < 0);
 }
 public static bool operator >(Square x, Square y)
 {
 return (x.CompareTo(y) > 0);
 }

 #region IComparable<Square> Members

 public int CompareTo(Square other)
 {
 long area1 = this.Height * this.Width;
 long area2 = other.Height * other.Width;

 if (area1 == area2)
 return 0;
 else if (area1 > area2)
 return 1;
 else if (area1 < area2)
 return -1;
 else
 return -1;
 }

 #endregion
}

Example 3-1. Making a type sortable by implementing IComparable<T> (continued)

Making a Type Sortable | 75

This class is then passed in to the IComparer parameter of the Sort routine. Now you
can specify different ways to sort your Square objects. The comparison method
implemented in the comparer must be consistent and apply a total ordering so that
when the comparison function declares equality for two items, it is absolutely true
and not a result of one item not being greater than another or one item not being less
than another.

For best performance, keep the CompareTo method short and efficient,
because it will be called multiple times by the Sort methods. For
example, in sorting an array with four items, the Compare method is
called 10 times.

The TestSort method shown in Example 3-3 demonstrates how to use the Square
and CompareHeight classes with the List<Square> and SortedList<int,Square>
instances.

Example 3-2. Making a type sortable by implementing IComparer

public class CompareHeight : IComparer<Square>
{
 public int Compare(object firstSquare, object secondSquare)
 {
 Square square1 = firstSquare as Square;
 Square square2 = secondSquare as Square;
 if (square1 == null || square2 == null)
 throw (new ArgumentException("Both parameters must be of type Square."));
 else
 return Compare(firstSquare,secondSquare);
 }

 #region IComparer<Square> Members

 public int Compare(Square x, Square y)
 {
 if (x.Height == y.Height)
 return 0;
 else if (x.Height > y.Height)
 return 1;
 else if (x.Height < y.Height)
 return -1;
 else
 return -1;
 }

 #endregion
}

76 | Chapter 3: Classes and Structures

Example 3-3. TestSort method

public static void TestSort()
{
 List<Square> listOfSquares = new List<Square>(){
 new Square(1,3),
 new Square(4,3),
 new Square(2,1),
 new Square(6,1)};

 // Test a List<String>
 Console.WriteLine("List<String>");
 Console.WriteLine("Original list");
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 IComparer<Square> heightCompare = new CompareHeight();
 listOfSquares.Sort(heightCompare);
 Console.WriteLine("Sorted list using IComparer<Square>=heightCompare");
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted list using IComparable<Square>");
 listOfSquares.Sort();
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 // Test a SORTEDLIST
 var sortedListOfSquares = new SortedList<int,Square>(){
 { 0, new Square(1,3)},
 { 2, new Square(3,3)},
 { 1, new Square(2,1)},
 { 3, new Square(6,1)}};

 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("SortedList<Square>");
 foreach (KeyValuePair<int,Square> kvp in sortedListOfSquares)
 {
 Console.WriteLine(kvp.Key + " : " + kvp.Value);
 }
}

Making a Type Searchable | 77

This code displays the following output:

List<String>
Original list
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted list using IComparer<Square>=heightCompare
Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Sorted list using IComparable<Square>
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3

SortedList<Square>
0 : Height:1 Width:3
1 : Height:2 Width:1
2 : Height:3 Width:3
3 : Height:6 Width:1

See Also
Recipe 3.3, and the “IComparable<T> Interface” topic in the MSDN documentation.

3.3 Making a Type Searchable

Problem
You have a data type that will be stored as elements in a List<T>. You would like to
use the BinarySearch method to allow for custom searching of your data types in the
list.

Solution
Use the IComparable<T> and IComparer<T> interfaces. The Square class, from Recipe 3.1,
implements the IComparable<T> interface in such a way that the List<T> and
SortedList<K,V> collections can sort and search an array or collection of Square objects.

78 | Chapter 3: Classes and Structures

Discussion
By implementing the IComparable<T> interface on your class (or structure), you can
take advantage of the search routines of the List<T> and SortedList<K,V> classes.
The algorithms for searching are built into these classes; all you have to do is tell
them how to search your classes via the code you implement in the IComparable<T>.
CompareTo method.

To implement the CompareTo method, see Recipe 3.2.

The List<T> class provides a BinarySearch method to perform a search on the ele-
ments in that list. The elements are compared against an object passed to the
BinarySearch method in the object parameter. The SortedList class does not have a
BinarySearch method; instead, it has the ContainsKey method, which performs a
binary search on the key contained in the list. The ContainsValue method of the
SortedList class performs a linear search when searching for values. This linear
search uses the Equals method of the elements in the SortedList collection to do its
work. The Compare and CompareTo methods do not have any effect on the operation of
the linear search performed in the SortedList class, but they do have an effect on
binary searches.

To perform an accurate search using the BinarySearch methods of the
List<T> class, you must first sort the List<T> using its Sort method. In
addition, if you pass an IComparer<T> interface to the BinarySearch
method, you must also pass the same interface to the Sort method.
Otherwise, the BinarySearch method might not be able to find the
object you are looking for.

The TestSort method shown in Example 3-4 demonstrates how to use the Square
and CompareHeight classes with the List<Square> and SortedList<int,Square> collec-
tion instances.

Example 3-4. Making a type searchable

public static void TestSearch()
{
 List<Square> listOfSquares = new List<Square> {new Square(1,3),
 new Square(4,3),
 new Square(2,1),
 new Square(6,1)};

 IComparer<Square> heightCompare = new CompareHeight();

 // Test a List<Square>
 Console.WriteLine("List<Square>");
 Console.WriteLine("Original list");
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

Making a Type Searchable | 79

 Console.WriteLine();
 Console.WriteLine("Sorted list using IComparer<Square>=heightCompare");
 listOfSquares.Sort(heightCompare);
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Search using IComparer<Square>=heightCompare");
 int found = listOfSquares.BinarySearch(new Square(1,3), heightCompare);
 Console.WriteLine("Found (1,3): " + found);

 Console.WriteLine();
 Console.WriteLine("Sorted list using IComparable<Square>");
 listOfSquares.Sort();
 foreach (Square square in listOfSquares)
 {
 Console.WriteLine(square.ToString());
 }

 Console.WriteLine("Search using IComparable<Square>");
 found = listOfSquares.BinarySearch(new Square(6,1)); // Use IComparable
 Console.WriteLine("Found (6,1): " + found);

 // Test a SortedList<Square>
 var sortedListOfSquares = new SortedList<int,Square>(){
 {0, new Square(1,3)},
 {2, new Square(4,3)},
 {1, new Square(2,1)},
 {4, new Square(6,1)}};

 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("SortedList<Square>");
 foreach (KeyValuePair<int,Square> kvp in sortedListOfSquares)
 {
 Console.WriteLine(kvp.Key + " : " + kvp.Value);
 }

 Console.WriteLine();
 bool foundItem = sortedListOfSquares.ContainsKey(2);
 Console.WriteLine("sortedListOfSquares.ContainsKey(2): " + foundItem);

 // Does not use IComparer or IComparable
 // -- uses a linear search along with the Equals method
 // which has not been overloaded
 Square value = new Square(6,1);
 foundItem = sortedListOfSquares.ContainsValue(value);
 Console.WriteLine("sortedListOfSquares.ContainsValue(new Square(6,1)): " + foundItem);
}

Example 3-4. Making a type searchable (continued)

80 | Chapter 3: Classes and Structures

This code displays the following:

List<Square>
Original list
Height:1 Width:3
Height:4 Width:3
Height:2 Width:1
Height:6 Width:1

Sorted list using IComparer<Square>=heightCompare
Height:1 Width:3
Height:2 Width:1
Height:4 Width:3
Height:6 Width:1

Search using IComparer<Square>=heightCompare
Found (1,3): 0

Sorted list using IComparable<Square>
Height:2 Width:1
Height:1 Width:3
Height:6 Width:1
Height:4 Width:3
Search using IComparable<Square>
Found (6,1): 2

SortedList<Square>
0 : Height:1 Width:3
1 : Height:2 Width:1
2 : Height:4 Width:3
4 : Height:6 Width:1

sortedListOfSquares.ContainsKey(2): True
sortedListOfSquares.ContainsValue(new Square(6,1)): True

 See Also
Recipe 3.2, and the “IComparable<T> Interface” and “IComparer<T> Interface”
topics in the MSDN documentation.

3.4 Indirectly Overloading the +=, -=, /=, and *=
Operators

Problem
You need to control the handling of the +=, -=, /=, and *= operators within your data
type; unfortunately, these operators cannot be directly overloaded.

Indirectly Overloading the +=, -=, /=, and *= Operators | 81

Solution
Overload these operators indirectly by overloading the +, -, /, and * operators, as
demonstrated in Example 3-5.

Discussion
While it is illegal to overload the +=, -=, /=, and *= operators directly, you can over-
load them indirectly by overloading the +, -, /, and * operators. The +=, -=, /=, and
*= operators use the overloaded +, -, /, and * operators for their calculations.

The four operators +, -, /, and * are overloaded by the methods in the Solution sec-
tion of this recipe. You might notice that each operator is overloaded three times.
This is intentional, since a user of your object may attempt to add, subtract, multi-
ply, or divide it by an integer value. The unknown here is: which position will the
integer constant be in? Will it be in the first parameter or the second? The following
code snippet shows how this might look for multiplication:

 Foo x = new Foo();
 Foo y = new Foo();
 y *= 100; // Uses: operator *(Foo f1, int multiplier)

Example 3-5. Overloading the +, -, /, and * operators

public class Foo
{
 // Other class members...
 // Overloaded binary operators
 public static Foo operator +(Foo f1, Foo f2)
 {
 Foo result = new Foo();
 // Add f1 and f2 here...
 // place result of the addition into the result variable.
 return result;
 }
 public static Foo operator +(int constant, Foo f1)
 {
 Foo result = new Foo();
 // Add the constant integer and f1 here...
 // place result of the addition into the result variable.
 return result;
 }
 public static Foo operator +(Foo f1, int constant)
 {
 Foo result = new Foo();
 // Add the constant integer and f1 here...
 // place result of the addition into the result variable.
 return result;
 }

 // The pattern above is repeated for the -, *, and . operators as well...
}

82 | Chapter 3: Classes and Structures

 y = 100 * x; // Uses: operator *(int multiplier, Foo f1)
 y *= x; // Uses: operator *(Foo f1, Foo f2)

The same holds true for the other overloaded operators.

If these operators were being implemented in a class, you would first check whether
any were set to null. The following code for the overloaded addition operator has
been modified to do this:

 public static Foo operator +(Foo f1, Foo f2)
 {
 if (f1 == null)
 {
 throw (new ArgumentNullException("f1"));
 }
 else if (f2 == null)
 {
 throw (new ArgumentNullException("f2"));
 }
 else
 {
 Foo result = new Foo();
 // Add f1 and f2 here...
 // place result of the addition into the result variable.
 return (result);
 }
 }

See Also
The “Operator Overloading Usage Guidelines,” “Overloadable Operators,” and
“Operator Overloading Tutorial” topics in the MSDN documentation.

3.5 Indirectly Overloading the &&, ||, and ?:
Operators

Problem
You need to control the handling of the &&, ||, and ?: operators within your data
type; unfortunately, these operators cannot be directly overloaded.

Solution
Overload these operators indirectly by overloading the &, |, true, and false opera-
tors, as shown in Example 3-6.

Example 3-6. Overloading &, |, true, and false

public class ObjState
{
 public ObjState(int state)

Indirectly Overloading the &&, ||, and ?: Operators | 83

 {
 this.State = state;
 }

 public int State {get; set;}

 public ObjState RetObj(int state)
 {
 return (new ObjState(state));
 }

 public static ObjState operator &(ObjState obj1, ObjState obj2)
 {
 if (obj1 == null || obj2 == null)
 throw (new ArgumentNullException("Neither object may be null."));

 if (obj1.State >= 0 && obj2.State >= 0)
 return (new ObjState(1));
 else
 return (new ObjState(-1));
 }

 public static ObjState operator |(ObjState obj1, ObjState obj2)
 {
 if (obj1.State < 0 && obj2.State < 0)
 return (new ObjState(-1));
 else
 return (new ObjState(1));
 }

 public static bool operator true(ObjState obj)
 {
 if (obj.State >= 0)
 return true;
 else
 return false;
 }

 public static bool operator false(ObjState obj)
 {
 if (obj.State >= 0)
 return true;
 else
 return false;
 }

 public override string ToString()
 {
 return State.ToString();
 }
}

Example 3-6. Overloading &, |, true, and false (continued)

84 | Chapter 3: Classes and Structures

This technique gives you complete control over the operations of the &&, ||, and ?:
operators.

Alternatively, you can simply add an implicit conversion to bool:

 public class ObjState
 {
 public ObjState(int state)
 {
 this.State = state;
 }

 public int State {get; set;}

 public static implicit operator bool(ObjState obj)
 {
 if (obj.State == 0)
 throw new InvalidOperationException();
 return (obj.State > 0);
 }
 }

This technique implements strict Boolean logic; the first technique (overriding the
&&, ||, and ?: operators) gives you more freedom to stray from implementing strict
Boolean logic.

Discussion
While you cannot overload the &&, ||, and ?: operators directly, you can overload
them indirectly by overloading the &, |, true, and false operators. The &&, ||, and ?:
operators then use the overloaded &, |, true, and false operators for their calculations.

The && operator indirectly uses the false and & operators to perform a short-circuit-
ing AND operation. Initially, the false operator is invoked to determine whether the
first object is equal to false. If so, the right side of the expression is not evaluated,
and the left side is returned. If the false operator returns a true, the & operator is
invoked next to perform the ANDing operation on the two objects. This initial test
using the false operator enables the operator to short-circuit the operation.

The || operator works the same as the && operator, except that the initial test is done
using the true operator rather than the false operator.

The ?: operator requires that its first argument be an expression of a type which can
either be implicitly converted to bool or which implements operator true. Note that
this, in turn, requires the overloading of the false operator for symmetry. The ?:
operator takes a condition as input and evaluates either converts it to bool or calls
operator true. This operator can be defined as follows:

 condition ? true-expression : false-expression

Making Error-Free Expressions | 85

The ?: operator invokes the true operator to determine which expression of this
operator should be evaluated. Note that if an implicit conversion to bool exists, it
will be used in preference to the true operator.

When implementing these operators, you should first check to determine whether
any parameters in the overloaded operator methods were set to null. The code for
the overloaded & operator has been modified to do this:

 public static ObjState operator &(ObjState obj1, ObjState obj2)
 {
 if (obj1 == null || obj2 == null)
 {
 throw (new ArgumentNullException("Neither object may be null."));
 }
 if (obj1.state >= 0 && obj2.state >= 0)
 return (new ObjState(1));
 else
 return (new ObjState(-1));
 }

See Also
The “Operator Overloading Usage Guidelines,” “Overloadable Operators,” and
“Operator Overloading Tutorial” topics in the MSDN documentation.

3.6 Making Error-Free Expressions

Problem
A complex expression in your code is returning incorrect results. For example, if you
wanted to find the average area given to two circles, you might write the following
expression:

 double radius1 = 2;
 double radius2 = 4;
 double aveArea = .5 * Math.PI * Math.Pow(radius1, 2) + Math.PI *
 Math.Pow(radius2, 2);

However, the result is always incorrect.

Complex mathematical and Boolean equations in your code can easily become the
source of bugs. You need to write bug-free equations, while at the same time making
them easier to read.

Solution
The solution is quite simple: use parentheses to explicitly define the order of opera-
tions that will take place in your equation. If the expression is difficult to get right
even when using parentheses, then it is probably too complex; consider breaking

86 | Chapter 3: Classes and Structures

each subpart or the expression into separate methods for each part of the expression
and then combine the methods to get the final result.

To fix the expression presented in the Problem section, rewrite it as follows:

 double radius1 = 2;
 double radius2 = 4;
 double aveArea = .5 * (Math.PI * Math.Pow(radius1, 2) + Math.PI *
 Math.Pow(radius2, 2));

Notice the addition of the parentheses; these parentheses cause the area of the two cir-
cles to be calculated and added together first. Then the total area is multiplied by .5.
This is the behavior you are looking for. An additional benefit is that the expression
can become easier to read as the parentheses provide clear distinction of what part of
the expression is to be evaluated first. This technique works equally well with Bool-
ean equations.

Discussion
Parentheses are key to writing maintainable and bug-free equations. Not only is your
intention clearly spelled out, but you also override any operator precedence rules
that you might not have taken into account. In fact, the only way to override opera-
tor precedence is to use parentheses. Consider the following equation:

 int x = 1 * 2 - -50 / 4 + 220 << 1;
 Console.WriteLine("x = " + x);

The value 468 is displayed for this equation.

This is the same equation written with parentheses:

 int y = ((1 * 2) - ((-50) / 4) + 220) << 1;
 Console.WriteLine("y = " + y);

The same value (468) is also displayed for this equation. Notice how much easier it is
to read and understand how this equation works when parentheses are used. How-
ever, it is possible to get carried away with the use of parentheses in an equation:

 int z = ((((1 * 2) - ((-50) / 4)) + 220) << (1));
 Console.WriteLine("z = " + z);

This equation also evaluates to 468, but due to the overuse of parentheses, you can
get lost determining where one set of parentheses begins and where it ends. You
should try to balance your placement of parentheses in strategic locations to prevent
oversaturating your equation with parentheses.

Another place where you can get into trouble with operator precedence is when
using a ternary operator (?:), defined as follows:

boolean condition ? true-expression : false-expression

Each type of expression used by this operator is defined as follows:

Making Error-Free Expressions | 87

boolean-expression
This expression must evaluate to a Boolean value or to a value with a type that
has an implicit conversion to bool or one that has a true operator. Depending on
the outcome of this expression, either the true-case-expression or the false-
case-expression will be executed.

true-case-expression
This expression is evaluated when the boolean-expression evaluates to true.

false-case-expression
This expression is evaluated when the boolean-expression evaluates to false.

Either the true-case-expression or the false-case-expression will be evaluated;
never both.

The ternary operator is sometimes able to compact several lines of an if-else state-
ment into a single expression that can fit easily on a single line. This ternary state-
ment is also usable inline with a statement or another expression. The following code
example shows the use of the ternary operator inline with an expression:

 byte x = (byte)(8 + ((foo == 1) ? 4 : 2));

By examining the order of operator precedence, you can see that the == operator has
the highest precedence and the compiler combines the results of this subexpression
to make it be evaluated first, and then the ternary operator. Depending on the result
of the Boolean expression foo == 1, the ternary operator will produce either the
value 4 or 2. This value is then added to 8 and assigned to the variable x.

Expression evaluation in C# is done from left to right in all cases.
Operator precedence affects how the final result is achieved, but the
expression is always evaluated left to right.

This operator is considered to have right-associative properties, similar to the assign-
ment operators. Because of this, you can get into trouble using ternary expressions as
expressions within other ternary expressions. Consider the following code:

 // foo currently equals 1
 // Assume that all methods will always return a Boolean true, except for Method3,
 // which always returns a Boolean false.
 Console.WriteLine(Method1() ? Method2() : Method3() ? Method4() : Method5());

Which methods will be called? If you started determining precedence of the compo-
nents of the expression, your expression would essentially look like the following:

 Console.WriteLine((Method1() ? Method2() : Method3()) ? Method4() : Method5());

Notice the extra highlighted parentheses added to clarify how the precedence will be
determined in this manner. The answer that the methods Method1, Method2, and
Method4 will be called is wrong. The correct answer is that only Method1 and Method2

88 | Chapter 3: Classes and Structures

will be called. Extra highlighted parentheses have been added to this expression in
order to clarify how the precedence is determined:

 Console.WriteLine(Method1() ? Method2() :
(Method3() ? Method4() : Method5()));

This technique will cause Method1 and Method2 to be called in that order. If any of
these methods produced side effects, the application might produce unexpected
results.

Don’t use nested ternary expressions; write out the if tree or a table-
driven solution because that is what the compiler is going to generate
from the nested operators anyway. This will make your code more
debuggable and maintainable.

3.7 Reducing Your Boolean Logic

Problem
Many times a Boolean equation quickly becomes large, complex, and even unman-
ageable. You need a way to manage this complexity while at the same time verifying
that your logic works as designed.

Solution
To fix this situation, try applying the theorems shown in Table 3-1 to minimize these
types of equations.

Table 3-1. Boolean theorems

Theorem ID Theorem definition

T0 !(!x) == x

T1 x | x == x

T2 x | !x == true

T3 (DeMorgan’s Theorem) !x | !y == !(x & y)

T4 x & x == x

T5 x & !x == false

T6 (DeMorgan’s Theorem) !x & !y == !(x | y)

T7 (Commutative Law) x | y == y | x

T8 (Associative Law) (x | y) | z == x | (y | z)

T9 (Distributive Law) x & y | x & z == x & (y | z)

T10 x | x & y = x

T11 x & y | x & !y = x

T12 (x & y) | (!x & z) | (y & z) == (x & y) | (!x & z)

Reducing Your Boolean Logic | 89

In Table 3-1, assume that w, x, y, and z are all variables of type bool. The theorem IDs
allow easy identification of which theorems are being used in the Boolean equations
that are being minimized in the Discussion section.

Discussion
Simplifying your Boolean logic will benefit your code by making it less cluttered and
making its logic clearer and more readily understood. This simplification will lessen
the number of potential locations in your logic where bugs can hide and at the same
time improve maintainability.

Let’s walk through several examples to show how the process of minimizing your
logic works. These examples use the three Boolean variables X, Y, and Z. The names
have been kept simple so that you can concentrate on minimizing the logic and not
have to worry about what the code is trying to do.

The first example uses only the X and Y Boolean variables:

 if (!X & !Y) {...}

From this if statement, you extract the following Boolean logic:

 !X & !Y

Using theorem T6, you can eliminate one operator from this equation:

 !(X | Y)

Now this equation requires only two Boolean operators to be evaluated instead of
three. By the way, you might notice that this equation is a logical NOR operation.

T13 (Commutative Law) x & y == y & x

T14 (Associative Law) (x & y) & z == x & (y & z)

T15 (Distributive Law) (x | y) & (x | z) == x | (y & z)

T16 x & (x | y) = x

T17 (x | y) & (x | !y) = x

T18 (x | y) & (!x | z) & (y | z) == (x | y) & (!x | z)

T19 x | x | x | ... | x == x

T20 !(x | x | x | ... | x) == !x & !x & !x & ... & !x

T21 x & x & x & ... & x == x

T22 !(x & x & x & ... & x) == !x | !x | !x | ... | !x

T23 (x | y) & (w | z) == (x & w) | (x * z) | (y & w) | (y * z)

T24 (x & y) | (w & z) == (x | w) & (x | z) & (y | w) & (y | z)

Table 3-1. Boolean theorems (continued)

Theorem ID Theorem definition

90 | Chapter 3: Classes and Structures

The second example uses the X and Y Boolean variables in a seemingly complex
equation:

 if ((!X & Y) | (X & !Y) | (X & Y)){...}

From this if statement, you extract the Boolean logic:

 (!X & Y) | (X & !Y) | (X & Y)

Using theorem T11, you can simplify the last two parenthesized expressions, yield-
ing X, and obtain the following:

 (!X & Y) | X

This equation is much simpler than the initial equation. In fact, you reduced the
number of operators from seven to three, which is greater than a 2:1 ratio.

Some equations might not seem as if they can be simplified very much, but looks can
be deceiving. Let’s try to simplify the following equation:

 (!X & Y) | (X & !Y)

Using theorem T24, you can derive the following expression:

 (!X | X) & (!X | !Y) & (Y | X) & (Y | !Y)

Using theorem T2, you can remove the first and last parenthesized expressions:

 (!X | !Y) & (Y | X)

Finally, using theorem T3, you can minimize the equation once again to the follow-
ing form:

 !(X & Y) & (Y | X)

You were able to remove only a single operator from this equation. This optimiza-
tion might or might not improve the performance and readability of your code, since
it is such a minor change.

You may think that this expression is in its most reduced form. However, if you
examine this expression more closely, you may notice that it is the equation for the
XOR operator. Knowing this, you can simplify the equation to the following:

 X ^ Y

This technique really shines when you are faced with a large and complex Boolean
expression, such as the one shown here:

 (!X & !Y & !Z) | (!X & Y & Z) | (X & !Y & !Z) | (X & !Y & Z) |
 (X & Y & Z)

Using theorem T9, you get the following equation:

 (!X & ((!Y & !Z) | (Y & Z))) | (X & ((!Y & !Z) | (!Y & Z) |
 (Y & Z)))

Notice that the equation (!Y&!Z)|(Y&Z) is the equivalent of the NOT XOR operation
on Y and Z. So you can simplify this equation much further:

 (!X & !(Y ^ Z)) | (X & ((!Y & !Z) | (!Y & Z) | (Y & Z)))

Converting Between Simple Types in a Programming Language-Agnostic Manner | 91

Using theorem T9, once again, you get the following equation:

 (!X & !(Y ^ Z)) | (X & (!Y & (!Z | Z) | (Y & Z)))

Using theorem T2, you get the final equation:

 (!X & !(Y ^ Z)) | (X & (!Y | (Y & Z)))

This equation is much simpler than the original and requires much less processing to
evaluate as well.

While it is unnecessary in most cases to commit all of these theorems
to memory, you should try to understand them all. In addition, memo-
rizing some of the simpler theorems can come in quite handy in many
circumstances.

The theorems outlined in this recipe should be complete enough to allow you to play
around with minimizing your Boolean equations.

See Also
The “C# Operators” topic in the MSDN documentation.

3.8 Converting Between Simple Types in a
Programming Language-Agnostic Manner

Problem
You need to convert between any two of the following types: bool, char, sbyte, byte,
short, ushort, int, uint, long, ulong, float, double, decimal, DateTime, and string.
Different programming languages sometimes handle specific conversions differently;
you need a way to perform these conversions in a consistent manner across all .NET
languages. One situation in which this recipe is needed is when VB.NET and C#
components communicate within the same application.

Solution
Different programming languages sometimes handle casting of larger numeric types
to smaller numeric types differently—these types of casts are called narrowing con-
versions. For example, consider the following Visual Basic .NET (VB.NET) code,
which casts a Single to an Integer:

 ' Visual Basic .NET Code:
 Dim initialValue As Single
 Dim finalValue As Integer

 initialValue = 13.499
 finalValue = CInt(initialValue)
 Console.WriteLine(finalValue.ToString())

92 | Chapter 3: Classes and Structures

 initialValue = 13.5
 finalValue = CInt(initialValue)
 Console.WriteLine(finalValue.ToString())

 initialValue = 13.501
 finalValue = CInt(initialValue)
 Console.WriteLine(finalValue.ToString())

This code outputs the following:

 13
 14
 14

Notice that the CInt cast in VB.NET uses the fractional portion of the number to
round the resulting number.

Now let’s convert this code to C# using the explicit casting operator:

 // C# Code:
 float initialValue = 0;
 int finalValue = 0;

 initialValue = (float)13.499;
 finalValue = (int)initialValue;
 Console.WriteLine(finalValue.ToString());

 initialValue = (float)13.5;
 finalValue = (int)initialValue;
 Console.WriteLine(finalValue.ToString());

 initialValue = (float)13.501;
 finalValue = (int)initialValue;
 Console.WriteLine(finalValue.ToString());

This code outputs the following:

 13
 13
 13

Notice that the resulting value was not rounded. Instead, the C# casting operator
simply truncates the fractional portion of the number.

Consistently casting numeric types in any language can be done through the static
methods on the Convert class. The previous C# code can be converted to use the
ToInt32 method:

 // C# Code:
 finalValue = Convert.ToInt32((float)13.449);
 Console.WriteLine(finalValue.ToString());

 finalValue = Convert.ToInt32((float)13.5);
 Console.WriteLine(finalValue.ToString());

 finalValue = Convert.ToInt32((float)13.501);
 Console.WriteLine(finalValue.ToString());

Converting Between Simple Types in a Programming Language-Agnostic Manner | 93

This code outputs the following:

 13
 14
 14

Discussion
All conversions performed using methods on the Convert class are considered to be
in a checked context in C#. VB.NET does not have the concept of a checked or
unchecked context, so all conversions are considered to be in a checked context—an
unchecked context cannot be created in VB.NET. An OverflowException will be
thrown in a checked context when a narrowing conversion results in a loss of infor-
mation. This exception is never thrown in an unchecked context when a narrowing
conversion results in a loss of information.

The various conversion methods are listed in Table 3-2.

Converting between any of the data types listed in Table 3-2 is a simple matter. All of
the listed methods are static and exist on the Convert class. Converting one type to
another is performed by first choosing the correct method on the Convert class. This
method will be named after the type you are converting to (e.g., if you are convert-
ing to a char type, the method name would be ToChar). Next, you need to pass the
type that will be cast as the parameter to the Convert method. Finally, set a variable
of the resultant cast type equal to the return value of the Convert method. The fol-
lowing code converts the value in the variable source—defined as a short that

Table 3-2. Conversion methods on the Convert class

Method Use

ToBoolean Convert a type to a bool.

ToChar Convert a type to a char.

ToString Convert a type to a string.

ToDateTime Convert a type to a DateTime.

ToInt16 Convert a type to a short.

ToInt32 Convert a type to an int.

ToInt64 Convert a type to a long.

ToUInt16 Convert a type to a ushort.

ToUInt32 Convert a type to a uint.

ToUInt64 Convert a type to a ulong.

ToByte Convert a type to a byte.

ToSByte Convert a type to an sbyte.

ToSingle Convert a type to a float.

ToDecimal Convert a type to a decimal.

ToDouble Convert a type to a double.

94 | Chapter 3: Classes and Structures

contains a number between 0 and 9—to a char type. This char value is then returned
by the Convert method and assigned to the variable destination. The variable
destination must be defined as a char:

 destination = Convert.ToChar(source);

Sometimes conversions will do nothing. Converting from one type to that same type
will do nothing except return a result that is equivalent to the source value. Take, for
example, using the Convert.ToInt32 method to convert a source variable of type
Int32 to a destination variable of type Int32. This method takes the value obtained
from the source variable and places it in the destination variable.

Some conversions cause exceptions to occur because there is no clear way of convert-
ing between the two types; these attempted conversions are listed in Table 3-3.
Because some conversions may or may not throw an exception—such as converting
from an sbyte to a byte—it is good programming practice to enclose the static con-
version method within a try/catch block. The following code wraps a conversion
between numeric types in a try/catch block:

 try
 {
 finalValue = Convert.ToInt32(SomeFloat);
 }
 catch(OverflowException oe)
 {
 // Handle narrowing conversions that result in a loss
 // of information here.
 }
 catch(InvalidCastException ice)
 {
 // Handle casts that cannot be performed here.
 }

The following code wraps a conversion from a string type to an Int32 in a try/catch
block:

 try
 {
 finalValue = Convert.ToInt32(SomeString);
 }
 catch(OverflowException oe)
 {
 // Handle narrowing conversions that result in a loss
 // of information here.
 }
 catch(ArgumentException ae)
 {
 // Handle nulls passed into the Convert method here.
 }
 catch(FormatException fe)
 {

Converting Between Simple Types in a Programming Language-Agnostic Manner | 95

 // Handle attempts to convert a string that does not contain
 // a value that can be converted to the destination type here.
 }
 catch(Exception e)
 {
 // Handle all other exceptions here.
 }

Table 3-3 shows exceptions that are made when some conversions occur.

Table 3-3. Cases in which a source-to-destination-type conversion throws an exception

Destination Source Exception type

bool Char
DateTime

InvalidCastException

byte DateTime InvalidCastException

char Bool
DateTime
decimal
double
float

InvalidCastException

DateTime Bool
byte
sbyte
char
decimal
double
short
int
long
ushort
uint
ulong
float

InvalidCastException

decimal Char
DateTime

InvalidCastException

double Char
DateTime

InvalidCastException

Short DateTime InvalidCastException

Int DateTime InvalidCastException

Long DateTime InvalidCastException

sbyte DateTime InvalidCastException

float Char
DateTime

InvalidCastException

ushort DateTime InvalidCastException

uint DateTime InvalidCastException

ulong DateTime InvalidCastException

96 | Chapter 3: Classes and Structures

Notice that the string type can be converted to any type, and that any type may be
converted to a string type—assuming that the source string is not null and con-
forms to the destination type’s range and format.

The most insidious problems can occur when a larger type is converted to a smaller
type in an unchecked context; the potential exists for information to be lost. Code
runs in an unchecked context if the conversion is contained in an unchecked block or
if the /checked compiler option is set to false (by default, this compiler option is set
to false in both debug and release builds). An example of code contained in an
unchecked block is as follows:

 short destination = 0;
 int source = Int32.MaxValue;
 unchecked(destination = (short)source);

byte sbyte
decimal
double
short
int
long
ushort
uint
ulong
float

OverFlowException (if source is out of the range of destination)

sbyte Byte
decimal
double
short
int
long
ushort
uint
ulong
float

OverFlowException (if source is out of the range of destination)

short ushort OverFlowException (if source is out of the range of destination)

ushort short OverFlowException (if source is out of the range of destination)

int uint OverFlowException (if source is out of the range of destination)

uint sbyte
short
int

OverFlowException (if source is out of the range of destination)

long ulong OverFlowException (if source is out of the range of destination)

ulong sbyte
short
int
long

OverFlowException (if source is out of the range of destination)

Any type string ArgumentException (if source string is null) or
FormatException (if source string represents an invalid value for
the destination type)

Table 3-3. Cases in which a source-to-destination-type conversion throws an exception (continued)

Destination Source Exception type

Determining When to Use the cast Operator, the as Operator, or the is Operator | 97

or:

 unchecked
 {
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
 }

A checked context is when the conversion is contained in a checked block or if the /
checked compiler option is set to true. An example of code contained in a checked
block is as follows:

 short destination = 0;
 int source = Int32.MaxValue;
 checked(destination =(short)source);

or:

 checked
 {
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
 }

This code throws an OverflowException exception if any loss of information would
occur. This allows the application to be notified of the overflow condition and to
handle it properly.

The Convert method is always considered to operate in a checked context, even when
no other type of checked context wraps the code performing the conversion.

See Also
The “checked Keyword,” “unchecked Keyword,” “Checked and Unchecked,” and
“Convert Class” topics in the MSDN documentation.

3.9 Determining When to Use the cast Operator, the
as Operator, or the is Operator

Problem
You need to determine which operator is best in your situation—the cast (type)
operator, the as operator, or the is operator.

Solution
Use the information provided in the Discussion section to determine which operator
is best to use.

98 | Chapter 3: Classes and Structures

Discussion
Use the cast operator when:

• You are converting a reference type to a reference type.

• You are converting a value type to a value type.

• You are performing a boxing or unboxing conversion.

• You are invoking a user-defined conversion. The is and as operators cannot
handle this type of cast.

Use the as operator when:

• It is not acceptable for the InvalidCastException to be thrown. The as operator
will instead return a null if the cast cannot be performed.

• You are converting a reference type to a reference type.

• You are not casting a value type to a value type. The cast operator must be used
in this case.

• You are performing a boxing conversion.

• You are not performing an unboxing conversion. The cast operator must be used
in this case unless the unboxing is to a nullable type.

• You are not invoking a user-defined conversion. The cast operator must be used
in this case.

• You are performing a cast to a type parameter T that can be only a reference
type. This is because a null may be returned after evaluating this expression.

Use the is operator when:

• You need a fast method of determining whether using the as operator will return
null before it is attempted.

• You do not need to actually cast a variable from one data type to another; you
just need to determine if the variable can be cast to a specific type.

• It is not acceptable for the InvalidCastException to be thrown.

• You are not casting a value type to a value type. The cast operator must be used
in this case.

• You are not invoking a user-defined conversion. Unlike the as operator, a com-
pile-time error is not displayed when using the is operator with a user-defined
conversion. This is operator will instead always return a false value, regardless
of whether the cast can successfully be performed.

See Also
Recipes 3.9 and 3.11; see the “() Operator,” “as Operator,” and “is Operator” top-
ics in the MSDN documentation.

Casting with the as Operator | 99

3.10 Casting with the as Operator

Problem
Ordinarily, when you attempt a casting operation, the .NET Common Language
Runtime generates an InvalidCastException if the cast fails. Often, though, you can-
not guarantee in advance that a cast will succeed, but you also do not want the over-
head of handling an InvalidCastException.

Solution
Use the as operator. The as operator attempts the conversion operation, but if the
conversion fails, the expression returns a null instead of throwing an exception. If
the conversion succeeds, the expression returns the converted value. The code that
follows shows how the as operator is used:

 public static void ConvertObj(Specific specificObj)
 {
 Base baseObj = specificObj as Base;
 if (baseObj == null)
 {
 // Cast failed.
 }
 else
 {
 // Cast was successful.
 }
 }

where the Specific type derives from the Base type:

 public class Base {}
 public class Specific : Base {}

In this code fragment, the as operator is used to attempt to convert the SpecificObj
to the type Base. The next lines contain an if-else statement that tests the variable
baseObj to determine whether it is equal to null. If it is equal to null, you should pre-
vent any use of this variable, since it might cause a NullReferenceException to be
thrown.

Discussion
The as operator has the following syntax:

expression as type

The expression and type are defined as follows:

expression
An expression.

type
The type to which to convert the object represented by expression.

100 | Chapter 3: Classes and Structures

This operation returns expression converted to the type defined by type if the con-
version succeeds. If the conversion fails, a null is returned, and an
InvalidCastException is not thrown. This operator does not work with user-defined
conversions (either explicit or implicit).

This method allows a System.Drawing.Point structure to be cast to an object of type
MyPoint. Due to the use of the explicit keyword, the conversion must be explicit:

 System.Drawing.Point systemPt = new System.Drawing.Point(0, 0);
 MyPoint pt = (MyPoint)systemPt;

If you attempt to use the as operator in a user-defined conversion, the following
compiler error is shown:

 Cannot convert type 'MyPoint' to 'Point' via a built-in conversion

An unboxing conversion converts a previously boxed value type to its original value
type or to a nullable instance of the type:

 int x = 5;
 object obj = x; // Box x
 int originalX = obj as int; // Attempt to unbox obj into an integer.

If you attempt to use the as operator in an unboxing conversion, the following com-
piler error is shown:

 The as operator must be used with a reference type or nullable type
 ('int' is a value type)

This is illegal because as indicates that the cast cannot be performed by returning
null, but there is no such thing as a null value for an int.

The as operator cannot be used with a type parameter T when T could be a struct, for
the same reason as previously mentioned. The following code will not compile:

 public class TestAsOp<T>
 {
 public T ConvertSomething(object obj)
 {
 return (obj as T);
 }
 }

because T could be anything since it is not constrained. If you constrain T to be only a
reference type, as shown here:

 public class TestAsOp<T>
 where T: class
 {
 public T ConvertSomething(object obj)
 {
 return (obj as T);
 }
 }

your code will compile successfully, since T cannot be a struct.

Determining a Variable’s Type with the is Operator | 101

See Also
Recipes 3.13 and 3.14; see the “() Operator,” “as Operator,” and “is Operator” top-
ics in the MSDN documentation.

3.11 Determining a Variable’s Type with the is
Operator

Problem
A method exists that creates an object from one of several types of classes. This
object is then returned as a generic object type. Based on the type of object that was
initially created in the method, you want to branch to different logic.

Solution
Use the is operator. This operator returns a Boolean true or false, indicating
whether the cast is legal, but the cast never actually occurs.

Suppose you have four different point classes:

 public class Point2D {...}
 public class Point3D {...}
 public class ExPoint2D : Point2D {...}
 public class ExPoint3D : Point3D {...}

Next, you have a method that accepts an integer value, and based on this value, one
of the four specific point types is returned:

 public object CreatePoint(PointTypeEnum pointType)
 {
 switch (pointType)
 {
 case PointTypeEnum.Point2D:
 return (new Point2D());
 case PointTypeEnum.Point3D:
 return (new Point3D());
 case PointTypeEnum.ExPoint2D:
 return (new ExPoint2D());
 case PointTypeEnum.ExPoint3D:
 return (new ExPoint3D());
 default:
 return (null);
 }
 }

where the PointTypeEnum is defined as:

 public enum PointTypeEnum
 {
 Point2D, Point3D, ExPoint2D, ExPoint3D
 }

102 | Chapter 3: Classes and Structures

Finally, you have a method that calls the CreatePoint method. This method handles
the point object type returned from the CreatePoint method based on the actual
point object returned:

 public void CreateAndHandlePoint()
 {
 // Create a new point object and return it.
 object retObj = CreatePoint(PointTypeEnum.Point2D);

 // Handle the point object based on its actual type.
 if (retObj is ExPoint2D)
 {
 Console.WriteLine("Use the ExPoint2D type");
 }
 else if (retObj is ExPoint3D)
 {
 Console.WriteLine("Use the ExPoint3D type");
 }
 else if (retObj is Point2D)
 {
 Console.WriteLine("Use the Point2D type");
 }
 else if (retObj is Point3D)
 {
 Console.WriteLine("Use the Point3D type");
 }
 else
 {
 Console.WriteLine("Invalid point type");
 }
 }

Notice that the tests for the ExPoint2D and ExPoint3D objects are performed before
the tests for Point2D and Point3D. This order will allow you to differentiate between
base classes and their derived classes (ExPoint2D derives from Point2D and ExPoint3D
derives from Point3D). If you had reversed these tests, the test for Point2D would eval-
uate to true for both the Point2D class and its derivatives (ExPoint2D).

Discussion
The is operator is a fast and easy method of predetermining whether a cast will
work. If the cast fails, you have saved yourself the overhead of trying the cast and
handling a thrown exception. If the is operator determines that this cast can success-
fully be performed, all you need to do is perform the cast.

The is operator is defined as follows:

expression is type

Determining a Variable’s Type with the is Operator | 103

The expression and type are defined as follows:

expression
A type.

type
The type to which to convert to.

This expression returns a Boolean value: true if the cast will succeed or false if the
conversion will fail. For example:

 if (SpecificObj is Base)
 {
 // It is of type Base.
 }
 else
 {
 // Cannot cast SpecificObj to a Base type object.
 }

Never use the is operator with a user-defined conversion (either
explicit or implicit). The is operator always returns false when used
with these types of conversions, regardless of whether the conversion
can be performed.

The following code determines whether an unboxing operation can be performed:

 // An int is passed in to this method and boxed.
 public void SomeMethod(object o)
 {
 if (o is int)
 {
 // o can be unboxed.
 // It is now possible to cast o to an int.
 int x = (int)o;
 }
 else
 {
 // Cannot unbox o.
 }
 }

The is operator is used to determine whether o can be unboxed back into an int.
The integer variable x. is then declared, and the value of object variable o is unboxed
into x. This is the one case in which it is absolutely necessary to use is if you want to
avoid an exception. You can’t use as here because there is no such thing as a null
int, so it cannot tell you if the unboxing fails.

See Also
Recipes 3.9 and 3.10; see the “() Operator,” “as Operator,” and “is Operator” top-
ics in the MSDN documentation.

104 | Chapter 3: Classes and Structures

3.12 Returning Multiple Items from a Method

Problem
In many cases, a single return value for a method is not enough. You need a way to
return more than one item from a method.

Solution
Use the out keyword on parameters that will act as return parameters. The following
method accepts an inputShape parameter and calculates height, width, and depth
from that value:

 public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
 {
 height = 0;
 width = 0;
 depth = 0;

 // Calculate height, width, and depth from the inputShape value.
 }

This method would be called in the following manner:

 // Declare output parameters.
 int height;
 int width;
 int depth;

 // Call method and return the height, width, and depth.
 Obj.ReturnDimensions(1, out height, out width, out depth);

Another method is to return a class or structure containing all the return values. The
previous method has been modified to return a structure instead of using out
arguments:

 public Dimensions ReturnDimensions(int inputShape)
 {
 // The default ctor automatically defaults this structure's members to 0.
 Dimensions objDim = new Dimensions();

 // Calculate objDim.Height, objDim.Width, objDim.Depth from the inputShape
value.

 return objDim;
 }

where Dimensions is defined as follows:

Returning Multiple Items from a Method | 105

 public struct Dimensions
 {
 public int Height;
 public int Width;
 public int Depth;
 }

This method would now be called in this manner:

 // Call method and return the height, width, and depth.
 Dimensions objDim = obj.ReturnDimensions(1);

Discussion
Marking a parameter in a method signature with the out keyword indicates that this
parameter will be initialized and returned by this method. This trick is useful when a
method is required to return more than one value. A method can, at most, have only
one return value, but through the use of the out keyword, you can mark several
parameters as a kind of return value.

To set up an out parameter, the parameter in the method signature is marked with
the out keyword, shown here:

 public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
 {
 ...
 }

To call this method, you must also mark the calling method’s arguments with the out
keyword, shown here:

 obj.ReturnDimensions(1, out height, out width, out depth);

The out arguments in this method call do not have to be initialized; they can simply
be declared and passed in to the ReturnDimensions method. Regardless of whether
they are initialized before the method call, they must be initialized before they are
used within the ReturnDimensions method. Even if they are not used through every
path in the ReturnDimensions method, they still must be initialized. That is why this
method starts out with the following three lines of code:

 height = 0;
 width = 0;
 depth = 0;

You may be wondering why you couldn’t use a ref parameter instead of the out
parameter, as both allow a method to change the value of an argument marked as
such. The answer is that an out parameter makes the code somewhat self-document-
ing. You know that when an out parameter is encountered, this parameter is acting
as a return value. In addition, an out parameter does not require the extra work to be
initialized before it is passed in to the method, which a ref parameter does.

106 | Chapter 3: Classes and Structures

An out parameter does not have to be marshaled when the method is
called; rather, it is marshaled once when the method returns the data
to the caller. Any other type of call (by-value or by-reference using the
ref keyword) requires that the value be marshaled in both directions.
Using the out keyword in marshaling scenarios improves remoting
performance.

3.13 Parsing Command-Line Parameters

Problem
You require your applications to accept one or more command-line parameters in a
standard format. You need to access and parse the entire command line passed to
your application.

Solution
In Example 3-7, use the following classes together to help with parsing command-
line parameters: Argument, ArgumentDefinition, and ArgumentSemanticAnalyzer.

Example 3-7. Argument class

using System;
using System.Diagnostics;
using System.Linq;
using System.Collections.ObjectModel;

public sealed class Argument
{
 public string Original { get; private set; }
 public string Switch { get; private set; }
 public ReadOnlyCollection<string> SubArguments { get; private set; }
 private List<string> subArguments;
 public Argument(string original)
 {
 Original = original;
 Switch = string.Empty;
 subArguments = new List<string>();
 SubArguments = new ReadOnlyCollection<string>(subArguments);
 Parse();
 }

 private void Parse()
 {
 if (string.IsNullOrEmpty(Original))
 {
 return;
 }
 char[] switchChars = { '/', '-' };
 if (!switchChars.Contains(Original[0]))

Parsing Command-Line Parameters | 107

 {
 return;
 }
 string switchString = Original.Substring(1);
 string subArgsString = string.Empty;
 int colon = switchString.IndexOf(':');
 if (colon >= 0)
 {
 subArgsString = switchString.Substring(colon + 1);
 switchString = switchString.Substring(0, colon);
 }
 Switch = switchString;
 if (!string.IsNullOrEmpty(subArgsString))
 subArguments.AddRange(subArgsString.Split(';'));
 }

 public bool IsSimple
 { get { return SubArguments.Count == 0; } }
 public bool IsSimpleSwitch
 { get { return !string.IsNullOrEmpty(Switch) && SubArguments.Count == 0; } }
 public bool IsCompoundSwitch
 { get { return !string.IsNullOrEmpty(Switch) && SubArguments.Count == 1; } }
 public bool IsComplexSwitch
 { get { return !string.IsNullOrEmpty(Switch) && SubArguments.Count > 0; } }
}

public sealed class ArgumentDefinition
{
 public string ArgumentSwitch { get; private set; }
 public string Syntax { get; private set; }
 public string Description { get; private set; }
 public Func<Argument, bool> Verifier { get; private set; }

 public ArgumentDefinition(string argumentSwitch,
 string syntax,
 string description,
 Func<Argument, bool> verifier)
 {
 ArgumentSwitch = argumentSwitch.ToUpper();
 Syntax = syntax;
 Description = description;
 Verifier = verifier;
 }

 public bool Verify(Argument arg)
 {
 return Verifier(arg);
 }
}

public sealed class ArgumentSemanticAnalyzer
{

Example 3-7. Argument class (continued)

108 | Chapter 3: Classes and Structures

 private List<ArgumentDefinition> argumentDefinitions =
 new List<ArgumentDefinition>();
 private Dictionary<string, Action<Argument>> argumentActions =
 new Dictionary<string, Action<Argument>>();

 public ReadOnlyCollection<Argument> UnrecognizedArguments { get; private set; }
 public ReadOnlyCollection<Argument> MalformedArguments { get; private set; }
 public ReadOnlyCollection<Argument> RepeatedArguments { get; private set; }

 public ReadOnlyCollection<ArgumentDefinition> ArgumentDefinitions
 {
 get { return new ReadOnlyCollection<ArgumentDefinition>(argumentDefinitions); }
 }

 public IEnumerable<string> DefinedSwitches
 {
 get
 {
 return from argumentDefinition in argumentDefinitions
 select argumentDefinition.ArgumentSwitch;
 }
 }

 public void AddArgumentVerifier(ArgumentDefinition verifier)
 {
 argumentDefinitions.Add(verifier);
 }

 public void RemoveArgumentVerifier(ArgumentDefinition verifier)
 {
 var verifiersToRemove = from v in argumentDefinitions
 where v.ArgumentSwitch == verifier.ArgumentSwitch
 select v;
 foreach (var v in verifiersToRemove)
 argumentDefinitions.Remove(v);
 }

 public void AddArgumentAction(string argumentSwitch, Action<Argument> action)
 {
 argumentActions.Add(argumentSwitch, action);
 }

 public void RemoveArgumentAction(string argumentSwitch)
 {
 if (argumentActions.Keys.Contains(argumentSwitch))
 argumentActions.Remove(argumentSwitch);
 }

 public bool VerifyArguments(IEnumerable<Argument> arguments)
 {
 // no parameter to verify with, fail.
 if (!argumentDefinitions.Any())

Example 3-7. Argument class (continued)

Parsing Command-Line Parameters | 109

 return false;

 // Identify if any of the arguments are not defined
 this.UnrecognizedArguments =
 (from argument in arguments
 where !DefinedSwitches.Contains(argument.Switch.ToUpper())
 select argument).ToList().AsReadOnly();

 if (this.UnrecognizedArguments.Any())
 return false;

 //Check for all the arguments where the switch matches a known switch,
 //but our well-formedness predicate is false.
 this.MalformedArguments = (from argument in arguments
 join argumentDefinition in argumentDefinitions
 on argument.Switch.ToUpper() equals
 argumentDefinition.ArgumentSwitch
 where !argumentDefinition.Verify(argument)
 select argument).ToList().AsReadOnly();

 if (this.MalformedArguments.Any())
 return false;

 //Sort the arguments into "groups" by their switch, count every group,
 //and select any groups that contain more than one element,
 //We then get a read only list of the items.
 this.RepeatedArguments =
 (from argumentGroup in
 from argument in arguments
 where !argument.IsSimple
 group argument by argument.Switch.ToUpper()
 where argumentGroup.Count() > 1
 select argumentGroup).SelectMany(ag => ag).ToList().AsReadOnly();

 if (this.RepeatedArguments.Any())
 return false;

 return true;
 }

 public void EvaluateArguments(IEnumerable<Argument> arguments)
 {
 //Now we just apply each action:
 foreach (Argument argument in arguments)
 argumentActions[argument.Switch.ToUpper()](argument);
 }

 public string InvalidArgumentsDisplay()
 {
 StringBuilder builder = new StringBuilder();
 builder.AppendFormat("Invalid arguments: {0}",Environment.NewLine);
 // Add the unrecognized arguments

Example 3-7. Argument class (continued)

110 | Chapter 3: Classes and Structures

One example of how to use these classes to process the command line for an applica-
tion is shown here:

public static void Main(string[] argumentStrings)
{
 var arguments = (from argument in argumentStrings
 select new Argument(argument)).ToArray();

 Console.Write("Command line: ");
 foreach (Argument a in arguments)
 {
 Console.Write(a.Original + " ");
 }
 Console.WriteLine("");

 FormatInvalidArguments(builder, this.UnrecognizedArguments,
 "Unrecognized argument: {0}{1}");

 // Add the malformed arguments
 FormatInvalidArguments(builder, this.MalformedArguments,
 "Malformed argument: {0}{1}");

 // For the repeated arguments, we want to group them for the display,
 // so group by switch and then add it to the string being built.
 var argumentGroups = from argument in this.RepeatedArguments
 group argument by argument.Switch.ToUpper() into ag
 select new { Switch = ag.Key, Instances = ag};

 foreach (var argumentGroup in argumentGroups)
 {
 builder.AppendFormat("Repeated argument: {0}{1}",
 argumentGroup.Switch, Environment.NewLine);
 FormatInvalidArguments(builder, argumentGroup.Instances.ToList(),
 "\t{0}{1}");
 }
 return builder.ToString();
 }

 private void FormatInvalidArguments(StringBuilder builder,
 IEnumerable<Argument> invalidArguments, string errorFormat)
 {
 if (invalidArguments != null)
 {
 foreach (Argument argument in invalidArguments)
 {
 builder.AppendFormat(errorFormat,
 argument.Original, Environment.NewLine);
 }
 }
 }
}

Example 3-7. Argument class (continued)

Parsing Command-Line Parameters | 111

 ArgumentSemanticAnalyzer analyzer = new ArgumentSemanticAnalyzer();
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("output",
 "/output:[path to output]",
 "Specifies the location of the output file.",
 x => x.IsCompoundSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("trialMode",
 "/trialmode",
 "If this is specified it places the product into trial mode",
 x => x.IsSimpleSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("DeBuGoUtPuT",
 "/debugoutput:[value1];[value2];[value3]",
 "A listing of the files the debug output information will be written to",
 x => x.IsComplexSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("",
 "[literal value]",
 "A literal value",
 x => x.IsSimple));

 if (!analyzer.VerifyArguments(arguments))
 {
 string invalidArguments = analyzer.InvalidArgumentsDisplay();
 Console.WriteLine(invalidArguments);
 ShowUsage(analyzer);
 return;
 }

 // Set up holders for the comand line parsing results
 string output = string.Empty;
 bool trialmode = false;
 IEnumerable<string> debugOutput = null;
 List<string> literals = new List<string>();

 //For each parsed argument, we want to apply an action, so add them to the
analyzer.
 analyzer.AddArgumentAction("OUTPUT", x => { output = x.SubArguments[0]; });
 analyzer.AddArgumentAction("TRIALMODE", x => { trialmode = true; });
 analyzer.AddArgumentAction("DEBUGOUTPUT", x => { debugOutput = x.SubArguments;
});
 analyzer.AddArgumentAction("", x=>{literals.Add(x.Original);});

 // check the arguments and run the actions
 analyzer.EvaluateArguments(arguments);

 // display the results
 Console.WriteLine("");
 Console.WriteLine("OUTPUT: {0}", output);
 Console.WriteLine("TRIALMODE: {0}", trialmode);
 if (debugOutput != null)
 {
 foreach (string item in debugOutput)

112 | Chapter 3: Classes and Structures

 {
 Console.WriteLine("DEBUGOUTPUT: {0}", item);
 }
 }
 foreach (string literal in literals)
 {
 Console.WriteLine("LITERAL: {0}",literal);
 }

 // Run the program passing in the argument values:
 Program program = new Program(output, trialmode, debugOutput, literals);
 program.Run();
}

public static void ShowUsage(ArgumentSemanticAnalyzer analyzer)
{
 Console.WriteLine("Program.exe allows the following arguments:");
 foreach (ArgumentDefinition definition in analyzer.ArgumentDefinitions)
 {
 Console.WriteLine("\t{0}: ({1}){2}\tSyntax: {3}",
 definition.ArgumentSwitch, definition.Description,
 Environment.NewLine,definition.Syntax);
 }
}

Discussion
Before command-line parameters can be parsed, a common format must first be
decided upon. The format for this recipe follows the command-line format for the
Visual C# .NET language compiler. The format used is defined as follows:

• All command-line arguments are separated by one or more whitespace characters.

• Each argument may start with either a - or / character, but not both. If it does
not, that argument is considered a literal, such as a filename.

• Each argument that starts with either the - or / character may be divided up into
a switch followed by a colon followed by one or more arguments separated with
the ; character. The command-line parameter -sw:arg1;arg2;arg3 is divided up
into a switch (sw) and three arguments (arg1, arg2, and arg3). Note that there
should not be any spaces in the full argument; otherwise, the runtime command-
line parser will split up the argument into two or more arguments.

• Strings delineated with double quotes, such as "c:\test\file.log", will have
their double quotes stripped off. This is a function of the operating system inter-
preting the arguments passed in to your application.

• Single quotes are not stripped off.

• To preserve double quotes, precede the double quote character with the \ escape
sequence character.

Parsing Command-Line Parameters | 113

• The \ character is handled as an escape sequence character only when followed
by a double quote—in which case, only the double quote is displayed.

• The ^ character is handled by the runtime command-line parser as a special
character.

Fortunately, the runtime command-line parser handles most of this before your
application receives the individual parsed arguments.

The runtime command-line parser passes a string[] containing each parsed argu-
ment to the entry point of your application. The entry point can take one of the
following forms:

 public static void Main()
 public static int Main()
 public static void Main(string[] args)
 public static int Main(string[] args)

The first two accept no arguments, but the last two accept the array of parsed com-
mand-line arguments. Note that the static Environment.CommandLine property will
also return a string containing the entire command line, and the static Environment.
GetCommandLineArgs method will return an array of strings containing the parsed
command-line arguments.

The three classes presented in the Solution address the phases of dealing with the
command-line arguments:

Argument
Encapsulates a single command-line argument and is responsible for parsing the
argument.

ArgumentDefinition
Defines an argument that will be valid for the current command line.

ArgumentSemanticAnalyzer
Performs the verification and retrieval of the arguments based on the
ArgumentDefinitions that are set up.

Passing in the following command-line arguments to this application:

 MyApp c:\input\infile.txt -output:d:\outfile.txt -trialmode

results in the following parsed switches and arguments:

Command line: c:\input\infile.txt -output:d:\outfile.txt -trialmode
OUTPUT: d:\outfile.txt
TRIALMODE: True
LITERAL: c:\input\infile.txt

If you input incorrectly formed command-line parameters, such as forgetting to add
arguments to the -output switch, you get the following output:

Command line: /output
Invalid arguments:
Malformed argument: /output

114 | Chapter 3: Classes and Structures

Program.exe allows the following arguments:
 OUTPUT: (Specifies the location of the output file.)
 Syntax: /output:[path to output]
 TRIALMODE: (If this is specified, it places the product into trial mode)
 Syntax: /trialmode
 DEBUGOUTPUT: (A listing of the files the debug output information will be
written to)
 Syntax: /debugoutput:[value1];[value2];[value3]
 : (A literal value)
 Syntax: [literal value]

There are a few items of note in the code that are worth pointing out.

Each Argument instance needs to be able to determine certain things about itself. In
order to do this, a set of predicates that tell us useful stuff about this Argument are
exposed as properties on the Argument. The ArgumentSemanticAnalyzer will use these
to determine the characteristics of the argument:

 public bool IsSimple
 { get { return SubArguments.Count == 0; } }
 public bool IsSimpleSwitch
 { get { return !string.IsNullOrEmpty(Switch) && SubArguments.Count == 0; } }
 public bool IsCompoundSwitch
 { get { return !string.IsNullOrEmpty(Switch) && SubArguments.Count == 1; } }
 public bool IsComplexSwitch
 { get { return !string.IsNullOrEmpty(Switch) && SubArguments.Count > 0; } }

In a number of places in the code, the ToArray or ToList methods are called on the
result of a LINQ query:

 var arguments = (from argument in argumentStrings
 select new Argument(argument)).ToArray();

This is because query results use deferred execution, which means that not only are
the results calculated in a lazy manner, but that they are recalculated every time the
results are accessed. By using the ToArray or ToList methods, it forces the eager eval-
uation of the results and gives a copy that will not re-evaluate during each usage. The
query logic does not know if the collection being worked on is changing or not, so it
has to re-evaluate each time unless you make a “point in time” copy using these
methods.

To verify that these arguments are correct, an ArgumentDefinition is created and
associated for each acceptable argument type with the ArgumentSemanticAnalyzer:

 ArgumentSemanticAnalyzer analyzer = new ArgumentSemanticAnalyzer();
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("output",
 "/output:[path to output]",
 "Specifies the location of the output file.",
 x => x.IsCompoundSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("trialMode",
 "/trialmode",
 "If this is specified it places the product into trial mode",

Parsing Command-Line Parameters | 115

 x => x.IsSimpleSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("DeBuGoUtPuT",
 "/debugoutput:[value1];[value2];[value3]",
 "A listing of the files the debug output information will be written to",
 x => x.IsComplexSwitch));
 analyzer.AddArgumentVerifier(
 new ArgumentDefinition("",
 "[literal value]",
 "A literal value",
 x => x.IsSimple));

There are four parts to each ArgumentDefinition; the argument switch, a string show-
ing the syntax of the argument, a description of the argument, and the verification
predicate to verify the argument. This information can be used to verify the argu-
ment, as shown here:

 //Check for all the arguments where the switch matches a known switch,
 //but our well-formedness predicate is false.
 this.MalformedArguments = (from argument in arguments
 join argumentDefinition in argumentDefinitions
 on argument.Switch.ToUpper() equals
 argumentDefinition.ArgumentSwitch
 where !argumentDefinition.Verify(argument)
 select argument).ToList().AsReadOnly();

The ArgumentDefinitions also allow the composition of a usage method for the
program:

public static void ShowUsage(ArgumentSemanticAnalyzer analyzer)
{
 Console.WriteLine("Program.exe allows the following arguments:");
 foreach (ArgumentDefinition definition in analyzer.ArgumentDefinitions)
 {
 Console.WriteLine("\t{0}: ({1}){2}\tSyntax: {3}",
 definition.ArgumentSwitch, definition.Description,
 Environment.NewLine,definition.Syntax);
 }
}

In order to get the values of the arguments so they can be used, the information
needs to be extracted out of the parsed arguments. For the solution example, we
would need the following information:

 // Set up holders for the comand line parsing results
 string output = string.Empty;
 bool trialmode = false;
 IEnumerable<string> debugOutput = null;
 List<string> literals = new List<string>();

How are these values filled in? Well, for each Argument, there needs to be an action
associated with it to determine how the value should be retrieved from an Argument
instance. The action is a predicate, which makes this a very powerful approach, as

116 | Chapter 3: Classes and Structures

any predicate can be used here. Here is where those Argument actions are defined and
associated with the ArgumentSemanticAnalyzer:

 //For each parsed argument, we want to apply an action, so add them to the
analyzer.
 analyzer.AddArgumentAction("OUTPUT", x => { output = x.SubArguments[0]; });
 analyzer.AddArgumentAction("TRIALMODE", x => { trialmode = true; });
 analyzer.AddArgumentAction("DEBUGOUTPUT", x => { debugOutput = x.SubArguments;
});
 analyzer.AddArgumentAction("", x=>{literals.Add(x.Original);});

Now that all of the actions are set up, we can retrieve the values by using the
EvaluateArguments method on the ArgumentSemanticAnalyzer:

 // check the arguments and run the actions
 analyzer.EvaluateArguments(arguments);

Now the arguments have been filled in by the execution of the actions, and the pro-
gram can run with those values:

 // Run the program passing in the argument values:
 Program program = new Program(output, trialmode, debugOutput, literals);
 program.Run();

The verification of the arguments uses LINQ to query for unrecognized, malformed,
or repeated arguments, any of which will cause the parameters to be invalid:

 public bool VerifyArguments(IEnumerable<Argument> arguments)
 {
 // no parameter to verify with, fail.
 if (!argumentDefinitions.Any())
 return false;

 // Identify if any of the arguments are not defined
 this.UnrecognizedArguments =
 (from argument in arguments
 where !DefinedSwitches.Contains(argument.Switch.ToUpper())
 select argument).ToList().AsReadOnly();

 if (this.UnrecognizedArguments.Any())
 return false;

 //Check for all the arguments where the switch matches a known switch,
 //but our well-formedness predicate is false.
 this.MalformedArguments = (from argument in arguments
 join argumentDefinition in argumentDefinitions
 on argument.Switch.ToUpper() equals
 argumentDefinition.ArgumentSwitch
 where !argumentDefinition.Verify(argument)
 select argument).ToList().AsReadOnly();

 if (this.MalformedArguments.Any())
 return false;

Initializing a Constant Field at Runtime | 117

 //Sort the arguments into "groups" by their switch, count every group,
 //and select any groups that contain more than one element,
 //We then get a read only list of the items.
 this.RepeatedArguments =
 (from argumentGroup in
 from argument in arguments
 where !argument.IsSimple
 group argument by argument.Switch.ToUpper()
 where argumentGroup.Count() > 1
 select argumentGroup).SelectMany(ag => ag).ToList().AsReadOnly();

 if (this.RepeatedArguments.Any())
 return false;

 return true;
 }

Look at how much easier to understand each phase of the verification is, compared
with how this would be done before LINQ with multiply nested loops, switches,
IndexOfs, and other mechanisms. Each query concisely states in the language of the
problem domain what task it is attempting to perform.

LINQ is designed to help with problems where data must be sorted,
searched, grouped, filtered, and projected. Use it!

See Also
The “Main” and “Command-Line Arguments” topics in the MSDN documentation.

3.14 Initializing a Constant Field at Runtime

Problem
A field marked as const can be initialized only at compile time. You need to initialize
a field to a valid value at runtime, not at compile time. This field must then act as if it
were a constant field for the rest of the application’s life.

Solution
You have two choices when declaring a constant value in your code. You can use a
readonly field or a const field. Each has its own strengths and weaknesses. However,
if you need to initialize a constant field at runtime, you must use a readonly field:

 public class Foo
 {
 public readonly int bar;

 public Foo() {}

118 | Chapter 3: Classes and Structures

 public Foo(int constInitValue)
 {
 bar = constInitValue;
 }

 // Rest of class...
 }

This is not possible using a const field. A const field can be initialized only at com-
pile time:

 public class Foo
 {
 public const int bar; // This line causes a compile-time error.

 public Foo() {}

 public Foo(int constInitValue)
 {
 bar = constInitValue; // This line also causes a compile-time error.
 }
 // Rest of class...
 }

Discussion
A readonly field allows initialization to take place only in the constructor at runtime,
whereas a const field must be initialized at compile time. Therefore, implementing a
readonly field is the only way to allow a field that must be constant to be initialized
at runtime.

There are only two ways to initialize a readonly field. The first is by adding an initial-
izer to the field itself:

 public readonly int bar = 100;

The second way is to initialize the readonly field through a constructor. This is dem-
onstrated through the code in the Solution to this recipe.

If you look at the following class:

 public class Foo
 {
 public readonly int x;
 public const int y = 1;

 public Foo() {}
 public Foo(int roInitValue)
 {
 x = roInitValue;
 }

 // Rest of class...
 }

Initializing a Constant Field at Runtime | 119

You’ll see it is compiled into the following IL:

 .class public auto ansi beforefieldinit Foo
 extends [mscorlib]System.Object
 {
 .field public static literal int32 y = int32(0x00000001) //<<-- const field
 .field public initonly int32 x //<<-- readonly field
 .method public hidebysig specialname rtspecialname
 instance void .ctor(int32 input) cil managed
 {
 // Code size 14 (0xe)
 .maxstack 8
 //001659: }
 //001660: }

 //001666: public class Foo
 //001667: {
 //001668: public readonly int x;
 //001669: public const int y = 1;
 //001670:
 //001671: public Foo(int roInitValue)
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 //001672: {
 //001673: x = input;
 IL_0006: ldarg.0
 IL_0007: ldarg.1
 IL_0008: stfld int32 Foo::x
 //001674 }
 IL_000d: ret
 } // End of method Foo::.ctor

 } // End of class Foo

Notice that a const field is compiled into a static field, and a readonly field is com-
piled into an instance field. Therefore, you need only a class name to access a const
field.

A common argument against using const fields is that they do not ver-
sion as well as readonly fields. If you rebuild a component that defines
a const field and the value of that const changes in a later version, any
other components that were built against the old version won’t pick
up the new value. If there is any chance that a field is going to change,
don’t make it a const field.

The following code shows how to use an instance readonly field:

 Foo obj1 = new Foo(100);
 Console.WriteLine(obj1.bar);

120 | Chapter 3: Classes and Structures

Those two lines compile into the following IL:

 IL_0013: ldc.i4 0xc8
 IL_0018: newobj instance void Foo::.ctor(int32)
 IL_001d: stloc.1
 IL_001e: ldloc.1
 IL_001f: ldfld int32 Foo::bar

See Also
The “const” and “readonly” keywords in the MSDN documentation.

3.15 Building Cloneable Classes

Problem
You need a method of performing a shallow cloning operation, a deep cloning opera-
tion, or both on a data type that may also reference other types, but the ICloneable
interface should not be used, as it violates the .NET Framework Design Guidelines.

Solution
To resolve the issue with using ICloneable, create two other interfaces to establish a
copying pattern, IShallowCopy<T> and IDeepCopy<T>:

public interface IShallowCopy<T>
{
 T ShallowCopy();
}
public interface IDeepCopy<T>
{
 T DeepCopy();
}

Shallow copying means that the copied object’s fields will reference the same objects
as the original object. To allow shallow copying, implement the IShallowCopy<T>
interface in the class:

using System;
using System.Collections;
using System.Collections.Generic;

public class ShallowClone : IShallowCopy<ShallowClone>
{
 public int Data = 1;
 public List<string> ListData = new List<string>();
 public object ObjData = new object();

 public ShallowClone ShallowCopy()
 {
 return (ShallowClone)this.MemberwiseClone();
 }
}

Building Cloneable Classes | 121

Deep copying or cloning means that the copied object’s fields will reference new cop-
ies of the original object’s fields. To allow deep copying, implement the IDeepCopy<T>
interface in the class:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

[Serializable]
public class DeepClone : IDeepCopy<DeepClone>
{
 public int data = 1;
 public List<string> ListData = new List<string>();
 public object objData = new object();

 public DeepClone DeepCopy()
 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (DeepClone)BF.Deserialize(memStream);
 }
}

To support both shallow and deep methods of copying, implement both interfaces.
The code might appear as follows:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

[Serializable]
public class MultiClone : IShallowCopy<MultiClone>,
 IDeepCopy<MultiClone>
{
 public int data = 1;
 public List<string> ListData = new List<string>();
 public object objData = new object();

 public MultiClone ShallowCopy()
 {
 return (MultiClone)this.MemberwiseClone();
 }

122 | Chapter 3: Classes and Structures

 public MultiClone DeepCopy()
 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (MultiClone)BF.Deserialize(memStream);
 }
}

Discussion
The .NET Framework has an interface named ICloneable, which was originally
designed to be how cloning is implemented in .NET. The design recommendation is
now that this interface not be used in any public API. The reason is that it lends itself
to different interpretations. The interface looks like this:

public interface ICloneable
{
 object Clone();
}

Notice that there is a single method Clone that returns an object. Is the clone a shal-
low copy of the object or a deep copy? You can’t know from the interface, as the
implementation could go either way. This is why it should not be used, and the
IShallowCopy<T> and IDeepCopy<T> interfaces are introduced here.

Cloning is the ability to make an exact copy (a clone) of an instance of a type.
Cloning may take one of two forms: a shallow copy or a deep copy. Shallow copying
is relatively easy. It involves copying the object that the ShallowCopy method was
called on.

The reference type fields in the original object are copied over, as are the value-type
fields. This means that if the original object contains a field of type StreamWriter, for
instance, the cloned object will point to this same instance of the original object’s
StreamWriter; a new object is not created.

There is no need to deal with static fields when performing a cloning
operation. There is only one memory location reserved for each static
field per class, per application domain. Besides, the cloned object will
have access to the same static fields as the original.

Support for shallow copying is implemented by the MemberwiseClone method of the
Object class, which serves as the base class for all .NET classes. So, the following
code allows a shallow copy to be created and returned by the Clone method:

Building Cloneable Classes | 123

 public ShallowClone ShallowCopy()
 {
 return (ShallowClone)this.MemberwiseClone();
 }

Making a deep copy is the second way of cloning an object. A deep copy will make a
copy of the original object just as the shallow copy does. However, a deep copy will
also make separate copies of each reference type field in the original object. There-
fore, if the original object contains a StreamWriter type field, the cloned object will
also contain a StreamWriter type field, but the cloned object’s StreamWriter field will
point to a new StreamWriter object, not the original object’s StreamWriter object.

Support for deep copying is not automatically provided by the .NET Framework.
Instead, the following code illustrates an easy way of implementing a deep copy:

 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (BF.Deserialize(memStream));

Basically, the original object is serialized out to a memory stream using binary serial-
ization, and then it is deserialized into a new object, which is returned to the caller.
Note that it is important to reposition the memory stream pointer back to the start of
the stream before calling the Deserialize method; otherwise, an exception indicat-
ing that the serialized object contains no data will be thrown.

Performing a deep copy using object serialization allows the underlying object to be
changed without having to modify the code that performs the deep copy. If you per-
formed the deep copy by hand, you’d have to make a new instance of all the instance
fields of the original object and copy them over to the cloned object. This is a tedious
chore in and of itself. If a change is made to the fields of the object being cloned, the
deep copy code must also change to reflect this modification. Using serialization, you
rely on the serializer to dynamically find and serialize all fields contained in the
object. If the object is modified, the serializer will still make a deep copy without any
code modifications.

One reason you might want to do a deep copy by hand is that the serialization tech-
nique presented in this recipe works properly only when everything in your object is
serializable. Of course, manual cloning doesn’t always help there either—some
objects are just inherently noncloneable. Suppose you have a network management
application in which an object represents a particular printer on your network.
What’s it supposed to do when you clone it? Fax a purchase order for a new printer?

One problem inherent with deep copying is performing a deep copy on a nested data
structure with circular references. This recipe manages to make it possible to deal

124 | Chapter 3: Classes and Structures

with circular references, although it’s a tricky problem. So, in fact, you don’t need to
avoid circular references if you are using this recipe.

See Also
“Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET
Libraries” by Krzysztof Cwalina and Brad Abrams, and the “Object.Memberwise-
Clone Method” topic in the MSDN documentation.

3.16 Assuring an Object’s Disposal

Problem
You require a way to always have something happen when an object’s work is done
or it goes out of scope.

Solution
Use the using statement:

 using System;
 using System.IO;

 // ...

 using(FileStream FS = new FileStream("Test.txt", FileMode.Create))
 {
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
 }

Discussion
The using statement is very easy to use and saves you the hassle of writing extra
code. If the Solution had not used the using statement, it would look like this:

 FileStream FS = new FileStream("Test.txt", FileMode.Create);
 try
 {

 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 StreamWriter SW = new StreamWriter(FS);

Assuring an Object’s Disposal | 125

 try
 {
 SW.WriteLine("some text.");
 }
 finally
 {
 if (SW != null)
 {
 ((IDisposable)SW).Dispose();
 }
 }
 }
 finally
 {
 if (FS != null)
 {
 ((IDisposable)FS).Dispose();
 }
 }

Several points to note about the using statement:

• There is a using directive, such as:
 using System.IO;

which should be differentiated from the using statement. This is potentially con-
fusing to developers first getting into this language.

• The variable(s) defined in the using statement clause must all be of the same
type, and they must have an initializer. However, you are allowed multiple using
statements in front of a single code block, so this isn’t a significant restriction.

• Any variables defined in the using clause are considered read-only in the body of
the using statement. This prevents a developer from inadvertently switching the
variable to refer to a different object and causing problems when an attempt is
made to dispose of the object that the variable initially referenced.

• The variable should not be declared outside of the using block and then initial-
ized inside of the using clause.

This last point is described by the following code:

 FileStream FS;
 using(FS = new FileStream("Test.txt", FileMode.Create))
 {
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
 }

126 | Chapter 3: Classes and Structures

For this example code, you will not have a problem. But consider that the variable FS
is usable outside of the using block. Essentially, you could revisit this code and mod-
ify it as follows:

 FileStream FS;
 using(FS = new FileStream("Test.txt", FileMode.Create))
 {

 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
 }
 FS.WriteByte((byte)4);

This code compiles but throws an ObjectDisposedException on the last line of this
code snippet because the Dispose method has already been called on the FS object.
The object has not yet been collected at this point and still remains in memory in the
disposed state.

See Also
Recipe 3.17, and the “IDispose Interface,” “Using foreach with Collections,” and
“Implementing Finalize and Dispose to Clean up Unmanaged Resources” topics in
the MSDN documentation.

3.17 Disposing of Unmanaged Resources

Problem
Your class references unmanaged resources and needs to ensure proper cleanup
before it goes away.

Solution
Implement the dispose design pattern, which is specific to .NET.

The class that contains a reference to the unmanaged resources is shown here as Foo.
This object contains references to a COM object called SomeCOMObj, a FileStream
object called FStream, and an ArrayList that may or may not contain references to
unmanaged resources. The source code is shown in Example 3-8.

Disposing of Unmanaged Resources | 127

Example 3-8. Foo: A class that contains references to unmanaged code

using System;
using System.Collections;
using System.IO;
using System.Runtime.InteropServices;

public class Foo : IDisposable
{
 [DllImport("Kernel32.dll", SetLastError = true)]
 private static extern IntPtr CreateSemaphore(IntPtr lpSemaphoreAttributes,
 int lInitialCount, int lMaximumCount, string lpName);

 [DllImport("Kernel32.dll", SetLastError = true)]
 private static extern bool ReleaseSemaphore(IntPtr hSemaphore,
 int lReleaseCount, out IntPtr lpPreviousCount);

 public Foo() {}

 // Replace SomeCOMObj with your COM object type.
 private SomeCOMObj comObj = new SomeCOMObj();
 private FileStream fileStream = new FileStream(@"c:\test.txt",
 FileMode.OpenOrCreate);
 private ArrayList aList = new ArrayList();
 private bool hasBeenDisposed = false;
 private IntPtr hSemaphore = IntPtr.Zero; // Unmanaged handle

 // Protect these members from being used on a disposed object.
 public void WriteToFile(string text)
 {
 if(hasBeenDisposed)
 {
 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 UnicodeEncoding enc = new UnicodeEncoding();
 fileStream.Write(enc.GetBytes(text), 0, text.Length);
 }
 public void UseCOMObj()
 {
 if(hasBeenDisposed)
 {
 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 Console.WriteLine("GUID: " + comObj.GetType().GUID);
 }

 public void AddToList(object obj)
 {
 if(hasBeenDisposed)
 {

128 | Chapter 3: Classes and Structures

 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 aList.Add(obj);
 }

 public void CreateSemaphore()
 {
 // Create unmanaged handle here.
 hSemaphore = CreateSemaphore(IntPtr.Zero, 5, 5, null);
 }

 // The Dispose methods
 public void Dispose()
 {
 Dispose(true);
 }

 protected virtual void Dispose(bool disposeManagedObjs)
 {
 if (!hasBeenDisposed)
 {
 try
 {
 if (disposeManagedObjs)
 {
 // Dispose all items in an array or ArrayList.
 foreach (object obj in aList)
 {
 IDisposable disposableObj = obj as IDisposable;
 if (disposableObj != null)
 {
 disposableObj.Dispose();
 }
 }
 // Dispose managed objects implementing IDisposable.
 fileStream.Close();

 // Reduce reference count on RCW.
 Marshal.ReleaseComObject(comObj);

 GC.SuppressFinalize(this);
 }
 // Release unmanaged handle here.
 IntPtr prevCnt = new IntPtr();
 ReleaseSemaphore(hSemaphore, 1, out prevCnt);
 }
 catch (Exception)
 {
 hasBeenDisposed = false;
 throw;

Example 3-8. Foo: A class that contains references to unmanaged code (continued)

Disposing of Unmanaged Resources | 129

The following class inherits from Foo:

 // Class inherits from an IDisposable class
 public class Bar : Foo
 {
 //...

 private bool hasBeenDisposed = false;

 protected override void Dispose(bool disposeManagedObjs)
 {
 if (!hasBeenDisposed)
 {
 try
 {
 if(disposeManagedObjs)
 {
 // Call Dispose/Close/Clear on any managed objects here...
 }

 // Release any unmanaged objects here...

 // Call base class' Dispose method.
 base.Dispose(disposeManagedObjs);
 }
 catch (Exception)
 {
 hasBeenDisposed = false;
 throw;
 }

 hasBeenDisposed = true;
 }
 }
 }

 }

 hasBeenDisposed = true;
 }
}

 // The destructor
 ~Foo()
 {
 Dispose(false);
 }
 // Optional Close method
 public void Close()
 {
 Dispose();
 }
}

Example 3-8. Foo: A class that contains references to unmanaged code (continued)

130 | Chapter 3: Classes and Structures

Whether this class directly contains any references to unmanaged resources, it
should be disposed of as shown in the code.

Discussion
The dispose design pattern allows any unmanaged resources held by an object to be
cleaned up from within the managed environment. This pattern is flexible enough to
allow unmanaged resources held by the disposable object to be cleaned up explicitly
(by calling the Dispose method) or implicitly (by waiting for the garbage collector to
call the destructor). Finalizers are a safety net to clean up objects when you forget to
do it.

This design pattern should be used on any base class that has derived
types that hold unmanaged resources. This indicates to the inheritor
that this design pattern should be implemented in their derived class
as well.

All the code that needs to be written for a disposable object is written within the
class itself. First, all disposable types must implement the IDisposable interface. This
interface contains a single method, Dispose, which accepts no parameters and
returns void. The Dispose method is overloaded to accept a Boolean flag indicating
whether any managed objects referenced by this object should also be disposed. If
this parameter is true, managed objects referenced by this object will have their
Dispose method called, and unmanaged resources are released; otherwise, only
unmanaged resources are released.

The IDisposable.Dispose method will forward its call to the overloaded Dispose
method that accepts a Boolean flag. This flag will be set to true to allow all managed
objects to attempt to dispose of themselves as well as to release unmanaged resources
held by this object.

The IDisposable interface is very important to implement. This interface allows the
using statement to take advantage of the dispose pattern. A using statement that
operates on the Foo object is written as follows:

 using (Foo f = new Foo())
 {
 f.WriteToFile("text");
 }

Always implement the IDisposable interface on types that contain
resources that need to be disposed or otherwise explicitly closed or
released. This allows the use of the using keyword and aids in self-doc-
umenting the type.

A foreach loop will also make use of the IDisposable interface, but in a slightly dif-
ferent manner. After the loop exits, the Dispose method is called for each object. The

Disposing of Unmanaged Resources | 131

foreach loop guarantees that it will call the IDisposable.Dispose method if the object
returned from the GetEnumerator method implements IDisposable.

The overloaded Dispose method that accepts a Boolean flag contains a static method
call to GC.SuppressFinalize to force the garbage collector to remove this object from
the fqueue, or finalization queue. The fqueue allows the garbage collector to run C#
finalizers at a point after the object has been freed. However, this ability comes at a
price: it takes many garbage-collection cycles to completely collect an object with a
destructor. If the object is placed on the fqueue in generation 0, the object will have
to wait until generation 1 is collected, which could be some time, as there are many
more generation 0 collections than generation 1 (and many more generation 1 than
generation 2). The GC.SuppressFinalize method removes the object from the fqueue
because it doesn’t need specific code run for the finalizer; the memory can just be
released. Calling this static method from within the Dispose method is critical to
writing better-performing classes.

Call the GC.SuppressFinalize method in the base class Dispose method
when the overload of the Dispose method is passed true. Doing so will
allow your object to be taken off of the finalization queue in the gar-
bage collector, allowing for earlier collection. This will help prevent
memory retention and will help your application’s performance, as
resources that need finalization are usually expensive, and cleaning
them up earlier is a good thing.

A finalizer is added to this class, and it contains code to call the overloaded Dispose
method, passing in false as its only argument. Note that all cleanup code should
exist within the overloaded Dispose method that accepts a Boolean flag. All other
methods should call this method to perform any necessary cleanup. The destructor
will pass a false value into the Dispose method to prevent any managed objects from
being disposed. Remember, the finalizers run in their own thread. Attempting to dis-
pose of objects that may have already been collected or are about to be collected
could have serious consequences for your code, such as resurrecting an object into
an undefined state. It is best to prevent any references to other objects while the
destructor is running.

It is possible to add a Close or even a Clear method to your class to be called as well
as the Dispose method. Several classes in the FCL use a Close or Clear method to
clean up unmanaged resources:

 FileStream.Close()
 StreamWriter.Close()
 TcpClient.Close()
 MessageQueue.Close()
 SymmetricAlgorithm.Clear()
 AsymmetricAlgorithm.Clear()
 CryptoAPITransform.Clear()
 CryptoStream.Clear()

132 | Chapter 3: Classes and Structures

Each of these classes also contains a Dispose method. The Clear method usually calls
the Dispose method directly. There is a problem with this design. The Clear method
is used extensively throughout the FCL for classes such as ArrayList, Hashtable, and
other collection-type classes. However, the Clear method of the collection classes
performs a much different task: it clears the collection of all its items. This Clear
method has nothing to do with releasing unmanaged resources or calling the Dispose
method.

The overloaded Dispose method that accepts a Boolean flag will contain all of the
logic to release unmanaged resources from this object as well as possibly calling
Dispose on types referenced by this object. In addition to these two actions, this
method can also reduce the reference count on any COM objects that are referenced
by this object. The static Marshal.ReleaseComObject method will decrement the refer-
ence count by one on the COM object reference passed in to this method:

 Marshal.ReleaseComObject(comObj);

To force the reference count to go to zero, allowing the COM object to be released
and its RCW to be garbage collected, you could write the following code:

 while (Marshal.ReleaseComObject(comObj) > 0);

Take great care when forcing the reference count to zero for a COM
object. If another object is using this COM object, the COM object
will be released out from under this other object. This can easily desta-
bilize a system and should be avoided unless absolutely necessary.

Any callable method/property/indexer (basically, any nonprivate method except for
the Dispose and Close methods and the constructor[s] and the destructor) should
throw the ObjectDisposedException exception if it is called after the object has been
disposed—that is, after its Dispose method has been called. A private field called
hasBeenDisposed is used as a Boolean flag to indicate whether this object has been
disposed; a true confirms that it has been disposed. This flag is checked to deter-
mine whether this object has been disposed at the beginning of every method/prop-
erty/indexer. If it has been disposed, the ObjectDisposedException is thrown. This
prevents the use of an object after it has been disposed and potentially placed in an
unknown state.

Disposable objects should always check to see if they have been dis-
posed in all of their public methods, properties, and indexers. If a cli-
ent attempts to use your object after it has been disposed, an
ObjectDisposedException should be thrown. Note that a Dispose
method can be called multiple times after this object has been dis-
posed without having any side effects (including the throwing of
ObjectDisposedExceptions) on the object.

Determining Where Boxing and Unboxing Occur | 133

Any classes inheriting from Foo need not implement the IDisposable interface; it is
implied from the base class. The inheriting class should implement the
hasBeenDisposed Boolean flag field and use this flag in any methods/properties/index-
ers to confirm that this object has been disposed. Finally, a Dispose method is imple-
mented that accepts a Boolean flag and overrides the same virtual method in the base
class. This Dispose method does not have to call the GC.SuppressFinalize(this)
static method; this is done in the base class’s Dispose method.

The IDisposable.Dispose method should not be implemented in this class. When the
Dispose method is called on an object of type Bar, the Foo.Dispose method will be
called. The Foo.Dispose method will then call the overridden Bar.Dispose(bool)
method, which, in turn, calls its base class Dispose(bool) method, Foo.
Dispose(bool). The base class’s finalizer is also inherited by the Bar class.

All Dispose methods should call their base class’ Dispose method.

If the client code fails to call the Dispose or Close method, the destructor will run,
and the Dispose(bool) method will still be called, albeit at a later time. The finalizer
is the object’s last line of defense for releasing unmanaged resources.

See Also
The “Dispose Interface,” “Using foreach with Collections,” and “Implementing
Finalize and Dispose to Clean up Unmanaged Resources” topics in the MSDN
documentation.

3.18 Determining Where Boxing and Unboxing Occur

Problem
You have a project consisting of some very complex code that is a performance bot-
tleneck for the entire application. You have been assigned to increase performance,
but you do not know where to start looking.

Solution
A great way to start looking for performance problems is to set a customer-focused
goal for what level of performance you want to achieve. The old saying “if we don’t
know where we are going, anyplace will do” is very appropriate for performance tun-
ing, as lots of time and money can be spent in pursuit of gains that may or may not
be necessary if no goals are set to measure them against. To reach the goal, you can
use a profiling tool to see whether boxing is actually causing you any kind of prob-
lem in the first place. A profiler will show you exactly what allocations are occurring

134 | Chapter 3: Classes and Structures

and in what volume. There are several profilers on the market; some are free and oth-
ers are not.

If you have already established through profiling that boxing is definitely causing a
problem, but you are still having trouble working out where it’s occurring, then you
can use the Ildasm disassembler tool that is packaged with VS.NET. With Ildasm, you
can convert an entire project to its equivalent IL code and then dump the IL to a text
file. To do this, Ildasm has several command-line switches, one of which is the /output
switch. This switch is used as follows:

 ildasm Proj1.dll /output:Proj1.il

This command will disassemble the file Proj1.dll and then write the disassembled IL
to the file Proj1.il.

A second useful command-line switch is /source. This switch shows the original
code (C#, VB.NET, etc.) in which this DLL was written, as well as the IL that was
compiled from each of these source lines. Note that the DLL must be built with
debugging enabled. This switch is used as follows:

 ildasm Proj1.dll /output:Proj1.il /source

We prefer the second method of invoking Ildasm, since the original source is
included, preventing you from getting lost in all of the IL code.

After running Ildasm from the command line, open the resulting IL code file in VS.
NET or your favorite editor. Inside the editor, do a text search for the words box,
unbox, or callvirt. This will find all potential occurrences of boxing and unboxing
operations.

Using this information, you have pinpointed the problem areas. Now, you can turn
your attention to them to see if there is any way to prevent or minimize the boxing/
unboxing operations.

Discussion
When a boxing or unboxing operation occurs in code, whether it was implicit or
explicit, the IL generated includes the box or unbox command. For example, the fol-
lowing C# code:

 int valType = 1;
 object boxedValType = valType;
 valType = (int)boxedValType;

compiles to the following IL code:

 //000883: int valType = 1;
 IL_0000: ldc.i4.1
 IL_0001: stloc.0
 //000884: object boxedValType = valType;
 IL_0002: ldloc.0
 IL_0003: box [mscorlib]System.Int32
 IL_0008: stloc.1

Determining Where Boxing and Unboxing Occur | 135

 //000898: int valType = (int) boxedValType;
 IL_0061: ldloc.1
 IL_0062: unbox [mscorlib]System.Int32
 IL_0067: ldind.i4

Notice the box and unbox commands in the previous IL code. IL makes it very appar-
ent when a boxing or unboxing operation occurs. You can use this to your advan-
tage to find and hopefully prevent a boxing operation from occurring.

The following can help prevent or eliminate boxing:

1. Use classes instead of structures. This usually involves simply changing the
struct keyword to class in the structure definition. This change can dramati-
cally improve performance. However, this change should be done in a very care-
ful manner, as it can change the operation of the application.

2. If you are storing value types in a collection, switch to using a generic collection.
This makes it easier for the compiler to help enforce proper usage, helps to catch
bugs, and is more self-documenting. The generic collection can be instantiated
for the specific value type that you will be storing in it. This allows you to create
a collection that is strongly typed for that specific value type. Not only will using
a generic collection alleviate the boxing/unboxing issue, but it will also speed
things up because there are fewer casts to perform when adding, removing, and
looking up values in this collection.

3. Take care when implementing explicit interface members on structures. As the
discussion shows, this causes the structure to be boxed before the call to an
interface member is made through the interface. This reflects the fact that
explicit implementation of a method on an interface is accessible only from the
interface type. This means that the structure must be cast to that interface type
before the explicitly declared methods of that interface type can be used. An
interface is a reference type and therefore causes the structure to be boxed when
an explicit interface method is accessed on that structure. However, in some
cases, this isn’t true. For example, the using statement issues an IL instruction to
prevent boxing when calling the Dispose method—assuming that an implicit
interface implementation is used.

Note that changes to a value type that exists in both boxed and
unboxed form occur independently of one another.

See Also
The “Boxing Conversion” and “Unboxing Conversion” topics in the MSDN
documentation.

136 | Chapter 3: Classes and Structures

Here is a list of some available profiling tools:

• Allocation Profiler (free), which can be obtained in the UserSamples section of
the web site http://www.gotdotnet.com/community/usersamples/.

• Red Gate ANTS Profiler (purchase), which can be purchased at http://www.red-
gate.com/products/ants_profiler/.

• Visual Studio Team System for Developers.

• Team Suite (purchase), which can be purchased at http://msdn2.microsoft.com/
en-us/teamsystem/aa718822.aspx.

http://www.gotdotnet.com/community/usersamples/
http://www.red-gate.com/products/ants_profiler/
http://www.red-gate.com/products/ants_profiler/
http://msdn2.microsoft.com/en-us/teamsystem/aa718822.aspx
http://msdn2.microsoft.com/en-us/teamsystem/aa718822.aspx

137

Chapter 4 CHAPTER 4

Generics4

4.0 Introduction
Generics are an extremely useful feature that allows you to write type safe and effi-
cient collection- and pattern-based code. This aspect of generics is described in Reci-
pes 4.1 and 4.2. With generics comes quite a bit of programming power, but with
that power comes the responsibility to use it correctly. If you are considering con-
verting your ArrayList, Queue, Stack, and Hashtable objects to use their generic coun-
terparts, consider reading Recipes 4.3, 4.4, and 4.9. As you will read, the conversion
is not always simple and easy, and there are reasons why you might not want to do
this conversion at all.

Some recipes in this chapter, such as Recipe 4.5, deal with other generic classes con-
tained in the .NET Framework. Still, others deal with the operation of any generic
type; see Recipes 4.1, 4.7, and 4.11.

4.1 Deciding When and Where to Use Generics

Problem
You want to use generic types in a new project or convert nongeneric types in an
existing project to their generic equivalent. However, you do not really know why
you would want to do this, and you do not know which nongeneric types should be
converted to be generic.

Solution
In deciding when and where to use generic types, you need to consider several
things:

138 | Chapter 4: Generics

• Will your type contain or be operating on various unspecified data types (e.g., a
collection type)? If so, creating a generic type will offer several benefits over
creating a nongeneric type. If your type will operate on only a single specific
type, then you may not need to create a generic type.

• If your type will be operating on value types, so that boxing and unboxing opera-
tions will occur, you should consider using generics to prevent the boxing and
unboxing operations.

• The stronger type checking associated with generics will aid in finding errors
sooner (i.e., during compile time as opposed to runtime), thus shortening your
bug-fixing cycle.

• Is your code suffering from “code bloat,” with you writing multiple classes to
handle different data types on which they operate (e.g., a specialized ArrayList
that stores only StreamReaders and another that stores only StreamWriters)? It is
easier to write the code once and have it just work for each of the data types it
operates on.

• Generics allow for greater clarity of code. By eliminating code bloat and forcing
stronger type checking on your types, your code will be easier to read and under-
stand.

Discussion
In most cases, your code will benefit from using a generic type. Generics allow for
more efficient code reuse, faster performance, stronger type checking, and easier-to-
read code.

See Also
The “Generics Overview” and “Benefits of Generics” topics in the MSDN
documentation.

4.2 Understanding Generic Types

Problem
You need to understand how the .NET types work for generics and how Generic .NET
types differ from regular .NET types.

Solution
A couple of quick experiments can show the differences between regular .NET types
and generic .NET types. When a regular .NET type is defined, it looks like the
FixedSizeCollection type defined in Example 4-1.

Understanding Generic Types | 139

Example 4-1. FixedSizeCollection: a regular .NET type

public class FixedSizeCollection
{
 /// <summary>
 /// Constructor that increments static counter
 /// and sets the maximum number of items
 /// </summary>
 /// <param name="maxItems"></param>
 public FixedSizeCollection(int maxItems)
 {
 FixedSizeCollection.InstanceCount++;
 this.Items = new object[maxItems];
 }

 /// <summary>
 /// Add an item to the class whose type
 /// is unknown as only object can hold any type
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the index of the item added</returns>
 public int AddItem(object item)
 {
 if (this.ItemCount < this.Items.Length)
 {
 this.Items[this.ItemCount] = item;
 return this.ItemCount++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class
 /// </summary>
 /// <param name="index">the index of the item to get</param>
 /// <returns>an item of type object</returns>
 public object GetItem(int index)
 {
 if (index >= this.Items.Length &&
 index >= 0)
 throw new ArgumentOutOfRangeException("index");

 return this.Items[index];
 }

 #region Properties
 /// <summary>
 /// Static instance counter hangs off of the Type for
 /// StandardClass
 /// </summary>
 public static int InstanceCount { get; set; }

 /// <summary>

140 | Chapter 4: Generics

FixedSizeCollection has a static integer property variable, InstanceCount, which is
incremented in the instance constructor, and a ToString() override that prints out
how many instances of FixedSizeCollection exist in this AppDomain.
FixedSizeCollection also contains an array of objects(Items), the size of which is
determined by the item count passed in to the constructor. It implements methods to
add and retrieve items (AddItem, GetItem) and a read-only property to get the number
of items currently in the array (ItemCount).

The FixedSizeCollection<T> type is a generic .NET type with the same static prop-
erty InstanceCount field, the instance constructor that counts the number of instanti-
ations, and the overridden ToString() method to tell you how many instances there
are of this type. FixedSizeCollection<T> also has an Items array property and meth-
ods corresponding to those in FixedSizeCollection, as you can see in Example 4-2.

 /// The count of the items the class holds
 /// </summary>
 public int ItemCount { get; private set; }

 /// <summary>
 /// The items in the class
 /// </summary>
 private object[] Items { get; set; }
 #endregion // Properties

 /// <summary>
 /// ToString override to provide class detail
 /// </summary>
 /// <returns>formatted string with class details</returns>
 public override string ToString()
 {
 return "There are " + FixedSizeCollection.InstanceCount.ToString() +
 " instances of " + this.GetType().ToString() +
 " and this instance contains " + this.ItemCount + " items...";
 }
}

Example 4-2. FixedSizeCollection<T>: a generic .NET type

/// <summary>
/// A generic class to show instance counting
/// </summary>
/// <typeparam name="T">the type parameter used for the array storage</typeparam>
public class FixedSizeCollection<T>
{
 /// <summary>
 /// Constructor that increments static counter and sets up internal storage
 /// </summary>
 /// <param name="items"></param>
 public FixedSizeCollection(int items)
 {

Example 4-1. FixedSizeCollection: a regular .NET type (continued)

Understanding Generic Types | 141

 FixedSizeCollection<T>.InstanceCount++;
 this.Items = new T[items];
 }

 /// <summary>
 /// Add an item to the class whose type
 /// is determined by the instantiating type
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the zero-based index of the item added</returns>
 public int AddItem(T item)
 {
 if (this.ItemCount < this.Items.Length)
 {
 this.Items[this.ItemCount] = item;
 return this.ItemCount++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class
 /// </summary>
 /// <param name="index">the zero-based index of the item to get</param>
 /// <returns>an item of the instantiating type</returns>
 public T GetItem(int index)
 {
 if (index >= this.Items.Length &&
 index >= 0)
 throw new ArgumentOutOfRangeException("index");

 return this.Items[index];
 }

 #region Properties
 /// <summary>
 /// Static instance counter hangs off of the
 /// instantiated Type for
 /// GenericClass
 /// </summary>
 public static int InstanceCount { get; set; }

 /// <summary>
 /// The count of the items the class holds
 /// </summary>
 public int ItemCount { get; private set; }

 /// <summary>
 /// The items in the class
 /// </summary>
 private T[] Items { get; set; }

Example 4-2. FixedSizeCollection<T>: a generic .NET type (continued)

142 | Chapter 4: Generics

Things start to get a little different with FixedSizeCollection<T> when you look at
the Items array property implementation. The Items array is declared as:

 private T[] Items { get; set; }

instead of:

 private object[] Items { get; set; }

The Items array property uses the type parameter of the generic class (<T>) to deter-
mine what type of items are allowed. FixedSizeCollection uses object for the Items
array property type, which allows any type to be stored in the array of items (since all
types are convertible to object), while FixedSizeCollection<T> provides type safety
by allowing the type parameter to dictate what types of objects are permitted. Notice
also that the properties have no associated private backing field declared for storing
the array. This is an example of using the new Automatically Implemented Proper-
ties in C# 3.0. Under the covers, the C# compiler is creating a storage element of the
type of the property, but you don’t have to write the code for the property storage
anymore if you don’t have specific code that has to execute when accessing the prop-
erties. To make the property read-only, simply mark the set; declaration private.

The next difference is visible in the method declarations of AddItem and GetItem.
AddItem now takes a parameter of type T, whereas in FixedSizeCollection, it took a
parameter of type object. GetItem now returns a value of type T, whereas in
FixedSizeCollection, it returned a value of type object. These changes allow the
methods in FixedSizeCollection<T> to use the instantiated type to store and retrieve
the items in the array, instead of having to allow any object to be stored as in
FixedSizeCollection:

 /// <summary>
 /// Add an item to the class whose type
 /// is determined by the instantiating type
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the zero-based index of the item added</returns>
 public int AddItem(T item)

 #endregion // Properties

 /// <summary>
 /// ToString override to provide class detail
 /// </summary>
 /// <returns>formatted string with class details</returns>
 public override string ToString()
 {
 return "There are " + FixedSizeCollection<T>.InstanceCount.ToString() +
 " instances of " + this.GetType().ToString() +
 " and this instance contains " + this.ItemCount + " items...";
 }
}

Example 4-2. FixedSizeCollection<T>: a generic .NET type (continued)

Understanding Generic Types | 143

 {
 if (this.ItemCount < this.Items.Length)
 {
 this.Items[this.ItemCount] = item;
 return this.ItemCount++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class
 /// </summary>
 /// <param name="index">the zero-based index of the item to get</param>
 /// <returns>an item of the instantiating type</returns>
 public T GetItem(int index)
 {
 if (index >= this.Items.Length &&
 index >= 0)
 throw new ArgumentOutOfRangeException("index");

 return this.Items[index];
 }

This provides a few advantages. First and foremost is the type safety provided by
FixedSizeCollection<T> for items in the array. It was possible to write code like this
in FixedSizeCollection:

 // Regular class
 FixedSizeCollection C = new FixedSizeCollection(5);
 Console.WriteLine(C);

 string s1 = "s1";
 string s2 = "s2";
 string s3 = "s3";
 int i1 = 1;

 // Add to the fixed size collection (as object).
 C.AddItem(s1);
 C.AddItem(s2);
 C.AddItem(s3);
 // Add an int to the string array, perfectly OK.
 C.AddItem(i1);

But FixedSizeCollection<T> will give a compiler error if you try the same thing:

 // Generic class
 FixedSizeCollection<string> gC = new FixedSizeCollection<string>(5);
 Console.WriteLine(gC);

 string s1 = "s1";
 string s2 = "s2";
 string s3 = "s3";
 int i1 = 1;

144 | Chapter 4: Generics

 // Add to the generic class (as string).
 gC.AddItem(s1);
 gC.AddItem(s2);
 gC.AddItem(s3);
 // Try to add an int to the string instance, denied by compiler.
 // error CS1503: Argument '1': cannot convert from 'int' to 'string'
 //gC.AddItem(i1);

Having the compiler prevent this before it can become the source of runtime bugs is
a very good thing.

It may not be immediately noticeable, but the integer is actually boxed when it is
added to the object array in FixedSizeCollection, as you can see in the IL for the call
to GetItem on FixedSizeCollection:

 IL_0170: ldloc.2
 IL_0171: ldloc.s i1
 IL_0173: box [mscorlib]System.Int32
 IL_0178: callvirt instance int32
 CSharpRecipes.Generics/FixedSizeCollection::AddItem(object)

This boxing turns the int, which is a value type, into a reference type (object) for
storage in the array. This causes extra work to be done to store value types in the
object array.

There is a problem when you go to get an item back from the class in the
FixedSizeCollection implementation. Take a look at how FixedSizeCollection.
GetItem retrieves an item:

 // Hold the retrieved string.
 string sHolder;

 // Have to cast or get error CS0266:
 // Cannot implicitly convert type 'object' to 'string'...
 sHolder = (string)C.GetItem(1);

Since the item returned by FixedSizeCollection.GetItem is of type object, it needs to
be cast to a string in order to get what you hope is a string for index 1. It may not
be a string—all you know for sure is that it’s an object—but you have to cast it to a
more specific type coming out so you can assign it properly.

These are both fixed by the FixedSizeCollection<T> implementation. The unboxing
is addressed; no unboxing is required, since the return type of GetItem is the instanti-
ated type, and the compiler enforces this by looking at the value being returned:

 // Hold the retrieved string.
 string sHolder;
 int iHolder;

 // No cast necessary
 sHolder = gC.GetItem(1);

 // Try to get a string into an int.
 // error CS0029: Cannot implicitly convert type 'string' to 'int'
 //iHolder = gC.GetItem(1);

Understanding Generic Types | 145

In order to see one other difference between the two types, instantiate a few
instances of each of them like so:

 // Regular class
 FixedSizeCollection A = new FixedSizeCollection(5);
 Console.WriteLine(A);
 FixedSizeCollection B = new FixedSizeCollection(5);
 Console.WriteLine(B);
 FixedSizeCollection C = new FixedSizeCollection(5);
 Console.WriteLine(C);

 // generic class
 FixedSizeCollection<bool> gA = new FixedSizeCollection<bool>(5);
 Console.WriteLine(gA);
 FixedSizeCollection<int> gB = new FixedSizeCollection<int>(5);
 Console.WriteLine(gB);
 FixedSizeCollection<string> gC = new FixedSizeCollection<string>(5);
 Console.WriteLine(gC);
 FixedSizeCollection<string> gD = new FixedSizeCollection<string>(5);
 Console.WriteLine(gD);

The output from the preceding code shows this:

There are 1 instances of CSharpRecipes.Generics+FixedSizeCollection and this ins
tance contains 0 items...
There are 2 instances of CSharpRecipes.Generics+FixedSizeCollection and this ins
tance contains 0 items...
There are 3 instances of CSharpRecipes.Generics+FixedSizeCollection and this ins
tance contains 0 items...
There are 1 instances of CSharpRecipes.Generics+FixedSizeCollection`1[System.Boo
lean] and this instance contains 0 items...
There are 1 instances of CSharpRecipes.Generics+FixedSizeCollection`1[System.Int
32] and this instance contains 0 items...
There are 1 instances of CSharpRecipes.Generics+FixedSizeCollection`1[System.Str
ing] and this instance contains 0 items...
There are 2 instances of CSharpRecipes.Generics+FixedSizeCollection`1[System.Str
ing] and this instance contains 0 items...

Discussion
The type parameters in generics allow you to create type-safe code without knowing
the final type you will be working with. In many instances, you want the types to
have certain characteristics, in which case you place constraints on the type (see Rec-
ipe 4.11). Methods can have generic type parameters whether the class itself does or
does not.

Notice that while FixedSizeCollection has three instances, FixedSizeCollection, has
one instance in which it was declared with bool as the type, one instance in which
int was the type, and two instances in which string was the declaring type. This
means that, while there is one .NET Type object created for each nongeneric class,
there is one .NET Type object for every constructed type of a generic class.

146 | Chapter 4: Generics

FixedSizeCollection has three instances in the example code because
FixedSizeCollection has only one type that is maintained by the CLR. With generics,
one type is maintained for each combination of the class template and the type
arguments passed when constructing a type instance. To make it clearer, you get one
.NET type for FixedSizeCollection<bool>, one .NET type for
FixedSizeCollection<int>, and a third .NET type for FixedSizeCollection<string>.

The static InstanceCount property helps to illustrate this point, as static properties of
a class are actually connected to the type that the CLR hangs on to. The CLR creates
any given type only once and then maintains it until the AppDomain unloads. This is
why the output from the calls to ToString() on these objects shows that the count is
three for FixedSizeCollection (as there is truly only one of these) and between one
and two for the FixedSizeCollection<T> types.

See Also
The “Generic Type Parameters” and “Generic Classes” topics in the MSDN
documentation.

4.3 Replacing the ArrayList with Its Generic
Counterpart

Problem
You want to enhance the performance of your application as well as make the code
easier to work with by replacing all ArrayList objects with the generic version. This
is imperative when you find that structures or other value types are being stored in
these data structures, resulting in boxing/unboxing operations.

Solution
Replace all occurrences of the System.Collection.ArrayList class with the more effi-
cient generic System.Collections.Generic.List class.

Here is a simple example of using a System.Collections.ArrayList object:

 public static void UseNonGenericArrayList()
 {
 // Create and populate an ArrayList.
 ArrayList numbers = new ArrayList();
 numbers.Add(1); // Causes a boxing operation to occur
 numbers.Add(2); // Causes a boxing operation to occur

 // Display all integers in the ArrayList.
 // Causes an unboxing operation to occur on each iteration
 foreach (int i in numbers)
 {
 Console.WriteLine(i);

Replacing the ArrayList with Its Generic Counterpart | 147

 }

 numbers.Clear();
 }

Here is that same code using a System.Collections.Generic.List object:

 public static void UseGenericList()
 {
 // Create and populate a List.
 List<int> numbers = new List<int>();
 numbers.Add(1);
 numbers.Add(2);

 // Display all integers in the ArrayList.
 foreach (int i in numbers)
 {
 Console.WriteLine(i);
 }

 numbers.Clear();
 }

Discussion
Since ArrayLists are used in almost all applications, it is a good place to start to
enhance the performance of your application. For simple implementations of the
ArrayList in your application, this substitution should be quite easy.

Table 4-1 shows the equivalent members that are implemented in both classes.

Table 4-1. Equivalent members in the ArrayList and the generic List classes

Members in the ArrayList class Equivalent members in the generic List class

Capacity property Capacity property

Count property Count property

IsFixedSize property ((IList)myList).IsFixedSize

IsReadOnly property ((IList)myList).IsReadOnly

IsSynchronized property ((IList)myList).IsSynchronized

Item property Item property

SyncRoot property ((IList)myList).SyncRoot

Adapter static method N/A

Add method Add method

AddRange method AddRange method

N/A AsReadOnly method

BinarySearch method BinarySearch method

Clear method Clear method

Clone method GetRange(0, numbers.Count)

148 | Chapter 4: Generics

In several cases within Table 4-1, there is not a one-to-one correlation between the
members of an ArrayList and the members of the generic List class. Starting with
the properties, notice that only the Capacity, Count, and Item properties are present
in both classes. To make up for the missing properties in the List class, you can per-
form a cast to an IList. The following code shows how to use these casts to get at
the missing properties:

Contains method Contains method

N/A ConvertAll method

CopyTo method CopyTo method

N/A Exists method

N/A Find method

N/A FindAll method

N/A FindIndex method

N/A FindLast method

N/A FindLastIndex method

N/A ForEach method

FixedSize static method N/A

GetRange method GetRange method

IndexOf method IndexOf method

Insert method Insert method

InsertRange method InsertRange method

LastIndexOf method LastIndexOf method

ReadOnly static method AsReadOnly method

Remove method Remove method

N/A RemoveAll method

RemoveAt method RemoveAt method

RemoveRange method RemoveRange method

Repeat static method Use a for loop and the Add method

Reverse method Reverse method

SetRange method InsertRange method

Sort method Sort method

Synchronized static method lock(myList.SyncRoot) {…}

ToArray method ToArray method

N/A TrimExcess method

TrimToSize method TrimToSize method

N/A TrueForAll method

Table 4-1. Equivalent members in the ArrayList and the generic List classes (continued)

Members in the ArrayList class Equivalent members in the generic List class

Replacing the ArrayList with Its Generic Counterpart | 149

 List<int> numbers = new List<int>();

 Console.WriteLine(((IList)numbers).IsReadOnly);
 Console.WriteLine(((IList)numbers).IsFixedSize);
 Console.WriteLine(((IList)numbers).IsSynchronized);
 Console.WriteLine(((IList)numbers).SyncRoot);

Note that due to the absence of code that returns a synchronized version of a generic
List and the absence of code that returns a fixed-size generic List, the IsFixedSize
and IsSynchronized properties will always return false. The SyncRoot property will
always return the same object on which it is called. Essentially, this property returns
the this pointer. Microsoft has decided to remove the ability to create a synchro-
nous wrapper from any of the generic collection classes. Instead, they recommend
using the lock keyword to lock the entire collection or another type of synchroniza-
tion object that suits your needs.

The ArrayList has several static methods to which there is no direct equivalent
method in the generic List class. To fix this, you have to do a little work. The clos-
est match for the static ArrayList.ReadOnly method is the AsReadOnly instance
method of the generic List class. This makes for a fairly simple substitution.

The static ArrayList.Repeat method has no direct equivalent in the generic List
class. So instead, you can use the following generic extension method:

 public static void Repeat<T>(this List<T> list, T obj, int count)
 {
 if (count < 0)
 {
 throw (new ArgumentException(
 "The count parameter must be greater or equal to zero."));
 }

 for (int index = 0; index < count; index++)
 {
 list.Add(obj);
 }
 }

This generic extension method has three parameters:

list
Marks this method as an extension method for List<T>.

obj
The object that will be added to the generic List object a specified number of
times.

count
The number of times to add the object contained in obj to the generic List
object.

150 | Chapter 4: Generics

Since the Clone method is also missing from the generic List class (due to the fact
that this class does not implement the ICloneable interface), you can instead use the
GetRange method of the generic List class:

 List<int> oldList = new List<int>();
 // Populate oldList...

 List<int> newList = oldList.GetRange(0, oldList.Count);

The GetRange method performs a shallow copy (similar to the Clone method of the
ArrayList) of a range of elements in the List object. In this case, the range of ele-
ments includes all elements.

See Also
The “System.Collections.ArrayList Class” and “System.Collections.Generic.List
Class” topics in the MSDN documentation.

4.4 Replacing the Stack and Queue with Their
Generic Counterparts

Problem
You want to enhance the performance of your application as well as make the code
easier to work with by replacing all Stack and Queue objects with their generic ver-
sions. This is imperative when you find that structures or other value types are being
stored in these data structures, resulting in boxing/unboxing operations.

Solution
Replace all occurrences of the System.Collections.Stack and System.Collection.
Queue objects with the System.Collections.Generic.Stack and System.Collection.
Generic.Queue objects.

Here is a simple example of using a System.Collections.Queue object:

 public static void UseNonGenericQueue()
 {
 // Create a non-generic Queue object.
 Queue numericQueue = new Queue();

 // Populate Queue (causing a boxing operation to occur).
 numericQueue.Enqueue(1);
 numericQueue.Enqueue(2);
 numericQueue.Enqueue(3);

 // De-populate Queue and display items (causing an unboxing operation to
occur)
 Console.WriteLine(numericQueue.Dequeue());

Replacing the Stack and Queue with Their Generic Counterparts | 151

 Console.WriteLine(numericQueue.Dequeue());
 Console.WriteLine(numericQueue.Dequeue().ToString());
 }

Here is that same code using a System.Collections.Generic.Queue object:

 public static void UseGenericQueue()
 {
 // Create a generic Queue object.
 Queue<int> numericQueue = new Queue<int>();

 // Populate Queue.
 numericQueue.Enqueue(1);
 numericQueue.Enqueue(2);
 numericQueue.Enqueue(3);

 // De-populate Queue and display items.
 Console.WriteLine(numericQueue.Dequeue());
 Console.WriteLine(numericQueue.Dequeue());
 Console.WriteLine(numericQueue.Dequeue());
 }

Here is a simple example of using a System.Collections.Stack object:

 public static void UseNonGenericStack()
 {
 // Create a non-generic Stack object.
 Stack numericStack = new Stack();

 // Populate Stack (causing a boxing operation to occur).
 numericStack.Push(1);
 numericStack.Push(2);
 numericStack.Push(3);

 // De-populate Stack and display items (causing an unboxing operation to
occur).
 Console.WriteLine(numericStack.Pop().ToString());
 Console.WriteLine(numericStack.Pop().ToString());
 Console.WriteLine(numericStack.Pop().ToString());
 }

Here is that same code using a System.Collections.Generic.Stack object:

 public static void UseGenericStack()
 {
 // Create a generic Stack object.
 Stack<int> numericStack = new Stack<int>();

 // Populate Stack.
 numericStack.Push(1);
 numericStack.Push(2);
 numericStack.Push(3);

 // De-populate Stack and display items.
 Console.WriteLine(numericStack.Pop().ToString());
 Console.WriteLine(numericStack.Pop().ToString());

152 | Chapter 4: Generics

 Console.WriteLine(numericStack.Pop().ToString());
 }

Discussion
On the surface, the generic and nongeneric Queue and Stack classes seem similar
enough. However, it is a very different story underneath the surface. The basic use of
the generic Queue and Stack objects are the same as with their nongeneric counter-
parts, except for the syntax used to instantiate the objects. The generic form requires
a type argument in order to create the type. The type argument in this example is an
int. This type argument indicates that this Queue or Stack object will be able to con-
tain only integer types, as well as any type that implicitly converts to an integer, such
as a short:

 short s = 300;
 numericQueue.Enqueue(s); // OK, because of the implicit conversion

However, a type that cannot be implicitly converted to an integer, such as a double,
will cause a compile-time error:

 double d = 300;
 numericQueue.Enqueue(d); // Error, no implicit conversion available
 numericQueue.Enqueue((int)d); // OK, because of the explicit cast

The nongeneric form does not require this type argument, because the nongeneric
Queue and Stack objects are allowed to contain any item as an element because all
items are convertible to type Object.

When choosing between a generic and nongeneric Queue or Stack, you need to decide
whether you wish to use a generic Queue or Stack object or a nongeneric Queue or
Stack object. Choosing the generic Queue or Stack class over its nongeneric form gives
you many benefits, including:

Type-safety
Each element contained in the data structure is typed to one specific type. This
means no more casting of objects when they are added to or removed from the
data structure. You cannot store multiple disparate types within a single data
structure; you always know what type is stored within the data structure. Type
checking is done at compile time rather than runtime. This boils down to writ-
ing less code, achieving better performance, and making fewer errors.

Shortened development time
To make a type-safe data structure without using generics means having to sub-
class the System.Collections.Queue or System.Collections.Stack class in order
to create your own. This is time-consuming and error-prone.

Performance
The generic Queue or Stack does not require a cast that could fail to occur when
adding and removing elements from it. In addition, no boxing operation occurs

Replacing the Stack and Queue with Their Generic Counterparts | 153

when adding a value type to the Queue or Stack. Likewise, in almost all cases, no
unboxing operation occurs when removing a value type from the Queue or Stack.

Easier-to-read code
Your code base will be much smaller because you will not have to subclass the
nongeneric Queue or Stack class to create your own strongly typed class. In addi-
tion, the type-safety features of generic code will allow you to better understand
what the purpose of the Queue or Stack class is in your code.

The following class members are implemented in the nongeneric Queue and Stack
classes but not in their generic counterparts:

Clone method
IsSynchronized property
SyncRoot property
Synchronized method

The addition of the Clone method on the nongeneric Queue and Stack classes is due to
the ICloneable interface being implemented only on the nongeneric Queue and Stack
classes. However, all other interfaces implemented by the generic and nongeneric
Queue and Stack classes are identical.

One way around the missing Clone method in the generic Queue and Stack classes is
to use the constructor that accepts an IEnumerable<T> type. Since this is one of the
interfaces that the Queue and Stack classes implement, it is easy to write. For the
Queue object, the code is as follows:

 public static void CloneQueue()
 {
 // Create a generic Queue object.
 Queue<int> numericQueue = new Queue<int>();

 // Populate Queue.
 numericQueue.Enqueue(1);
 numericQueue.Enqueue(2);
 numericQueue.Enqueue(3);

 // Create a clone of the numericQueue.
 Queue<int> clonedNumericQueue = new Queue<int>(numericQueue);

 // This does a simple peek at the values, not a dequeue.
 foreach (int i in clonedNumericQueue)
 {
 Console.WriteLine("foreach: " + i.ToString());
 }

 // De-populate Queue and display items.
 Console.WriteLine(clonedNumericQueue.Dequeue().ToString());
 Console.WriteLine(clonedNumericQueue.Dequeue().ToString());
 Console.WriteLine(clonedNumericQueue.Dequeue().ToString());
 }

154 | Chapter 4: Generics

The output for this method is shown here:

 foreach: 1
 foreach: 2
 foreach: 3
 1
 2
 3

For the Stack object, the code is as follows:

 public static void CloneStack()
 {
 // Create a generic Stack object.
 Stack<int> numericStack = new Stack<int>();

 // Populate Stack.
 numericStack.Push(1);
 numericStack.Push(2);
 numericStack.Push(3);

 // Clone the numericStack object.
 Stack<int> clonedNumericStack = new Stack<int>(numericStack);

 // This does a simple peek at the values, not a pop.
 foreach (int i in clonedNumericStack)
 {
 Console.WriteLine("foreach: " + i.ToString());
 }

 // De-populate Stack and display items.
 Console.WriteLine(clonedNumericStack.Pop().ToString());
 Console.WriteLine(clonedNumericStack.Pop().ToString());
 Console.WriteLine(clonedNumericStack.Pop().ToString());
 }

The output for this method is shown here:

 foreach: 1
 foreach: 2
 foreach: 3
 1
 2
 3

This constructor creates a new instance of the Queue or Stack class containing the ele-
ments copied from the IEnumerable<T> type.

See Also
The “System.Collections.Stack Class,” “System.Collections.Generic.Stack Class,”
“System.Collections.Queue Class,” and “System.Collections.Generic.Queue Class”
topics in the MSDN documentation.

Using a Linked List | 155

4.5 Using a Linked List

Problem
You need a linked data structure that allows you to easily add and remove elements.

Solution
Use the generic LinkedList<T> class. The following method creates a LinkedList<T>
class, adds nodes to this linked list object, and then uses several methods to obtain
information from nodes within the linked list:

public static void UseLinkedList()
{
 Console.WriteLine("\r\n\r\n");

 // Create TodoItem objects to add to the linked list
 TodoItem i1 =
 new TodoItem() { Name = "paint door", Comment = "Should be done third" };
 TodoItem i2 =
 new TodoItem() { Name = "buy door", Comment = "Should be done first" };
 TodoItem i3 =
 new TodoItem() { Name = "assemble door", Comment = "Should be done second" };
 TodoItem i4 =
 new TodoItem() { Name = "hang door", Comment = "Should be done last" };

 // Create a new LinkedList object
 LinkedList<TodoItem> todoList = new LinkedList<TodoItem>();

 // Add the items
 todoList.AddFirst(i1);
 todoList.AddFirst(i2);
 todoList.AddBefore(todoList.Find(i1), i3);
 todoList.AddAfter(todoList.Find(i1), i4);

 // Display all items
 foreach (TodoItem tdi in todoList)
 {
 Console.WriteLine(tdi.Name + " : " + tdi.Comment);
 }

 // Display information from the first node in the linked list
 Console.WriteLine("todoList.First.Value.Name == " +
 todoList.First.Value.Name);

 // Display information from the second node in the linked list
 Console.WriteLine("todoList.First.Next.Value.Name == " +
 todoList.First.Next.Value.Name);

 // Display information from the next to last node in the linked list
 Console.WriteLine("todoList.Last.Previous.Value.Name == " +
 todoList.Last.Previous.Value.Name);
}

156 | Chapter 4: Generics

The output for this method is shown here:

 buy door : Should be done first
 assemble door : Should be done second
 paint door : Should be done third
 hang door : Should be done last
 todoList.First.Value.Name == buy door
 todoList.First.Next.Value.Name == assemble door
 todoList.Last.Previous.Value.Name == paint door

This is the TodoItem class, which is a simple container of two string properties Name
and Comment. The properties use the new Automatically Implemented Properties fea-
ture in C# 3.0 that allows you to declare properties, and the definition of the back-
ing fields is generated automatically:

/// <summary>
/// Todo list item
/// </summary>
public class TodoItem
{
 /// <summary>
 /// Name of the item
 /// </summary>
 public string Name { get; set; }

 /// <summary>
 /// Comment for the item
 /// </summary>
 public string Comment { get; set; }
}

Discussion
The LinkedList<T> class in the .NET Framework is a doubly linked list. This is
because each node in the linked list contains a pointer to both the previous node and
the next node in the linked list. Figure 4-1 shows what a doubly linked list looks like
diagrammed on paper. Each node in this diagram represents a single
LinkedListNode<T> object.

Notice that each node (i.e., the square boxes) contains a reference to the next node
(i.e., the arrows pointing to the right) and a pointer to the previous node (i.e., the
arrows pointing to the left) in the linked list. In contrast, a singly linked list contains
only pointers to the next node in the list. There is no pointer to the previous node.

Figure 4-1. Graphical representation of a doubly linked list with three nodes

NULL NODE NODE
NULL

NODE

Using a Linked List | 157

In the LinkedList<T> class, the previous node is always accessed through the
Previous property, and the next node is always accessed through the Next property.
The first node’s Previous property in the linked list always returns a null value. Like-
wise, the last node’s Next property in the linked list always returns a null value.

Each node (represented by the boxes in Figure 4-1) in the linked list is actually a
generic LinkedListNode<T> object. So a LinkedList<T> object is actually a collection of
LinkedListNode<T> objects. Each of these LinkedListNode<T> objects contains proper-
ties to access the next and previous LinkedListNode<T> objects, as well as the object
contained within it. The object contained in the LinkedListNode<T> object is accessed
through the Value property. In addition to these properties, a LinkedListNode<T>
object also contains a property called List, which allows access to the containing
LinkedList<T> object.

Items to be aware of with List<T> and LinkedList<T>:

• Adding and removing nodes within a List<T> is, in general, faster than the same
operation using a LinkedList<T> class.

• A List<T> stores its data essentially in one big array on the managed heap,
whereas the LinkedList<T> can potentially store its nodes all over the managed
heap. This forces the garbage collector to work that much harder to manage
LinkedList<T> node objects on the managed heap.

• Note that the List<T>.Insert* methods can be slower than adding a node any-
where within a LinkedList<T> using one of its Add* methods. However, this is
dependent on where the object is inserted into the List<T>. An Insert method
must shift all the elements within the List<T> object at the point where the new
element is inserted up by one position. If the new element is inserted at or near
the end of the List<T>, the overhead of shifting the existing elements is negligi-
ble compared to the garbage collector overhead of managing the LinkedList<T>
nodes objects. Another area where the List<T> can outperform the
LinkedList<T> is when you’re doing an indexed access. With the List<T>, you
can use the indexer to do an indexed lookup of the element at the specified posi-
tion. However, with a LinkedList<T> class, you do not have that luxury. With a
LinkedList<T> class, you must navigate the LinkedListNode<T> objects using the
Previous and Next properties on each LinkedListNode<T>, running through the
list until you find the one at the specified position.

• A List<T> class also has performance benefits over a LinkedList<T> class when
searching for an element or node. The List<T>.BinarySearch method is faster at
finding elements within a List<T> object than its comparable methods within the
LinkedList<T> class, namely the Contains, Find, and FindLast methods.

Table 4-2 shows the comparison between List<T> and LinkedList<T>.

158 | Chapter 4: Generics

See Also
The “LinkedList<T> Class” topic in the MSDN documentation.

4.6 Creating a Value Type That Can Be Initialized to
Null

Problem
You have a variable that is a numeric type, which will hold a numeric value obtained
from a database. The database may return this value as a null. You need a simple,
clean way to store this numeric value, even if it is returned as a null.

Solution
Use a nullable value type. There are two ways of creating a nullable value type. The
first way is to use the ? type modifier:

 int? myDBInt = null;

The second way is to use the Nullable<T> generic type:

 Nullable<int> myDBInt = new Nullable<int>();

Discussion
Both of the following statements are equivalent:

 int? myDBInt = null;
 Nullable<int> myDBInt = new Nullable<int>();

In both cases, myDBInt is a nullable type and is initialized to null.

A nullable type implements the INullableValue interface, which has two read-only
property members, HasValue and Value. The HasValue property returns false if the
nullable value is set to null; otherwise, it returns true. If HasValue returns true, you
can access the Value property, which contains the currently stored value. If HasValue
returns false and you attempt to read the Value property, you will get an
InvalidOperationException thrown. This is because the Value property is undefined
at this point. Below is an example of a test of nullable value using the HasValue prop-
erty value:

Table 4-2. Performance comparison between List<T> and LinkedList<T>

Action Who Wins

Adding/Removing Nodes List<T>

Inserting nodes LinkedList<T>*

Indexed access List<T>

Node searching List<T>

Creating a Value Type That Can Be Initialized to Null | 159

 if (myDBInt.HasValue)
 Console.WriteLine("Has a value: " + myDBInt.Value);
 else
 Console.WriteLine("Does not have a value (NULL)");

In addition, one can simply compare the value to null, as shown below:

 if (myDBInt != null)
 Console.WriteLine("Has a value: " + myDBInt.Value);
 else
 Console.WriteLine("Does not have a value (NULL)");

Either method is acceptable.

When casting a nullable value to a non-nullable value, the cast operates as it would
normally, except when the nullable type is set to null. In this case, an
InvalidOperationException is thrown. When casting a non-nullable value to a nul-
lable value, the cast operates as it would normally. No InvalidOperationException
will be thrown, as the non-nullable value can never be null.

The tricky thing to watch out for with nullable types is when comparisons are per-
formed. For example, if the following code is executed:

 if (myTempDBInt < 100)
 Console.WriteLine("myTempDBInt < 100");
 else
 Console.WriteLine("myTempDBInt >= 100");

The text “myTempDBInt >= 100” is displayed, which is obviously incorrect if the value
of myTempDBInt is null. To fix this code, you have to check if myTempDBInt is null. If it
is not, you can execute the if statement in the previous code block:

 if (myTempDBInt != null)
 {
 if (myTempDBInt < 100)
 Console.WriteLine("myTempDBInt < 100");
 else
 Console.WriteLine("myTempDBInt >= 100");
 }
 else
 {
 // Handle the null here.
 }

Another interesting thing about nullable types is that you can use them in expres-
sions similar to normal numeric types, for example:

 int? DBInt = 10;
 int Value = 2;
 int? Result = DBInt + Value; // Result == 12

The result of using a nullable value in most operators is a null if any nullable value is
null.

160 | Chapter 4: Generics

Neither the comparison operators nor the null coalescing operator lift
to nullable.

However, if none of the nullable values is null, the operation is evaluated as it nor-
mally would be. If DBInt, for example, were set to null, the value placed in Result
would also be null.

See Also
The “Nullable<T> Generic Class” and “Using Nullable Types” topics in the MSDN
documentation.

4.7 Reversing the Contents of a Sorted List

Problem
You want to be able to reverse the contents of a sorted list of items while also main-
taining the ability to access them in both array and list styles like SortedList and the
generic SortedList<T> classes provide. Neither SortedList nor SortedList<T> pro-
vides a direct way to accomplish this without reloading the list.

Solution
Use LINQ to Objects to query the SortedList<T> and apply a descending order to the
information in the list. After instantiating a SortedList<TKey, TValue>, the key of
which is an int and the value of which is a string, a series of unordered numbers
and their text representations are inserted into the list. Those items are then
displayed:

 SortedList<int, string> data = new SortedList<int, string>();
 data.Add(2, "two");
 data.Add(5, "five");
 data.Add(3, "three");
 data.Add(1, "one");

 foreach (KeyValuePair<int, string> kvp in data)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

The output for the list is shown sorted in ascending order (the default):

 1 one
 2 two
 3 three
 5 five

Reversing the Contents of a Sorted List | 161

Now the sort order is reversed by creating a query using LINQ to Objects and set-
ting the orderby clause to descending. The results are then displayed from the query
result set:

 // query ordering by descending
 var query = from d in data
 orderby d.Key descending
 select d;

 foreach (KeyValuePair<int, string> kvp in query)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

This time the output is in descending order:

 5 five
 3 three
 2 two
 1 one

When a new item is added to the list, it is added in the ascending sort order, but by
querying again after adding all of the items, you keep the ordering of the list intact:

 data.Add(4, "four");

 // requery ordering by descending
 query = from d in data
 orderby d.Key descending
 select d;

 foreach (KeyValuePair<int, string> kvp in query)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

 // Just go against the original list for ascending
 foreach (KeyValuePair<int, string> kvp in data)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

It can be seen that the output has both descending and ascending orders with the
new item:

 5 five
 4 four
 3 three
 2 two
 1 one
 1 one
 2 two
 3 three
 4 four
 5 five

162 | Chapter 4: Generics

Discussion
A SortedList blends array and list syntax to allow for accessing the data in either for-
mat, which can be a handy thing to do. The data is accessible as key/value pairs or
directly by index and will not allow duplicate keys to be added. In addition, values
that are reference or nullable types can be null, but keys cannot. The items can be
iterated using a foreach loop, with KeyValuePair being the type returned. While
accessing elements of the SortedList<T>, they may only be read from. The usual iter-
ator syntax prohibits updating or deleting elements of the list while reading, as it will
invalidate the iterator.

The orderby clause in the query causes the result set of the query to be ordered either
in ascending (the default) or descending order. This sorting is accomplished through
use of the default comparer for the element type, so it can be affected by overriding
the Equals method for elements that are custom classes. Multiple keys can be speci-
fied for the orderby clause, which has the effect of nesting the sort order such as sort-
ing by “last name” and then “first name.”

See Also
The “SortedList,” “Generic KeyValuePair Structure,” and “Generic SortedList” top-
ics in the MSDN documentation.

4.8 Making Read-Only Collections the Generic Way

Problem
You have a collection of information that you want to expose from your class, but
you don’t want any users modifying the collection.

Solution
Use the ReadOnlyCollection<T> wrapper to easily support collection classes that can-
not be modified. For example, a Lottery class that contained the winning lottery
numbers should make the winning numbers accessible but not allow them to be
changed:

public class Lottery
{
 // make a list
 List<int> _numbers = null;

 public Lottery()
 {
 // pick the winning numbers
 _numbers = new List<int>(5) { 17, 21, 32, 44, 58 };
 }

Making Read-Only Collections the Generic Way | 163

 public ReadOnlyCollection<int> Results
 {
 // return a wrapped copy of the results
 get { return new ReadOnlyCollection<int>(_numbers); }
 }
}

Lottery has a List<int> of winning numbers that it fills in the constructor. The
interesting part is that it also exposes a property called Results, which returns a
ReadOnlyCollection typed as <int> for seeing the winning numbers. Internally, a new
ReadOnlyCollection wrapper is created to hold the List<int> that has the numbers in
it, and then this instance is returned for use by the user.

If users then attempt to set a value on the collection, they get a compile error:

 Lottery tryYourLuck = new Lottery();
 // Print out the results.
 for (int i = 0; i < tryYourLuck.Results.Count; i++)
 {
 Console.WriteLine("Lottery Number " + i + " is " + tryYourLuck.Results[i]);
 }

 // Change it so we win!
 tryYourLuck.Results[0]=29;

 //The above line gives // Error 26 // Property or indexer
 // 'System.Collections.ObjectModel.ReadOnlyCollection<int>.this[int]'
 // cannot be assigned to -- it is read only

Discussion
The main advantage ReadOnlyCollection provides is the flexibility to use it with any
collection that supports IList or IList<T> as an interface. ReadOnlyCollection can be
used to wrap a regular array like this:

 int[] items = {0, 1, 2 };
 ReadOnlyCollection<int> readOnlyItems =
 new ReadOnlyCollection<int>(items);

This provides a way to standardize the read-only properties on classes to make it eas-
ier for consumers of the class to recognize which properties are read-only simply by
the return type.

See Also
The “ReadOnlyCollection” topic in the MSDN documentation.

164 | Chapter 4: Generics

4.9 Replacing the Hashtable with Its Generic
Counterpart

Problem
You want to enhance the performance of your application as well as make the code
easier to work with by replacing all Hashtable objects with the generic version.

Solution
Replace all occurrences of the System.Collections.Hashtable class with the type-safe
generic System.Collections.Generic.Dictionary class.

Here is a simple example of using a System.Collections.Hashtable object:

public static void UseNonGenericHashtable()
{
 Console.WriteLine("\r\nUseNonGenericHashtable");

 // Create and populate a Hashtable
 Hashtable numbers = new Hashtable()
 { {1, "one"},"one"}, // Causes a boxing operation to occur for the key
 {2, "two"} }; // Causes a boxing operation to occur for the key

 // Display all key/value pairs in the Hashtable
 // Causes an unboxing operation to occur on each iteration for the key
 foreach (DictionaryEntry de in numbers)
 {
 Console.WriteLine("Key: " + de.Key + "\tValue: " + de.Value);
 }

 Console.WriteLine(numbers.IsReadOnly);
 Console.WriteLine(numbers.IsFixedSize);
 Console.WriteLine(numbers.IsSynchronized);
 Console.WriteLine(numbers.SyncRoot);

 numbers.Clear();
}

Here is that same code using a System.Collections.Generic.Dictionary<T,U> object:

public static void UseGenericDictionary()
{
 Console.WriteLine("\r\nUseGenericDictionary");

 // Create and populate a Dictionary
 Dictionary<int, string> numbers = new Dictionary<int, string>()
 { { 1, "one" }, { 2, "two" } };

 // Display all key/value pairs in the Dictionary
 foreach (KeyValuePair<int, string> kvp in numbers)
 {

Replacing the Hashtable with Its Generic Counterpart | 165

 Console.WriteLine("Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

 Console.WriteLine(((IDictionary)numbers).IsReadOnly);
 Console.WriteLine(((IDictionary)numbers).IsFixedSize);
 Console.WriteLine(((IDictionary)numbers).IsSynchronized);
 Console.WriteLine(((IDictionary)numbers).SyncRoot);

 numbers.Clear();
}

Discussion
For simple implementations of the Hashtable in your application, this substitution
should be quite easy. However, there are some things to watch out for. For example,
the generic Dictionary class does not implement the ICloneable interface, while the
Hashtable class does.

Table 4-3 shows the equivalent members that are implemented in both classes.

Table 4-3. Equivalent members in the Hashtable and the generic Dictionary classes

Members in the Hashtable class Equivalent members in the generic Dictionary class

N/A Comparer property

Count property Count property

IsFixedSize property ((IDictionary)myDict).IsFixedSize

IsReadOnly property ((IDictionary)myDict).IsReadOnly

IsSynchronized property ((IDictionary)myDict).IsSynchronized

Item property Item property

Keys property Keys property

SyncRoot property ((IDictionary)myDict).SyncRoot

Values property Values property

Add method Add method

Clear method Clear method

Clone method Use overloaded constructor, which accepts an IDictionary<T,U> type

Contains method ContainsKey method

ContainsKey method ContainsKey method

ContainsValue method ContainsValue method

CopyTo method ((ICollection)myDict).CopyTo(arr,0)

Remove method Remove method

Synchronized static method lock(myDictionary.SyncRoot) {...}

N/A TryGetValue method

166 | Chapter 4: Generics

In several cases within Table 4-3, there is not a one-to-one correlation between the
members of a Hashtable and the members of the generic Dictionary class. Starting
with the properties, notice that only the Count, Keys, Values, and Item properties are
present in both classes. To make up for the missing properties in the Dictionary
class, you can perform a cast to an IDictionary. The following code shows how to
use these casts to get at the missing properties:

 Dictionary<int, string> numbers = new Dictionary<int, string>();

 Console.WriteLine(((IDictionary)numbers).IsReadOnly);
 Console.WriteLine(((IDictionary)numbers).IsFixedSize);
 Console.WriteLine(((IDictionary)numbers).IsSynchronized);
 Console.WriteLine(((IDictionary)numbers).SyncRoot);

Note that due to the absence of code to be able to return a synchronized version of a
generic Dictionary, the IsSynchronized property will always return false. The
SyncRoot property will always return the same object on which it is called. Essen-
tially, this property returns the this pointer. Microsoft has decided to remove the
ability to create a synchronous wrapper from any of the generic collection classes.

Instead, they recommend using the lock keyword to lock the entire collection or
another type of synchronization object that suits your needs.

Since the Clone method is also missing from the generic Dictionary class (due to the
fact that this class does not implement the ICloneable interface), you can instead use
the overloaded constructor, which accepts an IDictionary<T,U> type:

 // Create and populate a Dictionary
 Dictionary<int, string> numbers = new Dictionary<int, string>()
 { { 1, "one" }, { 2, "two" } };

 // Display all key/value pairs in the original Dictionary.
 foreach (KeyValuePair<int, string> kvp in numbers)
 {
 Console.WriteLine("Original Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

 // Clone the Dictionary object.
 Dictionary<int, string> clonedNumbers = new Dictionary<int, string>(numbers);

 // Display all key/value pairs in the cloned Dictionary.
 foreach (KeyValuePair<int, string> kvp in numbers)
 {
 Console.WriteLine("Cloned Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

There are two more methods that are missing from the Dictionary class, the Contains
and CopyTo methods. The Contains method is easy to reproduce in the Dictionary
class. In the Hashtable class, the Contains method and the ContainsKey method both
exhibit the same behavior; therefore, you can simply use the ContainsKey method of
the Dictionary class to simulate the Contains method of the Hashtable class:

Replacing the Hashtable with Its Generic Counterpart | 167

 // Create and populate a Dictionary
 Dictionary<int, string> numbers =
 new Dictionary<int, string>()
 { { 1, "one" }, { 2, "two" } };

 Console.WriteLine("numbers.ContainsKey(1) == " + numbers.ContainsKey(1));
 Console.WriteLine("numbers.ContainsKey(3) == " + numbers.ContainsKey(3));

The CopyTo method is also easy to simulate in the Dictionary class, but it involves a
little more work:

 // Create and populate a Dictionary
 Dictionary<int, string> numbers =
 new Dictionary<int, string>()
 { { 1, "one" }, { 2, "two" } };

 // Display all key/value pairs in the Dictionary.
 foreach (KeyValuePair<int, string> kvp in numbers)
 {
 Console.WriteLine("Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }
 // Create object array to hold copied information from Dictionary object.
 KeyValuePair<int, string>[] objs = new KeyValuePair<int, string>[numbers.Count];

 // Calling CopyTo on a Dictionary
 // Copies all KeyValuePair objects in Dictionary object to objs[]
 ((IDictionary)numbers).CopyTo(objs, 0);

 // Display all key/value pairs in the objs[].
 foreach (KeyValuePair<int, string> kvp in objs)
 {
 Console.WriteLine("Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

Calling CopyTo on the Dictionary object involves setting up an array of
KeyValuePair<T,U> objects, which will end up holding all the KeyValuePair<T,U>
objects within the Dictionary object after the CopyTo method is called. Next, the
numbers Dictionary object is cast to an IDictionary type so that the CopyTo method
may be called. Once the CopyTo method is called, the objs array will contain copies of
all the KeyValuePair<T,U> objects that are in the original numbers object. Note that
iteration of the objs array, using a foreach loop, is done in the same fashion as with
the numbers object.

See Also
The “System.Collections.Hashtable Class” and “System.Collections.Generic.Dictio-
nary Class” topics in the MSDN documentation.

168 | Chapter 4: Generics

4.10 Using foreach with Generic Dictionary Types

Problem
You need to enumerate the elements within a type that implements System.
Collections.Generic.IDictionary, such as System.Collections.Generic.Dictionary
or System.Collections.Generic.SortedList.

Solution
The simplest way is to use the KeyValuePair structure in a foreach loop, as shown
here:

 // Create a Dictionary object and populate it
 Dictionary<int, string> myStringDict = new Dictionary<int, string>()
 { { 1, "Foo" }, { 2, "Bar" }, { 3, "Baz" } };

 // Enumerate and display all key and value pairs.
 foreach (KeyValuePair<int, string> kvp in myStringDict)
 {
 Console.WriteLine("key " + kvp.Key);
 Console.WriteLine("Value " + kvp.Value);
 }

Discussion
The nongeneric System.Collections.Hashtable (the counterpart to the System.
Collections.Generic.Dictionary class), System.Collections.CollectionBase, and
System.Collections.SortedList classes support foreach using the DictionaryEntry
type, as shown here:

 Hashtable myHashtable = new Hashtable()
 { { 1, "Foo" }, { 2, "Bar" }, { 3, "Baz" } };
 foreach (DictionaryEntry de in myHashtable)
 {
 Console.WriteLine("key " + de.Key);
 Console.WriteLine("Value " + de.Value);
 Console.WriteLine("kvp " + de.ToString());
 }

However, the Dictionary object supports the KeyValuePair<T,U> type when using a
foreach loop. This is due to the fact that the GetEnumerator method returns an
IEnumerator, which in turn returns KeyValuePair<T,U> types, not DictionaryEntry
types.

The KeyValuePair<T,U> type is well suited to be used when enumerating the generic
Dictionary class with a foreach loop. The DictionaryEntry object contains key and
value pairs as objects, whereas the KeyValuePair<T,U> type contains key and value
pairs as their original types, defined when creating the Dictionary object. This boosts

Constraining Type Arguments | 169

performance and can reduce the amount of code you have to write, as you do not
have to cast the key and value pairs to their original types.

See Also
The “System.Collections.Generic.Dictionary Class,” “System.Collections.Generic.
SortedList Class,” and “System.Collections.Generic.KeyValuePair Structure” topics
in the MSDN documentation.

4.11 Constraining Type Arguments

Problem
Your generic type needs to be created with a type argument that must support the
members of a particular interface such as the IDisposable interface.

Solution
Use constraints to force the type arguments of a generic type to be of a type that
implements one or more particular interfaces:

public class DisposableList<T> : IList<T>
 where T : class, IDisposable
{
 private List<T> _items = new List<T>();

 // Private method that will dispose of items in the list
 private void Delete(T item)
 {
 item.Dispose();
 }

 // IList<T> Members
 public int IndexOf(T item)
 {
 return (_items.IndexOf(item));
 }

 public void Insert(int index, T item)
 {
 _items.Insert(index, item);
 }

 public T this[int index]
 {
 get {return (_items[index]);}
 set {_items[index] = value;}
 }

 public void RemoveAt(int index)
 {

170 | Chapter 4: Generics

 Delete(this[index]);
 _items.RemoveAt(index);
 }

 // ICollection<T> Members
 public void Add(T item)
 {
 _items.Add(item);
 }

 public bool Contains(T item)
 {
 return (_items.Contains(item));
 }

 public void CopyTo(T[] array, int arrayIndex)
 {
 _items.CopyTo(array, arrayIndex);
 }

 public int Count
 {
 get {return (_items.Count);}
 }

 public bool IsReadOnly
 {
 get {return (false);}
 }

 // IEnumerable<T> Members
 public IEnumerator<T> GetEnumerator()
 {
 return (_items.GetEnumerator());
 }

 // IEnumerable Members
 IEnumerator IEnumerable.GetEnumerator()
 {
 return (_items.GetEnumerator());
 }

 // Other members
 public void Clear()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 Delete(_items[index]);
 }

 _items.Clear();
 }

 public bool Remove(T item)

Constraining Type Arguments | 171

 {
 int index = _items.IndexOf(item);

 if (index >= 0)
 {
 Delete(_items[index]);
 _items.RemoveAt(index);

 return (true);
 }
 else
 {
 return (false);
 }
 }
}

This DisposableList class allows only an object that implements IDisposable to be
passed in as a type argument to this class. The reason for this is that whenever an
object is removed from a DisposableList object, the Dispose method is always called
on that object. This allows you to transparently handle the management of any
object stored within this DisposableList object.

The following code exercises a DisposableList object:

 public static void TestDisposableListCls()
 {
 DisposableList<StreamReader> dl = new DisposableList<StreamReader>();

 // Create a few test objects.
 StreamReader tr1 = new StreamReader("c:\\boot.ini");
 StreamReader tr2 = new StreamReader("c:\\autoexec.bat");
 StreamReader tr3 = new StreamReader("c:\\config.sys");

 // Add the test object to the DisposableList.
 dl.Add(tr1);
 dl.Insert(0, tr2);
 dl.Add(tr3);

 foreach(StreamReader sr in dl)
 {
 Console.WriteLine("sr.ReadLine() == " + sr.ReadLine());
 }

 // Call Dispose before any of the disposable objects are
 // removed from the DisposableList.
 dl.RemoveAt(0);
 dl.Remove(tr1);
 dl.Clear();
 }

172 | Chapter 4: Generics

Discussion
The where keyword is used to constrain a type parameter to accept only arguments
that satisfy the given constraint. For example, the DisposableList has the constraint
that any type argument T must implement the IDisposable interface:

 public class DisposableList<T> : IList<T>
 where T : IDisposable

This means that the following code will compile successfully:

 DisposableList<StreamReader> dl = new DisposableList<StreamReader>();

but the following code will not:

 DisposableList<string> dl = new DisposableList<string>();

This is because the string type does not implement the IDisposable interface, and
the StreamReader type does.

Other constraints on the type argument are allowed, in addition to requiring one or
more specific interfaces to be implemented. You can force a type argument to be
inherited from a specific base class, such as the TextReader class:

 public class DisposableList<T> : IList<T>
 where T : System.IO.TextReader, IDisposable

You can also determine if the type argument is narrowed down to only value types or
only reference types. The following class declaration is constrained to using only
value types:

 public class DisposableList<T> : IList<T>
 where T : struct

This class declaration is constrained to only reference types:

 public class DisposableList<T> : IList<T>
 where T : class

In addition, you can also require any type argument to implement a public default
constructor:

 public class DisposableList<T> : IList<T>
 where T : IDisposable, new()

Using constraints allows you to write generic types that accept a narrower set of
available type arguments. If the IDisposable constraint is omitted in the Solution for
this recipe, a compile-time error will occur. This is because not all of the types that
can be used as the type argument for the DisposableList class will implement the
IDisposable interface. If you skip this compile-time check, a DisposableList object
may contain objects that do not have a public no-argument Dispose method. In this
case, a runtime exception will occur. Generics and constraints in particular force
strict type checking of the class-type arguments and allow you to catch these prob-
lems at compile time rather than at runtime.

Initializing Generic Variables to Their Default Values | 173

See Also
The “where Keyword” topic in the MSDN documentation.

4.12 Initializing Generic Variables to Their Default
Values

Problem
You have a generic class that contains a variable of the same type as the type parame-
ter defined by the class itself. Upon construction of your generic object, you want
that variable to be initialized to its default value.

Solution
Simply use the default keyword to initialize that variable to its default value:

 public class DefaultValueExample<T>
 {
 T data = default(T);

 public bool IsDefaultData()
 {
 T temp = default(T);

 if (temp.Equals(data))
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 public void SetData(T val)
 {
 data = val;
 }
 }

The code to use this class is shown here:

 public static void ShowSettingFieldsToDefaults()
 {
 DefaultValueExample<int> dv = new DefaultValueExample<int>();

 // Check if the data is set to its default value; true is returned.
 bool isDefault = dv.IsDefaultData();
 Console.WriteLine("Initial data: " + isDefault);

174 | Chapter 4: Generics

 // Set data.
 dv.SetData(100);
 // Check again, this time a false is returned.
 isDefault = dv.IsDefaultData();
 Console.WriteLine("Set data: " + isDefault);
 }

The first call to IsDefaultData returns true, while the second returns false. The out-
put is shown here:

 Initial data: True
 Set data: False

Discussion
When initializing a variable of the same type parameter as the generic class, you can-
not just set that variable to null. What if the type parameter is a value type such as
an int or char? This will not work because value types cannot be null. You may be
thinking that a nullable type such as long? or Nullable<long> can be set to null (see
Recipe 4.6 for more on nullable types). However, the compiler has no way of know-
ing what type argument the user will use to construct the type.

The default keyword allows you to tell the compiler that at compile time the default
value of this variable should be used. If the type argument supplied is a numeric
value (e.g., int, long, decimal), then the default value is zero. If the type argument
supplied is a reference type, then the default value is null. If the type argument sup-
plied is a struct, then the default value of the struct is determined by initializing
each member field to its default value.

See Also
Recipe 4.6, and the “default Keyword in Generic Code” topic in the MSDN
documentation.

175

Chapter 5 CHAPTER 5

Collections5

5.0 Introduction
Collections are groups of items; in .NET, collections contain objects, and each object
contained in a collection is called an element. Some collections contain a straight-
forward list of elements, while others (dictionaries) contain a list of key and value
pairs. The following collection types consist of a straightforward list of elements:

 System.Collections.ArrayList
 System.Collections.BitArray
 System.Collections.Queue
 System.Collections.Stack
 System.Collections.Generic.LinkedList<T>
 System.Collections.Generic.List<T>
 System.Collections.Generic.Queue<T>
 System.Collections.Generic.Stack<T>
 System.Collections.Generic.HashSet<T>

The following collection types are dictionaries:

 System.Collections.Hashtable
 System.Collections.SortedList
 System.Collections.Generic.Dictionary<T,U>
 System.Collections.Generic.SortedList<T,U>

The following collection type is a new addition to the .NET Framework Class
Library (FCL), which can be thought of as a list of elements with no duplicates:

 System.Collections.Generic.HashSet<T>

These collection classes are organized under the System.Collections and the System.
Collections.Generic namespaces. In addition to these namespaces, another name-
space called System.Collections.Specialized contains a few more useful collection
classes. These classes might not be as well known as the previous classes, so here is a
short explanation of the collection classes under the System.Collections.Specialized
namespace:

176 | Chapter 5: Collections

ListDictionary
This class operates similarly to the Hashtable. However, this class beats out the
Hashtable on performance when it contains 10 or fewer elements.

HybridDictionary
This class consists of two internal collections, the ListDictionary and the
Hashtable. Only one of these classes is used at any one time. The ListDictionary
is used while the collection contains 10 or fewer elements, and then a switch is
made to use a Hashtable when the collection grows beyond 10 elements. This
switch is made transparently to the developer. Once the Hashtable is used, this
collection cannot revert to using the ListDictionary even if the elements num-
ber 10 or fewer. Also note that, when using strings as the key, this class sup-
ports both case-sensitive (with respect to the invariant culture) and case-
insensitive string searches through setting a Boolean value in the constructor.

CollectionsUtil
This class contains two static methods: one to create a case-insensitive Hashtable
and another to create a case-insensitive SortedList. When you directly create a
Hashtable and SortedList object, you always create a case-sensitive Hashtable or
SortedList, unless you use one of the constructors that take an IComparer and
pass CaseInsensitiveComparer.Default to it.

NameValueCollection
This collection consists of key and value pairs, which are both of type String.
The interesting thing about this collection is that it can store multiple string
values with a single key. The multiple string values are comma-delimited. The
String.Split method is useful when breaking up multiple strings in a value.

StringCollection
This collection is a simple list containing string elements. This list accepts null
elements as well as duplicate strings. This list is case-sensitive.

StringDictionary
This is a Hashtable that stores both the key and value as strings. Keys are con-
verted to all-lowercase letters before being added to the Hashtable, allowing for
case-insensitive comparisons. Keys cannot be null, but values may be set to null.

The C# compiler also supports a fixed-size array. Arrays of any type may be created
using the following syntax:

 int[] foo = new int[2];
 T[] bar = new T[2];

Here, foo is an integer array containing exactly two elements, and bar is an array of
unknown type T.

Arrays come in several styles as well: single-dimensional, jagged, and even jagged
multidimensional. Multidimensional arrays are defined here:

Swapping Two Elements in an Array | 177

 int[,] foo = new int[2,3]; // A 2-dimensional array
 // containing 6 elements

 int[,,] bar = new int[2,3,4]; // A 3-dimensional array
 // containing 24 elements

A two-dimensional array is usually described as a table with rows and columns. The
foo array would be described as a table of two rows, each containing three columns
of elements. A three-dimensional array can be described as a cube with layers of
tables. The bar array could be described as four layers of two rows, each containing
three columns of elements.

Jagged arrays are arrays of arrays. If you picture a jagged array as a one-dimensional
array with each element in that array containing another one-dimensional array, it
could have a different number of elements in each row. A jagged array is defined as
follows:

 int[][] baz = new int[2][] {new int[2], new int[3]};

The baz array consists of a one-dimensional array containing two elements. Each of
these elements consists of another array, the first array having two elements and the
second array having three.

The rest of this chapter contains recipes dealing with arrays and the various collec-
tion types.

5.1 Swapping Two Elements in an Array

Problem
You want an efficient method to swap two elements that exist within a single array.

Solution
Use the generic SwapElementsInArray<T> method that extends the generic Array type:

 public static void SwapElementsInArray<T>(this T[] theArray, int index1, int
index2)
 {
 T tempHolder = theArray[index1];
 theArray[index1] = theArray[index2];
 theArray[index2] = tempHolder;
 }

Discussion
There is no specific method in the .NET Framework that allows you to swap only
two specific elements within an array. The SwapElementsInArray method presented in
this recipe allows for only two specified elements of an array (specified in the index1
and index2 arguments to this method).

178 | Chapter 5: Collections

The following code uses the SwapElementsInArray<T> method to swap the zeroth and
fourth elements in an array of integers:

 public static void TestSwapArrayElements()
 {
 int[] someArray = {1,2,3,4,5};

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }

 someArray.SwapElementsInArray(0, 4);

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }
 }

This code produces the following output:

 Element 0 = 1 ← The original array
 Element 1 = 2
 Element 2 = 3
 Element 3 = 4
 Element 4 = 5

 Element 0 = 5 ← The array with elements swapped
 Element 1 = 2
 Element 2 = 3
 Element 3 = 4
 Element 4 = 1

5.2 Reversing an Array Quickly

Problem
You want an efficient method to reverse the order of elements within an array.

Solution
You can use the static Reverse method, as in this snippet of code:

 int[] someArray = new int[5] {1,2,3,4,5};
 Array.Reverse(someArray);

or you can write your own reversal method that extends the generic Array type:

 public static void DoReversal<T>(this T[] theArray)
 {
 T tempHolder = default(T);

Reversing an Array Quickly | 179

 if (theArray == null)
 throw new ArgumentNullException("theArray");

 if (theArray.Length > 0)
 {
 for (int counter = 0; counter < (theArray.Length / 2); counter++)
 {
 tempHolder = theArray[counter];
 theArray[counter] = theArray[theArray.Length - counter - 1];
 theArray[theArray.Length - counter - 1] = tempHolder;
 }
 }
 else
 {
 Trace.WriteLine("Nothing to reverse");
 }
 }

While there is more code to write, the benefit of the DoReversal<T> method is that it
is about twice as fast as the Array.Reverse method. In addition, you can tailor the
DoReversal<T> method to a specific situation. For example, the DoReversal<T>
method, when it is being jitted, knows what type T is and generates more efficient
code, whereas the Array.Reverse method accepts only a reference type (System.
Array), which treats the array as an array of objects. This means that you will incur
the performance penalty of a boxing operation when storing value types in a nonge-
neric array, but you will incur a performance penalty from the extra time spent jit-
ting the code when using a generic array. The DoReversal<T> method removes any
boxing operations.

Discussion
The following TestArrayReversal method creates a test array of five integers and dis-
plays the elements in their initial order. Next, the DoReversal<T> method is called to
reverse the elements in the array. After this method returns, the array is then dis-
played a second time as a reversed array:

 public static void TestArrayReversal()
 {
 int[] someArray = new int[5] {1,2,3,4,5};

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }

 someArray.DoReversal();

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }
 }

180 | Chapter 5: Collections

This code displays the following:

 Element 0 = 1 ← The original array
 Element 1 = 2
 Element 2 = 3
 Element 3 = 4
 Element 4 = 5

 Element 0 = 5 ← The reversed array
 Element 1 = 4
 Element 2 = 3
 Element 3 = 2
 Element 4 = 1

Reversing the elements in an array is a fairly common routine. The algorithm here
swaps elements in the array until it is fully reversed.

The array is actually reversed inside of the for loop. The for loop counts from zero
(the first element in the array) to a value equal to the array’s length divided by two:

 for (int counter = 0; counter < (theArray.Length / 2); counter++)

Note that this is integer division, so if the array length is an odd number, the remain-
der is discarded. Since your array length is five, the for loop counts from zero to one.

Inside of the loop are three lines of code:

 tempHolder = theArray[counter];
 theArray[counter] = theArray[theArray.Length - counter - 1];
 theArray[theArray.Length - counter - 1] = tempHolder;

These three lines swap the first half of the array with the second half. As the for loop
counts from zero, these three lines swap the first and last elements in the array. The
loop increments the counter by one, allowing the second element and the next-to-
last element to be swapped. This continues until all elements in the array have been
swapped.

There is one element in the array that cannot be swapped; this is the middle element
of an array with an odd number for the length. For example, in this code, there are
five elements in the array. The third element should not be swapped. Put another
way, all of the other elements pivot on this third element when they are swapped.
This does not occur when the length of the array is an even number.

By dividing the array length by two, you can compensate for even or odd array ele-
ments. Since you get back an integer number from this division, you can easily skip
over the middle element in an array with an odd length.

See Also
Recipe 5.1, and the “Array.Reverse Method” topic in the MSDN documentation.

Writing a More Flexible StackTrace Class | 181

5.3 Writing a More Flexible StackTrace Class

Problem
You have a StackTrace object that contains a listing of stack frames. You need to iter-
ate through these stack frames as if you were using a ReadOnlyCollection-type object.

Solution
Create an extension method to the StackTrace class to return a ReadOnlyCollection of
StackFrame objects, as shown in Example 5-1.

Discussion
This recipe extends the System.Diagnostics.StackTrace object with the ToList
method to obtain a list of stack frames, which it then provides to the user. The
StackTrace class provides a convenient way to obtain a stack trace, an exception
object, or a specific thread from the current point in code. Unfortunately, the
StackTrace provides only a very simplified way to get at each stack frame. It would
be much better if the StackTrace object operated like a collection.

The StackTrace object can now be used as if it were a collection of StackFrame
objects. To obtain a StackTrace object for the current point in code, use the follow-
ing code:

 StackTrace sTrace = new StackTrace();
 IList<StackFrame> frames = sTrace.ToList();

To display a portion or all of the stack trace, use the following code:

 // Display the first stack frame.
 Console.WriteLine(frames[0].ToString());

Example 5-1. Writing a More Flexible StackTrace Class

public static ReadOnlyCollection<StackFrame> ToList(this StackTrace stackTrace)
{
 if (stackTrace == null)
 {
 throw new ArgumentNullException("stackTrace");
 }

 var frames = new StackFrame[stackTrace.FrameCount];
 for (int counter = 0; counter < stackTrace.FrameCount; counter++)
 {
 frames[counter] = stackTrace.GetFrame(counter);
 }

 return new ReadOnlyCollection<StackFrame>(frames);
}

182 | Chapter 5: Collections

 // Display all stack frames.
 foreach (StackFrame SF in frames)
 {
 Console.WriteLine("stackframe: " + SF.ToString());
 }

To obtain a StackTrace object from a thrown exception, use the following code:

 ...
 catch (Exception e)
 {
 StackTraceList sTrace = new StackTraceList(e, true);
 frames = sTrace.ToList();

 Console.WriteLine("TOSTRING: " + Environment.NewLine + frames.ToString());
 foreach (StackFrame SF in frames)
 {
 Console.WriteLine(SF.ToString());
 }
 }

To copy the StackFrame objects to a new array, use the following code:

 StackFrame[] myNewArray = new StackFrame[frames.Count];
 arrStackTrace.CopyTo(myNewArray, 0);

You will notice that the first StackFrame object in the stack trace contains something
like the following:

 at AdapterPattern.StackTraceList..ctor()

This is actually the constructor call to the StackTrace object. This information is usu-
ally not necessary to display and can be removed quite easily. When creating the
StackTrace object, pass in an integer as an argument to the constructor. This will
force the first stack frame (the one containing the call to the StackTrace constructor)
to be discarded:

 StackTraceList arrStackTrace = new StackTraceList(1);

See Also
The “StackTrace Class” and “ReadOnlyCollection class” topics in the MSDN docu-
mentation. Also see the “Adapter Design Pattern” chapter in Design Patterns by
Gamma et al. (Addison-Wesley).

5.4 Determining the Number of Times an Item
Appears in a List<T>

Problem
You need the number of occurrences of one type of object contained in a List<T>.
The List<T> contains methods, such as Contains and BinarySearch, to find a single

Determining the Number of Times an Item Appears in a List<T> | 183

item. Unfortunately, these methods cannot find all duplicated items at one time—
essentially, there is no count all functionality. If you want to find multiple items, you
need to implement your own routine.

Solution
Use the two methods defined in Example 5-2—CountAll and BinarySearchCountAll.
These methods extend the List<T> class to return the number of times a particular
object appears in a sorted and an unsorted List<T>.

Discussion
The CountAll method accepts a search value (searchValue) of generic type T. This
method then proceeds to count the number of times the search value appears in the
List<T> class. This method may be used when the List<T> is sorted or unsorted. If
the List<T> is sorted (a List<T> is sorted by calling the Sort method), the

Example 5-2. Determining the number of times an item appears in a List <T>

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;

static class CollectionExtMethods{
 // Count the number of times an item appears in this
 // unsorted or sorted List<T>
 public static int CountAll<T>(this List<T> myList, T searchValue)
 {
 return ((from t in myList where t.Equals(searchValue) select t).Count());
 }
 // Count the number of times an item appears in this sorted List<T>.
 public static int BinarySearchCountAll<T>(this List<T> myList, T searchValue)
 {
 // Search for first item.
 int center = myList.BinarySearch(searchValue);
 int left = center;
 while (left < 0 && myList[left-1].Equals(searchValue))
 {
 left -= 1;
 }

 int right = center;
 while (right < (myList.Count – 1) && myList[right+1].Equals(searchValue))
 {
 right += 1;
 }

 return (right – left) + 1;
 }
}

184 | Chapter 5: Collections

BinarySearchCountAll method can be used to increase the efficiency of the searching.
This is done by making use of the BinarySearch method on the List<T> class, which
is much faster than iterating through the entire List<T>. This is especially true as the
List<T> grows in size.

The following code exercises these two new methods of the List<T> class:

 class Test
 {
 static void Main()
 {
 List<int> arrayExt = new List<int>()
 {-2,-2,-1,-1,1,2,2,2,2,3,100,4,5};

 Console.WriteLine("--CONTAINS TOTAL--");
 int count = arrayExt.CountAll(2);
 Console.WriteLine("Count2: " + count);

 count = arrayExt.CountAll(3);
 Console.WriteLine("Count3: " + count);

 count = arrayExt.CountAll(1);
 Console.WriteLine("Count1: " + count);

 Console.WriteLine("\r\n--BINARY SEARCH COUNT ALL--");
 arrayExt.Sort();
 count = arrayExt.BinarySearchCountAll(2);
 Console.WriteLine("Count2: " + count);

 count = arrayExt.BinarySearchCountAll(3);
 Console.WriteLine("Count3: " + count);

 count = arrayExt.BinarySearchCountAll(1);
 Console.WriteLine("Count1: " + count);
 }
 }

This code outputs the following:

 --CONTAINS TOTAL--
 Count2: 4
 Count3: 1
 Count1: 1

 --BINARY SEARCH COUNT ALL--
 Count2: 4
 Count3: 1
 Count1: 1

The CountAll method uses a sequential search that is performed in a for loop. A
linear search must be used since the List<T> is not assumed to be sorted. The if
statement determines whether each element in the List<T> is equal to the search
criterion (searchValue). If the element is found to be a match, the counter

Retrieving All Instances of a Specific Item in a List<T> | 185

(foundCounter) is incremented by one. This counter is returned by this method to
indicate the number of items matching the search criteria in the List<T>.

The BinarySearchCountAll method implements a binary search to locate an item
matching the search criteria (searchValue) in the List<T>. If one is found, a while
loop is used to find the very first matching item in the sorted List<T>, and the posi-
tion of that element is recorded in the left variable. A second while loop is used to
find the very last matching item, and the position of this element is recorded in the
right variable. The value in the left variable is subtracted from the value in the
right variable, and then one is added to this result in order to get the total number of
matches.

Recipe 5.5 contains a variation of this recipe that returns the actual items found
rather than a count.

See Also
Recipe 5.5, and the “List<T> Class” topic in the MSDN documentation.

5.5 Retrieving All Instances of a Specific Item in a
List<T>

Problem
You need to retrieve every object contained in a List<T> that matches a search crite-
rion. The List<T> contains the BinarySearch method to find a single item—essen-
tially, there is no find all functionality. If you want to find all items duplicated in a
List<T>, you must write your own routine.

Solution
Use the GetAll and BinarySearchGetAll methods shown in Example 5-3, which
extend the List<T> class. These methods return an array of all the matching objects
found in a sorted or unsorted List<T>.

Example 5-3. Retrieving all instances of a specific item in a List<T>

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;

static class CollectionExtMethods
{
 // The method to retrieve all matching objects in a
 // sorted or unsorted ListEx<T>
 public T[] GetAll(T searchValue)
 {

186 | Chapter 5: Collections

Discussion
The GetAll and BinarySearchGetAll methods used in this recipe are very similar to
those used in Recipe 5.4. The main difference is that these methods return the actual
items found in a List<T> object instead of a count of the number of times an item
was found. The main thing to keep in mind when choosing between these methods

 List<T> foundItem = new List<T>();

 for (int index = 0; index < this.Count; index++)
 {
 if (this[index].Equals(searchValue))
 {
 foundItem.Add(this[index]);

 }
 }

 return (foundItem.ToArray());
 }

 // The method to retrieve all matching objects in a sorted ListEx<T>
 public static T[] BinarySearchGetAll<T>(this List<T> myList, T searchValue)
 {
 List<T> RetObjs = new List<T>();

 // Search for first item.
 int center = myList.BinarySearch(searchValue);
 if (center > 0)
 {
 RetObjs.Add(myList[center]);

 int left = center;
 while (left > 0 && myList[left - 1].Equals(searchValue))
 {
 left -= 1;
 RetObjs.Add(myList[left]);
 }

 int right = center;
 while (right < (myList.Count - 1) &&
 myList[right + 1].Equals(searchValue))
 {
 right += 1;
 RetObjs.Add(myList[right]);
 }
 }

 return (RetObjs.ToArray());
 }
}

Example 5-3. Retrieving all instances of a specific item in a List<T> (continued)

Retrieving All Instances of a Specific Item in a List<T> | 187

is whether you are going to be searching a List<T> that is sorted or unsorted. Choose
the GetAll method to obtain an array of all found items from an unsorted List<T>
and choose the BinarySearchGetAll method to get all items in a sorted List<T>.

The following code exercises these two new extension methods of the List<T> class:

 class Test
 {
 static void Main()
 {
 List<int> arrayExt = new List<int>()
 {-1,-1,1,2,2,2,2,3,100,4,5};

 Console.WriteLine("--GET All--");
 IEnumerable<int> objects = arrayExt.GetAll(2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.GetAll(-2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj-2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.GetAll(5);
 foreach (object o in objects)
 {
 Console.WriteLine("obj5: " + o);
 }

 Console.WriteLine("\r\n--BINARY SEARCH GET ALL--");
 arrayExt.Sort();
 int[] objs = arrayExt.BinarySearchGetAll(-2);
 foreach (object o in objs)
 {
 Console.WriteLine("obj-2: " + o);
 }

 Console.WriteLine();
 objs = arrayExt.BinarySearchGetAll(2);
 foreach (object o in objs)
 {
 Console.WriteLine("obj2: " + o);
 }

 Console.WriteLine();
 objs = arrayExt.BinarySearchGetAll(5);
 foreach (object o in objs)

 {

188 | Chapter 5: Collections

 Console.WriteLine("obj5: " + o);
 }
 }
 }

This code outputs the following:

 --GET All--
 obj2: 2
 obj2: 2
 obj2: 2
 obj2: 2

 obj5: 5

 --BINARY SEARCH GET ALL--

 obj2: 2
 obj2: 2
 obj2: 2
 obj2: 2

 obj5: 5

The BinarySearchGetAll method is faster than the GetAll method, especially if the
array has already been sorted. If a BinarySearch is used on an unsorted List<T>, it is
highly likely that the results returned by the search will be incorrect.

See Also
Recipe 5.4, and the “List<T> Class” topic in the MSDN documentation.

5.6 Inserting and Removing Items from an Array

Problem
You need the ability to insert and remove items from a standard System.Array type.
When an item is inserted, it should not overwrite the item where it is being inserted;
instead, it should be inserted between the element at that index and the previous
index. When an item is removed, the void left by the element should be closed by
shifting the other elements in the array. However, the Array type has no usable
method to perform these operations.

Solution
If possible, switch to a List<T> instead. If this is not possible (for example, if you’re
not in control of the code that creates the Array or ArrayList in the first place), use
the approach shown in the following class. Two methods insert and remove items
from the array. The InsertIntoArray method that extends the Array type will insert
an item into the array without overwriting any data that already exists in the array.

Inserting and Removing Items from an Array | 189

The RemoveFromArray method that extends the Array type will remove an element
from the array:

 using System;

 public static class ArrayUtilities
 {
 public static void InsertIntoArray(this Array target,
 object value, int index)
 {
 if (index < target.GetLowerBound(0) ||
 index > target.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else
 {
 Array.Copy(target, index, target, index + 1,
 target.Length - index - 1);
 }

 target.SetValue(value, index);
 }

 Public static void RemoveFromArray<T>(this T[] target, int index)
 {
 if (index < target.GetLowerBound(0) ||
 index > target.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else if (index < target.GetUpperBound(0))
 {
 Array.Copy(target, index + 1, target, index,
 target.Length - index - 1);
 }

 target.SetValue(null, target.GetUpperBound(0));
 }
 }

Discussion
The InsertIntoArray and RemoveFromArray extension methods must be declared as
static. Both methods make use of the Array.Copy static method to perform their oper-
ations. Initially, both methods test to see whether an item is being added or removed
within the bounds of the array target. If the item passes this test, the Array.Copy
method is used to shift items around to either make room for an element to be
inserted or to overwrite an element being removed from the array.

190 | Chapter 5: Collections

The RemoveFromArray method accepts two parameters. The first array, target, is the
array from which an element is to be removed; the second parameter, index, is the
zero-based position of the element to be removed in the array. Elements at and above
the inserted element are shifted down by one. The last element in the array is set to
the default value for the array type.

The InsertIntoArray method accepts three parameters. The first parameter, target,
is the array that is to have an element added; value is the element to be added; and
index is the zero-based position at which value is to be added. Elements at and above
the inserted element are shifted up by one. The last element in the array is discarded.

The following code illustrates the use of the InsertIntoArray and RemoveFromArray
methods:

 class CTest
 {
 static void Main()
 {
 string[] numbers = {"one", "two", "four", "five", "six"} ;

 numbers.InsertIntoArray("three", 2);
 foreach (string number in numbers)
 {
 Console.WriteLine(number);
 }

 Console.WriteLine();
 numbers.RemoveFromArray(2);
 foreach (string number in numbers)
 {
 Console.WriteLine(number);
 }
 }
 }

This code displays the following:

 one
 two
 three
 four
 five

 one
 two
 four
 five

See Also
The “Array Class” and “List<T> Class” topics in the MSDN documentation.

Keeping Your List<T> Sorted | 191

5.7 Keeping Your List<T> Sorted

Problem
You will be using the BinarySearch method of the List<T> to periodically search the
List<T> for specific elements. The addition, modification, and removal of elements
will be interleaved with the searches. The BinarySearch method, however, presup-
poses a sorted array; if the List<T> is not sorted, the BinarySearch method will possi-
bly return incorrect results. You do not want to have to remember to always call the
List<T>.Sort method before calling the List<T>.BinarySearch method, not to men-
tion incurring all the overhead associated with this call. You need a way of keeping
the List<T> sorted without always having to call the List<T>.Sort method.

Solution
The following SortedList generic class enhances the adding and modifying of ele-
ments within a List<T>. These methods keep the array sorted when items are added
to it and modified. Note that a DeleteSorted method is not required because delet-
ing an item does not disturb the sorted order of the remaining items:

 using System;
 using System.Collections;
 using System.Collections.Generic;

 public class SortedList<T> : List<T>
 {
 public new void Add(T item)
 {
 int position = this.BinarySearch(item);
 if (position < 0)
 {
 // This bit of code will be described in detail later.
 position = ~position;
 }

 this.Insert(position, item);
 }

 public void ModifySorted(T item, int index)
 {
 this.RemoveAt(index);

 int position = this.BinarySearch(item);
 if (position < 0)
 {
 position = ~position;
 }

 this.Insert(position, item);
 }
 }

192 | Chapter 5: Collections

Discussion
Use the Add method to add elements while at the same time keeping the List<T>
sorted. The Add method accepts a generic type (T) to add to the sorted list.

Instead of using the List<T> indexer directly to modify elements, use the
ModifySorted method to modify elements while at the same time keeping the List<T>
sorted. Call this method, passing in the generic type T to replace the existing object
(item), and the index of the object to modify (index).

The following code exercises the SortedList<T> class:

 class CTest
 {
 static void Main()
 {
 // Create a SortedList and populate it with
 // randomly chosen numbers.
 SortedList<int> sortedAL = new SortedList<int>();
 sortedAL.Add(200);
 sortedAL.Add(20);
 sortedAL.Add(2);
 sortedAL.Add(7);
 sortedAL.Add(10);
 sortedAL.Add(0);
 sortedAL.Add(100);
 sortedAL.Add(-20);
 sortedAL.Add(56);
 sortedAL.Add(55);
 sortedAL.Add(57);
 sortedAL.Add(200);
 sortedAL.Add(-2);
 sortedAL.Add(-20);
 sortedAL.Add(55);
 sortedAL.Add(55);

 // Display it.
 foreach (int i in sortedAL)
 {
 Console.WriteLine(i);
 }

 // Now modify a value at a particular index.
 sortedAL.ModifySorted(0, 5);
 sortedAL.ModifySorted(1, 10);
 sortedAL.ModifySorted(2, 11);
 sortedAL.ModifySorted(3, 7);
 sortedAL.ModifySorted(4, 2);
 sortedAL.ModifySorted(2, 4);
 sortedAL.ModifySorted(15, 0);
 sortedAL.ModifySorted(0, 15);
 sortedAL.ModifySorted(223, 15);

Sorting a Dictionary’s Keys and/or Values | 193

 // Display it.
 Console.WriteLine();
 foreach (int i in sortedAL)
 {
 Console.WriteLine(i);
 }
 }
 }

This method automatically places the new item in the List<T> while keeping its sort
order; this is done without having to explicitly call List<T>.Sort. The reason this
works is because the Add method first calls the BinarySearch method and passes it the
object to be added to the ArrayList. The BinarySearch method will either return the
index where it found an identical item or a negative number that you can use to
determine where the item that you are looking for should be located. If the
BinarySearch method returns a positive number, you can use the List<T>.Insert
method to insert the new element at that location, keeping the sort order within the
List<T>. If the BinarySearch method returns a negative number, you can use the bit-
wise complement operator ~ to determine where the item should have been located,
had it existed in the sorted list. Using this number, you can use the List<T>.Insert
method to add the item to the correct location in the sorted list while keeping the
correct sort order.

You can remove an element from the sorted list without disturbing the sort order,
but modifying an element’s value in the List<T> most likely will cause the sorted list
to become unsorted. The ModifySorted method alleviates this problem. This method
works similarly to the Add method, except that it will initially remove the element
from the List<T> and then insert the new element into the correct location.

See Also
The “List<T> Class” topic in the MSDN documentation.

5.8 Sorting a Dictionary’s Keys and/or Values

Problem
You want to sort the keys and/or values contained in a Dictionary in order to dis-
play the entire Dictionary to the user, sorted in either ascending or descending order.

Solution
Use a LINQ query and the Keys and Values properties of a Dictionary<T,U> object to
obtain a sorted ICollection of its key and value objects. The code shown here dis-
plays the keys and values of a Dictionary<T,U> sorted in ascending or descending
order:

194 | Chapter 5: Collections

var x = from k in hash.Keys orderby k ascending select k;
foreach (string s in x)
 Console.WriteLine("Key: " + s + " Value: " + hash[s]);

x = from k in hash.Keys orderby k descending select k;
foreach (string s in x)
 Console.WriteLine("Key: " + s + " Value: " + hash[s]);

The code shown here displays the values in a Dictionary<T,U> sorted in ascending or
descending order:

var x = from k in hash.Values orderby k ascending select k;
foreach (string s in x)
 Console.WriteLine("Value: " + s);

Console.WriteLine();

x = from k in hash.Values orderby k descending select k;
foreach (string s in x)
 Console.WriteLine("Value: " + s);

Note that you can also use the SortedDictionary<T,U> class, which will automati-
cally keep the key sorted for you.

Discussion
The Dictionary<T,U> object exposes two useful properties for obtaining a collection
of its keys or values. The Keys property returns an ICollection containing all the keys
currently in the Dictionary<T,U>. The Values property returns the same for all values
currently contained in the Dictionary<T,U>.

The ICollection object returned from either the Keys or Values property of a
Dictionary<T,U> object contains direct references to the key and value collections
within the Dictionary<T,U>. This means that if the keys and/or values change in a
Dictionary<T,U>, the key and value collections will be altered accordingly.

See Also
The “Dictionary<T,U> Class,” “SortedDictionary<T,U> Class,” and “List<T>
Class” topics in the MSDN documentation.

5.9 Creating a Dictionary with Max and Min Value
Boundaries

Problem
You need to use a generic Dictionary object in your project that stores only numeric
data in its value (the key can be of any type) between a set, predefined maximum and
minimum value.

Creating a Dictionary with Max and Min Value Boundaries | 195

Solution
Create a class with accessors and methods that enforce these boundaries. The class
shown in Example 5-4, MaxMinValueDictionary, allows only types to be stored that
implement the IComparable interface and fall between a maximum and minimum
value.

Example 5-4. Creating a dictionary with max and min value boundaries

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization;

[Serializable]
public class MaxMinValueDictionary<T, U>
 where U : IComparable<U>
{
 protected Dictionary<T, U> internalDictionary = null;

 public MaxMinValueDictionary(U minValue, U maxValue)
 {
 this.minValue = minValue;
 this.maxValue = maxValue;
 internalDictionary = new Dictionary<T, U>();
 }

 protected U minValue = default(U);
 protected U maxValue = default(U);

 public int Count
 {
 get { return (internalDictionary.Count); }
 }

 public Dictionary<T, U>.KeyCollection Keys
 {
 get { return (internalDictionary.Keys); }
 }

 public Dictionary<T, U>.ValueCollection Values
 {
 get { return (internalDictionary.Values); }
 }

 public U this[T key]
 {
 get {return (internalDictionary[key]);}
 set
 {
 if (value.CompareTo(minValue) >= 0 && value.CompareTo(maxValue) <= 0)
 {

196 | Chapter 5: Collections

 internalDictionary[key] = value;
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "Value must be within the range " + minValue + " to " + maxValue));
 }
 }
 }

 public void Add(T key, U value)
 {
 if (value.CompareTo(minValue) >= 0 && value.CompareTo(maxValue) <= 0)
 {
 internalDictionary.Add(key, value);
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "Value must be within the range " + minValue + " to " + maxValue));
 }
 }

 public bool ContainsKey(T key)
 {
 return (internalDictionary.ContainsKey(key));
 }

 public bool ContainsValue(U value)
 {
 return (internalDictionary.ContainsValue(value));
 }

 public override bool Equals(object obj)
 {
 return (internalDictionary.Equals(obj));
 }

 public IEnumerator GetEnumerator()
 {
 return (internalDictionary.GetEnumerator());
 }

 public override int GetHashCode()
 {
 return (internalDictionary.GetHashCode());
 }

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 internalDictionary.GetObjectData(info, context);
 }

Example 5-4. Creating a dictionary with max and min value boundaries (continued)

Creating a Dictionary with Max and Min Value Boundaries | 197

Discussion
The MaxMinValueDictionary class wraps the Dictionary<T,U> class, so it can restrict
the range of allowed values. Defined here is the overloaded constructor for the
MaxMinValueDictionary class:

 public MaxMinValueDictionary(U minValue, U maxValue)

This constructor allows the range of values to be set. Its parameters are:

minValue
The smallest value of type U that can be added as a value in a key/value pair.

maxValue
The largest value of type U that can be added as a value in a key/value pair.

The overridden indexer has both get and set. The get returns the value that matches
the provided key. The set checks the value parameter to determine whether it is
within the boundaries of the minValue and maxValue fields before it is set.

The Add method accepts a type U for its value parameter and performs the same tests
as the set accessor on the indexer. If the test passes, the integer is added to the
MaxMinValueDictionary.

 public void OnDeserialization(object sender)
 {
 internalDictionary.OnDeserialization(sender);
 }

 public override string ToString()
 {
 return (internalDictionary.ToString());
 }

 public bool TryGetValue(T key, out U value)
 {
 return (internalDictionary.TryGetValue(key, out value));
 }

 public void Remove(T key)
 {
 internalDictionary.Remove(key);
 }

 public void Clear()
 {
 internalDictionary.Clear();
 }
}

Example 5-4. Creating a dictionary with max and min value boundaries (continued)

198 | Chapter 5: Collections

See Also
The “Hashtable Class” and “Dictionary<T, U> Class” topics in the MSDN
documentation.

5.10 Storing Snapshots of Lists in an Array

Problem
You have an ArrayList, Queue, or Stack object and you want to take a snapshot of its
current state.

Note that this recipe also works for any other data type that imple-
ments the ICollection interface.

Solution
Use the ToArray extension method on the IEnumerable<T> interface. The following
method, TakeSnapshotOfList, accepts any type that implements the IEnumerable<T>
interface and takes a snapshot of the entire object’s contents. This snapshot is
returned as an object array:

 public static T[] TakeSnapshotOfList<T>(IEnumerable<T> theList)
 {
 T[] snapshot = theList.ToArray();
 return (snapshot);
 }

Discussion
The following method creates a Queue<int> object, enqueues some data, and then
takes a snapshot of it:

 public static void TestListSnapshot()
 {
 Queue<int> someQueue = new Queue<int>();
 someQueue.Enqueue(1);
 someQueue.Enqueue(2);
 someQueue.Enqueue(3);

 int[] queueSnapshot = TakeSnapshotOfList<int>(someQueue);
 }

The TakeSnapshotOfList<T> is useful when you want to record the state of an object
that implements the ICollection interface. This “snapshot” can be compared to the
original list later on to determine what, if anything, changed in the list. Multiple
snapshots can be taken at various points in an application’s run to show the state of
the list or lists over time.

Persisting a Collection Between Application Sessions | 199

The TakeSnapshotOfList<T> method could easily be used as a logging/debugging tool
for developers. Take, for example, a List<T> that is being corrupted at some point in
the application. You can take snapshots of the List<T> at various points in the appli-
cation using the TakeSnapshotOfList<T> method and then compare the snapshots to
narrow down the list of possible places where the List<T> is being corrupted.

See Also
The “IEnumerable<T> Interface” and “Array Class” topics in the MSDN
documentation.

5.11 Persisting a Collection Between Application
Sessions

Problem
You have a collection such as an ArrayList, List<T>, Hashtable, or Dictionary<T,U>
in which you are storing application information. You can use this information to
tailor the application’s environment to the last known settings (e.g., window size,
window placement, and currently displayed toolbars). You can also use it to allow
the user to start the application at the same point where it was last shut down. In
other words, if the user is editing an invoice and needs to shut down the computer
for the night, the application will know exactly which invoice to initially display
when the application is started next time.

Solution
Serialize the object(s) to and from a file:

 public static void SaveObj<T>(T obj, string dataFile)
 {
 using (FileStream FS = File.Create(dataFile))
 {
 BinaryFormatter binSerializer = new BinaryFormatter();
 binSerializer.Serialize(FS, obj);
 } }

 public static T RestoreObj<T>(string dataFile)
 {
 T obj = default(T);

 using (FileStream FS = File.OpenRead(dataFile))
 {
 BinaryFormatter binSerializer = new BinaryFormatter();
 obj = (T)binSerializer.Deserialize(FS);
 }

 return (obj); }

200 | Chapter 5: Collections

Discussion
The dataFile parameter accepts a string value to use as a filename. The SaveObj<T>
method accepts an object and attempts to serialize it to a file. Conversely, the
RestoreObj<T> method removes the serialized object from the file created in the
SaveObj<T> method.

The TestSerialization utility shown in Example 5-5 demonstrates how to use these
methods to serialize an ArrayList object (note that this will work for any type that is
marked with the SerializableAttribute).

If you serialize your objects to disk at specific points in your application, you can
then deserialize them and return to a known state, for instance, in the event of an
unintended shutdown.

If you rely on serialized objects to store persistent information, you
need to figure out what you are going to do when you deploy a new
version of the application. You should plan ahead with either a strat-
egy for making sure the types you serialize don’t get changed or a tech-
nique for dealing with changes. Otherwise, you are going to have big
problems when you deploy an update.

See Also
The “ArrayList Class,” “Hashtable Class,” “List<T> Class,” “Dictionary<T,U>
Class,” “File Class,” and “BinaryFormatter Class” topics in the MSDN documentation.

Example 5-5. Persisting a collection between application sessions

public static void TestSerialization()
{
 // Create a Hashtable object to save/restore to/from a file.
 ArrayList HT = new ArrayList() {"Zero","One","Two"};

 // Display this object's contents and save it to a file.
 foreach (object O in HT)
 Console.WriteLine(O.ToString());
 SaveObj<ArrayList>(HT, "HT.data");
 // Restore this object from the same file and display its contents.
 ArrayList HTNew = new ArrayList();
 HTNew = RestoreObj<ArrayList>("HT.data");
 foreach (object O in HTNew)
 Console.WriteLine(O.ToString());
}

Testing Every Element in an Array or List<T> | 201

5.12 Testing Every Element in an Array or List<T>

Problem
You need an easy way to test every element in an Array or List<T>. The results of this
test should indicate that the test passed for all elements in the collection, or it failed
for at least one element in the collection.

Solution
Use the TrueForAll method, as shown here:

 // Create a List of strings.
 List<string> strings = new List<string>() {"one",null,"three","four"};

 // Determine if there are no null values in the List.
 string str = strings.TrueForAll(delegate(string val)
 {
 if (val == null)
 return false;
 else
 return true;
 }).ToString();

 // Display the results.
 Console.WriteLine(str);

Discussion
The addition of the TrueForAll method on the Array and List<T> classes allows you
to easily set up tests for all elements in these collections. The code in the Solution for
this recipe tests all elements to determine if any are null. You could just as easily set
up tests to determine…

• If any numeric elements are above a specified maximum value

• If any numeric elements are below a specified minimum value

• If any string elements contain a specified set of characters

• If any data objects have all of their fields filled in

…as well as any others you may come up with.

The TrueForAll method accepts a generic delegate Predicate<T> called match and
returns a Boolean value:

 public bool TrueForAll(Predicate<T> match)

The match parameter determines whether or not a true or false should be returned
by the TrueForAll method.

The TrueForAll method basically consists of a loop that iterates over each element in
the collection. Within this loop, a call to the match delegate is invoked. If this

202 | Chapter 5: Collections

delegate returns true, the processing continues on to the next element in the collec-
tion. If this delegate returns false, processing stops and a false is returned by the
TrueForAll method. When the TrueForAll method is finished iterating over all the
elements of the collection and the match delegate has not returned a false value for
any element, the TrueForAll method returns a true.

See Also
The “Array Class,” “List<T> Class,” and “TrueForAll Method” topics in the MSDN
documentation.

5.13 Performing an Action on Each Element in an
Array or List<T>

Problem
You need an easy way to iterate over all the elements in an Array or List<T>,
performing an operation on each element as you go.

Solution
Use the ForEach method of the Array or List<T> classes:

 // Create and populate a List of Data objects.
 List<Data> numbers = new List<Data>()
 {new Data(1), new Data(2), new Data(3), new Data(4)};

 // Display them.
 foreach (Data d in numbers)
 Console.WriteLine(d.val);

 // Add 2 to all Data.val integer values.
 numbers.ForEach(delegate(Data obj) { obj.val += 2; });

 // Display them.
 foreach (Data d in numbers)
 Console.WriteLine(d.val);

 // Total val integer values in all Data objects in the List.
 int total = 0;
 numbers.ForEach(delegate(Data obj) { total += obj.val; });

 // Display total.
 Console.WriteLine("Total: " + total);

This code outputs the following:

 1
 2
 3
 4

Performing an Action on Each Element in an Array or List<T> | 203

 3
 4
 5
 6
 Total: 18

The Data class is defined as follows:

 public class Data
 {
 public Data(int v)
 {
 val = v;
 }

 public int val = 0;
 }

Discussion
The ForEach method of the Array and List<T> collections allows you to easily per-
form an action on every element within these collections. This is accomplished
through the use of the Action<T> delegate, which is passed in as a parameter to the
ForEach method:

 public void ForEach (Action<T> action)

The action parameter is a delegate of type Action<T> that contains the code that will
be invoked for each element of the collection.

The ForEach method basically consists of a loop that iterates over each element in the
collection. Within this loop, a call to the action delegate is invoked. Processing con-
tinues on to each element in the collection until the last element is finished process-
ing. When this occurs, the ForEach method is finished and returns to the calling
method.

This recipe uses the ForEach method of a List<T> object in two different ways. The
first is to actually modify the values of each element of the List<T> object:

 // Add 2 to all Data.val integer values.
 numbers.ForEach(delegate(Data obj)
 {
 obj.val += 2;
 });

This call to ForEach will iterate over each Data element within the numbers List<Data>
object. On every iteration, the value val contained in the current Data object obj has
its value incremented by two.

The second way is to collect a total of all the values val contained in each Data object
obj in the numbers List<Data> object:

 // Total val integer values in all Data objects in the List.
 int total = 0;
 numbers.ForEach(delegate(Data obj)

204 | Chapter 5: Collections

 {
 total += obj.val;
 });

This code uses the total variable to build a running total of the values contained in
each element. In this instance, you do not modify any values in any of the Data
objects; instead, you examine each Data object and record information about its
value.

See Also
The “Array Class,” “List<T> Class,” and “ForEach Method” topics in the MSDN
documentation.

5.14 Creating a Read-Only Array or List<T>

Problem
You need a way to create a read-only Array or List<T>, where the Array or List<T>
itself is read-only.

Solution
Use the AsReadOnly method of the Array or List<T> class, as shown here:

 // Create and populate a List of strings.
 List<string> strings = new List<string>() {"1","2","3","4"};

 // Create a read-only strings List.
 IList<string> readOnlyStrings = strings.AsReadOnly();

 // Display them.
 foreach (string s in readOnlyStrings)
 Console.WriteLine(s);

Discussion
The AsReadOnly method accepts no parameters and returns a read-only wrapper
around the collection on which it is called. For example, the following statement:

 IList<string> readOnlyStrings = strings.AsReadOnly();

returns a read-only IList<string> type from the original strings List<string> type.
This read-only readOnlyStrings variable behaves similarly to the original strings
object, except that you cannot add, modify, or delete elements from this object. If
you attempt one of these actions, a System.NotSupportedException will be thrown
along with the message “Collection is read-only”. Any of the following lines of code
will cause this exception to be thrown:

 readOnlyStrings.Add("5");
 readOnlyStrings.Remove("1");
 readOnlyStrings[0] = "1.1";

Creating a Read-Only Array or List<T> | 205

While you cannot modify the data within the readOnlyStrings object, you can point
this object to refer to a different object of type IList<string>, for example:

 readOnlyStrings = new List<string>();

On the other hand, if you add, modify, or delete elements from the original strings
object, the changes will be reflected in the new readOnlyStrings object. For example,
the following code creates a List<string>, populates it, and then creates a read-only
object readOnlyStrings from this original List<string> object. Next, the
readOnlyStrings object elements are displayed, the original List<string> object is
modified, and then the readOnlyStrings object elements are again displayed. Notice
that they have changed:

 // Create and populate a List of strings.
 List<string> strings = new List<string>() {"1","2","3","4"};

 // Create a read-only strings List.
 IList<string> readOnlyStrings = strings.AsReadOnly();

 // Display them.
 foreach (string s in readOnlyStrings)
 Console.WriteLine(s);

 // Change the value in the original List<string>.
 strings[0] = "one";

 strings[1] = null;

 // Display them again.
 Console.WriteLine();
 foreach (string s in readOnlyStrings)
 Console.WriteLine(s);

This code outputs the following:

 1
 2
 3
 4

 one

← The null value
 3
 4

For an alternate method to making read-only collections, see Recipe 4.8.

See Also
The “Array Class,” “List<T> Class,” “IList<T> Interface,” and “AsReadOnly
Method” topics in the MSDN documentation.

206

Chapter 6CHAPTER 6

Iterators, Partial Types,
and Partial Methods 6

6.0 Introduction
Iterators allow for a block of code to yield an ordered sequence of values.

Iterators are a mechanism for producing data that can be iterated over by the foreach
loop construct. However, iterators are much more flexible than this. You can easily
generate a sequence of data returned by the enumerator (lazy computation); it does
not have to be hardcoded up front (eager computation). For example, you could eas-
ily write an enumerator that generates the Fibonacci sequence on demand. Another
flexible feature of iterators is that you do not have to set a limit on the number of val-
ues returned by the iterator, so in this example, you could choose when to stop pro-
ducing the Fibonacci sequence. This is an interesting distinction in the LINQ world.
Iterators like the one produced by the IEnumerable version of Where are lazy, but
grouping or sorting requires eagerness.

Iterators allow you to hand the work of writing this class off to the C# compiler.
Now, you need to add only an iterator to your type. An iterator is a member within
your type (e.g., a method, an operator overload, or the get accessor of a property)
that returns either a System.Collections.IEnumerator, a System.Collections.Generic.
IEnumerator<T>, a System.Collections.IEnumerable, or a System.Collections.Generic.
IEnumerable<T> and that contains at least one yield statement. This allows you to
write types that can be used by foreach loops.

Iterators play an important role in Language Integrated Query (LINQ), as LINQ to
Objects is based on being able to work on classes that implement IEnumerable<T>.
They allow for the query engine to iterate over collections while performing the vari-
ous query, projection, ordering, and grouping operations. Without iterator support,
LINQ would be much more cumbersome, and the declarative style of programming
that it brings would be clumsy if not lost altogether.

Partial types allow for different parts of classes to be placed in different locations.

Creating an Iterator on a Generic Type | 207

Partial types allow the developer to split pieces of a type across several areas where
the type is defined. The type can be in multiple files, multiple areas in the same file,
or a combination of the two. Declaring a type as partial is an indicator to the C#
compiler that this type may not be fully represented in this location and that it can-
not be fully compiled until the other parts are found or the end of the list of modules
to compile is found. Partial types are purely a compiler-implemented feature with no
impact to the underlying Microsoft Intermediate Language that is generated for the
class. The main examples of using partial types are in the Visual Studio IDE, where
the designer uses them to keep designer-generated code separate from UI logic the
developer creates, and in the DataSet creation code, which is based on an XML
Schema Definition of the data. Even though partial types are only a compiler-level
feature, you can use them to your advantage in a few situations that are pointed out
in Recipes 6.7 and 6.8.

Partial methods are a new language feature in C# 3.0 that can be used to implement
a lightweight mechanism for event handling.

The thing that makes partial methods lightweight is that they are declared in a par-
tial class, but, if no other part of the partial class provides an implementation, the
compiler will completely remove the calls to the method along with any processing
that occurs in the arguments to the method call. No trace of a partial method will be
emitted to the metadata of the assembly without an implementation including the
original declarations and calls to the method. This is a good feature for code-
generation scenarios where user-specific functionality could be wired in without the
initial partial class knowing what will be done by the partial method implementer.

6.1 Creating an Iterator on a Generic Type

Problem
You want elements contained in your generic type to be enumerated using the
foreach statement.

Solution
Add an iterator to your generic type, as shown here:

public class ShoppingList<T> : IEnumerable<T>
{
 private List<T> _items = new List<T>();

 public void Add(T name)
 {
 _items.Add(name);
 }

 public IEnumerator<T> GetEnumerator()

208 | Chapter 6: Iterators, Partial Types, and Partial Methods

 {
 return _items.GetEnumerator();
 }
}

The following code creates a new ShoppingList<T> object and fills it with strings; it
then proceeds to use a foreach loop to enumerate and display each string:

public static void TestShoppingCart()
{
 //Create ShoppingList object and fill it with data
 ShoppingList<string> shoppingCart = new ShoppingList<string>(){
 "item1","item2","item3","item4","item5","item6"};

 // Display all data in ShoppingCart object
 foreach (string item in shoppingCart)
 {
 Console.WriteLine(item);
 }
}

Discussion
Adding an iterator to a generic type is accomplished by implementing the
IEnumerator<T> interface. The method to implement for IEnumerator<T> is the
GetEnumerator method that accepts no arguments and returns an IEnumerator<T>
type. The GetNext method on the object returned by this GetEnumerator method is
called by the foreach loop to determine what object is returned on every iteration.

The code that you write inside of the GetEnumerator method is what actually does the
work of determining the next object to be returned by the foreach loop. This is
accomplished through the use of the yield return statement. In this recipe, we use
the GetEnumerator method that is built into the List<T> class as that gives us the
implementation.

The use of IEnumerable<T> makes it more apparent that this class supports enumera-
tion. You can also specify a closed type in place of T in IEnumerable<T>, such as
IEnumerable<string>, if you wish that class to enumerate values only of type string.
Regardless of the method you choose, the operation of the iterator and the foreach
loop is identical.

See Also
The “Iterators,” “IEnumerator Interface,” and “IEnumerable Interface” topics in the
MSDN documentation.

Creating an Iterator on a Nongeneric Type | 209

6.2 Creating an Iterator on a Nongeneric Type

Problem
You want to be able to access elements contained in your nongeneric collection type
using the foreach statement.

Solution
Implement IEnumerable on your nongeneric type:

public class StampCollection : IEnumerable
{
 private Dictionary<string, Stamp> _stamps =
 new Dictionary<string, Stamp>();

 public void Add(Stamp stamp)
 {
 _stamps.Add(stamp.Name, stamp);
 }

 public IEnumerator GetEnumerator()
 {
 // Return all stamps in the stamp collection
 // in order of publication
 var orderedStamps = from Stamp stamp in _stamps.Values
 orderby stamp.Year
 select stamp;
 foreach (Stamp stamp in orderedStamps)
 {
 yield return stamp;
 }
 }
}

public class Stamp
{
 public Stamp(int year, string name)
 {
 this.Year = year;
 this.Name = name;
 }
 public int Year { get; set; }
 public string Name { get; set; }

 public override string ToString()
 {
 return this.Year + ":" + this.Name;
 }
}

210 | Chapter 6: Iterators, Partial Types, and Partial Methods

The following code creates a new StampCollection and fills it with Stamps; it then
proceeds to use a foreach loop to enumerate and display each Stamp:

public static void TestStampCollection()
{
 //Create a StampCollection and fill it with stamps
 StampCollection stamps = new StampCollection() {
 new Stamp(1998,"Louisiana Duck"),
 new Stamp(1968,"Goethals Memorial"),
 new Stamp(1909,"Carmine Hudson"),
 new Stamp(1936,"Hotel Corner Card")};

 foreach (Stamp stamp in stamps)
 {
 Console.WriteLine(stamp);
 }
}

Discussion
When adding an iterator to a nongeneric type, the IEnumerable interface needs to be
implemented. Making collections enumerable allows not only iteration, but query-
ing using LINQ as well.

The code that is written inside of the GetEnumerator method is what actually does the
work of determining the next object to be returned by the foreach loop. This is
accomplished through the use of the yield return statement. For example, in this
recipe, you simply use a foreach loop to iterate over the query result for ordering the
stamps in the collection and return one at a time:

 public IEnumerator GetEnumerator()
 {
 // Return all stamps in the stamp collection
 // in order of publication
 var orderedStamps = from Stamp stamp in _stamps.Values
 orderby stamp.Year
 select stamp;
 foreach (Stamp stamp in orderedStamps)
 {
 yield return stamp;
 }
 }

This allows StampCollection to return an enumerator that will give a series of Stamps
based on publication date by default.

See Also
The “Iterators,” “IEnumerator Interface,” and “IEnumerable Interface” topics in the
MSDN documentation.

Creating Custom Enumerators | 211

6.3 Creating Custom Enumerators

Problem
You need to add foreach support to a class, but the normal way of adding an iterator
(i.e., implementing IEnumerable on a type and returning a reference to this
IEnumerable from a member function) is not flexible enough. Instead of simply iterat-
ing from the first element to the last, you also need to iterate from the last to the first,
and you need to be able to step over, or skip, a predefined number of elements on
each iteration. You want to make all of these types of iterators available to your class.

Solution
The Container<T> class shown in Example 6-1 acts as a container for a private
List<T> called internalList. Container is implemented so you can use it in a foreach
loop to iterate through the private internalList.

Example 6-1. Creating custom iterators

public class Container<T> : IEnumerable<T>
{
 public Container() {}

 private List<T> _internalList = new List<T>();

 // This iterator iterates over each element from first to last
 public IEnumerator<T> GetEnumerator()
 {
 return _internalList.GetEnumerator();
 }

 // This iterator iterates over each element from last to first
 public IEnumerable<T> GetReverseOrderEnumerator()
 {
 foreach (T item in ((IEnumerable<T>)_internalList).Reverse())
 {
 yield return item;
 }
 }

 // This iterator iterates over each element from first to last stepping
 // over a predefined number of elements
 public IEnumerable<T> GetForwardStepEnumerator(int step)
 {
 foreach (T item in _internalList.EveryNthItem(step))
 {
 yield return item;
 }
 }

212 | Chapter 6: Iterators, Partial Types, and Partial Methods

Discussion
Iterators provide an easy method of moving from item to item within an object using
the familiar foreach loop construct. The object can be an array, a collection, or some
other type of container. This is similar to using a for loop to manually iterate over
each item contained in an array. In fact, an iterator can be set up to use a for loop, or
any other looping construct for that matter, as the mechanism for yielding each item
in the object. In fact, you do not even have to use a looping construct. The following
code is perfectly valid:

 public static IEnumerable<int> GetValues()
 {
 yield return 10;
 yield return 20;
 yield return 30;
 yield return 100;
 }

 // This iterator iterates over each element from last to first stepping
 // over a predefined number of elements
 public IEnumerable<T> GetReverseStepEnumerator(int step)
 {
 foreach (T item in ((IEnumerable<T>)_internalList).Reverse().EveryNthItem(step))
 {
 yield return item;
 }
 }

 #region IEnumerable Members

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 #endregion

 public void Clear()
 {
 _internalList.Clear();
 }

 public void Add(T item)
 {
 _internalList.Add(item);
 }

 public void AddRange(ICollection<T> collection)
 {
 _internalList.AddRange(collection);
 }
}

Example 6-1. Creating custom iterators (continued)

Creating Custom Enumerators | 213

With the foreach loop, you do not have to worry about watching for the end of the
list, since you cannot go beyond the bounds of the list. The best part about the
foreach loop and iterators is that you do not have to know how to access the list of
elements within its container—indeed, you do not even have to have access to the
list of elements; the iterator member(s) implemented on the container do this for
you.

To see what foreach is doing here, let’s look at code to iterate over the Container
class:

// Iterate over Container object
foreach (int i in container)
{
 Console.WriteLine(i);
}

foreach will take the following actions while this code executes:

1. Get the enumerator from container using IEnumerator.GetEnumerator().

2. Access the IEnumerator.Current property for the current object (int) and place it
into i.

3. Call IEnumerator.MoveNext(). If MoveNext returns true, go back to step 2, or else
end the loop.

The Container class contains a private List of items called internalList. There are
four iterator members within this class:

 GetEnumerator
 GetReverseOrderEnumerator
 GetForwardStepEnumerator
 GetReverseStepEnumerator

The GetEnumerator method iterates over each element in the internalList from the
first to the last element. This iterator, similar to the others, uses a for loop to yield
each element in the internalList.

The GetReverseOrderEnumerator method implements an iterator in its get accessor
(set accessors cannot be iterators). This iterator is very similar in design to the
GetEnumerator method, except that the foreach loop works on the internalList in
the reverse direction by using the IEnumerable<T>.Reverse extension method. The
last two iterators, GetForwardStepEnumerator and GetReverseStepEnumerator, are simi-
lar in design to GetEnumerator and GetReverseOrderEnumerator, respectively. The
main difference is that the foreach loop uses the EveryNthItem extension method to
skip over the specified number of items in the internalList:

public static IEnumerable<T> EveryNthItem<T>(this IEnumerable<T> enumerable,
 int step)
{
 int current = 0;
 foreach (T item in enumerable)
 {

214 | Chapter 6: Iterators, Partial Types, and Partial Methods

 ++current;
 if (current % step == 0)
 yield return item;
 }
}

Notice also that only the GetEnumerator method must return an IEnumerator<T> inter-
face; the other three iterators must return IEnumerable<T> interfaces.

To iterate over each element in the Container object from first to last, use the follow-
ing code:

 Container<int> container = new Container<int>();
 //...Add data to container here ...
 foreach (int i in container)
 {
 Console.WriteLine(i);
 }

To iterate over each element in the Container object from last to first, use the follow-
ing code:

 Container<int> container = new Container<int>();
 //...Add data to container here ...
 foreach (int i in container.GetReverseOrderEnumerator())
 {
 Console.WriteLine(i);
 }

To iterate over each element in the Container object from first to last while skipping
every other element, use the following code:

 Container<int> container = new Container<int>();
 //...Add data to container here ...
 foreach (int i in container.GetForwardStepEnumerator(2))
 {
 Console.WriteLine(i);
 }

To iterate over each element in the Container object from last to first while skipping
to every third element, use the following code:

 Container<int> container = new Container<int>();
 //...Add data to container here ...
 foreach (int i in container.GetReverseStepEnumerator(3))
 {
 Console.WriteLine(i);
 }

In each of the last two examples, the iterator method accepts an integer value, step,
which determines how many items will be skipped.

Implementing Iterator Logic | 215

See Also
The “Iterators,” “yield,” “IEnumerator Interface,” “IEnumerable(Of T) interface,”
and “IEnumerable Interface” topics in the MSDN documentation.

6.4 Implementing Iterator Logic

Problem
Iterators need to provide access to the data elements in the collections they are
implemented for. You need a good way to work with sets of data.

Solution
Use LINQ to implement iterator logic, as shown in Example 6-2. The highlighted
items are just a few parts of LINQ that can help you with the implementation of iter-
ator logic.

Example 6-2. Implementing iterator logic with LINQ

public class SectionalList<T> : IEnumerable<T>
{
 private List<T> _items = new List<T>();

 public void Add(T item)
 {
 _items.Add(item);
 }

 public IEnumerator<T> GetEnumerator()
 {
 return _items.GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 public IEnumerable<T> GetFirstHalf()
 {
 foreach(T item in _items.Take(_items.Count / 2))
 {
 yield return item;
 }
 }
 public IEnumerable<T> GetSecondHalf()
 {
 foreach (T item in _items.Skip(_items.Count / 2))
 {
 yield return item;

216 | Chapter 6: Iterators, Partial Types, and Partial Methods

Discussion
The SectionalListat class contains the typical GetEnumerator iterator method that
yields all items in the _items list. In addition to this iterator method, the class con-
tains four additional iterators: GetFirstHalf, GetSecondHalf, GetFilteredValues, and
GetReverseFilteredValues.

The GetFirstHalf iterator starts at the beginning of the _items list and yields all
elements in the list up to the middle index. At this point, iteration stops. The
GetSecondHalf iterator starts where the GetFirstHalf iterator left off and continues
yielding elements of the _items list until the end of this list. These iterators use the
Take extension method (GetFirstHalf) and the Skip extension method
(GetSecondHalf) from LINQ to retrieve the elements:

 public IEnumerable<T> GetFirstHalf()
 {
 foreach(T item in _items.Take(_items.Count / 2))
 {
 yield return item;
 }
 }
 public IEnumerable<T> GetSecondHalf()
 {
 foreach (T item in _items.Skip(_items.Count / 2))
 {
 yield return item;
 }
 }

The GetFilteredValues and GetNonFilteredValues iterators allow the user to retrieve
the items in the collection that either pass (GetFilteredValues) or fail

 }
 }

 public IEnumerable<T> GetFilteredValues(Func<T, bool> predicate)
 {
 foreach (T item in _items.TakeWhile(predicate))
 {
 yield return item;
 }
 }

 public IEnumerable<T> GetReverseFilteredValues(Func<T, bool> predicate)
 {
 foreach (T item in _items.SkipWhile(predicate))
 {
 yield return item;
 }
 }
}

Example 6-2. Implementing iterator logic with LINQ (continued)

Implementing Iterator Logic | 217

(GetNonFilteredValues) a predicate test that is passed in. These methods use the
TakeWhile and SkipWhile LINQ methods, respectively:

 public IEnumerable<T> GetFilteredValues(Func<T, bool> predicate)
 {
 foreach (T item in _items.TakeWhile(predicate))
 {
 yield return item;
 }
 }

 public IEnumerable<T> GetReverseFilteredValues(Func<T, bool> predicate)
 {
 foreach (T item in _items.SkipWhile(predicate))
 {
 yield return item;
 }
 }

The following code shows how the iterator methods are used:

public static void TestIteratorsAndLinq()
{
 //Create SectionalList and fill it with data
 SectionalList<int> sectionalList = new SectionalList<int>() {
 12,26,95,37,50,33,81,54};

 // Display all data in SectionalList
 Console.WriteLine("\r\nGetEnumerator iterator");
 foreach (int i in sectionalList)
 {
 Console.Write(i + ":");
 }
 Console.WriteLine("");

 Console.WriteLine("\r\nGetFirstHalf iterator");
 foreach (int i in sectionalList.GetFirstHalf())
 {
 Console.Write(i + ":");
 }
 Console.WriteLine("");

 Console.WriteLine("\r\nGetSecondHalf iterator");
 foreach (int i in sectionalList.GetSecondHalf())
 {
 Console.Write(i + ":");
 }
 Console.WriteLine("");

 Console.WriteLine("\r\nGetFilteredValues iterator");
 // make a predicate test for even numbers
 Func<int, bool> predicate = item => (item % 2 == 0);
 foreach (int i in sectionalList.GetFilteredValues(predicate))
 {

218 | Chapter 6: Iterators, Partial Types, and Partial Methods

 Console.Write(i + ":");
 }
 Console.WriteLine("");

 Console.WriteLine("\r\nGetReverseFilteredValues iterator");
 foreach (int i in sectionalList.GetNonFilteredValues(predicate))
 {
 Console.Write(i + ":");
 }
 Console.WriteLine("");

}

This code produces the following output:

GetEnumerator iterator
12:26:95:37:50:33:81:54:

GetFirstHalf iterator
12:26:95:37:

GetSecondHalf iterator
50:33:81:54:

GetFilteredValues iterator
12:26:

GetReverseFilteredValues iterator
95:37:50:33:81:54:

See Also
The “Iterators,” “IEnumerator Interface,” and “IEnumerable Interface” topics in the
MSDN documentation.

6.5 Forcing an Iterator to Stop Iterating

Problem
You have a requirement that if an iterator encounters malformed or out-of-bounds
data that the iterations are to stop immediately.

Solution
It is possible to throw an exception from an iterator, which terminates the iterator
and the foreach loop, but a controlled stop to an iterator should not be an
exceptional condition. To do this, you can use the yield break statement within
your iterator:

public class UpperLimitList<T> : IEnumerable<T>
{
 private List<T> _items = new List<T>();

Forcing an Iterator to Stop Iterating | 219

 private bool noMoreItemsCanBeAdded;
 private int upperLimit = -1;

 public int UpperLimit
 {
 get {return (upperLimit);}
 set {upperLimit = value;}
 }

 public void Add(T name)
 {
 _items.Add(name);
 }

 public IEnumerator<T> GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 if (noMoreItemsCanBeAdded)
 {
 yield break;
 }
 else
 {
 if (upperLimit >= 0 && index >= upperLimit-1)
 {
 noMoreItemsCanBeAdded = true;
 }

 yield return (_items[index]);
 }
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
}

Discussion
The way to terminate an iterator, and thus terminate the foreach loop, is to use the
yield break statement. This statement has the same effect as simply exiting from the
function. This yield break statement can be used only within an iterator block.

To use the UpperLimitList, see the following code:

public static void TestYieldBreak()
{
 //Create UpperLimitList and fill it with data
 UpperLimitList<string> gatePasses = new UpperLimitList<string>() {
 "A","B","C","D","E","F","G"};

220 | Chapter 6: Iterators, Partial Types, and Partial Methods

 Console.WriteLine("Gates allowed before limit set");
 foreach (string gatePass in gatePasses)
 {
 Console.Write(gatePass + ":");
 }
 Console.WriteLine("");

 // only give out 5 gate passes
 gatePasses.UpperLimit = 5;

 Console.WriteLine("Gates allowed after limit set");
 foreach (string gatePass in gatePasses)
 {
 Console.Write(gatePass + ":");
 }
 Console.WriteLine("");
}

The output for this solution is listed here:

Gates allowed before limit set
A:B:C:D:E:F:G:
Gates allowed after limit set
A:B:C:D:E:

See Also
Recipe 6.4, and the “Iterators,” “yield,” “IEnumerator Interface,” and “IEnumerable
Interface” topics in the MSDN documentation.

6.6 Dealing with Finally Blocks and Iterators

Problem
You have added a try/finally block to your iterator, and you notice that the finally
block is not being executed when you think it should.

Solution
Wrap a try block around the iteration code in the GetEnumerator iterator with a
finally block following this try block:

public class StringSet : IEnumerable<string>
{
 private List<string> _items = new List<string>();

 public void Add(string value)
 {
 _items.Add(value);
 }

Dealing with Finally Blocks and Iterators | 221

 public IEnumerator<string> GetEnumerator()
 {
 try
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }
 finally
 {
 // Only executed at end of foreach loop (including on yield break)
 Console.WriteLine("In iterator finally block");
 }
 }

 #region IEnumerable Members

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 #endregion
}

The foreach code that calls this iterator looks like this:

//Create a StringSet object and fill it with data
StringSet strSet =
 new StringSet()
 {"item1",
 "item2",
 "item3",
 "item4",
 "item5"};

// Use the GetEnumerator iterator.
foreach (string s in strSet)
{
 Console.WriteLine(s);
}

When this code is run, the following output is displayed:

item1
item2
item3
item4
item5
In iterator finally block

222 | Chapter 6: Iterators, Partial Types, and Partial Methods

Discussion
You may have thought that the output would display the “In iterator finally block”
string after displaying each item in the strSet object. However, this is not the way
that finally blocks are handled in iterators. All finally blocks associated with try
blocks that have yield returns inside the iterator member body are called only after
the iterations are complete, code execution leaves the foreach loop (such as when a
break, return, or throw statement is encountered), or when a yield break statement
is executed, effectively terminating the iterator.

To see how iterators deal with catch and finally blocks (note that there can be no
catch blocks inside of a try block that contains a yield), consider the following code:

public static void TestFinallyAndIterators()
{
 //Create a StringSet object and fill it with data
 StringSet strSet =
 new StringSet()
 { { "item1" },
 { "item2" },
 { "item3" },
 { "item4" },
 { "item5" } };

 // Display all data in StringSet object
 try
 {
 foreach (string s in strSet)
 {
 try
 {
 Console.WriteLine(s);
 // Force an exception here
 throw new Exception();

 }
 catch (Exception)
 {
 Console.WriteLine("In foreach catch block");
 }
 finally
 {
 // Executed on each iteration
 Console.WriteLine("In foreach finally block");
 }
 }
 }
 catch (Exception)
 {
 Console.WriteLine("In outer catch block");
 }
 finally

Dealing with Finally Blocks and Iterators | 223

 {
 // Executed on each iteration
 Console.WriteLine("In outer finally block");
 }
}

Assuming that your original StringSet.GetEnumerator method is used (i.e., the one
that contained the try/finally block), you will see the following behaviors.

If no exception occurs, you see this:

item1
In foreach finally block
item2
In foreach finally block
item3
In foreach finally block
item4
In foreach finally block
item5
In foreach finally block
In iterator finally block
In outer finally block

We see that the finally block that is within the foreach loop is executed on each
iteration. However, the finally block within the iterator is executed only after all
iterations are finished. Also, notice that the iterator’s finally block is executed
before the finally block that wraps the foreach loop.

If an exception occurs in the iterator itself, during processing of the second element,
the following is displayed:

 item1
 In foreach finally block
 (Exception occurs here...)
 In iterator finally block
 In outer catch block
 In outer finally block

Notice that immediately after the exception is thrown, the finally block within the
iterator is executed. This can be useful if you need to clean up only after an excep-
tion occurs. If no exception happens, then the finally block is not executed until the
iterator completes. After the iterator’s finally block executes, the exception is
caught by the catch block outside the foreach loop. At this point, the exception
could be handled or rethrown. Once this catch block is finished processing, the outer
finally block is executed.

Notice that the catch block within the foreach loop was never given the opportunity
to handle the exception. This is because the corresponding try block does not con-
tain a call to the iterator.

224 | Chapter 6: Iterators, Partial Types, and Partial Methods

If an exception occurs in the foreach loop, during processing of the second element,
the following is displayed:

 item1
 In foreach finally block
 (Exception occurs here...)
 In foreach catch block
 In foreach finally block
 In iterator finally block
 In outer finally block

Notice in this situation that the catch and finally blocks within the foreach loop are
executed first, then the iterator’s finally block. Lastly, the outer finally block is
executed.

Understanding the way catch and finally blocks operate inside iterators will allow
you to add catch and finally blocks in the correct location. If you need a finally
block to execute once, immediately after the iterations are finished, add this finally
block to the iterator method. If, however, you want the finally block to execute on
each iteration, you need to place the finally block within the foreach loop body.

If you need to catch iterator exceptions immediately after they occur, you should
consider wrapping the foreach loop in a try/catch block. Any try/catch block
within the foreach loop body will miss exceptions thrown from the iterator.

See Also
The “Iterators,” “yield,” “IEnumerator Interface,” and “IEnumerable Interface” top-
ics in the MSDN documentation.

6.7 Implementing Nested foreach Functionality in a
Class

Problem
You need a class that contains a list of objects, with each of these objects containing
a list of objects. You want to use a nested foreach loop to iterate through all objects
in both the outer and inner lists in the following manner:

foreach (Group<Item> subGroup in topLevelGroup)
{
 // do work for groups
 foreach (Item item in subGroup)
 {
 // do work for items
 }
}

Implementing Nested foreach Functionality in a Class | 225

Solution
Implement the IEnumerable<T> interface on the class. The Group class shown in
Example 6-3 contains a List<T> that can hold Group objects, and each Group object
contains a List<Item>.

Example 6-3. Implementing foreach functionality in a class

using System;
using System.Collections;
using System.Collections.Generic;

public class Group<T> : IEnumerable<T>
{
 public Group(string name)
 {
 this.Name = name;
 }

 private List<T> _groupList = new List<T>();

 public string Name { get; set; }

 public int Count
 {
 get { return _groupList.Count; }
 }

 public void Add(T group)
 {
 _groupList.Add(group);
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 public IEnumerator<T> GetEnumerator()
 {
 return _groupList.GetEnumerator();
 }
}

public class Item
{
 public Item(string name, int location)
 {
 this.Name = name;
 this.Location = location;
 }
 public string Name { get; set; }
 public int Location { get; set; }
}

226 | Chapter 6: Iterators, Partial Types, and Partial Methods

Discussion
Building functionality into a class to allow it to be iterated over using the foreach loop
is much easier using iterators in the C# language. In previous versions of the .NET
Framework, you not only had to implement the IEnumerable interface on the type
that you wanted to make enumerable, but you also had to implement the
IEnumerator interface on a nested class. The methods MoveNext and Reset and the
property Current then had to be written by hand in this nested class. Iterators allow
you to hand the work of writing this nested class off to the C# compiler. If you wrote
an old style enumerator yourself, it would look like this:

public class GroupEnumerator<T> : IEnumerator
{
 public T[] _items;

 int position = -1;

 public GroupEnumerator(T[] list)
 {
 _items = list;
 }

 public bool MoveNext()
 {
 position++;
 return (position < _items.Length);
 }

 public void Reset()
 {
 position = -1;
 }

 public object Current
 {
 get
 {
 try
 {
 return _items[position];
 }
 catch (IndexOutOfRangeException)
 {
 throw new InvalidOperationException();
 }
 }
 }
}

The IEnumerator.GetEnumerator method would be modified on the Group<T> class to
look like this:

Implementing Nested foreach Functionality in a Class | 227

 IEnumerator IEnumerable.GetEnumerator()
 {
 return new GroupEnumerator<T>(_groupList.ToArray());
 }

and the code to walk over it would look like this:

 IEnumerator enumerator = ((IEnumerable)hierarchy).GetEnumerator();
 while (enumerator.MoveNext())
 {
 Console.WriteLine(((Group<Item>)enumerator.Current).Name);
 foreach (Item i in ((Group<Item>)enumerator.Current))
 {
 Console.WriteLine(i.Name);
 }
 }

Aren’t you glad you don’t have to do that? Leave it to the compiler; it’s quite good at
writing this for you.

The ability for a class to be used by the foreach loop requires the inclusion of an
iterator. An iterator can be a method, an operator overload, or the get accessor of a
property that returns either a System.Collections.IEnumerator, a System.
Collections.Generic.IEnumerator<T>, a System.Collections.IEnumerable, or a
System.Collections.Generic.IEnumerable<T> and that contains at least one yield
statement.

The code for this recipe is divided among two classes. The container class is the
Group class, which contains a List of Group<Item> objects. The Group object also
contains a List, but this List contains Item objects. To enumerate the contained list,
the Group class implements the IEnumerable interface. It therefore contains a
GetEnumerator iterator method, which returns an IEnumerator. The class structure
looks like this:

 Group (Implements IEnumerable<T>)
 Group (Implements IEnumerable<T>)

 Item

By examining the Group class, you can see how classes usable by a foreach loop are
constructed. This class contains:

• A simple List<T>, which will be iterated over by the class’s enumerator.

• A property, Count, which returns the number of elements in the List<T>.

• An iterator method, GetEnumerator, which is defined by the IEnumerable<T> inter-
face. This method yields a specific value on each iteration of the foreach loop.

• A method, Add, which adds an instance such as Subgroup to the List<T>.

• A method, GetGroup, which returns a typed instance such as Subgroup from the
List<T>.

To create the Subgroup class, you follow the same pattern as with the Group class—
except the Subgroup class contains a List<Item>.

228 | Chapter 6: Iterators, Partial Types, and Partial Methods

The final class is the Item class. This class is the lowest level of this structure and
contains data. It has been grouped within the Subgroup objects, all of which are
contained in the Group object. There is nothing out of the ordinary with this class; it
simply contains data and the means to set and retrieve this data.

Using these classes is quite simple. The following method shows how to create a
Group object that contains multiple Subgroup objects, which in turn contain multiple
Item objects:

public static void CreateNestedObjects()
{
 Group<Group<Item>> hierarchy =
 new Group<Group<Item>>("root") {
 new Group<Item>("subgroup1"){
 new Item("item1",100),
 new Item("item2",200)},
 new Group<Item>("subgroup2"){
 new Item("item3",300),
 new Item("item4",400)}};

 // Read back the data
 ReadNestedObjects(hierarchy);
}

The CreateNestedObjects method first creates a hierarchy object of the Group class
and then creates two subgroups within it named subgroup1 and subgroup2. Each of
these subgroup objects, in turn, is filled with two Item objects called item1, item2,
item3, and item4.

The next method shows how to read all of the Item objects contained within the
Group object that was created in the CreateNestedObjects method:

private static void DisplayNestedObjects(Group<Group<Item>> topLevelGroup)
{
 Console.WriteLine("topLevelGroup.Count: " + topLevelGroup.Count);
 Console.WriteLine("topLevelGroupName: " + topLevelGroup.Name);

 // Outer foreach to iterate over all objects in the
 // topLevelGroup object
 foreach (Group<Item> subGroup in topLevelGroup)
 {
 Console.WriteLine("\tsubGroup.SubGroupName: " + subGroup.Name);
 Console.WriteLine("\tsubGroup.Count: " + subGroup.Count);

 // Inner foreach to iterate over all Item objects in the
 // current SubGroup object
 foreach (Item item in subGroup)
 {
 Console.WriteLine("\t\titem.Name: " + item.Name);
 Console.WriteLine("\t\titem.Location: " + item.Location);
 }
 }
}

Organizing Your Interface Implementations | 229

This method displays the following:

topLevelGroup.Count: 2
topLevelGroupName: root
 subGroup.SubGroupName: subgroup1
 subGroup.Count: 2
 item.Name: item1
 item.Location: 100
 item.Name: item2
 item.Location: 200
 subGroup.SubGroupName: subgroup2
 subGroup.Count: 2
 item.Name: item3
 item.Location: 300
 item.Name: item4
 item.Location: 400

As you see here, the outer foreach loop is used to iterate over all Subgroup objects
that are stored in the top-level Group object. The inner foreach loop is used to iterate
over all Item objects that are stored in the current Subgroup object.

See Also
The “Iterators,” “yield,” “IEnumerator Interface,” “IEnumerable(Of T) interface,”
and “IEnumerable Interface” topics in the MSDN documentation.

6.8 Organizing Your Interface Implementations

Problem
You have a class that implements an interface with many methods. These methods
support only the interface functionality and don’t necessarily relate well to the other
code in your class. You would like to keep the interface implementation code sepa-
rate from the main class code.

Solution
Use partial classes to separate the interface implementation code into a separate file.
For example, you have a class called TriValue that takes three decimal values and
performs some operations on them, such as getting the average, the sum, and the
product. This code is currently in a file called TriValue.cs, which contains:

public partial class TriValue
{
 public decimal First { get; set; }
 public decimal Second { get; set; }
 public decimal Third { get; set; }

230 | Chapter 6: Iterators, Partial Types, and Partial Methods

 public TriValue(decimal first, decimal second, decimal third)
 {
 this.First = first;
 this.Second = second;
 this.Third = third;
 }

 public TypeCode GetTypeCode()
 {
 return TypeCode.Object;
 }

 public decimal Average
 {
 get { return (Sum / 3); }
 }

 public decimal Sum
 {
 get { return First + Second + Third; }
 }

 public decimal Product
 {
 get { return First * Second * Third; }
 }
}

Now, you want to add support for the IConvertible interface to the TriValue class so
that it can be converted to other data types. We could just add all 16 method imple-
mentations to the class definition in TriValue.cs and hide the code using a #region
statement. Instead, you can now use the partial keyword on the TriValue class and
store the IConvertible implementation code in a separate file. Once a class begins to
be defined in multiple files, it is important to have a naming convention for those
files, so that it is easy to find implementation code and for other developers to under-
stand where to put new code when it is added to this class. We will use the
[BaseClass].[Interface].cs naming convention here. This will give you a new file
called TriValue.IConvertible.cs, which contains the IConvertible interface implemen-
tation code, as shown in Example 6-4.

Example 6-4. Using partial classes to organize your interface implementations

/// Partial class that implements IConvertible
public partial class TriValue : IConvertible
{
 public bool ToBoolean(IFormatProvider provider)
 {
 if (Average > 0)
 return true;
 else
 return false;
 }

Organizing Your Interface Implementations | 231

 public byte ToByte(IFormatProvider provider)
 {
 return Convert.ToByte(Average);
 }

 public char ToChar(IFormatProvider provider)
 {
 decimal val = Average;
 if (val > char.MaxValue)
 val = char.MaxValue;
 if (val < char.MinValue)
 val = char.MinValue;
 return Convert.ToChar((ulong)val);
 }

 public DateTime ToDateTime(IFormatProvider provider)
 {
 throw new NotSupportedException();
 return Convert.ToDateTime(Average);
 }

 public decimal ToDecimal(IFormatProvider provider)
 {
 return Average;
 }

 public double ToDouble(IFormatProvider provider)
 {
 return Convert.ToDouble(Average);
 }

 public short ToInt16(IFormatProvider provider)
 {
 return Convert.ToInt16(Average);
 }

 public int ToInt32(IFormatProvider provider)
 {
 return Convert.ToInt32(Average);
 }

 public long ToInt64(IFormatProvider provider)
 {
 return Convert.ToInt64(Average);
 }

 public sbyte ToSByte(IFormatProvider provider)
 {
 return Convert.ToSByte(Average);
 }

Example 6-4. Using partial classes to organize your interface implementations (continued)

232 | Chapter 6: Iterators, Partial Types, and Partial Methods

Now, you have the interface implemented, and your original class definition is still
straightforward. For classes that implement many interfaces, this approach will allow
for a more tightly organized implementation.

Discussion
It should be noted that there is no Microsoft intermediate language (MSIL) indicator
that these are partial classes if you look at your class in Ildasm or Reflector. It will
look just like a normal class by the time it gets to MSIL. Intellisense handles the
merge as well. Since partial types are a language trick, they cannot span assemblies,
as the class needs to be resolved by the compiler. Partial types can be declared in the
same file as well as in separate files, but still must be in the same namespace so the
compiler can resolve it before generating the MSIL.

 public float ToSingle(IFormatProvider provider)
 {
 return Convert.ToSingle(Average);
 }

 public string ToString(IFormatProvider provider)
 {
 return string.Format(provider,
 "({0},{1},{2})",
 First.ToString(provider),
 Second.ToString(provider),
 Third.ToString(provider));
 }

 public object ToType(Type conversionType, IFormatProvider provider)
 {
 return Convert.ChangeType(Average, conversionType, provider);
 }

 public ushort ToUInt16(IFormatProvider provider)
 {
 return Convert.ToUInt16(Average, provider);
 }

 public uint ToUInt32(IFormatProvider provider)
 {
 return Convert.ToUInt32(Average,provider);
 }

 public ulong ToUInt64(IFormatProvider provider)
 {
 return Convert.ToUInt64(Average,provider);
 }
}

Example 6-4. Using partial classes to organize your interface implementations (continued)

Organizing Your Interface Implementations | 233

You can use the partial type support for classes, nested classes, structures, and inter-
faces, but you cannot have a partial enum definition. Partial types can declare
support for different interfaces per partial type. However, single inheritance is still in
force and must be the same or omitted from the secondary partial type. You can see
that in the Solution, the partial TriValue class definition in TriValue.cs you created
does not specify the inheritance from IConvertible, only the one in TriValue.ICon-
vertible.cs does.

The previous TriValue class can be exercised with the following code:

class Program
{
 static void Main()
 {
 TriValue tv = new TriValue(3, 4, 5);
 Console.WriteLine("Average: {0}",tv.Average);
 Console.WriteLine("Sum: {0}", tv.Sum);
 Console.WriteLine("Product: {0}", tv.Product);
 Console.WriteLine("Boolean: {0}", Convert.ToBoolean(tv));
 Console.WriteLine("Byte: {0}", Convert.ToByte(tv));
 Console.WriteLine("Char: {0}", Convert.ToChar(tv));
 Console.WriteLine("Decimal: {0}", Convert.ToDecimal(tv));
 Console.WriteLine("Double: {0}", Convert.ToDouble(tv));
 Console.WriteLine("Int16: {0}", Convert.ToInt16(tv));
 Console.WriteLine("Int32: {0}", Convert.ToInt32(tv));
 Console.WriteLine("Int64: {0}", Convert.ToInt64(tv));
 Console.WriteLine("SByte: {0}", Convert.ToSByte(tv));
 Console.WriteLine("Single: {0}", Convert.ToSingle(tv));
 Console.WriteLine("String: {0}", Convert.ToString(tv));
 Console.WriteLine("Type: {0}", Convert.GetTypeCode(tv));
 Console.WriteLine("UInt16: {0}", Convert.ToUInt16(tv));
 Console.WriteLine("UInt32: {0}", Convert.ToUInt32(tv));
 Console.WriteLine("UInt64: {0}", Convert.ToUInt64(tv));
 }
}

The preceding code produces the following output:

 Average: 4
 Sum: 12
 Product: 60
 Boolean: True
 Byte: 4
 Char: _
 Decimal: 4
 Double: 4
 Int16: 4
 Int32: 4
 Int64: 4
 SByte: 4
 Single: 4
 String: (3,4,5)
 Type: Object

234 | Chapter 6: Iterators, Partial Types, and Partial Methods

 UInt16: 4
 UInt32: 4
 UInt64: 4

See Also
The “Partial Class Definitions” and “partial Keyword” topics in the MSDN
documentation.

6.9 Generating Code That Is No Longer in Your Main
Code Paths

Problem
Occasionally, as a developer, you run into a situation in which it would be handy to
be able to regenerate your class based on a set of data that can change. You need to
be able to do this without destroying all of the logic you have already created or
causing yourself a painful merge between an old and a new class file.

Solution
Write a utility that can regenerate the code that is dependent on external data and
keep the generated code in a separate file that defines a partial class. To demonstrate
this, we have created a Visual Studio 2008 add-in called PartialClassAddin in the
sample code that will allow you to enter a class name and then select which
attributes to apply to the class. This is a standard add-in generated by selecting the
add-in template from the project wizard. Its main dialog box is shown in Figure 6-1.

Enter a class name, MyNewClass, select the System.CLSCompliantAttribute and the
System.SerializeableAttribute from the list, and click the OK button. This gener-
ates the MyNewClass_Attributes.cs file with the following in it:

 // Using directives
 using System;

 namespace NamespaceForMyNewClass
 {
 #region Attributes
 [System.CLSCompliant(true)]
 [System.Serializable()]
 #endregion // Attributes

 public partial class MyNewClass
 {
 public MyNewClass()
 {
 }
 }
 }

Generating Code That Is No Longer in Your Main Code Paths | 235

By making MyNewClass a partial class, you can add this generated file to your project
and replace it when the class attributes need to be updated, while you store your main
logic in another file (perhaps MyNewClass.cs) with a partial MyNewClass definition:

 // Using directives
 using System;
 using System.Diagnostics;

 namespace NamespaceForMyNewClass
 {
 public partial class MyNewClass : BaseClass
 {
 public DoSomeWork ()
 {
 for(int i=0;i<10;i++)
 {
 Debug.WriteLine(i);
 }
 }
 }

Figure 6-1. Attributed Class Wizard from partial class add-in

236 | Chapter 6: Iterators, Partial Types, and Partial Methods

 // Declare base class...
 public BaseClass
 {
 }
 }
 }
 }
 }

Notice that in the file in which you hold the logic (MyNewClass.cs as shown before),
the class can declare its inheritance from BaseClass as well as define some functional-
ity (DoSomeWork method).

Discussion
Generating code is not something to do lightly. But in certain circumstances, build-
ing a tool can save you a lot of time over the course of maintaining a project. Partial
classes provide a nice way to separate your mainstream code from the “noise” that
changes only in response to external pieces. Windows Forms and Windows Forms
controls are both now declared as partial, as are the DataSets generated from an XSD
schema to help facilitate the generated code model.

This add-in was created using the Visual Studio 2008 add-in wizard, and the project
has the form added to it. The form loads all types derived from System.Attribute to
populate the listbox, and then uses reflection to figure out the parameters. Once the
code has been built, run the project from the debugger. When VS2008 comes up,
you can access the Tools menu and the PartialClassAddin menu item to get to this
wizard. You can unregister this add-in by going to the Tools menu in VS2008 and
selecting the Add-In Manager option. The Add-In Manager dialog is shown in
Figure 6-2.

Uncheck the PartialClassAddin to remove this from your main environment.

See Also
The “Partial Class Definitions,” “Creating Automation Objects,” and “Attribute”
topics in the MSDN documentation.

Adding Hooks to Generated Entities | 237

6.10 Adding Hooks to Generated Entities

Problem
You have a process to generate your partial class business entity definitions, and you
want to add a lightweight notification mechanism.

Solution
Use partial methods to add hooks in the generated code for the business entities.

The process to generate the entities may be from UML, a dataset, or some other
object-modeling facility, but when the code is generated as partial classes, add par-
tial method hooks into the templates for the properties that call a ChangingProperty
partial method, as shown in the GeneratedEntity class:

 public partial class GeneratedEntity
{
 public GeneratedEntity(string entityName)
 {
 this.EntityName = entityName;
 }

 partial void ChangingProperty(string name, string originalValue, string
newValue);

 public string EntityName { get; private set; }

Figure 6-2. Visual Studio 2008 Add-in Manager

238 | Chapter 6: Iterators, Partial Types, and Partial Methods

 private string _FirstName;
 public string FirstName
 {
 get { return _FirstName; }
 set
 {

ChangingProperty("FirstName",_FirstName,value);
 _FirstName = value;
 }
 }

 private string _State;
 public string State
 {
 get { return _State; }
 set
 {

ChangingProperty("State",_State,value);
 _State = value;
 }
 }
}

The GeneratedEntity has two properties, FirstName and State. Notice each of these
properties has the same boilerplate code that calls the ChangingProperty method with
the name of the property, the original, and the new values. If the generated class is
used at this point, the ChangingProperty declaration and method will be removed by
the compiler, as there is no implementation for ChangingProperty. If an implementa-
tion is supplied to report on property changes as shown below, then all of the partial
method code for ChangingProperty will be retained and executed:

public partial class GeneratedEntity
{
 partial void ChangingProperty(string name, string originalValue, string newValue)
 {
 Console.WriteLine("Changed property ({0}) for entity {1} from {2} to {3}",
 name, this.EntityName, originalValue, newValue);
 }
}

Discussion
When using partial methods, be aware of the following items:

• You indicate a partial method with the partial modifier.

• They can only be declared in partial classes.

• They might only have a declaration and no body.

• From a signature standpoint, they can have arguments, require a void return
value, must not have any access modifier, and partial implies that this is private
and can be static, generic, or unsafe.

Adding Hooks to Generated Entities | 239

• For generic partial methods, constraints must be repeated on the declaring and
implementing versions.

• A partial method may not implement an interface member since interface mem-
bers must be public.

• None of the virtual, abstract, override, new, sealed, or extern modifiers may be
used.

• Arguments to a partial method cannot use out, but they can use ref.

Partial methods are similar to conditional methods, with the exception that the
method definition is always present in conditional methods, even when the condi-
tion is not met. Partial methods do not retain the method definition if there is no
matching implementation. The code in the solution could be used like this:

public static void TestPartialMethods()
{
 Console.WriteLine("Start entity work");
 GeneratedEntity entity = new GeneratedEntity("FirstEntity");
 entity.FirstName = "Bob";
 entity.State = "NH";
 GeneratedEntity secondEntity = new GeneratedEntity("SecondEntity");
 entity.FirstName = "Jay";
 secondEntity.FirstName = "Steve";
 secondEntity.State = "MA";
 entity.FirstName = "Barry";
 secondEntity.State = "WA";
 secondEntity.FirstName = "Matt";
 Console.WriteLine("End entity work");
}

To produce the following output when the ChangingProperty implementation is
provided:

Start entity work
Changed property (FirstName) for entity FirstEntity from to Bob
Changed property (State) for entity FirstEntity from to NH
Changed property (FirstName) for entity FirstEntity from Bob to Jay
Changed property (FirstName) for entity SecondEntity from to Steve
Changed property (State) for entity SecondEntity from to MA
Changed property (FirstName) for entity FirstEntity from Jay to Barry
Changed property (State) for entity SecondEntity from MA to WA
Changed property (FirstName) for entity SecondEntity from Steve to Matt
End entity work

To produce the following output when the ChangingProperty implementation is
NOT provided:

Start entity work
End entity work

See Also
The “Partial Methods” and “partial method” topics in the MSDN documentation.

240

Chapter 7CHAPTER 7

Exception Handling 7

7.0 Introduction
This chapter contains recipes covering the exception-handling mechanism, includ-
ing the try, catch, and finally blocks. Along with these recipes are others covering
the mechanisms used to throw exceptions manually from within your code. The final
recipes include those dealing with the Exception classes and their uses, as well as
subclassing them to create new types of exceptions.

Often, the design and implementation of exception handling is performed later in the
development cycle. But with the power and complexities of C# exception handling,
you need to plan and even implement your exception-handling scheme much ear-
lier. Doing so will increase the reliability and robustness of your code while minimiz-
ing the impact of adding exception handling after most or all of the application is
coded.

Exception handling in C# is very flexible. It allows you to choose a fine- or coarse-
grained approach to error handling, or any level between. This means that you can
add exception handling around any individual line of code (the fine-grained
approach) or around a method that calls many other methods (the coarse-grained
approach), or you can use a mix of the two, with mainly a coarse-grained approach
and a more fine-grained approach in specific critical areas of the code. When using a
fine-grained approach, you can intercept specific exceptions that might be thrown
from just a few lines of code. The following method sets an object’s property to a
numeric value using fine-grained exception handling:

 protected void SetValue(object value)
 {
 try
 {
 myObj.Property1 = value;
 }
 catch (Exception e)
 {

Introduction | 241

 // Handle potential exceptions arising from this call here.
 }
 }

Consequently, this approach can add a lot of extra baggage to your code if used
throughout your application. This fine-grained approach to exception handling
should be used when you have a single line or just a few lines of code, and you need
to handle that exception in a specific manner. If you do not have specific handling
for errors at that level, you should let the exception bubble up the stack. For exam-
ple, using the previous SetValue method, you may have to inform the user that an
exception occurred and provide a chance to try the action again. If a method exists
on myObj that needs to be called whenever an exception is thrown by one of its meth-
ods, you should make sure that this method is called at the appropriate time.

Coarse-grained exception handling is quite the opposite; it uses fewer try/catch or
try/catch/finally blocks. One example would be to place a try/catch block around
all of the code in every public method in an application or component. Doing this
allows exceptions to be handled at the highest level in your code. If an exception is
thrown at any location in your code, it will be bubbled up the call stack until a catch
block is found that can handle it. If try/catch blocks are placed on all public meth-
ods, then all exceptions will be bubbled up to these methods and handled. This
allows for much less exception-handling code to be written, but your ability to han-
dle specific exceptions that may occur in particular areas of your code is diminished.
You must determine how best to add exception-handling code to your application.
This means applying the right balance of fine- and coarse-grained exception han-
dling in your application.

C# allows catch blocks to be written without any parameters. An example of this is
shown here:

 public void CallCOMMethod()
 {
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch
 {
 // Handle potential exceptions arising from this call here.
 }
 }

The catch with no parameters is a holdover from C++, where exception objects did
not have to be derived from the Exception class. Writing a catch clause in this man-
ner in C++ allows any type of object thrown as an exception to be caught. However,
in C#, only objects derived from the Exception base class may be thrown as an
exception. Using the catch block with no parameters allows all exceptions to be

242 | Chapter 7: Exception Handling

caught, but you lose the ability to view the exception and its information. A catch
block written in this manner:

 catch
 {
 // NOT Able to write the following line of code
 //Console.WriteLine(e.ToString);
 }

is equivalent to this:

 catch (Exception e)
 {
 // Able to write the following line of code
 Console.WriteLine(e.ToString);
 }

except that in the second case, the Exception object can be accessed now that the
exception parameter is provided.

Avoid writing a catch block without any parameters. Doing so will prevent you from
accessing the actual Exception object that was thrown.

When catching exceptions in a catch block, you should determine up front when
exceptions need to be rethrown, when exceptions need to be wrapped in an outer
exception and thrown, and when exceptions should be handled immediately and not
rethrown.

Wrapping an exception in an outer exception is a good practice when the original
exception would not make sense to the caller. When wrapping an exception in an
outer exception, you need to determine what exception is most appropriate to wrap
the caught exception. As a rule of thumb, the wrapping exception should always aid
in tracking down the original problem by not obscuring the original exception with
an unrelated or vague wrapping exception. One of the rare cases that can justify
obscuring exceptions is if the exception is going to cross a trust boundary, and you
have to obscure it for security reasons.

Another useful practice when catching exceptions is to provide catch blocks to han-
dle specific exceptions in your code. And remember that base class exceptions—
when used in a catch block—catch not only that type, but also all of its subclasses.

The following code uses specific catch blocks to handle different exceptions in the
appropriate manner:

 public void CallCOMMethod()
 {
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch (System.Runtime.InteropServices.ExternalException exte)
 {

Introduction | 243

 // Handle potential COM exceptions arising from this call here.
 }
 catch (InvalidOperationException ioe)
 {
 // Handle any potential method calls to the COM object which are
 // not valid in its current state.
 }
 }

In this code, ExternalException and its derivatives are handled differently than
InvalidOperationException and its derivatives. If any other types of exceptions are
thrown from the myCOMObj.Method1, they are not handled here, but are bubbled up
until a valid catch block is found. If no valid catch block is found, the exception is
considered unhandled and the application terminates.

At times, cleanup code must be executed regardless of whether an exception is
thrown. Any object must be placed in a stable known state when an exception is
thrown. In these situations, when code must be executed, use a finally block. The
following code has been modified (see boldface lines) to use a finally block:

 public void CallCOMMethod()
 {
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch (System.Runtime.InteropServices.ExternalException exte)
 {
 // Handle potential COM exceptions arising from this call here.
 }
 finally
 {
 // Clean up and free any resources here.

// For example, there could be a method on myCOMObj to allow us to clean
 // up after using the Method1 method.
 }
 }

The finally block will always execute, no matter what happens in the try and catch
blocks. The finally block executes even if a return, break, or continue statement is
executed in the try or catch blocks or if a goto is used to jump out of the exception
handler. This allows for a reliable method of cleaning up after the try (and possibly
catch) block code executes. The finally block is also very useful for final resource
cleanup when no catch blocks are specified. This pattern would be used if the code
being written can’t handle exceptions from calls it is making but wants to make sure
that resources it uses are cleaned up properly before moving up the stack. The fol-
lowing example makes sure that the SqlConnection and SqlCommand are cleaned up
properly in the finally block through use of the using keyword, which wraps a try/
finally block around the scope of the using statement:

244 | Chapter 7: Exception Handling

 public void RunCommand(string connection, string command)
 {
 SqlConnection sqlConn = null;
 SqlCommand sqlComm = null;

 using(sqlConn = new SqlConnection(connection))
 {
 using(sqlComm = new SqlCommand(command, sqlConn))
 {
 sqlConn.Open();
 sqlComm.ExecuteNonQuery();
 }
 }
 }

When determining how to structure exception handling in your application or com-
ponent, consider doing the following:

• Use a single try-catch or try-catch-finally exception handler at locations
higher up in your code. These exception handlers can be considered coarse-
grained.

• Code farther down the call stack should contain try-finally exception han-
dlers. These exception handlers can be considered fine-grained.

The fine-grained try-finally exception handlers allow for better control over clean-
ing up after an exception occurs. The exception is then bubbled up to the coarser-
grained try-catch or try-catch-finally exception handler. This technique allows for
a more centralized scheme of exception handling and minimizes the code that you
have to write to handle exceptions.

To improve performance, you should handle the case when an exception could be
thrown, rather than catch the exception after it is thrown, if you know the code will
be run in a single-threaded environment. If the code will run on multiple threads,
there is still the potential that the initial check could succeed, but the object value
change (perhaps to null) in another thread before the actions following the check
can be taken.

For example, in a single-threaded environment, if a method has a good chance of
returning a null value, you should test the returned value for null before that
value is used, as opposed to using a try-catch block and allowing the
NullReferenceException to be thrown. If you think a null value is possible, check for
it. If it shouldn’t happen, then it is an exceptional condition when it does, and excep-
tion handling should be used. To illustrate this, here is a method that uses exception-
handling code to process the NullReferenceException:

 public void SomeMethod()
 {
 try
 {
 Stream s = GetAnyAvailableStream();

Introduction | 245

 Console.WriteLine("This stream has a length of " + s.Length);
 }
 catch (NullReferenceException nre)
 {
 // Handle a null stream here.
 }
 }

Here is the method implemented to use an if-else conditional instead:

 public void SomeMethod()
 {
 Stream s = GetAnyAvailableStream();

 if (s != null)
 {
 Console.WriteLine("This stream has a length of " + s.Length);
 }
 else
 {
 // Handle a null stream here.
 }
 }

Additionally, you should also make sure that this stream is closed by using the
finally block in the following manner:

 public void SomeMethod()
 {
 Stream s = null;
 using(s = GetAnyAvailableStream())
 {

 if (s != null)
 {
 Console.WriteLine("This stream has a length of " + s.Length);
 }
 else
 {
 // Handle a null stream here.
 }
 }
 }

The finally block contains the method call that will close the stream, ensuring that
there is no data loss.

Consider throwing exceptions instead of returning error codes. With well-placed
exception-handling code, you should not have to rely on methods that return error
codes such as a Boolean true-false to correctly handle errors, which makes for
much cleaner code. Another benefit is that you do not have to look up any values for
the error codes to understand the code.

246 | Chapter 7: Exception Handling

The biggest advantage to exceptions is that when an exceptional situa-
tion arises, you cannot just ignore it as you can with error codes. This
helps you find and fix bugs.

Throw the most specific possible exception, not general ones. For example, throw an
ArgumentNullException instead of an ArgumentException, which is the base class of
ArgumentNullException. Throwing an ArgumentException just tells you that there was a
problem with a parameter value to a method. Throwing an ArgumentNullException
tells you more specifically what the problem with the parameter really is. Another
potential problem is that a more general exception may not be caught if the catcher of
the exception is looking for a more specific type derived from the thrown exception.

The FCL provides several exception types that you will find very useful to throw in
your own code. Many of these exceptions are listed here with a definition of where
and when they should be thrown:

• Throw an InvalidOperationException in a property, indexer, or method when it
is called with the object in an inappropriate state. This state could be caused by
calling an indexer on an object that has not yet been initialized or calling meth-
ods out of sequence.

• Throw ArgumentException if invalid parameters are passed into a method, prop-
erty, or indexer. The ArgumentNullException, ArgumentOutOfRangeException, and
InvalidEnumArgumentException are three subclasses of the ArgumentException
class. It is more appropriate to throw one of these subclassed exceptions because
they are more indicative of the root cause of the problem. The
ArgumentNullException indicates that a parameter was passed in as null and that
this parameter cannot be null under any circumstance. The
ArgumentOutOfRangeException indicates that an argument was passed in that was
outside of a valid acceptable range. This exception is used mainly with numeric
values. The InvalidEnumArgumentException indicates that an enumeration value
was passed in that does not exist in that enumeration type.

• Throw a FormatException when an invalid formatting parameter is passed in as a
parameter to a method. This technique is mainly used when overriding/over-
loading methods such as ToString that can accept formatting strings, as well as
in the parse methods on the various numeric types.

• Throw ObjectDisposedException when a property, indexer, or method is called
on an object that has already been disposed.

• Many exceptions that derive from the SystemException class, such as
NullReferenceException, ExecutionEngineException, StackOverflowException,
OutOfMemoryException, and IndexOutOfRangeException, are thrown only by the
CLR and should not be explicitly thrown with the throw keyword in your code.

Knowing When to Catch and Rethrow Exceptions | 247

7.1 Knowing When to Catch and Rethrow Exceptions

Problem
You want to establish when it is appropriate to catch and rethrow an exception.

Solution
It is appropriate if you have a section of code where you want to perform some
action if an exception occurs, but not perform any actions to actually handle the
exception. In order to get the exception so that you can perform the initial action on
it, establish a catch block to catch the exception. Then, once the action has been per-
formed, rethrow the exception from the catch block in which the original exception
was handled. Use the throw keyword, followed by a semicolon, to rethrow an
exception:

 try
 {
 Console.WriteLine("In try");
 int z2 = 9999999;
 checked { z2 *= 999999999; }
 }
 catch (OverflowException oe)
 {
 // Record the fact that the overflow exception occurred.
 EventLog.WriteEntry("MyApplication", oe.Message, EventLogEntryType.Error);
 throw;
 }

Here, you create an EventLog entry that records the occurrence of a divide-by-zero
exception. Then the exception is propagated up the call stack by the throw statement.

Discussion
Establishing a catch block for an exception is essentially saying that you want to do
something about that exceptional case. If you do not rethrow the exception, or cre-
ate a new exception to wrap the original exception and throw it, the expectation is
that you have handled the condition that caused the exception and that the program
can continue normal operation. By choosing to rethrow the exception, you are indi-
cating that there is still an issue to be dealt with and that you are counting on code
farther up the stack to handle the condition. If you need to perform an action based
on a thrown exception and need to allow the exception to continue after your code
executes, then rethrowing is the mechanism to handle this. If both of those condi-
tions are not met, don’t rethrow the exception; just handle it or remove the catch
block.

248 | Chapter 7: Exception Handling

Remember that throwing exceptions is expensive. Try not to need-
lessly throw and rethrow exceptions because this might bog down
your application.

When rethrowing an exception, use throw; instead of throw ex; as throw; will pre-
serve the original call-stack of the exception. Using throw with the catch parameter
will reset the call stack to that location, and information about the error will be lost.

7.2 Assuring Exceptions Are Not Lost When Using
Finally Blocks

Problem
You want to protect against losing exception information when using multiple try-
catch-finally blocks.

Solution
Add an inner try-catch block in the finally block of the outer exception handler to
prevent losing exception information:

private void PreventLossOfExceptionFormat()
{
 try
 {
 //...
 }
 catch(Exception e)
 {
 Console.WriteLine("Error message == " + e.Message);
 throw;
 }
 finally
 {
 try
 {
 //...
 }
 catch(Exception e)
 {
 Console.WriteLine("An unexpected error occurred " +
 "in the finally block. Error message: " + e.Message);
 }
 }
}

This block will prevent the original exception from being lost in almost every case.

Assuring Exceptions Are Not Lost When Using Finally Blocks | 249

Discussion
If a catch block attempts to throw an exception, it is possible that the thrown excep-
tion will get discarded and that a new and unexpected exception will be caught by an
outer exception handler. Consider what would happen if an error were thrown from
the inner finally block contained in the ThrowException method, as is instigated by
the code shown in Example 7-1.

Example 7-1. Throwing an error from the inner finally block of the ThrowException method

private static void ThrowReplacementException()
{
 try
 {
 Console.WriteLine("In inner try");
 int z2 = 9999999;
 checked { z2 *= 999999999; }
 }
 catch (OverflowException ofe)
 {
 Console.WriteLine("An Overflow occurred. Error message: " +
 ofe.Message);
 throw;
 }
 catch (Exception e)
 {
 Console.WriteLine("Another type of error occurred. " +
 "Error message: " + e.Message);
 throw;
 }
 finally
 {
 Console.WriteLine("In inner finally");
 throw (new Exception("Oops"));
 }
}

public static void NotPreventLossOfException()
{
 try
 {
 Console.WriteLine("In outer try");
 ThrowReplacementException();
 }
 catch (Exception e)
 {
 Console.WriteLine("In outer catch. Caught exception: " + e.Message);
 }
 finally
 {
 Console.WriteLine("In outer finally");
 }
}

250 | Chapter 7: Exception Handling

the following output would be displayed showing the loss of the original error:

In outer try
In inner try
An Overflow occurred. Error message: Arithmetic operation resulted in an
overflow.
In inner finally
In outer catch. Caught exception: Oops
In outer finally

If you modify the inner finally block to handle its own errors (changes are high-
lighted), similarly to the following code:

When writing a finally block, consider placing a separate try-catch
around the code.

private static void ThrowException()
{
 try
 {
 Console.WriteLine("In inner try");
 int z2 = 9999999;
 checked { z2 *= 999999999; }
 }
 catch (OverflowException ofe)
 {
 Console.WriteLine("An Overflow occurred. Error message: " +
 ofe.Message);
 throw;
 }
 catch (Exception e)
 {
 Console.WriteLine("Another type of error occurred. " +
 "Error message: " + e.Message);
 throw;
 }
 finally
 {

try
 {

Console.WriteLine("In inner finally");
throw (new Exception("Oops"));

 }
 catch (Exception e)
 {

Console.WriteLine(@"An error occurred in the finally block. " +
"Error message: " + e.Message);

 }
 }
}

Handling Exceptions Thrown from Methods Invoked via Reflection | 251

public static void PreventLossOfException()
{
 try
 {
 Console.WriteLine("In outer try");
 ThrowException();
 }
 catch (Exception e)
 {
 Console.WriteLine("In outer catch. Caught exception: " + e.Message);
 }
 finally
 {
 Console.WriteLine("In outer finally");
 }
}

you will get the following output showing the preservation of the original error:

In outer try
In inner try
An Overflow occurred. Error message: Arithmetic operation resulted in an
overflow.
In inner finally
An error occurred in the finally block. Error message: Oops
In outer catch. Caught exception: Arithmetic operation resulted in an overflow.
In outer finally

By handling exceptions within the inner finally block, you greatly increase the
chances that the correct rethrown exception bubbles up to the outer exception han-
dler. There is still the potential that something done in the finally block outside of
the try-catch block could throw an exception, so make sure not to write code out-
side of the try-catch block in the finally block. To catch any exceptions that man-
age to make it past all of your precautions, see Recipe 7.3.

See Also
The “Error Raising and Handling Guidelines” topic and the “throw,” “try,” “catch,”
and “finally” keywords in the MSDN documentation.

7.3 Handling Exceptions Thrown from Methods
Invoked via Reflection

Problem
Using reflection, you invoke a method that generates an exception. You want to
obtain the real exception object and its information in order to diagnose and fix the
problem.

252 | Chapter 7: Exception Handling

Solution
The real exception and its information can be obtained through the InnerException
property of the TargetInvocationException that is thrown by MethodInfo.Invoke.

Discussion
The following example shows how an exception that occurs within a method
invoked via reflection is handled. The Reflect class contains a ReflectionException
method that invokes the static TestInvoke method using the reflection classes as
shown in Example 7-2.

This code displays the following text:

Message: Exception has been thrown by the target of an invocation.
Type: System.Reflection.TargetInvocationException
Source: mscorlib
TargetSite: System.Object _InvokeMethodFast(System.Object, System.Object[], Syst
em.SignatureStruct ByRef, System.Reflection.MethodAttributes, System.RuntimeType

Example 7-2. Obtaining information on an exception invoked by a method accessed through
reflection

using System;
using System.Reflection;

public static class Reflect
{
 public static void ReflectionException()
 {
 Type reflectedClass = typeof(ExceptionHandling);

 try
 {
 MethodInfo methodToInvoke = reflectedClass.GetMethod("TestInvoke");

 if (methodToInvoke != null)
 {
 methodToInvoke.Invoke(null, null);
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToShortDisplayString());
 }
 }

 public static void TestInvoke()
 {
 throw (new Exception("Thrown from invoked method."));
 }

}

Handling Exceptions Thrown from Methods Invoked via Reflection | 253

Handle)
**** INNEREXCEPTION START ****
Message: Thrown from invoked method.
Type: System.Exception
Source: CSharpRecipes
TargetSite: Void TestInvoke()
**** INNEREXCEPTION END ****

When the methodToInvoke.Invoke method is called, the TestInvoke method is called.
It throws an exception. The outer exception is the TargetInvocationException; this is
the generic exception thrown when a method invoked through reflection throws an
exception. The CLR automatically wraps the original exception thrown by the
invoked method inside of the TargetInvocationException object’s InnerException
property. In this case, the exception thrown by the invoked method is of type
System.Exception. This exception is shown after the section that begins with the text
**** INNEREXCEPTION START ****.

To display the exception information, the ToShortDisplayString method is called:

 Console.WriteLine(e.ToShortDisplayString());

The ToShortDisplayString extension method for Exception uses a StringBuilder to
create the string of information about the exception and all inner exceptions. The
WriteExceptionShortDetail method populates the StringBuilder with specific parts
of the exception data. To get the inner exceptions, the GetNestedExceptionList
extension method from Recipe 7.14 is used:

public static string ToShortDisplayString(this Exception ex)
{
 StringBuilder displayText = new StringBuilder();
 WriteExceptionShortDetail(displayText, ex);
 foreach(Exception inner in ex.GetNestedExceptionList()) // from 7.14
 {
 displayText.AppendFormat("**** INNEREXCEPTION START ****{0}",
 Environment.NewLine);
 WriteExceptionShortDetail(displayText, inner);
 displayText.AppendFormat("**** INNEREXCEPTION END ****{0}{0}",
 Environment.NewLine);
 }
 return displayText.ToString();
}

public static void WriteExceptionShortDetail(StringBuilder builder, Exception ex)
{
 builder.AppendFormat("Message: {0}{1}", ex.Message, Environment.NewLine);
 builder.AppendFormat("Type: {0}{1}", ex.GetType(), Environment.NewLine);
 builder.AppendFormat("Source: {0}{1}", ex.Source, Environment.NewLine);
 builder.AppendFormat("TargetSite: {0}{1}", ex.TargetSite, Environment.NewLine);
}

See Also
The “Type Class” and “MethodInfo Class” topics in the MSDN documentation.

254 | Chapter 7: Exception Handling

7.4 Preventing Unhandled Exceptions

Problem
You need to make absolutely sure that every exception thrown by your application is
handled and that no exception is bubbled up past the outermost exception handler.
Hackers often use these types of exceptions to aid in their analysis of the vulnerabili-
ties of a web application, for instance.

Solution
Place try-catch or try-catch-finally blocks in strategic places in your application.
In addition, use the exception event handler as a final line of defense against unhan-
dled exceptions.

Discussion
If an exception occurs and is not handled, it will cause your application to crash by
default. This can leave data in an unstable state, possibly requiring manual interven-
tion—meaning that you could be spending a long night cleaning up the data by
hand. To minimize the damage, you can place exception handlers in strategic loca-
tions throughout your code to handle what you can. When an exceptional condition
occurs that you cannot handle, it will be caught by the exception event handler, and
you can then shut down in a controlled manner.

The most obvious location to place exception-handling code is inside of the Main
method. The Main method is the entry point to executables (i.e., files with an .exe
extension). Therefore, if any exceptions occur inside your executable, the CLR starts
looking for an exception handler, starting at the location where the exception
occurred. If none is found, the CLR walks the stack until one is found; each method
on the stack is examined in turn to determine whether an exception handler exists. If
no exception handlers are found in the final method in the stack, the exception is
considered unhandled and the application is terminated. In an executable, this final
method is the Main method.

In addition to or in place of using try-catch or try-catch-finally blocks at the entry
point of your application, you can use the exception event handler to capture unhan-
dled exceptions. Note that Windows Forms applications provide their own unhan-
dled exception trap around exception handlers. To see how to deal with this in a
WinForms application, review Recipe 7.12. There are two steps to setting up an
exception event handler. The first is to create the actual event handler. This is done
as follows:

 static void LastChanceHandler(object sender, UnhandledExceptionEventArgs args)
 {
 try
 {

Preventing Unhandled Exceptions | 255

 Exception e = (Exception) args.ExceptionObject;

 Console.WriteLine("Unhandled exception == " + e.ToString());
 if (args.IsTerminating)
 {
 Console.WriteLine("The application is terminating");
 }
 else
 {
 Console.WriteLine("The application is not terminating");
 }
 }
 catch(Exception e)
 {
 Console.WriteLine("Unhandled exception in unhandled exception handler ==
" +
 e.ToString());
 }
 finally
 {
 // Add other exception logging or cleanup code here.
 }
 }

Next, you should add code to your application to wire up this event handler. The
code to wire up the event handler should be executed as close to the start of the
application as possible. For example, by placing this code in the Main method:

 public static void Main()
 {
 appdomain.CurrentDomain.UnhandledException +=
 new UnhandledExceptionEventHandler(LastChanceHandler);

 //...
 }

you are assured of being able to clean up after any unhandled exception.

The exception event handler takes two parameters. The first is the sender object,
which is the appdomain object that threw the exception. The second argument is an
UnhandledExceptionEventArgs object. This object contains all the relevant informa-
tion on the unhandled exception. Using this object, you can obtain the actual excep-
tion object that was thrown as well as a Boolean flag that indicates whether the
application will terminate.

Exception event handlers are a great help when used in multithreaded code. In the
1.x versions of the Framework, if an unhandled exception were thrown in a thread
other than the main thread, that thread would abort. However, only the worker
thread, and not the application as a whole, would terminate. But you were not
clearly notified when the CLR aborted this thread, which could cause some interest-
ing debugging problems. Any unhandled exception will propagate and cause the
application to terminate. However, when an exception event handler is used, you

256 | Chapter 7: Exception Handling

can be notified of any unhandled exceptions that occur in any worker thread and
that cause it to abort.

The exception event handler captures unhandled exceptions for only the primary
application domain. Any application domains created from the primary application
domain do not fire this event for unhandled exceptions. These secondary applica-
tion domains must be registered with as well for the UnhandledException event indi-
vidually to receive their exception events. Note that if the exception is thrown on the
main thread, the system will bring up an error dialog before running the exception
event handler.

See Also
The “Error Raising and Handling Guidelines” and “UnhandledException-
EventHandler Delegate” topics in the MSDN documentation.

7.5 Getting Exception Information

Problem
There are several different methods of getting exception information. You need to
choose the best one to use.

Solution
The .NET platform supports several mechanisms for displaying exception informa-
tion, depending on the specific type of information that you want to show. The easi-
est method is to use the ToString method of the thrown exception object, usually in
the catch block of an exception handler:

 catch(Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

Another mechanism is to manually display the individual properties of the exception
and iterate through each inner exception, if any exist. The default Exception.
ToString method will iterate over the inner exceptions as well, so if you want to
make sure you get all of that information, you need to roll over them when examin-
ing the properties directly. For example, the extension method shown in
Example 7-3 is called from a catch block. ToFullDisplayString is called directly from
the exception object and proceeds to display its information, including information
on all inner exceptions and the exception data block.

Getting Exception Information | 257

Discussion
A typical exception object of type Exception displays the following information if its
ToString method is called:

System.Exception: Exception of type System.Exception was thrown.
 at Chapter_Code.Chapter7.TestSpecializedException() in c:\book cs cookbook\code\
 test.cs:line 286

Three pieces of information are shown here:

• The exception type (Exception, in this case) followed by a colon

• The string contained in the exception’s Message property

• The string contained in the exception’s StackTrace property

Example 7-3. Displaying exception information, including information on all inner exceptions and
the exception data block

public static string ToFullDisplayString(this Exception ex)
{
 StringBuilder displayText = new StringBuilder();
 WriteExceptionDetail(displayText, ex);
 foreach (Exception inner in ex.GetNestedExceptionList()) // from 7.14
 {
 displayText.AppendFormat("**** INNEREXCEPTION START ****{0}",
 Environment.NewLine);

 WriteExceptionDetail(displayText, inner);

 displayText.AppendFormat("**** INNEREXCEPTION END ****{0}{0}",
 Environment.NewLine);
 }
 return displayText.ToString();
}

public static void WriteExceptionDetail(StringBuilder builder, Exception ex)
{
 builder.AppendFormat("Message: {0}{1}", ex.Message, Environment.NewLine);
 builder.AppendFormat("Type: {0}{1}", ex.GetType(), Environment.NewLine);
 builder.AppendFormat("HelpLink: {0}{1}", ex.HelpLink, Environment.NewLine);
 builder.AppendFormat("Source: {0}{1}", ex.Source, Environment.NewLine);
 builder.AppendFormat("TargetSite: {0}{1}", ex.TargetSite,
 Environment.NewLine);
 builder.AppendFormat("Data:{0}", Environment.NewLine);
 foreach (DictionaryEntry de in ex.Data)
 {
 builder.AppendFormat("\t{0} : {1}", de.Key, de.Value);
 }
 builder.AppendFormat("StackTrace: {0}{1}", ex.StackTrace,
 Environment.NewLine);
}

258 | Chapter 7: Exception Handling

The great thing about the ToString method is that information about any exception
contained in the InnerException property is automatically displayed as well. The fol-
lowing text shows the output of an exception that wraps an inner exception:

 System.Exception: Exception of type System.Exception was thrown.
 ---> System.Exception: The Inner Exception
 at Chapter_Code.Chapter7.TestSpecializedException()
 in c:\book cs cookbook\code\
 test.cs:line 306
 --- End of inner exception stack trace ---
 at Chapter_Code.Chapter7.TestSpecializedException()
 in c:\book cs cookbook\code\
 test.cs:line 310

The same three pieces of information are displayed for each exception. The output is
broken down into the following format:

 Outer exception type: Outer exception Message property
 ---> Inner Exception type: Inner exception Message property
 Inner Exception StackTrace property
 --- End of inner exception stack trace ---
 Outer exception StackTrace property

If the inner exception contains an exception object in its InnerException property,
that exception is displayed as well. In fact, information for all inner exceptions is dis-
played in this format.

Calling the ToString method is a quick, useful way of getting the most pertinent
information out of the exception and displaying it in a formatted string. However,
not all of the exception’s information is displayed. There might be a need to display
the HelpLine or Source properties of the exception. In fact, if this is a user-defined
exception, there could be custom fields that need to be displayed or captured in an
error log. Also, you might not like the default formatting that the ToString method
offers, or you may want to see the information in the Data collection of items. In
these cases, consider writing your own method to display the exception’s informa-
tion based on the DisplayException method shown in the Solution.

To illustrate the custom method presented in the Solution section (the
DisplayException method), consider the following code, which throws an exception
wrapping two inner exceptions:

Exception InnerInner = new Exception("The InnerInner Exception.");
InnerInner.Data.Add("Key1 for InnerInner", "Value1 for InnerInner");

ArgumentException Inner = new ArgumentException("The Inner Exception.", InnerInner);
Inner.Data.Add("Key1 for Inner", "Value1 for Inner");
NullReferenceException se = new NullReferenceException("A Test Message.", Inner);
se.HelpLink = "MyComponent.hlp";
se.Source = "MyComponent";
se.Data.Add("Key1 for Outer", "Value1 for Outer");
se.Data.Add("Key2 for Outer", "Value2 for Outer");
se.Data.Add("Key3 for Outer", "Value3 for Outer");

Getting Exception Information | 259

try
{
 throw (se);
}
catch(Exception e)
{
 Console.WriteLine(e.ToFullDisplayString());
}

If this code were executed, ToFullDisplayString would display the following:

Message: A Test Message.
Type: System.NullReferenceException
HelpLink: MyComponent.hlp
Source: MyComponent
TargetSite: Void TestToFullDisplayString()
Data:
 Key1 for Outer : Value1 for Outer
 Key2 for Outer : Value2 for Outer
 Key3 for Outer : Value3 for Outer
StackTrace: at CSharpRecipes.ExceptionHandling.TestToFullDisplayString() in C
:\Code\CSharpRecipes\07_ExceptionHandling.cs:line 342
**** INNEREXCEPTION START ****
Message: The Inner Exception.
Type: System.ArgumentException
HelpLink:
Source:
TargetSite:
Data:
 Key1 for Inner : Value1 for Inner
StackTrace:
**** INNEREXCEPTION END ****

**** INNEREXCEPTION START ****
Message: The InnerInner Exception.
Type: System.Exception
HelpLink:
Source:
TargetSite:
Data:
 Key1 for InnerInner : Value1 for InnerInner
StackTrace:
**** INNEREXCEPTION END ****

The outermost exception is displayed first, followed by all of its properties. Next,
each inner exception is displayed in a similar manner.

See Also
The “Error Raising and Handling Guidelines” and “Exception Class” topics in the
MSDN documentation.

260 | Chapter 7: Exception Handling

7.6 Getting to the Root of a Problem Quickly

Problem
A thrown and caught exception can contain one or more inner exceptions. The
innermost exception usually indicates the origin of the problem. You want to be able
to view the original thrown exception and skip all of the outer exceptions and to
view the initial problem.

Solution
The GetBaseException instance method of the Exception class displays information
on only the innermost (original) exception; no other exception information is dis-
played. This method accepts no parameters and returns the innermost exception. For
example:

 Console.WriteLine(exception.GetBaseException().ToString());

Discussion
Calling the GetBaseException().ToString() method on an exception object that con-
tains an inner exception produces the same error information as if the ToString
method were called directly on the inner exception. However, if the exception object
does not contain an inner expression, the information on the provided exception
object is displayed. For the following code:

 Exception innerInner = new Exception("The innerInner Exception.");
 ArgumentException inner = new ArgumentException("The inner Exception.",
innerInner);
 NullReferenceException se = new NullReferenceException("A Test Message.", inner);

 try
 {
 throw (se);
 }
 catch(Exception e)
 {
 Console.WriteLine(e.GetBaseException().ToString());
 }

something similar to this would be displayed:

 System.Exception: The innerInner Exception.
 at Chapter_Code.EH.MyMethod() in c:\book cs cookbook\code\test.cs:line 286

Notice that no exception other than the innerInner exception is displayed. This use-
ful technique gets to the root of the problem while filtering out all of the other outer
exceptions that you are not interested in.

Creating a New Exception Type | 261

See Also
The “Error Raising and Handling Guidelines” and “Exception Class” topics in the
MSDN documentation.

7.7 Creating a New Exception Type

Problem
None of the built-in exceptions in the .NET Framework provide the implementation
details that you require for an exception that you need to throw. You need to create
your own exception class that operates seamlessly with your application, as well as
other applications. Whenever an application receives this new exception, it can
inform the user that a specific error occurred in a specific component. This report
will greatly reduce the time required to debug the problem.

Solution
Create your own exception class. To illustrate, let’s create a custom exception class,
RemoteComponentException, that will inform a client application that an error has
occurred in a remote server assembly.

Discussion
The exception hierarchy starts with the Exception class; from this are derived two
classes: ApplicationException and SystemException. The SystemException class and
any classes derived from it are reserved for the developers of the FCL. Most of the
common exceptions, such as the NullReferenceException or the OverflowException,
are derived from SystemException. The FCL developers created the
ApplicationException class for other developers using the .NET languages to derive
their own exceptions from. This partitioning allows for a clear distinction between
user-defined exceptions and the built-in system exceptions. However, Microsoft now
recommends deriving directly from Exception, rather than ApplicationException.
Nothing actively prevents you from deriving a class from either SystemException or
ApplicationException. But it is better to be consistent and use the convention of
always deriving from the Exception class for user-defined exceptions.

You should follow the naming convention for exceptions when determining the
name of your exception. The convention is very simple. Whatever you decide on for
the exception’s name, add the word Exception to the end of the name (e.g., use
UnknownException as the exception name instead of just Unknown). Every user-defined
exception should include at least three constructors, which are described next. This
is not a requirement, but it makes your exception classes operate similarly to every

262 | Chapter 7: Exception Handling

other exception class in the FCL and minimizes the learning curve for other develop-
ers using your new exception. These three constructors are:

The default constructor
This constructor takes no arguments and simply calls the base class’s default
constructor.

A constructor with a parameter that accepts a message string
This message string overwrites the default contents of the Message field of this
exception. Like the default constructor, this constructor also calls the base
class’s constructor, which also accepts a message string as its only parameter.

A constructor that accepts a message string and an inner exception as parameters
The object contained in the innerException parameter is added to the
InnerException property of this exception object. Like the other two construc-
tors, this constructor calls the base class’s constructor of the same signature.

If this exception will be caught in unmanaged code, such as a COM object, you can
also set the HRESULT value for this exception. An exception caught in unmanaged
code becomes an HRESULT value. If the exception does not alter the HRESULT value, it
defaults to the HRESULT of the base class exception, which, in the case of a user-
defined exception object that inherits from ApplicationException, is COR_E_
APPLICATION (0x80131600). To change the default HRESULT value, simply set the value
of this field in the constructor. The following code demonstrates this technique:

 public class RemoteComponentException : Exception
 {
 public RemoteComponentException() : base()
 {
 HResult = 0x80040321;
 }

 public RemoteComponentException(string message) : base(message)
 {
 HResult = 0x80040321;
 }

 public RemoteComponentException(string message, Exception innerException)
 : base(message, innerException)
 {
 HResult = 0x80040321;
 }
 }

Now the HResult that the COM object will see is the value 0x80040321.

It is usually a good idea to override the Message property in order to
incorporate any new fields into the exception’s message text. Always
remember to include the base class’s message text along with any
additional text you add to this property.

Creating a New Exception Type | 263

Fields and their accessors should be created to hold data specific to the exception.
Since this exception will be thrown as a result of an error that occurs in a remote
server assembly, you will add a private field to contain the name of the server or ser-
vice. In addition, you will add a public read-only property to access this field. Since
you’re adding this new field, you should add two constructors that accept an extra
parameter used to set the value of the serverName field.

If necessary, override any base class members whose behavior is inherited by the cus-
tom exception class. For example, since you have added a new field, you need to
determine whether it will need to be added to the default contents of the Message
field for this exception. If it does, you must override the Message property:

 public override string Message
 {
 get
 {
 if (string.IsNullOrEmpty(this.ServerName))
 return (base.Message + Environment.NewLine +
 "A server with an unknown name has encountered an error.");
 else
 return (base.Message + Environment.NewLine +
 "The server (" + this.ServerName +
 ") has encountered an error.");
 }
 }

Notice that the Message property in the base class is displayed on the first line, and
your additional text is displayed on the next line. This organization takes into
account that a user might modify the message that will appear in the Message prop-
erty by using one of the overloaded constructors that takes a message string as a
parameter.

Your exception object should be serializable and deserializable. This involves per-
forming the following two additional steps:

1. Add the Serializable attribute to the class definition. This attribute specifies
that this class can be serialized and deserialized. A SerializationException is
thrown if this attribute does not exist on this class, and an attempt is made to
serialize this class.

2. The class should implement the ISerializable interface if you want control over
how serialization and deserialization are performed, and it should provide an
implementation for its single member, GetObjectData. Here you implement it
because the base class implements it, which means that you have no choice but
to reimplement it if you want the fields you added (e.g., serverName) to get
serialized:
 // Used during serialization to capture information about extra fields
 public override void GetObjectData(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 {

264 | Chapter 7: Exception Handling

 base.GetObjectData(exceptionInfo, exceptionContext);
 exceptionInfo.AddValue("ServerName", this.ServerName);
 }

In addition, a new overridden constructor is needed that accepts information to dese-
rialize this object:

 // Serialization ctor
 protected RemoteComponentException(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 : base(exceptionInfo, exceptionContext)
 {
 this.serverName = exceptionInfo.GetString("ServerName");
 }

Even though it is not required, you should make all user-defined
exception classes serializable and deserializable. That way, the excep-
tions can be propagated properly over remoting and application
domain boundaries.

At this point, the RemoteComponentException class contains everything you need for a
complete user-defined exception class.

As a final note, it is generally a good idea to place all user-defined exceptions in a
separate assembly, which allows for easier reuse of these exceptions in other applica-
tions and, more importantly, allows other application domains and remotely execut-
ing code to both throw and handle these exceptions correctly no matter where they
are thrown. The assembly that holds these exceptions should be signed with a strong
name and added to the Global Assembly Cache (GAC), so that any code that uses or
handles these exceptions can find the assembly that defines them. See Recipe 17.9
for more information on how to do this.

If you are sure that the exceptions being defined won’t ever be thrown or handled
outside of your assembly, then you can leave the exception definitions there. But if
for some reason an exception that you throw finds its way out of your assembly, the
code that ultimately catches it will not be able to resolve it.

The complete source code for the RemoteComponentException class is shown in
Example 7-4.

Example 7-4. RemoteComponentException class

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using System.Security.Permissions;

[Serializable]
public class RemoteComponentException : Exception, ISerializable
{

Creating a New Exception Type | 265

 #region Constructors
 // Normal exception ctor's
 public RemoteComponentException() : base()
 {
 }

 public RemoteComponentException(string message) : base(message)
 {
 }

 public RemoteComponentException(string message, Exception innerException)
 : base(message, innerException)
 {
 }

 // Exception ctor's that accept the new ServerName parameter
 public RemoteComponentException(string message, string serverName) : base(message)
 {
 this.ServerName = serverName;
 }

 public RemoteComponentException(string message,
 Exception innerException, string serverName)
 : base(message, innerException)
 {
 this.ServerName = serverName;
 }

 // Serialization ctor
 protected RemoteComponentException(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 : base(exceptionInfo, exceptionContext)
 {
 this.ServerName = exceptionInfo.GetString("ServerName");
 }
 #endregion // Constructors

 #region Properties
 // Read-only property for server name
 public string ServerName { get; private set; }

 public override string Message
 {
 get
 {
 if (string.IsNullOrEmpty(this.ServerName))
 return (string.Format(Thread.CurrentThread.CurrentCulture,
 "{0}{1}A server with an unknown name has encountered an error.",
 base.Message, Environment.NewLine));
 else
 return (
 string.Format(Thread.CurrentThread.CurrentCulture,

Example 7-4. RemoteComponentException class (continued)

266 | Chapter 7: Exception Handling

The ToFullDisplayString call made in the ToString override is on the extension
method presented in Recipe 7.5. A partial listing of the code to test the
RemoteComponentException class is shown in Example 7-5.

 "{0}{1}The server ({2}) has encountered an error.",
 base.Message, Environment.NewLine, this.ServerName));
 }
 }
 #endregion // Properties

 #region Overridden methods
 // ToString method
 public override string ToString()
 {
 string errorString =
 string.Format(Thread.CurrentThread.CurrentCulture,
 "An error has occured in a server component of this client." +
 "{0}Server Name: {1}{0}{2}",
 Environment.NewLine, this.ServerName, this.ToFullDisplayString());
 return errorString;
 }

 // Used during serialization to capture information about extra fields
 [SecurityPermission(SecurityAction.LinkDemand, Flags =
 SecurityPermissionFlag.SerializationFormatter)]
 public override void GetObjectData(SerializationInfo info,
 StreamingContext context)
 {
 base.GetObjectData(info, context);
 info.AddValue("ServerName", this.ServerName);
 }
 #endregion // Overridden methods

 // Call base.ToString method
 public string ToBaseString()
 {
 return (base.ToString());
 }
}

Example 7-5. Testing the RemoteComponentException class

public void TestSpecializedException()
{
 // Generic inner exception used to test the
 // RemoteComponentException's inner exception.
 Exception inner = new Exception("The inner Exception");

 RemoteComponentException se1 = new RemoteComponentException ();
 RemoteComponentException se2 =
 new RemoteComponentException ("A Test Message for se2");

Example 7-4. RemoteComponentException class (continued)

Creating a New Exception Type | 267

The output from Example 7-5 is presented in Example 7-6.

 RemoteComponentException se3 =
 new RemoteComponentException ("A Test Message for se3", inner);
 RemoteComponentException se4 =
 new RemoteComponentException ("A Test Message for se4",
 "MyServer");
 RemoteComponentException se5 =
 new RemoteComponentException ("A Test Message for se5", inner,
 "MyServer");

 // Test overridden Message property.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- MESSAGE PROPERTY");
 Console.WriteLine("se1.Message == " + se1.Message);
 Console.WriteLine("se2.Message == " + se2.Message);
 Console.WriteLine("se3.Message == " + se3.Message);
 Console.WriteLine("se4.Message == " + se4.Message);
 Console.WriteLine("se5.Message == " + se5.Message);

 // Test -overridden- ToString method.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- TOSTRING METHOD");
 Console.WriteLine("se1.ToString() == " + se1.ToString());
 Console.WriteLine("se2.ToString() == " + se2.ToString());
 Console.WriteLine("se3.ToString() == " + se3.ToString());
 Console.WriteLine("se4.ToString() == " + se4.ToString());
 Console.WriteLine("se5.ToString() == " + se5.ToString());
 Console.WriteLine(Environment.NewLine + "END TEST" + Environment.NewLine);
}

Example 7-6. Output displayed by the RemoteComponentException class

TEST -OVERRIDDEN- MESSAGE PROPERTY
se1.Message == Exception of type 'CSharpRecipes.ExceptionHandling+RemoteComponen
tException' was thrown.
A server with an unknown name has encountered an error.
se2.Message == A Test Message for se2
A server with an unknown name has encountered an error.
se3.Message == A Test Message for se3
A server with an unknown name has encountered an error.
se4.Message == A Test Message for se4
The server (MyServer) has encountered an error.
se5.Message == A Test Message for se5
The server (MyServer) has encountered an error.

TEST -OVERRIDDEN- TOSTRING METHOD
se1.ToString() == An error has occured in a server component of this client.
Server Name:
Message: Exception of type 'CSharpRecipes.ExceptionHandling+RemoteComponentExcep
tion' was thrown.
A server with an unknown name has encountered an error.

Example 7-5. Testing the RemoteComponentException class (continued)

268 | Chapter 7: Exception Handling

Type: CSharpRecipes.ExceptionHandling+RemoteComponentException
HelpLink:
Source:
TargetSite:
Data:
StackTrace:

se2.ToString() == An error has occured in a server component of this client.
Server Name:
Message: A Test Message for se2
A server with an unknown name has encountered an error.
Type: CSharpRecipes.ExceptionHandling+RemoteComponentException
HelpLink:
Source:
TargetSite:
Data:
StackTrace:

se3.ToString() == An error has occured in a server component of this client.
Server Name:
Message: A Test Message for se3
A server with an unknown name has encountered an error.
Type: CSharpRecipes.ExceptionHandling+RemoteComponentException
HelpLink:
Source:
TargetSite:
Data:
StackTrace:
**** INNEREXCEPTION START ****
Message: The Inner Exception
Type: System.Exception
HelpLink:
Source:
TargetSite:
Data:
StackTrace:
**** INNEREXCEPTION END ****

se4.ToString() == An error has occured in a server component of this client.
Server Name: MyServer
Message: A Test Message for se4
The server (MyServer) has encountered an error.
Type: CSharpRecipes.ExceptionHandling+RemoteComponentException
HelpLink:
Source:
TargetSite:
Data:
StackTrace:

se5.ToString() == An error has occured in a server component of this client.
Server Name: MyServer

Example 7-6. Output displayed by the RemoteComponentException class (continued)

Obtaining a Stack Trace | 269

See Also
Recipe 17.9, and the “Using User-Defined Exceptions” and “Exception Class” topics
in the MSDN documentation.

7.8 Obtaining a Stack Trace

Problem
You need a view of what the stack looks like at any particular point in your applica-
tion. However, you do not have an exception object from which to obtain this stack
trace.

Solution
Use the following line of code to obtain a stack trace at any point in your application:

 string currentStackTrace = System.Environment.StackTrace;

The variable currentStackTrace now contains the stack trace at the location where
this line of code was executed.

Discussion
A good use of the Solution is tracking down stack overflow problems. You can
obtain the current stack trace at various points in your application and then calcu-
late the stack depth. This depth calculation can then be logged to determine when

Message: A Test Message for se5
The server (MyServer) has encountered an error.
Type: CSharpRecipes.ExceptionHandling+RemoteComponentException
HelpLink:
Source:
TargetSite:
Data:
StackTrace:
**** INNEREXCEPTION START ****
Message: The Inner Exception
Type: System.Exception
HelpLink:
Source:
TargetSite:
Data:
StackTrace:
**** INNEREXCEPTION END ****

END TEST

Example 7-6. Output displayed by the RemoteComponentException class (continued)

270 | Chapter 7: Exception Handling

and why the stack is overflowing or potential trouble spots where the stack may
grow very large.

It is very easy to obtain a stack trace using the System.Environment.StackTrace prop-
erty. Unfortunately, this stack trace also lists three methods defined in the System.
Environment class that are called when you use the Environment.StackTrace property.
The returned stack trace, using this method, will look something like following:

 at System.Environment.GetStackTrace(Exception e)
 at System.Environment.GetStackTrace(Exception e)
 at System.Environment.get_StackTrace()
 at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line
260
 at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

The first three items in the stack trace are method calls that you are not interested in.
To fix this, you can write the following method to find and remove these items from
the stack trace:

 public static string GetStackTraceInfo(string currentStackTrace)
 {
 string firstStackTraceCall = "System.Environment.get_StackTrace()";
 int posOfStackTraceCall =
 currentStackTrace.IndexOf(firstStackTraceCall,StringComparison.
OrdinalIgnoreCase);
 return (currentStackTrace.Substring(posOfStackTraceCall +
 firstStackTraceCall.Length));
 }

This method is called using the following line of code:

 string stackTraceInfo = GetStackTraceInfo(System.Environment.StackTrace);

The second line in the GetStackTraceInfo method creates and initializes a string vari-
able to the first called StackTrace method—which is actually a call to the get portion
of the StackTrace property. This variable is used in the third line to obtain its start-
ing position in the complete stack trace string. The final line of code grabs the end of
the complete stack trace string, starting at the ending of the first called StackTrace
method. The FinalStackTrace variable now contains the following string:

 at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line
260
 at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

This is the current stack trace at the point in the code where the Environment.
StackTrace method was called.

Now that you have a stack trace of your code, you can calculate the stack depth at
the point where you call Environment.StackTrace. The following code uses a regular
expression to determine the depth of a stack trace:

 using System;
 using System.Text.RegularExpressions;

Obtaining a Stack Trace | 271

 public static int GetStackTraceDepth(string currentStackTrace)
 {
 string firstStackTraceCall = "System.Environment.get_StackTrace()";
 int posOfStackTraceCall =
 currentStackTrace.IndexOf(firstStackTraceCall,StringComparison.
OrdinalIgnoreCase);
 string finalStackTrace = currentStackTrace.Substring(posOfStackTraceCall +
 firstStackTraceCall.Length);

 MatchCollection methodCallMatches = Regex.Matches(finalStackTrace,
 @"\sat\s.*(\sin\s.*\:line\s\d*)?");
 return (methodCallMatches.Count);
 }

This regular expression captures every method call in the stack trace string. Note
that, if the correct symbols are located for your assembly, the stack trace might look
like this:

 at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line
260
 at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

However, if the correct symbols cannot be found, the stack trace string will look sim-
ilar to the following:

 at Chapter_Code.Class1.ObtainingStackTrace()
 at Chapter_Code.Class1.Main(String[] args)

The file and line numbers are not displayed in this case, and the regular expression
must take this into account.

To get a count of the stack depth, use the Count property of the MatchCollection
object to give the total number of method calls in the stack. In addition, you can
obtain each individual method call as an independent string by iterating through the
MatchCollection object. The code to do so is:

 Console.WriteLine("-------------");
 foreach(Match m in MethodCallMatches)
 {
 Console.WriteLine(m.Value + System.Environment.NewLine + "-------------");
 }

This code will display the following:

 at Chapter_Code.Class1.ObtainingStackTrace() in
 c:\book cs cookbook\test.cs:line 260

 at Chapter_Code.Class1.Main(String[] args) in
 c:\book cs cookbook\main.cs:line 78

Each method and its information are contained within a Match object within the
MatchCollection object.

272 | Chapter 7: Exception Handling

The Environment.StackTrace method can be useful as a debugging tool. You can see
at various points in your application which methods have been called and their call-
ing order. This can come in very handy when creating and debugging an application
that uses recursion. In addition, you can also keep track of the stack depth by using
the Environment.StackTrace property.

See Also
The “Environment.StackTrace Property” topic in the MSDN documentation.

7.9 Breaking on a First-Chance Exception

Problem
You need to fix a problem with your code that is throwing an exception. Unfortu-
nately, an exception handler is trapping the exception, and you are having a tough
time pinpointing where and when the exception is being thrown.

Forcing the application to break on an exception before the application has a chance
to handle it is very useful in situations in which you need to step through the code at
the point where the exception is first being thrown. If this exception were thrown
and not handled by your application, the debugger would intervene and break on the
line of code that caused the unhandled exception. In this case, you can see the con-
text in which the exception was thrown. However, if an exception handler is active
when the exception is thrown, the exception handler will handle it and continue on,
preventing you from being able to see the context at the point where the exception
was thrown. This is the default behavior for all exceptions.

Solution
Select Debug ➝ Exceptions or use the Ctrl-D key combination and then the E key
within Visual Studio 2008 to display the Exceptions dialog box (see Figure 7-1).
Select the exception from the tree that you want to modify and then click on the
checkbox in the Thrown column in the list view. Click the OK button and then
run your application. Any time the application throws a System.
ArgumentOutOfRangeException, the debugger will break on that line of code before
your application has a chance to handle it.

Using the Exceptions dialog box, you can target specific exceptions or sets of excep-
tions for which you wish to alter the default behavior. This dialog has three main sec-
tions. The first is the TreeView control, which contains the list of categorized
exceptions. Using this TreeView, you can choose one or more exceptions or groups
of exceptions whose behavior you wish to modify.

The next section on this dialog is the column Thrown in the list next to the Tree-
View. This column contains a checkbox for each exception that will enable the

Breaking on a First-Chance Exception | 273

debugger to break when that type of exception is first thrown. At this stage, the
exception is considered a first-chance exception. Checking the checkbox in the
Thrown column forces the debugger to intervene when a first-chance exception of
the type chosen in the TreeView control is thrown. Unchecking the checkbox allows
the application to attempt to handle the first-chance exception.

This dialog contains two helpful buttons, Find and Find Next, to allow you to search
for an exception rather than dig into the TreeView control and search for it on your
own. In addition, three other buttons—Reset All, Add, and Delete—are used to reset
to the original state and to add and remove user-defined exceptions, respectively. For
example, you can create your own exception, as you did in Recipe 7.7, and add this
exception to the TreeView list. You must add any managed exception such as this to
the TreeView node entitled Common Language Runtime Exceptions. This setting
tells the debugger that this is a managed exception and should be handled as such.

To add a user-defined exception to the TreeView, click the Add button. The dialog
box shown in Figure 7-2 appears.

Figure 7-1. The Exceptions dialog box

Figure 7-2. Adding a user-defined exception to the TreeView

274 | Chapter 7: Exception Handling

Type the name of the exception—exactly as its class name is spelled with the full
namespace scoping—into the Name field of this dialog box. Do not append any other
information to this name, such as the namespace it resides in or a class name that it
is nested within. Doing so will cause the debugger to fail to see this exception when
it is thrown. Clicking the OK button places this exception into the TreeView under
the Common Language Runtime Exceptions node. The Exceptions dialog box will
look something like the one in Figure 7-3 after you add this user-defined exception.

The Delete button deletes any selected user-defined exception that you added to the
TreeView. The Reset All button deletes any and all user-defined exceptions that have
been added to the TreeView. Check the Thrown column to have the debugger stop
when that exception type is thrown.

There is one other setting that can affect your exception debugging and that is the
“Just My Code” setting. Figure 7-4 demonstrates that this should be turned off to get
the best picture of what is really happening in your application when debugging. The
setting is under Tools\Options\Debugging in Visual Studio 2008.

See Also
The “Exception Handling (Debugging)” topic in the MSDN documentation.

Figure 7-3. The Exceptions dialog box after adding a user-defined exception to the TreeView

Handling Exceptions Thrown from an Asynchronous Delegate | 275

7.10 Handling Exceptions Thrown from an
Asynchronous Delegate

Problem
When using a delegate asynchronously, you want to be notified if the delegate has
thrown any exceptions.

Solution
Wrap the EndInvoke method of the delegate in a try/catch block:

 using System;
 using System.Threading;

 public class AsyncAction
 {
 public void PollAsyncDelegate()
 {
 // Create the async delegate to call Method1 and call its BeginInvoke
method.
 AsyncInvoke MI = new AsyncInvoke(TestAsyncInvoke.Method1);
 IAsyncResult AR = MI.BeginInvoke(null, null);

 // Poll until the async delegate is finished.
 while (!AR.IsCompleted)
 {

Figure 7-4. The Just My Code setting disabled

276 | Chapter 7: Exception Handling

 System.Threading.Thread.Sleep(100);
 Console.Write('.');
 }
 Console.WriteLine("Finished Polling");

 // Call the EndInvoke method of the async delegate.
 try
 {
 int RetVal = MI.EndInvoke(AR);
 Console.WriteLine("RetVal (Polling): " + RetVal);
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }
 }

The following code defines the AsyncInvoke delegate and the asynchronously invoked
static method TestAsyncInvoke.Method1:

 public delegate int AsyncInvoke();

 public class TestAsyncInvoke
 {
 public static int Method1()
 {
 throw (new Exception("Method1")); // Simulate an exception being
thrown.
 }
 }

Discussion
If the code in the PollAsyncDelegate method did not contain a call to the delegate’s
EndInvoke method, the exception thrown in Method1 either would simply be dis-
carded and never caught or, if the application had the top-level exception handlers
wired up (Recipes 7.3, 7.11, and 7.12), it would be caught. If EndInvoke is called,
then this exception would occur when EndInvoke is called and could be caught there.
This behavior is by design; for all unhandled exceptions that occur within the thread,
the thread immediately returns to the thread pool, and the exception is lost.

If a method that was called asynchronously through a delegate throws an exception,
the only way to trap that exception is to include a call to the delegate’s EndInvoke
method and wrap this call in an exception handler. The EndInvoke method must be
called to retrieve the results of the asynchronous delegate; in fact, the EndInvoke
method must be called even if there are no results. These results can be obtained
through a return value or any ref or out parameters of the delegate.

Giving Exceptions the Extra Info They Need with Exception.Data | 277

See Also
For more information on calling delegates asynchronously, see Recipe 9.3.

For information about wiring up top-level exception handlers in your application,
see Recipes 7.3, 7.11, and 7.12.

7.11 Giving Exceptions the Extra Info They Need with
Exception.Data

Problem
You want to send some additional information along with an exception.

Solution
Use the Data property on the System.Exception object to store key-value pairs of
information relevant to the exception.

For example, say there is a System.ArgumentException being thrown from a section of
code, and you want to include the underlying cause and the length of time it took.
The code would add two key-value pairs to the Exception.Data property by specify-
ing the key in the indexer and then assigning the value.

In the example that follows, the Data for the irritable exception uses "Cause" and
"Length" for its keys. Once the items have been set in the Data collection, the excep-
tion can be thrown and caught, and more data can be added in subsequent catch
blocks for as many levels of exception handling as the exception is allowed to
traverse:

 try
 {
 try
 {
 try
 {
 try
 {
 ArgumentException irritable =
 new ArgumentException("I'm irritable!");
 irritable.Data["Cause"]="Computer crashed";
 irritable.Data["Length"]=10;
 throw irritable;
 }
 catch (Exception e)
 {
 // See if I can help...
 if(e.Data.Contains("Cause"))
 e.Data["Cause"]="Fixed computer";

278 | Chapter 7: Exception Handling

 throw;
 }
 }
 catch (Exception e)
 {
 e.Data["Comment"]="Always grumpy you are";
 throw;
 }
 }
 catch (Exception e)
 {
 e.Data["Reassurance"]="Error Handled";
 throw;
 }
 }

The final catch block can then iterate over the Exception.Data collection and display
all of the supporting data that has been gathered in the Data collection since the ini-
tial exception was thrown:

 catch (Exception e)
 {
 Console.WriteLine("Exception supporting data:");
 foreach(DictionaryEntry de in e.Data)
 {
 Console.WriteLine("\t{0} : {1}",de.Key,de.Value);
 }
 }

Discussion
Exception.Data is an object that supports the IDictionary interface. This allows you
to:

• Add and remove name-value pairs

• Clear the contents

• Search the collection to see if it contains a certain key

• Get an IDictionaryEnumerator for rolling over the collection items

• Index into the collection using the key

• Access an ICollection of all of the keys and all of the values separately

It is a very handy thing to be able to tack on code-specific data to the system excep-
tions, as it provides the ability to give a more complete picture of what happened in
the code when the error occurred. The more information available to the poor soul
(probably yourself) who is trying to figure out why the exception was thrown in the
first place, the better the chance of it being fixed. Do yourself and your team a favor
and give a little bit of extra information when throwing exceptions; you won’t be
sorry you did.

Dealing with Unhandled Exceptions in WinForms Applications | 279

See Also
The “Exception.Data Property” topic in the MSDN documentation.

7.12 Dealing with Unhandled Exceptions in WinForms
Applications

Problem
You have a WinForms-based application in which you want to catch and log any
unhandled exceptions on any thread.

Solution
You need to hook up handlers for both the System.Windows.Forms.Application.
ThreadException event and the System.appdomain.UnhandledException event. Both of
these events need to be hooked up, as the WinForms support in the Framework does
a lot of exception trapping itself. It exposes the System.Windows.Forms.Application.
ThreadException event to allow you to get any unhandled exceptions that happen on
the UI thread that the WinForms and their events are running on. In spite of its
deceptive name, the System.Windows.Forms.Application.ThreadException event han-
dler will not catch unhandled exceptions on worker threads constructed by the pro-
gram or from ThreadPool threads. In order to catch all of those possible routes for
unhandled exceptions in a WinForms application, you need to hook up a handler for
the System.appdomain.UnhandledException event that does catch those (but not the UI
thread ones that System.Windows.Forms.Application.ThreadException does).

To hook up the necessary event handlers to catch all of your unhandled exceptions
in a WinForms application, add the following code to the Main function in your
application:

 static void Main()
 {
 // Adds the event handler to catch any exceptions that happen
 // in the main UI thread.
 Application.ThreadException +=
 new ThreadExceptionEventHandler(OnThreadException);

 // Add the event handler for all threads in the appdomain except
 // for the main UI thread.
 appdomain.CurrentDomain.UnhandledException +=
 new UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);

 Application.EnableVisualStyles();
 Application.Run(new Form1());
 }

280 | Chapter 7: Exception Handling

The System.AppDomain.UnhandledException event handler is hooked up to the current
Appdomain by using the appdomain.CurrentDomain property, which gives access to the
current Appdomain. The ThreadException handler for the application is accessed
through the Application.ThreadException property.

The event handler code is established in the CurrentDomain_UnhandledException and
OnThreadException handler methods. See Recipe 7.4 for more information on the
UnhandledExceptionEventHandler. The ThreadExceptionEventHandler is passed the
sender object and a ThreadExceptionEventArgs object. ThreadExceptionEventArgs has
an Exception property that contains the unhandled exception from the WinForms UI
thread:

 // Handles the exception event for all other threads
 static void CurrentDomain_UnhandledException(object sender,
 UnhandledExceptionEventArgs e)
 {
 // Just show the exception details.
 MessageBox.Show("CurrentDomain_UnhandledException: " +
 e.ExceptionObject.ToString());
 }

 // Handles the exception event from a UI thread
 static void OnThreadException(object sender, ThreadExceptionEventArgs t)
 {
 // Just show the exception details.
 MessageBox.Show("OnThreadException: " + t.Exception.ToString());
 }

Discussion
Exceptions are the primary way to convey errors in .NET, so when you build an
application, it is imperative that there be a final line of defense against unhandled
exceptions. An unhandled exception will crash the program (even if it looks a bit
nicer in .NET); this is not the impression you wish to make on your customers. It
would have been nice to have one event to hook up to for all unhandled exceptions.
The appdomain.UnhandledException event comes pretty close to that, but having to do
handle one extra event isn’t the end of the world, either. In coding event handlers for
both appdomain.UnhandledException and Application.ThreadException, you can eas-
ily call a single handler that writes the exception information to the event log, the
debug stream, or custom trace logs or even sends you an email with the information.
The possibilities are limited only by how you want to handle errors that can happen
to any program given enough exposure.

See Also
Recipe 7.4; see the “Error Raising and Handling Guidelines,” “Thread-Exception-
EventHandler Delegate,” and “UnhandledExceptionEventHandler Delegate” topics
in the MSDN documentation.

Dealing with Unhandled Exceptions in Windows Presentation Foundation (WPF) Applications | 281

7.13 Dealing with Unhandled Exceptions in Windows
Presentation Foundation (WPF) Applications

Problem
You have a Windows Presentation Foundation-based (WPF) application in which
you want to catch and log any unhandled exceptions on any thread.

Solution
To hook up the necessary event handlers to catch all of your unhandled exceptions
in a WPF application, add the following code to the App.xaml file in your application:

<Application x:Class="UnhandledWPFException.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml"

DispatcherUnhandledException="Application_DispatcherUnhandledException">
 <Application.MainWindow>
 <Window />
 </Application.MainWindow>
 <Application.Resources>

 </Application.Resources>
</Application>

Then, in the code behind file App.xaml.cs, add the Application_
DispatcherUnhandledException method to handle otherwise unhandled exceptions:

private void Application_DispatcherUnhandledException(object sender,
 System.Windows.Threading.DispatcherUnhandledExceptionEventArgs e)
{
 // Log the exception information in the event log
 EventLog.WriteEntry("UnhandledWPFException Application",
 e.Exception.ToString(), EventLogEntryType.Error);
 // Let the user know what happenned
 MessageBox.Show("Application_DispatcherUnhandledException: " + e.Exception.
ToString());
 // indicate we handled it
 e.Handled = true;
 // shut down the application
 this.Shutdown();
}

Discussion
Windows Presentation Foundation provides another way to create Windows-based
applications for the .NET platform and is the future of rich client user experience on
.NET going forward. While WinForms may not go away for quite a while, Microsoft
is definitely pushing forward with WPF. In order to protect users from unsightly

282 | Chapter 7: Exception Handling

unhandled exceptions, a bit of code is necessary in WPF as in WinForms (see Recipe
7.12 for doing this in WinForms).

The System.Windows.Application class is the base class for WPF-based applications,
and it is from that the unhandled exceptions are handled via the
DispatcherUnhandledException event. This event handler is set up by specifying the
method to handle the event in the App.xaml file shown here:

DispatcherUnhandledException="Application_DispatcherUnhandledException">

This can also be set up in code directly instead of doing it the XAML way by adding
the Startup event handler (which is where initialization code for the Application is
recommended to go in WPF) to the XAML file like this:

<Application x:Class="UnhandledWPFException.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml"
 Startup="Application_Startup" >
 <Application.MainWindow>
 <Window />
 </Application.MainWindow>
 <Application.Resources>

 </Application.Resources>
</Application>

In the Startup event, establish the event handler for the
DispatcherUnhandledException like this:

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.DispatcherUnhandledException +=
 new System.Windows.Threading.DispatcherUnhandledExceptionEventHandler(
 Application_DispatcherUnhandledException);
}

This is great for handling exceptions for WPF applications, just hook up and get all
those unhandled exceptions delivered to your single handler, right? Wrong. Just as
was necessary in WinForms applications, if you have any code running on any
threads other than the UI thread (which you almost always will), you still have to
hook up to the AppDomain for the AppDomain.UnhandledException handler to catch
those exceptions on threads other than the UI thread. In order to do that, our App.
xaml.cs file now looks like this:

/// <summary>
/// Interaction logic for App.xaml
/// </summary>
public partial class App : Application
{
 private void Application_DispatcherUnhandledException(object sender,
 System.Windows.Threading.DispatcherUnhandledExceptionEventArgs e)
 {

Analyzing Exceptions for Common Errors | 283

 // indicate we handled it
 e.Handled = true;
 ReportUnhandledException(e.Exception);
 }

 private void Application_Startup(object sender, StartupEventArgs e)
 {
 // WPF UI exceptions
 this.DispatcherUnhandledException +=
 new System.Windows.Threading.DispatcherUnhandledExceptionEventHandler(
 Application_DispatcherUnhandledException);

 // Those dirty thread exceptions
 AppDomain.CurrentDomain.UnhandledException +=
 new UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);
 }

 private void CurrentDomain_UnhandledException(object sender,
 UnhandledExceptionEventArgs e)
 {
 ReportUnhandledException(e.ExceptionObject as Exception);
 }

 private void ReportUnhandledException(Exception ex)
 {
 // Log the exception information in the event log
 EventLog.WriteEntry("UnhandledWPFException Application",
 ex.ToString(), EventLogEntryType.Error);
 // Let the user know what happenned
 MessageBox.Show("Unhandled Exception: " + ex.ToString());
 // shut down the application
 this.Shutdown();
 }
}

See Also
Recipe 7.12; see the “DispatcherUnhandledException event,” and “AppDomain.
UnhandledException handler,” topics in the MSDN documentation.

7.14 Analyzing Exceptions for Common Errors

Problem
You have an exception that may have multiple nested inner exceptions, and you
need a quick way to analyze them for common or well-known errors.

284 | Chapter 7: Exception Handling

Solution
Use the GetNestedExceptionList extension method provided here with any Exception
to retrieve an IEnumerable<Exception> list of all of the exceptions in the inner excep-
tion tree. Once this information is in list format, use Language Integrated Query
(LINQ) to isolate common issues:

public static IEnumerable<Exception> GetNestedExceptionList(this Exception exception)
{
 Exception current = exception;
 do
 {
 current = current.InnerException;
 if (current != null)
 yield return current;
 }
 while (current != null);
}

An example of how this can be used in conjunction with LINQ to find well-known
exceptions is listed below:

// simulate an exception chain unwinding
// hit a bad reference
NullReferenceException nrex = new NullReferenceException("Touched a bad object");
nrex.Data.Add("Bad ObjectID", "0x34874573");
// have an error formatting a message for it
FormatException fex = new FormatException("Resulted from Null Reference", nrex);
// mask it as part of a data layer
ApplicationException appex =
 new ApplicationException("There was an error in the data layer.",fex);
// hit another error reformatting the exception information
FormatException fmtEx =
 new FormatException("Error formatting error message.", appex);

// Use LINQ to look for common or well-known problems in the app
var query = from ex in fmtEx.GetNestedExceptionList()
 where ex is NullReferenceException ||
 ex is OutOfMemoryException ||
 ex is ThreadAbortException
 select ex;
// report if any of the common or well-known errors were found
foreach (Exception ex in query)
{
 Console.WriteLine("Found common exception (" + ex.GetType() +
 ") with message: " + ex.Message);
}

Analyzing Exceptions for Common Errors | 285

Discussion
Diagnosing exceptions in applications that have a higher level of complexity can
sometimes be a challenge even when best practices for exception handling and
management are followed. Call stacks get deep, layers are built for separation and
masking, and then, all of a sudden, the error reported is not necessarily the root
cause of the problem. This recipe is designed to help in situations where nested
exceptions mask the problem more often than not, as there is another layer or two
between where the error is reported and where it occurred. Good exception logging
and handling practices can help cut down these instances, but ultimately, in com-
plex applications, you will eventually get a tree of exceptions that needs deciphering.
Having some analytics built into your unhandled exception handlers might just give
you an edge in figuring out that production bug, so spend a while thinking about
what kinds of root cause exceptions are encountered in your applications to make
life easier later on.

See Also
The “extension methods” and “Exception Handling” topics in the MSDN
documentation.

286

Chapter 8CHAPTER 8

Diagnostics 8

8.0 Introduction
The .NET Framework Class Library (FCL) contains many classes to obtain diagnos-
tic information about your application, as well as the environment it is running in. In
fact, there are so many classes that a namespace, System.Diagnostics, was created to
contain all of them. This chapter contains recipes for instrumenting your application
with debug/trace information, obtaining process information, using the built-in
event log, and taking advantage of performance counters.

Debugging (using the Debug class) is turned on by default in debug builds only, and
tracing (using the Trace class) is turned on by default in both debug and release
builds. These defaults allow you to ship your application instrumented with tracing
code using the Trace class. You ship your code with tracing compiled in but turned
off in the configuration so that the tracing code is not called (for performance rea-
sons) unless it is a server-side application (where the value of the instrumentation
may outweigh the performance hit). If a problem that you cannot re-create on your
development computer occurs on a production machine, you can enable tracing and
allow the tracing information to be dumped to a file. This file can be inspected to
help pinpoint the real problem. This usage is discussed at length in Recipes 8.1 and
8.2.

Since both the Debug and Trace classes contain the same members with the same
names, they can be interchanged in your code by renaming Debug to Trace and vice
versa. Most of the recipes in this chapter use the Trace class; you can modify those
recipes so that they use the Debug class by replacing each Trace with Debug in the
code.

Providing Fine-Grained Control over Debugging/Tracing Output | 287

8.1 Providing Fine-Grained Control over Debugging/
Tracing Output

Problem
Your application consists of multiple components. You need, at specific times, to
turn on debug/trace output for a select few components, while leaving all other
debug/trace output turned off. In addition, you need control over the type and
amount of information that is produced by the Trace/Debug statements.

Solution
Use the BooleanSwitch class with an application configuration file (*.config). The fol-
lowing method creates three switches for your application: one that controls tracing
for database calls, one that controls tracing for UI components, and one that con-
trols tracing for any exceptions that are thrown by the application:

 public class Traceable
 {
 BooleanSwitch DBSwitch = null;
 BooleanSwitch UISwitch = null;
 BooleanSwitch exceptionSwitch = null;

 [System.Diagnostics.ConditionalAttribute("TRACE")]
 public void EnableTracing()
 {

 DBSwitch = new BooleanSwitch("DatabaseSwitch",
 "Switch for database tracing");
 Console.WriteLine("DBSwitch Enabled = " + DBSwitch.Enabled);

 UISwitch = new BooleanSwitch("UISwitch",
 "Switch for user interface tracing");
 Console.WriteLine("UISwitch Enabled = " + UISwitch.Enabled);

 exceptionSwitch = new BooleanSwitch("ExceptionSwitch",
 "Switch for tracing thrown exceptions");
 Console.WriteLine("ExceptionSwitch Enabled = " + exceptionSwitch.
Enabled);
 }
 }

After creating each switch, the Enabled property is displayed, indicating whether the
switch is on or off.

Creating these switches without an application configuration file results in every
switch being disabled. To control what state each switch is set to, use an application
configuration file, as shown here:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>

288 | Chapter 8: Diagnostics

 <system.diagnostics>
 <switches>
 <clear/>
 <add name="DatabaseSwitch" value="1" />
 <add name="UISwitch" value="0" />
 <add name="ExceptionSwitch" value="0" />
 </switches>
 </system.diagnostics>
 </configuration>

The TraceSwitch class can also be used with an application configuration file (App-
Name.exe.config). The following method creates a new TraceSwitch object with a
level assigned by the application configuration file:

 public class Traceable
 {
 TraceSwitch DBFilterSwitch = null;
 TraceSwitch UIFilterSwitch = null;
 TraceSwitch exceptionFilterSwitch = null;

 public void SetTracingFilter()
 {
 DBFilterSwitch = new TraceSwitch("DatabaseFilter",
 "Filter database output");
 Console.WriteLine("DBFilterSwitch Level = " + DBFilterSwitch.Level);

 UIFilterSwitch = new TraceSwitch("UIFilter",
 "Filter user interface output");
 Console.WriteLine("UIFilterSwitch Level = " + UIFilterSwitch.Level);

 exceptionFilterSwitch = new TraceSwitch("ExceptionFilter",
 "Filter exception output");
 Console.WriteLine("exceptionFilterSwitch Level = "
 + exceptionFilterSwitch.Level);
 }
 }

After creating each filter switch, the Level property is displayed to indicate the
switch’s level.

Creating these switches at this point results in every switch’s level being set to zero.
To turn them on, use an application configuration file, as shown here:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <system.diagnostics>
 <switches>
 <clear/>
 <add name="DatabaseFilter" value="4" />
 <add name="UIFilter" value="0" />
 <add name="ExceptionFilter" value="1" />
 </switches>
 </system.diagnostics>
 </configuration>

Providing Fine-Grained Control over Debugging/Tracing Output | 289

This XML file contains a nested tag called switches. This tag defines switch names
and sets a value indicating the level of the switch. The TraceSwitch class accepts the
five predefined trace levels shown in Table 8-1. The level of the TraceSwitch can be
set through code, but that defeats the flexibility of using a configuration file.

For more information on the application configuration file, see Recipe 8.0.

Discussion
Turning tracing on or off involves the BooleanSwitch class. When the BooleanSwitch
is created, it attempts to locate a switch with the same name as the displayName
parameter in either the machine.config or application configuration file. If it cannot
locate this name in either file, BooleanSwitch.Enabled is set to false.

The application configuration file for a WinForms- or Console-based application is
an XML file named with the assembly’s name followed by .exe.config. An ASP.NET-
based web application can have multiple web.config files (one in each directory of the
application). An application will automatically use the configuration file(s) that is
(are) appropriate; however, the top-level configuration file must be in the same main
directory as the application. Notice the switches tag nested inside the system.
diagnostics element. This tag allows switches to be added and their values set. For
Boolean switches, a zero turns the switch off, and any other positive or negative
number turns it on. The Enabled property of the BooleanSwitch can be set through
code or by setting the value in the config file.

This XML file must have the same name as the executable using these switches, fol-
lowed by .config. For example, if the executable name were Accounting.exe, the con-
figuration file would be named Accounting.exe.config. This file should be placed in
the same directory as the executable Accounting.exe.

The application configuration file can also set trace and debug output levels in this
same switches tag. These levels identify the scope of the output, for example, if the
output will contain only warnings, only errors, only informational messages, or some
combination thereof. The level specified is the maximum trace level for the switch,
so it includes all levels below it up through that level. Of course, this is only an

Table 8-1. The TraceSwitch class’s tracing levels

Level name Value Default

Off 0 Yes

Error 1 No

Warning 2 No

Info 3 No

Verbose 4 No

290 | Chapter 8: Diagnostics

example; you may define your own levels as well. For more information on control-
ling these output levels, see Recipe 8.2.

The TraceSwitch class operates similarly to the BooleanSwitch class, except that the
TraceSwitch class encapsulates the available levels that control the type and amount
of debug/trace output. The BooleanSwitch class is simply an on/off switch used to
enable or disable debugging/tracing.

When the TraceSwitch is created, it attempts to locate a switch with the same name
as the displayName parameter in either the machine.config or application configura-
tion files. If it cannot locate this name in either file, the TraceSwitch.Level property is
set to zero.

The application configuration file can also enable or disable trace and debug output
in this same switches tag.

See Also
Recipes 8.0 and 8.2; see the “BooleanSwitch Class” and “trace and debug Settings
Schema” topics in the MSDN documentation.

8.2 Determining Whether a Process Has Stopped
Responding

Problem
You need to watch one or more processes to determine whether the user interface
has stopped responding to the system. This functionality is similar to the column in
the TaskManager that displays the text Responding or Not Responding, depending
on the state of the application.

Solution
Use the method and enumeration shown in Example 8-1 to determine whether a pro-
cess has stopped responding.

Example 8-1. Determining whether a process has stopped responding

public static ProcessRespondingState IsProcessResponding(Process process)
{
 if (process.MainWindowHandle == IntPtr.Zero)
 {
 Trace.WriteLine("{0} does not have a MainWindowHandle",
 process.ProcessName);
 return ProcessRespondingState.Unknown;
 }
 else
 {

Determining Whether a Process Has Stopped Responding | 291

Discussion
The IsProcessResponding method accepts a single parameter, process, identifying a
process. The Responding property is then called on the Process object represented by
the process parameter. This property returns a ProcessRespondingState enumeration
value to indicate that a process is currently responding (Responding), that it is not
currently responding (NotResponding), or that response cannot be determined for this
process as there is no main window handle (Unknown).

The Responding property always returns true if the process in question does not have
a MainWindowHandle. Processes such as Idle, spoolsv, Rundll32, and svchost do not
have a main window handle, and therefore the Responding property always returns
true for them. To weed out these processes, you can use the MainWindowHandle prop-
erty of the Process class, which returns the handle of the main window for a process.
If this property returns zero, the process has no main window.

To determine whether all processes on a machine are responding, you can call the
IsProcessResponding method as follows:

MyObject.ProcessRespondingState state;
foreach (Process proc in Process.GetProcesses())
{
 state = MyObject.IsProcessResponding(proc);
 if (state == MyObject.ProcessRespondingState.NotResponding)
 {
 Console.WriteLine("{0} is not responding.",proc.ProcessName);
 }
}

 // This process has a MainWindowHandle.
 if (!process.Responding)
 {
 Trace.WriteLine("{0} is not responding.",process.ProcessName);
 return ProcessRespondingState.NotResponding;
 }
 else
 {
 Trace.WriteLine("{0} is responding.",process.ProcessName);
 return ProcessRespondingState.Responding;
 }
 }
}

public enum ProcessRespondingState
{
 Responding,
 NotResponding,
 Unknown
}

Example 8-1. Determining whether a process has stopped responding (continued)

292 | Chapter 8: Diagnostics

This code snippet iterates over all processes currently running on your system. The
static GetProcesses method of the Process class takes no parameters and returns an
array of Process objects with information for all processes running on your system.
Each Process object is then passed in to your IsProcessResponding method to
determine whether it is responding. Other static methods on the Process class that
retrieve Process objects are GetProcessById, GetCurrentProcess, and
GetProcessesByName.

See Also
See the “Process Class” topic in the MSDN documentation.

8.3 Using Event Logs in Your Application

Problem
You need to add the ability for your application to log events that occur in your
application, such as startup, shutdown, critical errors, and even security breaches.
Along with reading and writing to a log, you need the ability to create, clear, close,
and remove logs from the event log.

Your application might need to keep track of several logs at one time. For example,
your application might use a custom log to track specific events, such as startup and
shutdown, as they occur in your application. To supplement the custom log, your
application could make use of the security log already built into the event log system
to read/write security events that occur in your application.

Support for multiple logs comes in handy when one log needs to be created and
maintained on the local computer and another duplicate log needs to be created and
maintained on a remote machine. This remote machine might contain logs of all run-
ning instances of your application on each user’s machine. An administrator could
use these logs to quickly find any problems that occur or discover if security is
breached in your application. In fact, an application could be run in the background
on the remote administrative machine that watches for specific log entries to be
written to this log from any user’s machine. Recipe 8.8 uses an event mechanism to
watch for entries written to an event log and could easily be used to enhance this
recipe.

Solution
Use the event log built into the Microsoft Windows operating system to record
specific events that occur infrequently. The AppEvents class shown in Example 8-2
contains all the methods needed to create and use an event log in your application.

Using Event Logs in Your Application | 293

Example 8-2. Creating and using an event log

using System;
using System.Diagnostics;

public class AppEvents
{
 // Constructors
 public AppEvents(string logName) :
 this(logName, Process.GetCurrentProcess().ProcessName, ".") {}

 public AppEvents(string logName, string source) : this(logName, source, ".") {}

 public AppEvents(string logName, string source, string machineName)
 {
 this.logName = logName;
 this.source = source;
 this.machineName = machineName;

 if (!EventLog.SourceExists(source, machineName))
 {
 EventSourceCreationData sourceData =
 new EventSourceCreationData(source, logName);
 sourceData.MachineName = machineName;

 EventLog.CreateEventSource(sourceData);
 }

 log = new EventLog(logName, machineName, source);
 log.EnableRaisingEvents = true;
 }

 // Fields
 private EventLog log = null;
 private string source = "";
 private string logName = "";
 private string machineName = ".";

 // Properties
 public string Name
 {
 get{return (logName);}
 }

 public string SourceName
 {
 get{return (source);}
 }

 public string Machine
 {
 get{return (machineName);}
 }

294 | Chapter 8: Diagnostics

 // Methods
 public void WriteToLog(string message, EventLogEntryType type,
 CategoryType category, EventIDType eventID)
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.WriteEntry(message, type, (int)eventID, (short)category);
 }

 public void WriteToLog(string message, EventLogEntryType type,
 CategoryType category, EventIDType eventID, byte[] rawData)
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.WriteEntry(message, type, (int)eventID, (short)category, rawData);
 }

 public EventLogEntryCollection GetEntries()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 return (log.Entries);
 }

 public void ClearLog()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.Clear();
 }

 public void CloseLog()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",

Example 8-2. Creating and using an event log (continued)

Using Event Logs in Your Application | 295

The EventIDType and CategoryType enumerations used in this class are defined as
follows:

 public enum EventIDType
 {
 NA = 0,
 Read = 1,
 Write = 2,
 ExceptionThrown = 3,
 BufferOverflowCondition = 4,
 SecurityFailure = 5,
 SecurityPotentiallyCompromised = 6
 }

 public enum CategoryType : short
 {
 None = 0,
 WriteToDB = 1,
 ReadFromDB = 2,
 WriteToFile = 3,
 ReadFromFile = 4,

 "This Event Log has not been opened or has been closed."));
 }
 log.Close();
 log = null;
 }

 public void DeleteLog()
 {
 if (EventLog.SourceExists(source, machineName))
 {
 EventLog.DeleteEventSource(source, machineName);
 }

 if (logName != "Application" &&
 logName != "Security" &&
 logName != "System")
 {
 if (EventLog.Exists(logName, machineName))
 {
 EventLog.Delete(logName, machineName);
 }
 }

 if (log != null)
 {
 log.Close();
 log = null;
 }
 }
}

Example 8-2. Creating and using an event log (continued)

296 | Chapter 8: Diagnostics

 AppStartUp = 5,
 AppShutDown = 6,
 UserInput = 7
 }

Discussion
The AppEvents class created for this recipe provides applications with an easy-to-use
interface for creating, using, and deleting single or multiple event logs in your appli-
cation. Support for multiple logs comes in handy when one log needs to be created
and maintained on the local computer and another duplicate log needs to be created
and maintained on a remote machine. This remote machine might contain logs of all
running instances of your application on each user’s machine. An administrator
could use these logs to quickly discover if any problems occur or if security is
breached in your application. In fact, an application could be run in the background
on the remote administrative machine that watches for specific log entries to be
written to this log from any user’s machine. Recipe 8.8 uses an event mechanism to
watch for entries written to an event log and could easily be used to enhance this
recipe.

The methods of the AppEvents class are described as follows:

WriteToLog
This method is overloaded to allow an entry to be written to the event log with
or without a byte array containing raw data.

GetEntries
Returns all the event log entries for this event log in an EventLogEntryCollection.

ClearLog
Removes all the event log entries from this event log.

CloseLog
Closes this event log, preventing further interaction with it.

DeleteLog
Deletes this event log and the associated event log source.

An AppEvents object can be added to an array or collection containing other
AppEvents objects; each AppEvents object corresponds to a particular event log. The
following code creates two AppEvents classes and adds them to a ListDictionary
collection:

 public void CreateMultipleLogs()
 {
 AppEvents AppEventLog = new AppEvents("AppLog", "AppLocal");
 AppEvents GlobalEventLog = new AppEvents("System", "AppGlobal");

 ListDictionary LogList = new ListDictionary();
 LogList.Add(AppEventLog.Name, AppEventLog);
 LogList.Add(GlobalEventLog.Name, GlobalEventLog);
 }

Using Event Logs in Your Application | 297

To write to either of these two logs, obtain the AppEvents object by name from the
ListDictionary object, cast the resultant object type to an AppEvents type, and call
the WriteToLog method:

 ((AppEvents)LogList[AppEventLog.Name]).WriteToLog("App startup",
 EventLogEntryType.Information, CategoryType.AppStartUp,
 EventIDType.ExceptionThrown);

 ((AppEvents)LogList[GlobalEventLog.Name]).WriteToLog("App startup security
check",
 EventLogEntryType.Information, CategoryType.AppStartUp,
 EventIDType.BufferOverflowCondition);

Containing all AppEvents objects in a ListDictionary object allows you to easily iter-
ate over all the AppEvents that your application has instantiated. Using a foreach
loop, you can write a single message to both a local and a remote event log:

 foreach (DictionaryEntry Log in LogList)
 {
 ((AppEvents)Log.Value).WriteToLog("App startup",
 EventLogEntryType.FailureAudit,
 CategoryType.AppStartUp, EventIDType.SecurityFailure);
 }

To delete each log in the logList object, you can use the following foreach loop:

 foreach (DictionaryEntry Log in LogList)
 {
 ((AppEvents)Log.Value).DeleteLog();
 }
 LogList.Clear();

You should be aware of several key points. The first concerns a small problem with
constructing multiple AppEvents classes. If you create two AppEvents objects and pass
in the same source string to the AppEvents constructor, an exception will be thrown.
Consider the following code, which instantiates two AppEvents objects with the same
source string:

 AppEvents appEventLog = new AppEvents("AppLog", "AppLocal");
 AppEvents globalEventLog = new AppEvents("Application", "AppLocal");

The objects are instantiated without errors, but when the WriteToLog method is
called on the globalEventLog object, the following exception is thrown:

 An unhandled exception of type 'System.ArgumentException' occurred in system.dll.

 Additional information: The source 'AppLocal' is not registered in log
'Application'.
 (It is registered in log 'AppLog'.) " The Source and Log properties must be
matched,
 or you may set Log to the empty string, and it will automatically be matched to
the
 Source property.

298 | Chapter 8: Diagnostics

This exception occurs because the WriteToLog method internally calls the WriteEntry
method of the EventLog object. The WriteEntry method internally checks to see
whether the specified source is registered to the log you are attempting to write to. In
this case, the AppLocal source was registered to the first log it was assigned to—the
AppLog log. The second attempt to register this same source to another log,
Application, failed silently. You do not know that this attempt failed until you try to
use the WriteEntry method of the EventLog object.

Another key point about the AppEvents class is the following code, placed at the
beginning of each method (except for the DeleteLog method):

 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

This code checks to see whether the private member variable log is a null reference.
If so, an ArgumentException is thrown, informing the user of this class that a problem
occurred with the creation of the EventLog object. The DeleteLog method does not
check the log variable for null since it deletes the event log source and the event log
itself. The EventLog object is not involved in this process except at the end of this
method, where the log is closed and set to null, if it is not already null. Regardless of
the state of the log variable, the source and event log should be deleted in this
method.

The DeleteLog method makes a critical choice when determining whether to delete a
log. The following code prevents the application, security, and system event logs
from being deleted from your system:

 if (logName != "Application" &&
 logName != "Security" &&
 logName != "System")
 {
 if (EventLog.Exists(logName, machineName))
 {
 EventLog.Delete(logName, machineName);
 }
 }

If any of these logs is deleted, so are the sources registered with the particular log.
Once the log is deleted, it is permanent; believe us, it is not fun to try and re-create
the log and its sources without a backup.

As a last note, the EventIDType and CategoryType enumerations are designed mainly
to log security-type breaches as well as potential attacks on the security of your appli-
cation. Using these event IDs and categories, the administrator can more easily track
down potential security threats and do postmortem analysis after security is
breached. These enumerations can easily be modified or replaced with your own to
allow you to track different events that occur as a result of your application running.

Searching Event Log Entries | 299

You should minimize the number of entries written to the event log
from your application. The reason for this is that writing to the event
log causes a performance hit. Writing too much information to the
event log can noticeably slow your application. Pick and choose the
entries you write to the event log wisely.

See Also
Recipe 8.8, and the “EventLog Class” topic in the MSDN documentation.

8.4 Searching Event Log Entries

Problem
Your application might have added many entries to the event log. To perform an
analysis of how the application operated, how many errors were encountered, and so
on, you need to be able to perform a search through all of the entries in an event log.
Unfortunately, there are no good built-in search mechanisms for event logs.

Solution
You will eventually have to sift through all the entries your application writes to an
event log in order to find the entries that allow you to perhaps fix a bug or improve
your application’s security system. Unfortunately, there are no good search mecha-
nisms for event logs. This recipe contains an EventLogSearch class to which you’ll
add static methods, allowing you to search for entries in an event log based on vari-
ous criteria. In addition, this search mechanism allows complex searches involving
multiple criteria to be performed on an event log at one time. The code for the
EventSearchLog class is shown in Example 8-3.

Example 8-3. EventSearchLog class

using System;
using System.Collections;
using System.Diagnostics;

public sealed class EventLogSearch
{
 private EventLogSearch() {} // Prevent this class from being instantiated.

 public static EventLogEntry[] FindTimeGeneratedAtOrBefore(
 IEnumerable logEntries, DateTime timeGeneratedQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.TimeGenerated <= timeGeneratedQuery)

300 | Chapter 8: Diagnostics

Discussion
Other searchable criteria can be added to this class by following the same coding pat-
tern for each search method. For instance, the following example shows how to add
a search method to find all entries that contain a particular username:

 public static EventLogEntry[] FindUserName(IEnumerable logEntries,
 string userNameQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.UserName == userNameQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }

 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }

 public static EventLogEntry[] FindTimeGeneratedAtOrAfter(
 IEnumerable logEntries, DateTime timeGeneratedQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.TimeGenerated >= timeGeneratedQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }
}

Example 8-3. EventSearchLog class (continued)

Searching Event Log Entries | 301

The methods shown in Table 8-2 list other search methods that could be included in
this class and describe which property of the event log entries they search on. (All of
these methods are implemented on the code for this book, which can be found at
http://www.oreilly.com/catalog/9780596516109.)

The FindCategory method can be overloaded to search on either the category name
or category number.

The following method makes use of the EventLogSearch methods to find and display
entries that are marked as Error log entries:

 public void FindAnEntryInEventLog()
 {
 EventLog Log = new EventLog("System");

 EventLogEntry[] Entries = EventLogSearch.FindEntryType(Log.Entries,
 EventLogEntryType.Error);

 foreach (EventLogEntry Entry in Entries)
 {
 Console.WriteLine("Message: " + Entry.Message);
 Console.WriteLine("InstanceId: " + Entry.InstanceId);
 Console.WriteLine("Category: " + Entry.Category);
 Console.WriteLine("EntryType: " + Entry.EntryType.ToString());
 Console.WriteLine("Source: " + Entry.Source);
 }
 }

The following method finds and displays entries generated at or after 8/3/2003,
marked as Error type logs, and containing an event ID of 7000:

 public void FindAnEntryInEventLog()
 {
 EventLog Log = new EventLog("System");

 EventLogEntry[] Entries = EventLogSearch.FindTimeGeneratedAtOrAfter(Log.
Entries,

Table 8-2. Other possible search methods

Search method name Entry property searched

FindCategory (overloaded to accept a string type category name) Category == CategoryNameQuery

FindCategory (overloaded to accept a short type category
 number)

Category == CategoryNumberQuery

FindEntryType EntryType == EntryTypeQuery

FindInstanceID InstanceID == InstanceIDQuery

FindMachineName MachineName == MachineNameQuery

FindMessage Message == Message.Query

FindSource Source == SourceQuery

http://www.oreilly.com/catalog/9780596516109

302 | Chapter 8: Diagnostics

 DateTime.Parse("8/3/2003"));
 Entries = EventLogSearch.FindEntryType(Entries, EventLogEntryType.Error);
 Entries = EventLogSearch.FindInstanceId(Entries, 7000);

 foreach (EventLogEntry Entry in Entries)
 {
 Console.WriteLine("Message: " + Entry.Message);
 Console.WriteLine("InstanceId: " + Entry.InstanceId);
 Console.WriteLine("Category: " + Entry.Category);
 Console.WriteLine("EntryType: " + Entry.EntryType.ToString());
 Console.WriteLine("Source: " + Entry.Source);
 }
 }

Note that this search mechanism can search within only one event log at a time.

To illustrate how searching works, let’s assume that you are using the
FindInstanceID method to search on the InstanceID. Initially, you would call the
FindInstanceID search method, passing in a collection that implements the
IEnumerable interface, such as the EventLogEntryCollection collection (that contains
all entries in that event log) or an array of EventLogEntry objects. The
EventLogEntryCollection is returned by the Entries property of the EventLog class.
The FindInstanceID method will return an array of EventLogEntry objects that match
the search criteria (the value passed in to the second argument of the FindInstanceID
method).

The real power of this searching method design is that the initial search on the
EventLogEntryCollection returns an array of EventLogEntry objects. This
EventLogEntry array may then be passed back into another search method to be
searched again, effectively narrowing down the search query. For example, the
EventLogEntry array returned from the FindInstanceID method may be passed into
another search method such as the FindEntryType method to narrow down the search
to all entries that are a specific entry type (informational, error, etc.).

See Also
The “EventLog Class” and “EventLogEntry Class” topics in the MSDN documenta-
tion.

8.5 Watching the Event Log for a Specific Entry

Problem
You may have multiple applications that write to a single event log. For each of these
applications, you want a monitoring application to watch for one or more specific
log entries to be written to the event log. For example, you might want to watch for a
log entry that indicates that an application encountered a critical error or shut down
unexpectedly. These log entries should be reported in real time.

Watching the Event Log for a Specific Entry | 303

Solution
Monitoring an event log for a specific entry requires the following steps:

1. Create the following method to set up the event handler to handle event log
writes:
 public void WatchForAppEvent(EventLog log)
 {
 log.EnableRaisingEvents = true;
 // Hook up the System.Diagnostics.EntryWrittenEventHandler.
 log.EntryWritten += new EntryWrittenEventHandler(OnEntryWritten);
 }

2. Create the event handler to examine the log entries and determine whether fur-
ther action is to be performed. For example:
 public static void OnEntryWritten(object source,
 EntryWrittenEventArgs entryArg)
 {
 if (entryArg.Entry.EntryType == EventLogEntryType.Error)
 {
 Console.WriteLine(entryArg.Entry.Message);
 Console.WriteLine(entryArg.Entry.Category);
 Console.WriteLine(entryArg.Entry.EntryType.ToString());
 // Do further actions here as necessary...
 }
 }

Discussion
This recipe revolves around the EntryWrittenEventHandler delegate, which calls back
a method whenever any new entry is written to the event log. The
EntryWrittenEventHandler delegate accepts two arguments: a source of type object
and an entryArg of type EntryWrittenEventArgs. The entryArg parameter is the most
interesting of the two. It contains a property called Entry that returns an
EventLogEntry object. This EventLogEntry object contains all the information you
need concerning the entry that was written to the event log.

This event log that you are watching is passed as the WatchForAppEvent method’s log
parameter. This method performs two actions. First, it sets log’s
EnableRaisingEvents property to true. If this property were set to false, no events
would be raised for this event log when an entry is written to it. The second action
this method performs is to add the OnEntryWritten callback method to the list of
event handlers for this event log.

To prevent this delegate from calling the OnEntryWritten callback method, you can
set the EnableRaisingEvents property to false, effectively turning off the delegate.

Note that the Entry object passed to the entryArg parameter of the OnEntryWritten
callback method is read-only, so the entry cannot be modified before it is written to
the event log.

304 | Chapter 8: Diagnostics

See Also
The “Handling the EntryWritten Event” and “EventLog.EntryWritten Event” topics
in the MSDN documentation.

8.6 Implementing a Simple Performance Counter

Problem
You need to use a performance counter to track application-specific information.
The simpler performance counters find, for example, the change in a counter value
between successive samplings or just count the number of times an action occurs.
Other, more complex counters exist but are not dealt with in this recipe. For exam-
ple, a custom counter could be built to keep track of the number of database transac-
tions, the number of failed network connections to a server, or even the number of
users connecting to your web service per minute.

Solution
Create a simple performance counter that finds, for example, the change in a counter
value between successive samplings or that just counts the number of times an action
occurs. Use the following method (CreateSimpleCounter) to create a simple custom
counter:

 public PerformanceCounter CreateSimpleCounter(string counterName, string
counterHelp,
 System.Diagnostics.PerformanceCounterType counterType, string categoryName,
 string categoryHelp)
 {
 CounterCreationDataCollection counterCollection =
 new CounterCreationDataCollection();

 // Create the custom counter object and add it to the collection of counters.
 CounterCreationData counter = new CounterCreationData(counterName,
counterHelp,
 counterType);
 counterCollection.Add(counter);

 // Create category.
 if (PerformanceCounterCategory.Exists(categoryName))
 {
 PerformanceCounterCategory.Delete(categoryName);
 }

 PerformanceCounterCategory appCategory =
 PerformanceCounterCategory.Create(categoryName, categoryHelp,
 PerformanceCounterCategoryType.SingleInstance, counterCollection);
 // Create the counter and initialize it.
 PerformanceCounter appCounter =
 new PerformanceCounter(categoryName, counterName, false);

Implementing a Simple Performance Counter | 305

 appCounter.RawValue = 0;

 return (appCounter);
 }

Discussion
The first action this method takes is to create the CounterCreationDataCollection
object and CounterCreationData object. The CounterCreationData object is created
using the counterName, counterHelp, and countertype parameters passed to the
CreateSimpleCounter method. The CounterCreationData object is then added to the
counterCollection.

The ASPNET user account, as well as many other user accounts by
default, prevent performance counters from being read. You can either
increase the permissions allowed for these accounts or use imperson-
ation with an account that has access to enable this functionality.
However, this then becomes a deployment requirement of your appli-
cation. Decreasing security for the ASPNET account or other user
accounts may very well be frowned upon by IT folks deploying your
application.

If categoryName—a string containing the name of the category that is passed as a
parameter to the method—is not registered on the system, a new category is created
from a PerformanceCounterCategory object. If one is registered, it is deleted and
created anew. Finally, the actual performance counter is created from a
PerformanceCounter object. This object is initialized to zero and returned by the
method. PerformanceCounterCategory takes a PerformanceCounterCategoryType as a
parameter. The possible settings are shown in Table 8-3.

The CreateSimpleCounter method returns a PerformanceCounter object that will be
used by an application. The application can perform several actions on a
PerformanceCounter object. An application can increment or decrement it using one
of these three methods:

 long value = appCounter.Increment();
 long value = appCounter.Decrement();
 long value = appCounter.IncrementBy(i);

Table 8-3. PerformanceCounterCategoryType enumeration values

Name Description

MultiInstance There can be multiple instances of the performance counter.

SingleInstance There can be only one instance of the performance counter.

Unknown Instance functionality for this performance counter is unknown.

306 | Chapter 8: Diagnostics

 // Additionally, a negative number may be passed to the
 // IncrementBy method to mimic a DecrementBy method
 // (which is not included in this class). For example:
 long value = appCounter.IncrementBy(-i);

The first two methods accept no parameters, while the third accepts a long contain-
ing the number by which to increment the counter. All three methods return a long
type indicating the new value of the counter.

In addition to incrementing or decrementing this counter, you can also take samples
of the counter at various points in the application. A sample is a snapshot of the
counter and all of its values at a particular instance in time. A sample may be taken
using the following line of code:

 CounterSample counterSampleValue = appCounter.NextSample();

The NextSample method accepts no parameters and returns a CounterSample structure.

At another point in the application, a counter can be sampled again, and both sam-
ples can be passed in to the static Calculate method on the CounterSample class.
These actions may be performed on a single line of code as follows:

 float calculatedSample = CounterSample.Calculate(counterSampleValue,
 appCounter.NextSample());

The calculated sample calculatedSample may be stored for future analysis.

The simpler performance counters already available in the .NET Framework are:

CounterDelta32/CounterDelta64
Determines the difference (or change) in value between two samplings of this
counter. The CounterDelta64 counter can hold larger values than CounterDelta32.

CounterTimer
Calculates the percentage of the CounterTimer value change over the
CounterTimer time change. Tracks the average active time for a resource as a per-
centage of the total sample time.

CounterTimerInverse
Calculates the inverse of the CounterTimer counter. Tracks the average inactive
time for a resource as a percentage of the total sample time.

CountPerTimeInterval32/CountPerTimeInterval64
Calculates the number of items waiting within a queue to a resource over the
time elapsed. These counters give the delta of the queue length for the last two
sample intervals divided by the interval duration.

ElapsedTime
Calculates the difference in time between when this counter recorded the start of
an event and the current time, measured in seconds.

Enabling and Disabling Complex Tracing Code | 307

NumberOfItems32/NumberOfItems64
These counters return their value in decimal format. The NumberOfItems64
counter can hold larger values than NumberOfItems32. This counter does not need
to be passed to the static Calculate method of the CounterSample class; there are
no values that must be calculated. Instead, use the RawValue property of the
PerformanceCounter object (i.e., in this recipe, the appCounter.RawValue property
would be used).

NumberOfItemsHEX32/NumberOfItemsHEX64
These counters return their value in hexadecimal format. The
NumberOfItemsHEX64 counter can hold larger values than NumberOfItemsHEX32.
This counter does not need to be passed to the static Calculate method of the
CounterSample class; there are no values that must be calculated. Instead, use the
RawValue property of the PerformanceCounter object (i.e., in this recipe, the
appCounter.RawValue property would be used).

RateOfCountsPerSecond32/RateOfCountsPerSecond64
Calculates the RateOfCountsPerSecond* value change over the
RateOfCountsPerSecond* time change, measured in seconds. The
RateOfCountsPerSecond64 counter can hold larger values than the
RateOfCountsPerSecond32 counter.

Timer100Ns
Percentage counter showing the active component time as a percentage of the
total elapsed time of the sample interval measured in 100 nanoseconds (ns)
units. Processor\ % User Time is an example of this type of counter.

Timer100nsInverse
Percentage-based counter showing the average active percentage of time tracked
during the sample interval. Processor\ % Processor Time is one example of this
type of counter.

See Also
See the “PerformanceCounter Class,” “PerformanceCounterType Enumeration,”
“PerformanceCounterCategory Class,” “ASP.NET Impersonation,” and “Monitor-
ing Performance Thresholds” topics in the MSDN documentation.

8.7 Enabling and Disabling Complex Tracing Code

Problem
You have an object that contains complex tracing/debugging code. In fact, there is so
much tracing/debugging code that to turn it all on would create an extremely large
amount of output. You want to be able to generate objects at runtime that contain all
of the tracing/debugging code, only a specific portion of this tracing/debugging code,

308 | Chapter 8: Diagnostics

or no tracing/debugging code. The amount of tracing code generated could depend
on the state of the application or the environment in which it is running. The tracing
code needs to be generated during object creation.

Solution
Use the TraceFactory class shown in Example 8-4, which implements the factory
design pattern to allow creation of an object that either generates tracing informa-
tion or does not.

The class hierarchy for the Bar, BarTraceInst, and BarTraceBehavior classes is shown
next. The BarTraceInst class contains only the constructor tracing code, the
BarTraceBehavior class contains tracing code only within specific methods, and the
Bar class contains no tracing code:

 public abstract class Foo
 {
 public virtual void SomeBehavior()
 {
 //...

Example 8-4. TraceFactory class

#define TRACE
#define TRACE_INSTANTIATION
#define TRACE_BEHAVIOR

using System.Diagnostics;

public class TraceFactory
{
 public TraceFactory() {}

 public Foo CreateObj()
 {
 Foo obj = null;

 #if (TRACE)
 #if (TRACE_INSTANTIATION)
 obj = new BarTraceInst();
 #elif (TRACE_BEHAVIOR)
 obj = new BarTraceBehavior();
 #else
 obj = new Bar();
 #endif
 #else
 obj = new Bar();
 #endif

 return (obj);
 }
}

Enabling and Disabling Complex Tracing Code | 309

 }
 }

 public class Bar : Foo
 {
 public Bar() {}

 public override void SomeBehavior()
 {
 base.SomeBehavior();
 }
 }

 public class BarTraceInst : Foo
 {
 public BarTraceInst()
 {
 Trace.WriteLine("BarTraceInst object instantiated");
 }

 public override void SomeBehavior()
 {
 base.SomeBehavior();
 }
 }

 public class BarTraceBehavior : Foo
 {
 public BarTraceBehavior() {}

 public override void SomeBehavior()
 {
 Trace.WriteLine("SomeBehavior called");
 base.SomeBehavior();
 }
 }

Discussion
The factory design pattern is designed to abstract away the creation of objects within
a system. This pattern allows code to create objects of a particular type by using an
intermediate object called a factory. In its simplest form, a factory pattern consists of
some client code that uses a factory object to create and return a specific type of
object. The factory pattern allows changes to be made in the way objects are cre-
ated, independent of the client code. This design prevents code changes to the way
an object is constructed from permeating throughout the client code.

Consider that you could have a class that contained numerous lines of tracing code.
If you ran this code to obtain the trace output, you would be inundated with reams
of information. This setup is hard to manage and even harder to read to pinpoint

310 | Chapter 8: Diagnostics

problems in your code. One solution to this problem is to use a factory to create an
object based on the type of tracing code you wish to output.

To do this, create an abstract base class called Foo that contains all of the base behav-
ior. The Foo class is subclassed to create the Bar, BarTraceInst, and BarTraceBehavior
classes. The Bar class contains no tracing code, the BarTraceInst class contains trac-
ing code only in its constructor (and potentially in its destructor), and the
BarTraceBehavior class contains tracing code only in specific methods. (The class
hierarchy provided in the Solution section is much simpler than classes that you
would create; this allows you to focus more on the design pattern and less on the
class hierarchy from which the factory creates classes.)

A TraceFactory class that will act as your factory to create objects inheriting from the
abstract Foo class is created. The TraceFactory class contains a single public method
called CreateObj. This method attempts to instantiate an object that inherits from Foo
based on the preprocessor symbols defined in your application. If the following line
of code exists:

 #define TRACE_BEHAVIOR

the BarTraceBehavior class is created. If this line exists:

 #define TRACE_INSTANTIATION

the BarTraceInst class is created. If neither of these exists, the Bar class is created.
Once the correct class is created, it is returned to the caller. The caller never needs to
know which exact object is instantiated, only that it is of type Foo. This allows you to
add even more classes to handle varying types and amounts of tracing code.

To instantiate a TraceFactory class, use the following code:

 TraceFactory factory = new TraceFactory();

Using this factory object, you can create a new object of type Foo:

 Foo obj = factory.CreateObj();
 Console.WriteLine(obj.ToString());
 obj.SomeBehavior();

Now you can use the Foo object without regard to the trace output that it will pro-
duce. To create and use a different Foo object, all you have to do is define a different
preprocessor symbol that controls which subclass of Foo is created.

See Also
The “C# Preprocessor Directives” and “ConditionalAttribute Class” topics in the
MSDN documentation.

Capturing Standard Output for a Process | 311

8.8 Capturing Standard Output for a Process

Problem
You need to be able to capture standard output for a process you are launching.

Solution
Use the RedirectStandardOutput property of the Process.StartInfo class to capture
the output from the process. By redirecting the standard output stream of the pro-
cess, you read it when the process terminates. UseShellExecute is a property on the
ProcessInfo class that tells the runtime whether or not to use the Windows shell to
start the process or not. By default, it is turned on (true) and the shell runs the pro-
gram, which means that the output cannot be redirected. This needs to be set to off
and then the redirection can occur. The UseShellExecute property is set to false to
ensure this is not started using the Windows shell for your purposes here.

In this example, a Process object for cmd.exe is set up with arguments to perform a
directory listing, and then the output is redirected. A log file is created to hold the
resulting output, and the Process.Start method is called:

 // See 12.21 for more info on redirection...
 Process application = new Process();
 // Run the command shell.
 application.StartInfo.FileName = @"cmd.exe";

 // Get a directory listing from the current directory.
 application.StartInfo.Arguments = @"/Cdir " + Environment.CurrentDirectory;
 Console.WriteLine("Running cmd.exe with arguments: {0}",
 application.StartInfo.Arguments);

 // Redirect standard output so we can read it.
 application.StartInfo.RedirectStandardOutput = true;
 application.StartInfo.UseShellExecute = false;

 // Create a log file to hold the results in the current EXE directory.
 using (StreamWriter logger = new StreamWriter("cmdoutput.log"))
 {
 // Start it up.
 application.Start();

Once the process is started, the StandardOutput stream can be accessed and a refer-
ence to it held. The code then reads in the information from the output stream while
the application runs and writes it to the log file that was set up previously. Once the
application finishes, the log file is closed:

 // Get stdout.
 StreamReader output = application.StandardOutput;

 // Dump the output stream while the app runs.
 do

312 | Chapter 8: Diagnostics

 {
 using (output)
 {
 char[] info = null;
 while (output.Peek() >= 0)
 {
 info = new char[4096];
 output.Read(info, 0, info.Length);
 // Write to the logger.
 logger.Write(info, 0, info.Length);
 }
 }
 }
 while (!application.HasExited);
}

// Close the process object.
application.Close();

cmdoutput.log holds information similar to the following output:

 Volume in drive C has no label.
 Volume Serial Number is DDDD-FFFF

 Directory of C:\C#Cookbook2\Code\CSharpRecipes\bin\Debug

 08/28/2005 12:25 PM <DIR> .
 08/28/2005 12:25 PM <DIR> ..
 08/28/2005 12:25 PM 0 cmdoutput.log
 08/15/2005 09:46 PM 489,269 CSharpCookbook.zip
 08/28/2005 12:24 PM 450,560 CSharpRecipes.exe
 08/28/2005 12:24 PM 1,031,680 CSharpRecipes.pdb
 07/22/2005 08:28 AM 5,120 CSharpRecipes.vshost.exe
 04/12/2005 10:15 PM 432 CSharpRecipes.vshost.xml
 05/10/2005 10:14 PM 998 CSharpRecipes.vshost.xsd
 03/29/2005 10:27 AM 432 CSharpRecipes.xml
 05/10/2005 10:14 PM 998 CSharpRecipes.xsd
 03/29/2005 10:27 AM 155 data.txt
 04/12/2005 10:15 PM 134 HT.data
 12/10/2003 10:11 PM 12,288 REGEX_Test.dll
 08/20/2005 09:27 PM 16,384 SampleClassLibrary.dll
 08/20/2005 09:27 PM 11,776 SampleClassLibrary.pdb
 08/02/2005 08:56 PM 483 se1.object
 08/02/2005 08:56 PM 480 se2.object
 08/02/2005 08:56 PM 767 se3.object
 08/02/2005 08:56 PM 488 se4.object
 08/02/2005 08:56 PM 775 se5.object
 04/12/2005 10:15 PM 1,369 TEST.DATA
 04/12/2005 10:14 PM 327 TestBinSerXML.txt
 21 File(s) 2,024,915 bytes
 2 Dir(s) 98,005,683,712 bytes free

Creating Custom Debugging Displays for Your Classes | 313

Discussion
Redirecting standard output is a common task that can sometimes be of great use for
tasks like automated build scenarios or test harnesses. While not quite as easy as
simply placing > after the command line for a process at the command prompt, this
approach is more flexible, as the stream output can be reformatted as XML or
HTML for posting to a web site. This also provides the opportunity to send the data
to multiple locations at once, which the simple command-line redirect function as
provided by Windows is incapable of.

Waiting to read from the stream until the application has finished ensures that there
will be no deadlock issues. If the stream is accessed synchronously before this time,
then the possibility exists for the parent to block the child. At a minimum, the child
will wait until the parent has finished reading from the stream before it continues
writing to it. So, by postponing the read until the end, you allow the child to have
less performance degradation at the cost of some additional time at the end.

See Also
Recipe 12.11; see the “ProcessStartInfo.RedirectStandardOutput Property” and
“ProcessStartInfo.UseShellExecute Property” topics in the MSDN documentation.

8.9 Creating Custom Debugging Displays for Your
Classes

Problem
You have a set of classes that are used in your application. You would like to see at a
glance in the debugger what a particular instance of the class holds. The default
debugger display doesn’t show any useful information for your class today.

Solution
Add a DebuggerDisplayAttribute to your class to make the debugger show you some-
thing you consider useful about your class. For example, if you had a Citizen class
that held the honorific and name information, you could add a
DebuggerDisplayAttribute like this one:

 [DebuggerDisplay("Citizen Full Name = {_honorific}{_first}{_middle}{_last}")]
 public class Citizen
 {
 private string _honorific;
 private string _first;
 private string _middle;
 private string _last;

314 | Chapter 8: Diagnostics

 public Citizen(string honorific, string first, string middle, string last)
 {
 _honorific = honorific;
 _first = first;
 _middle = middle;
 _last = last;
 }
 }

Now, when instances of the Citizen class are instantiated, the debugger will show
the information the way the DebuggerDisplayAttribute on the class directs it to. To
see this, instantiate two Citizens, Mrs. Alice G. Jones and Mr. Robert Frederick
Jones, like this:

 Citizen mrsJones = new Citizen("Mrs.","Alice","G.","Jones");
 Citizen mrJones = new Citizen("Mr.", "Robert", "Frederick", "Jones");

When this code is run under the debugger, the custom display is used, as shown in
Figure 8-1.

Discussion
It is nice to be able to see the pertinent information for classes you write quickly. But
the more powerful part of this feature is the ability for your team members to quickly
understand what this class instance holds. The this pointer is accessible from the
DebuggerDisplayAttribute declaration, but any properties accessed using the this
pointer will not evaluate the property attributes before processing. Essentially, if you
access a property on the current object instance as part of constructing the display
string, if that property has attributes, they will not be processed, and therefore you
may not get the value you thought you would. If you have custom ToString() over-
rides in place already, the debugger will use these as the DebuggerDisplayAttribute
without your specifying it, provided the correct option is enabled under Tools\
Options\Debugging, as shown in Figure 8-2.

Figure 8-1. Debugger display controlled by DebuggerDisplayAttribute

Creating Custom Debugging Displays for Your Classes | 315

See Also
The “Using DebuggerDisplayAttribute” and “DebuggerDisplayAttribute” topics in
the MSDN documentation.

Figure 8-2. Setting the debugger to call ToString() for object display

316

Chapter 9CHAPTER 9

Delegates, Events, and Lambda
Expressions 9

9.0 Introduction
A delegate is an object which represents a method and, optionally, the “this” object
associated with that method. When the delegate is invoked, the corresponding
method is invoked. Delegates contain all that is needed to allow a method, with a
specific signature and return type, to be invoked by your code. A delegate can be
passed to methods, and a reference to it can be stored in a structure or class. A dele-
gate is used when, at design time, you do not know which method you need to call,
and the information to determine this is available only at runtime.

Another scenario, is when the code calling a method is being developed indepen-
dently of the code that will supply the method to be called. The classic example is a
Windows Forms control. If you create a control, you are unlikely to know what
method should be called in the application when the control raises an event, so you
must provide a delegate to allow the application to hook up a handler to the event.
When other developers use your control, they will typically decide when they are
adding the control (through the designer or programmatically) and which method
should be called to handle the event published by the control. (For example, it’s
common to connect a Button’s click handler to a delegate at design time.)

Events are a specialized delegate type primarily used for message or notification pass-
ing. Events can only be invoked from the type they are published from and are typi-
cally based on the EventHandler delegate with an object representing the sender of
the event and a System.EventArgs derived class holding data about the event.

Anonymous methods are expressions that can be converted to delegates. They are a
feature of the C# compiler and not a CLR type. An anonymous method is ultimately
created as a delegate instance by the compiler, but the syntax for declaring an anony-
mous method can be more concise than declaring a regular delegate. Anonymous
methods also permit you to capture variables in the same scope.

Introduction | 317

Anonymous methods and lambda expressions are both subsets of
anonymous functions. For the majority of situations, lambda expres-
sion syntax is preferable, and you should avoid using anonymous
method syntax in C# 3.0. Almost anything that could be done using
anonymous methods in C# 2.0 can now be done better with lambda
expressions in C# 3.0.

For an example of an anonymous method, see the ExecuteCSharp2_0 method in the
lambda expression section.

Lambda expressions are functions with a different syntax that enables them to be
used in an expression context instead of the usual object-oriented method of being a
member of a class. This means that with a single syntax, we can express a method
definition, declaration, and the invocation of delegate to execute it, just as anony-
mous methods can, but with a more terse syntax.

A projection is a lambda expression that translates one type into another.

A lambda expression looks like this:

j => j * 42

This means “using j as the parameter to the function, j goes to the result of j*42.”
The => can be thought of as “goes to” for both this and for a projection that was
declared like this:

j => new { Number = j*42 };

If you think about it, you can see that in C# 1.0 you could do the same thing:

public delegate int IncreaseByANumber(int j);
public delegate int MultipleIncreaseByANumber(int j, int k, int l);

static public int MultiplyByANumber(int j) {
 return j * 42;
}

public static void ExecuteCSharp1_0()
{
 IncreaseByANumber increase =
 new IncreaseByANumber(
 DelegatesEventsLambdaExpressions.MultiplyByANumber);

 Console.WriteLine(increase(10));
}

In C# 2.0 with anonymous methods, the C# 1.0 syntax could be reduced to the fol-
lowing example, as it is no longer necessary to provide the name for the delegate
since all we want is the result of the operation:

public delegate int IncreaseByANumber(int j);

public static void ExecuteCSharp2_0()

318 | Chapter 9: Delegates, Events, and Lambda Expressions

{
 IncreaseByANumber increase =
 new IncreaseByANumber(
 delegate(int j)
 {
 return j * 42;
 });

 Console.WriteLine(increase(10));
}

This brings us back to C# 3.0 and lambda expressions, where we can now just write:

public static void ExecuteCSharp3_0()
{
 // declare the lambda expression
 IncreaseByANumber increase = j => j * 42;
 // invoke the method and print 420 to the console
 Console.WriteLine(increase(10));

 MultipleIncreaseByANumber multiple = (j, k, l) => ((j * 42) / k) % l;
 Console.WriteLine(multiple(10, 11, 12));
}

Type inference helps the compiler to infer the type of j from the declaration of the
IncreaseByANumber delegate type. If there were multiple arguments, then the lambda
expression could look like this:

 MultipleIncreaseByANumber multiple = (j, k, l) => ((j * 42) / k) % l;
 Console.WriteLine(multiple(10, 11, 12));

This chapter’s recipes make use of delegates, events, and lambda expressions.
Among other topics, these recipes cover:

• Handling each method invoked in a multicast delegate separately.

• Synchronous delegate invocation versus asynchronous delegate invocation.

• Enhancing an existing class with events.

• Various uses of lambda expressions, closures, and functors.

If you are not familiar with delegates, events, or lambda expressions, you should read
the MSDN documentation on these topics. There are also good tutorials and exam-
ple code showing you how to set them up and use them in a basic fashion.

9.1 Controlling When and If a Delegate Fires Within
a Multicast Delegate

Problem
You have combined multiple delegates to create a multicast delegate. When this mul-
ticast delegate is invoked, each delegate within it is invoked in turn. You need to

Controlling When and If a Delegate Fires Within a Multicast Delegate | 319

exert more control over such things as the order in which each delegate is invoked,
firing only a subset of delegates, or firing each delegate based on the success or fail-
ure of previous delegates.

Solution
Use the GetInvocationList method to obtain an array of Delegate objects. Next, iter-
ate over this array using a for (if enumerating in a nonstandard order) or foreach (for
enumerating in a standard order) loop. You can then invoke each Delegate object in
the array individually and, optionally, retrieve its return value.

In C#, all delegate types support multicast—that is, any delegate instance can invoke
multiple methods each time the instance is invoked if it has been set up to do so. In
this recipe, we use the term multicast to describe a delegate that has been set up to
invoke multiple methods.

The following method creates a multicast delegate called allInstances and then uses
GetInvocationList to allow each delegate to be invoked individually, in reverse
order. The Func<int> generic delegate is used to create delegate instances that return
an int:

public static void InvokeInReverse()
{
 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

 Func<int> allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Fire delegates in reverse");
 Delegate[] delegateList = allInstances.GetInvocationList();
 foreach (Func<int> instance in delegateList.Reverse())
 {
 instance();
 }
}

Note that to roll over the delegate list retrieved using GetInvocationList, we use the
IEnumerable<T> extension method Reverse so that we get the items in the opposite
order the enumeration would normally produce them in.

As the following methods demonstrate by firing every other delegate, you don’t have
to invoke all of the delegates in the list. InvokeEveryOtherOperation uses an exten-
sion method created here for IEnumerable<T> called EveryOther that will only return
every other item from the enumeration.

320 | Chapter 9: Delegates, Events, and Lambda Expressions

If a unicast delegate was used and you called GetInvocationList on it,
you will receive a list of one delegate instance.

public static void InvokeEveryOtherOperation()
{
 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

 Func<int> allInstances = //myDelegateInstance1;
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Delegate[] delegateList = allInstances.GetInvocationList();
 Console.WriteLine("Invoke every other delegate");
 foreach (Func<int> instance in delegateList.EveryOther())
 {
 // invoke the delegate
 int retVal = instance();
 Console.WriteLine("Delegate returned " + retVal);
 }
}

static IEnumerable<T> EveryOther<T>(this IEnumerable<T> enumerable)
{
 bool retNext = true;
 foreach (T t in enumerable)
 {
 if (retNext) yield return t;
 retNext = !retNext;
 }
}

The following class contains each of the methods that will be called by the multicast
delegate allInstances:

public class TestInvokeIntReturn
{
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return 1;
 }

 public static int Method2()
 {
 Console.WriteLine("Invoked Method2");
 return 2;
 }

 public static int Method3()

Controlling When and If a Delegate Fires Within a Multicast Delegate | 321

 {
 //throw (new Exception("Method1"));
 //throw (new SecurityException("Method3"));
 Console.WriteLine("Invoked Method3");
 return 3;
 }
}

It is also possible to decide whether to continue firing delegates in the list based on
the return value of the currently firing delegate. The following method fires each del-
egate, stopping only when a delegate returns a false value:

public static void InvokeWithTest()
{
 Func<bool> myDelegateInstanceBool1 = TestInvokeBoolReturn.Method1;
 Func<bool> myDelegateInstanceBool2 = TestInvokeBoolReturn.Method2;
 Func<bool> myDelegateInstanceBool3 = TestInvokeBoolReturn.Method3;

 Func<bool> allInstancesBool =
 myDelegateInstanceBool1 +
 myDelegateInstanceBool2 +
 myDelegateInstanceBool3;

 Console.WriteLine(
 "Invoke individually (Call based on previous return value):");
 foreach (Func<bool> instance in allInstancesBool.GetInvocationList())
 {
 if (!instance())
 break;
 }
}

The following class contains each of the methods that will be called by the multicast
delegate allInstancesBool:

public class TestInvokeBoolReturn
{
 public static bool Method1()
 {
 Console.WriteLine("Invoked Method1");
 return true;
 }

 public static bool Method2()
 {
 Console.WriteLine("Invoked Method2");
 return false;
 }

 public static bool Method3()
 {
 Console.WriteLine("Invoked Method3");
 return true;
 }
}

322 | Chapter 9: Delegates, Events, and Lambda Expressions

Discussion
A delegate, when called, will invoke all delegates stored within its invocation list.
These delegates are usually invoked sequentially from the first to the last one added.
With the use of the GetInvocationList method of the MulticastDelegate class, you
can obtain each delegate in the invocation list of a multicast delegate. This method
accepts no parameters and returns an array of Delegate objects that corresponds to
the invocation list of the delegate on which this method was called. The returned
Delegate array contains the delegates of the invocation list in the order in which they
would normally be called; that is, the first element in the Delegate array contains the
Delegate object that is normally called first.

This application of the GetInvocationList method gives you the ability to control
exactly when and how the delegates in a multicast delegate are invoked and allows
you to prevent the continued invocation of delegates when one delegate fails. This
ability is important if each delegate is manipulating data, and one of the delegates
fails in its duties but does not throw an exception. If one delegate fails in its duties
and the remaining delegates rely on all previous delegates to succeed, you must quit
invoking delegates at the point of failure. Note that an exception will force the invo-
cation of delegates to cease. Exceptions should only be used for exceptional circum-
stances, not for control flow. This recipe handles a delegate failure more efficiently
and also provides more flexibility in dealing with these errors. For example, you can
write logic to specify which delegates are to be invoked, based on the returned val-
ues of previously invoked delegates.

See Also
Recipes 9.2 and 9.3; see the “Delegate Class” and “Delegate.GetInvocationList
Method” topics in the MSDN documentation.

9.2 Obtaining Return Values from Each Delegate in a
Multicast Delegate

Problem
You have added multiple delegates to a single multicast delegate. Each of these indi-
vidual delegates returns a value that is required by your application. Ordinarily, the
values returned by individual delegates in a multicast delegate are lost—all except
the value from the last delegate to fire, the return value of which is returned to the
calling application. You need to be able to access the return value of each delegate
that is invoked in the multicast delegate.

Obtaining Return Values from Each Delegate in a Multicast Delegate | 323

Solution
Use the GetInvocationList method as in Recipe 9.1. This method returns each indi-
vidual delegate from a multicast delegate. In doing so, you can invoke each delegate
individually and get its return value. The following method creates a multicast dele-
gate called All and then uses GetInvocationList to fire each delegate individually.
After firing each delegate, the return value is captured:

public static void TestIndividualInvokesReturnValue()
{
 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

 Func<int> allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Invoke individually (Obtain each return value):");
 foreach (Func<int> instance in allInstances.GetInvocationList())
 {
 int retVal = instance();
 Console.WriteLine("\tOutput: " + retVal);
 }
}

This sample uses the TestInvokeIntReturn class defined in Recipe 9.1.

Discussion
One quirk with multicast delegates is that if any or all delegates within its invocation
list return a value, only the value of the last invoked delegate is returned; all others
are lost. This loss can become annoying, or worse, if your code requires these return
values. Consider a case in which the allInstances delegate was invoked normally, as
in the following code:

retVal = allInstances();
Console.WriteLine(retVal);

The value 3 would be displayed because Method3 was the last method invoked by the
allInstances delegate. None of the other return values would be captured.

By using the GetInvocationList method of the MulticastDelegate class, you can get
around this limitation. This method returns an array of Delegate objects that can
each be invoked separately. Note that this method does not invoke each delegate; it
simply returns an array of them to the caller. By invoking each delegate separately,
you can retrieve each return value from each invoked delegate. (More information on
the GetInvocationList method is presented in Recipe 9.1.)

324 | Chapter 9: Delegates, Events, and Lambda Expressions

Note that any out or ref parameters will also be lost when a multicast delegate is
invoked. This recipe allows you to obtain the out and/or ref parameters of each
invoked delegate within the multicast delegate.

However, you still need to be aware that any unhandled exceptions emanating from
one of these invoked delegates will be bubbled up to the method
TestIndividualInvokesReturnValue presented in this recipe. To better handle this sit-
uation, see Recipe 9.3.

See Also
Recipes 9.1 and 9.3; see the “Delegate Class” and “Delegate.GetInvocationList
Method” topics in the MSDN documentation.

9.3 Handling Exceptions Individually for Each
Delegate in a Multicast Delegate

Problem
You have added multiple delegates to a single multicast delegate. Each of these indi-
vidual delegates must be invoked, regardless of whether an unhandled exception is
thrown within one of the delegates. But once a delegate in a multicast delegate
throws an unhandled exception, no more delegates are invoked. You need a way to
trap unhandled exceptions within each individual delegate while still allowing the
rest of the delegates to fire.

Solution
Use the GetInvocationList method as shown in Recipe 9.1. This method returns
each individual delegate from a multicast delegate and, by doing so, allows you to
invoke each delegate within the try block of an exception handler.

The following delegate defines the MyDelegateOperation delegate type:

 public delegate int MyDelegateOperation();

The method shown in Example 9-1 creates a multicast delegate called allInstances
and then uses GetInvocationList to retrieve each delegate individually. Each dele-
gate is then invoked within the try block of an exception handler.

Example 9-1. Handling exceptions individually for each delegate in a multicast delegate

public static void TestIndividualInvokesExceptions()
{
 Func<int> myDelegateInstance1 = TestInvokeIntReturn.Method1;
 Func<int> myDelegateInstance2 = TestInvokeIntReturn.Method2;
 Func<int> myDelegateInstance3 = TestInvokeIntReturn.Method3;

Handling Exceptions Individually for Each Delegate in a Multicast Delegate | 325

The MulticastInvocationException class is able to have multiple exceptions added to
it. It exposes an ReadOnlyCollection<Exception> through the InvocationExceptions
property, as shown in Example 9-2.

 Func<int> allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Invoke individually (handle exceptions):");

 // Create an instance of a wrapper exception to hold any exceptions
 // encountered during the invocations of the delegate instances
 List<Exception> invocationExceptions = new List<Exception>();

 foreach (Func<int> instance in allInstances.GetInvocationList())
 {
 try
 {
 int retVal = instance();
 Console.WriteLine("\tOutput: " + retVal);
 }
 catch (Exception ex)
 {
 // Display and log the exception and continue
 Console.WriteLine(ex.ToString());
 EventLog myLog = new EventLog();
 myLog.Source = "MyApplicationSource";
 myLog.WriteEntry("Failure invoking " +
 instance.Method.Name + " with error " +
 ex.ToString(),
 EventLogEntryType.Error);
 // add this exception to the list
 invocationExceptions.Add(ex);
 }
 }
 // if we caught any exceptions along the way, throw our
 // wrapper exception with all of them in it.
 if (invocationExceptions.Count > 0)
 {
 throw new MulticastInvocationException(invocationExceptions);
 }
}

Example 9-2. MulticastInvocationException class

[Serializable]
public class MulticastInvocationException : Exception
{
 private List<Exception> _invocationExceptions;

 public MulticastInvocationException()

Example 9-1. Handling exceptions individually for each delegate in a multicast delegate (continued)

326 | Chapter 9: Delegates, Events, and Lambda Expressions

This sample uses the TestInvokeIntReturn class defined in Recipe 9.1.

Discussion
If an exception occurs in a delegate that is invoked from within a multicast delegate
and that exception is unhandled, any remaining delegates are not invoked. This is
the expected behavior of a multicast delegate. However, in some circumstances,
you’d like to be able to handle exceptions thrown from individual delegates and then
determine at that point whether to continue invoking the remaining delegates.

 : base()
 {
 }

 public MulticastInvocationException(IEnumerable<Exception> invocationExceptions)
 {
 _invocationExceptions = new List<Exception>(invocationExceptions);
 }

 public MulticastInvocationException(string message)
 : base(message)
 {
 }

 public MulticastInvocationException(string message, Exception innerException) :
 base(message,innerException)
 {
 }

 protected MulticastInvocationException(SerializationInfo info, StreamingContext
context) :
 base(info, context)
 {
 _invocationExceptions =
 (List<Exception>)info.GetValue("InvocationExceptions",
 typeof(List<Exception>));
 }

 [SecurityPermissionAttribute(SecurityAction.Demand,SerializationFormatter = true)]
 public override void GetObjectData(
 SerializationInfo info, StreamingContext context)
 {
 info.AddValue("InvocationExceptions", this.InvocationExceptions);
 base.GetObjectData(info, context);
 }

 public ReadOnlyCollection<Exception> InvocationExceptions
 {
 get { return new ReadOnlyCollection<Exception>(_invocationExceptions); }
 }
}

Example 9-2. MulticastInvocationException class (continued)

Converting Delegate Invocation from Synchronous to Asynchronous | 327

In the TestIndividualInvokesExceptions method of this recipe, if an exception is
caught, it is logged to the event log and displayed, then the code continues to invoke
delegates. This strategy allows for as fine-grained handling of exceptions as you
need. One way to deal with this is to store all of the exceptions that occur during del-
egate processing, and then wrap all of the exceptions encountered during processing
in a custom exception. After processing completes, throw the custom exception. See
the MulticastInvocationException class in the Solution.

By adding a finally block to this try-catch block, you could be assured that code
within this finally block is executed after every delegate returns. This technique is
useful if you want to interleave code between calls to delegates, such as code to clean
up objects that are not needed or code to verify that each delegate left the data it
touched in a stable state.

See Also
Recipes 9.1 and 9.2; see the “Delegate Class” and “Delegate.GetInvocationList
Method” topics in the MSDN documentation.

9.4 Converting Delegate Invocation from
Synchronous to Asynchronous

Problem
You have determined that one or more delegates invoked synchronously within your
application are taking a long time to execute. This delay is making the user interface
less responsive to the user. The invocation of these delegates should be converted
from synchronous to asynchronous mode.

Solution
A typical synchronous delegate type and supporting code that invokes the delegate
are shown here:

public delegate void SyncDelegateTypeSimple();

public class TestSyncDelegateTypeSimple
{
 public static void Method1()
 {
 Console.WriteLine("Invoked Method1");
 }
}

The code to use this delegate is:

public static void TestSimpleSyncDelegate()
{

328 | Chapter 9: Delegates, Events, and Lambda Expressions

 SyncDelegateTypeSimple sdtsInstance = TestSyncDelegateTypeSimple.Method1;
 sdtsInstance();
}

This delegate can be called asynchronously on a thread obtained from the thread
pool by modifying the code as follows:

public static void TestSimpleAsyncDelegate()
{
 AsyncCallback callBack = new AsyncCallback(DelegateSimpleCallback);

 SyncDelegateTypeSimple sdtsInstance = TestSyncDelegateTypeSimple.Method1;

 IAsyncResult asyncResult =
 sdtsInstance.BeginInvoke(callBack, null);

 Console.WriteLine("WORKING...");
}

// The callback that gets called when TestSyncDelegateTypeSimple.Method1
// is finished processing
private static void DelegateSimpleCallback(IAsyncResult iResult)
{
 AsyncResult result = (AsyncResult)iResult;
 SyncDelegateTypeSimple sdtsInstance =
 (SyncDelegateTypeSimple)result.AsyncDelegate;

 sdtsInstance.EndInvoke(result);
 Console.WriteLine("Simple callback run");
}

AsyncResult can be found in the System.Runtime.Remoting.Messaging
namespace in mscorlib.

Of course, you might also want to change the TestSyncDelegateTypeSimple class
name to TestAsyncDelegateTypeSimple and the SyncDelegateTypeSimple delegate
name to AsyncDelegateTypeSimple just to be consistent with your naming.

The previous example shows how to call a delegate that accepts no parameters and
returns void. The next example shows a synchronous delegate that accepts parame-
ters and returns an integer:

public delegate int SyncDelegateType(string message);
public class TestSyncDelegateType
{
 public static int Method1(string message)
 {
 Console.WriteLine("Invoked Method1 with message: " + message);
 return 1;
 }
}

Converting Delegate Invocation from Synchronous to Asynchronous | 329

The code to use this delegate is:

public static void TestComplexSyncDelegate()
{
 SyncDelegateType sdtInstance = TestSyncDelegateType.Method1;

 int retVal = sdtInstance("Synchronous call");

 Console.WriteLine("Sync: " + retVal);
}

The synchronous invocation of the delegate can be converted to asynchronous invo-
cation in the following manner:

public static void TestCallbackAsyncDelegate()
{
 AsyncCallback callBack =
 new AsyncCallback(DelegateCallback);

 SyncDelegateType sdtInstance = TestSyncDelegateType.Method1;

 IAsyncResult asyncResult =
 sdtInstance.BeginInvoke("Asynchronous call", callBack, null);

 Console.WriteLine("WORKING...");
}

// The callback that gets called when TestSyncDelegateType.Method1
// is finished processing
private static void DelegateCallback(IAsyncResult iResult)
{
 AsyncResult result = (AsyncResult)iResult;
 SyncDelegateType sdtInstance =
 (SyncDelegateType)result.AsyncDelegate;

 int retVal = sdtInstance.EndInvoke(result);
 Console.WriteLine("retVal (Callback): " + retVal);
}

Discussion
Converting the invocation of a delegate from being synchronous to asynchronous is
not an overly complicated procedure. You need to add calls to both BeginInvoke and
EndInvoke on the delegate that is being called synchronously. A callback method,
DelegateCallback, is added, which gets called when the delegate is finished. This call-
back method then calls the EndInvoke method on the delegate invoked using
BeginInvoke.

You must always call EndInvoke when invoking delegates asynchro-
nously, even when the delegate returns void, to ensure proper cleanup
of resources in the CLR.

330 | Chapter 9: Delegates, Events, and Lambda Expressions

The notification callback method specified in the callback parameter accepts a sin-
gle parameter of type IAsyncResult. This parameter can be cast to an AsyncResult
type and used to set up the call to the EndInvoke method. If you want to handle any
exceptions thrown by the asynchronous delegate in the notification callback, wrap
the EndInvoke method in a try/catch exception handler.

See Also
The “Delegate Class” and “Asynchronous Delegates” topics in the MSDN
documentation.

9.5 An Advanced Interface Search Mechanism

Problem
You are searching for an interface using the Type class. However, complex interface
searches are not available through the GetInterface and GetInterfaces methods of a
Type object. The GetInterface method searches for an interface only by name (using
a case-sensitive or case-insensitive search), and the GetInterfaces method returns an
array of all the interfaces implemented on a particular type. You want a more
focused searching mechanism that might involve searching for interfaces that define
a method with a specific signature or implemented interfaces that are loaded from
the GAC. You need more flexible and more advanced searching for interfaces that
does not involve creating your own interface search engine. This capability might be
used for applications like a code generator or reverse engineering tool.

Solution
Use LINQ to query the type interface information and perform rich searches. The
method shown in Example 9-3 will demonstrate one complex search that can be per-
formed with LINQ.

Example 9-3. Performing complex searches of interfaces on a type

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;

public class SearchType
{
 public static void FindSpecificInterfaces()
 {
 // set up the interfaces to search for
 Type[] interfaces = {
 typeof(System.ICloneable),
 typeof(System.Collections.ICollection),

An Advanced Interface Search Mechanism | 331

The FindSpecificInterfaces method searches for any of the three interface types
contained in the Names array that are implemented by the System.Collections.
ArrayList type. It does this by using LINQ to query if the type is an instance of any
of the set of interfaces.

Discussion
There are many ways to use LINQ to search for interfaces implemented on a type—
here are just a few other searches that can be performed:

• A search for all implemented interfaces that are defined within a particular
namespace (in this case, the System.Collections namespace):

var collectionsInterfaces = from type in searchType.GetInterfaces()
 where type.Namespace == "System.Collections"
 select type;

• A search for all implemented interfaces that contain a method called Add, which
returns an Int32 value:

var addInterfaces = from type in searchType.GetInterfaces()
 from method in type.GetMethods()
 where (method.Name == "Add") &&
 (method.ReturnType == typeof(int))
 select type;

• A search for all implemented interfaces that are loaded from the GAC:
var gacInterfaces = from type in searchType.GetInterfaces()
 where type.Assembly.GlobalAssemblyCache
 select type;

• A search for all implemented interfaces that are defined within an assembly with
the version number 2.0.0.0:

var versionInterfaces = from type in searchType.GetInterfaces()
 where type.Assembly.GlobalAssemblyCache
 select type;

 typeof(System.IAppDomainSetup) };

 // set up the type to examine
 Type searchType = typeof(System.Collections.ArrayList);

 var matches = from t in searchType.GetInterfaces()
 join s in interfaces on t equals s
 select s;

 Console.WriteLine("Matches found:");
 foreach (Type match in matches)
 {
 Console.WriteLine(match.ToString());
 }
 }
}

Example 9-3. Performing complex searches of interfaces on a type (continued)

332 | Chapter 9: Delegates, Events, and Lambda Expressions

See Also
The “Lambda Expressions (C# Programming Guide)” and “where keyword [LINQ]
(C#)” topics in the MSDN documentation.

9.6 Observing Additions and Modifications to
Dictionaries

Problem
You have multiple objects that need to observe modifications to objects that imple-
ment IDictionary<K,V>. When an item is added or modified in the dictionary-based
collection, each of these observer objects should be able to vote to allow or disallow
the action. In order for an action to be allowed to complete, all observer objects must
state if they are vetoing the action. If even one observer object votes to disallow the
action, the action is prevented.

Solution
Use the ObservableDictionaryObserver class implemented in Example 9-5 to observe
additions and modifications to the ObservableDictionary class (shown in Example 9-4)
object that is registered with this object. The ObservableDictionary class is a generic
wrapper for collections that implement IDictionary<K,V> and allows itself to be
observed by the ObservableDictionaryObserver class.

The ObservableDictionaryEventArgs class is a specialization of the EventArgs class,
which provides the IDictionary<K,V> key and value being added or modified to the
ObservableDictionaryObserver object, as well as a Boolean property, KeepChanges.
This flag indicates whether the addition or modification in the ObservableDictionary
object will succeed or be rolled back. The MakeObservableDictionary extension
method for IDictionary<K,V> wraps up the code for creating an
ObservableDictionary from an IDictionary instance. Example 9-4 illustrates the two
classes and the extension method.

Example 9-4. ObservableDictionary and ObservableDictionaryEventArgs classes and the
MakeObservableDictionary extension method

public class ObservableDictionary<TKey,TValue> : IDictionary<TKey,TValue>
{
 IDictionary<TKey, TValue> _internalDictionary;
 public ObservableDictionary(IDictionary<TKey,TValue> dictionary)
 {
 if (dictionary == null)
 throw new ArgumentNullException("dictionary");
 _internalDictionary = dictionary;
 }

Observing Additions and Modifications to Dictionaries | 333

 #region Events and Event Initiation

 public event EventHandler<ObservableDictionaryEventArgs<TKey,TValue>> AddingEntry;
 public event EventHandler<ObservableDictionaryEventArgs<TKey, TValue>> AddedEntry;
 public event EventHandler<ObservableDictionaryEventArgs<TKey, TValue>> ChangingEntry;
 public event EventHandler<ObservableDictionaryEventArgs<TKey, TValue>> ChangedEntry;

 protected virtual bool OnAdding(ObservableDictionaryEventArgs<TKey,TValue> e)
 {
 if (AddingEntry != null)
 {
 AddingEntry(this, e);
 return (e.KeepChanges);
 }

 return (true);
 }

 protected virtual void OnAdded(ObservableDictionaryEventArgs<TKey, TValue> e)
 {
 if (AddedEntry != null)
 {
 AddedEntry(this, e);
 }
 }

 protected virtual bool OnChanging(ObservableDictionaryEventArgs<TKey, TValue> e)
 {
 if (ChangingEntry != null)
 {
 ChangingEntry(this, e);
 return (e.KeepChanges);
 }

 return (true);
 }

 protected virtual void OnChanged(ObservableDictionaryEventArgs<TKey, TValue> e)
 {
 if (ChangedEntry != null)
 {
 ChangedEntry(this, e);
 }
 }
 #endregion // Events and Event Initiation

 #region Interface implementations
 #region IDictionary<TKey,TValue> Members

 public ICollection<TValue> Values
 {

Example 9-4. ObservableDictionary and ObservableDictionaryEventArgs classes and the
MakeObservableDictionary extension method (continued)

334 | Chapter 9: Delegates, Events, and Lambda Expressions

 get { return _internalDictionary.Values; }
 }

 public ICollection<TKey> Keys
 {
 get { return _internalDictionary.Keys; }
 }

 public TValue this[TKey key]
 {
 get
 {
 TValue value;
 if (_internalDictionary.TryGetValue(key, out value))
 return value;
 else
 {
 return default(TValue);
 }
 }
 set
 {
 // see if this key is there to be changed, if not add it
 if (_internalDictionary.ContainsKey(key))
 {
 ObservableDictionaryEventArgs<TKey, TValue> args =
 new ObservableDictionaryEventArgs<TKey, TValue>(key, value);

 if (OnChanging(args))
 {
 _internalDictionary[key] = value;
 }
 else
 {
 Debug.WriteLine("Change of value cannot be performed");
 }

 OnChanged(args);
 }
 else
 {
 Debug.WriteLine("Item did not exist, adding");
 _internalDictionary.Add(key, value);
 }
 }
 }

 public void Add(TKey key, TValue value)
 {
 ObservableDictionaryEventArgs<TKey, TValue> args =
 new ObservableDictionaryEventArgs<TKey, TValue>(key, value);

Example 9-4. ObservableDictionary and ObservableDictionaryEventArgs classes and the
MakeObservableDictionary extension method (continued)

Observing Additions and Modifications to Dictionaries | 335

 if (OnAdding(args))
 {
 this._internalDictionary.Add(key, value);
 }
 else
 {
 Debug.WriteLine("Addition of key/value cannot be performed");
 }

 OnAdded(args);
 }

 public bool ContainsKey(TKey key)
 {
 return _internalDictionary.ContainsKey(key);
 }

 public bool Remove(TKey key)
 {
 return _internalDictionary.Remove(key);
 }

 public bool TryGetValue(TKey key, out TValue value)
 {
 return _internalDictionary.TryGetValue(key, out value);
 }

 #endregion

 #region ICollection<KeyValuePair<TKey,TValue>> Members

 public void Add(KeyValuePair<TKey, TValue> item)
 {
 _internalDictionary.Add(item.Key, item.Value);
 }

 public void Clear()
 {
 _internalDictionary.Clear();
 }

 public bool Contains(KeyValuePair<TKey, TValue> item)
 {
 return _internalDictionary.Contains(item);
 }

 public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
 {
 _internalDictionary.CopyTo(array, arrayIndex);
 }

Example 9-4. ObservableDictionary and ObservableDictionaryEventArgs classes and the
MakeObservableDictionary extension method (continued)

336 | Chapter 9: Delegates, Events, and Lambda Expressions

 public int Count
 {
 get { return _internalDictionary.Count; }
 }

 public bool IsReadOnly
 {
 get { return _internalDictionary.IsReadOnly; }
 }

 public bool Remove(KeyValuePair<TKey, TValue> item)
 {
 return _internalDictionary.Remove(item);
 }

 #endregion

 #region IEnumerable<KeyValuePair<TKey,TValue>> Members

 public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
 {
 return _internalDictionary.GetEnumerator();
 }

 #endregion

 #region IEnumerable Members

 IEnumerator IEnumerable.GetEnumerator()
 {
 return _internalDictionary.GetEnumerator();
 }

 #endregion
 #endregion // Interface implementations
}

public static ObservableDictionary<TKey, TValue> MakeObservableDictionary<TKey, TValue>(
 this IDictionary<TKey, TValue> dictionary)
{
 return new ObservableDictionary<TKey, TValue>(dictionary);
}

public class ObservableDictionaryEventArgs<TKey, TValue> : EventArgs
{
 TKey _key;
 TValue _value;

 public ObservableDictionaryEventArgs(TKey key, TValue value)
 {
 _key = key;

Example 9-4. ObservableDictionary and ObservableDictionaryEventArgs classes and the
MakeObservableDictionary extension method (continued)

Observing Additions and Modifications to Dictionaries | 337

Example 9-5 shows the code for the ObservableDictionaryObserver class.

 _value = value;
 this.KeepChanges = true;
 }

 public bool KeepChanges { get; set; }
 public TKey Key { get { return _key; } }
 public TValue Value { get { return _value; } }
}

Example 9-5. ObservableDictionaryObserver class

// The observer object that will observe a registered ObservableDictionary object
public class ObservableDictionaryObserver<TKey,TValue>
{
 public ObservableDictionaryObserver() { }

 // set up delegate/events for approving an addition or change
 public delegate bool Approval(object sender,
 ObservableDictionaryEventArgs<TKey,TValue> e);

 public Approval ApproveAdd { get; set; }
 public Approval ApproveChange { get; set; }

 public void Register(ObservableDictionary<TKey, TValue> dictionary)
 {
 // hook up to the ObservableDictionary instance events
 dictionary.AddingEntry +=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnAddingListener);
 dictionary.AddedEntry +=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnAddedListener);
 dictionary.ChangingEntry +=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnChangingListener);
 dictionary.ChangedEntry +=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnChangedListener);
 }

 public void Unregister(ObservableDictionary<TKey,TValue> dictionary)
 {
 // Unhook from the ObservableDictionary instance events
 dictionary.AddingEntry -=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnAddingListener);
 dictionary.AddedEntry -=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnAddedListener);

Example 9-4. ObservableDictionary and ObservableDictionaryEventArgs classes and the
MakeObservableDictionary extension method (continued)

338 | Chapter 9: Delegates, Events, and Lambda Expressions

 dictionary.ChangingEntry -=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnChangingListener);
 dictionary.ChangedEntry -=
 new EventHandler<ObservableDictionaryEventArgs<TKey, TValue>>(
 OnChangedListener);
 }

 private void CheckApproval(Approval approval,
 ObservableDictionaryEventArgs<TKey,TValue> args)
 {
 // check everyone who wants to approve
 foreach (Approval approvalInstance in
 approval.GetInvocationList())
 {
 if (!approvalInstance(this,args))
 {
 // if any of the concerned parties
 // refuse, then no add. Adds by default
 args.KeepChanges = false;
 break;
 }
 }
 }

 private void OnAddingListener(object sender,
 ObservableDictionaryEventArgs<TKey,TValue> args)
 {
 // see if anyone hooked up for approval
 if (ApproveAdd != null)
 {
 CheckApproval(ApproveAdd, args);
 }

 Debug.WriteLine("[NOTIFY] Before Add...: Add Approval = " +
 args.KeepChanges.ToString());
 }

 private void OnAddedListener(object sender,
 ObservableDictionaryEventArgs<TKey, TValue> args)
 {
 Debug.WriteLine("[NOTIFY] ...After Add: Item approved for adding: " +
 args.KeepChanges.ToString());
 }

 private void OnChangingListener(object sender,
 ObservableDictionaryEventArgs<TKey, TValue> args)
 {
 // see if anyone hooked up for approval
 if (ApproveChange != null)
 {
 CheckApproval(ApproveChange, args);

Example 9-5. ObservableDictionaryObserver class (continued)

Observing Additions and Modifications to Dictionaries | 339

Discussion
The observer design pattern allows one or more observer objects to act as spectators
over one or more subjects. Not only do the observer objects act as spectators, but
they can also induce change in the subjects. According to this pattern, any subject is
allowed to register itself with one or more observer objects. Once this is done, the
subject can operate as it normally does. The key feature is that the subject doesn’t
have to know what it is being observed by; this allows the coupling between subjects
and observers to be minimized. The observer object(s) will then be notified of any
changes in state to the subjects. When the subject’s state changes, the observer
object(s) can change the state of other objects in the system to bring them into line
with changes that were made to the subject(s). In addition, the observer could even
make changes or refuse changes to the subject(s) themselves.

The observer pattern is best implemented with events in C#. The event object pro-
vides a built-in way of implementing the observer design pattern. This recipe imple-
ments this pattern on all collections supporting IDictionary<K,V>. The object being
observed must raise events for any listening observer objects to handle, but the
IDictionary<K,V> interface found in the FCL does not indicate any events. In order to
make the IDictionary<K,V> raise events at specific times, you must implement a
wrapper class, ObservableDictionary, that implements the IDictionary<K,V> inter-
face. This ObservableDictionary class overrides the Add and indexer members of the
base interface. In addition, four events (AddingEntry, AddedEntry, ChangingEntry, and
ChangedEntry) are created; they will be raised before and after items are added or
modified in the ObservableDictionary. To raise these events, the following four
methods are created, one to raise each event:

• The OnAdding method raises the AddingEntry event.

• The OnAdded method raises the AddedEntry event.

• The OnChanging method raises the ChangingEntry event.

• The OnChanged method raises the ChangedEntry event.

 }

 Debug.WriteLine("[NOTIFY] Before Change...: Change Approval = " +
 args.KeepChanges.ToString());
 }

 private void OnChangedListener(object sender,
 ObservableDictionaryEventArgs<TKey, TValue> args)
 {
 Debug.WriteLine("[NOTIFY] ...After Change: Item approved for change: " +
 args.KeepChanges.ToString());
 }
}

Example 9-5. ObservableDictionaryObserver class (continued)

340 | Chapter 9: Delegates, Events, and Lambda Expressions

The Add method calls the OnAdding method, which then raises the event to any listen-
ing observer objects. The OnAdding method is called before the Add method on the
internal dictionary is called. After the key/value pair has been added, the OnAdded
method is called. This operation is similar to the indexer set method.

The Onxxx methods that raise the events in the ObservableDictionary
class are marked as protected virtual to allow classes to subclass this
class and implement their own method of dealing with the events.
Note that this statement is not applicable to sealed classes. In those
cases, you can simply make the methods public.

The ObservableDictionaryEventArgs class contains three private fields, defined as
follows:

key
The key that is to be added to the dictionary.

value
The value that is to be added to the dictionary.

keepChanges
A flag indicating whether the key/value pair should be added to the dictionary.
true indicates that this pair should be added to the dictionary.

The keepChanges field is used by the observer to determine whether an add or change
operation should proceed. This flag is discussed further when you look at the
ObservableDictionaryObserver observer object.

The ObservableDictionaryObserver is the observer object that watches any
ObservableDictionary objects it is told about. Any ObservableDictionary object can
be passed to the ObservableDictionaryObserver.Register method in order to be
observed. This method accepts an ObservableDictionary object (dictionary) as its
only parameter. This method then hooks up the event handlers in the
ObservableDictionaryObserver object to the events that can be raised by the
ObservableDictionary object passed in through the dictionary parameter. Therefore,
the following events and event handlers are bound together:

• The ObservableDictionary.AddingEntry event is bound to the
ObservableDictionaryObserver.OnAddingListener event handler.

• The ObservableDictionary.AddedEntry event is bound to the
ObservableDictionaryObserver.OnAddedListener event handler.

• The ObservableDictionary.ChangingEntry event is bound to the
ObservableDictionaryObserver.OnChangingListener event handler.

• The ObservableDictionary.ChangedEntry event is bound to the
ObservableDictionaryObserver.OnChangedListener event handler.

Observing Additions and Modifications to Dictionaries | 341

The OnAddingListener and OnChangingListener methods watch for additions and
changes to the key/value pairs of the watched ObservableDictionary object(s). Since
you have an event firing before and after an addition or modification occurs, you can
determine whether the addition or change should occur.

Two events are published by the ObservableDictionaryObserver to allow for an exter-
nal entity to approve or deny the addition or changing of an entry. These events are
named ApproveAdd and ApproveChange, respectively, and are of delegate type Approval
as shown below:

 public delegate bool Approval(object sender,
 ObservableDictionaryEventArgs<TKey,TValue> e);

This is where the keepChanges field of the ObservableDictionaryEventArgs object
comes into play. If an external source wants to block the addition or change, it can
simply return false from its event handler implementation of the appropriate
Approve* event.

The ObservableDictionaryObserver object will set this flag according to whether it
determines that the action should proceed or be prematurely terminated. The
ObservableDictionaryEventArgs object is passed back to the OnAdding and OnChanging
methods. These methods then return the value of the KeepChanges property to either
the calling Add method or indexer. The Add method or indexer then uses this flag to
determine whether the internal dictionary object should be updated.

The code in Example 9-6 shows how to instantiate ObservableDictionaries and
ObservableDictionaryObservers and how to register, set up approval, use, and unreg-
ister them.

Example 9-6. Using the ObservableDictionary and ObservableDictionaryObserver
classes

public static void TestObserverPattern()
{
 Dictionary<int, string> dictionary1 = new Dictionary<int, string>();
 Dictionary<int, string> dictionary2 = new Dictionary<int, string>();
 Dictionary<int, string> dictionary3 = new Dictionary<int, string>();

 // Create three observable dictionary instances
 var obsDict1 = dictionary1.MakeObservableDictionary();
 var obsDict2 = dictionary2.MakeObservableDictionary();
 var obsDict3 = dictionary3.MakeObservableDictionary();

 // Create an observer for the three subject objects
 var observer = new ObservableDictionaryObserver<int, string>();

 // Register the three subjects with the observer
 observer.Register(obsDict1);
 observer.Register(obsDict2);
 observer.Register(obsDict3);

342 | Chapter 9: Delegates, Events, and Lambda Expressions

 // hook up the approval events for adding or changing
 observer.ApproveAdd +=
 new ObservableDictionaryObserver<int, string>.
 Approval(SeekApproval);
 observer.ApproveChange +=
 new ObservableDictionaryObserver<int, string>.
 Approval(SeekApproval);

 // Use the observable instances
 obsDict1.Add(1, "one");
 obsDict2.Add(2, "two");
 obsDict3.Add(3, "three");

 // Insure the approval process worked
 Debug.Assert(obsDict1.Count == 1);
 Debug.Assert(obsDict2.Count == 1);
 // this should be empty as the value was more than three characters
 Debug.Assert(obsDict3.Count == 0);

 // Unregister the observable instances
 observer.Unregister(obsDict3);
 observer.Unregister(obsDict2);
 observer.Unregister(obsDict1);

 ///
 // Now do it with a different type of dictionary
 ///
 // Create two observable SortedList instances
 SortedList<string, bool> sortedList1 = new SortedList<string, bool>();
 SortedList<string, bool> sortedList2 = new SortedList<string, bool>();

 var obsSortedList1 = sortedList1.MakeObservableDictionary();
 var obsSortedList2 = sortedList2.MakeObservableDictionary();

 // Create an observer for the two subject objects
 ObservableDictionaryObserver<string, bool> listObserver =
 new ObservableDictionaryObserver<string, bool>();

 // Register the three subjects with the observer
 listObserver.Register(obsSortedList1);
 listObserver.Register(obsSortedList2);

 // hook up the approval events for adding or changing
 listObserver.ApproveAdd +=
 new ObservableDictionaryObserver<string, bool>.
 Approval(ApprovePositive);
 listObserver.ApproveChange +=
 new ObservableDictionaryObserver<string, bool>.
 Approval(ApprovePositive);

 // Use the observable instances

Example 9-6. Using the ObservableDictionary and ObservableDictionaryObserver
classes (continued)

Observing Additions and Modifications to Dictionaries | 343

Note that if the ObservableDictionaries are used without registering them, no events
will be raised. Since no events are raised, the observer cannot do its job, and values
may be added to the unregistered subjects that are out of bounds for the application.

When using the observer design pattern in this fashion, keep in mind that fine-
grained events, such as the ones in this recipe, could possibly drag down perfor-
mance, so set a goal and then profile your code. If you have many subjects raising
many events, your application could fail to meet performance expectations.

Notice that in the second set of code exercising the ObservableDictionary, a
SortedList<K,V> is used instead of a Dictionary<K,V> with no difference in the usage
patterns or results:

 // Use Dictionary<int,string> as the base
 Dictionary<int, string> dictionary1 = new Dictionary<int, string>();
 var obsDict1 = dictionary1.MakeObservableDictionary();

 // Use SortedList<string,bool> as the base
 SortedList<string, bool> sortedList1 = new SortedList<string, bool>();
 var obsSortedList1 = sortedList1.MakeObservableDictionary();

 obsSortedList1.Add("Item 1",true);
 obsSortedList2.Add("Item 2", false);

 // Insure the approval process worked
 Debug.Assert(obsSortedList1.Count == 1);
 // this should be empty as only true values are taken
 Debug.Assert(obsSortedList2.Count == 0);

 // Unregister the observable instances
 listObserver.Unregister(obsSortedList2);
 listObserver.Unregister(obsSortedList1);
}

static bool SeekApproval(object sender,
 ObservableDictionaryEventArgs<int, string> args)
{
 // only allow strings of no more than 3 characters in
 // our dictionary
 string value = args.Value.ToString();
 if (value.Length <= 3)
 return true;
 return false;
}

static bool ApprovePositive(object sender,
 ObservableDictionaryEventArgs<string, bool> args)
{
 // only allow positive values
 return args.Value;
}

Example 9-6. Using the ObservableDictionary and ObservableDictionaryObserver
classes (continued)

344 | Chapter 9: Delegates, Events, and Lambda Expressions

See Also
The “Event Keyword,” “EventHandler Delegate,” “EventArgs Class,” and “Han-
dling and Raising Events” topics in the MSDN documentation.

9.7 Using Lambda Expressions

Problem
There is a feature in C# 3.0 called lambda expressions. While lambda expressions
can be viewed as syntactic sugar for making anonymous method definition less diffi-
cult, you want to understand all of the different ways that they can be used to help
you in your daily programming chores as well as understand the ramifications of
those uses.

Solution
Lambda expressions can be implemented by the compiler from methods created by
the developer. There are two orthogonal characteristics that lambda expressions may
have:

• Parameter lists may have explicit or implicit types.

• Bodies may be expressions or statement blocks.

Let’s start with the original way to use delegates. First, you would declare a delegate
type, DoWork in this case, and then you would create an instance of it (as shown here
in the WorkItOut method). Declaring the instance of the delegate requires that you
specify a method to execute when the delegate is invoked, and here the
DoWorkMethodImpl method has been connected. The delegate is invoked, and the text
is written to the console via the DoWorkMethodImpl method:

class OldWay
{
 // declare delegate
 delegate int DoWork(string work);

 // have a method to create an instance of and call the delegate
 public void WorkItOut()
 {
 // declare instance
 DoWork dw = new DoWork(DoWorkMethodImpl);
 // invoke delegate
 int i = dw("Do work the old way");
 }

 // Have a method that the delegate is tied to with a matching signature
 // so that it is invoked when the delegate is called
 public int DoWorkMethodImpl(string s)
 {

Using Lambda Expressions | 345

 Console.WriteLine(s);
 return s.GetHashCode();
 }
}

Lambda expressions allow you to set up code to run when a delegate is invoked, but
there does not need to be a named formal method declaration that is given to the del-
egate. The method thus declared is nameless and closed over the scope of the outer
method. For example, you could have written the preceding code using a lambda
expression such as this:

class LambdaWay
{
 // declare delegate
 delegate int DoWork(string work);

 // have a method to create an instance of and call the delegate
 public void WorkItOut()
 {
 // declare instance
 DoWork dw = s =>
 {
 Console.WriteLine(s);
 return s.GetHashCode();
 };
 // invoke delegate
 int i = dw("Do some inline work");
 }
}

Notice that instead of having a method called DoWorkMethodImpl, you use the => oper-
ator to directly assign the code from that method inline to the DoWork delegate. The
assignment looks like this:

 DoWork dw = s =>
 {
 Console.WriteLine(s);
 return s.GetHashCode();
 };

You also provide the parameter required by the DoWork delegate (string), and your
code returns an int (s.GetHashCode()) as the delegate requires. When setting up a
lambda expression, the code must “match” the delegate signature, or you will get a
compiler error.

By match we mean:

If explicitly typed, the lambda parameters must exactly match the delegate parame-
ters. If implicitly typed, the lambda parameters get the delegate parameter types.

The body of the lambda must be a legal expression or statement block given the
parameter types.

346 | Chapter 9: Delegates, Events, and Lambda Expressions

The return type of the lambda must be implicitly convertible to the return type of the
delegate. It need not match exactly.

There is yet another way you can set up the delegate, and that is through the magic
of delegate inference. Delegate inference allows you to assign the method name
directly to the delegate instance without having to write the code for creating a new
delegate object. Under the covers, C# actually writes the IL for creating the delegate
object, but you don’t have to do it explicitly here. Using delegate inference instead of
writing out new [Delegate Type]([Method Name]) everywhere helps to unclutter the
code involved in the usage of delegates, as shown here:

class DirectAssignmentWay
{
 // declare delegate
 delegate int DoWork(string work);

 // have a method to create an instance of and call the delegate
 public void WorkItOut()
 {
 // declare instance and assign method
 DoWork dw = DoWorkMethodImpl;
 // invoke delegate
 int i = dw("Do some direct assignment work");
 }
 // Have a method that the delegate is tied to with a matching signature
 // so that it is invoked when the delegate is called
 public int DoWorkMethodImpl(string s)
 {
 Console.WriteLine(s);
 return s.GetHashCode();
 }
}

Notice that all that is assigned to the DoWork delegate instance dw is the method name
DoWorkMethodImpl. There is no “new DoWork(DoWorkMethodImpl)” call as there was in
older C# code.

Remember, the underlying delegate wrapper does not go away; dele-
gate inference just simplifies the syntax a bit by hiding some of it.

Alternatively, you can also set up lambda expressions that take generic type parame-
ters to enable working with generic delegates as you do here in the GenericWay class:

class GenericWay
{
 // have a method to create two instances of and call the delegates
 public void WorkItOut()
 {
 Func<string,string> dwString = s =>
 {

Using Lambda Expressions | 347

 Console.WriteLine(s);
 return s;
 };

 // invoke string delegate
 string retStr = dwString("Do some generic work");

 Func<int,int> dwInt = i =>
 {
 Console.WriteLine(i);
 return i;
 };

 // invoke int delegate
 int j = dwInt(5);

 }
}

Discussion
One of the useful things about lambda expressions is the concept of outer variables.
The official definition of outer variables is that they are any local variable, value
parameter, or parameter array with a scope that contains the lambda expression.

What does this mean? It means that, inside of the code of the lambda expression,
you can touch variables outside of the scope of that method. There is a concept of
“capturing” the variables that occurs when a lambda expression actually makes refer-
ence to one of the outer variables. In the following example, the count variable is cap-
tured and incremented by the lambda expression. The count variable is not part of
the original scope of the lambda expression but part of the outer scope. It is incre-
mented and then the incremented value is returned and totaled:

public void SeeOuterWork()
{
 int count = 0;
 int total = 0;
 Func<int> countUp = () => count++;
 for(int i=0;i<10;i++)
 {
 total += countUp();
 }
 Debug.WriteLine("Total = " + total);
}

What capturing actually does is extend the lifetime of the outer variable to coincide
with the lifetime of the underlying delegate instance that represents the lambda
expression. This should encourage you to be careful about what you touch from
inside a lambda expression. You could be causing things to hang around a lot longer
than you originally planned. The garbage collector won’t get a chance to clean up
those outer variables until later, when they are used in the lambda expression. Cap-
turing outer variables has another garbage-collector effect: when locals or value

348 | Chapter 9: Delegates, Events, and Lambda Expressions

parameters are captured, they are no longer considered to be fixed but are now mov-
able, so any unsafe code must now fix that variable before use by using the fixed
keyword.

Outer variables can affect how the compiler generates the internal IL for the lambda
expression. If it uses outer variables, it is generated as a private method of a nested
class rather than as another private method of the class it is declared in, as it other-
wise would be. If the outer method is static, then the lambda expression cannot
access instance members via the “this” keyword, as the nested class will also be gen-
erated as static.

There are two types of lambda expressions: Expression lambdas and Statement
lambdas. This Expression lambda has no parameters and simply increments the
count variable in an expression:

int count = 0;
Count countUp = () => count++;

Statement lambdas have the body enclosed in curly braces and can contain any num-
ber of statements like this:

Func<int,int> dwInt = i =>
{
 Console.WriteLine(i);
 return i;
};

A few last things to remember about lambda expressions:

• They can’t use break, goto, or continue to jump from the lambda expression to a
target outside the lambda expression block.

• No unsafe code can be executed inside a lambda expression.

• Lambda expressions cannot be used on the left side of the is operator.

• Since lambda expressions are a superset of anonymous methods, all restrictions
that apply to anonymous methods also apply to lambda expressions.

See Also
The “Lambda Expressions (C# Programming Guide)” topic in the MSDN
documentation.

9.8 Set Up Event Handlers Without the Mess

Problem
In versions of the .NET Framework prior to 2.0, the System.EventHandler delegate
could be used on events in which the arguments were always of type System.
EventArgs. This was great if you really didn’t care about any data that went along

Set Up Event Handlers Without the Mess | 349

with an event. But as you are all fine programmers and can see the possibilities of
passing data along with the event, you had to set up a delegate and an event for every
event you wanted. Example 9-7 demonstrates an old newspaper class that sends
news to subscribers using the pre-.NET 2.0 event and event-handling methodology.

Example 9-7. Using pre-.NET 2.0 event and event-handling methods

public class IWantToKnowThen
{
 public static void TryMe()
 {
 OldNewspaper DailyPaperFlash = new OldNewspaper();
 DailyPaperFlash.NewsEvent +=
 new OldNewspaper.NewsEventHandler(StaleNews);

 // send news
 DailyPaperFlash.TransmitStaleNews("Patriots win third super
bowl!");
 DailyPaperFlash.TransmitStaleNews("W takes office amongst recount.
");
 DailyPaperFlash.TransmitStaleNews("VS2005 is sooo passe");
 }

 private static void StaleNews(object src, NewsEventArgs nea)
 {
 Console.WriteLine(nea.LatestNews);
 }
}

// EventArgs derived class to hold our news data
public class NewsEventArgs : EventArgs
{
 private string _latestNews;

 public NewsEventArgs(string latestNews)
 {
 _latestNews = latestNews;
 }
 public string LatestNews
 {
 get { return _latestNews; }
 }
}

// OldNewspaper class
public class OldNewspaper
{
 // Allow clients to get the news.
 public delegate void NewsEventHandler(Object sender, NewsEventArgs e);
 public event NewsEventHandler NewsEvent;

 // Provide nice wrapper for sending news to clients.
 public void TransmitStaleNews(string news)

350 | Chapter 9: Delegates, Events, and Lambda Expressions

This code sets up an event that will report the news to subscribers as it comes in. It
passes them the news data as an argument of type NewsEventArgs that has a
LatestNews property.

As you can see from this example, whenever you had to set up multiple event han-
dlers, it became an exercise in copy-and-paste and changing the event argument class
type over and over again. It would be nice to not have to define lots of delegates and
events just to change the event arguments, as all events (and corresponding han-
dlers) are supposed to look like this:

 void [EventHandler](object sender, [EventArgs] args)
 {
 // Do something about this event firing.
 }

Solution
EventHandler<T> takes a type parameter that represents the type of the System.
EventArgs derived class to use in your event handlers. The beauty of this is that you
no longer have to keep creating a delegate and an event for every event you wish to
publish from your class. Even better, the Framework only has to have one event dele-
gate instead of one for every event that passes custom data! Using the example
shown in the Problem section, you can now rewrite the declaration of the event han-
dler like this:

 // Old way
 public delegate void NewsEventHandler(Object sender, NewsEventArgs e);
 public event NewsEventHandler NewsEvent;

 // New way
 public event EventHandler<NewsEventArgs> NewsEvent;

Now, you set up the nice wrapper function to allow the user to easily trigger the
event:

 // Old way
 public void TransmitNews(string news)
 {
 // Copy to a temporary variable to be thread-safe.
 NewsEventHandler newsEvent = NewsEvent;
 if (newsEvent != null)
 newsEvent(this, new NewsEventArgs(news));
 }

 {
 // Copy to a temporary variable to be thread-safe.
 NewsEventHandler newsEvent = NewsEvent;
 if (newsEvent != null)
 newsEvent(this, new NewsEventArgs(news));
 }
}

Example 9-7. Using pre-.NET 2.0 event and event-handling methods (continued)

Set Up Event Handlers Without the Mess | 351

 // New way
 public void TransmitNews(string news)
 {
 // Copy to a temporary variable to be thread-safe.
 EventHandler<NewsEventArgs> breakingNews = NewsEvent;
 if (breakingNews != null)
 breakingNews(this, new NewsEventArgs(news));
 }

The client can then hook up to the OldNewspaper class like this:

// Old way
public class IWantToKnowThen
{
 public static void TryMe()
 {
 OldNewspaper DailyPaperFlash = new OldNewspaper();
 DailyPaperFlash.NewsEvent +=
 new OldNewspaper.NewsEventHandler(StaleNews);

 // send news
 DailyPaperFlash.TransmitStaleNews("Patriots win third super bowl!");
 DailyPaperFlash.TransmitStaleNews("W takes office amongst recount.");
 DailyPaperFlash.TransmitStaleNews("VS2005 is sooo passe");
 }

 private static void StaleNews(object src, NewsEventArgs nea)
 {
 Console.WriteLine(nea.LatestNews);
 }
}

// New way
public class IWantToKnowNow
{
 public static void Test()
 {
 eNewspaper DailyBitFlash = new eNewspaper();
 DailyBitFlash.NewsEvent +=
 new EventHandler<NewsEventArgs>(BreakingNews);

 // send breaking news
 DailyBitFlash.TransmitBreakingNews("Patriots win!");
 DailyBitFlash.TransmitBreakingNews("New pres coming in 08.");
 DailyBitFlash.TransmitBreakingNews("VS2008 & .NET 3.5 Rocks LA");
 }

 private static void BreakingNews(object src, NewsEventArgs nea)
 {
 Console.WriteLine(nea.LatestNews);
 }
}

352 | Chapter 9: Delegates, Events, and Lambda Expressions

Discussion
The main benefit of using the generic EventHandler instead of System.EventHandler is
that you write less code. Being able to declare a generic delegate allows you to have
one delegate definition for multiple types. You might ask: Why is this interesting?
Previously, when a delegate or event was declared by a class that wanted to publish
information and allow multiple client classes to subscribe to it, if any data were to be
passed along to the client classes, the convention was that a new class that derived
from System.EventArgs had to be created. Then the class would be instantiated, filled
with the data, and passed to the client. If the publishing class had only one event to
notify people of, this wasn’t too bad. If the publishing class had a lot of events, say,
like a class derived from a UserControl, there would have to be a separate class
derived from System.EventArgs and a separate event defined for every event that
needed different data passed to it. Now, with a generic delegate, you can simply
declare one delegate/event for each list of parameters you deal with, and then declare
the type-specific events you need. Since events are supposed to have this signature:

 void eventname(object sender, System.EventArgs args)

the kind folks at Microsoft gave you System.EventHandler<T> to deal with most
events. If your code does have events defined that have more than two parameters,
there would need to be a new delegate created to be the base of those events. Since
most events do not have more than two parameters, this is a bit nonstandard, but
not out of the question.

See Also
The “Generic EventHandler” and “System. EventHandler” topics in the MSDN
documentation.

9.9 Using Different Parameter Modifiers in Lambda
Expressions

Problem
You know you can pass parameters to lambda expressions, but you need to figure
out what parameter modifiers are valid with them.

Solution
Lambda expressions can use out and ref parameter modifiers but not the params
modifier in their parameter list. However, this does not prevent the creation of dele-
gates with any of these modifiers, as shown here:

 // Declare out delegate.
 delegate int DoOutWork(out string work);

Using Different Parameter Modifiers in Lambda Expressions | 353

 // Declare ref delegate.
 delegate int DoRefWork(ref string work);

 // Declare params delegate.
 delegate int DoParamsWork(params string[] workItems);

Even though the DoParamsWork delegate is defined with the params keyword on the
parameter, it can still be used as a type for a lambda expression, as you’ll see in a bit.
To use the DoOutWork delegate, create a lambda expression inline using the out key-
word and assign it to the DoOutWork delegate instance. Inside the lambda expression
body, the out variable s is assigned a value first (as it doesn’t have one by definition
as an out parameter), writes it to the console, and returns the string hash code. Note
that in the parameter list, the type of s (string) must be provided, as it is not inferred
for a variable marked with the out keyword. It is not inferred for out or ref variables
to preserve the representation at the call site and the parameter declaration site to
help the developer clearly reason about the possible assignment to these variables:

 // Declare instance and assign method.
 DoOutWork dow = (out string s) =>
 {
 s = "WorkFinished";
 Console.WriteLine(s);
 return s.GetHashCode();
 };

To run the lambda expression code, invoke the delegate with an out parameter, and
then print out the result to the console:

 // Invoke delegate.
 string work;
 int i = dow(out work);
 Console.WriteLine(work);

To use the ref parameter modifier in a lambda expression, you create an inline
method to hook up to the DoRefWork delegate with a ref parameter. In the method,
you show you can write the original value out, reassign the value, and get the hash
code of the new value. Note that in the parameter list, in the same manner as for the
out keyword, the type of s (string) must be provided, as it cannot be inferred for a
variable marked with the ref keyword:

 // Declare instance and assign method.
 DoRefWork drw = (ref string s) =>
 {
 Console.WriteLine(s);
 s = "WorkFinished";
 return s.GetHashCode();
 };

To run the lambda expression, you assign a value to the string work and then pass it
as a ref parameter to the DoRefWork delegate that is instantiated. Upon return from
the delegate call, you write out the new value for the work string:

354 | Chapter 9: Delegates, Events, and Lambda Expressions

 // Invoke delegate.
 work = "WorkStarted";
 i = drw(ref work);
 Console.WriteLine(work);

While it is possible to declare a delegate with the params modifier, you cannot hook
up the delegate using a lambda expression with the params keyword in the parameter
list. You get the CS1525 Invalid expression term 'params' compiler error on the
DoParamsWork line:

 // Done as a lambda expression you get CS1525 "Invalid expression term 'params'"
 DoParamsWork dpw = (params object[] workItems) =>
 //{
 // foreach (object o in workItems)
 // {
 // Console.WriteLine(o.ToString());
 // }
 // return o.GetHashCode();
 //};

Even if you try to do this using an anonymous method instead of a lambda expres-
sion, you still cannot hook up the delegate with the params keyword in the parame-
ter list. You get the CS1670 “params is not valid in this context” compiler error on
the DoParamsWork line:

// Done as an anonymous method you get CS1670 "params is not valid in this context"
 //DoParamsWork dpw = delegate(params object[] workItems)
 //{
 // foreach (object o in workItems)
 // {
 // Console.WriteLine(o.ToString());
 // }
 // return o.GetHashCode();
 //};

You can, however, omit the params keyword and still set up the lambda expression
for the delegate, as shown here:

 // All we have to do is omit the params keyword.
 DoParamsWork dpw = workItems =>
 {
 foreach (object o in workItems)
 {
 Console.WriteLine(o.ToString());
 }
 return workItems.GetHashCode();
 };

Notice that although you’ve removed the params keyword from the lambda expres-
sion, this doesn’t stop you from using the same syntax. The params keyword is
present on the delegate type, so you can invoke it thusly:

 int i = dpw("Hello", "42", "bar");

Using Different Parameter Modifiers in Lambda Expressions | 355

So this illustrates that you can bind a lambda expression to a delegate declared using
params, and once you’ve done that, you can invoke the lambda expression, passing in
any number of parameters you like, just as you’d expect.

Discussion
Lambda expressions cannot access the ref or out parameters of an outer scope. This
means any out or ref variables that were defined as part of the containing method
are off-limits for use inside the body of the lambda expression:

 // Declare delegate.
 delegate int DoWork(string work);

 public void TestOut(out string outStr)
 {
 // Declare instance.
 DoWork dw = s =>
 {
 Console.WriteLine(s);
 // Causes error CS1628:
 // "Cannot use ref or out parameter 'outStr' inside an
 // anonymous method, lambda expression, or query expression"
 //outStr = s;
 return s.GetHashCode();
 };
 // Invoke delegate.
 int i = dw("DoWorkMethodImpl1");
 }

 public void TestRef(ref string refStr)
 {
 // Declare instance.
 DoWork dw = s =>
 {
 Console.WriteLine(s);
 // Causes error CS1628:
 // "Cannot use ref or out parameter 'refStr' inside an
 // anonymous method, lambda expression, or query expression"
 // refStr = s;
 return s.GetHashCode();
 };
 // Invoke delegate
 int i = dw("DoWorkMethodImpl1");
 }

Interestingly enough, lambda expressions can access outer variables with the params
modifier:

 // Declare delegate.
 delegate int DoWork(string work);

 public void TestParams(params string[] items)
 {

356 | Chapter 9: Delegates, Events, and Lambda Expressions

 // Declare instance.
 DoWork dw = s =>
 {
 Console.WriteLine(s);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 return s.GetHashCode();
 };
 // Invoke delegate.
 int i = dw("DoWorkMethodImpl1");
 }

Because the params modifier is there for the benefit of the calling site (so the com-
piler knows to make this a method call that supports variable-length argument lists)
and because lambda expressions are never called directly (always called via a dele-
gate), then it makes no sense for an lambda expression to be decorated with some-
thing there for the benefit of the calling site—there is no calling site. This is why it
doesn’t matter that you can’t use the params keyword on a lambda expression. For
lambda expressions, the calling site is always calling through the delegate, so what
matters is whether that delegate has the params keyword or not.

See Also
Recipe 9.11; the “CS1670,” “CS1525,” “CS1628,” “out,” “ref,” “params,” and “Sys-
tem.ParamArrayAttribute” topics in the MSDN documentation.

9.10 Using Closures in C#

Problem
You want to associate a small amount of state with some behavior without going to
the trouble of building a new class.

Solution
Use lambda expressions to implement closures. Closures can be defined as functions
that capture the state of the environment that is in scope where they are declared.
Put more simply, they are current state plus some behavior that can read and modify
that state. Lambda expressions have the capacity to capture external variables and
extend their lifetime, which makes closures possible in C#.

To show an example of this, you will build a quick reporting system that tracks sales
personnel and their revenue production versus commissions. The closure behavior is
that you can build one bit of code that does the commission calculations per quarter
and works on every salesperson.

Using Closures in C# | 357

First, you have to define your sales personnel:

class SalesWeasel
{
 #region CTOR
 public SalesWeasel()
 {
 }

 public SalesWeasel(string name,
 decimal annualQuota,
 decimal commissionRate)
 {
 this.Name = name;
 this.AnnualQuota = annualQuota;
 this.CommissionRate = commissionRate;
 }
 #endregion //CTOR

 #region Private Members
 decimal _commission;
 #endregion Private Members

 #region Properties
 public string Name { get; set; }

 public decimal AnnualQuota { get; set; }

 public decimal CommissionRate { get; set; }

 public decimal Commission
 {
 get { return _commission; }
 set
 {
 _commission = value;
 this.TotalCommission += _commission;
 }
 }

 public decimal TotalCommission {get; private set; }
 #endregion // Properties
}

Sales personnel have a name, an annual quota, a commission rate for sales, and some
storage for holding a quarterly commission and a total commission. Now that you
have something to work with, let’s write a bit of code to do the work of calculating
the commissions:

 delegate void CalculateEarnings(SalesWeasel weasel);

 static CalculateEarnings GetEarningsCalculator(decimal quarterlySales,
 decimal bonusRate)
 {

358 | Chapter 9: Delegates, Events, and Lambda Expressions

 return salesWeasel =>
 {
 // Figure out the weasel's quota for the quarter.
 decimal quarterlyQuota = (salesWeasel.AnnualQuota / 4);
 // Did he make quota for the quarter?
 if (quarterlySales < quarterlyQuota)
 {
 // Didn't make quota, no commission
 salesWeasel.Commission = 0;
 }
 // Check for bonus-level performance (200% of quota).
 else if (quarterlySales > (quarterlyQuota * 2.0m))
 {
 decimal baseCommission = quarterlyQuota *
 salesWeasel.CommissionRate;
 weasel.Commission = (baseCommission +
 ((quarterlySales - quarterlyQuota) *
 (salesWeasel.CommissionRate * (1 + bonusRate))));
 }
 else // Just regular commission
 {
 salesWeasel.Commission =
 salesWeasel.CommissionRate * quarterlySales;
 }
 };
 }

You’ve declared the delegate type as CalculateEarnings, and it takes a SalesWeasel.
You have a factory method to construct an instance of this delegate for you called
GetEarningsCalculator, which creates a lambda expression to do the calculation of
the SalesWeasel’s commission and returns a CalculateEarnings instantiation.

To get set up, you have to create your SalesWeasels:

// set up the sales weasels...
SalesWeasel[] weasels = {
 new SalesWeasel { Name="Chas", AnnualQuota=100000m, CommissionRate=0.10m },
 new SalesWeasel { Name="Ray", AnnualQuota=200000m, CommissionRate=0.025m },
 new SalesWeasel { Name="Biff", AnnualQuota=50000m, CommissionRate=0.001m }};

Then set up the earnings calculators based on quarterly earnings:

public class QuarterlyEarning
{
 public string Name { get; set; }
 public decimal Earnings { get; set; }
 public decimal Rate { get; set; }
}

QuarterlyEarning[] quarterlyEarnings =
 { new QuarterlyEarning(){ Name="Q1", Earnings = 65000m, Rate = 0.1m },
 new QuarterlyEarning(){ Name="Q2", Earnings = 20000m, Rate = 0.1m },
 new QuarterlyEarning(){ Name="Q3", Earnings = 37000m, Rate = 0.1m },
 new QuarterlyEarning(){ Name="Q4", Earnings = 110000m, Rate = 0.
15m}};

Using Closures in C# | 359

var calculators = from e in quarterlyEarnings
 select new
 {
 Calculator =
 GetEarningsCalculator(e.Earnings, e.Rate),
 QuarterlyEarning = e
 };

And, finally, run the numbers for each quarter for all SalesWeasels and then you can
generate the annual report from this data. This will tell the executives which sales
personnel are worth keeping by calling WriteCommissionReport:

decimal annualEarnings = 0;
foreach (var c in calculators)
{
 WriteQuarterlyReport(c.QuarterlyEarning.Name,
 c.QuarterlyEarning.Earnings, c.Calculator, weasels);
 annualEarnings += c.QuarterlyEarning.Earnings;
}

// Let's see who is worth keeping...
WriteCommissionReport(annualEarnings, weasels);

WriteQuarterlyReport invokes the CalculateEarnings lambda expression implemen-
tation (eCalc) for every SalesWeasel and modifies the state to assign quarterly com-
mission values based on the commission rates for each one:

 static void WriteQuarterlyReport(string quarter,
 decimal quarterlySales,
 CalculateEarnings eCalc,
 SalesWeasel[] weasels)
 {
 Console.WriteLine("{0} Sales Earnings on Quarterly Sales of {1}:",
 quarter, quarterlySales.ToString("C"));
 foreach (SalesWeasel weasel in weasels)
 {
 // Calc commission
 eCalc(weasel);
 // Report
 Console.WriteLine(" SalesWeasel {0} made a commission of : {1}",

 weasel.Name, weasel.Commission.ToString("C"));
 }
 }

WriteCommissionReport checks the revenue earned by the individual sales personnel
against his commission, and if his commission is more than 20 percent of the reve-
nue they generated, you recommend action be taken:

static void WriteCommissionReport(decimal annualEarnings,
 SalesWeasel[] weasels)
{
 decimal revenueProduced = ((annualEarnings) / weasels.Length);
 Console.WriteLine("");

360 | Chapter 9: Delegates, Events, and Lambda Expressions

 Console.WriteLine("Annual Earnings were {0}",
 annualEarnings.ToString("C"));
 Console.WriteLine("");
 var whoToCan = from weasel in weasels
 select new
 {
 // if his commission is more than 20%
 // of what he produced, can him
 CanThem = (revenueProduced * 0.2m) <
 weasel.TotalCommission,
 weasel.Name,
 weasel.TotalCommission
 };

 foreach (var weaselInfo in whoToCan)
 {
 Console.WriteLine(" Paid {0} {1} to produce {2}",
 weaselInfo.Name,
 weaselInfo.TotalCommission.ToString("C"),
 revenueProduced.ToString("C"));
 if (weaselInfo.CanThem)
 {
 Console.WriteLine(" FIRE {0}!", weaselInfo.Name);
 }
 }
}

The output for your revenue and commission tracking program is listed here for your
enjoyment:

 Q1 Sales Earnings on Quarterly Sales of $65,000.00:
 SalesWeasel Chas made a commission of : $6,900.00
 SalesWeasel Ray made a commission of : $1,625.00
 SalesWeasel Biff made a commission of : $70.25
 Q2 Sales Earnings on Quarterly Sales of $20,000.00:
 SalesWeasel Chas made a commission of : $0.00
 SalesWeasel Ray made a commission of : $0.00
 SalesWeasel Biff made a commission of : $20.00
 Q3 Sales Earnings on Quarterly Sales of $37,000.00:
 SalesWeasel Chas made a commission of : $3,700.00
 SalesWeasel Ray made a commission of : $0.00
 SalesWeasel Biff made a commission of : $39.45
 Q4 Sales Earnings on Quarterly Sales of $110,000.00:
 SalesWeasel Chas made a commission of : $12,275.00
 SalesWeasel Ray made a commission of : $2,975.00
 SalesWeasel Biff made a commission of : $124.63

 Annual Earnings were $232,000.00

 Paid Chas $22,875.00 to produce $77,333.33
 FIRE Chas!
 Paid Ray $4,600.00 to produce $77,333.33
 Paid Biff $254.33 to produce $77,333.33

Performing Multiple Operations on a List Using Functors | 361

Discussion
One of the best ways we’ve heard of to describe closures in C# is to think of an
object as a set of methods associated with data and to think of a closure as a set of
data associated with a function. If you need to have several different operations on
the same data, an object approach may make more sense. These are two different
angles on the same problem, and the type of problem you are solving will help you
decide which is the right approach. It just depends on your inclination as to which
way to go. There are times when one-hundred-percent pure object-oriented pro-
gramming can get tedious and is unnecessary, and closures are a nice way to solve
some of those problems. The SalesWeasel commission example presented here is a
demonstration of what you can do with closures. It could have been done without
them, but at the expense of writing more class and method code.

Closures have been defined as stated earlier, but there is a stricter definition that
essentially implies that the behavior associated with the state should not be able to
modify the state in order to be a true closure. We tend to agree more with the first
definition, as it defines what a closure should be, not how it should be implemented,
which seems too restrictive. Whether you choose to think of this as a neat side fea-
ture of lambda expressions or you feel it is worthy of being called a closure, it is
another programming trick for your toolbox and should not be dismissed.

See Also
Recipe 9.11; the “Lambda Expressions” topic in the MSDN documentation.

9.11 Performing Multiple Operations on a List Using
Functors

Problem
You want to be able to perform multiple operations on an entire collection of objects
at once, while keeping the operations functionally segmented.

Solution
Use a functor (or function object, as it is also known) as the vehicle for transforming
the collection. A functor is any object that can be called as a function. Examples of
this are a delegate, a function, a function pointer, or even an object that defines
operator() for us C/C++ converts.

Needing to perform multiple operations on a collection is a reasonably common
thing in software. Let’s say that you have a stock portfolio with a bunch of stocks in
it. Your StockPortfolio class would have a List of Stock object and would be able to
add stocks:

362 | Chapter 9: Delegates, Events, and Lambda Expressions

public class StockPortfolio : IEnumerable<Stock>
{
 List<Stock> _stocks;

 public StockPortfolio()
 {
 _stocks = new List<Stock>();
 }

 public void Add(string ticker, double gainLoss)
 {
 _stocks.Add(new Stock() {Ticker=ticker, GainLoss=gainLoss});
 }

 public IEnumerable<Stock> GetWorstPerformers(int topNumber)
 {
 return _stocks.OrderBy(
 (Stock stock) => stock.GainLoss).Take(topNumber);
 }

 public void SellStocks(IEnumerable<Stock> stocks)
 {
 foreach(Stock s in stocks)
 _stocks.Remove(s);
 }

 public void PrintPortfolio(string title)
 {
 Console.WriteLine(title);
 _stocks.DisplayStocks();
 }

 #region IEnumerable<Stock> Members

 public IEnumerator<Stock> GetEnumerator()
 {
 return _stocks.GetEnumerator();
 }

 #endregion

 #region IEnumerable Members

 IEnumerator IEnumerable.GetEnumerator()
 {
 return this.GetEnumerator();
 }

 #endregion
}

The Stock class is rather simple. You just need a ticker symbol for the stock and its
percentage of gain or loss:

Performing Multiple Operations on a List Using Functors | 363

public class Stock
{
 public double GainLoss { get; set; }
 public string Ticker { get; set; }
}

To use this StockPortfolio, you add a few stocks to it with gain/loss percentages and
print out your starting portfolio. Once you have the portfolio, you want to get a list
of the three worst-performing stocks, so you can improve your portfolio by selling
them and print out your portfolio again:

StockPortfolio tech = new StockPortfolio() {
 {"OU81", -10.5},
 {"C#4VR", 2.0},
 {"PCKD", 12.3},
 {"BTML", 0.5},
 {"NOVB", -35.2},
 {"MGDCD", 15.7},
 {"GNRCS", 4.0},
 {"FNCTR", 9.16},
 {"LMBDA", 9.12},
 {"PCLS", 6.11}};

tech.PrintPortfolio("Starting Portfolio");
// sell the worst 3 performers
var worstPerformers = tech.GetWorstPerformers(3);
Console.WriteLine("Selling the worst performers:");
worstPerformers.DisplayStocks();
tech.SellStocks(worstPerformers);
tech.PrintPortfolio("After Selling Worst 3 Performers");

So far, nothing terribly interesting is happening. Let’s take a look at how you figured
out what the three worst performers were by looking at the internals of the
GetWorstPerformers method:

public IEnumerable<Stock> GetWorstPerformers(int topNumber)
{
 return _stocks.OrderBy(
 (Stock stock) => stock.GainLoss).Take(topNumber);
}

The first thing you do is make sure the list is sorted so that the worst performing
stocks are at the front of the list by calling the OrderBy extension method on
IEnumerable<T>. The OrderBy method takes a lambda expression which provides the
gain/loss percentage for comparison for the number of stocks indicated by topNumber
in the Take extension method.

GetWorstPerformers returns an IEnumerable<Stock> full of the three worst perform-
ers. Since they aren’t making any money, you should cash in and sell them. For your
purposes, selling is simply removing them from the list of stocks in StockPortfolio.
To accomplish this, you use yet another functor to iterate over the list of stocks
handed to the SellStocks function (the list of worst-performing ones, in your case),

364 | Chapter 9: Delegates, Events, and Lambda Expressions

and then remove that stock from the internal list that the StockPortfolio class
maintains:

 public void SellStocks(IEnumerable<Stock> stocks)
 {
 foreach(Stock s in stocks)
 _stocks.Remove(s);
 }

Discussion
Functors come in a few different flavors that are known as a generator (a function
with no parameters), a unary function (a function with one parameter), and a binary
function (a function with two parameters). If the functor happens to return a Bool-
ean value, then it gets an even more special naming convention: a unary function
that returns a Boolean is called a predicate, and a binary function with a Boolean
return is called a binary predicate. You will now notice in the Framework that there
are both Predicate<T> and BinaryPredicate<T> delegates defined to facilitate these
uses of functors.

The List<T> and System.Array classes take predicates (Predicate<T>,
BinaryPredicate<T>), actions (Action<T>), comparisons (Comparison<T>), and convert-
ers (Converter<T,U>). This allows these collections to be operated on in a much more
general way than was previously possible.

Thinking in terms of functors can be a bit of a challenge at first, but once you put a
bit of time into it, you can start to see powerful possibilities open up before you. Any
code you can write once, debug once, and use many times is a useful thing, and func-
tors can help you get to that place.

The output for the example is listed here:

Starting Portfolio
 (OU81) lost 10.5%
 (C#4VR) gained 2%
 (PCKD) gained 12.3%
 (BTML) gained 0.5%
 (NOVB) lost 35.2%
 (MGDCD) gained 15.7%
 (GNRCS) gained 4%
 (FNCTR) gained 9.16%
 (LMBDA) gained 9.12%
 (PCLS) gained 6.11%
Selling the worst performers:
 (NOVB) lost 35.2%
 (OU81) lost 10.5%
 (BTML) gained 0.5%

Performing Multiple Operations on a List Using Functors | 365

After Selling Worst 3 Performers
 (C#4VR) gained 2%
 (PCKD) gained 12.3%
 (MGDCD) gained 15.7%
 (GNRCS) gained 4%
 (FNCTR) gained 9.16%
 (LMBDA) gained 9.12%
 (PCLS) gained 6.11%

See Also
The “System.Collections.Generic.List<T>,” “System.Linq.Enumerable Class,” and
“System.Array” topics in the MSDN documentation.

366

Chapter 10CHAPTER 10

Regular Expressions 10

10.0 Introduction
The .NET Framework Class Library includes the System.Text.RegularExpressions
namespace, which is devoted to creating, executing, and obtaining results from regu-
lar expressions executed against a string.

Regular expressions take the form of a pattern that can be matched to zero or more
characters within a string. The simplest of these patterns, such as .* (match anything
except newline characters) and [A-Za-z] (match any letter) are easy to learn, but
more advanced patterns can be difficult to learn and even more difficult to imple-
ment correctly. Learning and understanding regular expressions can take consider-
able time and effort, but the work will pay off.

Regular expression patterns can take a simple form—such as a single word or char-
acter—or a much more complex pattern. The more complex patterns can recognize
and match such things as the year portion of a date, all of the <SCRIPT> tags in an ASP
page, or a phrase in a sentence that varies with each use. The .NET regular expres-
sion classes provide a very flexible and powerful way to do such things as recognize
text, replace text within a string, and split up text into individual sections based on
one or more complex delimiters.

Despite the complexity of regular expression patterns, the regular expression classes
in the FCL are easy to use in your applications. Executing a regular expression con-
sists of the following steps:

1. Create an instance of a Regex object that contains the regular expression pattern
along with any options for executing that pattern.

2. Retrieve a reference to an instance of a Match object by calling the Match instance
method if you want only the first match found. Or, retrieve a reference to an
instance of the MatchesCollection object by calling the Matches instance method
if you want more than just the first match found. If, however, you want to know

Enumerating Matches | 367

only whether the input string was a match and do not need the extra details on
the nature of the match, you can use the Regex.IsMatch method.

3. If you’ve called the Matches method to retrieve a MatchCollection object, iterate
over the MatchCollection using a foreach loop. Each iteration will allow access to
every Match object that the regular expression produced.

10.1 Enumerating Matches

Problem
You need to find one or more substrings corresponding to a particular pattern within
a string. You need to be able to inform the searching code to return either all match-
ing substrings or only the matching substrings that are unique within the set of all
matched strings.

Solution
Call the FindSubstrings method shown in Example 10-1, which executes a regular
expression and obtains all matching text. This method returns either all matching
results or only the unique matches; this behavior is controlled by the findAllUnique
parameter. Note that if the findAllUnique parameter is set to true, the unique
matches are returned sorted alphabetically.

Example 10-1. FindSubstrings method

using System;
using System.Collections;
using System.Text.RegularExpressions;

public static Match[] FindSubstrings(string source, string matchPattern,
 bool findAllUnique)
{
 SortedList uniqueMatches = new SortedList();
 Match[] retArray = null;

 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 if (findAllUnique)
 {
 for (int counter = 0; counter < theMatches.Count; counter++)
 {
 if (!uniqueMatches.ContainsKey(theMatches[counter].Value))
 {

 uniqueMatches.Add(theMatches[counter].Value,
 theMatches[counter]);
 }
 }

368 | Chapter 10: Regular Expressions

The TestFindSubstrings method shown in Example 10-2 searches for any tags in an
XML string; it does this by searching for a block of text that begins with the < char-
acter and ends with the > character.

This method first displays all unique tag matches present in the XML string and then
displays all tag matches within the string.

 retArray = new Match[uniqueMatches.Count];
 uniqueMatches.Values.CopyTo(retArray, 0);
 }
 else
 {
 retArray = new Match[theMatches.Count];
 theMatches.CopyTo(retArray, 0);
 }

 return (retArray);

}

Example 10-2. The TestFindSubstrings method

public static void TestFindSubstrings()
{
 string matchPattern = "<.*>";

 XDocument xDoc = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XComment("my comment"),
 new XElement("Window", new XAttribute("ID", "Main"),
 new XElement("Control", new XAttribute("ID", "TextBox"),
 new XElement("Property", new XAttribute("Top", "0"),
 new XAttribute("Left", "0"), new XAttribute("Text", "BLANK"))),
 new XElement("Control", new XAttribute("ID", "Label"),
 new XElement("Property", new XAttribute("Top", "0"),
 new XAttribute("Left", "0"),
 new XAttribute("Caption", "Enter Name Here"))),
 new XElement("Control", new XAttribute("ID", "Label"),
 new XElement("Property", new XAttribute("Top", "0"),
 new XAttribute("Left", "0"),
 new XAttribute("Caption", "Enter Name Here")))
)
);

 Console.WriteLine("UNIQUE MATCHES");
 Match[] x1 = FindSubstrings(xDoc.ToString(), matchPattern, true);
 foreach(Match m in x1)
 {
 Console.WriteLine(m.Value);
 }

 Console.WriteLine();

Example 10-1. FindSubstrings method (continued)

Enumerating Matches | 369

The following text will be displayed:

UNIQUE MATCHES
<!--my comment-->
</Control>
</Window>
<Control ID="Label">
<Control ID="TextBox">
<Property Top="0" Left="0" Caption="Enter Name Here" />
<Property Top="0" Left="0" Text="BLANK" />
<Window ID="Main">

ALL MATCHES
<!--my comment-->
<Window ID="Main">
<Control ID="TextBox">
<Property Top="0" Left="0" Text="BLANK" />
</Control>
<Control ID="Label">
<Property Top="0" Left="0" Caption="Enter Name Here" />
</Control>
<Control ID="Label">
<Property Top="0" Left="0" Caption="Enter Name Here" />
</Control>
</Window>

Discussion
As you can see, the regular expression classes in the FCL are quite easy to use. The
first step is to create an instance of the Regex object that contains the regular expres-
sion pattern, along with any options for running this pattern. The second step is to
get a reference to an instance of the Match object, if you need only the first found
match; or a MatchCollection object, if you need more than just the first found match.
To get a reference to this object, the two instance methods Match and Matches can be
called from the Regex object that was created in the first step. The Match method
returns a single match object (Match) and Matches returns a collection of match
objects (MatchCollection).

The FindSubstrings method returns an array of Match objects that can be used by the
calling code. You may have noticed that the unique elements are returned sorted,
and the nonunique elements are not sorted. A SortedList, which is used by the

 Console.WriteLine("ALL MATCHES");
 Match[] x2 = FindSubstrings(xDoc.ToString(), matchPattern, false);
 foreach(Match m in x2)
 {
 Console.WriteLine(m.Value);
 }
}

Example 10-2. The TestFindSubstrings method (continued)

370 | Chapter 10: Regular Expressions

FindSubstrings method to store unique strings that match the regular expression pat-
tern, automatically sorts its items when they are added.

The regular expression used in the TestFindSubstrings method is very simplistic and
will work in most—but not all—conditions. For example, if two tags are on the same
line, as shown here:

 <tagData></tagData>

the regular expression will catch the entire line, not each tag separately. You could
change the regular expression from <.*> to <[^>]*> to match only up to the closing
> ([^>]* matches everything that is not a >).

See Also
The “.NET Framework Regular Expressions” and “SortedList Class” topics in the
MSDN documentation.

10.2 Extracting Groups from a MatchCollection

Problem
You have a regular expression that contains one or more named groups, such as the
following:

 \\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\

where the named group TheServer will match any server name within a UNC string,
and TheService will match any service name within a UNC string.

This pattern does not match the UNCW format.

You need to store the groups that are returned by this regular expression in a keyed
collection (such as a Dictionary<string, Group>) in which the key is the group name.

Solution
The ExtractGroupings method shown in Example 10-3 obtains a set of Group objects
keyed by their matching group name.

Example 10-3. ExtractGroupings method

using System;
using System.Collections;
using System.Collections.Generics;
using System.Text.RegularExpressions;

Extracting Groups from a MatchCollection | 371

The ExtractGroupings method can be used in the following manner to extract named
groups and organize them by name:

 public static void TestExtractGroupings()
 {
 string source = @"Path = ""\\MyServer\MyService\MyPath;
 \\MyServer2\MyService2\MyPath2\""";
 string matchPattern = @"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

 foreach (Dictionary<string, Group> grouping in
 ExtractGroupings(source, matchPattern, true))
 {
 foreach (KeyValuePair<string, Group> kvp in grouping)
 Console.WriteLine("Key / Value = " + kvp.Key + " / " + kvp.Value);
 Console.WriteLine("");
 }
 }

public static List<Dictionary<string, Group>> ExtractGroupings(string source,
 string matchPattern,
 bool wantInitialMatch)
{
 List<Dictionary<string, Group>> keyedMatches =
 new List<Dictionary<string, Group>>();
 int startingElement = 1;
 if (wantInitialMatch)
 {
 startingElement = 0;
 }

 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 foreach(Match m in theMatches)
 {
 Dictionary<string, Group> groupings = new Dictionary<string, Group>();

 for (int counter = startingElement; counter < m.Groups.Count; counter++)
 {
 // If we had just returned the MatchCollection directly, the
 // GroupNameFromNumber method would not be available to use.
 groupings.Add(RE.GroupNameFromNumber(counter), m.Groups[counter]);
 }

 keyedMatches.Add(groupings);
 }

 return (keyedMatches);
}

Example 10-3. ExtractGroupings method (continued)

372 | Chapter 10: Regular Expressions

This test method creates a source string and a regular expression pattern in the
MatchPattern variable. The two groupings in this regular expression are highlighted
here:

 string matchPattern = @"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

The names for these two groups are TheServer and TheService. Text that matches
either of these groupings can be accessed through these group names.

The source and matchPattern variables are passed in to the ExtractGroupings method,
along with a Boolean value, which is discussed shortly. This method returns a List<T>;
containing Dictionary<string,Group> objects. These Dictionary<string,Group> objects
contain the matches for each of the named groups in the regular expression, keyed by
their group name.

This test method, TestExtractGroupings, returns the following:

 Key / Value = 0 / \\MyServer\MyService\
 Key / Value = TheService / MyService
 Key / Value = TheServer / MyServer

 Key / Value = 0 / \\MyServer2\MyService2\
 Key / Value = TheService / MyService2
 Key / Value = TheServer / MyServer2

If the last parameter to the ExtractGroupings method were to be changed to false,
the following output would result:

 Key / Value = TheService / MyService
 Key / Value = TheServer / MyServer

 Key / Value = TheService / MyService2
 Key / Value = TheServer / MyServer2

The only difference between these two outputs is that the first grouping is not dis-
played when the last parameter to ExtractGroupings is changed to false. The first
grouping is always the complete match of the regular expression.

Discussion
Groups within a regular expression can be defined in one of two ways. The first way
is to add parentheses around the subpattern that you wish to define as a grouping.
This type of grouping is sometimes labeled as unnamed. This grouping can later be
easily extracted from the final text in each Match object returned by running the regu-
lar expression. The regular expression for this recipe could be modified, as follows,
to use a simple unnamed group:

 string matchPattern = @"\\\\(\w*)\\(\w*)\\";

After running the regular expression, you can access these groups using a numeric
integer value starting with 1.

Verifying the Syntax of a Regular Expression | 373

The second way to define a group within a regular expression is to use one or more
named groups. A named group is defined by adding parentheses around the subpat-
tern that you wish to define as a grouping and, additionally, adding a name to each
grouping, using the following syntax:

 (?<Name>\w*)

The Name portion of this syntax is the name you specify for this group. After execut-
ing this regular expression, you can access this group by the name Name.

To access each group, you must first use a loop to iterate each Match object in the
MatchCollection. For each Match object, you access the GroupCollection’s indexer,
using the following unnamed syntax:

 string group1 = m.Groups[1].Value;
 string group2 = m.Groups[2].Value;

or the following named syntax, where m is the Match object:

 string group1 = m.Groups["Group1_Name"].Value;
 string group2 = m.Groups["Group2_Name"].Value;

If the Match method was used to return a single Match object instead of the
MatchCollection, use the following syntax to access each group:

 // Unnamed syntax
 string group1 = theMatch.Groups[1].Value;
 string group2 = theMatch.Groups[2].Value;

 // Named syntax
 string group1 = theMatch.Groups["Group1_Name"].Value;
 string group2 = theMatch.Groups["Group2_Name"].Value;

where theMatch is the Match object returned by the Match method.

See Also
The “.NET Framework Regular Expressions” and “Dictionary Class” topics in the
MSDN documentation.

10.3 Verifying the Syntax of a Regular Expression

Problem
You have constructed a regular expression dynamically, either from your code or
based on user input. You need to test the validity of this regular expression’s syntax
before you actually use it.

Solution
Use the VerifyRegEx method shown in Example 10-4 to test the validity of a regular
expression’s syntax.

374 | Chapter 10: Regular Expressions

To use this method, pass it the regular expression that you wish to verify:

 public static void TestUserInputRegEx(string regEx)
 {
 if (VerifyRegEx(regEx))
 Console.WriteLine("This is a valid regular expression.");
 else
 Console.WriteLine("This is not a valid regular expression.");
 }

Discussion
The VerifyRegEx method calls the static Regex.Match method, which is useful for run-
ning regular expressions on the fly against a string. The static Regex.Match method
returns a single Match object. By using this static method to run a regular expression
against a string (in this case, an empty string), you can determine whether the regu-
lar expression is invalid by watching for a thrown exception. The Regex.Match
method will throw an ArgumentException if the regular expression is not syntactically
correct. The Message property of this exception contains the reason the regular
expression failed to run, and the ParamName property contains the regular expression
passed to the Match method. Both of these properties are read-only.

Example 10-4. VerifyRegEx method

using System;
using System.Text.RegularExpressions;

public static bool VerifyRegEx(string testPattern)
{
 bool isValid = true;
 if ((testPattern != null) && (testPattern.Length > 0))
 {
 try
 {
 Regex.Match("", testPattern);
 }
 catch (ArgumentException)
 {
 // BAD PATTERN: syntax error
 isValid = false;
 }
 }
 else
 {
 //BAD PATTERN: pattern is null or empty
 isValid = false;
 }

 return (isValid);
}

Quickly Finding Only the Last Match in a String | 375

Before testing the regular expression with the static Match method, the regular
expression is tested to see if it is null or blank. A null regular expression string
returns an ArgumentNullException when passed in to the Match method. On the other
hand, if a blank regular expression is passed in to the Match method, no exception is
thrown (as long as a valid string is also passed to the first parameter of the Match
method).

10.4 Quickly Finding Only the Last Match in a String

Problem
You need to find the last pattern match in a string, but you do not want the over-
head of finding all matches in a string and having to move to the last match in the
collection of matches.

Solution
To execute a regular expression starting from the end of the string, use the
RegexOptions.RightToLeft flag. The first found match is the last match in the string.
You supply the RegexOptions.RightToLeft constant as an argument to the Match
method. The instance Match method can be used as follows:

 Regex RE = new Regex(Pattern, RegexOptions.RightToLeft);
 Match theMatch = RE.Match(Source);

or use the static Regex.Match method:

 Match theMatch = Regex.Match(Source, Pattern, RegexOptions.RightToLeft);

where Pattern is the regular expression pattern and Source is the string against which
to run the pattern.

Discussion
The RegexOptions.RightToLeft regular expression option will force the regular
expression engine to start searching for a pattern starting with the end of the string
and proceeding backward toward the beginning of the string. The first match
encountered will be the match closest to the end of the string—in other words, the
last match in the string.

See Also
The “.NET Framework Regular Expressions” topic in the MSDN documentation.

376 | Chapter 10: Regular Expressions

10.5 Augmenting the Basic String Replacement
Function

Problem
You need to replace character patterns within the target string with a new string.
However, in this case, each replacement operation has a unique set of conditions
that must be satisfied in order to allow the replacement to occur.

Solution
Use the overloaded instance Replace method shown in Example 10-5 that accepts a
MatchEvaluator delegate along with its other parameters. The MatchEvaluator dele-
gate is a callback method that overrides the default behavior of the Replace method.

Example 10-5. Overloaded Replace method that accepts a MatchEvaluator delegate

using System;
using System.Text.RegularExpressions;

public static string MatchHandler(Match theMatch)
{
 // Handle all ControlID_ entries.
 if (theMatch.Value.StartsWith("ControlID_", StringComparison.Ordinal))
 {
 long controlValue = 0;

 // Obtain the numeric value of the Top attribute.
 Match topAttribiteMatch = Regex.Match(theMatch.Value, "Top=([-]*\\d*)");
 if (topAttribiteMatch.Success)
 {

 if (topAttribiteMatch.Groups[1].Value.Trim().Equals(""))
 {
 // If blank, set to zero.
 return (theMatch.Value.Replace(
 topAttribiteMatch.Groups[0].Value.Trim(),
 "Top=0"));
 }
 else if (topAttribiteMatch.Groups[1].Value.Trim().StartsWith("-"
 , StringComparison.Ordinal))
 {
 // If only a negative sign (syntax error), set to zero.
 return (theMatch.Value.Replace(
 topAttribiteMatch.Groups[0].Value.Trim(), "Top=0"));
 }
 else
 {
 // We have a valid number.
 // Convert the matched string to a numeric value.
 controlValue = long.Parse(topAttribiteMatch.Groups[1].Value,

Augmenting the Basic String Replacement Function | 377

The callback method for the Replace method is shown here:

 public static void ComplexReplace(string matchPattern, string source)
 {
 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);
 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 string newString = RE.Replace(source, replaceCallback);

 Console.WriteLine("Replaced String = " + newString);
 }

To use this callback method with the static Replace method, modify the previous
ComplexReplace method as follows:

 public void ComplexReplace(string matchPattern, string source)
 {
 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);

string newString = Regex.Replace(source, matchPattern,
replaceCallback);
 Console.WriteLine("Replaced String = " + newString);
 }

where source is the original string to run the replace operation against, and
matchPattern is the regular expression pattern to match in the source string.

If the ComplexReplace method is called from the following code:

 public static void TestComplexReplace()
 {
 string matchPattern = "(ControlID_.*)";
 string source = @"WindowID=Main
 ControlID_TextBox1 Top=–100 Left=0 Text=BLANK
 ControlID_Label1 Top=9999990 Left=0 Caption=Enter Name Here
 ControlID_Label2 Top= Left=0 Caption=Enter Name Here";

 ComplexReplace(matchPattern, source);
 }

 System.Globalization.NumberStyles.Any);

 // If the Top attribute is out of the specified range,
 // set it to zero.
 if (controlValue < 0 || controlValue > 5000)
 {
 return (theMatch.Value.Replace(
 topAttribiteMatch.Groups[0].Value.Trim(),
 "Top=0"));
 }
 }
 }
 }

 return (theMatch.Value);
}

Example 10-5. Overloaded Replace method that accepts a MatchEvaluator delegate (continued)

378 | Chapter 10: Regular Expressions

only the Top attributes of the ControlID_* lines are changed from their original values
to 0.

The result of this replace action will change the Top attribute value of a ControlID_*
line to zero if it is less than zero or greater than 5000. Any other tag that contains a
Top attribute will remain unchanged. The following three lines of the source string
will be changed from:

 ControlID_TextBox1 Top=–100 Left=0 Text=BLANK
 ControlID_Label1 Top=9999990 Left=0 Caption=Enter Name Here
 ControlID_Label2 Top= Left=0 Caption=Enter Name Here";

to:

 ControlID_TextBox1 Top=0 Left=0 Text=BLANK
 ControlID_Label1 Top=0 Left=0 Caption=Enter Name Here
 ControlID_Label2 Top=0 Left=0 Caption=Enter Name Here";

Discussion
The MatchEvaluator delegate, which is automatically invoked when it is supplied as a
parameter to the Regex class’s Replace method, allows for custom replacement of
each string that conforms to the regular expression pattern.

If the current Match object is operating on a ControlID_* line with a Top attribute that
is out of the specified range, the code within the MatchHandler callback method
returns a new modified string. Otherwise, the currently matched string is returned
unchanged. This ability allows you to override the default Replace functionality by
replacing only that part of the source string that meets certain criteria. The code
within this callback method gives you some idea of what can be accomplished using
this replacement technique.

To make use of this callback method, you need a way to call it from the
ComplexReplace method. First, a variable of type System.Text.RegularExpressions.
MatchEvaluator is created. This variable (replaceCallback) is the delegate that is used
to call the MatchHandler method:

 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);

Finally, the Replace method is called with the reference to the MatchEvaluator dele-
gate passed in as a parameter:

 string newString = RE.Replace(source, replaceCallback);

See Also
The “.NET Framework Regular Expressions” topic in the MSDN documentation.

Implementing a Better Tokenizer | 379

10.6 Implementing a Better Tokenizer

Problem
You need a tokenizer—also referred to as a lexer—that can split up a string based on
a well-defined set of characters.

Solution
Using the Split method of the Regex class, you can use a regular expression to indi-
cate the types of tokens and separators that you are interested in gathering. This
technique works especially well with equations, since the tokens of an equation are
well defined. For example, the code:

 using System;
 using System.Text.RegularExpressions;

 public static string[] Tokenize(string equation)
 {
 Regex re = new Regex(@"([\+\–*\(\)\^\\])");
 return (re.Split(equation));
 }

will divide up a string according to the regular expression specified in the Regex con-
structor. In other words, the string passed in to the Tokenize method will be divided
up based on the delimiters +, –, *, (,), ^, and \. The following method will call the
Tokenize method to tokenize the equation (y – 3)*(3111*x^21 + x + 320):

public static void TestTokenize()
 {
 foreach(string token in Tokenize("(y – 3)*(3111*x^21 + x + 320)"))
 Console.WriteLine("String token = " + token.Trim());
 }

which displays the following output:

 string token =
 String token = (
 String token = y
 String token = –
 String token = 3
 String token =)
 String token = *
 String token = (
 String token = 3111
 String token = *
 String token = x
 String token = ^
 String token = 21
 String token = +
 String token = x
 String token = +
 String token = 320

380 | Chapter 10: Regular Expressions

 String token =)
 String token =

Notice that each individual operator, parenthesis, and number has been broken out
into its own separate token.

Discussion
In real-world projects, you do not always have the luxury of being able to control the
set of inputs to your code. By making use of regular expressions, you can take the
original tokenizer and make it flexible enough to allow it to be applied to many types
or styles of input.

The key method used here is the Split instance method of the Regex class. The
return value of this method is a string array with elements that include each individ-
ual token of the source string—the equation, in this case.

Notice that the static method allows RegexOptions enumeration values to be used,
while the instance method allows for a starting position to be defined and a maxi-
mum number of matches to occur. This may have some bearing on whether you
choose the static or instance method.

See Also
The “.NET Framework Regular Expressions” topic in the MSDN documentation.

10.7 Counting Lines of Text

Problem
You need to count lines of text within a string or within a file.

Solution
Use the LineCount method shown in Example 10-6 to read in the entire file and count
the number of line feeds.

Example 10-6. LineCount method

using System;
using System.Text.RegularExpressions;
using System.IO;

public static long LineCount(string source, bool isFileName)
{
 if (source != null)
 {
 string text = source;

 if (isFileName)

Counting Lines of Text | 381

LineCount2, a better-performing alternate version of this method, uses the
StreamReader.ReadLine method to count lines in a file and a regular expression to
count lines in a string, as shown in Example 10-7.

 {
 using (FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {
 using (StreamReader SR = new StreamReader(FS))
 {

 text = SR.ReadToEnd();
 }
 }
 }

 Regex RE = new Regex("\n", RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 if (isFileName)
 {

 return (theMatches.Count);
 }
 else
 {

 return (theMatches.Count) + 1;
 }
 }
 else
 {

 // Handle a null source here.
 return (0);
 }
}

Example 10-7. LineCount2 method

public static long LineCount2(string source, bool isFileName)
{
 if (source != null)
 {
 string text = source;
 long numOfLines = 0;

 if (isFileName)
 {
 using (FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {

Example 10-6. LineCount method (continued)

382 | Chapter 10: Regular Expressions

The following method counts the lines within a specified text file and a specified
string:

 public static void TestLineCount()
 {
 // Count the lines within the file TestFile.txt.
 LineCount(@"C:\TestFile.txt", true);

 // Count the lines within a string.
 // Notice that the \r\n characters start a new line
 // as well as just the \n character.
 LineCount("Line1\r\nLine2\r\nLine3\nLine4", false);

 }

 using (StreamReader SR = new StreamReader(FS))
 {

 while (text != null)
 {
 text = SR.ReadLine();

 if (text != null)
 {
 ++numOfLines;
 }
 }
 }
 }

 return (numOfLines);

 }
 else
 {

 Regex RE = new Regex("\n", RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 return (theMatches.Count + 1);
 }
 }
 else
 {

 // Handle a null source here.
 return (0);
 }
}

Example 10-7. LineCount2 method (continued)

Returning the Entire Line in Which a Match Is Found | 383

Discussion
Every line ends with a special character. For Windows files, the line-terminating
characters are a carriage return followed by a line feed. This sequence of characters is
described by the regular expression pattern \r\n. Unix files terminate their lines with
just the line-feed character (\n). The regular expression “\n” is the lowest common
denominator for both sets of line-terminating characters. Consequently, this method
runs a regular expression that looks for the pattern “\n” in a string or file:

Macintosh files usually end with a carriage-return character (\r). To
count the number of lines in this type of file, the regular expression
should be changed to the following in the constructor of the Regex
object:

Regex RE = new Regex("\r", RegexOptions.Multiline);

Simply running this regular expression against a string returns the number of lines
minus one because the last line does not have a line-terminating character. To
account for this, one is added to the final count of line feeds in the string.

The LineCount method accepts two parameters. The first is a string that either con-
tains the actual text that will have its lines counted or the path and name of a text file
whose lines are to be counted. The second parameter, isFileName, determines
whether the first parameter (source) is a string or a file path. If this parameter is true,
the source parameter is a file path; otherwise, it is simply a string.

See Also
The “.NET Framework Regular Expressions,” “FileStream Class,” and “Stream-
Reader Class” topics in the MSDN documentation.

10.8 Returning the Entire Line in Which a Match Is
Found

Problem
You have a string or file that contains multiple lines. When a specific character pat-
tern is found on a line, you want to return the entire line, not just the matched text.

Solution
Use the StreamReader.ReadLine method to obtain each line in a file in which to run a
regular expression against, as shown in Example 10-8.

384 | Chapter 10: Regular Expressions

Example 10-8. Returning the entire line in which a match is found

public static List<string> GetLines(string source, string pattern, bool isFileName)
{
 string text = source;
 List<string> matchedLines = new List<string>();

 // If this is a file, get the entire file's text.
 if (isFileName)
 {
 using (FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {
 using (StreamReader SR = new StreamReader(FS))
 {
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 while (text != null)
 {
 text = SR.ReadLine();

 if (text != null)
 {
 // Run the regex on each line in the string.
 MatchCollection theMatches = RE.Matches(text);

 if (theMatches.Count > 0)
 {

 // Get the line if a match was found.
 matchedLines.Add(text);
 }
 }
 }
 }
 }
 }
 else
 {
 // Run the regex once on the entire string.
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 // Use these vars to remember the last line added to matchedLines
 // so that we do not add duplicate lines.
 int lastLineStartPos = —1;
 int lastLineEndPos = —1;

 // Get the line for each match.
 foreach (Match m in theMatches)
 {

 int lineStartPos = GetBeginningOfLine(text, m.Index);
 int lineEndPos = GetEndOfLine(text, (m.Index + m.Length - 1));

Returning the Entire Line in Which a Match Is Found | 385

 // If this is not a duplicate line, add it.
 if (lastLineStartPos != lineStartPos &&
 lastLineEndPos != lineEndPos)
 {
 string line = text.Substring(lineStartPos,
 lineEndPos - lineStartPos);
 matchedLines.Add(line);

 // Reset line positions.
 lastLineStartPos = lineStartPos;
 lastLineEndPos = lineEndPos;
 }
 }
 }
 return (matchedLines);
}

public static int GetBeginningOfLine(string text, int startPointOfMatch)
{
 if (startPointOfMatch > 0)
 {
 --startPointOfMatch;
 }

 if (startPointOfMatch >= 0 && startPointOfMatch < text.Length)
 {
 // Move to the left until the first '\n char is found.
 for (int index = startPointOfMatch; index >= 0; index--)
 {

 if (text[index] == '\n')
 {
 return (index + 1);
 }
 }

 return (0);
 }

 return (startPointOfMatch);
}

public static int GetEndOfLine(string text, int endPointOfMatch)
{
 if (endPointOfMatch >= 0 && endPointOfMatch < text.Length)
 {
 // Move to the right until the first '\n char is found.
 for (int index = endPointOfMatch; index < text.Length; index++)
 {

 if (text[index] == '\n')
 {

Example 10-8. Returning the entire line in which a match is found (continued)

386 | Chapter 10: Regular Expressions

The following method shows how to call the GetLines method with either a filename
or a string:

 public static void TestGetLine()
 {
 // Get each line within the file TestFile.txt as a separate string.
 Console.WriteLine();
 List<string> lines = GetLines(@"C:\TestFile.txt", "\n", true);
 foreach (string s in lines)
 Console.WriteLine("MatchedLine: " + s);

 // Get the lines matching the text "Line" within the given string.
 Console.WriteLine();
 lines = GetLines("Line1\r\nLine2\r\nLine3\nLine4", "Line", false);
 foreach (string s in lines)
 Console.WriteLine("MatchedLine: " + s);
 }

Discussion
The GetLines method accepts three parameters:

source
The string or filename in which to search for a pattern.

pattern
The regular expression pattern to apply to the source string.

isFileName
Pass in true if the source is a filename or false if source is a string.

This method returns a List<string> of strings that contains each line in which the
regular expression match was found.

The GetLines method can obtain the lines on which matches occur within a string or
a file. When running a regular expression against a file with a name that is passed in
to the source parameter (when isFileName equals true) in the GetLines method, the
file is opened and read line by line. The regular expression is run against each line,
and if a match is found, that line is stored in the matchedLines List<string>. Using
the ReadLine method of the StreamReader object saves you from having to determine

 return (index);
 }
 }

 return (text.Length);
 }

 return (endPointOfMatch);
}

Example 10-8. Returning the entire line in which a match is found (continued)

Finding a Particular Occurrence of a Match | 387

where each line starts and ends. Determining where a line starts and ends in a string
requires some work, as you shall see.

Running the regular expression against a string passed in to the source parameter
(when isFileName equals false) in the GetLines method produces a MatchCollection.
Each Match object in this collection is used to obtain the line on which it is located in
the source string. The line is obtained by starting at the position of the first character
of the match in the source string and moving one character to the left until either an
‘\n’ character is found or the beginning of the source string is found (this code is
found in the GetBeginningOfLine method). This gives you the beginning of the line,
which is placed in the variable LineStartPos. Next, the end of the line is found by
starting at the last character of the match in the source string and moving to the right
until either an ‘\n’ character is found or the end of the source string is found (this
code is found in the GetEndOfLine method). This ending position is placed in the
LineEndPos variable. All of the text between the LineStartPos and LineEndPos will be
the line in which the match is found. Each of these lines is added to the matchedLines
List<string> and returned to the caller.

Something interesting you can do with the GetLines method is to pass in the string “\n”
in the pattern parameter of this method. This trick will effectively return each line of
the string or file as a string in the List<string>.

Note that if more than one match is found on a line, each matching line will be
added to the List<string>.

See Also
The “.NET Framework Regular Expressions,” “FileStream Class,” and “Stream-
Reader Class” topics in the MSDN documentation.

10.9 Finding a Particular Occurrence of a Match

Problem
You need to find a specific occurrence of a match within a string. For example, you
want to find the third occurrence of a word or the second occurrence of a Social
Security number. In addition, you may need to find every third occurrence of a word
in a string.

Solution
To find a particular occurrence of a match in a string, simply subscript the array
returned from Regex.Matches:

 public static Match FindOccurrenceOf(string source, string pattern,
 int occurrence)
 {

388 | Chapter 10: Regular Expressions

 if (occurrence < 1)
 {
 throw (new ArgumentException("Cannot be less than 1",
 "occurrence"));
 }

 // Make occurrence zero-based.
 --occurrence;

 // Run the regex once on the source string.
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 if (occurrence >= theMatches.Count)
 {
 return (null);
 }
 else
 {
 return (theMatches[occurrence]);
 }
 }

To find each particular occurrence of a match in a string, build a List<Match> on the
fly:

public static List<Match> FindEachOccurrenceOf(string source, string pattern,
 int occurrence)
{
 List<Match> occurrences = new List<Match>();

 // Run the regex once on the source string.
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 for (int index = (occurrence — 1); index < theMatches.Count;
 index += occurrence)
 {
 occurrences.Add(theMatches[index]);
 }

 return (occurrences);
}

The following method shows how to invoke the two previous methods:

 public static void TestOccurrencesOf()
 {
 Match matchResult = FindOccurrenceOf
 ("one two three one two three one two three one"
 + " two three one two three one two three", "two", 2);
 if (matchResult != null)
 Console.WriteLine(matchResult.ToString() + "\t" + matchResult.Index);

Using Common Patterns | 389

 Console.WriteLine();
 List<Match> results = FindEachOccurrenceOf
 ("one one two three one two three one "
 + " two three one two three", "one", 2);
 foreach (Match m in results)
 Console.WriteLine(m.ToString() + "\t" + m.Index);
 }

Discussion
This recipe contains two similar but distinct methods. The first method,
FindOccurrenceOf, returns a particular occurrence of a regular expression match. The
occurrence you want to find is passed in to this method via the occurrence parame-
ter. If the particular occurrence of the match does not exist—for example, you ask to
find the second occurrence, but only one occurrence exists—a null is returned from
this method. Because of this, you should check that the returned object of this
method is not null before using that object. If the particular occurrence exists, the
Match object that holds the match information for that occurrence is returned.

The second method in this recipe, FindEachOccurrenceOf, works similarly to the
FindOccurrenceOf method, except that it continues to find a particular occurrence of
a regular expression match until the end of the string is reached. For example, if you
ask to find the second occurrence, this method would return a List<Match> of zero or
more Match objects. The Match objects would correspond to the second, fourth, sixth,
and eighth occurrences of a match and so on until the end of the string is reached.

See Also
The “.NET Framework Regular Expressions” and “ArrayList Class” topics in the
MSDN documentation.

10.10 Using Common Patterns

Problem
You need a quick list from which to choose regular expression patterns that match
standard items. These standard items could be a social security number, a zip code, a
word containing only characters, an alphanumeric word, an email address, a URL,
dates, or one of many other possible items used throughout business applications.

These patterns can be useful in making sure that a user has input the correct data
and that it is well formed. These patterns can also be used as an extra security mea-
sure to keep hackers from attempting to break your code by entering strange or mal-
formed input (e.g., SQL injection or cross-site-scripting attacks). Note that these
regular expressions are not a silver bullet that will stop all attacks on your system;
rather, they are an added layer of defense.

390 | Chapter 10: Regular Expressions

Solution
• Match only alphanumeric characters along with the characters –, +, ., and any

whitespace:
 ^([\w\.+–—]|\s)*$

Be careful using the - character within a character class—a regular
expression enclosed within [and]. That character is also used to spec-
ify a range of characters, as in a-z for a through z inclusive. If you
want to use a literal - character, either escape it with \ or put it at the
end of the expression, as shown in the previous and next examples.

• Match only alphanumeric characters along with the characters –, +, ., and any
whitespace, with the stipulation that there is at least one of these characters and
no more than 10 of these characters:
 ^([\w\.+–]|\s){1,10}$

• Match a person’s name, up to 55 characters:
 ^[a-zA-Z\'\-\s]{1,55}$

• Match a positive or negative integer:
 ^(\+|\–)?\d+$

• Match a positive or negative floating point number only; this pattern does not
match integers:
 ^(\+|\–)?(\d*\.\d+)$

Match a floating point or integer number that can have a positive or negative
value:
 ^(\+|\–)?(\d*\.)?\d+$

• Match a date in the form ##/##/####, where the day and month can be a
one- or two-digit value and the year can only be a four-digit value:
 ^\d{1,2}\/\d{1,2}\/\d{4}$

• Match a time to be entered in the form ##:## with an optional am or pm exten-
sion (note that this regular expression also handles military time):
 ^\d{1,2}:\d{2}\s?([ap]m)?$

• Verify if the input is a social security number of the form ###-##-####:
 ^\d{3}-\d{2}-\d{4}$

• Match an IPv4 address:
 ^([0-2]?[0-9]?[0-9]\.){3}[0-2]?[0-9]?[0-9]$

• Verify that an email address is in the form name@address where address is not an
IP address:
 ^[A-Za-z0-9_\-\.]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$

Using Common Patterns | 391

• Verify that an email address is in the form name@address where address is an IP
address:
 ^[A-Za-z0-9_\-\.]+@([0-2]?[0-9]?[0-9]\.){3}[0-2]?[0-9]?[0-9]$

• Match or verify a URL that uses either the HTTP, HTTPS, or FTP protocol.
Note that this regular expression will not match relative URLs:
 ^(http|https|ftp)\://[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(:[a-zA-Z0-9]*)?/?([a-zA-Z0-
 9\-\._\?\,\'/\\\+&%\$#\=~])*$

• Match only a dollar amount with the optional $ and + or -preceding characters
(note that any number of decimal places may be added):
 ^\$?[+-]?[\d,]*(\.\d*)?$

This is similar to the previous regular expression, except that no more than two
decimal places are allowed:
 ^\$?[+-]?[\d,]*\.?\d{0,2}$

• Match a credit card number to be entered as four sets of four digits separated
with a space, -, or no character at all:
 ^((\d{4}[-]?){3}\d{4})$

• Match a zip code to be entered as five digits with an optional four-digit exten-
sion:
 ^\d{5}(-\d{4})?$

• Match a North American phone number with an optional area code and an
optional - character to be used in the phone number and no extension:
 ^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}$

• Match a phone number similar to the previous regular expression but allow an
optional five-digit extension prefixed with either ext or extension:
 ^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}(\s*ext(ension)?[0-9]{5})?$

• Match a full path beginning with the drive letter and optionally match a file-
name with a three-character extension (note that no .. characters signifying to
move up the directory hierarchy are allowed, nor is a directory name with a . fol-
lowed by an extension):
 ^[a-zA-Z]:[\\/]([_a-zA-Z0-9]+[\\/]?)*([_a-zA-Z0-9]+\.[_a-zA-Z0-9]{0,3})?$

• Verify if the input password string matches some specific rules for entering a
password (i.e., the password is between 6 and 25 characters in length and con-
tains alphanumeric characters):
 ^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{6,25}$

• Determine if any malicious characters were input by the user. Note that this reg-
ular expression will not prevent all malicious input, and it also prevents some
valid input, such as last names that contain a single quote:
 ^([^\)\(\<\>\"\'\%\&\+\;][(-{2})])*$

• Extract a tag from an XHTML, HTML, or XML string. This regular expression
will return the beginning tag and ending tag, including any attributes of the tag.

392 | Chapter 10: Regular Expressions

Note that you will need to replace TAGNAME with the real tag name you want
to search for:
 <TAGNAME.*?>(.*?)</TAGNAME>

• Extract a comment line from code. The following regular expression extracts
HTML comments from a web page. This can be useful in determining if any
HTML comments that are leaking sensitive information need to be removed
from your code base before it goes into production:
 <!--.*?-->

• Match a C# single line comment:
 //.*$

• Match a C# multiline comment:
 /*.*?*/

While the four aforementioned regular expressions are great for find-
ing tags and comments, they are not foolproof. To accurately find all
tags and comments, you need to use a full-blown parser for the lan-
guage you are targeting.

Discussion
Regular expressions are effective at finding specific information, and they have a
wide range of uses. Many applications use them to locate specific information within
a larger range of text, as well as to filter out bad input. The filtering action is very
useful in tightening the security of an application and preventing an attacker from
attempting to use carefully formed input to gain access to a machine on the Internet
or a local network. By using a regular expression to allow only good input to be
passed to the application, you can reduce the likelihood of many types of attacks,
such as SQL injection or cross-site scripting.

The regular expressions presented in this recipe provide only a minute cross-section
of what can be accomplished with them. By taking these expressions and manipulat-
ing parts of them, you can easily modify them to work with your application. Take,
for example, the following expression, which allows only between 1 and 10 alphanu-
meric characters, along with a few symbols as input:

 ^([\w\.+–]|\s){1,10}$

By changing the {1,10} part of the regular expression to {0,200}, this expression will
now match a blank entry or an entry of the specified symbols up to and including
200 characters.

Using Common Patterns | 393

Note the use of the ^ character at the beginning of the expression and the $ charac-
ter at the end of the expression. These characters start the match at the beginning of
the text and match all the way to the end of the text. Adding these characters forces
the regular expression to match the entire string or none of it. By removing these
characters, you can search for specific text within a larger block of text. For exam-
ple, the following regular expression matches only a string containing nothing but a
U.S. zip code (there can be no leading or trailing spaces):

 ^\d{5}(-\d{4})?$

This version matches only a zip code with leading or trailing spaces (notice the addi-
tion of the \s* to the start and end of the expression):

 ^\s*\d{5}(-\d{4})?\s*$

However, this modified expression matches a zip code found anywhere within a
string (including a string containing just a zip code):

 \d{5}(-\d{4})?

Use the regular expressions in this recipe and modify them to suit your needs.

See Also
Two good books that cover regular expressions are Regular Expression Pocket Refer-
ence and Mastering Regular Expressions (both from O’Reilly).

394

Chapter 11CHAPTER 11

Data Structures and Algorithms 11

11.0 Introduction
In this chapter, you will look at certain data structures and algorithms that are not
available for you in the FCL through Version 3.5. Examples are provided for algo-
rithms such as hash-code creation and string balancing. The FCL does not support
every data structure you might need, so this chapter provides solutions for priority,
binary and n-ary trees, and a multimap, as well as many other things.

11.1 Creating a Hash Code for a Data Type

Problem
You have created a class or structure that will be used as a key in a Hashtable or
Dictionary<T,U>. You need to overload the GetHashCode method in order to return a
good distribution of hash values (the Discussion section defines a good distribution
of hash values). You also need to choose the best hash-code algorithm to use in the
GetHashCode method of your object.

Solution
The following procedures implement hash-code algorithms and can be used to over-
ride the GetHashCode method. Included in the discussion of each method are the pros
and cons of using it, as well as why you would want to use one instead of another.

In addition, it is desirable, for performance reasons, to use the return value of the
GetHashCode method to determine whether the data contained within two objects is
equal. Calling GetHashCode to return a hash value of two objects and comparing their
hash values can be faster than calling the default implementation of Equals on the
Object type, which individually tests the equality of all pertinent data within two
objects. In fact, some developers even opt to compare hash-code values returned
from GetHashCode within their overloaded Equals method. Using a custom

Creating a Hash Code for a Data Type | 395

implementation of the Equals method in this fashion is faster than the default imple-
mentation of the Object.Equals method.

The simple hash

This hash accepts a variable number of integer values and XORs each value to obtain
a hash code. This is a well-performing and simple algorithm that has a good chance
of producing an adequate distribution if the inputs are uncorrelated. Remember to
profile and measure it to confirm that it works as well for your particular data set. It
fails when you need to integrate values greater in size than an integer. Its code is:

 public int SimpleHash(params int[] values)
 {
 int hashCode = 0;
 if (values != null)
 {
 foreach (int val in values)
 {
 hashCode ^= val;
 }
 }

 return (hashCode);
 }

The folding hash

This hash allows you to integrate the long data type into a hash algorithm. It takes
the upper 32 bits of the long value and folds them over the lower 32 bits of this
value. The actual process of folding the two values is implemented by XORing them
and using the result. Once again, this is a good performing algorithm with good dis-
tribution properties, but, again, it fails when you need to go beyond the long data
type. A sample implementation is:

 public int FoldingHash(params long[] values)
 {
 int hashCode = 0;
 if (values != null)
 {
 int tempLowerVal = 0;
 int tempUpperVal = 0;
 foreach (long val in values)
 {
 tempLowerVal = (int)(val & 0x000000007FFFFFFF);
 tempUpperVal = (int)((val >> 32) & 0xFFFFFFFF);
 hashCode^= tempLowerVal ^ tempUpperVal;
 }
 }

 return (hashCode);
 }

396 | Chapter 11: Data Structures and Algorithms

The contained object cache

This hash obtains the hash codes from a variable number of object types. The only
types that should be passed in to this method are reference-type fields contained
within your object. This method XORs all the values returned by the GetHashCode
method of each object. Its source code is:

 public int ContainedObjHash(params object[] values)
 {
 int hashCode = 0;
 if (values != null)
 {
 foreach (object val in values)
 {
 hashCode ^= val.GetHashCode();
 }
 }

 return (hashCode);
 }

The CryptoHash method

Potentially the most robust method of obtaining a hash value for an object is to use
the hashing classes built into the FCL. The CryptoHash method returns a hash value
for some input using the MACTripleDES class. This method returns a very good distri-
bution for the hash value, although you may pay for it in performance. If you do not
require a near-perfect hash value and are looking for an excellent distribution, con-
sider using this approach to calculate a hash value:

 public int CryptoHash(string strValue)
 {
 int hashCode = 0;
 if (strValue != null)
 {
 byte[] encodedUnHashedString =
 Encoding.Unicode.GetBytes(strValue);

 byte[] key = new byte[16];
 RandomNumberGenerator.Create().GetBytes(key);

 MACTripleDES hashingObj = new MACTripleDES(key);
 byte[] code =
 hashingObj.ComputeHash(encodedUnHashedString);

 // Use the BitConverter class to take the
 // first 4 bytes, fold them over the last 4 bytes
 // and use them as an int for the hash code.
 int hashCodeStart = BitConverter.ToInt32(code, 0);
 int hashCodeEnd = BitConverter.ToInt32(code, 4);
 hashCode = hashCodeStart ^ hashCodeEnd;
 }

Creating a Hash Code for a Data Type | 397

 return (hashCode);
 }

The CryptoHash method using a nonstring

This method shows how other nonstring data types can be used with the built-in
hashing classes to obtain a hash code. This method converts a numeric value to a
string and then to a byte array. The array is then used to create the hash value using
the SHA256Managed class. Finally, the first four values in the byte array are XOR’ed
together to obtain a hash code. The code is:

 public int CryptoHash(long longValue)
 {
 int hashCode = 0;
 byte[] encodedUnHashedString =
 Encoding.Unicode.GetBytes(longValue.ToString());

 byte[] key = new byte[16];
 RandomNumberGenerator.Create().GetBytes(key);

 MACTripleDES hashingObj = new MACTripleDES(key);
 byte[] code = hashingObj.ComputeHash(encodedUnHashedString);

 // Use the BitConverter class to take the
 // first 4 bytes, fold them over the last 4 bytes
 // and use them as an int for the hash code.
 int hashCodeStart = BitConverter.ToInt32(code, 0);
 int hashCodeEnd = BitConverter.ToInt32(code, 4);
 hashCode = hashCodeStart ^ hashCodeEnd;

 return (hashCode);
 }

The shift and add hash

This method uses each character in the input string, strValue, to determine a hash
value. This algorithm produces a good distribution of hash codes even when it is fed
similar strings. However, it will break down when long strings that end with the
same characters are passed. While this may not happen many times with your appli-
cations, it is something to be aware of. If performance is critical, this is an excellent
method to use. Its code is:

 public int ShiftAndAddHash (string strValue)
 {
 int hashCode = 0;

 foreach (char c in strValue)
 {
 hashCode = (hashCode << 5) + (int)c + (hashCode >> 2);
 }

398 | Chapter 11: Data Structures and Algorithms

return (hashCode);
}

The calculated hash

This method is a rather widely accepted method of creating a good hash value that
accepts several different data types and uses a different algorithm to compute the
hash value for each. It calculates the hash code as follows:

• It assigns an arbitrary odd primary number to the HashCode variable. This vari-
able will eventually contain the final hash code. Good primary numbers to use
are 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, or 67. Obviously, oth-
ers exist beyond this set, but this should give you a good starting point.

• For numeric types equal to or less than the size of an int and char data types, it
multiplies the current HashCode by the primary number selected and then adds to
this value the value of the numeric type cast to an integer.

• For numeric types greater than the size of an int, it multiplies the current
HashCode by the primary number selected and then adds to this the folded ver-
sion of this numeric value. (For more information on folding, see “The folding
hash” method earlier in this recipe.)

• For char, floating-point, or decimal data types, it multiplies the current HashCode
by the primary number selected, casts the numeric value to an integer, and then
uses the folding method to calculate its value.

• For bool data types, it multiplies the current HashCode by the primary number
selected and then adds a 1 for true and 0 for false (you can reverse this behavior
if you wish).

• For object data types, it multiplies the current HashCode by the primary number
selected and then adds the return value of GetHashCode called on this object. If an
object is set to null, use the value 0 in your calculations.

• For an array or collection, it determines the contained type(s) and uses each ele-
ment of the array or collection to calculate the hash value, as follows (in the case
of an integer array named MyArray):

 foreach (int element in myArray)
{
 hashCode = (hashCode * 31) + element;
}

This algorithm will produce a good distributed hash code for your object and has the
added benefit of being able to employ any data type. This is a high-performing algo-
rithm for simple, moderately complex, and even many complex objects. However,
for extremely complex objects—ones that contain many large arrays, large
Hashtables, or other objects that use a slower hash-code algorithm—this algorithm
will start performing badly. In this extreme case, you may want to consider switch-
ing to another hash-code algorithm to speed performance or simply pare down the

Creating a Hash Code for a Data Type | 399

amount of fields used in the calculation. Be careful if you choose this second method
to increase performance; you could inadvertently cause the algorithm to produce
similar values for differing objects. The code for the calculated hash method is:

 public int CalcHash(short someShort, int someInt, long someLong,
 float someFloat, object someObject)
 {
 int hashCode = 7;
 hashCode = hashCode * 31 + (int)someShort;
 hashCode = hashCode * 31 + someInt;
 hashCode = hashCode * 31 +
 (int)(someLong ^ (someLong >> 32));
 long someFloatToLong = (long)someFloat;
 hashCode = hashCode * 31 +
 (int)(someFloatToLong ^ (someFloatToLong >> 32));

 if (someObject != null)
 {
 hashCode = hashCode * 31 +
 someObject.GetHashCode();
 }

 return (hashCode);
 }

The string-concatenation hash

This technique converts its input into a string and then uses that string’s GetHashCode
method to automatically generate a hash code for an object. It accepts an integer
array, but you can substitute any type that can be converted into a string. You can
also use several different types of arguments as input to this method. This method
iterates through each integer in the array passed as an argument to the method. The
ToString method is called on each value to return a string. The ToString method of
an int data type returns the value contained in that int. Each string value is
appended to the string variable HashString. Finally, the GetHashCode method is called
on the HashString variable to return a suitable hash code.

This method is simple and efficient, but it does not work well with objects that have
not overridden the ToString method to return something other than their data type.
It may be best to simply call the GetHashCode method on each of these objects indi-
vidually. You should use your own judgment and the rules found in this recipe to
make your decision:

 public int ConcatStringGetHashCode(int[] someIntArray)
 {
 int hashCode = 0;
 StringBuilder hashString = new StringBuilder();

 if (someIntArray != null)
 {
 foreach (int i in someIntArray)

400 | Chapter 11: Data Structures and Algorithms

 {
 hashString.Append(i.ToString() + "^");
 }
 }
 hashCode = hashString.GetHashCode();

 return (hashCode);
 }

Discussion
The GetHashCode method is called when you are using an instance of this class as the
key in a Hashtable, HashSet, or Dictionary<T,U> object. A hash code is also obtained
from your object when a search is performed for it in the Hashtable, HashSet, or
Dictionary<T,U>.

The following class implements the SimpleHash algorithm for the overloaded
GetHashCode method:

 public class SimpleClass
 {
 private string text = "";

 public SimpleClass(string inputText)
 {
 text = inputText;
 }

 public override int GetHashCode()
 {
 return(ShiftAndAddHash(text));
 }

 public int ShiftAndAddHash (string strValue)
 {
 int hashCode = 0;

 foreach (char c in strValue)
 {
 hashCode = (hashCode << 5) + (int)c + (hashCode >> 2);
 }

 return (hashCode);
 }
 }

This class can then be used as a key in a Hashtable or Dictionary<T,U> in code like
the following:

 SimpleClass simpleClass = new SimpleClass("foo");

 Hashtable hashTable = new Hashtable();
 hashTable.Add(simpleClass, 100);

Creating a Hash Code for a Data Type | 401

 Dictionary<SimpleClass, int> dict = new Dictionary<SimpleClass, int>();
 dict.Add(simpleClass, 100);

There are several rules for writing a good GetHashCode method and a good hash-code
algorithm:

• This method must return the same value for two different objects that have value
equality. Value equality means that two objects have the same logical value even
if they are references to different objects.

• The hash algorithm should return a good distribution of values for the best per-
formance in a Hashtable or Dictionary<T,U>. A good distribution of values
means that the hash values returned by the GetHashCode method are usually dif-
ferent for objects of the same type, unless those objects have value equality. Note
that objects containing very similar data should also return a unique hash value.
This distribution allows the Hashtable or Dictionary<T,U> to work more effi-
ciently.

• This method should not throw an exception.

• Both the Equals method and GetHashCode method must be overridden together.

• The GetHashCode method must compute the hash code using the exact set of vari-
ables that the overridden Equals method uses when calculating equality.

• The hash algorithm should be as fast as possible to speed up the process of add-
ing and searching for keys in a Hashtable or Dictionary<T,U>.

• Use the GetHashCode values of any contained objects, which will not mutate over
the lifetime of the outer object’s time in the hashtable when calculating the hash
code of the parent object.

• Use the GetHashCode values of all elements of an array when calculating the
array’s hash code.

The System.Int32, System.UInt32, and System.IntPtr data types in the FCL use an
additional hash-code algorithm not covered in the Solution section. Basically, these
data types return the value that they contain as a hash code. Most likely, your objects
will not be so simple as to contain a single numeric value, but if they are, this method
works extremely well.

You may also want to combine specific algorithms to suit your purposes. For
instance, if your object contains one or more string types and one or more long data
types, you can combine the ContainedObjHash method and the FoldingHash method
to create a hash value for your object. The return values from each method can either
be added or XORed together.

Once an object is in use as a key in a Hashtable or Dictionary<T,U>, it should never
return a different value for the hash code. Originally, it was documented that hash
codes must be immutable, as the authors of Hashtable or Dictionary<T,U> thought
that this should be dealt with by whomever writes GetHashCode. It doesn’t take much
thought to realize that for mutable types, if you require both that the hash code never

402 | Chapter 11: Data Structures and Algorithms

changes and that Equals represents the equality of the mutable objects and that if a.
Equals(b), then a.GetHashCode() == b.GetHashCode(), then the only possible imple-
mentation of GetHashCode is one that returns the same integer constant for all values.

The GetHashCode method is called when you are using this object as the key in a
Hashtable or Dictionary<T,U> object. Whenever your object is added to a Hashtable
or Dictionary<T,U> as a key, the GetHashCode method is called on your object to
obtain a hash code. This hash code must not change while your object is a key in the
Hashtable or Dictionary<T,U>. If it does, the Hashtable or Dictionary<T,U> will not be
able to find your object.

See Also
The “GetHashCode Method,” “Dictionary<T,U> Class,” and “Hashtable Class”
topics in the MSDN documentation.

11.2 Creating a Priority Queue

Problem
You need a data structure that operates similarly to a Queue but that returns objects
based on a specific order. When objects are added to this queue, they are located in
the queue according to their priority. When objects are retrieved from the queue, the
queue simply returns the highest- or lowest-priority element based on which one you
ask for.

Solution
Create a generic priority queue that orders items as they are added to the queue and
returns items based on their priority. The PriorityQueue<T> class of Example 11-1
shows how this can be accomplished.

Example 11-1. Generic PriorityQueue class

using System;
using System.Collections;
using System.Collections.Generic;
public class PriorityQueue<T> : IEnumerable<T>
{
 public PriorityQueue(){}
 public PriorityQueue(IComparer<T> icomparer)
 {
 specialComparer = icomparer;
 }

 protected List<T> internalQueue = new List<T>();
 protected IComparer<T> specialComparer = null;

Creating a Priority Queue | 403

 protected List<T> InternalQueue
 {
 get {return internalQueue;}
 }

 public int Count
 {
 get {return (internalQueue.Count);}
 }

 public void Clear()
 {
 internalQueue.Clear();
 }

 public object Clone()
 {
 // Make a new PQ and give it the same comparer.
 PriorityQueue<T> newPQ = new PriorityQueue<T>(specialComparer);
 newPQ.CopyTo(internalQueue.ToArray(),0);
 return newPQ;
 }

 public int IndexOf(T item)
 {
 return (internalQueue.IndexOf(item));
 }

 public bool Contains(T item)
 {
 return (internalQueue.Contains(item));
 }

 public int BinarySearch(T item)
 {
 return (internalQueue.BinarySearch(item, specialComparer));
 }

 public bool Contains(T item, IComparer<T> comparer)
 {
 return (internalQueue.BinarySearch(item, comparer) >= 0);
 }

 public void CopyTo(T[] array, int index)
 {
 internalQueue.CopyTo(array, index);
 }

 public T[] ToArray()
 {
 return (internalQueue.ToArray());
 }

Example 11-1. Generic PriorityQueue class (continued)

404 | Chapter 11: Data Structures and Algorithms

For example, perhaps your application or component needs to send packets of data
of differing sizes across a network. The algorithm for sending these packets of data
states that the smallest (or perhaps the largest) packets will be sent before the larger
(or smaller) ones. An analogous programming problem involves queuing up specific
jobs to be run. Each job could be run based on its type, order, or size.

This priority queue is designed so that items—in this case, string values—may be
added in any order; but when they are removed from the head or tail of the queue,
they are dequeued in a specific order. The IComparer<T> type object, a
specialComparer that is passed in through the constructor of this object, determines
this order. The queued string objects are stored internally in a field called
internalQueue of type List<T>. This was the simplest way to construct this type of
queue, since a List<T> has most of the functionality built into it that we wanted to
implement for this type of queue.

 public void TrimToSizeTrimExcess()
 {
 internalQueue.TrimExcess();
 }

 public void Enqueue(T item)
 {
 internalQueue.Add(item);
 internalQueue.Sort(specialComparer);
 }

 public T DequeueLargest()
 {
 T item = internalQueue[internalQueue.Count - 1];
 internalQueue.RemoveAt(internalQueue.Count - 1);

 return (item);
 }

 public T PeekLargest()
 {
 return (internalQueue[internalQueue.Count - 1]);
 }

 public IEnumerator GetEnumerator()
 {
 return (internalQueue.GetEnumerator());
 }

 IEnumerator<T> System.Collections.Generic.IEnumerable<T>.GetEnumerator()
 {
 return (internalQueue.GetEnumerator());
 }
}

Example 11-1. Generic PriorityQueue class (continued)

Creating a Priority Queue | 405

Many of the methods of this class delegate to the internalQueue in order to perform
their duties. These types of methods include Count, Clear, TrimExcess, and many oth-
ers. Some of the more important methods of the PriorityQueue<T> class are Enqueue,
DequeueLargest, and PeekLargest.

The Enqueue method accepts a type T as an argument and adds it to the end of the
internalQueue. Next, this List<T> is sorted according to the specialComparer object.
If the specialComparer object is null, the comparison defaults to the IComparer of the
string object. By sorting the List<T> after each item is added, you do not have to per-
form a sort before every search, dequeue, and peek method. A performance hit will
occur when an item is added, but this is a one-time-only penalty. Keep in mind that
when items are removed from the head or tail of this queue, the internal List<T> does
not have to be resorted. This PriorityQueue performs best with smaller numbers of
items stored in the queue, up to several thousand. The performance will not perform
well if larger numbers of items are stored in the queue, such as hundreds of thou-
sands of items.

There is one dequeue method: DequeueLargest. This method removes items from the
tail (index equals internalQueue.Count -1) of the queue. Before returning the string,
this method will remove that string from the queue. The PeekLargest method works
in a similar manner, except that it does not remove the string from the queue.

Two other methods of interest are the overloaded Contains methods. The only real
difference between these two methods is that one of the Contains methods uses the
IComparer interface of the string object, whereas the other overloaded Contains
method uses the specialComparer interface when searching for a string in the
internalQueue, if one is provided.

The PriorityQueue<T> class members are listed in Table 11-1.

Table 11-1. PriorityQueue class members

Member Description

Count property Returns an int indicating the number of items in the queue. Calls the
internalQueue.Count method.

Clear method Removes all items from the queue. Calls the internalQueue method.

Clone method Returns a copy of the PriorityQueue<T> object.

IndexOf method Returns the zero-based index of the queue item that contains a particular search string. Its
syntax is: IndexOf(T item) where item is the string to be found in the queue. Calls the
internalQueue method.

Contains method Returns a bool indicating whether a particular search string is found in the queue. Its
syntax is: Contains(T item) where item is the string to be found in the queue. Calls the
internalQueue method.

406 | Chapter 11: Data Structures and Algorithms

The PriorityQueue<T> can be instantiated and filled with strings using code like the
Test class shown in Example 11-2.

BinarySearch method Returns the zero-based index of the queue item that contains a particular search type T.
Its syntax is: BinarySearch(T item) where item is the type T to be found in the queue.
The comparison of item with the type T found in the queue is handled by the
IComparer<T> implementation, if one was passed as an argument to one of the over-
loads of the PriorityQueue<T> class constructor. Calls the internalQueue
method.

Contains method Returns a bool indicating whether a particular search type T is found in the queue. Its
syntax is: Contains(T item, IComparer<T> specialComparer) where item is the string to
be found in the queue. The comparison of item with the strings found in the queue is
handled by the IComparer<T> implementation, if one was passed as an argument to
one of the overloads of the PriorityQueue<T> class constructor. Calls the
internalQueue method.

CopyTo method Copies the queue items to a one-dimensional array starting at a particular position in the
queue. Its syntax is: CopyTo(T[] array, int arrayIndex) where array is the array to
receive the copy of the queue items and arrayIndex is the position in the queue from
which to begin copying items. Calls the internalQueue method.

ToArray method Copies the items in the queue to an object array. Calls the internalQueue method.

TrimExcess method Sets the capacity of the queue to the current count of its items. If the TrimExcess
method is called when no items are in the queue, its capacity is set to a default value. Calls
the internalQueue method.

Enqueue method Adds an item to the queue. It then sorts the queue based on either the default sort behav-
ior of each item or the IComparer<T> implementation passed as an argument to one of
the PriorityQueue<T> class constructors. Its syntax is: Enqueue(T item) where
item is the type T to be added to the queue.

DequeueLargest method Returns and removes the item at the tail of the queue (i.e., the last item in the queue).

PeekLargest method Returns the item at the tail of the queue (i.e., the last item in the queue).

GetEnumerator method Returns an enumerator that allows iteration of the items in the queue. Calls the
internalQueue method.

Example 11-2. Testing the PriorityQueue class

class Test
{
 static void Main()
 {
 // Create ArrayList of messages.
 List<string> msgs = new List<string>();
 msgs.Add("foo");
 msgs.Add("This is a longer message.");
 msgs.Add("bar");
 msgs.Add(@"Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,");
 msgs.Add(@"<
 >");

Table 11-1. PriorityQueue class members (continued)

Member Description

Creating a Priority Queue | 407

The output of this method is shown here:

 Msg:
 Msg: foo
 Msg: bar
 Msg: 1234567890
 Msg: This is a longer message.
 Msg: <text>one</text><text>two</text><text>three</text><text>four</text>

 msgs.Add("<text>one</text><text>two</text><text>three</text>" +
 "<text>four</text>");
 msgs.Add("");
 msgs.Add("1234567890");

 // Create a Priority Queue with the appropriate comparer.
 // The comparer is created from the CompareLen type
 // defined in the Discussion section.
 CompareLen<string> comparer = new CompareLen<string>();
 PriorityQueue<string> pqueue = new PriorityQueue<string>(comparer);

 // Add all messages from the List to the priority queue.
 foreach (string msg in msgs)
 {

 pqueue.Enqueue(msg);
 }

 // Display messages in the queue in order of priority.
 foreach (string msg in pqueue)
 {
 Console.WriteLine("Msg: " + msg);
 }
 Console.WriteLine("pqueue.IndexOf('bar') == " + pqueue.IndexOf("bar"));
 Console.WriteLine("pqueue.IndexOf('_bar_') == " + pqueue.IndexOf("_bar_"));

 Console.WriteLine("pqueue.Contains('bar') == " + pqueue.Contains("bar"));
 Console.WriteLine("pqueue.Contains('_bar_') == " +
 pqueue.Contains("_bar_"));

 Console.WriteLine("pqueue.BinarySearch('bar') == " +
 pqueue.BinarySearch("bar"));
 Console.WriteLine("pqueue.BinarySearch('_bar_') == " +
 pqueue.BinarySearch("_bar_"));

 // Dequeue messages starting with the smallest.
 int currCount = pqueue.Count;
 for (int index = 0; index < currCount; index++)
 {
 Console.WriteLine("pqueue.DequeueLargest(): " +
 pqueue.DequeueLargest().ToString());
 }
 }
}

Example 11-2. Testing the PriorityQueue class (continued)

408 | Chapter 11: Data Structures and Algorithms

 Msg: Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,
 Msg: <

 >
 pqueue.IndexOf('bar') == 2
 pqueue.IndexOf('_bar_') == -1
 pqueue.Contains('bar') == True
 pqueue.Contains('_bar_') == False
 pqueue.BinarySearch('bar') == 1
 pqueue.BinarySearch('_bar_') == -4
pqueue.DequeueLargest(): <

 >
pqueue.DequeueLargest(): Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,
pqueue.DequeueLargest(): <text>one</text><text>two</text><text>three</text><text
>four</text>
pqueue.DequeueLargest(): This is a longer message.
pqueue.DequeueLargest(): 1234567890
pqueue.DequeueLargest(): foo
pqueue.DequeueLargest(): bar
pqueue.DequeueLargest():

A List<T> of string messages is created that will be used to fill the queue. A new
CompareLen IComparer<T> type object is created and passed in to the constructor of
the PriorityQueue<T>. If you did not pass in this IComparer<T> object, the output
would be much different: instead of items being retrieved from the queue based on
length, they would be retrieved based on their alphabetical order. (The IComparer<T>
interface is covered in detail in the Discussion section.) Finally, a foreach loop is
used to enqueue all messages into the PriorityQueue<T> object.

At this point, the PriorityQueue<T> object can be used in a manner similar to the
Queue<T> class contained in the FCL, except for the ability to remove items from both
the head and tail of the queue.

Discussion
You can instantiate the PriorityQueue<T> class with or without a special comparer
object. The special comparer object used in this recipe is defined in Example 11-3.

Example 11-3. Special CompareLen comparer class

public class CompareLen<T> : IComparer<T>
 where T: IComparable<T>
{
 public int Compare(T obj1, T obj2)
 {
 int result = 0;
 if (typeof(T) == typeof(string))
 {

Creating a Priority Queue | 409

 result = CompareStrings(obj1 as string, obj2 as string);
 }
 else
 {

 // Default to the object type's comparison algorithm.
 result = Comparer<T>.Default.Compare(obj1, obj2);
 }
 return (result);
 }

 private int CompareStrings(string str1, string str2)
 {
 if (str1 == null || str2 == null)
 {
 throw(new ArgumentNullException(
 "The strings being compared may not be null."));
 }

 if (str1.Length == str2.Length)
 {
 return (0);
 }
 else if (str1.Length > str2.Length)
 {
 return (1);
 }
 else
 {
 return (-1);
 }
 }

 public bool Equals(T item1, T item2)
 {
 if (item1 == null || item2 == null)
 {
 throw(new ArgumentNullException(
 "The objects being compared may not be null."));
 }

 return (item1.Equals(item2));
 }

 public int GetHashCode(T obj)
 {
 if (obj == null)
 {
 throw(new ArgumentNullException(
 "The obj parameter may not be null."));
 }

Example 11-3. Special CompareLen comparer class (continued)

410 | Chapter 11: Data Structures and Algorithms

This special comparer is required because you want to prioritize the elements in the
queue by size. The default string IComparer<string> interface compares strings alpha-
betically. Implementing the IComparer<T> interface requires that you implement a sin-
gle method, Compare, with the following signature:

int Compare(T x, T y);

where x and y are the objects being compared. When implementing custom Compare
methods, the method is to return 0 if x equals y, less than 0 if x is less than y, and
greater than 0 if x is greater than y. This method is called automatically by the .NET
runtime whenever the custom IComparer<T> implementation is used.

See Also
The “List<T> Class,” “IEnumerable Interface,” “ICloneable Interface,” “ICom-
parer<T> Interface,” and “IComparable<T> Interface” topics in the MSDN docu-
mentation.

11.3 Creating a One-to-Many Map (MultiMap)

Problem
A Hashtable or a Dictionary<T,U> can map only a single key to a single value, but you
need to map a key to one or more values. In addition, it may also be possible to map
a key to null.

Solution
Use a Dictionary<T,U> with values that are a List<U>. This structure allows you to
add multiple values (in the List<U>) for each key of the Dictionary<T,U>. The
MultiMap<T,U> class shown in Example 11-4, which is used in practically the same
manner as a Dictionary<T,U> class, does this.

 return (obj.GetHashCode());
 }
}

Example 11-4. MultiMap class

using System;
using System Collections;
using System.Collections.Generic;

public class MultiMap<TKey, UValue> : IDictionary<TKey, IList<UValue>>
{
 private Dictionary<TKey, IList<UValue>> map =
 new Dictionary<TKey, IList<UValue>>();

Example 11-3. Special CompareLen comparer class (continued)

Creating a One-to-Many Map (MultiMap) | 411

 public IList<UValue> this[TKey key]
 {
 get {return (map[key]);}
 set {map[key] = value;}
 }

 public void Add(TKey key, UValue item)
 {
 AddSingleMap(key, item);
 }

 public void Add(TKey key, IList<UValue> items)
 {
 foreach (UValue val in items)
 AddSingleMap(key, val);
 }

 public void Add(KeyValuePair<TKey, IList<UValue>> keyValuePair)
 {
 foreach (UValue val in keyValuePair.Value)
 AddSingleMap(keyValuePair.Key, val);
 }

 public void Clear()
 {
 map.Clear();
 }

 public int Count
 {
 get {return (map.Count);}
 }

 public bool ContainsKey (TKey key)
 {
 return (map.ContainsKey(key));
 }

 public bool ContainsValue(UValue item)
 {
 if (item == null)
 {
 foreach (KeyValuePair<TKey, IList<UValue>> kvp in map)
 {
 if (((List<UValue>)kvp.Value).Count == 0)
 {
 return (true);
 }
 }

 return (false);
 }

Example 11-4. MultiMap class (continued)

412 | Chapter 11: Data Structures and Algorithms

 else
 {
 foreach (KeyValuePair<TKey, IList<UValue>> kvp in map)
 {
 if (((List<UValue>)kvp.Value).Contains(item))
 {
 return (true);
 }
 }

 return (false);
 }
 }

 IEnumerator<KeyValuePair<TKey, IList<UValue>>> IEnumerable<KeyValuePair<TKey,
 IList<UValue>>>.GetEnumerator()
 {
 return (map.GetEnumerator());
 }

 IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 return (map.GetEnumerator());
 }

 public bool Remove(TKey key)
 {
 return (RemoveSingleMap(key));
 }

 public bool Remove(KeyValuePair<TKey, IList<UValue>> keyValuePair)
 {
 return (Remove(keyValuePair.Key));
 }

 protected void AddSingleMap(TKey key, UValue item)
 {
 // Search for key in map Hashtable.
 if (map.ContainsKey(key))
 {
 // Add value to List in map.
 List<UValue> values = (List<UValue>)map[key];

 // Add this value to this existing key.
 values.Add(item);
 }
 else
 {
 if (item == null)
 {
 // Create new key and mapping to an empty List.
 map.Add(key, new List<UValue>());

Example 11-4. MultiMap class (continued)

Creating a One-to-Many Map (MultiMap) | 413

The methods defined in Table 11-2 are of particular interest to using a MultiMap<T,U>
object.

 }
 else
 {
 List<UValue> values = new List<UValue>();
 values.Add(item);

 // Create new key and mapping to its value.
 map.Add(key, values);
 }
 }
 }

 protected bool RemoveSingleMap(TKey key)
 {
 if (this.ContainsKey(key))
 {
 // Remove the key from KeysTable.
 return (map.Remove(key));
 }
 else
 {
 throw (new ArgumentOutOfRangeException("key", key,
 "This key does not exists in the map."));
 }
 }

Table 11-2. Members of the MultiMap class

Member Description

Indexer The get accessor obtains a List<U> of all values that are associated with a key. The
set accessor adds an entire List<U> of values to a key. Its syntax is:

public List<U> this[T key]

where key is the key to be added to the MultiMap<T,U> through the set accessor,
or it is the key with values that you want to retrieve via the get accessor.

Add method Adds a key to the Dictionary<T,List<U>> and its associated value. Its syntax is:

Add(T key, T value)

where key is the key to be added to the MultiMap<T,U> and value is the value to add
to the internal List<U> of the private map field.

Clear method Removes all items from the MultiMap<T,U> object.

Count method Returns a count of all keys in the MultiMap<T,U> object.

Clone method Returns a deep copy of the MultiMap<T,U> object.

ContainsKey method Returns a bool indicating whether the MultiMap<T,U> contains a particular value as
its key. Its syntax is:

ContainsKey(T key)

where key is the key to be found in the MultiMap<T,U>.

Example 11-4. MultiMap class (continued)

414 | Chapter 11: Data Structures and Algorithms

Items may be added to a MultiMap<T,U> object by running the code shown in
Example 11-5.

ContainsValue method Returns a bool indicating whether the MultiMap<T,U> contains a particular value.
Its syntax is:

ContainsValue(T value)

where value is the object to be found in the MultiMap<T,U>.

Remove method Removes a key from theMultiMap<T,U> and all its referent values in the internalmap
Dictionary<T, List<U>>. Its syntax is:

Remove(T key)

where key is the key to be removed.

Example 11-5. Testing the MultiMap class

public static void TestMultiMap()
{
 string s = "foo";

 // Create and populate a MultiMap object.
 MultiMap<int, string> myMap = new MultiMap<int, string>();
 myMap.Add(0, "zero");
 myMap.Add(1, "one");
 myMap.Add(2, "two");
 myMap.Add(3, "three");
 myMap.Add(3, "duplicate three");
 myMap.Add(3, "duplicate three");
 myMap.Add(4, "null");
 myMap.Add(5, s);
 myMap.Add(6, s);

 // Display contents.
 foreach (KeyValuePair<int, List<string>> entry in myMap)
 {

 Console.Write("Key: " + entry.Key.ToString() + "\tValue: ");
 foreach (string str in myMap[entry.Key])
 {
 Console.Write(str + " : ");
 }
 Console.WriteLine();
 }

 // Obtain values through the indexer.
 Console.WriteLine();
 Console.WriteLine("((ArrayList) myMap[3])[0]: " + myMap[3][0]);
 Console.WriteLine("((ArrayList) myMap[3])[1]: " + myMap[3][1]);

 // Add items to MultiMap using a List.
 List<string> testArray = new List<string>();

Table 11-2. Members of the MultiMap class (continued)

Member Description

Creating a One-to-Many Map (MultiMap) | 415

This code displays the following:

 Key: 0 Value: zero :
 Key: 1 Value: one :
 Key: 2 Value: two :
 Key: 3 Value: three : duplicate three : duplicate three :
 Key: 4 Value:

 testArray.Add("BAR");
 testArray.Add("BAZ");
 myMap[10] = testArray;
 myMap[10] = testArray;

 // Remove items from MultiMap.
 myMap.Remove(0);
 myMap.Remove(1);

 // Display MultiMap.
 Console.WriteLine();
 Console.WriteLine("myMap.Count: " + myMap.Count);
 foreach (KeyValuePair<int, List<string>> entry in myMap)
{
 Console.Write("entry.Key: " + entry.Key.ToString() +
 "\tentry.Value(s): ");
 foreach (string str in myMap[entry.Key])
 {
 if (str == null)
 {
 Console.Write("null : ");
 }
 else
 {
 Console.Write(str + " : ");
 }
 }
 Console.WriteLine();
 }

 // Determine if the map contains the key or the value.
 Console.WriteLine();
 Console.WriteLine("myMap.ContainsKey(2): " + myMap.ContainsKey(2));
 Console.WriteLine("myMap.ContainsValue(two): " +
 myMap.ContainsValue("two"));

 Console.WriteLine("Contains Key 2: " + myMap.ContainsKey(2));
 Console.WriteLine("Contains Key 12: " + myMap.ContainsKey(12));

 Console.WriteLine("Contains Value two: " + myMap.ContainsValue("two"));
 Console.WriteLine("Contains Value BAR: " + myMap.ContainsValue("BAR"));

 // Clear all items from MultiMap.
 myMap.Clear();
}

Example 11-5. Testing the MultiMap class (continued)

416 | Chapter 11: Data Structures and Algorithms

 Key: 5 Value: foo :
 Key: 6 Value: foo :

 ((ArrayList) myMap[3])[0]: three
 ((ArrayList) myMap[3])[1]: duplicate three

 myMap.Count: 6
 entry.Key: 2 entry.Value(s): two :
 entry.Key: 3 entry.Value(s): three : duplicate three : duplicate three :
 entry.Key: 4 entry.Value(s):
 entry.Key: 5 entry.Value(s): foo :
 entry.Key: 6 entry.Value(s): foo :
 entry.Key: 10 entry.Value(s): BAR : BAZ :

 myMap.ContainsKey(2): True
 myMap.ContainsValue(two): True
 Contains Key 2: True
 Contains Key 12: False
 Contains Value two: True
 Contains Value BAR: True

Discussion
A one-to-many map, or multimap, allows one object, a key, to be associated, or
mapped, to zero or more objects. The MultiMap<T,U> class presented here operates
similarly to a Dictionary<T,U>. The MultiMap<T,U> class contains a Dictionary<T,
List<U>> field called map that contains the actual mapping of keys to values. Several
of the MultiMap<T,U> methods are delegated to the methods on the map Dictionary<T,
List<U>> object.

A Dictionary<T,U> operates on a one-to-one principle: only one key may be associ-
ated with one value at any time. However, if you need to associate multiple values
with a single key, you must use the approach used by the MultiMap<T,U> class. The
private map field associates a key with a single List<U> of values, which allows multi-
ple mappings of values to a single key and mappings of a single value to multiple
keys. As an added feature, a key can also be mapped to a null value.

Here’s what happens when key-value pairs are added to a MultiMap<t,U> object:

1. The MultiMap<T,U>.Add method is called with a key and value provided as
parameters.

2. The Add method checks to see whether key exists in the map Dictionary<T,
List<U>> object.

3. If key does not exist, it is added as a key in the map Dictionary<T, List<U>>
object. This key is associated with a new List<U> as the value associated with key
in this Hashtable.

4. If the key does exist, the key is looked up in the map Dictionary<T, List<U>>
object, and the value is added to the key’s List<U>.

Creating a One-to-Many Map (MultiMap) | 417

To remove a key using the Remove method, the key and List<U> pair are removed
from the map Dictionary<T, List<U>>. This allows removal of all values associated
with a single key. The MultiMap<T,U>.Remove method calls the RemoveSingleMap
method, which encapsulates this behavior. Removal of key “0”, and all values
mapped to this key, is performed with the following code:

 myMap.Remove(1);

To remove all keys and their associated values, use the MultiMap<T,U>.Clear method.
This method removes all items from the map Dictionary<T, List<U>>.

The other major member of the MultiMap<T,U> class needing discussion is its indexer.
The indexer returns the List<U> of values for a particular key through its get acces-
sor. The set accessor simply adds the List<U> provided to a single key. This code cre-
ates an array of values and attempts to map them to key “5” in the myMap object:

 List<string> testArray = new List<string>();
 testArray.Add("BAR");
 testArray.Add("BAZ");
 myMap["5"] = testArray;

The following code makes use of the get accessor to access each value associated
with key "3":

 Console.WriteLine(myMap[3][0]);
 Console.WriteLine(myMap[3][1]);
 Console.WriteLine(myMap[3][2]);

This looks somewhat similar to using a jagged array. The first indexer ([3] in the pre-
ceding examples) is used to pull the List<U> from the map Dictionary<T, List<U>>,
and the second indexer is used to obtain the value in the List<U>. This code displays
the following:

 three
 duplicate three
 duplicate three

This MultiMap<T,U> class also allows the use of the foreach loop to enumerate its key-
value pairs. The following code displays each key-value pair in the MyMap object:

 foreach (KeyValuePair<int, List<string>> entry in myMap)
 {
 Console.Write("Key: " + entry.Key.ToString() + "\tValue: ");
 foreach (string str in myMap[entry.Key])
 {
 Console.Write(str + " : ");
 }
 Console.WriteLine();
 }

The outer foreach loop is used to retrieve all the keys, and the inner foreach loop is
used to display each value mapped to a particular key. This code displays the follow-
ing for the initial MyMap object:

418 | Chapter 11: Data Structures and Algorithms

 Key: 0 Value: zero :
 Key: 1 Value: one :
 Key: 2 Value: two :
 Key: 3 Value: three : duplicate three : duplicate three :
 Key: 4 Value:
 Key: 5 Value: foo :
 Key: 6 Value: foo :

Two methods that allow searching of the MultiMap<T,U> object are ContainsKey and
ContainsValue. The ContainsKey method searches for the specified key in the map
Dictionary<T, List<U>>. The ContainsValue method searches for the specified value
in a List<U> in the map Dictionary<T, List<U>>. Both methods return true if the
key-value was found or false otherwise:

 Console.WriteLine("Contains Key 2: " + myMap.ContainsKey(2));
 Console.WriteLine("Contains Key 12: " + myMap.ContainsKey(12));

 Console.WriteLine("Contains Value two: " + myMap.ContainsValue("two"));
 Console.WriteLine("Contains Value BAR: " + myMap.ContainsValue("BAR"));

Note that the ContainsKey and ContainsValue methods are both case-sensitive.

See Also
The “List<T> Class,” “Dictionary<T,U> Class,” and “IEnumerator Interface” top-
ics in the MSDN documentation.

11.4 Creating a Binary Search Tree

Problem
You need to store information in a tree structure, where the left node is less than its
parent node and the right node is greater than or equal to (in cases in which the tree
can contain duplicates) its parent. The stored information must be easily inserted
into the tree, removed from the tree, and found within the tree.

Solution
To implement a binary tree of the type described in the Problem statement, each
node must be an object that inherits from the IComparable<T> interface. This means
that every node to be included in the binary tree must implement the CompareTo
method. This method will allow one node to determine whether it is less than,
greater than, or equal to another node.

Use the BinaryTree<T> class shown in Example 11-6, which contains all of the nodes
in a binary tree and lets you traverse it.

Creating a Binary Search Tree | 419

Example 11-6. Generic BinaryTree class

using System;
using System.Collections;
using System.Collections.Generic;

public class BinaryTree<T> : IEnumerable<T>
 where T: IComparable<T>
{
 public BinaryTree() {}

 public BinaryTree(T value)
 {
 BinaryTreeNode<T> node = new BinaryTreeNode<T>(value);
 root = node;
 counter = 1;
 }

 private int counter = 0; // Number of nodes in tree
 private BinaryTreeNode<T> root = null; // Pointer to root node in this tree

 public void AddNode(T value)
 {
 BinaryTreeNode<T> node = new BinaryTreeNode<T>(value);
 ++counter;

 if (root == null)
 {
 root = node;
 }
 else
 {
 root.AddNode(node);
 }
 }

 public void AddNode(T value, int index)
 {
 BinaryTreeNode<T> node = new BinaryTreeNode<T>(value, index);
 ++counter;

 if (root == null)
 {
 root = node;
 }
 else
 {
 root.AddNode(node);
 }
 }

 public BinaryTreeNode<T> SearchDepthFirst(T value)

420 | Chapter 11: Data Structures and Algorithms

The BinaryTreeNode<T> shown in Example 11-7 encapsulates the data and behavior
of a single node in the binary tree.

 {
 return (root.DepthFirstSearch(value));
 }

 public void Print()
 {
 root.PrintDepthFirst();
 }

 public BinaryTreeNode<T> Root
 {
 get {return (root);}
 }

 public int TreeSize
 {
 get {return (counter);}
 } }

Example 11-7. Generic BinaryTreeNode class

public class BinaryTreeNode<T>
 where T: IComparable<T>
{
 public BinaryTreeNode() {}

 public BinaryTreeNode(T value)
 {
 nodeValue = value;
 }

 private T nodeValue = default(T);
 private BinaryTreeNode<T> leftNode = null; // leftNode.nodeValue < Value
 private BinaryTreeNode<T> rightNode = null; // rightNode.nodeValue >= Value

 public int Children
 {
 get
 {
 int currCount = 0;
 if (leftNode != null)
 {
 ++currCount;
 currCount += leftNode.Children();
 }

 if (rightNode != null)
 {

Example 11-6. Generic BinaryTree class (continued)

Creating a Binary Search Tree | 421

 ++currCount;
 currCount += rightNode.Children();
 }

 return (currCount);
 }
 }

 public BinaryTreeNode<T> Left
 {
 get {return (leftNode);}
 }

 public BinaryTreeNode<T> Right
 {
 get {return (rightNode);}
 }

 public T Value
 {
 get {return (nodeValue);}
 }

 public void AddNode(BinaryTreeNode<T> node)
 {
 if (node.nodeValue.CompareTo(nodeValue) < 0)
 {
 if (leftNode == null)
 {
 leftNode = node;
 }
 else
 {
 leftNode.AddNode(node);
 }
 }
 else if (node.nodeValue.CompareTo(nodeValue) >= 0)
 {
 if (rightNode == null)
 {
 rightNode = node;
 }
 else
 {
 rightNode.AddNode(node);
 }
 }
 }

 public bool AddUniqueNode(BinaryTreeNode<T> node)
 {
 bool isUnique = true;

Example 11-7. Generic BinaryTreeNode class (continued)

422 | Chapter 11: Data Structures and Algorithms

 if (node.nodeValue.CompareTo(nodeValue) < 0)
 {
 if (leftNode == null)
 {
 leftNode = node;
 }
 else
 {
 leftNode.AddNode(node);
 }
 }
 else if (node.nodeValue.CompareTo(nodeValue) > 0)
 {
 if (rightNode == null)
 {
 rightNode = node;
 }
 else
 {
 rightNode.AddNode(node);
 }
 }
 else //node.nodeValue.CompareTo(nodeValue) = 0
 {
 isUnique = false;
 // Could throw exception here as well...
 }
 return (isUnique);
 }

 public BinaryTreeNode<T> DepthFirstSearch(T targetObj)
 {
 // NOTE: foo.CompareTo(bar) == -1 --> (foo < bar)
 BinaryTreeNode<T> retObj = null;
 int comparisonResult = targetObj.CompareTo(nodeValue);
 if (comparisonResult == 0)
 {
 retObj = this;
 }
 else if (comparisonResult > 0)
 {
 if (rightNode != null)
 {
 retObj = rightNode.DepthFirstSearch(targetObj);
 }
 }
 else if (comparisonResult < 0)
 {
 if (leftNode != null)
 {
 retObj = leftNode.DepthFirstSearch(targetObj);
 }

Example 11-7. Generic BinaryTreeNode class (continued)

Creating a Binary Search Tree | 423

 }
 return (retObj);
 }

 public void PrintDepthFirst()
 {
 if (leftNode != null)
 {
 leftNode.PrintDepthFirst();
 }
 Console.WriteLine(this.nodeValue.ToString());
 if (leftNode != null)
 {
 Console.WriteLine("\tContains Left: " +
 leftNode.nodeValue.ToString());
 }
 else
 {
 Console.WriteLine("\tContains Left: NULL");
 }
 if (rightNode != null)
 {
 Console.WriteLine("\tContains Right: " +
 rightNode.nodeValue.ToString());
 }
 else
 {
 Console.WriteLine("\tContains Right: NULL");
 }
 if (rightNode != null)
 {
 rightNode.PrintDepthFirst();
 }
 }

 public List<T> CopyToList()
 {
 List<T> tempList = new List<T>();
 if (leftNode != null)
 {
 tempList.AddRange(leftNode.CopyToList());
 tempList.Add(leftNode.nodeValue);
 }
 if (rightNode != null)
 {
 tempList.Add(rightNode.nodeValue);
 tempList.AddRange(rightNode.CopyToList());
 }
 return (tempList);
 }

 public void RemoveLeftNode()

Example 11-7. Generic BinaryTreeNode class (continued)

424 | Chapter 11: Data Structures and Algorithms

The methods defined in Table 11-3 are of particular interest to using a BinaryTree<T>
object.

The methods defined in Table 11-4 are of particular interest to using a
BinaryTreeNode<T> object.

 {
 leftNode = null;
 }

 public void RemoveRightNode()
 {
 rightNode = null;
 }
}

Table 11-3. Members of the BinaryTree<T> class

Member Description

Overloaded constructor This constructor creates a BinaryTree<T> object with a root node. Its syntax is:

BinaryTree(T value)

where value is the root node for the tree. Note that this tree may not be flattened.

AddNode method Adds a node to the tree. Its syntax is:

AddNode(T value, int id)

where value is the object to be added and id is the node index. Use this method if
the tree will be flattened.

AddNode method Adds a node to the tree. Its syntax is:

AddNode(T value)

where value is the object to be added. Use this method if the tree will not be flat-
tened.

SearchDepthFirst method Searches for and returns a BinaryTreeNode<T> object in the tree, if one exists.
This method searches the depth of the tree first. Its syntax is:

SearchDepthFirst(T value)

where value is the object to be found in the tree.

Print method Displays the tree in depth-first format. Its syntax is:

Print()

Root property Returns the BinaryTreeNode<T> object that is the root of the tree. Its syntax is:

Root

TreeSize property A read-only property that gets the number of nodes in the tree. Its syntax is:

int TreeSize {get;}

Example 11-7. Generic BinaryTreeNode class (continued)

Creating a Binary Search Tree | 425

The code in Example 11-8 illustrates the use of the BinaryTree<T> and
BinaryTreeNode<T> classes when creating and using a binary tree.

Table 11-4. Members of the BinaryTreeNode<T> class

Member Description

Overloaded constructor This constructor creates a BinaryTreeNode<T> object. Its syntax is:

BinaryTreeNode(T value)

where value is the object contained in this node, which will be used to compare to its
parent.

Left property A read-only property to retrieve the left child node below this node. Its syntax is:

BinaryTreeNode<T> Left {get;}

Right property A read-only property to retrieve the right child node below this node. Its syntax is:

BinaryTreeNode<T> Right {get;}

Children property Retrieves the number of child nodes below this node. Its syntax is:

Children()

GetValue method Returns the IComparable<T> object that this node contains. Its syntax is:

GetValue()

AddNode method Adds a new node recursively to either the left or right side. Its syntax is:

AddNode(BinaryTreeNode<T> node)

where node is the node to be added. Duplicate nodes may be added using this method.

AddUniqueNode method Adds a new node recursively to either the left side or the right side. Its syntax is:

AddUniqueNode(BinaryTreeNode<T> node)

where node is the node to be added. Duplicate nodes may not be added using this
method. A Boolean value is returned: true indicates a successful operation; false
indicates an attempt to add a duplicate node.

DepthFirstSearch method Searches for and returns a BinaryTreeNode<T> object in the tree, if one exists. This
method searches the depth of the tree first. Its syntax is:

DepthFirstSearch(T targetObj)

where targetObj is the object to be found in the tree.

PrintDepthFirst method Displays the tree in depth-first format. Its syntax is:

PrintDepthFirst()

RemoveLeftNode method Removes the left node and any child nodes of this node. Its syntax is:

RemoveLeftNode()

RemoveRightNode method Removes the right node and any child nodes of this node. Its syntax is:

RemoveRightNode()

Example 11-8. Using the BinaryTree and Binary TreeNode classes

public static void TestBinaryTree()
{
 BinaryTree<string> tree = new BinaryTree<string>("d");
 tree.AddNode("a");
 tree.AddNode("b");
 tree.AddNode("f");
 tree.AddNode("e");

426 | Chapter 11: Data Structures and Algorithms

The output for this method is shown here:

 a
 Contains Left: NULL
 Contains Right: b
 b
 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: a
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL

 tree.AddNode("c");
 tree.AddNode("g");

 tree.Print();
 tree.Print();

 Console.WriteLine("tree.TreeSize: " + tree.Count);
 Console.WriteLine("tree.Root.DepthFirstSearch(b).Children: " +
 tree.Root.DepthFirstSearch("b").Children);
 Console.WriteLine("tree.Root.DepthFirstSearch(a).Children: " +
 tree.Root.DepthFirstSearch("a").Children);
 Console.WriteLine("tree.Root.DepthFirstSearch(g).Children: " +
 tree.Root.DepthFirstSearch("g").Children);

 Console.WriteLine("tree.SearchDepthFirst(a): " +
 tree.SearchDepthFirst("a").Value);
 Console.WriteLine("tree.SearchDepthFirst(b): " +
 tree.SearchDepthFirst("b").Value);
 Console.WriteLine("tree.SearchDepthFirst(c): " +
 tree.SearchDepthFirst("c").Value);
 Console.WriteLine("tree.SearchDepthFirst(d): " +
 tree.SearchDepthFirst("d").Value);
 Console.WriteLine("tree.SearchDepthFirst(e): " +
 tree.SearchDepthFirst("e").Value);
 Console.WriteLine("tree.SearchDepthFirst(f): " +
 tree.SearchDepthFirst("f").Value);

 tree.Root.RemoveLeftNode();
 tree.Print();

 tree.Root.RemoveRightNode();
 tree.Print();
}

Example 11-8. Using the BinaryTree and Binary TreeNode classes (continued)

Creating a Binary Search Tree | 427

 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 a
 Contains Left: NULL
 Contains Right: b
 b
 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: a
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 tree.TreeSize: 7
 tree.Root.DepthFirstSearch(a).Children: 1
 tree.Root.DepthFirstSearch(a).Children: 2
 tree.Root.DepthFirstSearch(g).Children: 0
 tree.SearchDepthFirst(a): a
 tree.SearchDepthFirst(b): b
 tree.SearchDepthFirst(c): c
 tree.SearchDepthFirst(d): d
 tree.SearchDepthFirst(e): e
 tree.SearchDepthFirst(f): f
 d
 Contains Left: NULL
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: NULL
 Contains Right: NULL

428 | Chapter 11: Data Structures and Algorithms

Discussion
Trees are data structures in which each node has exactly one parent and possibly
many children. The root of the tree is a single node that branches out into one or
more child nodes. A node is the part of the tree structure that contains data and con-
tains the branches (or in more concrete terms, references) to its children node(s).

A tree can be used for many things, such as to represent a management hierarchy
with the president of the company at the root node and the various vice presidents as
child nodes of the president. The vice presidents may have managers as child nodes,
and so on. A tree can be used to make decisions, where each node of the tree con-
tains a question, and the answer given depends on which branch is taken to a child
node. The tree described in this recipe is called a binary tree. A binary tree can have
zero, one, or two child nodes for every node in the tree. A binary tree node can never
have more than two child nodes; this is where this type of tree gets its name. (There
are other types of trees. For instance, the n-ary tree can have zero to n nodes for each
node in the tree. This type of tree is defined in Recipe 11.5.)

A binary tree is very useful for storing objects and then efficiently searching for those
objects. There are definitely more efficient algorithms out there for sorting binary
trees than the one implemented here. For example, if you need to store key/value
pairs, you can look at using the SortedList or the SortedDictionary classes built into
the .NET Framework. For storing large amounts of data (i.e., items numbering in the
hundreds of thousands or higher), these two data structures will perform better. For
storing small numbers of items (i.e., a few hundred or lower), this data structure’s
performance will be fine.

The following algorithm is used to store objects in a binary tree:

1. Start at the root node.

2. Is this node free?

a. If yes, add the object to this node, and you are done.

b. If no, continue.

3. Is the object to be added to the tree less than (less than is determined by the
IComparable<T>.CompareTo method of the node being added) the current node?

a. If yes, follow the branch to the node on the left side of the current node, and
go to step 2.

b. If no, follow the branch to the node of the right side of the current node, and
go to step 2.

Basically, this algorithm states that the node to the left of the current node contains
an object or value less than the current node, and the node to the right of the current
node contains an object or value greater than (or equal to, if the binary tree can con-
tain duplicates) the current node.

Creating a Binary Search Tree | 429

Searching for an object in a tree is easy. Just start at the root and ask, “Is the object I
am searching for?” If it is not, then you need to ask “is the object I am searching for
less than the current node’s object?” If it is, follow the left branch to the next node in
the tree. If it is still not the correct object, continue down the right branch to the next
node. When you get to the next node, start the process over again.

The binary tree used in this recipe is made up of two classes. The BinaryTree<T> class
is not a part of the actual tree; rather, it acts as a starting point from which you can
create a tree, add nodes to it, search the tree for items, and retrieve the root node to
perform other actions.

The second class, BinaryTreeNode<T>, is the heart of the binary tree and represents a
single node in the tree. This class contains all the members that are required to cre-
ate and work with a binary tree.

The BinaryTreeNode<T> class contains a protected field, nodeValue, which contains an
object implementing the IComparable<T> interface. This structure allows you to per-
form searches and add nodes in the correct location in the tree. The CompareTo
method of the IComparable<T> interface is used in searching and adding methods to
determine whether you need to follow the left or right branch. See the AddNode,
AddUniqueNode, and DepthFirstSearch methods—discussed in the following para-
graphs—to see this in action.

There are two methods to add nodes to the tree, AddNode and AddUniqueNode. The
AddNode method allows duplicates to be introduced to the tree, whereas the
AddUniqueNode allows only unique nodes to be added.

The DepthFirstSearch method allows the tree to be searched by first checking the
current node to see whether it contains the value searched for; if not, recursion is
used to check the left or the right node. If no matching value is found in any node,
this method returns null.

It is interesting to note that even though the BinaryTree<T> class is provided to cre-
ate and manage the tree of BinaryTreeNode<T> objects, you can merely use the
BinaryTreeNode<T> class as long as you keep track of the root node yourself. The code
shown in Example 11-9 creates and manages the tree without the use of the
BinaryTree<T> class.

Example 11-9. Creating and managing a binary tree without using the BinaryTree class

public static void TestManagedTreeWithNoBinaryTreeClass()
{
 // Create the root node.
 BinaryTreeNode<string> topLevel = new BinaryTreeNode<string>("d");

 // Create all nodes that will be added to the tree.
 BinaryTreeNode<string> one = new BinaryTreeNode<string>("b");
 BinaryTreeNode<string> two = new BinaryTreeNode<string>("c");
 BinaryTreeNode<string> three = new BinaryTreeNode<string>("a");

430 | Chapter 11: Data Structures and Algorithms

The output for this method is shown here:

 a
 Contains Left: NULL
 Contains Right: b

 BinaryTreeNode<string> four = new BinaryTreeNode<string>("e");
 BinaryTreeNode<string> five = new BinaryTreeNode<string>("f");
 BinaryTreeNode<string> six = new BinaryTreeNode<string>("g");

 // Add nodes to tree through the root.
 topLevel.AddNode(three);
 topLevel.AddNode(one);
 topLevel.AddNode(five);
 topLevel.AddNode(four);
 topLevel.AddNode(two);
 topLevel.AddNode(six);

 // Print the tree starting at the root node.
 topLevel.PrintDepthFirst();

 // Print the tree starting at node 'Three'.
 three.PrintDepthFirst();

 // Display the number of child nodes of various nodes in the tree.
 Console.WriteLine("topLevel.Children: " + topLevel.Children);
 Console.WriteLine("one.Children: " + one.Children);
 Console.WriteLine("three.Children: " + three.Children);
 Console.WriteLine("six.Children: " + six.Children);

 // Search the tree using the depth-first searching method.
 Console.WriteLine("topLevel.DepthFirstSearch(a): " +
 topLevel.DepthFirstSearch("a").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(b): " +
 topLevel.DepthFirstSearch("b").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(c): " +
 topLevel.DepthFirstSearch("c").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(d): " +
 topLevel.DepthFirstSearch("d").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(e): " +
 topLevel.DepthFirstSearch("e").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(f): " +
 topLevel.DepthFirstSearch("f").Value.ToString());

 // Remove the left child node from the root node and display the entire tree.
 topLevel.RemoveLeftNode();
 topLevel.PrintDepthFirst();

 // Remove all nodes from the tree except for the root and display the tree.
 topLevel.RemoveRightNode();
 topLevel.PrintDepthFirst();
}

Example 11-9. Creating and managing a binary tree without using the BinaryTree class (continued)

Creating a Binary Search Tree | 431

 b
 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: a
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 a
 Contains Left: NULL
 Contains Right: b
 b
 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 topLevel.Children: 6
 one.Children: 1
 three.Children: 2
 six.Children: 0
 topLevel.DepthFirstSearch(a): a
 topLevel.DepthFirstSearch(b): b
 topLevel.DepthFirstSearch(c): c
 topLevel.DepthFirstSearch(d): d
 topLevel.DepthFirstSearch(e): e
 topLevel.DepthFirstSearch(f): f
 d
 Contains Left: NULL
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: NULL
 Contains Right: NULL

432 | Chapter 11: Data Structures and Algorithms

See Also
The “Queue Class” and “IComparable<T> Interface” topics in the MSDN
documentation.

11.5 Creating an n-ary Tree

Problem
You need a tree that can store a number of child nodes in each of its nodes. A binary
tree will work if each node needs to have only two children, but in this case, each
node needs to have a fixed number of child nodes greater than two.

Solution
Use the NTree<T> class shown in Example 11-10 to create the root node for the n-ary
tree.

Example 11-10. Generic NTree class

using System;
using System.Collections;
using System.Collections.Generic;

public class NTree<T> : IEnumerable<T>
 where T : IComparable<T>
{
 public NTree()
 {
 maxChildren = int.MaxValue;
 }
 public NTree(int maxNumChildren)
 {
 maxChildren = maxNumChildren;
 }

 // The root node of the tree
 private NTreeNode<T> root = null;
 // The maximum number of child nodes that a parent node may contain
 private int maxChildren = 0;

 public void AddRoot(NTreeNode<T> node)
 {
 root = node;
 }

 public int MaxChildren
 {
 get {return (maxChildren);}
 }
}

Creating an n-ary Tree | 433

The methods defined in Table 11-5 are of particular interest to using an NTree<T>
object.

The NTreeNodeFactory<T> class is used to create nodes for the n-ary tree. These nodes
are defined in the class NTreeNode<U>, which is nested inside of the
NTreeNodeFactory<T> class. You are not able to create an NTreeNode<U> without the
use of this factory class, as shown in Example 11-11.

Table 11-5. Members of the NTree<T> class

Member Description

Overloaded constructor This constructor creates an NTree<T> object. Its syntax is:

NTree(int maxNumChildren)

where maxNumChildren is the maximum number of children that one node may have at
any time.

MaxChildren property A read-only property to retrieve the maximum number of children any node may have. Its syn-
tax is:

int MaxChildren {get;}

The value this property returns is set in the constructor.

AddRoot method Adds a node to the tree. Its syntax is:

AddRoot(NTreeNodeFactory<T>.NTreeNode<U> node)

where node is the node to be added as a child to the current node.

Example 11-11. Using the class to create the nodes for an n-ary tree

public class NTreeNodeFactory<T>
 where T : IComparable<T>
{
 public NTreeNodeFactory(NTree<T> root)
 {
 maxChildren = root.MaxChildren;
 }

 private int maxChildren = 0;

 public int MaxChildren
 {
 get {return (maxChildren);}
 }

 public NTreeNode<T> CreateNode(T value)
 {
 return (new NTreeNode<T>(value, maxChildren));
 }

 // Nested Node class
 public class NTreeNode<U>
 where U : IComparable<U>
 {

434 | Chapter 11: Data Structures and Algorithms

 public NTreeNode(U value, int maxChildren)
 {
 if (value != null)
 {
 nodeValue = value;
 }

 childNodes = new NTreeNode<U>[maxChildren];
 }

 protected U nodeValue = default(U);
 protected NTreeNode<U>[] childNodes = null;

 public int CountChildren
 {
 get
 {
 int currCount = 0;

 for (int index = 0; index <= childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {
 ++currCount;
 currCount += childNodes[index].CountChildren;
 }
 }

 return (currCount);
 }
 }

 public int CountImmediateChildren
 {
 get
 {
 int currCount = 0;

 for (int index = 0; index <= childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {
 ++currCount;
 }
 }

 return (currCount);
 }
 }

 public NTreeNode<U>[] Children

Example 11-11. Using the class to create the nodes for an n-ary tree (continued)

Creating an n-ary Tree | 435

 {
 get {return (childNodes);}
 }

 public NTreeNode<U> GetChild(int index)
 {
 return (childNodes[index]);
 }

 public U Value()
 {
 return (nodeValue);
 }

 public void AddNode(NTreeNode<U> node)
 {
 int numOfNonNullNodes = CountImmediateChildren;
 if (numOfNonNullNodes < childNodes.Length)
 {
 childNodes[numOfNonNullNodes] = node;
 }
 else
 {
 throw (new Exception("Cannot add more children to this node."));
 }
 }

 public NTreeNode<U> DepthFirstSearch(U targetObj)
 {
 NTreeNode<U> retObj = default(NTreeNode<U>);

 if (targetObj.CompareTo(nodeValue) == 0)
 {
 retObj = this;
 }
 else
 {
 for (int index=0; index<=childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {
 retObj = childNodes[index].DepthFirstSearch(targetObj);
 if (retObj != null)
 {
 break;
 }
 }
 }
 }

 return (retObj);
 }

Example 11-11. Using the class to create the nodes for an n-ary tree (continued)

436 | Chapter 11: Data Structures and Algorithms

 public NTreeNode<U> BreadthFirstSearch(U targetObj)
 {
 Queue<NTreeNode<U>> row = new Queue<NTreeNode<U>>();
 row.Enqueue(this);

 while (row.Count > 0)
 {
 // Get next node in queue.
 NTreeNode<U> currentNode = row.Dequeue();

 // Is this the node we are looking for?
 if (targetObj.CompareTo(currentNode.nodeValue) == 0)
 {
 return (currentNode);
 }
 for (int index = 0;
 index < currentNode.CountImmediateChildren;
 index++)
 {
 if (currentNode.Children[index] != null)
 {
 row.Enqueue(currentNode.Children[index]);
 }
 }
 }

 return (null);
 }

 public void PrintDepthFirst()
 {
 Console.WriteLine("this: " + nodeValue.ToString());

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 Console.WriteLine("\tchildNodes[" + index + "]: " +
 childNodes[index].nodeValue.ToString());
 }
 else
 {
 Console.WriteLine("\tchildNodes[" + index + "]: NULL");
 }
 }

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 childNodes[index].PrintDepthFirst();
 }

Example 11-11. Using the class to create the nodes for an n-ary tree (continued)

Creating an n-ary Tree | 437

The methods defined in Table 11-6 are of particular interest to using an
NTreeNodeFactory<T> object.

 }
 }

 public List<U> IterateDepthFirst()
 {
 List<U> tempList = new List<U>();

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 tempList.Add(childNodes[index].nodeValue);
 }
 }

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 tempList.AddRange(childNodes[index].IterateDepthFirst());
 }
 }

 return (tempList);
 }

 public void RemoveNode(int index)
 {
 // Remove node from array and compact the array.
 if (index < childNodes.GetLowerBound(0) ||
 index > childNodes.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else if (index < childNodes.GetUpperBound(0))
 {
 Array.Copy(childNodes, index + 1, childNodes, index,
 childNodes.Length - index - 1);
 }
 childNodes.SetValue(null, childNodes.GetUpperBound(0));
 }
 }
}

Example 11-11. Using the class to create the nodes for an n-ary tree (continued)

438 | Chapter 11: Data Structures and Algorithms

The methods defined in Table 11-7 are of particular interest to using the nested
NTreeNode<U> object.

Table 11-6. Members of the NTreeNodeFactory<T> class

Member Description

Constructor Creates a new NTreeNodeFactory<T> object that will create NTreeNode<U> objects
with the same number of MaxChildren that the NTree<T> object passed in supports. Its
syntax is:

NTreeNodeFactory(NTree<T> root)

where root is an NTree<T> object.

MaxChildren property Read-only property that returns the maximum number of children that the NTree<T> object
supports. Its syntax is:

int MaxChildren {get;}

CreateNode method Overloaded method that returns a new NTreeNode object. Its syntax is:

CreateNode()
CreateNode(IComparable value)

where value is the IComparable object this new node object will contain.

Table 11-7. Members of the NTreeNode<U> class

Member Description

Constructor Creates a new NTreeNode<U> object from the NTreeNodeFactory<T>
object passed in to it. Its syntax is:

NTreeNode(T value, int maxChildren)

where value is an IComparable<T> object and maxChildren is the
total number of children allowed by this node.

NumOfChildren property Read-only property that returns the total number of children below this node.
Its syntax is:

int NumOfChildren {get;}

Children property Read-only property that returns all of the non-null child-node objects in an
array that the current node contains. Its syntax is:

NTreeNode<U>[] Children {get;}

CountChildren property Recursively counts the number of non-null child nodes below the current
node and returns this value as an integer. Its syntax is:

CountChildren

CountImmediateChildren property Counts only the non-null child nodes contained in the current node. Its syn-
tax is:

CountImmediateChildren

GetChild method Uses an index to return the NTreeNode<U> contained by the current node.
Its syntax is:

GetChild(int index)

where index is the array index where the child object is stored.

Value method Returns an object of type T that the current node contains. Its syntax is:

Value()

Creating an n-ary Tree | 439

The code shown in Example 11-12 illustrates the use of the NTree<T>, NTree-
NodeFactory<T>, and NTreeNode<U> classes to create and manipulate an n-ary tree.

AddNode method Adds a new child node to the current node. Its syntax is:

AddNode(NTreeNode<U> node)

where node is the child node to be added.

DepthFirstSearch method Attempts to locate an NTreeNode<U> by the IComparable<T> object
that it contains. An NTreeNode<U> is returned if the IComparable<T>
object is located or a null if it is not. Its syntax is:

DepthFirstSearch(IComparable<T> targetObj)

where targetObj is the IComparable<T> object to locate in the tree.
Note that this search starts with the current node, which may or may not be
the root of the tree. The tree traversal is done in a depth-first manner.

BreadthFirstSearch method Attempts to locate an NTreeNode<U> by the IComparable<T> object
that it contains. An NTreeNode<U> is returned if the IComparable<T>
object is located or a null if it is not. Its syntax is:

BreadthFirstSearch(IComparable<T> targetObj)

where targetObj is the IComparable<T> object to locate in the tree.
Note that this search starts with the current node, which may or may not be
the root of the tree. The tree traversal is done in a breadth-first manner.

PrintDepthFirst method Displays the tree structure on the console window starting with the current
node. Its syntax is:

PrintDepthFirst()

This method uses recursion to display each node in the tree.

RemoveNode method Removes the child node at the specified index on the current node. Its syn-
tax is:

RemoveNode(int index)

where index is the array index where the child object is stored. Note that
when a node is removed, all of its children nodes are removed as well.

Example 11-12. Using the NTree<T>, NTreeNodeFactory<T>, and NTreeNode<U> classes

public static void TestNTree()
{
 NTree<string> topLevel = new NTree<string>(3);
 NTreeNodeFactory<string> nodeFactory =
 new NTreeNodeFactory<string>(topLevel);

 NTreeNode<string> one = nodeFactory.CreateNode("One");
 NTreeNode<string> two = nodeFactory.CreateNode("Two");
 NTreeNode<string> three = nodeFactory.CreateNode("Three");
 NTreeNode<string> four = nodeFactory.CreateNode("Four");
 NTreeNode<string> five = nodeFactory.CreateNode("Five");
 NTreeNode<string> six = nodeFactory.CreateNode("Six");
 NTreeNode<string> seven = nodeFactory.CreateNode("Seven");
 NTreeNode<string> eight = nodeFactory.CreateNode("Eight");

Table 11-7. Members of the NTreeNode<U> class (continued)

Member Description

440 | Chapter 11: Data Structures and Algorithms

The output for this method is shown here:

 topLevel.GetRoot().CountChildren: 0
 Display Entire tree:
 this: One
 childNodes[0]: Two
 childNodes[1]: Three
 childNodes[2]: Four

 NTreeNode<string> nine = nodeFactory.CreateNode("Nine");

 topLevel.AddRoot(one);
 Console.WriteLine("topLevel.GetRoot().CountChildren: " +
 topLevel.GetRoot().CountChildren);

 topLevel.GetRoot().AddNode(two);
 topLevel.GetRoot().AddNode(three);
 topLevel.GetRoot().AddNode(four);

 topLevel.GetRoot().Children[0].AddNode(five);
 topLevel.GetRoot().Children[0].AddNode(eight);
 topLevel.GetRoot().Children[0].AddNode(nine);
 topLevel.GetRoot().Children[1].AddNode(six);
 topLevel.GetRoot().Children[1].Children[0].AddNode(seven);

 Console.WriteLine("Display Entire tree:");
 topLevel.GetRoot().PrintDepthFirst();

 Console.WriteLine("Display tree from node [two]:");
 topLevel.GetRoot().Children[0].PrintDepthFirst();

 Console.WriteLine("Depth First Search:");
 Console.WriteLine("topLevel.DepthFirstSearch(One): " +
 topLevel.GetRoot().DepthFirstSearch("One").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Two): " +
 topLevel.GetRoot().DepthFirstSearch("Two").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Three): " +
 topLevel.GetRoot().DepthFirstSearch("Three").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Four): " +
 topLevel.GetRoot().DepthFirstSearch("Four").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Five): " +
 topLevel.GetRoot().DepthFirstSearch("Five").Value().ToString());

 Console.WriteLine("\r\n\r\nBreadth First Search:");
 Console.WriteLine("topLevel.BreadthFirstSearch(One): " +
 topLevel.GetRoot().BreadthFirstSearch("One").Value().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Two): " +
 topLevel.GetRoot().BreadthFirstSearch("Two").Value().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Three): " +
 topLevel.GetRoot().BreadthFirstSearch("Three").Value().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Four): " +
 topLevel.GetRoot().BreadthFirstSearch("Four").Value().ToString());
}

Example 11-12. Using the NTree<T>, NTreeNodeFactory<T>, and NTreeNode<U> classes

Creating an n-ary Tree | 441

 this: Two
 childNodes[0]: Five
 childNodes[1]: Eight
 childNodes[2]: Nine
 this: Five
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Eight
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Nine
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Three
 childNodes[0]: Six
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Six
 childNodes[0]: Seven
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Seven
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Four
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 Display tree from node [two]:
 this: Two
 childNodes[0]: Five
 childNodes[1]: Eight
 childNodes[2]: Nine
 this: Five
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Eight
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Nine
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 Depth First Search:
 topLevel.DepthFirstSearch(One): One
 topLevel.DepthFirstSearch(Two): Two
 topLevel.DepthFirstSearch(Three): Three
 topLevel.DepthFirstSearch(Four): Four
 topLevel.DepthFirstSearch(Five): Five

442 | Chapter 11: Data Structures and Algorithms

 Breadth First Search:
 topLevel.BreadthFirstSearch(One): One
 topLevel.BreadthFirstSearch(Two): Two
 topLevel.BreadthFirstSearch(Three): Three
 topLevel.BreadthFirstSearch(Four): Four

Discussion
An n-ary tree is one that has no limitation on the number of children each parent
node may contain. This is in contrast to the binary search tree in Recipe 11.4, in
which each parent node may contain only two children nodes.

NTree<T> is a simple class that contains only a constructor and three public methods.
Through this object, you can create an n-ary tree, set the root node, and obtain the
root node in order to navigate and manipulate the tree. An NTree<T> object that can
contain at most three children is created in the following manner:

 NTree<string> topLevel = new NTree<string>(3);

An NTree<T> object that can contain at most int.MaxValue children, which allows
greater flexibility, is created in the following manner:

 NTree<string> topLevel = new NTree<string>();

The real work is done in the NTreeNodeFactory<T> object and the NTreeNode<U> object,
which is nested in the NTreeNodeFactory<T> class. The NTreeNodeFactory<T> class is an
object factory that facilitates the construction of all NTreeNode<U> objects. When the
factory object is created, the NTree<T> object is passed in to the constructor, as shown
here:

 NTreeNodeFactory<string> nodeFactory = new NTreeNodeFactory<string>
(topLevel);

Therefore, when the factory object is created, it knows the maximum number of chil-
dren that a parent node may have. The factory object provides a public method,
CreateNode, that allows for the creation of an NTreeNode<U> object. If an
IComparable<T> type object is passed into this method, the IComparable<T> object will
be contained within this new node in the nodeValue field. If a null is passed in, the
new NTreeNode<U> object will contain the object U with it initialized using the default
keyword. The String object can be passed in to this parameter with no modifica-
tions. Node creation is performed in the following manner:

 NTreeNode<string> one = nodeFactory.CreateNode("One");
 NTreeNode<string> two = nodeFactory.CreateNode("Two");
 NTreeNode<string> three = nodeFactory.CreateNode("Three");
 NTreeNode<string> four = nodeFactory.CreateNode("Four");
 NTreeNode<string> five = nodeFactory.CreateNode("Five");
 NTreeNode<string> six = nodeFactory.CreateNode("Six");

 NTreeNode<string> seven = nodeFactory.CreateNode("Seven");
 NTreeNode<string> eight = nodeFactory.CreateNode("Eight");
 NTreeNode<string> nine = nodeFactory.CreateNode("Nine");

Creating an n-ary Tree | 443

The NTreeNode<U> class is nested within the factory class; it is not supposed to be
used directly to create a node object. Instead, the factory will create a node object
and return it to the caller. NTreeNode<U> has one constructor that accepts two param-
eters: value, which is an object of type U used to store an object implementing the
IComparable<T> interface; and an integer value, maxChildren, which is used to define
the total number of child nodes allowed. It is the nodeValue field that you use when
you are searching the tree for a particular item.

Adding a root node to the TopLevel NTree<T> object is performed using the AddRoot
method of the NTree<T> object:

 topLevel.AddRoot(one);

Each NTreeNode<U> object contains a field called childNodes. This field is an array
containing all child nodes attached to this parent node object. The maximum num-
ber of children—obtained from the factory class—provides this number, which is
used to create the fixed-size array. This array is initialized in the constructor of the
NTreeNode<U> object.

The following code shows how to add nodes to this tree:

 // Add nodes to root.
 topLevel.GetRoot().AddNode(two);
 topLevel.GetRoot().AddNode(three);
 topLevel.GetRoot().AddNode(four);

 // Add node to the first node Two of the root.
 topLevel.GetRoot().Children[0].AddNode(five);

 // Add node to the previous node added, node five.
 topLevel.GetRoot().BreadthFirstSearch("Five").AddNode(six);

The searching method BreadthFirstSearch is constructed similarly to the way the
same method was constructed for the binary search tree in Recipe 11.4. The
DepthFirstSearch method is constructed a little differently from the same method in
the binary tree. This method uses recursion to search the tree, but it uses a for loop
to iterate over the array of child nodes, searching each one in turn. In addition, the
current node is checked first to determine whether it matches the targetObj parame-
ter to this method. This is a better-performing design, as opposed to moving this test
to the end of the method.

If the RemoveNode method is successful, the array containing all child nodes of the cur-
rent node is compacted to prevent fragmentation, which allows nodes to be added
later in a much simpler manner. The AddNode method only has to add the child node
to the end of this array as opposed to searching the array for an open element. The
following code shows how to remove a node:

 // Remove all nodes below node 'Two'.
 // Nodes 'Five' and 'Six' are removed.
 topLevel.GetRoot().BreadthFirstSearch("Two").RemoveNode(0);

444 | Chapter 11: Data Structures and Algorithms

 // Remove node 'Three' from the root node.
 topLevel.GetRoot().RemoveNode(1);

See Also
The “Queue<T> Class” and “IComparable Interface” topics in the MSDN
documentation.

11.6 Using a HashSet Object

Problem
You need an object that contains a group of unique unordered objects. This object
must be able to be compared to other objects containing unique unordered groups of
similar objects. In addition, the two must be able to have the following actions per-
formed on them:

• Union of the items contained by the two container objects

• Intersection of the items contained by the two container objects

• Difference of the items contained by the two container objects

Solution
Use the built in HashSet<T> object.

The methods defined in Table 11-8 are of particular interest to using a HashSet<T>
object.

Table 11-8. Members of the HashSet<T> class

Member Description

Add method Add a new object to the current HashSet<T> object. Its syntax is:

Add(T obj)

where obj is the object of type T to add to this HashSet.

Remove method Removes an existing object from the current HashSet<T> object. Its syntax is:

Remove(T obj)

where obj is the object of type T to remove from this HashSet.

RemoveWhere method Removes an existing object from the current HashSet<T> object. Its syntax is:

RemoveWhere(Predicate<T> match)

where match is the condition in which must be satisfied in order to remove an item
or items from this HashSet.

Using a HashSet Object | 445

Contains method Returns a Boolean indicating whether the object passed in exists within this
HashSet<T> object. If a true is returned, the object exists; otherwise, it does not. Its
syntax is:

Contains(T obj)

where obj is the object of type T to be searched for.

UnionWith method Performs a union operation on the current HashSet<T> object and a second
HashSet<T> object. The current HashSet<T> object is modified to contain the
union of these two HashSet<T> objects. Its syntax is:

UnionWith(HashSet<T> set)

where set is the second HashSet<T> object.

IntersectionWith method Performs an intersection operation on the current HashSet<T> object and a second
HashSet<T> object. The current HashSet<T> object is modified to contain the
intersection of these two HashSet<T> objects. Its syntax is:

IntersectionWith(HashSet<T> set)

where set is the second HashSet<T> object.

ExceptWith method Removes all elements in the passed in HashSet<T> object from the HashSet<T>
object on which this method was called. The currentHashSet<T> object is modified
to contain the result of this operation. Its syntax is:

ExceptWith(HashSet<T> set)

where set is the second HashSet<T> object.

SymmetricExceptWith method Performs a difference operation on the current HashSet<T> object and a second
HashSet<T> object. The current HashSet<T> object is modified to contain the
difference of these two HashSet<T> objects. Its syntax is:

SymmetricExceptWith(HashSet<T> set)

where set is the second HashSet<T> object.

SetEquals method Returns a Boolean indicating whether a second HashSet<T> object is equal to the
current HashSet<T> object. Its syntax is:

SetEquals(HashSet<T> set)

where set is the second HashSet<T> object.

IsSubsetOf method Returns a Boolean indicating whether the current HashSet<T> object is a subset of
a second HashSet<T> object. Its syntax is:

IsSubsetOf(Set<T> set)

where set is the second HashSet<T> object.

IsSupersetOf method Returns a Boolean indicating whether the current HashSet<T> object is a superset
of a second HashSet<T> object. Its syntax is:

IsSupersetOf(HashSet<T> set)

where set is the second HashSet<T> object.

IsProperSubsetOf method Returns a Boolean indicating whether the current HashSet<T> object is a proper
subset of a second HashSet<T> object. Its syntax is:

IsProperSubsetOf(Set<T> set)

where set is the second HashSet<T> object.

Table 11-8. Members of the HashSet<T> class (continued)

Member Description

446 | Chapter 11: Data Structures and Algorithms

Discussion
Sets are containers that hold a group of homogeneous object types. Various mathe-
matical operations can be performed on sets, including the following:

Union
(A ∪ B)

Combines all elements of set A and set B into a resulting HashSet<T> object. If an
object exists in both sets, the resulting unioned HashSet<T> object contains only
one of those elements, not both.

Intersection
(A ∩ B)

Combines all elements of set A and set B that are common to both A and B into a
resulting HashSet<T> object. If an object exists in one set and not the other, the
element is not added to the intersectioned HashSet<T> object.

Difference
(A–B)

Combines all elements of set A, except for the elements that are also members of
set B, into a resulting HashSet<T> object. If an object exists in both sets A and B, it
is not added to the final differenced HashSet<T> object. The difference is equiva-
lent to taking the union of both sets and the intersection of both sets and then
removing all elements in the unioned set that exist in the intersectioned set.

Subset
(A ⊂ B)

Returns true if all elements of set A are contained in a second set B; otherwise, it
returns false. Set B may contain elements not found in A.

IsProperSupersetOf method Returns a Boolean indicating whether the current HashSet<T> object is a proper
superset of a second HashSet<T> object. Its syntax is:

IsProperSupersetOf(HashSet<T> set)

where set is the second HashSet<T> object.

Overlaps method Returns a Boolean indicating whether the current HashSet<T> object overlaps a
second HashSet<T> object. Its syntax is:

Overlaps(HashSet<T> set)

where set is the second HashSet<T> object.

Table 11-8. Members of the HashSet<T> class (continued)

Member Description

Using a HashSet Object | 447

Superset
(A ⊃ B)

Returns true if all elements of set A are contained in a second set B; otherwise, it
returns false. Set A may contain elements not found in B.

Equivalence
(A == B)

Returns true if both HashSet<T> objects contain the same number of elements
and the same value for each element; otherwise, it returns false. This is equiva-
lent to stating that (A ⊂ B) and (B ⊂ A).

The following code creates and populates two HashSet<T> objects:

 HashSet<int> set1 = new HashSet<int>();
 HashSet<int> set2 = new HashSet<int>();

 set1.Add(1);
 set1.Add(2);
 set1.Add(3);
 set1.Add(4);
 set1.Add(5);
 set1.Add(6);

 set2.Add(-10);
 set2.Add(2);
 set2.Add(40);

The union operation can be performed by using the UnionWith method and passing in
a HashSet<T> with which to union the current HashSet<T>. Essentially, the resulting
set contains elements that exist in either of the two HashSet<T> objects or both
HashSet<T> objects. The following code demonstrates the union operation:

 set1.UnionWith(set2);

The intersection operation is set up similarly to the union operation. To perform an
intersection between two HashSet<T> objects, use the IntersectWith method. Essen-
tially, an element must be in both HashSet<T> A and HashSet<T> B in order for it to be
placed in the resulting HashSet<T> object. The following code demonstrates the inter-
section operation:

 set1.IntersectionOf(set2);

The difference operation is performed through the SymmetricExceptWith method.
Essentially, only elements in either set, but not both, are placed in the resulting set.
The following code demonstrates the difference operation:

 set1.SymmetricExceptWith(set2);

448 | Chapter 11: Data Structures and Algorithms

The subset operation is performed only through a single method called IsSubsetOf.
The superset operation is also performed using a single method called IsSupersetOf.
The following code demonstrates this operation:

 bool isSubset = set1.IsSubsetOf(set2);
 bool isSuperset = set1.IsSupersetOf(set2);

The equivalence operation is performed by using the SetEquals method. The follow-
ing code demonstrates this operation:

 bool isEqual = set1.Equals(set2);

See Also
The “HashSet and LINQ Set Operations” topics in the MSDN documentation.

449

Chapter 12 CHAPTER 12

Filesystem I/O12

12.0 Introduction
This chapter deals with the file system in four distinct ways. The first set of recipes
looks at typical file interactions like:

• Creation.

• Reading and writing.

• Deletion.

• Attributes.

• Encoding methods for character data.

• Selecting the correct way (based on usage) to access files via streams.

The second set looks at directory- or folder-based programming tasks such as file cre-
ation as well as renaming, deleting, and determining attributes. The third set deals
with the parsing of paths and the use of temporary files and paths. The fourth set
deals with more advanced topics in filesystem I/O, such as:

• Asynchronous reads and writes.

• Monitoring for certain file system actions.

• Version information in files.

• Using P/Invoke to perform file I/O.

The file-interactions section comes first since it sets the stage for many of the recipes
in the temporary file and advanced sections. This is fundamental knowledge that will
help you understand the other file I/O recipes and how to modify them for your pur-
poses. The various file and directory I/O techniques are used throughout the more
advanced examples to help show a couple of different ways to approach the prob-
lems you will encounter working with file system I/O.

Unless otherwise specified, you need the following using statements in any program
that uses snippets or methods from this chapter:

450 | Chapter 12: Filesystem I/O

 using System;
 using System.IO;

12.1 Manipulating File Attributes

Problem
You need to display or manipulate a file’s attributes or timestamps.

Solution
To display a file’s timestamps, you can use either the static methods of the File class
or the instance properties of the FileInfo class. The static methods are
GetCreationTime, GetLastAccessTime, and GetLastWriteTime. Each has a single param-
eter, the path and name of the file for which timestamp information is to be
returned, and returns a DateTime value containing the relevant timestamp. For
example:

 public static void DisplayFileTimestamps(string path)
 {
 Console.WriteLine(File.GetCreationTime(path));
 Console.WriteLine(File.GetLastAccessTime(path));
 Console.WriteLine(File.GetLastWriteTime(path));
 }

The instance properties of the FileInfo class are CreationTime, LastAccessTime, and
LastWriteTime. Each returns a DateTime value containing the respective timestamp of
the file represented by the FileInfo object. The DisplayFileInfoTimestamps exten-
sion method allows you to report those values directly from a FileInfo:

 public static void DisplayFileInfoTimestamps(this FileInfo fileInfo)
 {
 Console.WriteLine(fileInfo.CreationTime.ToString());
 Console.WriteLine(fileInfo.LastAccessTime.ToString());
 Console.WriteLine(fileInfo.LastWriteTime.ToString());
 }

To modify a file’s timestamps, you can use either the static methods of the File class
or the instance properties of the FileInfo class. The static methods are
SetCreationTime, SetLastAccessTime, and SetLastWriteTime. All of them take the path
and name of the file for which the timestamp is to be modified as the first parameter
and a DateTime value containing the new timestamp as the second, and each returns
void. To set them all at once, use the ModifyFileTimestamps method:

 public static void ModifyFileTimestamps(string path)
 {
 File.SetCreationTime(path, DateTime.Parse(@"May 10, 2003"));
 File.SetLastAccessTime(path, DateTime.Parse(@"May 10, 2003"));
 File.SetLastWriteTime(path, DateTime.Parse(@"May 10, 2003"));
 }

Manipulating File Attributes | 451

The instance properties are the same as the properties used to display timestamp
information: CreationTime, LastAccessTime, or LastWriteTime. To set the timestamp,
assign a value of type DateTime to the relevant timestamp property. To set all of these
properties at once, use the ModifyTimestamps extension method for FileInfo:

 public static void ModifyTimestamps(this FileInfo fileInfo, DateTime dt)
 {
 fileInfo.CreationTime = dt;
 fileInfo.LastAccessTime = dt;
 fileInfo.LastWriteTime = dt;
 }

To display or modify a file’s attributes, use the instance Attributes property. The
property’s value is a bit mask consisting of one or more members of the
FileAttributes enumeration. For example, the following two methods
(DisplayFileHiddenAttribute and MakeFileHidden) display or modify if the file has the
Hidden attribute:

 public static void DisplayFileHiddenAttribute(string path)
 {
 if (File.Exists(path))
 {
 FileInfo fileInfo = new FileInfo(path);

 // Display whether this file is hidden
 Console.WriteLine("Is file hidden? = " +
 ((fileInfo.Attributes & FileAttributes.Hidden) ==
 FileAttributes.Hidden));
 }
 }

 public static void MakeFileHidden(this FileInfo fileInfo)
 {
 // Modify this file's attributes
 fileInfo.Attributes |= FileAttributes.Hidden;
 }

Discussion
One of the easier methods of creating a DateTime object is to use the static DateTime.
Parse method. This method accepts a string defining a particular date and is con-
verted to a DateTime object.

In addition to timestamp information, a file’s attributes may also be obtained and
modified. This is accomplished through the use of the public instance Attributes
property found on a FileInfo object. This property returns or modifies a
FileAttributes enumeration. The FileAttributes enumeration is made up of bit
flags that can be turned on or off through the use of the bitwise operators &, |, or ^.

Table 12-1 lists each of the flags in the FileAttributes enumeration.

452 | Chapter 12: Filesystem I/O

In many cases, more than one of these flags can be set at one time. One case in which
this is not the case is for the Normal flag, which must be used alone (see description
for more details).

See Also
The “File Class,” “FileInfo Class,” and “FileAttributes Enumeration” topics in the
MSDN documentation.

12.2 Renaming a File

Problem
You need to rename a file.

Solution
With all of the bells and whistles that are part of the .NET Framework, you would
figure that renaming a file is easy. Unfortunately, there is no specific rename method
that can be used to rename a file. Instead, you can use the static Move method of the
File class or the instance MoveTo method of the FileInfo class. The static File.Move
method can be used to rename a file in the following manner:

Table 12-1. FileAttributes enumeration values

Member name Description

Archive Represents the file’s archive status that marks the file for backup or removal.

Compressed Indicates that the file is compressed.

Device This option is reserved for future use.

Directory Indicates that this is a directory.

Encrypted Indicates that a file or directory is encrypted. In the case of a file, its contents are encrypted. In
the case of a directory, newly created files will be encrypted by default.

Hidden Indicates a hidden file.

Normal Indicates that the file has no other attributes; as such, this attribute cannot be used in combina-
tion with others.

NotContentIndexed Indicates that the file is excluded from the content index service.

Offline Indicates that the state of the file is offline and its contents will be unavailable.

ReadOnly Indicates that the file is read-only.

ReparsePoint Indicates a reparse point, a block of data associated with a directory or file.

SparseFile Indicates a sparse file, which may take up less space on the filesystem than its reported size
because zeros in the file are not actually allocated on disk.

System Indicates that the file is a system file.

Temporary Indicates a temporary file. It may reside entirely in memory.

Outputting a Platform-Independent EOL Character | 453

 public static void RenameFile(string originalName, string newName)
 {
 File.Move(originalName, newName);
 }

This code has the effect of renaming the originalName file to newName.

The FileInfo.MoveTo instance method can also be used to rename a file, and this can
be exposed directly from the FileInfo instance using an extension method. The
Rename extension method gives easy access to rename functionality right from the
FileInfo instance:

 public static class FileExtensions
 {
 public static void Rename(this FileInfo originalFile, string newName)
 {
 originalFile.MoveTo(newName);
 }
 }

Discussion
The Move and MoveTo methods allow a file to be moved to a different location, but
they can also be used to rename files. For example, you could use RenameFile to
rename a file from foo.txt to bar.dat:

 RenameFile("foo.txt","bar.dat");

You could also use fully qualified paths to rename them:

 RenameFile(@"c:\mydir\foo.txt",@"c:\mydir\bar.dat");

To use the extension method Rename, you simply call it as if it was part of FileInfo:

 FileInfo originalFile = new FileInfo(@"c:\temp\foo.txt");
 originalFile.Rename(@"c:\temp\bar.dat");

See Also
The “File Class,” “Extension Methods,” and “FileInfo Class” topics in the MSDN
documentation.

12.3 Outputting a Platform-Independent EOL
Character

Problem
Your application will run on more than one platform. Different platforms use differ-
ent end-of-line characters. You want your code to output the correct EOL character
without having to write code to handle the EOL character especially for each
platform.

454 | Chapter 12: Filesystem I/O

Solution
The .NET Framework provides the Environment.NewLine constant, which represents
a newline on the given platform. This is the newline string used by all of the frame-
work provided WriteLine methods internally (including Console, Debug, and Trace).

There are a few different scenarios in which this could be useful:

• Formatting a block of text with newlines embedded within it:
 // Remember to use Environment.NewLine on every block of text
 // we format that we want platform-correct newlines at the end of.
 string line;
 line = String.Format("FirstLine {0} SecondLine {0} ThirdLine {0}",
 Environment.NewLine);
 // Get a temp file to work with.
 string file = Path.GetTempFileName();
 using (FileStream stream = File.Create(file))
 {
 byte[] bytes = Encoding.Unicode.GetBytes(line);
 stream.Write(bytes,0,bytes.Length);
 }

 // Remove the file (good line to set a breakpoint to examine the file
 // we created).
 File.Delete(file);

• You need to use a different newline character than the default one used by
StreamWriter (which happens to be Environment.NewLine). You can set the new-
line that a StreamWriter will use once so that all WriteLines performed by the
StreamWriter use that newline instead of having to manually do it each time:
 // Set up a text writer and tell it to use a certain newline
 // string.
 // Get a new temp file.
 file = Path.GetTempFileName();
 line = "Double spaced line";
 using (StreamWriter streamWriter = new StreamWriter(file))
 {
 // Make this always write out double lines.
 streamWriter.NewLine = Environment.NewLine + Environment.NewLine;
 // WriteLine on this stream will automatically use the newly specified
 // newline sequence (double newline, in our case).
 streamWriter.WriteLine(line);
 streamWriter.WriteLine(line);
 streamWriter.WriteLine(line);
 }

 // Remove the file (good line to set a breakpoint to check out the file
 // we created).
 File.Delete(file);

• Normal WriteLine calls:
 // Just use any of the normal WriteLine methods, as they use the
 // Environment.NewLine by default.

Manipulating Directory Attributes | 455

 line = "Default line";
 Console.WriteLine(line);

Discussion
Environment.NewLine allows you to have peace of mind, whether the platform is using
\n or \r\n as the newline or possibly something else. Your code will be doing things
the right way for each platform.

One word of caution here: if you are interoperating with a non-Windows operating
system via SOAP and Web Services, the Environment.NewLine defined here might not
be accurate for a stream you send to or receive from that other operating system. Of
course, if you are doing Web Services, newlines aren’t your biggest concern.

See Also
The “Environment Class” topic in the MSDN documentation.

12.4 Manipulating Directory Attributes

Problem
You need to display or manipulate a directory’s attributes or timestamps.

Solution
To display a directory’s timestamps, you can use either the set of static methods from
the Directory object or the set of instance properties from the DirectoryInfo object.
The static methods are GetCreationTime, GetLastAccessTime, or GetLastWriteTime.
For example:

 public static void DisplayDirectoryTimestamps(string path)
 {
 Console.WriteLine(Directory.GetCreationTime(path).ToString());
 Console.WriteLine(Directory.GetLastAccessTime(path).ToString());
 Console.WriteLine(Directory.GetLastWriteTime(path).ToString());
 }

In each case, path is the path to the directory with a timestamp you wish to retrieve,
and the method returns a DateTime value containing the relevant timestamp. The
instance properties are CreationTime, LastAccessTime, or LastWriteTime. The
DisplayTimestamps extension method for DirectoryInfo allows accessing all of these
at once:

 public static void DisplayTimestamps(this DirectoryInfo dirInfo)
 {
 Console.WriteLine(dirInfo.CreationTime.ToString());
 Console.WriteLine(dirInfo.LastAccessTime.ToString());
 Console.WriteLine(dirInfo.LastWriteTime.ToString());
 }

456 | Chapter 12: Filesystem I/O

To modify a directory’s timestamps, you can use either the static methods of the
Directory class or the instance properties of the DirectoryInfo class. The static meth-
ods are SetCreationTime, SetLastAccessTime, or SetLastWriteTime. For example:

 public static void ModifyDirectoryTimestamps(string path, DateTime dt)
 {
 Directory.SetCreationTime(path, dt);
 Directory.SetLastAccessTime(path, dt);
 Directory.SetLastWriteTime(path, dt);
 }

Each method has two parameters: the first is the path to the directory with a time-
stamp that is to be set, and the second is a DateTime value containing the new time-
stamp. Each method returns void. The instance properties, all of which are of type
DateTime, are CreationTime, LastAccessTime, and LastWriteTime. ModifyTimestamps is
an extension method that will modify all three of these timestamps at once:

 public static void ModifyTimestamps(this DirectoryInfo dirInfo, DateTime dt)

 {

 dirInfo.CreationTime = dt;

 dirInfo.LastAccessTime = dt;

 dirInfo.LastWriteTime = dt;

 }

To display or modify a directory’s attributes, use the instance property Attributes as
shown in the DisplayDirectoryHiddenAttribute and MakeDirectoryHidden extension
method:

 public static void DisplayDirectoryHiddenAttribute(string path)
 {
 DirectoryInfo dirInfo = new DirectoryInfo(path);
 // Display whether this directory is hidden
 Console.WriteLine("Is directory hidden? = " +
 ((dirInfo.Attributes & FileAttributes.Hidden) == FileAttributes.Hidden));
 }

 public static void MakeDirectoryHidden(this DirectoryInfo dirInfo)

 {

 // Modify this directory's attributes

 dirInfo.Attributes |= FileAttributes.Hidden;

 }

The output of this code is shown here:

 Directory
 Is directory hidden? = False
 Is directory hidden? = True

Discussion
There are three distinct timestamps associated with any directory. These timestamps
are its creation time, its last access time, and its last write time.

Renaming a Directory | 457

In addition to timestamp information, a directory’s attributes may also be obtained
and modified. This is accomplished through the use of the public instance
Attributes property found on a DirectoryInfo object. This property returns the
FileAttributes enumeration value (see Table 12-2). The FileAttributes enumera-
tion is made up of bit flags that can be turned on or off through the use of the bit-
wise operators &, |, or ^.

In many cases, more than one of these flags may be set at one time. The Normal flag is
the exception; when this flag is set, no other flag may be set.

See Also
The “Directory Class,” “DirectoryInfo Class,” and “FileAttributes Enumeration” top-
ics in the MSDN documentation.

12.5 Renaming a Directory

Problem
You need to rename a directory.

Solution
Unfortunately, there is no specific rename method that can be used to rename a
directory. However, you can use the instance MoveTo method of the DirectoryInfo

Table 12-2. Definitions of each bit flag in the FileAttributes enumeration

Flag name Definition

Archive Typically, backup applications will use this to determine if the file should be backed up again.

Compress The current directory uses compression.

Directory The current item is a directory.

Encrypted The current directory is encrypted.

Hidden The current directory is hidden.

Normal The current directory has no other attributes set. When this attribute is set, no others can be set.

NotContentIndexed The current directory is not being indexed by the indexing service.

Offline The current directory is offline, and its contents are not accessible unless it is online.

ReadOnly The current directory is read-only.

ReparsePoint The current directory contains a reparse point.

SparseFile The current directory contains large files consisting mostly of zeros.

System The current directory is used by the system.

Temporary The current directory is classified as a temporary directory.

458 | Chapter 12: Filesystem I/O

class or the static Move method of the Directory class instead. The static Move method
can be used to rename a directory in the following manner:

 public static void RenameDirectory(string originalName, string newName)
 {
 try
 {
 // "rename" it
 Directory.Move(originalName, newName);
 }
 catch(IOException ioe)
 {
 // most likely given the directory exists or isn't empty
 Console.WriteLine(ioe.ToString());
 }
 }

This code creates a directory using the originalName parameter and renames it to the
value supplied in the newName parameter.

The instance MoveTo method of the DirectoryInfo class can also be used to rename a
directory via an extension method named Rename for DirectoryInfo shown here:

 public static void Rename(this DirectoryInfo dirInfo, string newName)
 {
 try
 {
 // "rename" it
 dirInfo.MoveTo(newName);
 }
 catch (IOException ioe)
 {
 // most likely given the directory exists or isn't empty
 Trace.WriteLine(ioe.ToString());
 }
 }

This code creates a directory using the originalName parameter and renames it to the
value supplied in the newName parameter.

Discussion
The Move and MoveTo methods allow a directory to be moved to a different location.
However, when the path remains unchanged up to the directory that will have its
name changed, the Move methods act as Rename methods.

See Also
The “Directory Class” and “DirectoryInfo Class” topics in the MSDN
documentation.

Searching for Directories or Files Using Wildcards | 459

12.6 Searching for Directories or Files Using
Wildcards

Problem
You are attempting to find one or more specific files or directories that might or
might not exist within the current file system. The search might need to use wild-
card characters in order to widen the search, for example, searching for all user-
mode dump files in a file system. These files have a .dmp extension.

Solution
There are several methods of obtaining this information. The first three methods
return a string array containing the full path of each item. The next three methods
return an object that encapsulates a directory, a file, or both.

The static GetFileSystemEntries method on the Directory class returns a string array
containing the names of all files and directories within a single directory, for
example:

 public static void DisplayFilesAndSubDirectories(string path)
 {
 string[] items = Directory.GetFileSystemEntries(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

The static GetDirectories method on the Directory class returns a string array con-
taining the names of all directories within a single directory. The following method,
DisplayDirs, shows how you might use it:

 public static void DisplaySubDirectories(string path)
 {
 string[] items = Directory.GetDirectories(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

The static GetFiles method on the Directory class returns a string array containing
the names of all files within a single directory. The following method is very similar
to DisplayDirs but calls Directory.GetFiles instead of Directory.GetDirectories:

 public static void DisplayFiles(string path)
 {
 string[] items = Directory.GetFiles(path);
 foreach (string item in items)
 {

460 | Chapter 12: Filesystem I/O

 Console.WriteLine(item);
 }
 }

These next three methods return an object instead of simply a string. The
GetFileSystemInfos method of the DirectoryInfo object returns a strongly typed
array of FileSystemInfo objects (that is, of DirectoryInfo and FileInfo objects) rep-
resenting the directories and files within a single directory. The following example
calls the GetFileSystemInfos method to retrieve an array of FileSystemInfo objects
representing all the items in a particular directory and then lists a string of display
information for FileSystemInfo to the console window. The display information is
created by the extension method ToDisplayString on FileSystemInfo:

 public static void DisplayDirectoryContents(string path)
 {
 DirectoryInfo mainDir = new DirectoryInfo(path);
 IEnumerable<string> fileSystemDisplayInfos =
 from fsi in mainDir.GetFileSystemInfos()
 where fsi is FileSystemInfo || fsi is DirectoryInfo
 select fsi.ToDisplayString();

 foreach (string s in fileSystemDisplayInfos)
 {
 Console.WriteLine(s);
 }
 }

 public static string ToDisplayInfo(this FileSystemInfo fileSystemInfo)

 {

 string type = "Unknown";

 if (item is DirectoryInfo)

 type = "DIRECTORY";

 else if (item is FileInfo)

 type = "FILE";

 return string.Format(Thread.CurrentThread.CurrentCulture,

 "{0}: {1}", type, this.Name);

 }

The output for this code is shown here:

 DIRECTORY: MyNestedTempDir
 DIRECTORY: MyNestedTempDirPattern
 FILE: MyTempFile.PDB
 FILE: MyTempFile.TXT

The GetDirectories instance method of the DirectoryInfo object returns an array of
DirectoryInfo objects representing only subdirectories in a single directory. For
example, the following code calls the GetDirectories method to retrieve an array of
DirectoryInfo objects and then displays the Name property of each object to the con-
sole window:

 public static void DisplayDirectories(string path)
 {

Searching for Directories or Files Using Wildcards | 461

 DirectoryInfo mainDir = new DirectoryInfo(path);
 DirectoryInfo[] items = mainDir.GetDirectories();
 foreach (DirectoryInfo item in items)
 {
 Console.WriteLine("DIRECTORY: " + item.Name);
 }
 }

The GetFiles instance method of the DirectoryInfo object returns an array of
FileInfo objects representing only the files in a single directory. For example, the fol-
lowing code calls the GetFiles method to retrieve an array of FileInfo objects, and
then it displays the Name property of each object to the console window:

 public static void DisplayFiles(string path)
 {
 DirectoryInfo mainDir = new DirectoryInfo(path);
 FileInfo[] items = mainDir.GetFiles();
 foreach (FileInfo item in items)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
 }

The static GetFileSystemEntries method on the Directory class returns all files and
directories in a single directory that match pattern:

 public static void DisplayFilesDirectories(string path, string pattern)
 {
 string[] items = Directory.GetFileSystemEntries(path, pattern);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

The static GetDirectories method on the Directory class returns only those directo-
ries in a single directory that match pattern:

 public static void DisplayDirectories(string path, string pattern)
 {
 string[] items = Directory.GetDirectories(path, pattern);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

The static GetFiles method on the Directory class returns only those files in a single
directory that match pattern:

 public static void DisplayFiles(string path, string pattern)
 {
 string[] items = Directory.GetFiles(path, pattern);
 foreach (string item in items)
 {

462 | Chapter 12: Filesystem I/O

 Console.WriteLine(item);
 }
 }

These next three methods return an object instead of simply a string. The first
instance method is GetFileSystemInfos, which returns both directories and files in a
single directory that match pattern:

 public static void DisplayDirectoryContentsWithPattern(string path,
 string pattern)
 {
 DirectoryInfo mainDir = new DirectoryInfo(path);
 IEnumerable<string> fileSystemDisplayInfos =
 from fsi in mainDir.GetFileSystemInfos(pattern)
 where fsi is FileSystemInfo || fsi is DirectoryInfo
 select fsi.ToDisplayString();

 foreach (string s in fileSystemDisplayInfos)
 {
 Console.WriteLine(s);
 }
 }

The GetDirectories instance method returns only directories (contained in the
DirectoryInfo object) in a single directory that match pattern:

 public static void DisplayDirectories(string path, string pattern)
 {
 DirectoryInfo mainDir = new DirectoryInfo(@"C:\TEMP ");
 DirectoryInfo[] items = mainDir.GetDirectories(pattern);
 foreach (DirectoryInfo item in items)
 {
 Console.WriteLine("DIRECTORY: " + item.Name); }
 }

The GetFiles instance method returns only file information (contained in the
FileInfo object) in a single directory that matches pattern:

 public static void DisplayFiles(string path, string pattern)
 {
 DirectoryInfo mainDir = new DirectoryInfo(@"C:\TEMP ");
 FileInfo[] items = mainDir.GetFiles(pattern);
 foreach (FileInfo item in items)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
 }

Discussion
If you need just an array of strings containing paths to both directories and files, you
can use the static method Directory.GetFileSystemEntries. The string array returned
does not include any information about whether an individual element is a directory

Searching for Directories or Files Using Wildcards | 463

or a file. Each string element contains the entire path to either a directory or file con-
tained within the specified path.

To quickly and easily distinguish between directories and files, use the Directory.
GetDirectories and Directory.GetFiles static methods. These methods return arrays
of directory names and filenames. These methods return an array of string objects.
Each element contains the full path to the directory or file.

Returning a string is fine if you do not need any other information about the direc-
tory or file returned to you or if you are going to need more information for only one
of the files returned. It is more efficient to use the static methods to get the list of file-
names and just retrieve the FileInfo for the ones you need than to have all of the
FileInfos constructed for the directory, as the instance methods will do. If you are
going to have to access attributes, lengths, or times on every one of the files, you
should consider using the instance methods described here.

The instance method GetFileSystemInfos returns an array of strongly typed
FileSystemInfo objects. (The FileSystemInfo object is the base class to the
DirectoryInfo and FileInfo objects.) Therefore, you can test whether the returned
type is a DirectoryInfo or FileInfo object using the is or as keywords. Once you
know what subclass this object really is, you can cast it to that type and begin using
it.

To get only DirectoryInfo objects, use the overloaded GetDirectories instance
method. To get only FileInfo objects, use the overloaded GetFiles instance method.
These methods return an array of DirectoryInfo and FileInfo objects, respectively;
each element of which encapsulates a directory or file.

The patterns that can be provided when filtering the results from GetFiles or
GetFileSystemInfos have certain behaviors to be aware of:

• The pattern cannot contain any of the InvalidPathChars and cannot have “..”.

• The order in which the items in the array come back is not guaranteed, but you
can use Sort or order the results in a query.

• When an extension is exactly three characters, the behavior is different in that
the pattern will match on any files with those first three characters in the
extension.

• “*.htm” returns files having an extension of .htm, .html, .htma, etc.

• When an extension has less than or more than three characters, the pattern will
perform exact matching.

• “*.cs” returns only files having an extension of .cs.

See Also
The “DirectoryInfo Class,” “FileInfo Class,” and “FileSystemInfo Class” topics in the
MSDN documentation.

464 | Chapter 12: Filesystem I/O

12.7 Obtaining the Directory Tree

Problem
You need to get a directory tree, potentially including filenames, extending from any
point in the directory hierarchy. In addition, each directory or file returned must be in
the form of an object encapsulating that item. This will allow you to perform opera-
tions on the returned objects, such as deleting the file, renaming the file, or examining/
changing its attributes. Finally, you potentially need the ability to search for a specific
subset of these items based on a pattern, such as finding only files with the .pdb
extension.

Solution
By calling the GetFileSystemInfos instance method, you can retrieve all of the files
and directories down the directory hierarchy from any starting point as an enumera-
ble list:

 public static IEnumerable<FileSystemInfo> GetAllFilesAndDirectories(string dir)
 {
 DirectoryInfo dirInfo = new DirectoryInfo(dir);
 Stack<FileSystemInfo> stack = new Stack<FileSystemInfo>();

 stack.Push(dirInfo);
 while (dirInfo != null || stack.Count > 0)
 {
 FileSystemInfo fileSystemInfo = stack.Pop();
 DirectoryInfo subDirectoryInfo = fileSystemInfo as DirectoryInfo;
 if (subDirectoryInfo != null)
 {
 yield return subDirectoryInfo;
 foreach (FileSystemInfo fsi in subDirectoryInfo.GetFileSystemInfos())
 stack.Push(fsi);
 dirInfo = subDirectoryInfo;
 }
 else
 {
 yield return fileSystemInfo;
 dirInfo = null;
 }
 }
 }

To display the results of the file and directory retrieval, use the following query:

 public static void DisplayAllFilesAndDirectories(string dir)
 {
 var strings = from fileSystemInfo in GetAllFilesAndDirectories(dir)
 select fileSystemInfo.ToDisplayString();

 foreach (string s in strings)
 Console.WriteLine(s);
 }

Obtaining the Directory Tree | 465

Since the results are queryable, you don’t have to retrieve information about all files
and directories. The following query uses a case-insensitive comparison to obtain a
listing of all files with the extension of .pdb that reside in directories that contain
Chapter 1:

 var strings = from fileSystemInfo in GetAllFilesAndDirectories(dir)
 where fileSystemInfo is FileInfo &&
 fileSystemInfo.FullName.Contains("Chapter 1") &&
 (string.Compare(fileSystemInfo.Extension, extension,
 StringComparison.OrdinalIgnoreCase) == 0)
 select fileSystemInfo.ToDisplayString();

 foreach (string s in strings)
 Console.WriteLine(s);

Discussion
To obtain a tree representation of a directory and the files it contains, you could use
recursive iterators in a method like this:

 public static IEnumerable<FileSystemInfo> GetAllFilesAndDirectories(string dir)
 {
 DirectoryInfo dirInfo = new DirectoryInfo(dir);
 FileSystemInfo[] fileSystemInfos = dirInfo.GetFileSystemInfos();
 foreach (FileSystemInfo fileSystemInfo in fileSystemInfos)
 {
 yield return fileSystemInfo;
 if (fileSystemInfo is DirectoryInfo)
 {
 foreach (FileSystemInfo fsi in
 GetAllFilesAndDirectories(fileSystemInfo.FullName))
 yield return fsi;
 }
 }
 }

 public static void DisplayAllFilesAndDirectories(string dir)
 {
 var strings = from fileSystemInfo in GetAllFilesAndDirectories(dir)
 select fileSystemInfo.ToDisplayString();

 foreach (string s in strings)
 Console.WriteLine(s);
 }

The main difference between this and the solution code is that this uses recursive
iterators and the solution uses iterative iterators and an explicit stack. You
would not want to use the recursive iterator method as the performance is in fact
O(n * d), where n is the number of FileSystemInfos and d is the depth of the direc-
tory hierarchy—which is typically log n.

466 | Chapter 12: Filesystem I/O

You can check the performance with the following code if the solution methods are
renamed to DisplayAllFilesAndDirectoriesWithoutRecursion and
DisplayAllFilesAndDirectoriesWithoutRecursion, respectively:

 string dir = Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles);
 // list all of the files using recursion
 Stopwatch watch1 = Stopwatch.StartNew();
 DisplayAllFilesAndDirectories(dir);
 watch1.Stop();
 Console.WriteLine("*************************");

 // list all of the files without recursion
 Stopwatch watch2 = Stopwatch.StartNew();
 DisplayAllFilesAndDirectoriesWithoutRecursion(dir);
 watch2.Stop();
 Console.WriteLine("*************************");
 Console.WriteLine("Recursive method time elapsed {0}",
 watch1.Elapsed.ToString());
 Console.WriteLine("Non-Recursive method time elapsed {0}",
 watch2.Elapsed.ToString());

See Also
The “DirectoryInfo Class,” “FileInfo Class,” and “FileSystemInfo Class” topics in the
MSDN documentation.

12.8 Parsing a Path

Problem
You need to separate the constituent parts of a path and place them into separate
variables.

Solution
Use the static methods of the Path class:

 public static void ParsePath(string path)
 {
 string root = Path.GetPathRoot(path);
 string dirName = Path.GetDirectoryName(path);
 string fullFileName = Path.GetFileName(path);
 string fileExt = Path.GetExtension(path);
 string fileNameWithoutExt = Path.GetFileNameWithoutExtension(path);
 StringBuilder format = new StringBuilder();
 format.Append("ParsePath of {0} breaks up into the following pieces:" +
 Environment.NewLine + "\tRoot: {1}" +
 Environment.NewLine + "\t");
 format.Append("Directory Name: {2}" +
 Environment.NewLine + "\tFull File Name: {3}" +
 Environment.NewLine + "\t");

Parsing a Path | 467

 format.Append("File Extension: {4}" +
 Environment.NewLine + "\tFile Name Without Extension: {5}" +
 Environment.NewLine + "");
 Console.WriteLine(format.ToString(),path,root,dirName,
 fullFileName,fileExt,fileNameWithoutExt);
 }

If the string C:\test\tempfile.txt is passed to this method, the output looks like
this:

 ParsePath of C:\test\tempfile.txt breaks up into the following pieces:
 Root: C:\
 Directory Name: C:\test
 Full File Name: tempfile.txt
 File Extension: .txt
 File Name Without Extension: tempfile

Discussion
The Path class contains methods that can be used to parse a given path. Using
these classes is much easier and less error-prone than writing path- and filename-
parsing code. If these classes are not used, you could also introduce security holes
into your application if the information gathered from manual parsing routines is
used in security decisions for your application. There are five main methods used
to parse a path: GetPathRoot, GetDirectoryName, GetFileName, GetExtension, and
GetFileNameWithoutExtension. Each has a single parameter, path, which represents
the path to be parsed:

GetPathRoot
This method returns the root directory of the path. If no root is provided in the
path, such as when a relative path is used, this method returns an empty string,
not null.

GetDirectoryName
This method returns the complete path for the directory that the file is in.

GetFileName
This method returns the filename, including the file extension. If no filename is
provided in the path, this method returns an empty string, not null.

GetExtension
This method returns the file’s extension. If no extension is provided for the file
or no file exists in the path, this method returns an empty string, not null.

GetFileNameWithoutExtension
This method returns the root filename without the file extension.

Be aware that these methods do not actually determine whether the drives, directo-
ries, or even files exist on the system that runs these methods. These methods are
string parsers, and if you pass one of them a string in some strange format (such as
\\ZY:\foo), it will try to do what it can with it anyway:

468 | Chapter 12: Filesystem I/O

 ParsePath of \\ZY:\foo breaks up into the following pieces:
 Root: \\ZY:\foo
 Directory Name:
 Full File Name: foo
 File Extension:
 File Name Without Extension: foo

These methods will, however, throw an exception if illegal characters are found in
the path.

To determine whether files or directories exist, use the static Directory.Exists or
File.Exists method.

See Also
The “Path Class” topic in the MSDN documentation.

12.9 Parsing Paths in Environment Variables

Problem
You need to parse multiple paths contained in environment variables, such as PATH or
Include.

Solution
You can use the Path.PathSeparator field or the ; character to extract individual
paths from an environment variable with a value that consists of multiple paths and
place them in an array. Then, you can use a foreach loop to iterate over each individ-
ual path in the PATH environment variable and parse each path. This process is illus-
trated by the ParsePathEnvironmentVariable method:

 public static void ParsePathEnvironmentVariable()
 {
 string originalPathEnv = Environment.GetEnvironmentVariable("PATH");
 string[] paths = originalPathEnv.Split(Path.PathSeparator);
 foreach (string s in paths)
 {
 string pathEnv = Environment.ExpandEnvironmentVariables(s);
 if(!string.IsNullOrEmpty(pathEnv))
 Console.WriteLine("Individual Path = " + pathEnv);
 Console.WriteLine();
 }
 }

If the PATH environment variable contains the following:

 PATH=Path=C:\WINDOWS\system32;C:\WINDOWS

and then the output of the ParsePathEnvironmentVariable method is as follows:

 Individual Path = C:\WINDOWS\system32
 Individual Path = C:\WINDOWS

Launching and Interacting with Console Utilities | 469

Discussion
When working with environment variables in particular, there are a number of cases
in which several paths may be concatenated and you need to parse each one individ-
ually. To distinguish each individual path from the others, Microsoft Windows uses
the semicolon character. (Other operating systems might use a different character;
Unix, Linux, and Mac OS X use a colon.) To make sure that we always use the cor-
rect path-separation character, the Path class contains a public static field called
PathSeparator. This field contains the character used to separate paths in the current
platform. This field is marked as read-only, so it cannot be modified.

To obtain each individual path contained in a single string, use the Split instance
method from the String class. This method accepts a param array of character values
that are used to break apart the string instance. These individual strings containing
the paths are returned in a string array. Then, we simply use the foreach loop con-
struct to iterate over each string in this string array and use the static method
ExpandEnvironmentVariables of the Environment class to operate on each individual
path string. This static method ensures that any environment variables such as
%SystemDrive% are converted to their equivalent value, in this case, C:.

See Also
The “Path Class” and “Environment Class” topics in the MSDN documentation.

12.10 Launching and Interacting with Console
Utilities

Problem
You have an application that you need to automate and that takes input only from
the standard input stream. You need to drive this application via the commands it
will take over the standard input stream.

Solution
Say we needed to drive the cmd.exe application to display the current time with the
TIME /T command (it is possible to just run this command from the command line,
but this way we can demonstrate an alternative method to drive an application that
responds to standard input). The way to do this is to launch a process that is look-
ing for input on the standard input stream. This is accomplished via the Process class
StartInfo property, which is an instance of a ProcessStartInfo class. The Process.
Start method will launch a new process, but the StartInfo property controls many
of the details of what sort of environment that process executes in.

470 | Chapter 12: Filesystem I/O

First, make sure that the StartInfo.RedirectStandardInput property is set to true.
This setting notifies the process that it should read from standard input. Then, set
the StartInfo.UseShellExecute property to false, because if you were to let the shell
launch the process for you, it would prevent you from redirecting standard input.

Once this is done, launch the process and write to its standard input stream as
shown in Example 12-1.

Discussion
Once the input has been redirected, you can write into the standard input stream of
the process by reading the Process.StandardInput property, which returns a
StreamWriter. Once you have that, you can send things to the process via WriteLine
calls, as shown earlier.

In order to use StandardInput, you have to specify true for the StartInfo property’s
RedirectStandardInput property. Otherwise, reading the StandardInput property
throws an exception.

When UseShellExecute is false, you can use Process only to create executable pro-
cesses. Normally the Process class can be used to perform operations on the file,
such as printing a Microsoft Word document. Another difference when
UseShellExecute is set to false is that the working directory is not used to find the
executable, so you should be mindful to pass a full path or have the executable on
your PATH environment variable.

Example 12-1. RunProcessToReadStdIn method

public static void RunProcessToReadStandardInput()
{
 Process application = new Process();
 // Run the command shell.
 application.StartInfo.FileName = @"cmd.exe";

 // Turn on command extensions for cmd.exe.
 application.StartInfo.Arguments = "/E:ON";

 application.StartInfo.RedirectStandardInput = true;

 application.StartInfo.UseShellExecute = false;

 application.Start();

 StreamWriter input = application.StandardInput;
 // Run the command to display the time.
 input.WriteLine("TIME /T");

 // Stop the application we launched.
 input.WriteLine("exit");
}

Locking Subsections of a File | 471

See Also
The “Process Class,” “ProcessStartInfo Class,” “RedirectStandardInput Property,”
and “UseShellExecute Property” topics in the MSDN documentation.

12.11 Locking Subsections of a File

Problem
You need to read or write data from or to a section of a file, and you want to make
sure that no other processes or threads can access, modify, or delete the file until you
have finished with it.

Solution
Locking out other processes from accessing your file while you are using it is accom-
plished through the Lock method of the FileStream class. The following code creates
a file from the fileName parameter and writes two lines to it. The entire file is then
locked using the Lock method. While the file is locked, the code goes off and does
some other processing; when this code returns, the file is closed, thereby unlocking
it:

 public static void CreateLockedFile(string fileName)
 {
 using (FileStream fileStream = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.ReadWrite))
 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 try
 {
 // Lock all of the file.
 fileStream.Lock(0, fileStream.Length);

 // Do some lengthy processing here...
 Thread.Sleep(1000);
 }
 finally
 {
 // Make sure we unlock the file.
 // If a process terminates with part of a file locked or closes
 // a file that has outstanding locks, the behavior is undefined,
 // which is MS speak for bad things.

472 | Chapter 12: Filesystem I/O

 fileStream.Unlock(0, fileStream.Length);
 }

 streamWriter.WriteLine("The Third Line");
 }
 }
 }

Discussion
If a file is opened within your application and the FileShare parameter of the
FileStream.Open call is set to FileShare.ReadWrite or FileShare.Write, other code in
your application can view or alter the contents of the file while you are using it. To
handle file access with more granularity, use the Lock method of the FileStream
object to prevent other code from overwriting all or a portion of your file. Once you
are done with the locked portion of your file, you can call the Unlock method on the
FileStream object to allow other code in your application to write data to that por-
tion of the file.

To lock an entire file, use the following syntax:

 fileStream.Lock(0, fileStream.Length);

To lock a portion of a file, use the following syntax:

 fileStream.Lock(4, fileStream.Length - 4);

This line of code locks the entire file except for the first four characters. Note that
you can lock an entire file and still open it multiple times, as well as write to it.

If another thread is accessing this file, it is possible to see an IOException thrown dur-
ing the call to either the Write, Flush, or Close methods. For example, the following
code is prone to such an exception:

 public static void CreateLockedFile(string fileName)
 {

 using (FileStream fileStream = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.ReadWrite))

 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file.
 fileStream.Lock(0, fileStream.Length);

 using (StreamWriter streamWriter2 = new StreamWriter(
 new FileStream(fileName,

Locking Subsections of a File | 473

 FileMode.Open,
 FileAccess.Write,
 FileShare.ReadWrite)))
 {
 streamWriter2.Write("foo ");
 try
 {
 streamWriter2.Close(); // --> Exception occurs here!
 }
 catch
 {
 Console.WriteLine(
 "The streamWriter2.Close call generated an exception.");
 }
 streamWriter.WriteLine("The Third Line");
 }
 }
 }
 }

This code produces the following output:

 The streamWriter2.Close call generated an exception.

Even though streamWriter2, the second StreamWriter object, writes to a locked file, it
is when the streamWriter2.Close method is executed that the IOException is thrown.

If the code for this recipe were rewritten as follows:

 public static void CreateLockedFile(string fileName)
 {
 using (FileStream fileStream = new FileStream(fileName,
 FileMode.Create,

 FileAccess.ReadWrite,
 FileShare.ReadWrite))

 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file.
 fileStream.Lock(0, fileStream.Length);

 // Try to access the locked file...
 using (StreamWriter streamWriter2 = new StreamWriter(
 new FileStream(fileName,
 FileMode.Open,
 FileAccess.Write,
 FileShare.ReadWrite)))
 {
 streamWriter2.Write("foo");

474 | Chapter 12: Filesystem I/O

 fileStream.Unlock(0, fileStream.Length);
 streamWriter2.Flush();
 }
 }
 }
 }

no exception is thrown. This is due to the fact that the code closed the FileStream
object that initially locked the entire file. This action also freed all of the locks on the
file that this FileStream object was holding onto. Since the streamWriter2.
Write("Foo") method had written Foo to the stream’s buffer (but had not flushed it),
the string Foo was still waiting to be flushed and written to the actual file. Keep this
situation in mind when interleaving the opening, locking, and closing of streams.
Mistakes in code sometimes manifest themselves a while after they are written. This
leads to some bugs that are more difficult to track down, so tread carefully when
using file locking.

See Also
The “StreamWriter Class” and “FileStream Class” topics in the MSDN
documentation.

12.12 Waiting for an Action to Occur in the Filesystem

Problem
You need to be notified when a particular event occurs in the filesystem, such as the
renaming of a file or directory, the increasing or decreasing of the size of a file, the
user deleting a file or directory, the creation of a file or directory, or even the chang-
ing of a file or directory’s attribute(s). However, this notification must occur syn-
chronously. In other words, the application cannot continue unless a specific action
occurs to a file or directory.

Solution
The WaitForChanged method of the FileSystemWatcher class can be called to wait syn-
chronously for an event notification. This is illustrated by the WaitForZipCreation
method shown in Example 12-2, which waits for an action—more specifically, the
action of creating the Backup.zip file somewhere on the C:\ drive—to be performed
before proceeding on to the next line of code, which is the WriteLine statement.
Finally, we spin off a thread from the ThreadPool to execute the PauseAndCreateFile
method, which does the actual work of creating the file. By doing this in a back-
ground thread, we allow the FileSystemWatcher to detect the file creation.

Waiting for an Action to Occur in the Filesystem | 475

The code for PauseAndCreateFile is listed here. It is in the form of a WaitCallback to
be used as an argument to QueueUserWorkItem on the ThreadPool class.
QueueUserWorkItem will run PauseAndCreateFile on a thread from the .NET thread
pool:

 void PauseAndCreateFile(Object stateInfo)
 {
 try
 {
 string[] data = (string[])stateInfo;
 // Wait a sec...
 Thread.Sleep(1000);
 string path = data[0];
 string file = path + data[1];
 Console.WriteLine("Creating {0} in PauseAndCreateFile...",file);
 using (FileStream fileStream = File.Create(file))

Example 12-2. WaitForZipCreation method

public void WaitForZipCreation(string path, string fileName)
{
 FileSystemWatcher fsw = null;
 try
 {
 using (fsw = new FileSystemWatcher())
 {
 string [] data = new string[] {path,fileName};
 fsw.Path = path; fsw.Filter = fileName;
 fsw.NotifyFilter = NotifyFilters.LastAccess | NotifyFilters.LastWrite
 | NotifyFilters.FileName | NotifyFilters.DirectoryName;

 // Run the code to generate the file we are looking for.
 // Normally you wouldn't do this as another source is creating
 // this file.
 if(ThreadPool.QueueUserWorkItem(new WaitCallback(PauseAndCreateFile),
 data))
 {
 // Block waiting for change.
 WaitForChangedResult result =
 fsw.WaitForChanged(WatcherChangeTypes.Created);
 Console.WriteLine("{0} created at {1}.",result.Name,path);
 }
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 throw;
 }
 finally
 {
 File.Delete(fileName);
 }
}

476 | Chapter 12: Filesystem I/O

 {
 // Use fileStream var...
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 throw;
 }
 }

Discussion
The WaitForChanged method returns a WaitForChangedResult structure that contains
the properties listed in Table 12-3.

The way we are currently making the WaitForChanged call could possibly block indefi-
nitely. To prevent you from hanging forever on the WaitForChanged call, you can
specify a timeout value of 3 seconds as follows:

 WaitForChangedResult result =
 fsw.WaitForChanged(WatcherChangeTypes.Created, 3000);

The NotifyFilters enumeration allows specification of the types of files or folders to
watch for as shown in Table 12-4.

Table 12-3. WaitForChangedResult properties

Property Description

ChangeType Lists the type of change that occurred. This change is returned as a WatcherChangeTypes enumeration.
The values of this enumeration can possibly be ORed together.

Name Holds the name of the file or directory that was changed. If the file or directory was renamed, this property
returns the changed name. Its value is set to null if the operation method call times out.

OldName The original name of the modified file or directory. If this file or directory was not renamed, this property will
return the same value as the Name property. Its value is set to null if the operation method call times out.

TimedOut Holds a Boolean indicating whether the WaitForChangedmethod timed out (true) or not (false).

Table 12-4. NotifyFilters enumeration

Enumeration Value Definition

FileName Name of the file.

DirectoryName Name of the directory.

Attributes The file or folder attributes.

Size The file or folder size.

LastWrite The date the file or folder last had anything written to it.

LastAccess The date the file or folder was last opened.

CreationTime The time the file or folder was created.

Security The security settings of the file or folder.

Comparing Version Information of Two Executable Modules | 477

See Also
The “FileSystemWatcher Class,” “NotifyFilters Enumeration,” and “Wait-
ForChangedResult Structure” topics in the MSDN documentation.

12.13 Comparing Version Information of Two
Executable Modules

Problem
You need to programmatically compare the version information of two executable
modules. An executable module is a file that contains executable code, such as an .
exe or .dll file. The ability to compare the version information of two executable
modules can be very useful to an application in situations such as:

• Trying to determine if it has all of the “right” pieces present to execute.

• Deciding on an assembly to dynamically load through reflection.

• Looking for the newest version of a file or .dll from many files spread out in the
local filesystem or on a network.

Solution
Use the CompareFileVersions method to compare executable module version infor-
mation. This method accepts two filenames, including their paths, as parameters.
The version information of each module is retrieved and compared. This file returns
a FileComparison enumeration, defined as follows:

 public enum FileComparison
 {
 Same = 0,
 Newer = 1, // File1 is newer than File2
 Older = 2, // File1 is older than File2
 Error = 3
 }

The code for the CompareFileVersions method is shown in Example 12-3.

Example 12-3. CompareFileVersions method

 private static FileComparison ComparePart(int p1, int p2)
 {
 return p1 > p2 ? FileComparison.Newer :
 (p1 < p2 ? FileComparison.Older : FileComparison.Same);
 }

 public static FileComparison CompareFileVersions(string file1, string file2)
 {
 FileComparison retValue = FileComparison.Error;
 FileVersionInfo file1Version = FileVersionInfo.GetVersionInfo(file1);

478 | Chapter 12: Filesystem I/O

Discussion
Not all executable modules have version information. If you load a module with no
version information using the FileVersionInfo class, you will not provoke an excep-
tion, nor will you get null back for the object reference. Instead, you will get a valid
FileVersionInfo object with all data members in their initial state (which is null for
.NET objects).

Assemblies actually have two sets of version information: the version information
available in the assembly manifest and the PE (Portable Executable) file version infor-
mation. FileVersionInfo reads the assembly manifest version information.

The first action this method takes is to determine whether the two files passed in to
the file1 and file2 parameters actually exist. If so, the static GetVersionInfo method
of the FileVersionInfo class is called to get version information for the two files.

The CompareFileVersions method attempts to compare each portion of the file’s ver-
sion number using the following properties of the FileVersionInfo object returned
by GetVersionInfo:

FileMajorPart
The first 2 bytes of the version number.

FileMinorPart
The second 2 bytes of the version number.

FileBuildPart
The third 2 bytes of the version number.

FilePrivatePart
The final 2 bytes of the version number.

 FileVersionInfo file2Version = FileVersionInfo.GetVersionInfo(file2);

 retValue = ComparePart(file1Version.FileMajorPart,
 file2Version.FileMajorPart);
 if (retValue != FileComparison.Same)
 {
 retValue = ComparePart(file1Version.FileMinorPart,
 file2Version.FileMinorPart);
 if (retValue != FileComparison.Same)
 {
 retValue = ComparePart(file1Version.FileBuildPart,
 file2Version.FileBuildPart);
 if (retValue != FileComparison.Same)
 retValue = ComparePart(file1Version.FilePrivatePart,
 file2Version.FilePrivatePart);
 }
 }
 return retValue;
 }

Example 12-3. CompareFileVersions method (continued)

Querying Information for All Drives on a System | 479

The full version number is comprised of these four parts, making up an 8-byte num-
ber representing the file’s version number.

The CompareFileVersions method first compares the FileMajorPart version informa-
tion of the two files. If these are equal, the FileMinorPart version information of the
two files is compared. This continues through the FileBuildPart and finally the
FilePrivatePart version information values. If all four parts are equal, the files are
considered to have the same version number. If either file is found to have a higher
number than the other file, it is considered to be the latest version.

See Also
The “FileVersionInfo Class” topic in the MSDN documentation.

12.14 Querying Information for All Drives on a System

Problem
Your application needs to know if a drive (HDD, CD drive, DVD drive, etc.) is avail-
able and ready to be written to and/or read from. Additionally, it would be nice to
know if you have enough available free space on the drive to write information to.

Solution
Use the various properties in the DriveInfo class as shown here:

 public static void DisplayAllDriveInfo()
 {
 foreach (DriveInfo drive in DriveInfo.GetDrives())
 {
 if (drive.IsReady)
 {
 Console.WriteLine("Drive " + drive.Name + " is ready.");
 Console.WriteLine("AvailableFreeSpace: " + drive.AvailableFreeSpace);
 Console.WriteLine("DriveFormat: " + drive.DriveFormat);
 Console.WriteLine("DriveType: " + drive.DriveType);
 Console.WriteLine("Name: " + drive.Name);
 Console.WriteLine("RootDirectory.FullName: " +
 drive.RootDirectory.FullName);
 Console.WriteLine("TotalFreeSpace: " + drive.TotalFreeSpace);
 Console.WriteLine("TotalSize: " + drive.TotalSize);
 Console.WriteLine("VolumeLabel: " + drive.VolumeLabel);
 }
 else
 {
 Console.WriteLine("Drive " + drive.Name + " is not ready.");
 }
 }
}

480 | Chapter 12: Filesystem I/O

This code will display something like the following, though of course each system is
different and the results will vary:

 Drive C:\ is ready.
 AvailableFreeSpace: 143210795008
 DriveFormat: NTFS
 DriveType: Fixed
 Name: C:\
 RootDirectory.FullName: C:\
 TotalFreeSpace: 143210795008
 TotalSize: 159989886976
 VolumeLabel: Vol1

 Drive D:\ is ready.
 AvailableFreeSpace: 0
 DriveFormat: UDF
 DriveType: CDRom
 Name: D:\
 RootDirectory.FullName: D:\
 TotalFreeSpace: 0
 TotalSize: 3305965568
 VolumeLabel: Vol2

 Drive E:\ is ready.
 AvailableFreeSpace: 4649025536
 DriveFormat: UDF
 DriveType: CDRom
 Name: E:\
 RootDirectory.FullName: E:\
 TotalFreeSpace: 4649025536
 TotalSize: 4691197952
 VolumeLabel: Vol3

 Drive F:\ is not ready.

Of particular interest are the IsReady and AvailableFreeSpace properties. The IsReady
property determines if the drive is ready to be queried, written to, or read from but is
not terribly reliable as this state could quickly change. If using IsReady, make sure
the case where the drive becomes not ready is accounted for. The AvailableFreeSpace
property returns the free space on that drive in bytes.

Discussion
Use the DriveInfo class from the .NET Framework to allow you to easily query infor-
mation on one particular drive or on all drives in the system. To query the informa-
tion from a single drive, you would use the code in Example 12-4.

Querying Information for All Drives on a System | 481

Notice that only the drive letter is passed in to the DriveInfo constructor. This drive
letter can be either uppercase or lowercase—it does not matter. The next thing you
will notice with the code in Example 12-4 and the code in the Solution to this recipe
is that the IsReady property is always tested for true before either using the drive or
querying its properties. If we did not test this property for true and for some reason
the drive was not ready (e.g., a CD was not in the drive at that time), a System.IO.
IOException would be returned stating that “The device is not ready.” For the Solu-
tion to this recipe, the DriveInfo constructor was not used. Instead, the static
GetDrives method of the DriveInfo class was used to return an array of DriveInfo
objects. Each DriveInfo object in this array corresponds to one drive on the current
system.

The DriveType property of the DriveInfo class returns an enumeration value from the
DriveType enumeration. This enumeration value identifies what type of drive the cur-
rent DriveInfo object represents. Table 12-5 identifies the various values of the
DriveType enumeration.

In the DriveInfo class there are two very similar properties, AvailableFreeSpace and
TotalFreeSpace. Each of these properties will return the same value in most cases.
However, AvailableFreeSpace also takes into account any disk-quota information for
a particular drive. Disk-quota information can be found by right-clicking a drive in
Windows Explorer and selecting the Properties pop-up menu item. This displays the
Properties page for this drive. On this Properties page, click on the Quota tab to view
the quota information for that drive. If the Enable Quota Management checkbox is
unchecked, then disk-quota management is disabled, and both the
AvailableFreeSpace and TotalFreeSpace properties should be equal.

Example 12-4. Getting information from a specific drive

DriveInfo drive = new DriveInfo("D");
if (drive.IsReady)
 Console.WriteLine("The space available on the D:\\ drive: " +
 drive.AvailableFreeSpace);
else
 Console.WriteLine("Drive D:\\ is not ready.");

Table 12-5. DriveType enumeration values

Enum value Description

CDRom This can be a CD-ROM, CD writer, DVD-ROM, or DVD writer drive.

Fixed This is the fixed drive such as an HDD. Note that USB HDDs fall into this category.

Network A network drive.

NoRootDirectory No root directory was found on this drive.

Ram A RAM disk.

Removable A removable storage device.

Unknown Some other type of drive than those listed here.

482 | Chapter 12: Filesystem I/O

See Also
The “DriveInfo Class” topic in the MSDN documentation.

12.15 Compressing and Decompressing Your Files

Problem
You need a way to compress a file using one of the stream-based classes without
being constrained by the 4 GB limit imposed by the framework classes. In addition,
you need a way to decompress the file to allow you to read it back in.

Solution
Use the System.IO.Compression.DeflateStream or the System.IO.Compression.
GZipStream classes to read and write compressed data to a file using a “chunking”
routine. The CompressFile, DecompressFile, and Decompress methods shown in
Example 12-5 demonstrate how to use these classes to compress and decompress
files on the fly.

Example 12-5. The CompressFile and DecompressFile methods

/// <summary>
/// Compress the source file to the destination file.
/// This is done in 1MB chunks to not overwhelm the memory usage.
/// </summary>
/// <param name="sourceFile">the uncompressed file</param>
/// <param name="destinationFile">the compressed file</param>
/// <param name="compressionType">the type of compression to use</param>
public static void CompressFile(string sourceFile,
 string destinationFile,
 CompressionType compressionType)
{
 if (sourceFile != null)
 {
 FileStream streamSource = null;
 FileStream streamDestination = null;
 Stream streamCompressed = null;

 try
 {
 streamSource = File.OpenRead(sourceFile);
 streamDestination = File.OpenWrite(destinationFile);
 // read 1MB chunks and compress them
 long fileLength = streamSource.Length;

 // write out the fileLength size
 byte[] size = BitConverter.GetBytes(fileLength);
 streamDestination.Write(size, 0, size.Length);

Compressing and Decompressing Your Files | 483

 long chunkSize = 1048576; // 1MB
 while (fileLength > 0)
 {
 // read the chunk
 byte[] data = new byte[chunkSize];
 streamSource.Read(data, 0, data.Length);

 // compress the chunk
 MemoryStream compressedDataStream =
 new MemoryStream();

 if (compressionType == CompressionType.Deflate)
 streamCompressed =
 new DeflateStream(compressedDataStream,
 CompressionMode.Compress);
 else
 streamCompressed =
 new GZipStream(compressedDataStream,
 CompressionMode.Compress);

 using (streamCompressed)
 {
 // write the chunk in the compressed stream
 streamCompressed.Write(data, 0, data.Length);
 }
 // get the bytes for the compressed chunk
 byte[] compressedData =
 compressedDataStream.GetBuffer();

 // write out the chunk size
 size = BitConverter.GetBytes(chunkSize);
 streamDestination.Write(size, 0, size.Length);

 // write out the compressed size
 size = BitConverter.GetBytes(compressedData.Length);
 streamDestination.Write(size, 0, size.Length);

 // write out the compressed chunk
 streamDestination.Write(compressedData, 0,
 compressedData.Length);

 // subtract the chunk size from the file size
 fileLength -= chunkSize;

 // if chunk is less than remaining file use
 // remaining file
 if (fileLength < chunkSize)
 chunkSize = fileLength;
 }
 }
 finally
 {

Example 12-5. The CompressFile and DecompressFile methods (continued)

484 | Chapter 12: Filesystem I/O

 streamSource.Close();
 streamDestination.Close();
 }
 }
}

/// <summary>
/// This function will decompress the chunked compressed file
/// created by the CompressFile function.
/// </summary>
/// <param name="sourceFile">the compressed file</param>
/// <param name="destinationFile">the destination file</param>
/// <param name="compressionType">the type of compression to use</param>
public static void DecompressFile(string sourceFile,
 string destinationFile,
 CompressionType compressionType)
{
 FileStream streamSource = null;
 FileStream streamDestination = null;
 Stream streamUncompressed = null;

 try
 {
 streamSource = File.OpenRead(sourceFile);
 streamDestination = File.OpenWrite(destinationFile);
 // read the fileLength size
 // read the chunk size
 byte[] size = new byte[sizeof(long)];
 streamSource.Read(size, 0, size.Length);
 // convert the size back to a number
 long fileLength = BitConverter.ToInt64(size, 0);
 long chunkSize = 0;
 int storedSize = 0;
 while (fileLength > 0)
 {
 // read the chunk size
 size = new byte[sizeof(long)];
 streamSource.Read(size, 0, size.Length);
 // convert the size back to a number
 chunkSize = BitConverter.ToInt64(size, 0);
 if (chunkSize > fileLength ||
 chunkSize > workingSet)
 throw new InvalidDataException();

 // read the compressed size
 size = new byte[sizeof(int)];
 streamSource.Read(size, 0, size.Length);
 // convert the size back to a number
 storedSize = BitConverter.ToInt32(size, 0);

Example 12-5. The CompressFile and DecompressFile methods (continued)

Compressing and Decompressing Your Files | 485

 if (storedSize > fileLength ||
 storedSize > workingSet)
 throw new InvalidDataException();

 if (storedSize > chunkSize)
 throw new InvalidDataException();

 byte[] uncompressedData = new byte[chunkSize];
 byte[] compressedData = new byte[storedSize];
 streamSource.Read(compressedData, 0,
 compressedData.Length);

 // uncompress the chunk
 MemoryStream uncompressedDataStream =
 new MemoryStream(compressedData);

 if (compressionType == CompressionType.Deflate)
 streamUncompressed =
 new DeflateStream(uncompressedDataStream,
 CompressionMode.Decompress);
 else
 streamUncompressed =
 new GZipStream(uncompressedDataStream,
 CompressionMode.Decompress);

 using (streamUncompressed)
 {
 // read the chunk in the compressed stream
 streamUncompressed.Read(uncompressedData, 0,
 uncompressedData.Length);
 }

 // write out the uncompressed chunk
 streamDestination.Write(uncompressedData, 0,
 uncompressedData.Length);

 // subtract the chunk size from the file size
 fileLength -= chunkSize;

 // if chunk is less than remaining file use remaining file
 if (fileLength < chunkSize)
 chunkSize = fileLength;
 }
 }
 finally
 {
 streamSource.Close();
 streamDestination.Close();
 }
}

Example 12-5. The CompressFile and DecompressFile methods (continued)

486 | Chapter 12: Filesystem I/O

The CompressionType enumeration is defined as follows:

 public enum CompressionType
 {
 Deflate,
 GZip
 }

Discussion
The CompressFile method accepts a path to the source file to compress, a path to the
destination of the compressed file, and a CompressionType enumeration value indicat-
ing which type of compression algorithm to use (Deflate or GZip). This method pro-
duces a file containing the compressed data.

The DecompressFile method accepts a path to the source compressed file to decom-
press, a path to the destination of the decompressed file, and a CompressionType enu-
meration value indicating which type of decompression algorithm to use (Deflate or
GZip).

The TestCompressNewFile method shown in Example 12-6 exercises the CompressFile
and DecompressFile methods defined in the Solution section of this recipe.

Example 12-6. Using the CompressFile and DecompressFile methods

public static void TestCompressNewFile()
{
 byte[] data = new byte[10000000];
 for (int i = 0; i < 10000000; i++)
 data[i] = (byte)i;

 FileStream fs =
 new FileStream(@"C:\NewNormalFile.txt",
 FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None);
 using(fs)
 {
 fs.Write(data,0,data.Length);
 }

 CompressFile(@"C:\NewNormalFile.txt", @"C:\NewCompressedFile.txt",
 CompressionType.Deflate);

 DecompressFile(@"C:\NewCompressedFile.txt", @"C:\NewDecompressedFile.txt",
 CompressionType.Deflate);

 CompressFile(@"C:\NewNormalFile.txt", @"C:\NewGZCompressedFile.txt",
 CompressionType.GZip);

 DecompressFile(@"C:\NewGZCompressedFile.txt", @"C:\NewGZDecompressedFile.txt",
 CompressionType.GZip);

Compressing and Decompressing Your Files | 487

When this test code is run, we get three files with different sizes. The first file,
NewNormalFile.txt, is 10,000,000 bytes in size. The NewCompressedFile.txt file is
155,168 bytes. The final file, NewGzCompressedFile.txt file is 115,204 bytes. As you
can see, there is not much difference between the sizes for the files compressed with
the DeflateStream class and the GZipStream class. The reason for this is that both
compression classes use the same compression/decompression algorithm (i.e., the
lossless Deflate algorithm as described in the RFC 1951: Deflate 1.3 specification).

You may be wondering why you would pick one class over the other if they use the
same algorithm. There is one good reason: the GZipStream class adds a CRC check to
the compressed data to determine if it has been corrupted. If the data has been cor-
rupted, an InvalidDataException is thrown with the statement “The CRC in GZip
footer does not match the CRC calculated from the decompressed data.” By catch-
ing this exception, you can determine if your data is corrupted.

In the Decompress method, there is a possibility for some InvalidDataExceptions to be
thrown:

 // read the chunk size
 size = new byte[sizeof(long)];
 streamSource.Read(size, 0, size.Length);
 // convert the size back to a number
 chunkSize = BitConverter.ToInt64(size, 0);
 if (chunkSize > fileLength ||
 chunkSize > workingSet)
 throw new InvalidDataException();

 // read the compressed size
 size = new byte[sizeof(int)];
 streamSource.Read(size, 0, size.Length);
 // convert the size back to a number
 storedSize = BitConverter.ToInt32(size, 0);
 if (storedSize > fileLength ||
 storedSize > workingSet)
 throw new InvalidDataException();

 if (storedSize > chunkSize)
 throw new InvalidDataException();

 byte[] uncompressedData = new byte[chunkSize];
 byte[] compressedData = new byte[storedSize];

 //Normal file size == 10,000,000 bytes
 //GZipped file size == 155,204
 //Deflated file size == 155,168
 // 36 bytes are related to the GZip CRC
}

Example 12-6. Using the CompressFile and DecompressFile methods (continued)

488 | Chapter 12: Filesystem I/O

The reason for these checks is that the code is reading in a buffer that may have been
tampered with. Since Decompress will actually allocate memory based on the num-
bers derived from the buffer, it needs to be careful about what those numbers turn
out to be. The very basic checks being done here are to check that:

• The size of the chunk is not bigger than the file length.

• The size of the chunk is not bigger than the current program working set.

• The size of the compressed chunk is not bigger than the file length.

• The size of the compressed chunk is not bigger than the current program work-
ing set.

• The size of the compressed chunk is not bigger than the actual chunk size.

See Also
The “DeflateStream Class” and “GZipStream” topics in the MSDN documentation.

489

Chapter 13 CHAPTER 13

Reflection13

13.0 Introduction
Reflection is the mechanism provided by the .NET Framework to allow you to
inspect how a program is constructed. Using reflection, you can obtain information
such as the name of an assembly and what other assemblies a given assembly
imports. You can even dynamically call methods on an instance of a type in a given
assembly. Reflection also allows you to create code dynamically and compile it to an
in-memory assembly or to build a symbol table of type entries in an assembly.

Reflection is a very powerful feature of the Framework and, as such, is guarded by
the runtime. The ReflectionPermission must be granted to assemblies that are going
to access the protected or private members of a type. If you are going to access only
the public members of a public type, you will not need to be granted the
ReflectionPermission. Code Access Security has only two permission sets that give
all reflection access by default: FullTrust and Everything. The LocalIntranet permis-
sion set allows for the ReflectionEmit privilege that allows for emitting metadata and
creating assemblies or the MemberAccess privilege for performing dynamic invocation
of methods on types in assemblies.

In this chapter, you will see how you can use reflection to dynamically invoke mem-
bers on types, figure out all of the assemblies a given assembly is dependent on, and
inspect assemblies for different types of information. Reflection is a great way to
understand how things are put together in .NET, and this chapter provides a start-
ing point.

490 | Chapter 13: Reflection

13.1 Listing Referenced Assemblies

Problem
You need to determine each assembly imported by a particular assembly. This infor-
mation can show you if this assembly is using one or more of your assemblies or if
your assembly is using another specific assembly.

Solution
Use the Assembly.GetReferencedAssemblies method, as shown in Example 13-1, to
obtain the imported assemblies of an assembly.

Example 13-1. Using the Assembly.GetReferencedAssemblies method

using System;
using System.Reflection;
using System.Collections.Specialized;

public static void BuildDependentAssemblyList(string path,
 StringCollection assemblies)
{
 // maintain a list of assemblies the original one needs
 if(assemblies == null)
 assemblies = new StringCollection();

 // have we already seen this one?
 if(assemblies.Contains(path)==true)
 return;

 Assembly asm = null;

 // look for common path delimiters in the string
 // to see if it is a name or a path
 if ((path.IndexOf(@"\", 0, path.Length, StringComparison.Ordinal) != -1) ||
 (path.IndexOf("/", 0, path.Length, StringComparison.Ordinal) != -1))
 {
 // load the assembly from a path
 asm = Assembly.LoadFrom(path);
 }
 else
 {
 // try as assembly name
 asm = Assembly.Load(path);
 }

 // add the assembly to the list
 if (asm != null)
 {
 assemblies.Add(path);
 }

Listing Referenced Assemblies | 491

This code returns a StringCollection containing the original assembly, all imported
assemblies, and the dependent assemblies of the imported assemblies.

If you ran this method against the assembly C:\CSharpRecipes\bin\Debug\CSharp-
Recipes.exe, you’d get the following dependency tree:

 C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe

 mscorlib, Version=2.0.3600.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

 System, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Configuration, Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a

 System.Xml, Version=2.0.3600.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

 System.Security, Version=2.0.3600.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a

 System.Web.RegularExpressions, Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a

 System.Runtime.Serialization.Formatters.Soap, Version=2.0.3600.0,
Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a

Discussion
Obtaining the imported types in an assembly is useful in determining what assem-
blies another assembly is using. This knowledge can greatly aid in learning to use a
new assembly. This method can also help determine dependencies between assem-
blies for shipping purposes.

The GetReferencedAssemblies method of the System.Reflection.Assembly class
obtains a list of all the imported assemblies. This method accepts no parameters and
returns an array of AssemblyName objects instead of an array of Types. The

 // get the referenced assemblies
 AssemblyName[] imports = asm.GetReferencedAssemblies();

 // iterate
 foreach (AssemblyName asmName in imports)
 {
 // now recursively call this assembly to get the new modules
 // it references
 BuildDependentAssemblyList(asmName.FullName, assemblies);
 }
}

Example 13-1. Using the Assembly.GetReferencedAssemblies method (continued)

492 | Chapter 13: Reflection

AssemblyName type is made up of members that allow access to the information about
an assembly, such as the name, version, culture information, public/private key
pairs, and other data.

Note that this method does not account for assemblies loaded using the Assembly.
ReflectionOnlyLoad* methods, as it is inspecting for only compile-time references.

When loading assemblies for inspection using reflection, you should
use the ReflectionOnlyLoad* methods. These methods do not allow
you to execute code from the loaded assembly. The reasoning is that
you may not know if you are loading assemblies containing hostile
code or not. These methods prevent any hostile code from executing.

See Also
The “Assembly Class” topic in the MSDN documentation.

13.2 Listing Exported Types

Problem
You need to obtain all the exported types of an assembly. This information allows
you to see what types are usable from outside of this assembly.

Solution
Use Assembly.GetExportedTypes to obtain the exported types of an assembly:

 using System;
 using System.Reflection;
 using System.Collections.Generic;
 using System.IO;

 public static void ListExportedTypes(string path)
 {
 // Load the assembly.
 Assembly asm = Assembly. ReflectionOnlyLoadFrom(path);
 Console.WriteLine("Assembly: {0} imports:",path);
 // Get the exported types.
 Type[] types = asm.GetExportedTypes();
 foreach (Type t in types)
 {
 Console.WriteLine ("\tExported Type: {0}",t.FullName);
 }
 }

The previous example will display all exported, or public, types:

 Assembly: C:\C#Cookbook\CSharpRecipes.exe imports:
 Exported Type: CSharpRecipes.ClassAndStructs

Finding Overridden Methods | 493

 Exported Type: CSharpRecipes.Line
 Exported Type: CSharpRecipes.Square
 Exported Type: CSharpRecipes.CompareHeight
 Exported Type: CSharpRecipes.Foo
 Exported Type: CSharpRecipes.ObjState

Discussion
Obtaining the exported types in an assembly is useful when determining the public
interface to that assembly. This ability can greatly aid in learning to use a new assem-
bly or can aid the developer of that assembly in determining all access points to the
assembly to verify that they are adequately secure from malicious code. To get these
exported types, use the GetExportedTypes method on the System.Reflection.Assembly
type. The exported types consist of all of the types that are publicly accessible from
outside of the assembly. A type may have public accessibility but not be accessible
from outside of the assembly. Take, for example, the following code:

 public class Outer
 {
 public class Inner {}
 private class SecretInner {}
 }

The exported types are Outer and Outer.Inner; the type SecretInner is not exposed
to the world outside of this assembly. If you change the Outer accessibility from
public to private, you now have no types accessible to the outside world—the Inner
class access level is downgraded because of the private on the Outer class.

See Also
The “Assembly Class” topic in the MSDN documentation.

13.3 Finding Overridden Methods

Problem
You have an inheritance hierarchy that is several levels deep and has many virtual
and overridden methods. You need a list of the base class method(s) that are overrid-
den by methods within a derived class.

Solution
Use the MethodInfo.GetBaseDefinition method to determine which method is over-
ridden in what base class. The overloaded FindMethodOverrides method shown in
Example 13-2 examines all of the public instance methods in a class and displays
which methods override their respective base class methods. This method also deter-
mines which base class the overridden method is in. This method accepts an assem-
bly path and name in which to find overriding methods. Note that the typeName

494 | Chapter 13: Reflection

parameter must be the fully qualified type name (i.e., the complete namespace hier-
archy, followed by any containing classes, followed by the type name you are
querying).

The second method allows you to determine whether a particular method overrides a
method in its base class. It accepts the same two arguments as the first overloaded
method, along with the full method name and an array of Type objects representing
its parameter types:

 public class ReflectionUtils
 {
 public static void FindMethodOverrides(string asmPath, string typeName,
 string methodName, Type[] paramTypes)
 {

Example 13-2. The FindMethodOverrides methods

public class ReflectionUtils
{
 public static void FindMethodOverrides(string asmPath, string typeName)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 Type asmType = asm.GetType(typeName);

 Console.WriteLine("---[" + asmType.FullName + "]---");

 // get the methods that match this type
 MethodInfo[] methods = asmType.GetMethods(BindingFlags.Instance |
 BindingFlags.NonPublic | BindingFlags.Public |
 BindingFlags.Static | BindingFlags.DeclaredOnly);

 var mis = from ms in methods
 where ms != ms.GetBaseDefinition()
 select ms.GetBaseDefinition();

 foreach (MethodInfo mi in mis)
 {
 Console.WriteLine();
 Console.WriteLine("Current Method: " + mi.ToString());

 Console.WriteLine("Base Type FullName: " + mi.DeclaringType.FullName);
 Console.WriteLine("Base Method: " + mi.ToString());

 // list the types of this method
 foreach (ParameterInfo pi in mi.GetParameters())
 {
 Console.WriteLine("\tParam {0}: {1}",
 pi.Name, pi.ParameterType.ToString());
 }
 }
 }
}

Finding Overridden Methods | 495

 Console.WriteLine(Environment.NewLine + "For [Type] Method: [" +
 typeName + "] " + methodName);

 // We use LoadFrom here to load any dependent DLL's as well
 // this will prevent a TypeLoadException from occuring
 Assembly asm = Assembly.LoadFrom (asmPath);

 // GetType should throw an exception if the type cannot be found
 // and it should also ignore the case of the typeName
 Type asmType = asm.GetType(typeName,true,true);
 MethodInfo method = asmType.GetMethod(methodName, paramTypes);

 if (method != null)
 {
 MethodInfo baseDef = method.GetBaseDefinition();
 if (baseDef != method)
 {
 Console.WriteLine("Base Type FullName: " +
 baseDef.DeclaringType.FullName);
 Console.WriteLine("Base Method: " + baseDef.ToString());

 bool foundMatch = false;

 var match = from p in baseDef.GetParameters()
 join op in paramTypes
 on p.ParameterType.UnderlyingSystemType
 equals op.UnderlyingSystemType
 select p;

 foundMatch = match.Any();

 foreach (ParameterInfo pi in match)
 {
 // list the params so we can see which one we got
 Console.WriteLine("\tParam {0}: {1}",
 pi.Name, pi.ParameterType.ToString());
 }

 // we found the one we were looking for
 if(foundMatch == true)
 {
 Console.WriteLine("Found Match!");
 }
 }
 }
 Console.WriteLine();
 }

The following code shows how to use each of these overloaded methods:

 public static void FindOverriddenMethods()
 {
 Process current = Process.GetCurrentProcess();

496 | Chapter 13: Reflection

 // Get the path of the current module.
 string path = current.MainModule.FileName;

 // Try the easier one.
 ReflectionUtils.FindMethodOverrides
 (path,"CSharpRecipes.ReflectionUtils+DerivedOverrides");

 // Try the signature FindMethodOverrides.
 ReflectionUtils.FindMethodOverrides(path,
 "CSharpRecipes.ReflectionUtils+DerivedOverrides",
 "Foo",
 new Type[3] {typeof(long), typeof(double), typeof(byte[])});
 }

The output of this method, using the BaseOverrides and DerivedOverrides classes
defined afterward, is shown here:

 ---[CSharpRecipes.ReflectionUtils+DerivedOverrides]---
 Current Method: Void Foo(System.String, Int32)
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(System.String, Int32)
 Param str: System.String
 Param i: System.Int32

 Current Method: Void Foo(Int64, Double, Byte[])
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]

 For [Type] Method: [CSharpRecipes.ReflectionUtils+DerivedOverrides] Foo
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]
 Found Match!

In the usage code, you get the path to the test code assembly (CSharpRecipes.exe) via
the Process class. You then use that to find a class that has been defined in the
ReflectionUtils class, called DerivedOverrides.DerivedOverrides derives from
BaseOverrides, and they are both shown here:

 public abstract class BaseOverrides
 {
 public abstract void Foo(string str, int i);
 public abstract void Foo(long l, double d, byte[] bytes);
 }

 public class DerivedOverrides : BaseOverrides
 {
 public override void Foo(string str, int i)
 {

Finding Overridden Methods | 497

 }

 public override void Foo(long l, double d, byte[] bytes)
 {
 }
 }

The first method passes in only the assembly path and the fully qualified type name.
This method returns every overridden method for each method that it finds in the
Reflection.DerivedOverrides type. If you want to display all overriding methods and
their corresponding overridden methods, you can remove the BindingFlags.
DeclaredOnly binding enumeration from the GetMethods method call:

 MethodInfo[] methods = asmType.GetMethods(BindingFlags.Instance |
 BindingFlags.NonPublic | BindingFlags.Public);

This change now produces the following output using the same classes,
BaseOverrides and DerivedOverrides:

 ---[CSharpRecipes.ReflectionUtils+DerivedOverrides]---
 Current Method: Void Foo(System.String, Int32)
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(System.String, Int32)
 Param str: System.String
 Param i: System.Int32

 Current Method: Void Foo(Int64, Double, Byte[])
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]

 Current Method: System.Type GetType()

 Current Method: System.Object MemberwiseClone()

 Current Method: System.String ToString()
 Base Type FullName: System.Object
 Base Method: System.String ToString()

 Current Method: Boolean Equals(System.Object)
 Base Type FullName: System.Object
 Base Method: Boolean Equals(System.Object)
 Param obj: System.Object

 Current Method: Int32 GetHashCode()
 Base Type FullName: System.Object
 Base Method: Int32 GetHashCode()

 Current Method: Void Finalize()
 Base Type FullName: System.Object
 Base Method: Void Finalize()

498 | Chapter 13: Reflection

 For [Type] Method: [CSharpRecipes.ReflectionUtils+DerivedOverrides] Foo
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]
 Found Match!

The second method passes in the assembly path, the fully qualified type name, a
method name, and the parameters for this method to find the override that specifi-
cally matches the signature based on the parameters. In this case, the parameter
types of method Foo are long, double, and byte[]. This method displays the method
that CSharpRecipes.ReflectionUtils+DerivedOverrides.Foo overrides. The + in the
type name represents a nested class.

Discussion
Determining which methods override their base class methods would be a tedious
chore if it were not for the GetBaseDefinition method of the System.Reflection.
MethodInfo type. This method takes no parameters and returns a MethodInfo object
that corresponds to the overridden method in the base class. If this method is used
on a MethodInfo object representing a method that is not being overridden—as is the
case with a virtual or abstract method—GetBaseDefinition returns the original
MethodInfo object.

The code for the FindMethodOverrides methods first loads the assembly using the
asmPath parameter and then gets the type that is specified by the typeName parameter.

Once the type is located, its Type object’s GetMethod or GetMethods method is called.
GetMethod is used when both the method name and its parameter array are passed in
to FindMethodOverrides; otherwise, GetMethods is used. If the method is correctly
located and its MethodInfo object obtained, the GetBaseDefinition method is called
on that MethodInfo object to get the first overridden method in the nearest base class
in the inheritance hierarchy. This MethodInfo type is compared to the MethodInfo type
that the GetBaseDefinition method was called on. If these two objects are the same,
it means that there were no overridden methods in any base classes; therefore, noth-
ing is displayed. This code will display only the overridden methods; if no methods
are overridden, then nothing is displayed.

See Also
Recipe 13.4; see the “Process Class,” “Assembly Class,” “MethodInfo Class,” and
“ParameterInfo Class” topics in the MSDN documentation.

Finding Members in an Assembly | 499

13.4 Finding Members in an Assembly

Problem
You need to find one or more members of types in an assembly with a specific name
or containing part of a name. This partial name could be, for example, any member
starting with the letter A or the string “Test.”

Solution
Use the Type.GetMember method, which returns all members that match a specified
criterion:

 public static void FindMemberInAssembly(string asmPath, string memberName)
 {
 var members = from asm in Assembly.LoadFrom(asmPath).GetTypes()
 from ms in asm.GetMember(memberName, MemberTypes.All,
 BindingFlags.Public | BindingFlags.NonPublic |
 BindingFlags.Static | BindingFlags.Instance)
 select ms;

 foreach (MemberInfo member in members)
 {
 Console.WriteLine("Found " + member.MemberType + ": " +
 member.ToString() + " IN " +
 member.DeclaringType.FullName);
 }
 }

The memberName argument can contain the wildcard character * to indicate any char-
acter or characters. So, to find all methods starting with the string “Test”, pass the
string "Test*" to the memberName parameter. Note that the memberName argument is
case-sensitive, but the asmPath argument is not. If you’d like to do a case-insensitive
search for members, add the BindingFlags.IgnoreCase flag to the other BindingFlags
in the call to Type.GetMember.

Discussion
The GetMember method of the System.Type class is useful for finding one or more
methods within a type. This method returns an array of MemberInfo objects that
describe any members that match the given parameters.

The * character may be used as a wildcard character only at the end of
the name parameter string. If placed anywhere else in the string, it will
not be treated as a wildcard character. In addition, it may be the only
character in the name parameter; if this is so, all members are returned.
No other wildcard characters, such as ?, are supported.

500 | Chapter 13: Reflection

Once you obtain an array of MemberInfo objects, you need to examine what kind of
members they are. To do this, the MemberInfo class contains a MemberType property
that returns a System.Reflection.MemberTypes enumeration value. This can be any of
the values defined in Table 13-1, except for the All value.

See Also
Recipe 13.5; the “Assembly Class,” “BindingFlags Enumeration,” and “MemberInfo
Class” topics in the MSDN documentation.

13.5 Determining and Obtaining Nested Types
Within an Assembly

Problem
You need to determine which types have nested types contained within them in your
assembly. Determining the nested types allows you to programmatically examine
various aspects of some design patterns. Various design patterns may specify that a
type will contain another type; for example, the Decorator and State design patterns
make use of object containment.

Solution
Use the DisplayNestedTypes method to iterate through all types in your assembly and
list all of their nested types. Its code is:

 public static void DisplayNestedTypes(string asmPath)
 {
 var names = from t in Assembly.LoadFrom(asmPath).GetTypes()
 from t2 in t.GetNestedTypes(BindingFlags.Instance |
 BindingFlags.Static |
 BindingFlags.Public |

Table 13-1. MemberTypes enumeration values

Enumeration value Definition

All All member types

Constructor A constructor member

Custom A custom member type

Event An event member

Field A field member

Method A method member

NestedType A nested type

Property A property member

TypeInfo A type member that represents a TypeInfo member

Displaying the Inheritance Hierarchy for a Type | 501

 BindingFlags.NonPublic)
 where !t2.IsEnum && !t2.IsInterface
 select t2.FullName;

 foreach (string name in names)
 {
 Console.WriteLine(name);
 }
 }

Discussion
The DisplayNestedTypes method uses a LINQ query to query all types in the assem-
bly specified by the asmPath parameter. The LINQ query also queries for the nested
types with the assembly by using the GetNestedTypes method of the Type class.

Usually the dot operator is used to delimit namespaces and types; however, nested
types are somewhat special. Nested types are set apart from other types by the +
operator in their fully qualified name when dealing with them in the reflection APIs.
By passing this fully qualified name in to the static GetType methods, the actual type
that it represents can be acquired.

These methods return a Type object that represents the type identified by the
typeName parameter.

Calling Type.GetType to retrieve a type defined in a dynamic assembly
(one that is created using the types defined in the System.Reflection.
Emit namespace) returns a null if that assembly has not already been
persisted to disk. Typically, you would use the static Assembly.GetType
method on the dynamic assembly’s Assembly object.

See Also
Recipe 13.4; see the “Assembly Class” and “BindingFlags Enumeration” topics in the
MSDN documentation.

13.6 Displaying the Inheritance Hierarchy for a Type

Problem
You need to determine all of the base types that make up a specific class or struct.
Essentially, you need to determine the inheritance hierarchy of a type starting with
the base (least derived) type and ending with the specified (most derived) type.

502 | Chapter 13: Reflection

Solution
Use the DisplayInheritanceChain method to display the entire inheritance hierarchy
for all types existing in an assembly specified by the asmPath parameter. Its source
code is:

public static void DisplayInheritanceChain (string asmPath)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 var typeInfos = from Type type in asm.GetTypes()
 select new
 {
 FullName = type.FullName,
 BaseTypeDisplay = type.GetBaseTypeDisplay()
 };

 foreach(var typeInfo in typeInfos)
 {
 // Recurse over all base types
 Console.WriteLine ("Derived Type: " + typeInfo.FullName);
 Console.WriteLine("Base Type List: " + typeInfo.BaseTypeDisplay);
 Console.WriteLine();
 }
}

DisplayInheritanceChain takes the path to the assembly and retrieves all of the Types
in the assembly using GetTypes as part of a query. It then projects the FullName of the
Type and the BaseTypeDisplay for the type. The BaseTypeDisplay is a string holding all
of the base types and is generated by the extension method GetBaseTypeDisplay.
GetBaseTypeDisplay gets the name of each base type using the GetBaseTypes exten-
sion method and reverses the order of the types with a call to Reverse. The call to
Reverse is done as the types are most derived to least derived order when discovered
by traversing the BaseType property of each Type encountered, and we want the dis-
play to show least derived (Object) first. The <- string is prepended to each type
name to form the base type display string:

public static string GetBaseTypeDisplay(this Type type)
{
 IEnumerable<string> baseTypes=
 (from t in type.GetBaseTypes()
 select t.Name).Reverse();
 StringBuilder builder = new StringBuilder();
 foreach(string typeName in baseTypes)
 {
 if (builder.Length == 0)
 builder.Append(typeName);
 else
 builder.AppendFormat("<-{0}",typeName);
 }
 return builder.ToString();
}

Displaying the Inheritance Hierarchy for a Type | 503

private static IEnumerable<Type> GetBaseTypes(this Type type)
{
 Type current = type;
 while (current != null)
 {
 yield return current;
 current = current.BaseType;
 }
}

If you want to obtain only the inheritance hierarchy of a specific type as a string, use
the following DisplayInheritanceChain overload:

public static void DisplayInheritanceChain(string asmPath,string baseType)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 string typeDisplay = asm.GetType(baseType).GetBaseTypeDisplay();
 Console.WriteLine(typeDisplay);
}

To display the inheritance hierarchy of all types within an assembly, use the first
instance of the DisplayInheritanceChain method call. To obtain the inheritance hier-
archy of a single type as a string, use the GetBaseTypeDisplay extension method on
the Type. In this instance, you are looking for the type hierarchy of the
CSharpRecipes.ReflectionUtils+DerivedOverrides nested class:

 public static void DisplayInheritanceHierarchyType()
 {
 Process current = Process.GetCurrentProcess();
 // Get the path of the current module.
 string asmPath = current.MainModule.FileName;
 // A specific type
 DisplayInheritanceChain(asmPath,
 "CSharpRecipes.ReflectionUtils+DerivedOverrides");
 // All types in the assembly
 DisplayInheritanceChain(asmPath);
 }

These methods result in output like the following:

 Derived Type: CSharpRecipes.Reflection
 Base Type List: Object<-Reflection
 Derived Type: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Type List: Object<-BaseOverrides

 Derived Type: CSharpRecipes.ReflectionUtils+DerivedOverrides
 Base Type List: Object<-BaseOverrides <-DerivedOverrides

This output shows that when looking at the Reflection class in the CSharpRecipes
namespace, its base-type list (or inheritance hierarchy) starts with Object (like all
class and struct types in .NET). The nested class BaseOverrides also shows a base-
type list starting with Object. The nested class DerivedOverrides shows a more inter-
esting base-type list, where DerivedOverrides derives from BaseOverrides, which
derives from Object.

504 | Chapter 13: Reflection

Discussion
Unfortunately, no property of the Type class exists to obtain the inheritance hierar-
chy of a type. The DisplayInheritanceChain methods in this recipe allow you to
obtain the inheritance hierarchy of a type. All that is required is the path to an assem-
bly and the name of the type with the inheritance hierarchy that is to be obtained.
The DisplayInheritanceChain method requires only an assembly path since it dis-
plays the inheritance hierarchy for all types within that assembly.

The core code of this recipe exists in the GetBaseTypeList method. This is a recursive
method that walks each inherited type until it finds the ultimate base class—which is
always the object class. Once it arrives at this ultimate base class, it returns to its
caller. Each time the method returns to its caller, the next base class in the inherit-
ance hierarchy is added to the string until the final GetBaseTypeList method returns
the completed string.

See Also
The “Assembly Class” and “Type.BaseType Method” topics in the MSDN
documentation.

13.7 Finding the Subclasses of a Type

Problem
You have a type and you need to find out whether it is subclassed anywhere in an
assembly.

Solution
Use the Type.IsSubclassOf method to test all types within a given assembly, which
determines whether each type is a subclass of the type specified in the argument to
IsSubClassOf:

public static IEnumerable<Type> ListSubClassesForType(this Assembly asm,
 Type baseclassType)
{
 return from type in asm.GetTypes()
 where type.IsSubclassOf(baseclassType)
 select type;
}

The ListSubClassesForType extension method accepts an assembly path string and a
second string containing a fully qualified base class name. This method returns an
IEnumerable<Type> representing the subclasses of the type passed to the baseClass
parameter.

Finding All Serializable Types Within an Assembly | 505

Discussion
The IsSubclassOf method on the Type class allows you to determine whether the cur-
rent type is a subclass of the type passed in to this method.

The following code shows how to use this method:

public static void FindSubclassOfType()
{
 Process current = Process.GetCurrentProcess();
 // get the path of the current module
 string asmPath = current.MainModule.FileName;
 Assembly asm = Assembly.LoadFrom(asmPath);
 Type type = Type.GetType("CSharpRecipes.Reflection+BaseOverrides");
 IEnumerable<Type> subClasses = asm.ListSubClassesForType(type);

 // write out the subclasses for this type
 if(subClasses.Count() > 0)
 {
 Console.WriteLine("{0} is subclassed by:",type.FullName);
 foreach(Type t in subClasses)
 {
 Console.WriteLine("\t{0}",t.FullName);
 }
 }
}

First you get the assembly path from the current process, and then you set up use of
CSharpRecipes.ReflectionUtils+BaseOverrides as the type to test for subclasses. You
call GetSubClasses, and it returns an IEnumerable<Type> that you use to produce the
following output:

 CSharpRecipes.ReflectionUtils+BaseOverrides is subclassed by:
 CSharpRecipes.ReflectionUtils+DerivedOverrides

See Also
The “Assembly Class” and “Type Class” topics in the MSDN documentation.

13.8 Finding All Serializable Types Within an
Assembly

Problem
You need to find all the serializable types within an assembly.

506 | Chapter 13: Reflection

Solution
Instead of testing the implemented interfaces and attributes on every type, you can
query the Type.IsSerialized property to determine whether it is marked as serializ-
able, as the following method does:

public static IEnumerable<string> GetSerializableTypeNames(string asmPath)
{
 Assembly asm = Assembly.LoadFrom(asmPath);
 return from type in asm.GetTypes()
 where type.IsSerializable
 select type.FullName;
}

The GetSerializableTypeNames method accepts an Assembly through its asm parame-
ter. This assembly is searched for any serializable types, and their full names (includ-
ing namespaces) are returned in an IEnumerable<Type>.

In order to use this method to display the serializable types in an assembly, run the
following code:

public static void FindSerializable()
{
 Process current = Process.GetCurrentProcess();
 // get the path of the current module
 string asmPath = current.MainModule.FileName;
 IEnumerable<string> typeNames = GetSerializableTypeNames(asmPath);
 // write out the serializable types in the assembly
 if(typeNames.Count() > 0)
 {
 Console.WriteLine("{0} has serializable types:",asmPath);
 foreach(string typeName in typeNames)
 {
 Console.WriteLine("\t{0}",typeName);
 }
 }
}

The output of this method is shown here:

 C:\CSharp Recipes 2nd Edition\Code\CSharpRecipes\bin\Debug\CSharpRecipes.exe
has
 serializable types:
 CSharpRecipes.ExceptionHandling+RemoteComponentException
 CSharpRecipes.DelegatesEventsAnonymousMethods+HashtableEventHandler
 CSharpRecipes.Collections+MaxMinSizeDictionary`2
 CSharpRecipes.Collections+MaxMinValueHashtable
 CSharpRecipes.DataStructsAndAlgorithms+DblQueue`1
 CSharpRecipes.ClassAndStructs+DeepClone
 CSharpRecipes.ClassAndStructs+MultiClone
 CSharpRecipes.ClassAndStructs+Serializer`1

Dynamically Invoking Members | 507

Discussion
A type may be marked as serializable using the SerializableAttribute attribute.
Testing for the SerializableAttribute attribute on a type can turn into a fair amount
of work. This is because the SerializableAttribute is a magic attribute that the C#
compiler actually strips off your code at compile time. Using ildasm, you will see that
this custom attribute just isn’t there—normally you see a .custom entry for each cus-
tom attribute, but not with SerializableAttribute. The C# compiler removes it, and
instead sets a flag in the metadata of the class. In source code, it looks like a custom
attribute, but it compiles into one of a small set of attributes that gets a special repre-
sentation in metadata. That’s why it gets special treatment in the reflection APIs.
Fortunately, you do not have to do all of this work. The IsSerializable property on
the Type class returns a true if the current type is marked as serializable with the
SerializableAttribute; otherwise, this property returns false.

See Also
The “Assembly Class” and “TypeAttributes Enumeration” in the MSDN
documentation.

13.9 Dynamically Invoking Members

Problem
You have a list of method names that you wish to invoke dynamically within your
application. As your code executes, it will pull names off this list and attempt to
invoke these methods. This technique might be useful to create a test harness for
components that reads in the methods to execute from an XML file and executes
them with the given arguments.

Solution
The TestDynamicInvocation method shown in Example 13-3 calls the DynamicInvoke
method, which opens the XML configuration file, reads out the test information
using LINQ, and executes each test method dynamically.

Example 13-3. Invoking members dynamically

public static void TestDynamicInvocation()
{
 XDocument xdoc = XDocument.Load
 (@"..\..\SampleClassLibrary\SampleClassLibraryTests.xml");
 DynamicInvoke(xdoc, @"SampleClassLibrary.dll");
}

508 | Chapter 13: Reflection

The XML document in which the test method information is contained looks like
this:

 <?xml version="1.0" encoding="utf-8" ?>
 <Tests>
 <Test className='SampleClassLibrary.SampleClass'
methodName='TestMethod1'>
 <Argument>Running TestMethod1</Argument>
 </Test>
 <Test className='SampleClassLibrary.SampleClass'
methodName='TestMethod2'>
 <Parameter>Running TestMethod2</Parameter>
 <Parameter>27</Parameter>
 </Test>
 </Tests>

DynamicInvoke, as shown in Example 13-4, dynamically invokes the method that is
passed to it using the information contained in the XDocument. Each parameter’s type
is determined by examining the ParameterInfo items on the MethodInfo, and then the
values provided are converted to the actual type from a string via the Convert.
ChangeType method. Finally, the return value of the invoked method is returned by
the MethodBase.Invoke method.

Example 13-4. InvokeMethod method

public static void DynamicInvoke(XDocument xdoc, string asmPath)
{
 var test = from t in xdoc.Root.Elements("Test")
 select new
 {
 typeName = (string)t.Attribute("className").Value,
 methodName = (string)t.Attribute("methodName").Value,
 argument = from p in t.Elements("Argument")
 select new { arg = p.Value }
 };

 // Load the assembly
 Assembly asm = Assembly.LoadFrom(asmPath);

 foreach (var elem in test)
 {
 // create the actual type
 Type dynClassType = asm.GetType(elem.typeName, true, false);

 // Create an instance of this type and verify that it exists
 object dynObj = Activator.CreateInstance(dynClassType);
 if (dynObj != null)
 {
 // Verify that the method exists and get its MethodInfo obj
 MethodInfo invokedMethod = dynClassType.GetMethod(elem.methodName);
 if (invokedMethod != null)
 {
 // Create the argument list for the dynamically invoked methods

Dynamically Invoking Members | 509

These are the dynamically invoked methods located on the SampleClass type in the
SampleClassLibrary assembly:

 public bool TestMethod1(string text)
 {
 Console.WriteLine(text);
 return (true);
 }
 public bool TestMethod2(string text, int n)
 {
 Console.WriteLine(text + " invoked with {0}",n);
 return (true);
 }

The output from these methods looks like this:

 Running TestMethod1
 Returned object: True
 Returned object: System.Boolean
 Running TestMethod2 invoked with 27
 Returned object: True
 Returned object: System.Boolean

Discussion
Reflection gives you the ability to dynamically invoke both static and instance meth-
ods within a type in either the same assembly or in a different one. This can be a very

 object[] arguments = new object[elem.argument.Count()];
 int index = 0;

 // for each parameter, add it to the list
 foreach (var arg in elem.argument)
 {
 // get the type of the parameter
 Type paramType =
 invokedMethod.GetParameters()[index].ParameterType;

 // change the value to that type and assign it
 arguments[index] =
 Convert.ChangeType(arg.arg, paramType);
 index++;
 }

 // Invoke the method with the parameters
 object retObj = invokedMethod.Invoke(dynObj, arguments);

 Console.WriteLine("\tReturned object: " + retObj);
 Console.WriteLine("\tReturned object: " + retObj.GetType().FullName);
 }
 }
 }
}

Example 13-4. InvokeMethod method (continued)

510 | Chapter 13: Reflection

powerful tool to allow your code to determine at runtime which method to call. This
determination can be based on an assembly name, a type name, or a method name,
though the assembly name is not required if the method exists in the same assembly
as the invoking code, if you already have the Assembly object, or if you have a Type
object for the class the method is on.

This technique may seem similar to delegates since both can dynamically determine
at runtime which method is to be called. Delegates, on the whole, require you to
know signatures of methods you might call at runtime, whereas with reflection, you
can invoke methods when you have no idea of the signature, providing a much
looser binding. However, you will still have to pass in reasonable arguments. More
dynamic invocation can be achieved with Delegate.DynamicInvoke, but this is more of
a reflection-based method than the traditional delegate invocation.

The DynamicInvoke method shown in the Solution section contains all the code
required to dynamically invoke a method. This code first loads the assembly using its
assembly name (passed in through the asmPath parameter). Next, it gets the Type
object for the class containing the method to invoke (the class name is obtained from
the Test element’s className attribute using LINQ). The method name is then
retrieved from the Test element’s methodName attribute using LINQ. Once you have
all of the information from the Test element, an instance of the Type object is cre-
ated, and you then invoke the specified method on this created instance:

• First, the static Activator.CreateInstance method is called to actually create an
instance of the Type object contained in the local variable dynClassType. The
method returns an object reference to the instance of type that was created or
throws an exception if the object cannot be created.

• Once you have successfully obtained the instance of this class, the MethodInfo
object of the method to be invoked is acquired through a call to GetMethod on the
Type object.

The instance of the object created with the CreateInstance method is then passed as
the first parameter to the MethodInfo.Invoke method. This method returns an object
containing the return value of the invoked method. This object is then returned by
InvokeMethod. The second parameter to MethodInfo.Invoke is an object array contain-
ing any parameters to be passed to this method. This array is constructed based on
the number of Parameter elements under each Test element in the XML. You then
look at the ParameterInfo of each parameter (obtained from MethodInfo.
GetParameters) and use the Convert.ChangeType method to coerce the string value
from the XML to the proper type.

The DynamicInvoke method finally displays each returned object value and its type.
Note that there is no extra logic required to return different return values from the
invoked methods since they are all returned as an object, unlike passing differing
arguments to the invoked methods.

Determining If a Type or Method Is Generic | 511

See Also
The “Activator Class,” “MethodInfo Class,” “Convert.ChangeType Method,” and
“ParameterInfo Class” topics in the MSDN documentation.

13.10 Determining If a Type or Method Is Generic

Problem
You need to test a type and/or a method to determine whether it is generic.

Solution
Use the IsGenericType method of the Type class and the IsGenericMethod method of
the MethodInfo class:

 public static bool IsGenericType(Type type)
 {
 return (type.IsGenericType);
 }

 public static bool IsGenericMethod(MethodInfo mi)
 {
 return (mi.IsGenericMethod);
 }

Discussion
The IsGenericType method examines objects, and the IsGenericMethod method
examines methods. These methods will return a true indicating that this object or
method accepts type arguments and false indicating that it does not. One or more
type arguments indicate that this type is a generic type.

To call these methods, use code like the following:

 Assembly asm = Assembly.GetExecutingAssembly();
 // Get the type.
 Type t = typeof(CSharpRecipes.DataStructsAndAlgorithms.PriorityQueue<int>);

 bool genericType = IsGenericType(t);

 bool genericMethod = false;
 foreach (MethodInfo mi in t.GetMethods())
 genericMethod = IsGenericMethod(mi);

This code first obtains an Assembly object for the currently executing assembly. Next,
the Type object is obtained using the typeof operator. For this method call, you pass
in a fully qualified name of an object to this method. In this case, you pass in
CSharpRecipes.DataStructsAndAlgorithms.PriorityQueue<int>. Notice at the end is

512 | Chapter 13: Reflection

the string <int>. This indicates that this type is a generic type with a single type
parameter of type int. In other words, this type is defined as follows:

 public class PriorityQueue<T> {...}

If this type were defined with two type parameters, it would look like this:

 public class PriorityQueue<T, U> {...}

Its fully qualified constructed type would be CSharpRecipes.
DataStructsAndAlgorithms.PriorityQueue<int, int>.

This Type object t is then passed into the IsGenericType method, and the return value
is true, indicating that this type is indeed generic.

Next, you collect all the MethodInfo objects for this type t using the GetMethods
method of the Type t object. Each MethodInfo object is passed into the
IsGenericMethod method to determine if it is generic or not.

See Also
The “Type.IsGenericType Method” and “MethodInfo.IsGenericMethod Method”
topics in the MSDN documentation.

13.11 Accessing Local Variable Information

Problem
You are building a tool that examines code, and you need to get access to the local
variables within a method.

Solution
Use the LocalVariables property on the MethodBody class to return an IList of
LocalVariableInfo objects, each of which describes a local variable within the
method:

 public static IList<LocalVariableInfo> GetLocalVars(string asmPath,
 string typeName, string methodName)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 Type asmType = asm.GetType(typeName);
 MethodInfo mi = asmType.GetMethod(methodName);
 MethodBody mb = mi.GetMethodBody();

 IList<LocalVariableInfo> vars = mb.LocalVariables;

 // Display information about each local variable.
 foreach (LocalVariableInfo lvi in vars)
 {
 Console.WriteLine("IsPinned: " + lvi.IsPinned);
 Console.WriteLine("LocalIndex: " + lvi.LocalIndex);
 Console.WriteLine("LocalType.Module: " + lvi.LocalType.Module);

Accessing Local Variable Information | 513

 Console.WriteLine("LocalType.FullName: " + lvi.LocalType.FullName);
 Console.WriteLine("ToString(): " + lvi.ToString());
 }

 return (vars);
 }

The GetLocalVars method can be called using the following code:

 public static void TestGetLocalVars()
 {
 Process current = Process.GetCurrentProcess();

 // Get the path of the current module.
 string path = current.MainModule.FileName;

 // Get all local var info for the CSharpRecipes.Reflection.GetLocalVars method.
 System.Collections.ObjectModel.ReadOnlyCollection<LocalVariableInfo> vars =
 (System.Collections.ObjectModel.ReadOnlyCollection<LocalVariableInfo>)
 GetLocalVars(path, "CSharpRecipes.Reflection", "GetLocalVars");
 }

The output of this method is shown here:

IsPinned: False
LocalIndex: 0
LocalType.Module: CommonLanguageRuntimeLibrary
LocalType.FullName: System.Reflection.Assembly
ToString(): System.Reflection.Assembly (0)
IsPinned: False
LocalIndex: 1
LocalType.Module: CommonLanguageRuntimeLibrary
LocalType.FullName: System.Type
ToString(): System.Type (1)
IsPinned: False
LocalIndex: 2
LocalType.Module: CommonLanguageRuntimeLibrary
LocalType.FullName: System.Reflection.MethodInfo
ToString(): System.Reflection.MethodInfo (2)
IsPinned: False
LocalIndex: 3
LocalType.Module: CommonLanguageRuntimeLibrary
LocalType.FullName: System.Reflection.MethodBody
ToString(): System.Reflection.MethodBody (3)
IsPinned: False
LocalIndex: 4
LocalType.Module: CommonLanguageRuntimeLibrary
LocalType.FullName: System.Collections.ObjectModel.ReadOnlyCollection`1[[System.
Reflection.LocalVariableInfo, mscorlib, Version=2.0.0.0, Culture=neutral, Public
KeyToken=b77a5c561934e089]]
ToString(): System.Collections.ObjectModel.ReadOnlyCollection`1[System.Reflectio
n.LocalVariableInfo] (4)

The LocalVariableInfo objects for each local variable found in the CSharpRecipes.
Reflection.GetLocalVars method will be returned in the vars IList collection.

514 | Chapter 13: Reflection

Discussion
The LocalVariables property can give you a good amount of information about vari-
ables within a method. The LocalVariables property returns an
IList<LocalVariableInfo> collection. Each LocalVariableInfo object contains the
information described in Table 13-2.

See Also
The “MethodInfo Class,” “MethodBody Class,” “ReadOnlyCollection<T> Class,”
and “LocalVariableInfo Class” topics in the MSDN documentation.

13.12 Creating a Generic Type

Problem
You want to create a generic type using only the reflection APIs.

Solution
You create a generic type similarly to how a nongeneric type is created; however,
there is an extra step to create the type arguments you want to use in creating this
generic type and binding these type arguments to the generic type’s type parameters
at construction. To do this, you will use a new method added to the Type class called
BindGenericParameters:

 public static void CreateMultiMap(Assembly asm)
 {
 // Get the type we want to construct.
 Type typeToConstruct = asm.GetType(
 "CSharpRecipes.DataStructsAndAlgorithms+MultiMap`2");
 // Get the type arguments we want to construct our type with.
 Type[] typeArguments = {typeof(int), typeof(string)};
 // Bind these type arguments to our generic type.
 Type newType = typeToConstruct.MakeGenericType(typeArguments);
 // Construct our type.
 DataStructsAndAlgorithms.MultiMap<int, string> mm = (
 DataStructsAndAlgorithms.MultiMap<int,

Table 13-2. LocalVariableInfo information

Member Definition

IsPinned Returns a bool indicating if the object that this variable refers to is pinned in memory (true) or not
(false)

LocalIndex Returns the index of this variable within this method’s body

LocalType Returns a Type object that describes the type of this variable

ToString Returns the LocalType.FullName, a space, and then the LocalIndex value surrounded by
parentheses

Creating a Generic Type | 515

 string>)Activator.CreateInstance(newType);

 // Test our newly constructed type.
 Console.WriteLine("Count == " + mm.Count);
 mm.Add(1, "test1");
 Console.WriteLine("Count == " + mm.Count);
 }

The code to test the CreateMultiMap method is shown here:

 public static void TestCreateMultiMap()
 {
 Assembly asm = Assembly.LoadFrom("C:\\CSharp Recipes 2nd Edition" +
 "\\Code\\CSharpRecipes\\bin\\Debug\\CSharpRecipes.exe");
 CreateMultiMap(asm);
 }

The output of this method is shown here:

 Count == 0
 Count == 1

Discussion
Type parameters are defined on a class and indicate that any type which is able to be
converted to an Object is allowed to be substituted for this type parameter (unless, of
course, there are constraints placed on this type parameter using the where key-
word). For example, the following class has two type parameters, T and U:

 public class Foo<T, U> {...}

Of course, you do not have to use T and U; you can instead use another letter or even
a full name such as TypeParam1 and TypeParam2.

A type argument is defined as the actual type that will be substituted for the type
parameter. In the previously defined class Foo, you can replace type parameter T with
the type argument int and type parameter U with the type argument string.

The BindGenericParameters method allows you to substitute type parameters with
actual type arguments. This method accepts a single Type array parameter. This Type
array consists of each type argument that will be substituted for each type parameter
of the generic type. These type arguments must be added to this Type array in the
same order as they are defined on the class. For example, the Foo class defines type
parameters T and U, in that order. The Type array that you define contains an int type
and a string type, in that order. This means that the type parameter T will be substi-
tuted for the type argument int, and U will be replaced with a string type. The
BindGenericParameters method returns a Type object of the type you specified along
with the type arguments.

See Also
The “Type.BindGenericParameters method” topic in the MSDN documentation.

516

Chapter 14CHAPTER 14

Web 14

14.0 Introduction
The World Wide Web has worked its way into every nook and cranny of what most
.NET developers encounter when building their solutions today. Web services are
on the rise, and ASP.NET is one of the main players in the web application space.
Because of the general needs to deal with HTML and TCP/IP name resolution and
because uniform resource indicators and uniform resource locators are being used
for more and more purposes, developers need tools to help them concentrate on
building the best web-interactive applications they can. This chapter is dedicated to
taking care of some of the grunge that comes along with programming when the
Web is involved. This is not an ASP.NET tutorial chapter but rather covers some
functionality that developers can use in both ASP.NET and other C#-based applica-
tions. For more on ASP.NET, see ASP.NET Cookbook and Programming ASP.NET,
Second Edition (both from O’Reilly).

14.1 Converting an IP Address to a Hostname

Problem
You have an IP address that you need to resolve into a hostname.

Solution
Use the Dns.GetHostEntry method to get the hostname for an IP address. In the fol-
lowing code, an IP address is resolved, and the hostname is accessible from the
HostName property of the IPHostEntry:

 using System;
 using System.Net;

 IPHostEntry iphost = Dns.GetHostEntry("127.0.0.1");

Converting a Hostname to an IP Address | 517

 string hostName = iphost.HostName;

 // Print out name.
 Console.WriteLine(hostName);

Discussion
The System.Net.Dns class is provided for simple DNS resolution functionality. The
GetHostEntry method returns an IPHostEntry that can be used to access the host-
name via the HostName property. If the entry cannot be resolved, the IPHostEntry will
have a HostName that has a string representation of the IP address that was passed in
(assuming it is a valid IP address). If the first member of the AddressList ([0]) is
accessed and the IPAddress.ScopeId property is checked for these entries, it will
throw a SocketException.

See Also
The “DNS Class” and “IPHostEntry Class” topics in the MSDN documentation.

14.2 Converting a Hostname to an IP Address

Problem
You have a string representation of a host (such as oreilly.com), and you need to
obtain the IP address from this hostname.

Solution
Use the Dns.GetHostEntry method to get the IP addresses. In the following code, a
hostname is provided to the GetHostEntry method, which returns an IPHostEntry
from which a string of addresses can be constructed. If the hostname does not
resolve, a SocketException stating “No such host is known” is thrown:

 using System;
 using System.Net;
 using System.Text;

 public static string HostNameToIP(string hostName)
 {
 IPHostEntry iphost = System.Net.Dns.GetHostEntry(hostName);

 IPAddress[] addresses = iphost.AddressList;

 StringBuilder addressList = new StringBuilder();
 foreach(IPAddress address in addresses)
 {
 addressList.AppendFormat("IP Address: {0};", address.ToString());
 }
 return addressList.ToString();
 }

518 | Chapter 14: Web

 // Writes "IP Address: 208.201.239.37;IP Address: 208.201.239.36;"
 Console.WriteLine(HostName2IP("www.oreilly.com"));

Discussion
An IPHostEntry can associate multiple IP addresses with a single hostname via the
AddressList property. AddressList is an array of IPAddress objects, each of which
holds a single IP address. Once the IPHostEntry is resolved, the AddressList can be
looped over using foreach to create a string that shows all of the IP addresses for the
given hostname. If the entry cannot be resolved, a SocketException is thrown.

See Also
The “DNS Class,” “IPHostEntry Class,” and “IPAddress” topics in the MSDN docu-
mentation.

14.3 Parsing a URI

Problem
You need to split a uniform resource identifier (URI) into its constituent parts.

Solution
Construct a System.Net.Uri object and pass the URI to the constructor. This class
constructor parses out the constituent parts of the URI and allows access to them via
the Uri properties. You can then display the URI pieces individually, as shown in
Example 14-1.

Example 14-1. ParseURI method

public static void ParseUri(Uri uri)
{
 try
 {
 // System.Net.Uri class constructor has parsed it for us.
 // new Uri("http://user:password@localhost:8080/www.abc.com/
 // home%20page.htm?item=1233#stuff")

 StringBuilder uriParts = new StringBuilder();
 uriParts.AppendFormat("AbsoluteURI: {0}{1}",
 uri.AbsoluteUri,Environment.NewLine);
 uriParts.AppendFormat("AbsolutePath: {0}{1}",
 uri.AbsolutePath,Environment.NewLine);
 uriParts.AppendFormat("Scheme: {0}{1}",
 uri.Scheme,Environment.NewLine);
 uriParts.AppendFormat("UserInfo: {0}{1}",
 uri.UserInfo,Environment.NewLine);
 uriParts.AppendFormat("Authority: {0}{1}",
 uri.Authority,Environment.NewLine);

Parsing a URI | 519

 uriParts.AppendFormat("DnsSafeHost: {0}{1}",
 uri.DnsSafeHost,Environment.NewLine);
 uriParts.AppendFormat("Host: {0}{1}",
 uri.Host,Environment.NewLine);
 uriParts.AppendFormat("HostNameType: {0}{1}",
 uri.HostNameType.ToString(),Environment.NewLine);
 uriParts.AppendFormat("Port: {0}{1}",uri.Port,Environment.NewLine);
 uriParts.AppendFormat("Path: {0}{1}",uri.LocalPath,Environment.NewLine);
 uriParts.AppendFormat("QueryString: {0}{1}",uri.Query,Environment.NewLine);
 uriParts.AppendFormat("Path and QueryString: {0}{1}",
 uri.PathAndQuery,Environment.NewLine);
 uriParts.AppendFormat("Fragment: {0}{1}",uri.Fragment,Environment.NewLine);
 uriParts.AppendFormat("Original String: {0}{1}",
 uri.OriginalString,Environment.NewLine);
 uriParts.AppendFormat("Segments: {0}",Environment.NewLine);
 for (int i = 0; i < uri.Segments.Length; i++)
 uriParts.AppendFormat(" Segment {0}:{1}{2}",
 i, uri.Segments[i], Environment.NewLine);

 // GetComponents can be used to get commonly used combinations
 // of URI information.
 uriParts.AppendFormat("GetComponents for specialized combinations: {0}",
 Environment.NewLine);
 uriParts.AppendFormat("Host and Port (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.HostAndPort,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("HttpRequestUrl (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.HttpRequestUrl,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("HttpRequestUrl (escaped): {0}{1}",
 uri.GetComponents(UriComponents.HttpRequestUrl,
 UriFormat.UriEscaped),Environment.NewLine);
 UriParts.AppendFormat("HttpRequestUrl (safeunescaped): {0}{1}",
 uri.GetComponents(UriComponents.HttpRequestUrl,
 UriFormat.SafeUnescaped),Environment.NewLine);
 UriParts.AppendFormat("Scheme And Server (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.SchemeAndServer,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("SerializationInfo String (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.SerializationInfoString,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("StrongAuthority (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.StrongAuthority,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("StrongPort (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.StrongPort,
 UriFormat.Unescaped),Environment.NewLine);

 Console.WriteLine(UriParts.ToString());
 }
 catch(ArgumentNullException e)
 {

Example 14-1. ParseURI method (continued)

520 | Chapter 14: Web

Discussion
The Solution code uses the Uri class to do the heavy lifting. URI syntax is well docu-
mented but it is easy to get wrong, so lean on the framework Uri implementation to
handle the rules, as it has been carefully reviewed for correctly handling many cases.
You would not want to make a security decision based on a URI you parse yourself.
The constructor for the Uri class can throw two types of exceptions: an
ArgumentNullException and a UriFormatException. The ArgumentNullException is
thrown when the uri argument passed is null. The UriFormatException is thrown
when the uri argument passed is of an incorrect or indeterminate format. Here are
the error conditions that can throw a UriFormatException:

• An empty Uri was passed in.

• The scheme specified in the Uri is not correctly formed. See CheckSchemeName.

• The URI passed in contains too many slashes.

• The password specified in the passed-in URI is invalid.

• The hostname specified in the passed-in URI is invalid.

• The filename specified in the passed-in URI is invalid.

• The username specified in the passed-in URI is invalid.

• The host or authority name specified in the passed-in URI cannot be terminated
by backslashes.

• The port number specified in the passed-in URI is invalid or cannot be parsed.

• The length of the passed-in URI exceeds 65,534 characters.

• The length of the scheme specified in the passed-in URI exceeds 1023 characters.

• There is an invalid character sequence in the passed-in URI.

There is no actual validation that occurs for the username, host or
authority name, password or port number to insure that they exist or
are correct. The validation is simply that they are in the correct format
according to the URI specification (RFC 2396).

System.Net.Uri provides methods to compare URIs, parse URIs, and combine URIs.
It is all you should ever need for URI manipulation and is used by other classes in the
Framework when a URI is called for. The syntax for the pieces of a URI is this:

 Console.WriteLine("Uri string object is a null reference: {0}",e);
 }
 catch(UriFormatException e)
 {
 Console.WriteLine("Uri formatting error: {0}",e); }
 }
}

Example 14-1. ParseURI method (continued)

Parsing a URI | 521

 [scheme]://[user]:[password]@[host/authority]:[port]/[path];[params]?
 [query string]#[fragment]

If you pass the following URI to ParseUri:

http://user:password@localhost:8080/www.abc.com/home.htm?item=1233#stuff

it will display the following items:

 AbsoluteURI: http://user:password@localhost:8080/www.abc.com/home%20page.htm?
 item=1233#stuff
 AbsolutePath: /www.abc.com/home%20page.htm
 Scheme: http
 UserInfo: user:password
 Authority: localhost:8080
 DnsSafeHost: localhost
 Host: localhost
 HostNameType: Dns
 Port: 8080
 Path: /www.abc.com/home page.htm
 QueryString: ?item=1233
 Path and QueryString: /www.abc.com/home%20page.htm?item=1233
 Fragment: #stuff
 Original String: http://user:password@localhost:8080/www.abc.com/home%20page.htm?
 item=1233#stuff
 Segments:
 Segment 0: /
 Segment 1: www.abc.com/
 Segment 2: home%20page.htm
 GetComponents for specialized combinations:
 Host and Port (unescaped): localhost:8080
 HttpRequestUrl (unescaped): http://localhost:8080/www.abc.com/home page.htm?
 item=1233
 HttpRequestUrl (escaped): http://localhost:8080/www.abc.com/home%20page.htm?
 item=1233
 HttpRequestUrl (safeunescaped): http://localhost:8080/www.abc.com/home page.htm?
 item=1233
 Scheme And Server (unescaped): http://localhost:8080
 SerializationInfo String (unescaped): http://user:password@localhost:8080/
 www.abc.com/home page.htm?item=1233#stuff
 StrongAuthority (unescaped): user:password@localhost:8080
 StrongPort (unescaped): 8080

See Also
The “Uri Class,” “ArgumentNullException Class,” and “UriFormatException Class”
topics in the MSDN documentation.

522 | Chapter 14: Web

14.4 Handling Web Server Errors

Problem
You have obtained a response from a web server, and you want to make sure that
there were no errors in processing the initial request, such as failing to connect, being
redirected, timing out, or failing to validate a certificate. You don’t want to have to
monitor for all of the different response codes available.

Solution
Check the StatusCode property of the HttpWebResponse class to determine what cate-
gory of status this StatusCode falls into and return an enumeration value
(ResponseCategories) representing the category. This technique will allow you to use
a broader approach to dealing with response codes:

 public static ResponseCategories CategorizeResponse(HttpWebResponse httpResponse)
 {
 // Just in case there are more success codes defined in the future
 // by HttpStatusCode, we will check here for the "success" ranges
 // instead of using the HttpStatusCode enum as it overloads some
 // values.
 int statusCode = (int)httpResponse.StatusCode;
 if((statusCode >= 100)&& (statusCode <= 199))
 {
 return ResponseCategories.Informational;
 }
 else if((statusCode >= 200)&& (statusCode <= 299))
 {
 return ResponseCategories.Success;
 }
 else if((statusCode >= 300)&& (statusCode <= 399))
 {
 return ResponseCategories.Redirected;
 }
 else if((statusCode >= 400)&& (statusCode <= 499))
 {
 return ResponseCategories.ClientError;
 }
 else if((statusCode >= 500)&& (statusCode <= 599))
 {
 return ResponseCategories.ServerError;
 }
 return ResponseCategories.Unknown;
 }

The ResponseCategories enumeration is defined like this:

 public enum ResponseCategories
 {
 Unknown, // Unknown code (< 100 or > 599)
 Informational, // Informational codes (100 >= 199)

Handling Web Server Errors | 523

 Success, // Success codes (200 >= 299)
 Redirected, // Redirection code (300 >= 399)
 ClientError, // Client error code (400 >= 499)
 ServerError // Server error code (500 >= 599)
 }

Discussion
There are five different categories of status codes on an HTTP response, as shown in
Table 14-1.

Each of the status codes defined by Microsoft in the .NET Framework is assigned an
enumeration value in the HttpStatusCode enumeration. These status codes reflect
what can happen when a request is submitted. The web server is free to return a sta-
tus code in the available range, even if it is not currently defined for most commer-
cial web servers. The defined status codes are listed in RFC 2616—Section 10 for
HTTP/1.1.

You are trying to figure out the broad category of the status of the request. You
achieve this by inspecting the HttpResponse.StatusCode property, comparing it to the
defined status code ranges for HTTP, and returning the appropriate
ResponseCategories value.

When dealing with HttpStatusCode, you will notice that there are certain
HttpStatusCode flags that map to the same status code value. An example of this is
HttpStatusCode.Ambiguous and HttpStatusCode.MultipleChoices, which both map to
HTTP status code 300. If you try to use both of these in a switch statement on the
HttpStatusCode, you will get the following error because the C# compiler cannot tell
the difference:

 error CS0152: The label 'case 300:' already occurs in this switch statement.

See Also
HTTP: The Definitive Guide (O’Reilly); the “HttpStatusCode Enumeration” topic in
the MSDN documentation; and HTTP/1.1 RFC 2616—Section 10 Status Codes:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

Table 14-1. Categories of HTTP response status codes

Category Available range HttpStatusCode defined range

Informational 100–199 100–101

Successful 200–299 200–206

Redirection 300–399 300–307

Client Error 400–499 400–417

Server Error 500–599 500–505

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

524 | Chapter 14: Web

14.5 Communicating with a Web Server

Problem
You want to send a request to a web server in the form of a GET or POST request. After
you send the request to a web server, you want to get the results of that request (the
response) from the web server.

Solution
Use the HttpWebRequest class in conjunction with the WebRequest class to create and
send a request to a server.

Take the Uri of the resource, the method to use in the request (GET or POST), and the
data to send (only for POST requests), and use this information to create an
HttpWebRequest, as shown in Example 14-2.

Example 14-2. Communicating with a web server

using System.Net;
using System.IO;
using System.Text;

public static HttpWebRequest GenerateHttpWebRequest(Uri uri)
{
 HttpWebRequest httpRequest = (HttpWebRequest)WebRequest.Create(uri);
 return httpRequest;
}

// POST overload
public static HttpWebRequest GenerateHttpWebRequest(Uri uri,
 string postData,
 string contentType)
{
 HttpWebRequest httpRequest = GenerateHttpRequest(uri);

 byte[] bytes = Encoding.UTF8.GetBytes(postData);

 httpRequest.ContentType = contentType;
 //"application/x-www-form-urlencoded"; for forms

 httpRequest.ContentLength = postData.Length;

 using (Stream requestStream = httpRequest.GetRequestStream())
 {
 requestStream.Write(bytes, 0, bytes.Length);
 }
 return httpRequest;
}

Going Through a Proxy | 525

Once you have an HttpWebRequest, you send the request and get the response using
the GetResponse method. It takes the newly created HttpWebRequest as input and
returns an HttpWebResponse. The following example performs a GET for the index.aspx
page from the http://localhost/mysite web site:

 HttpWebRequest request =
 GenerateHttpWebRequest(new Uri("http://localhost/mysite/index.aspx"));

 using(HttpWebResponse response = (HttpWebResponse) request.GetResponse())
 {
 // This next line uses CategorizeResponse from Recipe 14.4.
 if(CategorizeResponse(response)==ResponseCategories.Success)
 {
 Console.WriteLine("Request succeeded");
 }
 }

You generate the HttpWebRequest, send it and get the HttpWebResponse, then check the
success using the CategorizeResponse method from Recipe 14.4.

Discussion
The WebRequest and WebResponse classes encapsulate all of the functionality to per-
form basic web communications. HttpWebRequest and HttpWebResponse are derived
from these classes and provide the HTTP-specific support.

At the most fundamental level, to perform an HTTP-based web transaction, you use
the Create method on the WebRequest class to get a WebRequest that can be cast to an
HttpWebRequest (so long as the scheme is http:// or https://). This HttpWebRequest is
then submitted to the web server in question when the GetResponse method is called,
and it returns an HttpWebResponse that can then be inspected for the response data.

See Also
The “WebRequest Class,” “WebResponse Class,” “HttpWebRequest Class,” and
“HttpWebResponse Class” topics in the MSDN documentation.

14.6 Going Through a Proxy

Problem
Many companies have a web proxy that allows employees to access the Internet,
while at the same time preventing outsiders from accessing the company’s internal
network. The problem is that to create an application that accesses the Internet from
within your company, you must first connect to your proxy and then send informa-
tion through it, rather than directly out to an Internet web server.

http://localhost/mysite/index.aspx

526 | Chapter 14: Web

Solution
In order to get an HttpWebRequest successfully through a specific proxy server, you
need to set up a WebProxy object with the settings to validate your specific request to
a given proxy. Since this function is generic for any request, you can create the
AddProxyInfoToRequest method:

 public static HttpWebRequest AddProxyInfoToRequest(HttpWebRequest httpRequest,
 Uri proxyUri,
 string proxyId,
 string proxyPassword,
 string proxyDomain)
 {
 if(httpRequest != null)
 {
 WebProxy proxyInfo = new WebProxy();
 proxyInfo.Address = proxyUri;
 proxyInfo.BypassProxyOnLocal = true;
 proxyInfo.Credentials = new NetworkCredential(proxyId,
 proxyPassword,
 proxyDomain);
 httpRequest.Proxy = proxyInfo;
 }
 return httpRequest;
 }

If all requests are going to go through the same proxy, in the 1.x versions of the
Framework, you used the static Select method on the GlobalProxySelection class to
set up the proxy settings for all WebRequests. In versions after 1.x, the WebRequest.
DefaultWebProxy property should be used:

 Uri proxyUri = new Uri("http://webproxy:80");
 WebRequest.DefaultWebProxy = new WebProxy(proxyURI);

 // Old v1.x way of doing this...
 //GlobalProxySelection.Select = new WebProxy(proxyURI);

Discussion
AddProxyInfoToRequest takes the URI of the proxy and creates a Uri object, which is
used to construct the WebProxy object. The WebProxy object is set to bypass the proxy
for local addresses and then the credential information is used to create a
NetworkCredential object. The NetworkCredential object represents the authentica-
tion information necessary for the request to succeed at this proxy and is assigned to
the WebProxy.Credentials property. Once the WebProxy object is completed, it is
assigned to the Proxy property of the HttpWebRequest, and the request is ready to be
submitted.

In order to get the proxy settings for the current user from Internet Explorer, you can
use the System.Net.WebRequest.GetSystemWebProxy method and then assign the

Obtaining the HTML from a URL | 527

returned IWebProxy to either the proxy on the HttpWebRequest or the DefaultWebProxy
property on the WebRequest:

 WebRequest.DefaultWebProxy = WebRequest.GetSystemWebProxy();

See Also
The “WebProxy Class,” “NetworkCredential Class,” and “HttpWebRequest Class”
topics in the MSDN documentation.

14.7 Obtaining the HTML from a URL

Problem
You need to get the HTML returned from a web server in order to examine it for
items of interest. For example, you could examine the returned HTML for links to
other pages or for headlines from a news site.

Solution
You can use the methods for web communication that were set up in Recipes 14.4
and 14.5 to make the HTTP request and verify the response; then, you can get at the
HTML via the ResponseStream property of the HttpWebResponse object:

 public static string GetHtmlFromUrl(Uri url)
 {
 string html = string.Empty;
 HttpWebRequest request = GenerateHttpWebRequest(url);
 using(HttpWebResponse response = (HttpWebResponse)request.GetResponse())
 {
 if (CategorizeResponse(response) == ResponseCategories.Success)
 {
 Stream responseStream = response.GetResponseStream();
 using(StreamReader reader =
 new StreamReader(responseStream, Encoding.UTF8))
 {
 html = reader.ReadToEnd();
 }
 }
 }
 return html;
 }

Discussion
The GetHtmlFromUrl method gets a web page using the GenerateHttpWebRequest and
GetResponse methods, verifies the response using the CategorizeResponse method,
and then, once it has a valid response, starts looking for the HTML that was
returned.

528 | Chapter 14: Web

The GetResponseStream method on the HttpWebResponse provides access to the body
of the message that was returned in a System.IO.Stream object. In order to read the
data, instantiate a StreamReader with the response stream and the UTF8 property of
the Encoding class to allow for the UTF8-encoded text data to be read correctly from
the stream. Then call the StreamReader’s ReadToEnd method, which puts all of the
content in the string variable called html, and return it.

See Also
The “HttpWebResponse.GetResponseStream Method,” “Stream Class,” and “String-
Builder Class” topics in the MSDN documentation.

14.8 Using the Web Browser Control

Problem
You need to display HTML-based content in a WinForms-based application.

Solution
Use the System.Windows.Forms.WebBrowser class to embed web browser functionality
into your application. The Cheapo-Browser seen in Figure 14-1 shows some of the
capabilities of this control.

Figure 14-1. The web browser control

Using the Web Browser Control | 529

While this is not a production quality user interface, it is called Cheapo-Browser for
a reason. It can be used to select a web address, display the content, navigate for-
ward and backward, cancel the request, go to the home page, add HTML directly to
the control, print the HTML or save it, and finally, enable or disable the context
menu inside of the browser window. The WebBrowser control is capable of much
more, but this recipe is meant to give you a taste of what is possible. It would be well
worth exploring its capabilities further to see what other needs it might fill.

When you add your HTML (<h1>Hey you added some HTML!</h1>), it is displayed as
shown in Figure 14-2.

The code to accomplish this is rather simple:

 this._webBrowser.Document.Body.InnerHtml = "<h1>Hey you added some HTML!</h1>";

The navigation to a web page is equally trivial:

 Uri uri = new Uri(this._txtAddress.Text);
 this._webBrowser.Navigate(uri);

The nice thing about the navigation is the Navigated event that can be subscribed, so
you are notified when the navigation has completed. This allows code to spin this off
in a thread and then come back to it once it is fully loaded. The event provides a
WebBrowserNavigatedEventArgs class that has a Url property to tell the URL of the
document that has been navigated to:

 private void _webBrowser_Navigated(object sender, WebBrowserNavigatedEventArgs e)
 {
 // Update with where we ended up in case of redirection
 // from the original Uri.
 this._txtAddress.Text = e.Url.ToString();
 this._btnBack.Enabled = this._webBrowser.CanGoBack;
 this._btnForward.Enabled = this._webBrowser.CanGoForward;
 }

Figure 14-2. Adding HTML to the Cheapo-Browser

530 | Chapter 14: Web

Discussion
In the 1.x versions of the .NET Framework, embedding a web browser in your Win-
Forms application was much more difficult and error-prone. Now there is a .NET-
based web browser control. You no longer have to struggle with some of the COM
interop issues that could arise while trying to hook up to browser events. This is a
good opportunity to make the line between your desktop and web applications blur
even further and use the power of a rich client combined with web flexibility.

See Also
The “WebBrowser Class” topic in the MSDN documentation.

14.9 Tying Database Tables to the Cache

Problem
You want to cache datasets you create from a database to help the performance of
your ASP.NET application, but you want changes to the data in the database to be
reflected in your pages.

Solution
Use the SqlCacheDependency class to expire data in the cache when the underlying
database data changes. A SqlCacheDependency sets up a relationship with the data-
base so that, if the data changes, the item in the cache that has this dependency is
released from the cache, and the code that established the item can fetch the values
from the database again.

To demonstrate this, a SqlCacheDependency object is created for the Authors table in
the pubs database in Microsoft SQL Server using the CreateSqlCacheDependency
method. The pubs database is a sample database that ships with SQL Server 2000:

 public SqlCacheDependency CreateSqlCacheDependency(string connStr)
 {
 // Make a dependency on the authors database table so that
 // if it changes, the cached data will also be disposed of.

 // Make sure we are enabled for notifications for the db.
 // Note that the parameter has to be the actual connection
 // string, NOT the connection string NAME from web.config.
 SqlCacheDependencyAdmin.EnableNotifications(connStr);

 SqlCacheDependencyAdmin.EnableTableForNotifications(connStr, "Authors");

 // This is case-sensitive, so make sure the first entry
 // matches the entry in the web.config file exactly.
 // The first parameter here must be the connection string
 // NAME, not the connection string itself...

Tying Database Tables to the Cache | 531

 return new SqlCacheDependency("pubs", "Authors");
 }

The SqlCacheDependencyAdmin class is responsible for talking to SQL Server to set up
the necessary infrastructure (triggers and the like for SQL Server 2000, Cache Sync
for SQL Server 2005) for the SqlCacheDependency to fire correctly. The
SqlCacheDependency has a section in the application’s web.config file under configura-
tion/system.web/caching defining the parameters that the dependency operates under.
There are timeout settings for the polling time (for SQL Server 2000, as SQL Server
2005 doesn’t poll) and the connection time, as well as a link to the connection string
to use via its name. This connection string can be found in the web.config file in the
configuration/connectionStrings section. The two entries are shown here:

 <caching>
 <sqlCacheDependency enabled="True" pollTime="60000">
 <databases>
 <add name="pubs" connectionStringName="LocalPubs" pollTime="9000000" />
 </databases>
 </sqlCacheDependency>
 </caching>

 <connectionStrings>
 <add name="LocalPubs" connectionString="Server=(local);Integrated
 Security=True;Database=pubs;Persist Security Info=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

Discussion
The main scenario for using SqlDependencyCache is for data that is read frequently but
changes very infrequently. The data should be reasonably static, as there is overhead
associated with keeping the cache in sync with the database table. While the
SqlDependencyCache is for use with Microsoft SQL Server, it is just a derived imple-
mentation of a CacheDependency class. CacheDependency-based classes could be writ-
ten for any other database provider, but surprisingly (or perhaps not so) Microsoft
SQL Server is the only database with one provided.

When using the SqlCacheDependency class, the first thing to do is insure that Notifica-
tions have been enabled for both the database and the table being monitored for
changes. If either of these notifications is not enabled for the database and/or table, a
DatabaseNotEnabledForNotificationException will be thrown when constructing the
SqlCacheDependency. A SqlCacheDependency can also be created directly from a
SqlCommand object.

See Also
Recipe 14.10; the “SqlCacheDependency,” “SqlCacheDependencyAdmin,” and
“CacheDependency” topics in the MSDN documentation.

532 | Chapter 14: Web

14.10 Prebuilding an ASP.NET Web Site
Programmatically

Problem
You want to prebuild your web site to avoid compilation delays and to avoid the
hosting scenario in which source code needs to be on the server.

Solution
Use the ClientBuildManager to prebuild your web site into an assembly. In order to
prebuild the web site, you must specify:

• The virtual directory for the web application.

• The physical path to the web application directory.

• The location where you want to build the web application.

• Flags that help control the compilation.

To prebuild the web application in the sample code for the book, first retrieve the
directory where the web application is located, and then provide a virtual directory
name and a location for the web application to build to:

 string cscbWebPath = GetWebAppPath();

 if(cscbWebPath.Length>0)
 {
 string appVirtualDir = @"CSCBWeb";
 string appPhysicalSourceDir = cscbWebPath;

 // Make the target an adjacent directory as it cannot be in the same tree
 // or the build manager screams...
 string appPhysicalTargetDir = Path.GetDirectoryName(cscbWebPath) + @"\
BuildCSCB";

Next, set up the flags for the compile using the PrecompilationFlags enumeration.
The PrecompilationFlags values are listed in Table 14-2.

Table 14-2. PrecompilationFlags enumeration values

Flag value Purpose

AllowPartiallyTrustedCallers Add the APTC attribute to the built assembly.

Clean Remove any existing compiled image.

CodeAnalysis Build for code analysis.

Default Use the default compile options.

DelaySign DelaySign the assembly.

FixedNames Assembly generated with fixed names for pages. No batch compilation is per-
formed, just individual compilation.

Prebuilding an ASP.NET Web Site Programmatically | 533

To build a debug image and make sure it is created successfully if the compilation is
good, the ForceDebug and OverwriteTarget flags are used:

 PrecompilationFlags flags = PrecompilationFlags.ForceDebug |
 PrecompilationFlags.OverwriteTarget;

The PrecompilationFlags are then stored in a new instance of the
ClientBuildManagerParameter class, and the ClientBuildManager is created with the
parameters that have been set up for it. To accomplish the prebuild, the
PrecompileApplication method is called. Notice that there is an instance of a class
called MyClientBuildManagerCallback that is passed to the PrecompileApplication
method:

 ClientBuildManagerParameter cbmp = new ClientBuildManagerParameter();
 cbmp.PrecompilationFlags = flags;

 ClientBuildManager cbm =
 new ClientBuildManager(appVirtualDir,
 appPhysicalSourceDir,
 appPhysicalTargetDir,
 cbmp);
 MyClientBuildManagerCallback myCallback = new MyClientBuildManagerCallback();
 cbm.PrecompileApplication(myCallback);
 }

The MyClientBuildManagerCallback class is derived from the
ClientBuildManagerCallback class and allows the code to receive notifications during
the compilation of the web application. The ClientBuildManagerCallback methods
have LinkDemands on them, which require that the callback methods also have them.
Compiler errors, parsing errors, and progress notifications are all available. In the
MyClientBuildManagerCallback class, they are all implemented to write to the debug
stream and the console:

 public class MyClientBuildManagerCallback : ClientBuildManagerCallback
 {
 public MyClientBuildManagerCallback()
 : base()
 {
 }

 [PermissionSet(SecurityAction.Demand, Unrestricted = true)]
 public override void ReportCompilerError(CompilerError error)
 {
 string msg = "Report Compiler Error: " + error.ToString();

ForceDebug Ensure that the assembly is compiled for Debug.

OverwriteTarget The target assembly should be overwritten if it exists.

Updateable Insure the assembly is updateable.

Table 14-2. PrecompilationFlags enumeration values (continued)

Flag value Purpose

534 | Chapter 14: Web

 Debug.WriteLine(msg);
 Console.WriteLine(msg);
 }

 [PermissionSet(SecurityAction.Demand, Unrestricted = true)]
 public override void ReportParseError(ParserError error)
 {
 string msg = "Report Parse Error: " + error.ToString();
 Debug.WriteLine(msg);
 Console.WriteLine(msg);
 }

 [PermissionSet(SecurityAction.Demand, Unrestricted = true)]
 public override void ReportProgress(string message)
 {
 string msg = "Report Progress: " + message;
 Debug.WriteLine(msg);
 Console.WriteLine(msg);
 }
 }

The output from a successful compilation of the CSCB web site looks like this:

 Report Progress: Building directory '/CSCBWeb/App_Data'.
 Report Progress: Building directory '/CSCBWeb/Role_Database'.
 Report Progress: Building directory '/CSCBWeb'.

Discussion
ClientBuildManager is actually a thin wrapper around the BuildManager class, which
does most of the heavy lifting of the compilation. ClientBuildManager makes it more
straightforward to ensure that all the important parts of the web application are
addressed, while BuildManager gives a bit more fine-grained control. The
ClientBuildManager also allows for subscribing to appdomain notification events such
as start, shutdown, and unload, allowing for error handling in the event that the
appdomain is going away during a prebuild.

To prebuild applications in ASP.NET without resorting to the ClientBuildManager,
an HTTP request can be posted to the web site in the format of http://server/webapp/
precompile.axd. The precompile.axd “document” triggers an ASP.NET HttpHandler
for this that will prebuild the web site for you. This is handled by the aspnet_com-
piler.exe module that essentially wraps the ClientBuildManager functionality.

See Also
The “ClientBuildManager,” “ClientBuildManagerParameters,” “BuildManager,” and
“ASP.NET Web Site Precompilation” topics in the MSDN documentation.

Escaping and Unescaping Data for the Web | 535

14.11 Escaping and Unescaping Data for the Web

Problem
You need to transform data for use in web operations from escaped to unescaped
format or vice versa for proper transmission. This escaping and unescaping should
follow the format outlined in RFC 2396—Uniform Resource Identifiers (URI):
Generic Syntax.

Solution
Use the Uri class static methods for escaping and unescaping data and Uris.

To escape data, use the static Uri.EscapeDataString method, as shown here:

 string data = "<H1>My html</H1>";
 Console.WriteLine("Original Data: {0}",data);
 Console.WriteLine();
 // public static string EscapeDataString(string stringToEscape);
 string escapedData = Uri.EscapeDataString(data);
 Console.WriteLine("escaped Data: {0}",escapedData);
 Console.WriteLine();

 // Output from above code is
 //
 // Original Data: <H1>My html</H1>
 //
 // Escaped Data: %3CH1%3EMy%20html%3C%2FH1%3E

To unescape the data, use the static Uri.UnescapeDataString method:

 // public static string UnescapeDataString(string stringToUnescape);
 string unescapedData = Uri.UnescapeDataString(escapedData);
 Console.WriteLine("unescaped Data: {0}", unescapedData);
 Console.WriteLine();

 // Output from above code is
 //
 // Unescaped Data: <H1>My html</H1>

To escape a Uri, use the static Uri.EscapeUriString method:

 string UriString = "http://user:password@localhost:8080/www.abc.com/" +
 "home page.htm?item=1233;html=<h1>Heading</h1>#stuff";
 Console.WriteLine("Original Uri string: {0}",UriString);
 Console.WriteLine();

 // public static string EscapeUriString(string stringToEscape);
 string escapedUriString = Uri.EscapeUriString(UriString);
 Console.WriteLine("Escaped Uri string: {0}",escapedUriString);
 Console.WriteLine();
 // Output from above code is
 //
 //Original Uri string:

536 | Chapter 14: Web

 http://user:password@localhost:8080/www.abc.com/home
 //page.htm?item=1233;html=<h1>Heading</h1>#stuff
 //
 //Escaped Uri string:
 //http://user:password@localhost:8080/www.abc.com/home%20page.
 //htm?item=1233;
 //html=%3Ch1%3EHeading%3C/h1%3E#stuff

In case you are wondering why escaping a Uri has its own method
(EscapeUriString), take a look at what the escaped Uri looks like if you use Uri.
EscapeDataString and Uri.UnescapeDataString on it:

 // Why not just use EscapeDataString to escape a Uri? It's not picky enough...
 string escapedUriData = Uri.EscapeDataString(UriString);
 Console.WriteLine("Escaped Uri data: {0}",escapedUriData);
 Console.WriteLine();

 Console.WriteLine(Uri.UnescapeDataString(escapedUriString));

 // Output from above code is
 //
 //
 //Escaped Uri data:
 //http%3A%2F%2Fuser%3Apassword%40localhost%3A8080%2Fwww.abc.
 //com%2Fhome%20page.htm
 //%3Fitem%3D1233%3Bhtml%3D%3Ch1%3EHeading%3C%2Fh1%3E%23stuff
 //
 //http://user:password@localhost:8080/www.abc.com/home
 //page.htm?item=1233;html=<h1>Heading</h1>#stuff

Notice that the :, /, :, @, and ? characters get escaped when they shouldn’t, which is
why you use the EscapeUriString method for Uris.

Discussion
EscapeUriString assumes that there are no escape sequences already present in the
string being escaped. The escaping follows the convention set down in RFC 2396 for
converting all reserved characters and characters with a value greater than 128 to
their hexadecimal format.

In section 2.2 of RFC 2396, it states that the reserved characters are:

 ;|/| ? |:| @ | & | = | + | $ | ,

The EscapeUriString method is useful when creating a System.Uri object to ensure
that the Uri is escaped correctly.

See Also
The “EscapeUriString Method,” “EscapeUriData Method,” and “Unescape-
DataString Method” topics in the MSDN documentation.

Using the UriBuilder Class | 537

14.12 Using the UriBuilder Class

Problem
You want to avoid making URI syntax errors when creating a URI.

Solution
Use the UriBuilder class to add each piece without worrying about syntax or place-
ment in the string.

Building a URI programmatically can be challenging to do correctly in all instances.
Using the UriBuilder can help to simplify it. For instance, if you needed to assemble
an HTTP Uri that looked like this:

http://user:password@localhost:8080/www.abc.com/
homepagehtm?item=1233;html=<h1>Heading</h1>#stuff

you would need to understand the layout of the HTTP Uri, which is this:

[scheme]://[user]:[password]@[host/authority]:[port]/[path];[params]?
[query string]#[fragment]

It is very possible that information could come in that has only some of these pieces,
or all of the pieces might be present. The UriBuilder allows the code to set proper-
ties for each of the components of the URI. This is great except for one small glitch.
Every time you set the Query property, the UriBuilder class appends a ? to the front
of the query string information. This means if code is written in this manner:

 UriBuilder ub = new UriBuilder();
 ub.Query = "item=1233";
 ub.Query += "html-<h1>heading</h1>";

the resulting query string looks like this, with two question marks:

 ??item=1233;html=<h1>heading</h1>

To correct this sad state of affairs, use the UriBuilderFix, which overloads the Query
property and deals with this in a more reasonable manner. UriBuilderFix is a light
wrapper for UriBuilder that cleans up the Query property behavior:

 public class UriBuilderFix : UriBuilder
 {
 public UriBuilderFix() : base()
 {
 }
 public new string Query
 {
 get
 {
 return base.Query;
 }
 set

538 | Chapter 14: Web

 {
 if (!string.IsNullOrEmpty(value))
 {
 if (value[0] == '?')
 // Trim off the leading ? as the underlying
 // UriBuilder class will add one to the
 // query string. Also prepend ; for additional items.
 base.Query = value.Substring(1);
 else
 base.Query = value;
 }
 else
 base.Query = string.Empty;
 }
 }
 }

The UriBuilderFix is used just like the UriBuilder, except you now get the expected
output from adding to the query string:

 UriBuilderFix ubf = new
 UriBuilderFix();
 ubf.Scheme = "http";
 ubf.UserName = "user";
 ubf.Password = "password";
 ubf.Host = "localhost";
 ubf.Port = 8080;
 ubf.Path = "www.abc.com/home page.htm";

 //The Query property contains any query information included in the Uri.
 //Query information is separated from the path information by a question mark (?)
 //and continues to the end of the Uri. The query information returned includes
 //the leading question mark.
 //The query information is escaped according to RFC 2396.
 //Setting the Query property to null or to System.String.Empty clears the aby
property.
 //Note: Do not append a string directly to this property.
 //Instead, retrieve the property value as a string, remove the leading question
 //mark, append the new query string, and set the property with the combined//
string.

 ubf.Query = "item=1233";
 ubf.Query += ";html=<h1>heading</h1>";

 ubf.Fragment = "stuff";

 Console.WriteLine("Absolute Composed Uri: " + ubf.Uri.AbsoluteUri);
 Console.WriteLine("Composed Uri: " + ubf.ToString());

This example produces the following output:

 Absolute Composed Uri: http://user:password@localhost:8080/www.abc.com/
home%20page.
 htm?item=1233;html=%3Ch1%3Eheading%3C/h1%3E

Inspect and Change Your Web Application Configuration | 539

 Composed Uri:
 http://user:password@localhost:8080/www.abc.com/home%20page.htm?item=1233;html=
 %3Ch1%3Eheading%3C/h1%3E

Discussion
Even without the addition of the Query behavior in BetterUriBuilder, UriBuilder is a
great way to build up Uris without resorting to assembling the whole string yourself.
Once the construction of the Uri is complete, get the Uri object from the UriBuilder.
Uri property to use it.

See Also
Recipes 14.2 and 14.3; see the “UriBuilder Class” and “Uri Class” topics in the
MSDN documentation.

14.13 Inspect and Change Your Web Application
Configuration

Problem
You want to be able to modify some settings in your web application configuration
file from within a web page.

Solution
Use the System.Configuration.WebConfigurationManager and System.Configuration.
Configuration classes to access elements of your web application’s configuration
settings.

First, get a Configuration object for the configuration settings by calling the
OpenWebConfiguration method on the WebConfigurationManager:

 System.Configuration.Configuration cfg =
 WebConfigurationManager.OpenWebConfiguration(@"/CSCBWeb");

Now, use the Configuration object to get a specific section of the settings. The fol-
lowing code retrieves the SqlCacheDependencySection of the configuration:

 SqlCacheDependencySection sqlCacheDep =
 (SqlCacheDependencySection)cfg.GetSection("system.web/caching/
sqlCacheDependency");

The SqlCacheDependencySection allows for creating a new
SqlCacheDependencyDatabase and adding it to the configuration, and then saving the
new configuration:

 SqlCacheDependencyDatabase sqlCacheDb = new
 SqlCacheDependencyDatabase("pubs","LocalPubs",9000000);
 sqlCacheDep.Databases.Add(sqlCacheDb);

540 | Chapter 14: Web

 sqlCacheDep.Enabled = true;
 sqlCacheDep.PollTime = 60000;
 cfg.Save(ConfigurationSaveMode.Modified);

This creates the following section in the web.config file for the application:

 <sqlCacheDependency enabled="True" pollTime="60000">
 <databases>
 <add name="pubs" connectionStringName="LocalPubs" pollTime="9000000" />
 </databases>
 </sqlCacheDependency>

Now the application is configured to allow a SqlCacheDependency to be created.

Discussion
This may seem like a lot of work at first. It would be pretty easy to rip through the
web.config file using an XmlTextReader/Writer combination or an XmlDocument. But
that would get the settings in only that web.config file, not all of the other web.config
files that merge with the application-level one to make up the true configuration. The
WebConfigurationManager allows for accessing the current settings at runtime, not just
the static ones on disk in the multiple files.

One of the results of changing the configuration of a web application
programmatically is that it can result in the restart of the application
domain for the application. This can cause performance issues on your
server. The other major area to consider is security. If the page that
executes this code is not secured properly, the application/server host-
ing the page could be open to attack.

When the configuration is modified during the processing of the web page, the
changes are not immediately reflected in the current configuration, as the page needs
to finish processing before the configuration can be updated. In the earlier case in
which a SqlCacheDependency is configured, the attempt to immediately construct the
SqlCacheDependency object will throw an exception stating that the application is not
configured to do this. To get around this, you can do the configuration setting work,
and then redirect back to the same page with a parameter in the query string that
bypasses this setup code and moves right into the code that uses the new configura-
tion (the creation of the SqlCacheDependency, in this case):

 if (Request.QueryString.Count == 0)
 {
 // Add the sqlCache database entry
 // to web.config.
 TestConfig();
 // Now, redirect to ourselves adding a query string.
 // We do this so that the change we made to
 // web.config gets picked up for the code in
 // CreateSqlCacheDependency and SetupCacheDependencies,
 // as it depends on that configuration being present.

Using Cached Results When Working with HTTP for Faster Performance | 541

 // If you just create the entry and call the setup
 // code in the same page instance, the internal
 // configuration stuff doesn't refresh and you get
 // an exception when the code can't find the sqlCache
 // section it needs.
 Response.Redirect(Request.RawUrl + "?run=1");
 }
 else
 {
 // Run 14.10.
 CreateSqlCacheDependency();
 // Run 14.11.
 SetupCacheDependencies();
 }

See Also
Recipes 14.9 and 14.10; the “WebConfigurationManager Class” and “System.Con-
figuration Namespace” topics in the MSDN documentation.

14.14 Using Cached Results When Working with HTTP
for Faster Performance

Problem
You are looking for a way to speed up code that reaches out to the Web via HTTP
for content.

Solution
Use the RequestCachePolicy class to determine how your HttpWebRequests react in the
presence of a caching entity. RequestCachePolicy has seven levels defined by the
RequestCacheLevel enumeration, as shown in Table 14-3.

Table 14-3. RequestCacheLevel enumeration values

Flag value Purpose

BypassCache Get content only directly from the server (default setting in .NET).

CacheIfAvailable Accept the requested item from any cache between the request and the server of the content.

CacheOnly Accept the request to be fulfilled from only the local cache; throws a WebException if not found
in the cache.

Default Accept content from intermediate caches or from the server directly, subject to the current cache
policy and content age (recommended level for most apps, even though it is not the default
setting).

NoCacheNoStore Content will not be accepted from caches nor added to any. Equivalent to the HTTP no-cache
directive.

Reload Get content directly from the server but store response in the cache.

Revalidate Check the content timestamp on the server against the cache and take the most recent one.

542 | Chapter 14: Web

The RequestCachePolicy is set up using the CacheIfAvailable RequestCacheLevel so
that the request will always take the “closest” content to enhance retrieval speed. If
Default is used, the request is still subject to the underlying cache policy of the sys-
tem, and that can prevent the use of intermediate caches.

To assign the cache policy, set the CachePolicy property on the HttpWebRequest to the
newly created RequestCachePolicy. Once the policy is in place, get the response. The
HttpWebResponse object has a property called IsFromCache that tells if the response
came from a cache:

 string html = string.Empty;

 // Set up the request (Recipe 14.5 has GenerateHttpWebRequest).
 HttpWebRequest request =
 GenerateHttpWebRequest(new Uri("http://www.oreilly.com"));

 // Make a cache policy to use cached results if available.
 // The default is to bypass the cache in machine.config.
 RequestCachePolicy rcpCheckCache =
 new RequestCachePolicy(RequestCacheLevel.CacheIfAvailable);

 request.CachePolicy = rcpCheckCache;

 HttpWebResponse response = null;
 try
 {
 response = (HttpWebResponse)request.GetResponse();
 }
 catch (WebException we)
 {
 Console.WriteLine(we.ToString());
 }

 if(response.IsFromCache==false)
 {
 Console.WriteLine("Didn't hit the cache");
 }

Discussion
The default request cache policy for an appdomain can be set by using the
HttpWebRequest.DefaultCachePolicy property. The CachePolicy property shown in
the solution sets the policy for a particular request.

The default caching policy is specified in the machine.config file in the system.net/
requestCaching element, as shown here:

 <requestCaching defaultPolicyLevel="BypassCache" isPrivateCache="true"
 unspecifiedMaximumAge="1.00:00:00" >

Checking Out a Web Server’s Custom Error Pages | 543

See Also
The “RequestCachePolicy Class,” “RequestCacheLevel Enumeration,” and “Default-
CachePolicy Property” topics in the MSDN documentation.

14.15 Checking Out a Web Server’s Custom Error Pages

Problem
You have an application that needs to know what custom error pages are set up for
the various HTTP error return codes on a given IIS server.

Solution
Use the System.DirectoryServices.DirectoryEntry class to talk to the Internet Infor-
mation Server (IIS) metabase to find out which custom error pages are set up. The
metabase holds the configuration information for the web server. DirectoryEntry
uses the Active Directory IIS service provider to communicate with the metabase by
specifying the “IIS” scheme in the constructor for the DirectoryEntry:

 // This is a case-sensitive entry in the metabase.
 // You'd think it was misspelled, but you would be mistaken...
 const string WebServerSchema = "IIsWebServer";

 // Set up to talk to the local IIS server.
 string server = "localhost";

 // Create a dictionary entry for the IIS server with a fake
 // user and password. Credentials would have to be provided
 // if you are running as a regular user.
 using (DirectoryEntry w3svc =
 new DirectoryEntry(
 string.Format("IIS://{0}/w3svc", server),
 "Domain/UserCode", "Password"))
 {

Once the connection is established, the web server schema entry is specified to show
where the IIS settings are kept (IIsWebServer). The DirectoryEntry has a property
that allows access to its children (Children), and the SchemaClassName is checked for
each entry to see if it is in the web server settings section. Once the web server set-
tings are found, the web root node is located, and from there, the HttpErrors prop-
erty is retrieved. HttpErrors is a comma-delimited string that indicates the HTTP
error code, the HTTP suberror code, the message type, and the path to the HTML
file to serve when this error occurs. To accomplish this, just write a LINQ query to
get all of the HttpErrors, as shown in Example 14-3. Once the HttpErrors are
retrieved, use the Split method to break this into a string array that allows the code
to access the individual values and write them out. The code for carrying out these
operations is shown in Example 14-3.

544 | Chapter 14: Web

This could of course have been done without using LINQ to query the metabase and
would have looked like Example 14-4.

Example 14-3. Finding custom error pages

 if (w3svc != null)
 {
 // Use a regular query expression to
 // select the http errors for all web sites on the machine.
 var httpErrors = from site in
 w3svc.Children.OfType<DirectoryEntry>()
 where site.SchemaClassName == WebServerSchema
 from siteDir in
 site.Children.OfType<DirectoryEntry>()
 where siteDir.Name == "ROOT"
 from httpError in siteDir.Properties["HttpErrors"].OfType<string>
()
 select httpError;

 // Use eager evaluation to convert this to the array
 // so that we don't requery on each iteration. We would miss
 // updates to the metabase that occur during execution, but
 // that is a small price to pay versus the requery cost.
 // This will force the evaluation of the query now once.
 string[] errors = httpErrors.ToArray();
 foreach (var httpError in errors)
 {
 //400,*,FILE,C:\WINDOWS\help\iisHelp\common\400.htm
 string[] errorParts = httpError.ToString().Split(',');
 Console.WriteLine("Error Mapping Entry:");
 Console.WriteLine("\tHTTP error code: {0}", errorParts[0]);
 Console.WriteLine("\tHTTP sub-error code: {0}", errorParts[1]);
 Console.WriteLine("\tMessage Type: {0}", errorParts[2]);
 Console.WriteLine("\tPath to error HTML file: {0}", errorParts[3]);
 }
 }

Example 14-4. Finding custom error pages without LINQ

 // Can't talk to the metabase for some reason: bail.
 if (w3svc != null)
 {
 foreach (DirectoryEntry site in w3svc.Children)
 {
 if (site != null)
 {
 using (site)
 {
 // Check all web servers on this box.
 if (site.SchemaClassName == WebServerSchema)
 {
 // Get the metabase entry for this server.
 string metabaseDir =
 string.Format("/w3svc/{0}/ROOT", site.Name);

Checking Out a Web Server’s Custom Error Pages | 545

 if (site.Children != null)
 {
 // Find the root directory for each server.
 foreach (DirectoryEntry root in site.Children)
 {
 using (root)
 {
 // Did we find the root dir for this site?
 if (root != null &&
 root.Name.Equals("ROOT",
 StringComparison.OrdinalIgnoreCase))
 {
 // Get the HttpErrors.
 if (root.Properties.Contains("HttpErrors") ==
true)
 {
 // Write them out.
 PropertyValueCollection httpErrors =
root.Properties["HttpErrors"];
 if (httpErrors != null)
 {
 for (int i = 0; i < httpErrors.Count; i++)
 {
//400,*,FILE,C:\WINDOWS\help\iisHelp\common\400.htm
 string[] errorParts = httpErrors[i].
ToString().Split(',');
 Console.WriteLine("Error Mapping
Entry:");
 Console.WriteLine("\tHTTP error code:
{0}", errorParts[0]);
 Console.WriteLine("\tHTTP sub-error
code: {0}", errorParts[1]);
 Console.WriteLine("\tMessage Type:
{0}", errorParts[2]);
 Console.WriteLine("\tPath to error
HTML file: {0}", errorParts[3]);
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }

Example 14-4. Finding custom error pages without LINQ (continued)

546 | Chapter 14: Web

At this point, an application could cache these settings for mapping its own error
results, or it could dynamically modify the error pages to provide customized con-
tent. The important thing to take away is that the settings information for the web
server is readily available to all applications with a bit of coding.

Discussion
System.DirectoryServices.DirectoryEntry is usually used for Active Directory pro-
gramming, but it is able to use any of the providers that are available for Active
Directory as well. This approach allows code to examine the IIS metabase for both
the older style IIS 5.x metabases as well as the newer IIS 6.0 metabase that ships with
Windows Server 2003.

In example 14-3, where LINQ was used to query the metabase, a number of interest-
ing things are occurring. The query is walking the metabase hierarchy to retrieve the
HttpErrors, but it should be noted that the DirectoryEntry.Children property is a
DirectoryEntries collection class. DirectoryEntries does support IEnumerable, but it
does not support IEnumerable<T>, which LINQ uses to do its work. The
OfType<DirectoryEntry> extension method returns the strongly typed
IEnumerable<DirectoryEntry> from the IEnumerable interface supported by
DirectoryEntries. This is done to find the web site and the root directory and then
OfType<string> is used to get an enumerable list of strings with the HttpErrors in it:

// Use a regular query expression to
// select the http errors for all web sites on the machine.
var httpErrors = from site in
 w3svc.Children.OfType<DirectoryEntry>()
 where site.SchemaClassName == WebServerSchema
 from siteDir in
 site.Children.OfType<DirectoryEntry>()
 where siteDir.Name == "ROOT"
 from httpError in siteDir.Properties["HttpErrors"].OfType<string>()
 select httpError;

The query is written using the usual query expression syntax, but it could also be
built using what is known as “explicit dot notation” syntax. If we used explicit dot
notation syntax for this query, it would look like this:

var httpErrors = w3svc.Children.OfType<DirectoryEntry>()
 .Where(site => site.SchemaClassName == WebServerSchema)
 .SelectMany(siteDir => siteDir.Children.OfType<DirectoryEntry>())
 .Where(siteDir => siteDir.Name == "ROOT")
 .SelectMany<DirectoryEntry, string>(siteDir =>
 siteDir.Properties["HttpErrors"].OfType<string>());

Checking Out a Web Server’s Custom Error Pages | 547

The use of SelectMany is implied in the normal query syntax through the use of mul-
tiple from statements. SelectMany allows the query to collapse the results into a sin-
gle set so that we have IEnumerable<string> as the httpErrors result; if Select was
used, it would be IEnumerable<IEnumerable<string>>, which would be a set of string
collections instead of one contiguous collection.

In order to build the query in the first place, it can be easier to start out with sepa-
rate smaller queries and then combine them. When using the explicit dot notation
syntax, this is easily recombined as can be seen with the following subqueries:

// Break up the query using Explicit dot notation into getting the site, then the
http error
// property values.
var sites = w3svc.Children.OfType<DirectoryEntry>()
 .Where(child => child.SchemaClassName == WebServerSchema)
 .SelectMany(child => child.Children.OfType<DirectoryEntry>());

var httpErrors = sites
 .Where(site => site.Name == "ROOT")
 .SelectMany<DirectoryEntry,string>(site =>
 site.Properties["HttpErrors"].OfType<string>());

// Combine the query using Explicit dot notation.
var combinedHttpErrors = w3svc.Children.OfType<DirectoryEntry>()
 .Where(site => site.SchemaClassName == WebServerSchema)
 .SelectMany(siteDir => siteDir.Children.
OfType<DirectoryEntry>())
 .Where(siteDir => siteDir.Name == "ROOT")
 .SelectMany<DirectoryEntry, string>(siteDir =>
 siteDir.Properties["HttpErrors"].OfType<string>());

See Also
The “SelectMany<TSource, TResult> method,” “OfType<TResult> method,”
“HttpErrors [IIS],” “IIS Metabase Properties,” and “DirectoryEntry Class” topics in
the MSDN documentation.

548

Chapter 15CHAPTER 15

XML 15

15.0 Introduction
Extensible Markup Language (XML) is a simple, portable, and flexible way to repre-
sent data in a structured format. XML is used in a myriad of ways, from acting as the
foundation of web-based messaging protocols such as SOAP, to being one of the
more popular ways to store configuration data (such as the web.config, machine.con-
fig, or security.config files in the .NET Framework). Microsoft recognized the useful-
ness of XML to developers and has done a nice job of giving you choices concerning
the trade-offs involved. Sometimes you want to simply run through an XML docu-
ment looking for a value in a read-only cursorlike fashion; other times you need to be
able to randomly access various pieces of the document; and sometimes, it is handy
to be able to query and work with XML declaratively. Microsoft provides classes
such as XmlReader and XmlWriter for lighter access and XmlDocument for full Docu-
ment Object Model (DOM) processing support. In order to support querying an
XML document or constructing XML declaratively, LINQ to XML (also known as
XLINQ) is provided in C# 3.0 in the form of the XElement and XDocument classes.

It is likely that you will be dealing with XML in .NET to one degree or another. This
chapter explores some of the uses for XML and XML-based technologies such as
XPath and XSLT as well as showing how these technologies are used by and some-
times replaced by LINQ to XML. It also explores topics such as XML validation and
transformation of XML to HTML.

15.1 Reading and Accessing XML Data in Document
Order

Problem
You need to read in all the elements of an XML document and obtain information
about each element, such as its name and attributes.

Reading and Accessing XML Data in Document Order | 549

Solution
Create an XmlReader and use its Read method to process the document as shown in
Example 15-1.

Example 15-1. Reading an XML document

using System;
using System.Xml;
using System.Xml.Linq;

namespace CSharpRecipes
{
 public class AccessXml
 {
 public static void AccessXml()
 {
 // New LINQ to XML syntax for constructing XML
 XDocument xDoc = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XComment("My sample XML"),
 new XProcessingInstruction("myProcessingInstruction",
 "value"),
 new XElement("Root",
 new XElement("Node1",
 new XAttribute("nodeId", "1"), "FirstNode"),
 new XElement("Node2",
 new XAttribute("nodeId", "2"), "SecondNode"),
 new XElement("Node3",
 new XAttribute("nodeId", "1"), "ThirdNode")
)
);

 // write out the XML to the console
 Console.WriteLine(xDoc.ToString());

 // create an XmlReader from the XDocument
 XmlReader reader = xDoc.CreateReader();
 reader.Settings.CheckCharacters = true;
 int level = 0;
 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.CDATA:
 Display(level, "CDATA: {0}", reader.Value);
 break;
 case XmlNodeType.Comment:
 Display(level, "COMMENT: {0}", reader.Value);
 break;
 case XmlNodeType.DocumentType:
 Display(level, "DOCTYPE: {0}={1}",
 reader.Name, reader.Value);
 break;

550 | Chapter 15: XML

This code dumps the XML document in a hierarchical format:

<!--My sample XML-->
<?myProcessingInstruction value?>
<Root>
 <Node1 nodeId="1">FirstNode</Node1>
 <Node2 nodeId="2">SecondNode</Node2>
 <Node3 nodeId="1">ThirdNode</Node3>
</Root>
COMMENT: My sample XML
INSTRUCTION: myProcessingInstruction=value
ELEMENT: Root
 ELEMENT: Node1

 case XmlNodeType.Element:
 Display(level, "ELEMENT: {0}", reader.Name);
 level++;
 while (reader.MoveToNextAttribute())
 {
 Display(level, "ATTRIBUTE: {0}='{1}'",
 reader.Name, reader.Value);
 }
 break;
 case XmlNodeType.EndElement:
 level--;
 break;
 case XmlNodeType.EntityReference:
 Display(level, "ENTITY: {0}", reader.Name);
 break;
 case XmlNodeType.ProcessingInstruction:
 Display(level, "INSTRUCTION: {0}={1}",
 reader.Name, reader.Value);
 break;
 case XmlNodeType.Text:
 Display(level, "TEXT: {0}", reader.Value);
 break;
 case XmlNodeType.XmlDeclaration:
 Display(level, "DECLARATION: {0}={1}",
 reader.Name, reader.Value);
 break;
 }
 }
 }

 private static void Display(int indentLevel, string format,
 params object[] args)
 {
 for (int i = 0; i < indentLevel; i++)
 Console.Write(" ");
 Console.WriteLine(format, args);
 }
 }
}

Example 15-1. Reading an XML document (continued)

Reading and Accessing XML Data in Document Order | 551

 ATTRIBUTE: nodeId='1'
 TEXT: FirstNode
 ELEMENT: Node2
 ATTRIBUTE: nodeId='2'
 TEXT: SecondNode
 ELEMENT: Node3
 ATTRIBUTE: nodeId='1'
 TEXT: ThirdNode

Discussion
Reading existing XML and identifying different node types is one of the fundamental
actions that you will need to perform when dealing with XML. The code in the Solu-
tion creates an XmlReader from a declaratively constructed XML document and then
iterates over the nodes while re-creating the formatted XML for output to the con-
sole window.

The Solution shows creating an XML Document by using an XDocument and compos-
ing the XML inline using the various XML to LINQ classes such as XElement,
XAttribute, XComment and so on:

 XDocument xDoc = new XDocument(
 new XDeclaration("1.0","UTF-8","yes"),
 new XComment("My sample XML"),
 new
XProcessingInstruction("myProcessingInstruction","value"),
 new XElement("Root",
 new XElement("Node1",
 new XAttribute("nodeId", "1"), "FirstNode"),
 new XElement("Node2",
 new XAttribute("nodeId", "2"), "SecondNode"),
 new XElement("Node3",
 new XAttribute("nodeId", "1"), "ThirdNode")
)
);

Once the XDocument has been established, the settings for the XmlReader need to be set
up on an XmlReaderSettings object instance via the XmlReader.Settings property.
These settings tell the XmlReader to check for any illegal characters in the XML
fragment:

 // create an XmlReader from the XDocument
 XmlReader reader = xDoc.CreateReader();
 reader.Settings.CheckCharacters = true;

The while loop iterates over the XML by reading one node at a time and examining
the NodeType property of the current node that the reader is on to determine what
type of XML node it is:

 while (reader.Read())
 {
 switch (reader.NodeType)
 {

552 | Chapter 15: XML

The NodeType property is an XmlNodeType enumeration value that specifies the types of
XML nodes that can be present. The XmlNodeType enumeration values are shown in
Table 15-1.

See Also
The “XmlReader Class,” “XmlNodeType Enumeration,” and “XDocument Class”
topics in the MSDN documentation.

15.2 Reading XML on the Web

Problem
Given a URL that points to an XML document, you need to grab the XML.

Table 15-1. The XmlNodeType enumeration values

Name Description

Attribute An attribute node of an element.

CDATA A marker for sections of text to escape that would usually be treated as markup.

Comment A comment in the XML:

<!—my comment -->

Document The root of the XML document tree.

DocumentFragment Document fragment node.

DocumentType The document type declaration.

Element An element tag:

<myelement>

EndElement An end element tag:

</myelement>

EndEntity Returned at the end of an entity after calling ResolveEntity.

Entity Entity declaration.

EntityReference A reference to an entity.

None This is the node returned if Read has not yet been called on the XmlReader.

Notation A notation in the DTD (document type definition).

ProcessingInstruction The processing instruction:

<?pi myProcessingInstruction?>

SignificantWhitespace Whitespace when mixed content model is used or when whitespace is being preserved.

Text Text content for a node.

Whitespace The whitespace between markup entries.

XmlDeclaration The first node in the document that cannot have children:

<?xml version='1.0'?>

Reading XML on the Web | 553

Solution
Use the XDocument constructor that takes a URL as a parameter:

 // This requires you set up a virtual directory pointing
 // to the sample.xml file included with the sample code
 // prior to executing this.
 string url = "http://localhost/xml/sample.xml";
 XDocument xDoc = XDocument.Load(url);
 var query = from e in xDoc.Descendants()
 where e.NodeType == XmlNodeType.Element
 select new
 {
 ElementName = e.Name.ToString(),
 ElementValue = e.Value
 };

 foreach(var elementInfo in query)
 {
 Console.WriteLine("Element Name: {0}, Value: {1}",
 elementInfo.ElementName,elementInfo.ElementValue);
 }

Or if you don’t want to use LINQ for XML, use the XmlReader constructor that takes
a URI as a parameter:

 string url = "http://localhost/xml/sample.xml";
 using (XmlReader reader = XmlReader.Create(url))
 {
 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.Element:
 Console.Write("\r\nElement Name: {0}, Value: ",
 reader.Name);
 break;
 case XmlNodeType.Text:
 Console.Write(reader.Value);
 break;
 case XmlNodeType.CDATA:
 Console.Write(reader.Value);
 break;
 }
 }
 }

Discussion
By using the Load method on XDocument or XElement, you can quickly load an XML
document from the Web and then query it for a set of elements using LINQ. Once
the set of elements is returned, a simple foreach loop allows access to the individual
elements.

554 | Chapter 15: XML

Retrieving XML and examining all of the elements can also be achieved using the
XmlReader.Create method with a URI. This uses an instance of the XmlUrlResolver
class to check the URI passed in and then opens a stream to the XML document indi-
cated by the URI. To specify settings on the reader, there is a second overload of
Create that also takes an XmlReaderSettings instance to facilitate this.

The sample.xml file being referenced in this code is set up in a virtual directory
named xml on the local system. The code retrieves the sample.xml file from the web
server and displays all of the elements in the XML.

sample.xml contains the following XML data:

 <?xml version='1.0'?>
 <!-- My sample XML -->
 <?pi myProcessingInstruction?>
 <Root>
 <Node1 nodeId='1'>First Node</Node1>
 <Node2 nodeId='2'>Second Node</Node2>
 <Node3 nodeId='3'>Third Node</Node3>
 <Node4><![CDATA[<>\&']]></Node4>
 </Root>

See Also
The “XDocument Class” and “XmlReader Class” topics in the MSDN
documentation.

15.3 Querying the Contents of an XML Document

Problem
You have a large and complex XML document, and you need to find various pieces
of information, such as all the information contained within a specific element and
having a particular attribute setting. You want to query the XML structure without
having to iterate through all the nodes in the XML document and search for a partic-
ular item by hand.

Solution
Use the new Language Integrated Query (LINQ) to XML API to query the XML doc-
ument for the items of interest. LINQ allows you to select elements based on ele-
ment and attribute values, order the results, and return an IEnumerable-based
collection of the resulting data, as shown in Example 15-2.

Example 15-2. Querying an XML document with LINQ

private static XDocument GetAClue()
{
 return new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),

Querying the Contents of an XML Document | 555

Notice how similar the structure of the XML and the structure of the code is when
using LINQ to construct this XML fragment in the GetAClue method:

public static void QueryXml()
{ XDocument xDoc = GetAClue();

 // set up the query looking for the married female participants
 // who were witnesses
 var query = from p in xDoc.Root.Elements("Participant")
 where p.Attribute("type").Value == "Witness" &&
 p.Value.Contains("Mrs.")
 orderby (string) p.Value
 select (string) p.Value;

 // write out the nodes found (Mrs. Peacock and Mrs. White,
 // in this instance) as it is sorted
 foreach (string s in query)
 {
 Console.WriteLine(s);
 }

This outputs the following for the LINQ to XML example:

Mrs. Peacock
Mrs. White

To query an XML document without LINQ, you could also use XPath. In .NET, this
means using the System.Xml.XPath namespace and classes such as XPathDocument,
XPathNavigator, and XPathNodeIterator. LINQ to XML also supports using XPath to
identify items in a query through the XElement.XPathSelectElements method. To see
this method in action, check out Recipe 15.9.

 new XElement("Clue",
 new XElement("Participant",
 new XAttribute("type", "Perpetrator"), "Professor Plum"),
 new XElement("Participant",
 new XAttribute("type", "Witness"), "Colonel Mustard"),
 new XElement("Participant",
 new XAttribute("type", "Witness"), "Mrs. White"),
 new XElement("Participant",
 new XAttribute("type", "Witness"), "Mrs. Peacock"),
 new XElement("Participant",
 new XAttribute("type", "Witness"), "Mr. Green"),
 new XElement("Participant",
 new XAttribute("type", "Witness"), "Miss Scarlet"),
 new XElement("Participant",
 new XAttribute("type", "Victim"), "Mr. Boddy")
)
);
}

Example 15-2. Querying an XML document with LINQ (continued)

556 | Chapter 15: XML

In the following example, you use these classes to select nodes from an XML docu-
ment that holds members from the board game Clue (or Cluedo, as it is known
abroad) and their various roles. You want to be able to select the married female par-
ticipants who were witnesses to the crime. In order to do this, pass an XPath expres-
sion to query the XML dataset, as shown in Example 15-3.

This outputs the following for the XPath example:

Mrs. White
Mrs. Peacock

Discussion
Query support is now a first-class citizen in C# with the addition of LINQ. LINQ to
XML brings a more intuitive syntax to writing queries for most developers than XPath
and, as such, is a welcome addition to the language. XPath is a valuable tool to have
in your arsenal if you are dealing with systems that deal with XML extensively, but in
many cases, you know what you want to ask for; you just don’t know the syntax in
XPath. For developers with even minimal SQL experience, querying in C# just got a
lot easier:

Example 15-3. Querying an XML document with XPath

public static void QueryXML()
{
 XDocument xDoc = GetAClue();

 using (StringReader reader = new StringReader(xDoc.ToString()))
 {
 // Instantiate an XPathDocument using the StringReader.
 XPathDocument xpathDoc = new XPathDocument(reader);

 // Get the navigator.
 XPathNavigator xpathNav = xpathDoc.CreateNavigator();

 // Get up the query looking for the married female participants
 // who were witnesses.
 string xpathQuery =
 "/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";
 XPathExpression xpathExpr = xpathNav.Compile(xpathQuery);

 // Get the nodeset from the compiled expression.
 XPathNodeIterator xpathIter = xpathNav.Select(xpathExpr);

 // Write out the nodes found (Mrs. White and Mrs.Peacock, in this instance).
 while (xpathIter.MoveNext())
 {
 Console.WriteLine(xpathIter.Current.Value);
 }
 }
}

Querying the Contents of an XML Document | 557

The XML being worked on in this recipe looks like this:
<?xml version='1.0'?>
<Clue>
 <Participant type='Perpetrator'>Professor Plum</Participant>
 <Participant type='Witness'>Colonel Mustard</Participant>
 <Participant type='Witness'>Mrs. White</Participant>
 <Participant type='Witness'>Mrs. Peacock</Participant>
 <Participant type='Witness'>Mr. Green</Participant>
</Clue>;

This query says “select all of the Participant elements where the Participant is a wit-
ness and their title is “Mrs:”

 // set up the query looking for the married female participants
 // who were witnesses
 var query = from p in xDoc.Root.Elements("Participant")
 where p.Attribute("type").Value == "Witness" &&
 p.Value.Contains("Mrs.")
 orderby (string) p.Value
 select (string) p.Value;

 Contrast this with the same query syntax in XPath:

// set up the query looking for the married female participants
// who were witnesses
string xpathQuery =
 "/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";

Both ways of performing the query have merit, but the issue to consider is how eas-
ily will the next developer be able to understand what you have written. It is very
easy to break code that is not well understood. Generally, more developers under-
stand SQL than XPath, even with all of the web service work today. This may differ
from your experience, but the point is to think of LINQ as not just another syntax,
but as a way to make your code more readable by a broader audience of developers.
Code is rarely owned by one person, even in the short term, so why not make it easy
for those who come after you? After all, you may be on the other side of that coin
someday. Let’s break down the two queries a bit more. The LINQ query uses some
of the new keywords in C# 3.0:

• var indicates to the compiler to expect an inferred type based on the result set.

• from, which is known as the generator, provides a data source for the query to
operate on as well as a range variable to allow access to the individual element.

• where allows for a Boolean condition to be applied to each element of the data
source to determine if it should be included in the result set.

• orderby determines the sort order of the result set based on the number of ele-
ments and indicators of ascending or descending per element. Multiple criteria
can be specified for multiple levels of sorting.

• select indicates the sequence of values that will be returned after all evaluation
of conditions. This is also referred to as projection of the values.

558 | Chapter 15: XML

This means that our syntax can be boiled down as follows:

• from p in xDoc.Root.Elements(“Participant”) says “Get all of the Participants
under the root-level node Clue.”

• where p.Attribute(“type”).Value == “Witness” says “Select only Participants
with an attribute called type with a value of Witness.”

• && p.Value.Contains(“Mrs.”) says “Select only Participants with a value that
contains ‘Mrs.’”

• orderby (string) p.Value says “Order the participants by name in ascending
order.”

• select (string) p.Value says “Select the value of the Participant elements where all
of the previous criteria have been met.”

The XPath syntax performs the same function:

• /Clue/Participant says “Get all of the Participants under the root-level node
Clue.”

• Participant[attribute::type='Witness'] says “Select only Participants with an
attribute called type with a value of Witness.”

• Participant[contains(text(),’Mrs.’)] says “Select only Participants with a
value that contains ‘Mrs.’”

Put them all together and you get all of the married female participants who were
witnesses in both cases with the additional twist for LINQ that it sorted the results as
well.

See Also
The “Query Expressions,” “XElement Class,” and “XPath, reading XML” topics in
the MSDN documentation.

15.4 Validating XML

Problem
You are accepting an XML document created by another source, and you want to
verify that it conforms to a specific schema. This schema may be in the form of an
XML schema (XSD or XML—XDR); alternatively, you want the flexibility to use a
document type definition (DTD) to validate the XML.

Validating XML | 559

Solution
Use the XDocument.Validate method and XmlReader.Settings property to validate
XML documents against any descriptor document, such as an XSD, a DTD, or an
XDR, as shown in Example 15-4.

Example 15-4. Validating XML

public static void ValidateXml()
{
 // open the bookbad.xml file
 XDocument book = XDocument.Load(@"..\..\BookBad.xml");
 // create XSD schema collection with book.xsd
 XmlSchemaSet schemas = new XmlSchemaSet();
 schemas.Add(null,@"..\..\Book.xsd");
 // wire up handler to get any validation errors
 book.Validate(schemas, settings_ValidationEventHandler);

 // create a reader to roll over the file so validation fires
 XmlReader reader = book.CreateReader();
 // report warnings as well as errors
 reader.Settings.ValidationFlags =
 XmlSchemaValidationFlags.ReportValidationWarnings;
 // use XML Schema
 reader.Settings.ValidationType = ValidationType.Schema;
 // roll over the XML
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 Console.Write("<{0}", reader.Name);
 while (reader.MoveToNextAttribute())
 {
 Console.Write(" {0}='{1}'", reader.Name,
 reader.Value);
 }
 Console.Write(">");
 }
 else if (reader.NodeType == XmlNodeType.Text)
 {
 Console.Write(reader.Value);
 }
 else if (reader.NodeType == XmlNodeType.EndElement)
 {
 Console.WriteLine("</{0}>", reader.Name);
 }
 }
}

private static void settings_ValidationEventHandler(object sender,
 ValidationEventArgs e)
{
 Console.WriteLine("Validation Error Message: {0}", e.Message);
 Console.WriteLine("Validation Error Severity: {0}", e.Severity);

560 | Chapter 15: XML

Discussion
The Solution illustrates how to use the XDocument and XmlReader to validate the book.
xml document against a book.xsd XSD definition file. DTDs were the original way to
specify the structure of an XML document, but it has become more common to use
XSD since it reached W3C Recommendation status in May 2001. XDR was a prede-
cessor of XSD provided by Microsoft, and, while it might be encountered in existing
systems, it should not be used for new development.

The first thing to do is create an XmlSchemaSet to hold your XSD (book.xsd) and call
the Add method to add the XSD to the XmlSchemaSet. Call the Validate method on the
XDocument with the XmlSchemaSet and the handler method for validation events.
Now that the validation is mostly set up, a few more items can be set on the
XmlReader created from the XDocument. The ValidationFlags property on the
XmlReaderSettings allows for signing up for warnings in validation, processing iden-
tity constraints during validation, process inline schemas, and allows for attributes
that may not be defined in the schema:

 // create XSD schema collection with book.xsd
 XmlSchemaSet schemas = new XmlSchemaSet();
 schemas.Add(null,@"..\..\Book.xsd");
 // wire up handler to get any validation errors
 book.Validate(schemas, settings_ValidationEventHandler);
 // create a reader to roll over the file so validation fires
 XmlReader reader = book.CreateReader();
 // report warnings as well as errors
 reader.Settings.ValidationFlags = XmlSchemaValidationFlags.
ReportValidationWarnings;
 // use XML Schema
 reader.Settings.ValidationType = ValidationType.Schema;

 if (e.Exception != null)
 {
 Console.WriteLine("Validation Error Line Number: {0}",
 e.Exception.LineNumber);
 Console.WriteLine("Validation Error Line Position: {0}",
 e.Exception.LinePosition);
 Console.WriteLine("Validation Error Source: {0}",
 e.Exception.Source);
 Console.WriteLine("Validation Error Source Schema: {0}",
 e.Exception.SourceSchemaObject);
 Console.WriteLine("Validation Error Source Uri: {0}",
 e.Exception.SourceUri);
 Console.WriteLine("Validation Error thrown from: {0}",
 e.Exception.TargetSite);
 Console.WriteLine("Validation Error callstack: {0}",
 e.Exception.StackTrace);
 }
}

Example 15-4. Validating XML (continued)

Validating XML | 561

To perform DTD validation, use a DTD and ValidationType.DTD, and
to perform XDR validation, use an XDR schema and ValidationType.
XDR.

The settings_ValidationEventHandler function then examines the
ValidationEventArgs object passed when a validation error occurs and writes the per-
tinent information to the console:

 private static void settings_ValidationEventHandler(object sender,
 ValidationEventArgs e)
 {
 Console.WriteLine("Validation Error Message: {0}", e.Message);
 Console.WriteLine("Validation Error Severity: {0}", e.Severity);
 if (e.Exception != null)
 {
 Console.WriteLine("Validation Error Line Number: {0}",
 e.Exception.LineNumber);
 Console.WriteLine("Validation Error Line Position: {0}",
 e.Exception.LinePosition);
 Console.WriteLine("Validation Error Source: {0}",
 e.Exception.Source);
 Console.WriteLine("Validation Error Source Schema: {0}",
 e.Exception.SourceSchemaObject);
 Console.WriteLine("Validation Error Source Uri: {0}",
 e.Exception.SourceUri);
 Console.WriteLine("Validation Error thrown from: {0}",
 e.Exception.TargetSite);
 Console.WriteLine("Validation Error callstack: {0}",
 e.Exception.StackTrace);
 }
 }

You then proceed to roll over the XML document and write out the elements and
attributes:

 // Read all nodes and print out.
 while (reader.Read())
 {
 if(reader.NodeType == XmlNodeType.Element)
 {
 Console.Write("<{0}", reader.Name);
 while (reader.MoveToNextAttribute())
 {
 Console.Write(" {0}='{1}'", reader.Name,
 reader.Value);
 }
 Console.Write(">");
 }
 else if (reader.NodeType == XmlNodeType.Text)
 {
 Console.Write(reader.Value);
 }

562 | Chapter 15: XML

 else if (reader.NodeType == XmlNodeType.EndElement)
 {
 Console.WriteLine("</{0}>", reader.Name);
 }
 }

The BookBad.xml file contains the following:

<?xml version="1.0" encoding="utf-8"?>
<Book xmlns="http://tempuri.org/Book.xsd" name="C# Cookbook">
 <Chapter>File System IO</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Threading and Synchronization</Chapter>
 <Chapter>Numbers and Enumerations</Chapter>
 <BadElement>I don't belong here</BadElement>
 <Chapter>Strings and Characters</Chapter>
 <Chapter>Classes And Structures</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>XML</Chapter>
 <Chapter>Delegates, Events, and Anonymous Methods</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Toolbox</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>Regular Expressions</Chapter>
 <Chapter>Generics</Chapter>
 <Chapter>Iterators and Partial Types</Chapter>
 <Chapter>Exception Handling</Chapter>
 <Chapter>Web</Chapter>
 <Chapter>Networking</Chapter>
</Book>

The book.xsd file contains the following:

<?xml version="1.0" ?>
<xs:schema id="NewDataSet" targetNamespace="http://tempuri.org/Book.xsd"
xmlns:mstns="http://tempuri.org/Book.xsd"
 xmlns="http://tempuri.org/Book.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:element name="Book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Chapter" nillable="true"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent
 msdata:ColumnName="Chapter_Text" msdata:Ordinal="0">
 <xs:extension base="xs:string">
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

Validating XML | 563

 </xs:sequence>
 <xs:attribute name="name" form="unqualified" type="xs:string"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

When this is run, the following output is generated, showing the validation failure
occurring on BadElement:

<Book xmlns='http://tempuri.org/Book.xsd' name='C# Cookbook'><Chapter>File System
IO</Chapter>
<Chapter>Security</Chapter>
<Chapter>Data Structures and Algorithms</Chapter>
<Chapter>Reflection</Chapter>
<Chapter>Threading and Synchronization</Chapter>
<Chapter>Numbers and Enumerations</Chapter>
Validation Error Message: The element 'Book' in namespace 'http://tempuri.org/Book.
xsd' has invalid child element 'BadElement' in namespace 'http://tempuri.org/Book.
xsd'. List of possible elements expected: 'Chapter' in namespace 'http://tempuri.org/
Book.xsd'.
Validation Error Severity: Error
Validation Error Line Number: 9
Validation Error Line Position: 6
Validation Error Source:
Validation Error Source Schema:
Validation Error Source Uri: file:///C:/PRJ32/Book_2_0/C%23Cookbook2/Code/
CSharpRecipes/BookBad.xml
Validation Error thrown from:
Validation Error callstack:
<BadElement>I don't belong here</BadElement>
<Chapter>Strings and Characters</Chapter>
<Chapter>Classes And Structures</Chapter>
<Chapter>Collections</Chapter>
<Chapter>XML</Chapter>
<Chapter>Delegates, Events, and Anonymous Methods</Chapter>
<Chapter>Diagnostics</Chapter>
<Chapter>Toolbox</Chapter>
<Chapter>Unsafe Code</Chapter>
<Chapter>Regular Expressions</Chapter>
<Chapter>Generics</Chapter>
<Chapter>Iterators and Partial Types</Chapter>
<Chapter>Exception Handling</Chapter>
<Chapter>Web</Chapter>
<Chapter>Networking</Chapter>
</Book>

See Also
The “XmlReader Class,” “XmlSchemaSet Class,” “ValidationEventHandler Class,”
“ValidationType Enumeration,” and “XDocument Class” topics in the MSDN
documentation.

564 | Chapter 15: XML

15.5 Creating an XML Document Programmatically

Problem
You have data that you want to put into a more structured form, such as an XML
document.

Solution
Suppose you have the information shown in Table 15-2 for an address book that you
want to turn into XML.

Use XElement to create the XML for this table:

 XElement addressBook = new XElement("AddressBook",
 new XElement("Contact",
 new XAttribute("name", "Tim"),
 new XAttribute("phone", "999-888-0000")),
 new XElement("Contact",
 new XAttribute("name", "Newman"),
 new XAttribute("phone", "666-666-6666")),
 new XElement("Contact",
 new XAttribute("name", "Harold"),
 new XAttribute("phone", "777-555-3333")));
 // Display XML
 Console.WriteLine("Generated XML from XElement:\r\n{0}", addressBook.ToString());

This method will give you output like this:

<AddressBook>
 <Contact name="Tim" phone="999-888-0000" />
 <Contact name="Newman" phone="666-666-6666" />
 <Contact name="Harold" phone="777-555-3333" />
</AddressBook>

Another approach would be to use the XmlWriter to create XML for this table:

 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 using (XmlWriter writer = XmlWriter.Create(Console.Out, settings))
 {
 writer.WriteStartElement("AddressBook");
 writer.WriteStartElement("Contact");
 writer.WriteAttributeString("name", "Tim");
 writer.WriteAttributeString("phone", "999-888-0000");

Table 15-2. Sample address book data

Name Phone

Tim 999-888-0000

Newman 666-666-6666

Harold 777-555-3333

Creating an XML Document Programmatically | 565

 writer.WriteEndElement();
 writer.WriteStartElement("Contact");
 writer.WriteAttributeString("name", "Newman");
 writer.WriteAttributeString("phone", "666-666-6666");
 writer.WriteEndElement();
 writer.WriteStartElement("Contact");
 writer.WriteAttributeString("name", "Harold");
 writer.WriteAttributeString("phone", "777-555-3333");
 writer.WriteEndElement();
 writer.WriteEndElement();
 }

This method will give you similar output like this:

<AddressBook>
 <Contact name="Tim" phone="999-888-0000" />
 <Contact name="Newman" phone="666-666-6666" />
 <Contact name="Harold" phone="777-555-3333" />
</AddressBook>

Or you can use the XmlDocument class to programmatically construct the XML:

public static void CreateXml()
{
 // Start by making an XmlDocument.
 XmlDocument xmlDoc = new XmlDocument();
 // Create a root node for the document.
 XmlElement addrBook = xmlDoc.CreateElement("AddressBook");
 xmlDoc.AppendChild(addrBook);
 // Create the Tim contact.
 XmlElement contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Tim");
 contact.SetAttribute("phone","999-888-0000");
 addrBook.AppendChild(contact);
 // Create the Newman contact.
 contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Newman");
 contact.SetAttribute("phone","666-666-6666");
 addrBook.AppendChild(contact);
 // Create the Harold contact.
 contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Harold");
 contact.SetAttribute("phone","777-555-3333");
 addrBook.AppendChild(contact);
 // Display XML.
 Console.WriteLine("Generated XML:\r\n{0}",addrBook.OuterXml);
 Console.WriteLine();
}

This method gives the output like this:

Generated XML:
<AddressBook><Contact name="Tim" phone="999-888-0000" /><Contact name="Newman"
phone="666-666-6666" /><Contact name="Harold" phone="777-555-3333" /></AddressBook>

566 | Chapter 15: XML

All methods produce the same XML, but the first and second methods are formatted
with indents.

Discussion
Now that you have seen three ways to do this, the question arises: “Which one to
use?”

Use XmlDocument when

• Traditional DOM methodology is appropriate.

• The whole document in needed in memory.

• In-memory forward and backward traversal and/or updating is necessary.

Use XmlReader / XmlWriter when

• A streaming methodology is necessary.

• The fastest processing is absolutely required.

• Larger documents are being processed and cannot be loaded all at once.

Use XElement / XDocument when

• Constructing XML declaratively in code (much easier than other methods).

• The querying power of LINQ can assist on top of a streaming methodology.

• A more readable syntax for XML programming for most developers is desired.

• In-memory traversal with query semantics is desired (XDocument).

See Also
The “XElement Class,” “XmlDocument Class,” “XML Document Object Model
(DOM),” “XmlReader Class,” and “XmlWriter Class” topics in the MSDN
documentation.

15.6 Detecting Changes to an XML Document

Problem
You need to inform one or more classes or components that a node in an XML docu-
ment has been inserted or removed or had its value changed.

Solution
In order to track changes to an active XML document, subscribe to the events pub-
lished by the XDocument class. XDocument publishes events for when a node is chang-
ing and when it has changed for both the pre- and post-conditions of a node change.

Detecting Changes to an XML Document | 567

Example 15-5 shows a number of event handlers defined in the same scope as the
DetectXMLChanges method, but they could just as easily be callbacks to functions on
other classes that are interested in the manipulation of the live XML document.

DetectXMLChanges loads an XML fragment you define in the method; wires up the
event handlers for the node events; adds, changes, and removes some nodes to trig-
ger the events; and then writes out the resulting XML.

Example 15-5. Detecting changes to an XML document

public static void DetectXmlChanges()
{
 XDocument xDoc = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XComment("My sample XML"),
 new XProcessingInstruction("myProcessingInstruction", "value"),
 new XElement("Root",
 new XElement("Node1",
 new XAttribute("nodeId", "1"), "FirstNode"),
 new XElement("Node2",
 new XAttribute("nodeId", "2"), "SecondNode"),
 new XElement("Node3",
 new XAttribute("nodeId", "1"), "ThirdNode"),
 new XElement("Node4",
 new XCData(@"<>\&'"))
)
);
 //Create the event handlers.
 xDoc.Changing += xDoc_Changing;
 xDoc.Changed += xDoc_Changed;
 // Add a new element node.
 XElement element = new XElement("Node5", "Fifth Element");
 xDoc.Root.Add(element);

 // Change the first node
 //doc.DocumentElement.FirstChild.InnerText = "1st Node";
 if(xDoc.Root.FirstNode.NodeType == XmlNodeType.Element)
 ((XElement)xDoc.Root.FirstNode).Value = "1st Node";

 // Remove the fourth node
 var query = from e in xDoc.Descendants()
 where (string)(string) e.Name.LocalName == "Node4"
 select (XElement)e;
 XElement[] elements = query.ToArray<XElement>();
 foreach (XElement xelem in elements)
 {
 xelem.Remove();
 }
 // Write out the new xml
 Console.WriteLine(xDoc.ToString());
 Console.WriteLine();

}

568 | Chapter 15: XML

Example 15-6 shows the event handlers from the XDocument, along with one format-
ting method, WriteElementInfo. This method takes an action string and gets the
name and value of the object being manipulated. Both of the event handlers invoke
this formatting method, passing the corresponding action string.

The DetectXmlChanges method results in the following output:

XObject: <Element> changing Add with value <Node5>Fifth Element</Node5>
XObject: <Element> changed Add with value <Node5>Fifth Element</Node5>
XObject: <Text> changing Remove with value FirstNode
XObject: <Text> changed Remove with value FirstNode
XObject: <Text> changing Add with value 1st Node
XObject: <Text> changed Add with value 1st Node
XObject: <Element> changing Remove with value <Node4><![CDATA[<>\&']]></Node4>
XObject: <Element> changed Remove with value <Node4><![CDATA[<>\&']]></Node4>

<!--My sample XML-->
<?myProcessingInstruction value?>
<Root>
 <Node1 nodeId="1">1st Node</Node1>

Example 15-6. XDocument event handlers and WriteElementInfo method

private static void xDoc_Changed(object sender, XObjectChangeEventArgs e)
{
 //Add - An XObject has been or will be added to an XContainer.
 //Name - An XObject has been or will be renamed.
 //Remove - An XObject has been or will be removed from an XContainer.
 //Value - The value of an XObject has been or will be changed.
 //In addition, a change in the serialization of an empty element
 //(either from an empty tag to start/end tag pair or vice versa) raises this event.
 WriteElementInfo("changed", e.ObjectChange, (XObject)sender);
}

private static void xDoc_Changing(object sender, XObjectChangeEventArgs e)
{
 //Add - An XObject has been or will be added to an XContainer.
 //Name - An XObject has been or will be renamed.
 //Remove - An XObject has been or will be removed from an XContainer.
 //Value - The value of an XObject has been or will be changed.
 //In addition, a change in the serialization of an empty element
 //(either from an empty tag to start/end tag pair or vice versa) raises this event.
 WriteElementInfo("changing", e.ObjectChange, (XObject)sender);
}

private static void WriteElementInfo(string action, XObjectChange change, XObject xobj)
{
 if (xobj != null)
 Console.WriteLine("XObject: <{0}> {1} {2} with value {3}",
 xobj.NodeType.ToString(), action, change.ToString(), xobj);
 else
 Console.WriteLine("XObject: {0} {1} with null value",
 action, change.ToString());
}

Handling Invalid Characters in an XML String | 569

 <Node2 nodeId="2">SecondNode</Node2>
 <Node3 nodeId="1">ThirdNode</Node3>
 <Node5>Fifth Element</Node5>
</Root>

Discussion
The XDocument class is derived from the XElement class. XDocument can also contain a
Document Type Declaration (DTD) (XDocumentType), a root element (XDocument.Root),
comments (XComment) and processing instructions (XProcessingInstruction). Typi-
cally, you would use XElement for constructing most types of XML documents, but if
you need to specify any of the above items, use XDocument.

See Also
The “XDocument Class” and “XObjectChangeEventHandler delegate” topics in the
MSDN documentation.

15.7 Handling Invalid Characters in an XML String

Problem
You are creating an XML string. Before adding a tag containing a text element, you
want to check it to determine whether the string contains any of the following invalid
characters:

<
>
"
'
&

If any of these characters are encountered, you want them to be replaced with their
escaped form:

<
>
"
'
&

Solution
There are different ways to accomplish this, depending on which XML-creation
approach you are using. If you are using XElement, the XCData object, or just adding
the text directly as the value of the XElement will take care of the proper escaping. If
you are using XmlWriter, the WriteCData, WriteString, WriteAttributeString,
WriteValue, and WriteElementString methods take care of this for you. If you are

570 | Chapter 15: XML

using XmlDocument and XmlElements, the XmlElement.InnerText method will handle
these characters.

The two ways to handle this using an XElement work like this. The XCData object will
wrap the invalid character text in a CDATA section, as shown in the creation of the
InvalidChars1 element in the example that follows. The other method, using
XElement, is to assign the text as the value of the XElement, and that will automati-
cally escape the text for you, as shown while creating the InvalidChars2 element:

 // set up a string with our invalid chars
 string invalidChars = @"<>\&'";
 XElement element = new XElement("Root",
 new XElement("InvalidChars1",
 new XCData(invalidChars)),
 new XElement("InvalidChars2",invalidChars));
 Console.WriteLine("Generated XElement with Invalid Chars:\r\n{0}",
 element.ToString());
 Console.WriteLine();

The output from this is:

Generated XElement with Invalid Chars:
<Root>
 <InvalidChars1><![CDATA[<>\&']]></InvalidChars1>
 <InvalidChars2><>\&'</InvalidChars2>
</Root>

The two ways to handle this using an XmlWriter work like this. The WriteCData
method will wrap the invalid character text in a CDATA section, as shown in the cre-
ation of the InvalidChars1 element in the example that follows. The other method,
using XmlWriter, is to use the WriteElementString method that will automatically
escape the text for you, as shown while creating the InvalidChars2 element:

// Set up a string with our invalid chars.
string invalidChars = @"<>\&'";
XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;
using (XmlWriter writer = XmlWriter.Create(Console.Out, settings))
{
 writer.WriteStartElement("Root");
 writer.WriteStartElement("InvalidChars1");
 writer.WriteCData(invalidChars);
 writer.WriteEndElement();
 writer.WriteElementString("InvalidChars2", invalidChars);
 writer.WriteEndElement();
}

The output from this is:

<?xml version="1.0" encoding="IBM437"?>
<Root>
 <InvalidChars1><![CDATA[<>\&']]></InvalidChars1>
 <InvalidChars2><>\&'</InvalidChars2>
</Root>

Handling Invalid Characters in an XML String | 571

There are two ways you can handle this problem with XmlDocument and XmlElement.
The first way is to surround the text you are adding to the XML element with a
CDATA section and add it to the InnerXML property of the XmlElement:

// Set up a string with our invalid chars.
string invalidChars = @"<>\&'";
XmlElement invalidElement1 = xmlDoc.CreateElement("InvalidChars1");
invalidElement1.AppendChild(xmlDoc.CreateCDataSection(invalidChars));

The second way is to let the XmlElement class escape the data for you by assigning the
text directly to the InnerText property like this:

// Set up a string with our invalid chars.
string invalidChars = @"<>\&'";
XmlElement invalidElement2 = xmlDoc.CreateElement("InvalidChars2");
invalidElement2.InnerText = invalidChars;

The whole XmlDocument is created with these XmlElements in this code:

public static void HandlingInvalidChars()
{
 // Set up a string with our invalid chars.
 string invalidChars = @"<>\&'";

 XmlDocument xmlDoc = new XmlDocument();
 // Create a root node for the document.
 XmlElement root = xmlDoc.CreateElement("Root");
 xmlDoc.AppendChild(root);

 // Create the first invalid character node.
 XmlElement invalidElement1 = xmlDoc.CreateElement("InvalidChars1");
 // Wrap the invalid chars in a CDATA section and use the
 // InnerXML property to assign the value as it doesn't
 // escape the values, just passes in the text provided.
 invalidElement1.InnerXml = "<![CDATA[" + invalidChars + "]]>";
 // Append the element to the root node.
 root.AppendChild(invalidElement1);

 // Create the second invalid character node.
 XmlElement invalidElement2 = xmlDoc.CreateElement("InvalidChars2");
 // Add the invalid chars directly using the InnerText
 // property to assign the value as it will automatically
 // escape the values.
 invalidElement2.InnerText = invalidChars;
 // Append the element to the root node.
 root.AppendChild(invalidElement2);

 Console.WriteLine("Generated XML with Invalid Chars:\r\n{0}",xmlDoc.OuterXml);
 Console.WriteLine();
}

The XML created by this procedure (and output to the console) looks like this:

Generated XML with Invalid Chars:
<Root><InvalidChars1><![CDATA[<>\&']]></InvalidChars1><InvalidChars2><>\
&'</InvalidChars2></Root>

572 | Chapter 15: XML

Discussion
The CDATA node allows you to represent the items in the text section as character
data, not as escaped XML, for ease of entry. Normally, these characters would need
to be in their escaped format (< for < and so on), but the CDATA section allows you
to enter them as regular text.

When the CDATA tag is used in conjunction with the InnerXml property of the
XmlElement class, you can submit characters that would normally need to be escaped
first. The XmlElement class also has an InnerText property that will automatically
escape any markup found in the string assigned. This allows you to add these charac-
ters without having to worry about them.

See Also
The “XElement Class,” “XCData Class,” “XmlDocument Class,” “XmlWriter Class,”
“XmlElement Class,” and “CDATA Sections” topics in the MSDN documentation.

15.8 Transforming XML

Problem
You have a raw XML document that you need to convert into a more readable for-
mat. For example, you have personnel data that is stored as an XML document, and
you need to display it on a web page or place it in a comma-delimited text file for leg-
acy system integration. Unfortunately, not everyone wants to sort through reams of
XML all day; they would rather read the data as a formatted list or within a grid with
defined columns and rows. You need a method of transforming the XML data into a
more readable form as well as into the comma-delimited format.

Solution
The solution for this is to use LINQ to XML to perform a transformation in C#. In
the example code, you transform some personnel data from a fictitious business
stored in Personnel.xml. The data is first transformed into HTML, and then into
comma-delimited format:

 // LINQ way
 XElement personnelData = XElement.Load(@"..\..\Personnel.xml");
 // Create HTML
 XElement personnelHtml =
 new XElement("html",
 new XElement("head"),
 new XElement("body",
 new XAttribute("title","Personnel"),
 new XElement("p",
 new XElement("table",
 new XAttribute("border","1"),

Transforming XML | 573

 new XElement("thead",
 new XElement("tr",
 new XElement("td","Employee Name"),
 new XElement("td","Employee Title"),
 new XElement("td","Years with Company")
)
),
 new XElement("tbody",
 from p in personnelData.Elements("Employee")
 select new XElement("tr",
 new XElement("td",p.Attribute("name").Value),
 new XElement("td",p.Attribute("title").Value),
 new XElement("td", p.Attribute("companyYears").Value)
)
)
)
)
)
);

 personnelHtml.Save(@"..\..\Personnel_LINQ.html");

 // Create CSV output
 var queryCSV = from p in personnelData.Elements("Employee")
 orderby p.Attribute("name").Value descending
 select p;
 StringBuilder sb = new StringBuilder();
 foreach(XElement e in queryCSV)
 {
 sb.AppendFormat("{0},{1},{2}{3}",e.Attribute("name").Value,
 e.Attribute("title").Value,e.Attribute("companyYears").Value,
 Environment.NewLine);
 }
 using(StreamWriter writer = File.CreateText(@"..\..\Personnel_LINQ.csv"))
 {
 writer.Write(sb.ToString());
 }

The output from the LINQ transformation to CSV is shown here:

Rutherford,CEO,27
Chas,Salesman,3
Bob,Customer Service,1
Alice,Manager,12

The Personnel.xml file contains the following items:

<?xml version="1.0" encoding="utf-8"?>
<Personnel>
 <Employee name="Bob" title="Customer Service" companyYears="1"/>
 <Employee name="Alice" title="Manager" companyYears="12"/>
 <Employee name="Chas" title="Salesman" companyYears="3"/>
 <Employee name="Rutherford" title="CEO" companyYears="27"/>
</Personnel>

574 | Chapter 15: XML

This can also be accomplished using an XSLT stylesheet to transform the XML into
another format using the XslCompiledTransform class. First, load the stylesheet for
generating HTML output and then perform the transformation to HTML via XSLT
using the PersonnelHTML.xsl stylesheet. After that, transform the data to comma-
delimited format using the PersonnelCSV.xsl stylesheet:

public static void TransformXML()
{
 // Create a resolver with default credentials.
 XmlUrlResolver resolver = new XmlUrlResolver();
 resolver.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Transform the personnel.xml file to html.
 XslCompiledTransform transform = new XslCompiledTransform();
 XsltSettings settings = new XsltSettings();
 // Disable both of these (the default) for security reasons.
 settings.EnableDocumentFunction = false;
 settings.EnableScript = false;
 // Load up the stylesheet.
 transform.Load(@"..\..\PersonnelHTML.xsl",settings,resolver);
 // Perform the transformation.
 transform.Transform(@"..\..\Personnel.xml",@"..\..\Personnel.html");

 // Or transform the Personnel.xml file to comma-delimited format.

 // Load up the stylesheet.
 transform.Load(@"..\..\PersonnelCSV.xsl",settings,resolver);
 // Perform the transformation.
 transform.Transform(@"..\..\Personnel.xml",
 @"..\..\Personnel.csv");
}

The PersonnelHTML.xsl stylesheet looks like this:

 <?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xsl:template match="/">
 <html>
 <head />
 <body title="Personnel">
 <xsl:for-each select="Personnel">
 <p>
 <xsl:for-each select="Employee">
 <xsl:if test="position()=1">
 <table border="1">
 <thead>
 <tr>
 <td>Employee Name</td>
 <td>Employee Title</td>
 <td>Years with Company</td>
 </tr>

Transforming XML | 575

 </thead>
 <tbody>
 <xsl:for-each select="../Employee">
 <tr>
 <td>
 <xsl:for-each select="@name">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="@title">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="@companyYears">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 </tr>
 </xsl:for-each>
 </tbody>
 </table>
 </xsl:if>
 </xsl:for-each>
 </p>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>

To generate the HTML screen in Figure 15-1, use the PersonnelHTML.xsl stylesheet
and the Personnel.xml file.

Here is the HTML source for the LINQ transformation:

<?xml version="1.0" encoding="utf-8"?>
<html>
 <head />
 <body title="Personnel">
 <p>
 <table border="1">

Figure 15-1. Personnel HTML table generated from Personnel.xml

576 | Chapter 15: XML

 <thead>
 <tr>
 <td>Employee Name</td>
 <td>Employee Title</td>
 <td>Years with Company</td>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bob</td>
 <td>Customer Service</td>
 <td>1</td>
 </tr>
 <tr>
 <td>Alice</td>
 <td>Manager</td>
 <td>12</td>
 </tr>
 <tr>
 <td>Chas</td>
 <td>Salesman</td>
 <td>3</td>
 </tr>
 <tr>
 <td>Rutherford</td>
 <td>CEO</td>
 <td>27</td>
 </tr>
 </tbody>
 </table>
 </p>
 </body>
</html>

Here is the HTML source for the XSLT transformation:

 <html xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=utf-8">
 </head>
 <body title="Personnel">
 <p>
 <table border="1">
 <thead>
 <tr>
 <td>Employee Name</td>
 <td>Employee Title</td>
 <td>Years with Company</td>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bob</td>
 <td>Customer Service</td>

Transforming XML | 577

 <td>1</td>
 </tr>
 <tr>
 <td>Alice</td>
 <td>Manager</td>
 <td>12</td>
 </tr>
 <tr>
 <td>Chas</td>
 <td>Salesman</td>
 <td>3</td>
 </tr>
 <tr>
 <td>Rutherford</td>
 <td>CEO</td>
 <td>27</td>
 </tr>
 </tbody>
 </table>
 </p>
 </body>
 </html>

To generate comma-delimited output, use PersonnelCSV.xsl and Personnel.xml; the
stylesheet is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xsl:output method="text" encoding="UTF-8"/>
 <xsl:template match="/">
 <xsl:for-each select="Personnel">
 <xsl:for-each select="Employee">
 <xsl:for-each select="@name">
 <xsl:value-of select="." />
 </xsl:for-each>,<xsl:for-each select="@title">
 <xsl:value-of select="." />
 </xsl:for-each>,<xsl:for-each select="@companyYears">
 <xsl:value-of select="." />
 </xsl:for-each>
 <xsl:text> 
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

The output from the PersonnelCSV.xsl stylesheet is shown here:

Bob,Customer Service,1
Alice,Manager,12
Chas,Salesman,3
Rutherford,CEO,27

578 | Chapter 15: XML

Discussion
XSLT is a very powerful way to transform XML from one format to another. That
being said, the capacity that LINQ brings in C# 3.0 to perform XML transforma-
tions without having to shell out to another parser or process is very compelling.
This means that to perform XML transformations in your applications, you no
longer have to understand XSLT syntax or maintain application code in both C# and
XSLT. This also means that when reviewing code from other team members, you no
longer have to go into separate files to understand what the transformation is doing;
it’s all C# and all right there.

XSLT is by no means dead or inappropriate as a method for transforming XML; it is
simply no longer the only realistic alternative for C# developers. XSLT can still be
used with all of the existing XML API in .NET and will continue to be feasible for
years to come. Our challenge to you the reader would be to try implementing a trans-
formation in LINQ that you currently have in XSLT and see for yourself the possibili-
ties with LINQ.

When performing transformation using XSLT, there are many overrides for the
XslCompiledTransform.Transform method. Since XmlResolver is an abstract class, you
need to use either the XmlUrlResolver or the XmlSecureResolver or pass null as the
XmlResolver-typed argument. The XmlUrlResolver will resolve URLs to external
resources, such as schema files, using the FILE, HTTP, and HTTPS protocols. The
XmlSecureResolver restricts the resources that you can access by requiring you to pass
in evidence, which helps prevent cross-domain redirection in XML.

If you are accepting XML from the Internet, it could easily have a redi-
rection to a site where malicious XML would be waiting to be down-
loaded and executed if you were not using the XmlSecureResolver. If
you pass null for the XmlResolver, you are saying you do not want to
resolve any external resources. Microsoft has declared the null option
to be obsolete, and it shouldn’t be used anyway because you should
always use some type of XmlResolver.

XSLT is a very powerful technology that allows you to transform XML into just about
any format you can think of, but it can be frustrating at times. The simple need of a
carriage return/line feed combination in the XSLT output was such a trial that we
were able to find more than 20 different message board requests for help on how to
do this! After looking at the W3C spec for XSLT, we found you could do this using
the xsl:text element like this:

<xsl:text> 
</xsl:text>

The  stands for a hexadecimal 13, or a carriage return, and the
 stands for
a hexadecimal 10, or a line feed. This is output at the end of each employee’s data
from the XML.

Tearing Apart an XML Document | 579

See Also
The “XslCompiledTransform Class,” “XmlResolver Class,” “XmlUrlResolver Class,”
“XmlSecureResolver Class,” and “xsl:text” topics in the MSDN documentation.

15.9 Tearing Apart an XML Document

Problem
You have an XML document that needs to be broken apart into multiple parts. Each
part can then be sent to a different destination (possibly a web service) to be pro-
cessed individually. This solution is useful when you have a large document, such as
an invoice, in XML form. For example, with an invoice, you would want to tear off
the billing information and send this to Accounting, while sending the shipping
information to Shipping, and then send the invoice items to Fulfillment to be
processed.

Solution
In order to separate the invoice items, load an XElement with the invoice XML from
the Invoice.xml file shown in Example 15-7.

Example 15-7. Invoice.xml

<?xml version="1.0" encoding="UTF-8"?>
<Invoice invoiceDate='2003-10-05' invoiceNumber='INV-01'>
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
 <Items>
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>

580 | Chapter 15: XML

How to tear this invoice apart using an XElement and send the various information
pieces to their respective departments is shown in Example 15-8.

 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </Items>
</Invoice>

Example 15-8. Tearing apart an XML document (XElement)

public static void ProcessInvoice()
{
 XElement invElement = XElement.Load(@"..\..\Invoice.xml");
 // Process the billing information to Accounting
 CreateInvoiceEnvelope(invElement, "BillingEnvelope", "billInfo",
 @"..\..\BillingEnvelope_LINQ.xml");

 // Process the shipping information to Accounting
 CreateInvoiceEnvelope(invElement, "ShippingEnvelope", "shipInfo",
 @"..\..\ShippingEnvelope_LINQ.xml");

 // Process the item information to Fulfillment
 CreateInvoiceEnvelope(invElement, "FulfillmentEnvelope", "Items/item",
 @"..\..\FulfillmentEnvelope_LINQ.xml");
}

private static void CreateInvoiceEnvelope(XElement invElement,
 string topElementName,
 string internalElementName,
 string path)
{
 var query = from i in invElement.DescendantsAndSelf()
 where i.NodeType == XmlNodeType.Element &&
 i.Name == "Invoice"
 select new XElement(topElementName,
 new XAttribute(i.Attribute("invoiceDate").Name,
 i.Attribute("invoiceDate").Value),
 new XAttribute(i.Attribute("invoiceNumber").Name,
 i.Attribute("invoiceNumber").Value),
 from e in i.XPathSelectElements(internalElementName)
 select new XElement(e));
 XElement envelope = query.ElementAt<XElement>(0);
 Console.WriteLine(envelope.ToString());
 // save the envelope
 envelope.Save(path);
}

Example 15-7. Invoice.xml (continued)

Tearing Apart an XML Document | 581

The code to tear this invoice apart using an XmlDocument and send the various infor-
mation pieces to their respective departments is shown in Example 15-9.

Example 15-9. Tearing apart an XML document (XmlDocument)

public static void ProcessInvoice()
{
 XmlDocument xmlDoc = new XmlDocument();
 // Pick up invoice from deposited directory.
 xmlDoc.Load(@"..\..\Invoice.xml");
 // Get the Invoice element node.
 XmlNode Invoice = xmlDoc.SelectSingleNode("/Invoice");

 // Get the invoice date attribute.
 XmlAttribute invDate =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceNumber");

 // Process the billing information to Accounting.
 WriteInformation(@"..\..\BillingEnvelope.xml",
 "BillingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/billInfo");

 // Process the shipping information to Shipping.
 WriteInformation(@"..\..\ShippingEnvelope.xml",
 "ShippingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/shipInfo");

 // Process the item information to Fulfillment.
 WriteInformation(@"..\..\FulfillmentEnvelope.xml",
 "FulfillmentEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/Items/item");

 // Now send the data to the web services ...
}

private static void WriteInformation(string path,
 string rootNode,
 XmlAttribute invDate,
 XmlAttribute invNum,
 XmlDocument xmlDoc,
 string nodePath)
{
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 using (XmlWriter writer =
 XmlWriter.Create(path, settings))
 {
 writer.WriteStartDocument();

582 | Chapter 15: XML

The “envelopes” containing the various pieces of XML data for the web services are
listed below:

BillingEnvelope XML
<BillingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
</BillingEnvelope>

ShippingEnvelope XML
<ShippingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</statey>
 </shipInfo>
</ShippingEnvelope>

FulfillmentEnvelope XML
<FulfillmentEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>

 writer.WriteStartElement(rootNode);
 writer.WriteAttributeString(invDate.Name, invDate.Value);
 writer.WriteAttributeString(invNum.Name, invNum.Value);
 XmlNodeList nodeList = xmlDoc.SelectNodes(nodePath);
 // Add the billing information to the envelope.
 foreach (XmlNode node in nodeList)
 {
 writer.WriteRaw(node.OuterXml);
 }
 writer.WriteEndElement();
 writer.WriteEndDocument();
 }
}

Example 15-9. Tearing apart an XML document (XmlDocument) (continued)

Tearing Apart an XML Document | 583

 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
</FulfillmentEnvelope>

Discussion
In order to tear apart the invoice, you need to establish what pieces go to which
departments. The breakdown of this is that each of the envelopes gets the invoice
date and invoice number from the main invoice to give context to the information in
the envelope. The billInfo element and children go to the BillingEnvelope, the
shipInfo element and children go to the ShippingEnvelope, and the item elements go
to the FulfillmentEnvelope. Once these envelopes are constructed, they are sent to
the web services for each department to perform its function for this invoice.

In the example program from the Solution, you first load the Invoice.xml file and get
the attributes you are going to give to each of the envelopes:

 // Using XElement
 var query = from i in invElement.DescendantsAndSelf()
 where i.NodeType == XmlNodeType.Element &&
 i.Name == "Invoice"
 select new XElement(topElementName,
 new XAttribute(i.Attribute("invoiceDate").Name,
 i.Attribute("invoiceDate").Value),
 new XAttribute(i.Attribute("invoiceNumber").Name,
 i.Attribute("invoiceNumber").Value),
 from e in i.
XPathSelectElements(internalElementName)
 select new XElement(e));

 // Using XmlDocument
 XmlDocument xmlDoc = new XmlDocument();
 // Pick up invoice from deposited directory.
 xmlDoc.Load(@"..\..\Invoice.xml");
 // Get the Invoice element node.
 XmlNode Invoice = xmlDoc.SelectSingleNode("/Invoice");

 // Get the invoice date attribute.
 XmlAttribute invDate =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceNumber");

Then, you establish each envelope with the sections of the invoice that matter to the
respective functions (the BillingEnvelope is handled by Accounting, the
ShippingEnvelope is handled by Shipping, and the FulfillmentEnvelope is handled by

584 | Chapter 15: XML

Fulfillment) by calling the WriteInformation method, starting with the
BillingEnvelope:

 XElement invElement = XElement.Load(@"..\..\Invoice.xml");
 // Process the billing information to Accounting
 CreateInvoiceEnvelope(invElement, "BillingEnvelope", "billInfo",
 @"..\..\BillingEnvelope_LINQ.xml");

 // Process the billing information to Accounting.
 WriteInformation(@"..\..\BillingEnvelope.xml",
 "BillingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/billInfo");

Then the ShippingEnvelope is created:

 XElement invElement = XElement.Load(@"..\..\Invoice.xml");
 // Process the shipping information to Accounting
 CreateInvoiceEnvelope(invElement, "ShippingEnvelope", "shipInfo",
 @"..\..\ShippingEnvelope_LINQ.xml");

 // Process the shipping information to Shipping.
 WriteInformation(@"..\..\ShippingEnvelope.xml",
 "ShippingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/shipInfo");

Finally, the FulfillmentEnvelope is created:

 XElement invElement = XElement.Load(@"..\..\Invoice.xml");
 // Process the item information to Fulfillment
 CreateInvoiceEnvelope(invElement, "FulfillmentEnvelope", "Items/item",
 @"..\..\FulfillmentEnvelope_LINQ.xml");

 // Process the item information to Fulfillment.
 WriteInformation(@"..\..\FulfillmentEnvelope.xml",
 "FulfillmentEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/Items/item");

At this point, each of the envelopes can be posted to the respective web services
interfaces.

When you append the attributes from the Invoice to the envelopes,
you call the XmlNode.Clone method on the XmlAttributes. This is done
so that each of the elements has its own separate copy. If you do not
do this, then the attribute will appear only on the last element it is
assigned to.

See Also
The “XElement Class,” “XAttribute Class,” “XmlDocument Class,” “XmlElement
Class,” and “XmlAttribute Class” topics in the MSDN documentation.

Putting Together an XML Document | 585

15.10 Putting Together an XML Document

Problem
You have various pieces of a document in XML form that need to be put together to
form a single XML document—the opposite of what was done in Recipe 15.9. In this
case, you have received various pieces of an invoice in XML form. For example, one
department sent the shipping information as an XML document, one sent the billing
information in XML, and another sent invoice line items, also as an XML document.
You need a way to put these XML pieces together to form a single XML invoice
document.

Solution
In order to reconstitute the original invoice, you need to reverse the process used to
create the pieces of the invoice using multiple XElements. There are three parts being
sent back to you to help in re-forming the original invoice XML: BillingEnvelope.
xml, ShippingEnvelope.xml, and Fulfillment.xml. These are listed below:

BillingEnvelope XML
 <BillingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
 </BillingEnvelope>

ShippingEnvelope XML
 <ShippingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
 </ShippingEnvelope>

FulfillmentEnvelope XML
 <FulfillmentEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>

586 | Chapter 15: XML

 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </FulfillmentEnvelope>

To put these back together as a single invoice using XElement, reverse the process you
went through to break it apart, while inferring the invoice date and invoice number
from the BillingEnvelope to help reestablish the invoice, as shown in
Example 15-10.

The code reconstitutes the invoice and saves it as ReceivedInvoice_LINQ.xml, the
contents of which are shown here:

Example 15-10. Rebuilding the invoice

public static void ReceiveInvoice()
{
 // LINQ Way

 // load the billing
 XElement billingElement = XElement.Load(@"..\..\BillingEnvelope.xml");
 XElement shippingElement = XElement.Load(@"..\..\ShippingEnvelope.xml");
 XElement fulfillmentElement = XElement.Load(@"..\..\FulfillmentEnvelope.xml");
 XElement invElement = new XElement("Invoice",
 // get the invoice date attribute
 billingElement.Attribute("invoiceDate"),
 // get the invoice number attribute
 billingElement.Attribute("invoiceNumber"),
 // add the billInfo back in
 from b in billingElement.Elements("billInfo")
 select b,
 // add the shipInfo back in
 from s in shippingElement.Elements("shipInfo")
 select s,
 // add the items back in under Items
 new XElement("Items",
 from f in fulfillmentElement.Elements("item")
 select f));
 // display Invoice XML
 Console.WriteLine(invElement.ToString());
 Console.WriteLine();

 // save our reconstitued invoice
 invElement.Save(@"..\..\ReceivedInvoice_LINQ.xml");
}

Putting Together an XML Document | 587

<?xml version="1.0" encoding="utf-8"?>
<Invoice invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
 <Items>
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </Items>
</Invoice>

To put these back together as a single invoice using XmlDocument, see Example 15-11:

Example 15-11. Reconstructing an XML document

public static void ReceiveInvoice()
{
 XmlDocument invoice = new XmlDocument();
 XmlDocument billing = new XmlDocument();
 XmlDocument shipping = new XmlDocument();
 XmlDocument fulfillment = new XmlDocument();

 // Get up root invoice node.
 XmlElement invoiceElement = invoice.CreateElement("Invoice");
 invoice.AppendChild(invoiceElement);

 // Load the billing.
 billing.Load(@"..\..\BillingEnvelope.xml");

588 | Chapter 15: XML

The code reconstitutes the invoice and saves it as ReceivedInvoice.xml, the contents
of which are shown here:

 // Get the invoice date attribute.
 XmlAttribute invDate = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceNumber");
 // Set up the invoice with this info.
 invoice.DocumentElement.Attributes.SetNamedItem(invDate.Clone());
 invoice.DocumentElement.Attributes.SetNamedItem(invNum.Clone());
 // Add the billInfo back in.
 XmlNodeList billList = billing.SelectNodes("/BillingEnvelope/billInfo");
 foreach(XmlNode billInfo in billList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(billInfo,true));
 }

 // Load the shipping.
 shipping.Load(@"..\..\ShippingEnvelope.xml");
 // Add the shipInfo back in.
 XmlNodeList shipList = shipping.SelectNodes("/ShippingEnvelope/shipInfo");
 foreach(XmlNode shipInfo in shipList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));
 }

 // Load the items.
 fulfillment.Load(@"..\..\FulfillmentEnvelope.xml");

 // Create an Items element in the Invoice to add these under.
 XmlElement items = invoice.CreateElement("Items");

 // Add the items back in under Items.
 XmlNodeList itemList = fulfillment.SelectNodes("/FulfillmentEnvelope/item");
 foreach(XmlNode item in itemList)
 {
 items.AppendChild(invoice.ImportNode(item,true));
 }

 // Add it in.
 invoice.DocumentElement.AppendChild(items.Clone());

 // Display Invoice XML.
 Console.WriteLine("Invoice:\r\n{0}",invoice.OuterXml);

 // Save our reconstitued invoice.
 invoice.Save(@"..\..\ReceivedInvoice.xml");
}

Example 15-11. Reconstructing an XML document (continued)

Putting Together an XML Document | 589

<Invoice invoiceDate="2003-10-05" invoiceNumber="INV-01"><billInfo><name>Beerly
Standing</name><attn>Accounting</attn><street>98 North Street</street><city>Intox</
city><state>NH</state></billInfo><shipInfo><name>Beerly Standing</name><attn>
Receiving</attn><street>47 South Street</street><city>Intox</city><state>NH</state></
shipInfo><Items><item partNum="98745"><productName>Brown Eyed Stout</productName>
<quantity>12</quantity><price>23.99</price><shipDate>2003-12-20</shipDate></item>
<item partNum="34987"><productName>Diamond Pearl Lager</productName><quantity>22</
quantity><price>35.98</price><shipDate>2003-12-20</shipDate></item><item
partNum="AK254"><productName>Job Site Ale</productName><quantity>50</quantity><price>
12.56</price><shipDate>2003-11-12</shipDate></item></Items></Invoice>

Discussion
In the Solution code, the first step is to load the three parts of the invoice:

 XElement billingElement = XElement.Load(@"..\..\BillingEnvelope.xml");
 XElement shippingElement = XElement.Load(@"..\..\ShippingEnvelope.xml");
 XElement fulfillmentElement = XElement.Load(@"..\..\FulfillmentEnvelope.xml");

Next, you construct the invoice by transforming the three parts into subsections and
embedding them in the Invoice like so:

 XElement invElement = new XElement("Invoice",
 // get the invoice date attribute
 billingElement.Attribute("invoiceDate"),
 // get the invoice number attribute
 billingElement.Attribute("invoiceNumber"),
 // add the billInfo back in
 from b in billingElement.Elements("billInfo")
 select b,
 // add the shipInfo back in
 from s in shippingElement.Elements("shipInfo")
 select s,
 // add the items back in under Items
 new XElement("Items",
 from f in fulfillmentElement.Elements("item")
 select f));

Note that inside of the XML construction, we select the full set of billInfo,
shipInfo, and item elements from the three parts and add them into the Invoice doc-
ument being constructed. The item parts of the FulfillmentEnvelope are also nested
under a new Items containing element.

When implementing the Solution with XmlDocument, the first step is to create a set of
XmlDocuments for the Invoice, BillingEnvelope, ShippingEnvelope, and
FulfillmentEnvelope. Then, you create the new root Invoice element in the invoice
XmlDocument:

 XmlDocument invoice = new XmlDocument();
 XmlDocument billing = new XmlDocument();
 XmlDocument shipping = new XmlDocument();
 XmlDocument fulfillment = new XmlDocument();

590 | Chapter 15: XML

 // Set up root invoice node.
 XmlElement invoiceElement = invoice.CreateElement("Invoice");
 invoice.AppendChild(invoiceElement);

Next, you process the BillingEnvelope, taking the invoice date and number from it
and adding it to the Invoice. Then, you add the billing information back in to the
invoice:

 // Load the billing.
 billing.Load(@"..\..\BillingEnvelope.xml");
 // Get the invoice date attribute.
 XmlAttribute invDate = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceNumber");
 // Set up the invoice with this info.
 invoice.DocumentElement.Attributes.SetNamedItem(invDate.Clone());
 invoice.DocumentElement.Attributes.SetNamedItem(invNum.Clone());
 // Add the billInfo back in.
 XmlNodeList billList = billing.SelectNodes("/BillingEnvelope/billInfo");
 foreach(XmlNode billInfo in billList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(billInfo,true));
 }

The ShippingEnvelope came next:

 // Load the shipping.
 shipping.Load(@"..\..\ShippingEnvelope.xml");
 // Add the shipInfo back in.
 XmlNodeList shipList = shipping.SelectNodes("/ShippingEnvelope/shipInfo");
 foreach(XmlNode shipInfo in shipList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));
 }

And finally, the items from the FulfillmentEnvelope were placed back under an
Items element under the main Invoice element:

 // Load the items.
 fulfillment.Load(@"..\..\FulfillmentEnvelope.xml");

 // Create an Items element in the Invoice to add these under
 XmlElement items = invoice.CreateElement("Items");

 // Add the items back in under Items.
 XmlNodeList itemList = fulfillment.SelectNodes("/FulfillmentEnvelope/item");
 foreach(XmlNode item in itemList)
 {
 items.AppendChild(invoice.ImportNode(item,true));
 }

 // Add it in.
 invoice.DocumentElement.AppendChild(items.Clone());

Validating Modified XML Documents Without Reloading | 591

One item to be aware of when dealing with multiple XmlDocuments is that when you
take a node from one XmlDocument, you cannot just append it as a child to a node in a
different XmlDocument because the node has the context of the original XmlDocument. If
you try to do this, you will get the following exception message:

The node to be inserted is from a different document context.

To fix this, use the XmlDocument.ImportNode method, which will make a copy (deep
when the second parameter is true, or shallow when the second parameter is false) of
the node you are bringing over to the new XmlDocument. For instance, when you add
the shipping information like so:

invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));

this line takes the shipInfo node, clones it deeply, then appends it to the main
invoice node.

See Also
The “XElement Class,” “The Three Parts of a LINQ Query,” “XmlDocument Class,”
“XmlElement Class,” and “XmlAttribute Class” topics in the MSDN documentation.

15.11 Validating Modified XML Documents Without
Reloading

Problem
You are using the XDocument or the XmlDocument to modify an XML document loaded
in memory. Once the document has been modified, the modifications need to be ver-
ified, and schema defaults need to be enforced.

Solution
Use the XDocument.Validate method to perform the validation and apply schema
defaults and type information.

Create an XmlSchemaSet with the XML Schema document (book.xsd) and an
XmlReader and then load the book.xml file using XDocument.Load:

 // Create the schema set
 XmlSchemaSet xmlSchemaSet = new XmlSchemaSet();
 // add the new schema with the target namespace
 // (could add all the schema at once here if there are multiple)
 xmlSchemaSet.Add("http://tempuri.org/Book.xsd",
 XmlReader.Create(@"..\..\Book.xsd"));
 XDocument book = XDocument.Load(@"..\..\Book.xml");

592 | Chapter 15: XML

Set up a ValidationEventHandler to catch any errors and then call XDocument.
Validate with the schema set and the event handler to validate book.xml against the
book.xsd schema:

ValidationHandler validationHandler = new ValidationHandler();
ValidationEventHandler validationEventHandler = validationHandler.HandleValidation;
// validate after load
book.Validate(xmlSchemaSet, validationEventHandler);

The ValidationHandler class holds the current validation state in a ValidXml property
and the code for the ValidationEventHandler implementation method
HandleValidation:

 public class ValidationHandler
 {
 private object _syncRoot = new object();

 public ValidationHandler()
 {
 lock(_syncRoot)
 {
 // set the initial check for validity to true
 this.ValidXml = true;
 }
 }

 public bool ValidXml { get; private set; }

 public void HandleValidation(object sender, ValidationEventArgs e)
 {
 lock(_syncRoot)
 {
 // we got called, so this isn't valid
 ValidXml = false;
 Console.WriteLine("Validation Error Message: {0}", e.Message);
 Console.WriteLine("Validation Error Severity: {0}", e.Severity);
 if (e.Exception != null)
 {
 Console.WriteLine("Validation Error Line Number: {0}",
 e.Exception.LineNumber);
 Console.WriteLine("Validation Error Line Position: {0}",
 e.Exception.LinePosition);
 Console.WriteLine("Validation Error Source: {0}",
 e.Exception.Source);
 Console.WriteLine("Validation Error Source Schema: {0}",
 e.Exception.SourceSchemaObject);
 Console.WriteLine("Validation Error Source Uri: {0}",
 e.Exception.SourceUri);
 Console.WriteLine("Validation Error thrown from: {0}",
 e.Exception.TargetSite);
 Console.WriteLine("Validation Error callstack: {0}",
 e.Exception.StackTrace);
 }
 }

Validating Modified XML Documents Without Reloading | 593

 }
 }

Add a new element node that is not in the schema into the XDocument and then call
Validate again with the schema set and event handler to revalidate the changed
XDocument. If the document triggers any validation events, then the
ValidationHandler.ValidXml property is set to false in the ValidationHandler
instance:

// add in a new node that is not in the schema
// since we have already validated, no callbacks fire during the add...
book.Root.Add(new XElement("BogusElement","Totally"));
// now we will do validation of the new stuff we added
book.Validate(xmlSchemaSet, validationEventHandler);

if (validationHandler.ValidXml)
 Console.WriteLine("Successfully validated modified LINQ XML");
else
 Console.WriteLine("Modified LINQ XML did not validate successfully");
Console.WriteLine();

You could also use the XmlDocument.Validate method to perform the validation in a
similar fashion to XDocument:

string xmlFile = @"..\..\Book.xml";
string xsdFile = @"..\..\Book.xsd";

// Create the schema set.
XmlSchemaSet schemaSet = new XmlSchemaSet();
// Add the new schema with the target namespace
// (could add all the schema at once here if there are multiple).
schemaSet.Add("http://tempuri.org/Book.xsd", XmlReader.Create(xsdFile));

// Load up the XML file.
XmlDocument xmlDoc = new XmlDocument();
// Add the schema.
xmlDoc.Schemas = schemaSet;

Load the book.xml file into the XmlDocument, set up a ValidationEventHandler to
catch any errors, and then call Validate with the event handler to validate book.xml
against the book.xsd schema:

// validate after load
xmlDoc.Load(xmlFile);
ValidationHandler handler = new ValidationHandler();
ValidationEventHandler eventHandler = handler.HandleValidation;
xmlDoc.Validate(eventHandler);

Add a new element node that is not in the schema into the XmlDocument and then call
Validate again with the event handler to revalidate the changed XmlDocument. If the
document triggers any validation events, then the ValidationHandler.ValidXml prop-
erty is set to false:

594 | Chapter 15: XML

// Add in a new node that is not in the schema.
// Since we have already validated, no callbacks fire during the add...
XmlNode newNode = xmlDoc.CreateElement("BogusElement");
newNode.InnerText = "Totally";
// Add the new element.
xmlDoc.DocumentElement.AppendChild(newNode);
// Now we will do validation of the new stuff we added.
xmlDoc.Validate(eventHandler);

if (handler.ValidXml)
 Console.WriteLine("Successfully validated modified XML");
else
 Console.WriteLine("Modified XML did not validate successfully");

Discussion
One advantage to using XmlDocument over XDocument is that there is an override to the
XmlDocument.Validate method that allows you to pass a specific XmlNode to validate.
This fine grain of control is not present on XDocument. If the XmlDocument is large, this
override to Validate should be used:

public void Validate(
 ValidationEventHandler validationEventHandler,
 XmlNode nodeToValidate
);

One other approach to this problem is to instantiate an instance of the XmlNodeReader
with the XmlDocument and then create an XmlReader with validation settings as shown
in Recipe 15.4. This would allow for continual validation while the reader navigated
through the underlying XML.

The output from running the code is listed here:

Validation Error Message: The element 'Book' in namespace 'http://tempuri.org/Book.
xsd' has invalid child element 'BogusElement'. List of possible elements expected:
'Chapter' in namespace 'http://tempuri.org/Book.xsd'.
Validation Error Severity: Error
Validation Error Line Number: 0
Validation Error Line Position: 0
Validation Error Source:
Validation Error Source Schema:
Validation Error Source Uri: file:///C:/PRJ32/Book_2_0/C%23Cookbook2/Code/
CSharpRecipes/Book.xml
Validation Error thrown from:
Validation Error callstack:
Modified XML did not validate successfully

Notice that the BogusElement element that you added was not part of the schema for
the Book element, so you got a validation error along with the information about
where the error occurred. Finally, you got a report that the modified XML did not
validate correctly.

Extending Transformations | 595

See Also
Recipe 15.3; the “XDocument Class,” and the “XmlDocument.Validate” topics in
the MSDN documentation.

15.12 Extending Transformations

Problem
You want to perform operations that are outside the scope of the transformation
technology to include data in the transformed result.

Solution
If you are using LINQ to XML, you can call out to a function directly when trans-
forming the result set, as shown here by the call to GetErrata:

XElement publications = XElement.Load(@"..\..\publications.xml");
XElement transformedPublications =
 new XElement("PublishedWorks",
 from b in publications.Elements("Book")
 select new XElement(b.Name,
 new XAttribute(b.Attribute("name")),
 from c in b.Elements("Chapter")
 select new XElement("Chapter", GetErrata(c))));
Console.WriteLine(transformedPublications.ToString());
Console.WriteLine();

The GetErrata method used in the above sample is listed here:

private static XElement GetErrata(XElement chapter)
{
 // In here, we could go do other lookup calls (XML, database, web service)
 // to get information to add back in to the transformation result
 string errata = string.Format("{0} has {1} errata",
 chapter.Value, chapter.Value.Length);
 return new XElement("Errata", errata);
}

If you are using XSLT, you can add an extension object to the transformation that
can perform the operations necessary based on the node it is passed. This can be
accomplished by using the XsltArgumentList.AddExtensionObject method. This
object you’ve created (XslExtensionObject) can then be accessed in the XSLT and a
method called on it to return the data you want included in the final transformed
result:

string xmlFile = @"..\..\publications.xml";
string xslt = @"..\..\publications.xsl";

//Create the XslTransform and load the stylesheet.
// This is not XslCompiledTransform because it gives a different empty node.

596 | Chapter 15: XML

//Create the XslCompiledTransform and load the stylesheet.
XslCompiledTransform transform = new XslCompiledTransform();
transform.Load(xslt);

// Load the XML.
XPathDocument xPathDoc = new XPathDocument(xmlFile);

// Make up the args for the stylesheet with the extension object.
XsltArgumentList xslArg = new XsltArgumentList();
// Create our custom extension object.
XSLExtensionObject xslExt = new XSLExtensionObject();
xslArg.AddExtensionObject("urn:xslext", xslExt);

// Send output to the console and do the transformation.
using (XmlWriter writer = XmlWriter.Create(Console.Out))
{
 transform.Transform(xPathDoc, xslArg, writer);
}

Note that when the extension object is added to the XsltArgumentList, it supplies a
namespace of urn:xslext. This namespace is used in the XSLT stylesheet to refer-
ence the object. The XSLExtensionObject is defined here:

// Our extension object to help with functionality
public class XslExtensionObject
{
 public XPathNodeIterator GetErrata(XPathNodeIterator nodeChapter)
 {
 // In here, we could go do other lookup calls
 // (XML, database, web service) to get information to
 // add back in to the transformation result.
 string errata =
 string.Format("<Errata>{0} has {1} errata</Errata>",
 nodeChapter.Current.Value, nodeChapter.Current.Value.Length);
 XmlDocument xDoc = new XmlDocument();
 xDoc.LoadXml(errata);
 XPathNavigator xPathNav = xDoc.CreateNavigator();
 xPathNav.MoveToChild(XPathNodeType.Element);
 XPathNodeIterator iter = xPathNav.Select(".");
 return iter;
 }
}

The GetErrata method is called during the execution of the XSLT stylesheet to pro-
vide data in XPathNodeIterator format to the transformation. The xmlns:xslext
namespace is declared as urn:xslext, which matches the namespace value you
passed as an argument to the transformation. In the processing of the Book template
for each Chapter, an xsl:value-of is called with the select criteria containing a call to
the xslext:GetErrata method. The stylesheet makes the call, as shown here:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xslext="urn:xslext">
 <xsl:template match="/">

Extending Transformations | 597

 <xsl:element name="PublishedWorks">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="Book">
 <Book>
 <xsl:attribute name ="name">
 <xsl:value-of select="@name"/>
 </xsl:attribute>
 <xsl:for-each select="Chapter">
 <Chapter>
 <xsl:value-of select="xslext:GetErrata(/)"/>
 </Chapter>
 </xsl:for-each>
 </Book>
 </xsl:template>
</xsl:stylesheet>

Discussion
Using LINQ to XML, you can extend your transformation code to include addi-
tional logic simply by adding method calls that know how to operate and return
XElements. This is simply adding another method call to the query that contributes to
the result set, and no additional performance penalty is assessed just by the call. Cer-
tainly if the operation is expensive it could slow down the transformation, but this is
now easily located when your code is profiled.

The ability to call custom code from inside of an XSLT stylesheet is a very powerful
one, but one that should be used cautiously. Adding code like this into stylesheets
usually renders them less useful in other environments. If the stylesheet never has to
be used to transform XML in another parser, this can be a good way to offload work
that is either difficult or impossible to accomplish in regular XSLT syntax.

The sample data used in the Solution is presented here:

 <?xml version="1.0" encoding="utf-8"?>
 <Publications>
 <Book name="Subclassing and Hooking with Visual Basic">
 <Chapter>Introduction</Chapter>
 <Chapter>Windows System-Specific Information</Chapter>
 <Chapter>The Basics of Subclassing and Hooks</Chapter>
 <Chapter>Subclassing and Superclassing</Chapter>
 <Chapter>Subclassing the Windows Common Dialog Boxes</Chapter>
 <Chapter>ActiveX Controls and Subclassing</Chapter>
 <Chapter>Superclassing</Chapter>
 <Chapter>Debugging Techniques for Subclassing</Chapter>
 <Chapter>WH_CALLWNDPROC</Chapter>
 <Chapter>WH_CALLWNDPROCRET</Chapter>
 <Chapter>WH_GETMESSAGE</Chapter>
 <Chapter>WH_KEYBOARD and WH_KEYBOARD_LL</Chapter>
 <Chapter>WH_MOUSE and WH_MOUSE_LL</Chapter>
 <Chapter>WH_FOREGROUNDIDLE</Chapter>

598 | Chapter 15: XML

 <Chapter>WH_MSGFILTER</Chapter>
 <Chapter>WH_SYSMSGFILTER</Chapter>
 <Chapter>WH_SHELL</Chapter>
 <Chapter>WH_CBT</Chapter>
 <Chapter>WH_JOURNALRECORD</Chapter>
 <Chapter>WH_JOURNALPLAYBACK</Chapter>
 <Chapter>WH_DEBUG</Chapter>
 <Chapter>Subclassing .NET WinForms</Chapter>
 <Chapter>Implementing Hooks in VB.NET</Chapter>
 </Book>
 <Book name="C# Cookbook">
 <Chapter>Numbers</Chapter>
 <Chapter>Strings and Characters</Chapter>
 <Chapter>Classes And Structures</Chapter>
 <Chapter>Enums</Chapter>
 <Chapter>Exception Handling</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Delegates and Events</Chapter>
 <Chapter>Regular Expressions</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>File System IO</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Networking</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Threading</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>XML</Chapter>
 </Book>
 <Book name="C# Cookbook 2.0">
 <Chapter>Numbers and Enumerations</Chapter>
 <Chapter>Strings and Characters</Chapter>
 <Chapter>Classes And Structures</Chapter>
 <Chapter>Generics</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>Iterators and Partial Types</Chapter>
 <Chapter>Exception Handling</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Delegates, Events, and Anonymous Methods</Chapter>
 <Chapter>Regular Expressions</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>File System IO</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Web</Chapter>
 <Chapter>XML</Chapter>
 <Chapter>Networking</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Threading and Synchronization</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>Toolbox</Chapter>
 </Book>
 </Publications>

Getting Your Schemas in Bulk from Existing XML Files | 599

See Also
The “LINQ, transforming data” and “XsltArgumentList Class” topics in the MSDN
documentation.

15.13 Getting Your Schemas in Bulk from Existing XML
Files

Problem
You have come on to a new project in which XML was used for data transmission,
but the programmers who came before you didn’t use an XSD for one reason or
another. You need to generate beginning schema files for each of the XML examples.

Solution
Use the XmlSchemaInference class to infer schema from the XML samples. The
GenerateSchemasForDirectory function in Example 15-12 enumerates all of the XML
files in a given directory and processes each of them using the GenerateSchemasForFile
method. GenerateSchemasForFile uses the XmlSchemaInference.InferSchema method to
get the schemas for the given XML file. Once the schemas have been determined,
GenerateSchemasForFile rolls over the collection and saves out each schema to an XSD
file using a FileStream.

Example 15-12. Generating an XML Schema

public static void GenerateSchemasForFile(string file)
{
 // set up a reader for the file
 using (XmlReader reader = XmlReader.Create(file))
 {
 XmlSchemaSet schemaSet = new XmlSchemaSet();
 XmlSchemaInference schemaInference =
 new XmlSchemaInference();

 // get the schema
 schemaSet = schemaInference.InferSchema(reader);

 string schemaPath = string.Empty;
 foreach (XmlSchema schema in schemaSet.Schemas())
 {
 // make schema file path and write it out
 schemaPath = Path.GetDirectoryName(file) + @"\" +
 Path.GetFileNameWithoutExtension(file) + ".xsd";
 using (FileStream fs =
 new FileStream(schemaPath, FileMode.OpenOrCreate))
 {
 schema.Write(fs);

600 | Chapter 15: XML

The GenerateSchemasForDirectory method can be called like this:

// Get the directory two levels up from where we are running.
DirectoryInfo di = new DirectoryInfo(@"..\..");
string dir = di.FullName;
// Generate the schema.
GenerateSchemasForDirectory(dir);

Discussion
Having an XSD for the XML files in an application allows for a number of things:

1. Validation of XML presented to the system

2. Documentation of the semantics of the data

3. Programmatic discovery of the data structure through XML reading methods

Using the GenerateSchemasForFile method can jump-start the process of developing
schema for your XML, but each schema should be reviewed by the team member
responsible for producing the XML. This will help to ensure that the rules as stated
in the schema are correct and also to make sure that additional items such as schema
default values and other relationships are added. Any relationships that were not
present in the example XML files would be missed by the schema generator.

See Also
The “XmlSchemaInference Class” and “XML Schemas (XSD) Reference” topics in
the MSDN documentation.

 }
 }
 }
}

public static void GenerateSchemasForDirectory(string dir)
{
 // make sure the directory exists
 if (Directory.Exists(dir))
 {
 // get the files in the directory
 string[] files = Directory.GetFiles(dir, "*.xml");
 foreach (string file in files)
 {
 GenerateSchemasForFile(file);
 }
 }
}

Example 15-12. Generating an XML Schema (continued)

Passing Parameters to Transformations | 601

15.14 Passing Parameters to Transformations

Problem
You need to transform some data using a mostly common pattern. For the few data
items that could change between transformations, you don’t want to have a separate
mechanism for each variation.

Solution
If you are using LINQ to XML, simply build a method to encapsulate the transfor-
mation code and pass parameters to the method just as you normally would for
other code:

// transform using LINQ instead of XSLT
string storeTitle = "Hero Comics Inventory";
string pageDate = DateTime.Now.ToString("F");
XElement parameterExample = XElement.Load(@"..\..\ParameterExample.xml");
string htmlPath = @"..\..\ParameterExample_LINQ.htm";
TransformWithParameters(storeTitle, pageDate, parameterExample, htmlPath);

// now change the parameters
storeTitle = "Fabulous Adventures Inventory";
pageDate = DateTime.Now.ToString("D");
htmlPath = @"..\..\ParameterExample2_LINQ.htm";
TransformWithParameters(storeTitle, pageDate, parameterExample, htmlPath);

The TransformWithParameters method looks like this:

private static void TransformWithParameters(string storeTitle, string pageDate,
 XElement parameterExample, string htmlPath)
{
 XElement transformedParameterExample =
 new XElement("html",
 new XElement("head"),
 new XElement("body",
 new XElement("h3", string.Format("Brought to you by {0} on {1}{2}",
 storeTitle,pageDate,Environment.NewLine)),
 new XElement("br"),
 new XElement("table",
 new XAttribute("border","2"),
 new XElement("thead",
 new XElement("tr",
 new XElement("td",
 new XElement("b","Heroes")),
 new XElement("td",
 new XElement("b","Edition")))),
 new XElement("tbody",
 from cb in parameterExample.Elements("ComicBook")
 orderby cb.Attribute("name").Value descending
 select new XElement("tr",
 new XElement("td",cb.Attribute("name").Value),

602 | Chapter 15: XML

 new XElement("td",cb.Attribute("edition").
Value))))));
 transformedParameterExample.Save(htmlPath);
}

If you are using XSLT to perform transformations, use the XsltArgumentList class to
pass arguments to the XSLT transformation. This technique allows the program to
generate an object for the stylesheet to access (such as a dynamic string) and use
while it transforms the given XML file. The storeTitle and pageDate arguments are
passed in to the transformation in the following example. The storeTitle is for the
title of the comic store, and pageDate is the date the report is run for. These are
added using the AddParam method of the XsltArgumentList object instance args:

XsltArgumentList args = new XsltArgumentList();
args.AddParam("storeTitle", "", "Hero Comics Inventory");
args.AddParam("pageDate", "", DateTime.Now.ToString("F"));

// Create a resolver with default credentials.
XmlUrlResolver resolver = new XmlUrlResolver();
resolver.Credentials = System.Net.CredentialCache.DefaultCredentials;

The XsltSettings class allows changing the behavior of the transformation. If you
use the XsltSettings.Default instance, the transformation will be done without
allowing scripting or the use of the document() XSLT function, as they can be secu-
rity risks. If the stylesheet is from a trusted source, you can just create an
XsltSettings object and use it, but it is better to be safe. Further changes to the code
could open it up to use with untrusted XSLT stylesheets:

XslCompiledTransform transform = new XslCompiledTransform();
// Load up the stylesheet.
transform.Load(@"..\..\ParameterExample.xslt", XsltSettings.Default, resolver);

// Perform the transformation.
FileStream fs = null;
using (fs = new FileStream(@"..\..\ParameterExample.htm",
 FileMode.OpenOrCreate, FileAccess.Write))
{
 transform.Transform(@"..\..\ParameterExample.xml", args, fs);
}

To show the different parameters in action, now you change storeTitle and
pageDate again and run the transformation again:

// Now change the parameters and reprocess.
args = new XsltArgumentList();
args.AddParam("storeTitle", "", "Fabulous Adventures Inventory");
args.AddParam("pageDate", "", DateTime.Now.ToString("D"));
using (fs = new FileStream(@"..\..\ParameterExample2.htm",
 FileMode.OpenOrCreate, FileAccess.Write))
{
 transform.Transform(@"..\..\ParameterExample.xml", args, fs);
}

Passing Parameters to Transformations | 603

The ParameterExample.xml file contains the following:

<?xml version="1.0" encoding="utf-8" ?>
<ParameterExample>
 <ComicBook name="The Amazing Spider-Man" edition="1"/>
 <ComicBook name="The Uncanny X-Men" edition="2"/>
 <ComicBook name="Superman" edition="3"/>
 <ComicBook name="Batman" edition="4"/>
 <ComicBook name="The Fantastic Four" edition="5"/>
</ParameterExample>

The ParameterExample.xslt file contains the following:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" indent="yes" />
 <xsl:param name="storeTitle"/>
 <xsl:param name="pageDate"/>

 <xsl:template match="ParameterExample">
 <html>
 <head/>
 <body>
 <h3><xsl:text>Brought to you by </xsl:text>
 <xsl:value-of select="$storeTitle"/>

 <xsl:text> on </xsl:text>
 <xsl:value-of select="$pageDate"/>
 <xsl:text> 
</xsl:text>
 </h3>

 <table border="2">
 <thead>
 <tr>
 <td>
 Heroes
 </td>
 <td>
 Edition
 </td>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates/>
 </tbody>
 </table>
 </body>
 </html>
</xsl:template>

 <xsl:template match="ComicBook">
 <tr>
 <td>
 <xsl:value-of select="@name"/>
 </td>
 <td>

604 | Chapter 15: XML

 <xsl:value-of select="@edition"/>
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

The output from the first transformation using XSLT to ParameterExample.htm or
using LINQ to ParameterExample_LINQ.htm is shown in Figure 15-2.

Output from the second transformation using XSLT to ParameterExample2.htm or
using LINQ to ParameterExample2_LINQ.htm is shown in Figure 15-3.

Figure 15-2. Output from the first set of parameters

Figure 15-3. Output from the second set of parameters

Passing Parameters to Transformations | 605

Discussion
Both approaches allow you to templatize your code and provide parameters to mod-
ify the output. With the LINQ to XML method, the code is all in .NET, and .NET
analysis tools can be used to measure the impact of the transformation. The declara-
tive style of the code conveys the intent more clearly than having to go to the exter-
nal XSLT file. If you don’t know XSLT, you don’t have to learn it as you can do it in
code now.

If you already know XSLT, you can continue to leverage it. The ability to pass infor-
mation to the XSLT stylesheet allows a much greater degree of flexibility when
designing reports or user interfaces via XSLT transformations. This capability can
help customize the output based on just about any criteria you can think of, as the
data being passed in is totally controlled by your program. Once you get the hang of
using parameters with XSLT, a whole new level of customization becomes possible.
As an added bonus, it is portable between environments (.NET, Xalan, etc.).

See Also
The “LINQ, transforming data,” “XsltArgumentList Class,” and “XsltSettings Class”
topics in the MSDN documentation.

606

Chapter 16CHAPTER 16

Networking 16

16.0 Introduction
.NET provides many classes to help make network programming easier than many
environments that preceded it. There is a great deal of functionality to assist you
with tasks such as:

• Building network-aware applications.

• Downloading files via FTP.

• Sending and receiving HTTP requests.

• Getting a higher degree of control using TCP/IP and sockets directly.

In the areas in which Microsoft has not provided managed classes to access network-
ing functionality (such as some of the methods exposed by the WinInet API for Inter-
net connection settings), there is always P/Invoke, so you can code to the Win32
API; you’ll explore this in this chapter. With all of the functionality at your disposal
in the System.Net namespaces, you can write network utilities very quickly. Let’s take
a closer look at just a few of the things this section of .NET provides you access to.

16.1 Writing a TCP Server

Problem
You need to create a server that listens on a port for incoming requests from a TCP
client. These client requests can then be processed at the server, and any responses
can be sent back to the client. Recipe 16.2 shows how to write a TCP client to inter-
act with this server.

Solution
Use the MyTcpServer class created here to listen on a TCP-based endpoint for requests
arriving on a given port:

Writing a TCP Server | 607

class MyTcpServer
{
 #region Private Members
 private TcpListener _listener;
 private IPAddress _address;
 private int _port;
 private bool _listening;
 private object _syncRoot = new object();
 #endregion

 #region CTORs

 public MyTcpServer(IPAddress address, int port)
 {
 _port = port;
 _address = address;
 }
 #endregion // CTORs

The TCPServer class has two properties:

• Address, an IPAddress

• Port, an int

These return the current address and port on which the server is listening and the lis-
tening state:

 #region Properties
 public IPAddress Address
 {
 get { return _address; }
 }

 public int Port
 {
 get { return _port; }
 }

 public bool Listening
 {
 get { return _listening; }
 }
 #endregion

The Listen method tells the MyTcpServer class to start listening on the specified
address and port combination. You create and start a TcpListener, and then call its
AcceptTcpClient method to wait for a client request to arrive. Once the client con-
nects, a request is sent to the thread pool to service the client and that runs the
ProcessClient method.

The listener shuts down after serving the client:

 #region Public Methods
 public void Listen()

608 | Chapter 16: Networking

 {
 try
 {
 lock (_syncRoot)
 {
 _listener = new TcpListener(_address, _port);

 // fire up the server
 _listener.Start();

 // set listening bit
 _listening = true;
 }

 // Enter the listening loop.
 do
 {
 Trace.Write("Looking for someone to talk to... ");

 // Wait for connection
 TcpClient newClient = _listener.AcceptTcpClient();
 Trace.WriteLine("Connected to new client");

 // queue a request to take care of the client
 ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessClient),
newClient);
 }
 while (_listening);
 }
 catch (SocketException se)
 {
 Trace.WriteLine("SocketException: " + se.ToString());
 }
 finally
 {
 // shut it down
 StopListening();
 }
 }

The StopListening method is called to stop the TCPServer from listening for requests:

 public void StopListening()
 {
 if (_listening)
 {
 lock (_syncRoot)
 {
 // set listening bit
 _listening = false;
 // shut it down
 _listener.Stop();
 }
 }
 }
 #endregion

Writing a TCP Server | 609

The ProcessClient method shown in Example 16-1 executes on a thread-pool thread
to serve a connected client. It gets the NetworkStream from the client using the
TcpClient.GetStream method and then reads the whole request. After sending back a
response, it shuts down the client connection.

Example 16-1. ProcessClient method

 #region Private Methods
 private void ProcessClient(object client)
 {
 TcpClient newClient = (TcpClient)client;
 try
 {
 // Buffer for reading data
 byte[] bytes = new byte[1024];
 StringBuilder clientData = new StringBuilder();

 // get the stream to talk to the client over
 using (NetworkStream ns = newClient.GetStream())
 {
 // set initial read timeout to 1 minute to allow for connection
 ns.ReadTimeout = 60000;
 // Loop to receive all the data sent by the client.
 int bytesRead = 0;
 do
 {
 // read the data
 try
 {
 bytesRead = ns.Read(bytes, 0, bytes.Length);
 if (bytesRead > 0)
 {
 // Translate data bytes to an ASCII string and append
 clientData.Append(
 Encoding.ASCII.GetString(bytes, 0, bytesRead));
 // decrease read timeout to 1 second now that data is
 // coming in
 ns.ReadTimeout = 1000;
 }
 }
 catch (IOException ioe)
 {
 // read timed out, all data has been retrieved
 Trace.WriteLine("Read timed out: {0}",ioe.ToString());
 bytesRead = 0;
 }
 }
 while (bytesRead > 0);

 Trace.WriteLine("Client says: {0}", clientData.ToString());

 // Thank them for their input
 bytes = Encoding.ASCII.GetBytes("Thanks call again!");

610 | Chapter 16: Networking

A simple server that listens for clients until the Escape key is pressed might look like
the following code:

 class Program
 {
 static MyTcpServer server;
 static void Main()
 {
 // Run the server on a different thread
 ThreadPool.QueueUserWorkItem(RunServer);

 Console.WriteLine("Press Esc to stop the server...");
 ConsoleKeyInfo cki;
 while(true)
 {

 cki = Console.ReadKey();
 if (cki.Key == ConsoleKey.Escape)
 break;
 }
 }

 static void RunServer(object stateInfo)
 {
 // Fire it up
 server = new MyTcpServer(IPAddress.Loopback,55555);
 server.Listen();
 }
 }

When talking to the MyTcpClient class in Recipe 16.2, the output for the server looks
like this:

 Press Esc to stop the server...
 Looking for someone to talk to... Connected to new client
 Looking for someone to talk to... Client says: Just wanted to say hi
 Connected to new client
 Looking for someone to talk to... Client says: Just wanted to say hi again
 Connected to new client

 // Send back a response.
 ns.Write(bytes, 0, bytes.Length);
 }
 }
 finally
 {
 // stop talking to client
 if(newClient != null)
 newClient.Close();
 }
 }
 #endregion
}

Example 16-1. ProcessClient method (continued)

Writing a TCP Server | 611

 Looking for someone to talk to... Client says: Are you ignoring me?
 Connected to new client
 Looking for someone to talk to... Connected to new client

Looking for someone to talk to... Client says: I'll not be ignored! (round 0)
 Client says: I'll not be ignored! (round 1)
 Connected to new client
 Looking for someone to talk to... Connected to new client

Looking for someone to talk to... Client says: I'll not be ignored! (round 2)
 Client says: I'll not be ignored! (round 3)
 Connected to new client

Looking for someone to talk to... Client says: I'll not be ignored! (round 4)
 Connected to new client

Looking for someone to talk to... Client says: I'll not be ignored! (round 5)
 Connected to new client

Looking for someone to talk to... Client says: I'll not be ignored! (round 6)
 Connected to new client

Looking for someone to talk to... Client says: I'll not be ignored! (round 7)
 Connected to new client

Looking for someone to talk to... Client says: I'll not be ignored! (round 8)
 [more output follows...]

Discussion
The Transmission Control Protocol (TCP) is the protocol used by the majority of
traffic on the Internet today. TCP is responsible for the correct delivery of data pack-
ets from one endpoint to another. It uses the Internet Protocol (IP) to make the deliv-
ery. IP handles getting the packets from node to node; TCP detects when packets are
not correct, are missing, or are sent out of order, and it arranges for missing or dam-
aged packets to be resent. The TCPServer class is a basic server mechanism for deal-
ing with requests that come from clients over TCP.

MyTcpServer takes the IP address and port passed in the Listen method and creates a
TcpListener on that IPAddress and port. Once created, the TcpListener.Start
method is called to start up the server. The blocking AcceptTcpClient method is
called to listen for requests from TCP-based clients. Once the client connects, the
ProcessClient method is executed. In this method, the server reads request data from
the client and returns a brief acknowledgment. The server disconnects from the cli-
ent by calling NetworkStream.Close and TcpClient.Close. The server stops listening
when the StopListening method is called. StopListening takes the server offline by
calling TcpListener.Stop.

See Also
The “IPAddress Class,” “TcpListener Class,” and “TcpClient Class” topics in the
MSDN documentation.

612 | Chapter 16: Networking

16.2 Writing a TCP Client

Problem
You want to interact with a TCP-based server.

Solution
Use the MyTcpClient class shown in Example 16-2 to connect to and converse with a
TCP-based server by passing the address and port of the server to talk to, using the
System.Net.TcpClient class. This example will talk to the server from Recipe 16.1.

Example 16-2. MyTcpClient class

class MyTcpClient
{

 private TcpClient _client;
 private IPAddress _address;
 private int _port;
 private IPEndPoint _endPoint;
 private bool _disposed;

 public MyTcpClient(IPAddress address, int port)
 {
 _address = address;
 _port = port;
 _endPoint = new IPEndPoint(_address, _port);
 }

 public void ConnectToServer(string msg)
 {
 try
 {
 _client = new TcpClient();
 _client.Connect(_endPoint);

 // Get the bytes to send for the message
 byte[] bytes = Encoding.ASCII.GetBytes(msg);
 // Get the stream to talk to the server on
 using (NetworkStream ns = _client.GetStream())
 {
 // Send message
 Trace.WriteLine("Sending message to server: " + msg);
 ns.Write(bytes, 0, bytes.Length);
 // Get the response
 // Buffer to store the response bytes
 bytes = new byte[1024];

 // Display the response
 int bytesRead = ns.Read(bytes, 0, bytes.Length);

Writing a TCP Client | 613

To use the MyTcpClient in a program, you can simply create an instance of it and call
ConnectToServer to send a request. In this program, you first make three calls to the
server to test the basic mechanism. Next, you enter a loop to really pound on it and
make sure you force it over the default ThreadPool limit. This verifies that the server’s
mechanism for handling multiple requests is sound:

 static void Main()
 {

 MakeClientCallToServer("Just wanted to say hi");
 MakeClientCallToServer("Just wanted to say hi again");
 MakeClientCallToServer("Are you ignoring me?");

 string serverResponse = Encoding.ASCII.GetString(bytes, 0, bytesRead);
 Trace.WriteLine("Server said: " + serverResponse);
 }
 }
 catch (SocketException se)
 {
 Trace.WriteLine("There was an error talking to the server: " +
 se.ToString());
 }
 finally
 {
 Dispose();
 }
 }

 #region IDisposable Members

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (!_disposed)
 {
 if (disposing)
 {
 if (_client != null)
 _client.Close();
 }
 _disposed = true;
 }
 }

 #endregion

}

Example 16-2. MyTcpClient class (continued)

614 | Chapter 16: Networking

 // Now send a bunch of messages...
 string msg;
 for (int i = 0; i < 100; i++)
 {
 msg = string.Format(Thread.CurrentThread.CurrentCulture,
 "I'll not be ignored! (round {0})", i);
 ThreadPool.QueueUserWorkItem(new
WaitCallback(MakeClientCallToServer), msg);
 }

 Console.WriteLine("\n Press any key to continue... (if you can find it...
)");
 Console.Read();
 }

 static void MakeClientCallToServer(object objMsg)
 {
 string msg = (string)objMsg;
 MyTcpClient client = new MyTcpClient(IPAddress.Loopback,55555);
 client.ConnectToServer(msg);
 }

The output on the client side for this exchange of messages is:

 Sending message to server: Just wanted to say hi
 Server said: Thanks call again!
 Sending message to server: Just wanted to say hi again
 Server said: Thanks call again!
 Sending message to server: Are you ignoring me?
 Server said: Thanks call again!
 Press any key to continue... (if you can find it...)
 Sending message to server: I'll not be ignored! (round 0)
 Sending message to server: I'll not be ignored! (round 1)
 Server said: Thanks call again!
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 2)
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 3)
 Sending message to server: I'll not be ignored! (round 4)
 Server said: Thanks call again!
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 5)
 Sending message to server: I'll not be ignored! (round 6)
 Server said: Thanks call again!
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 7)
 Sending message to server: I'll not be ignored! (round 8)
 Server said: Thanks call again!
 [more output follows...]

Discussion
MyTcpClient.ConnectToServer is designed to send one message, get the response, dis-
play it as a string, and then close the connection. To accomplish this, it creates a

Simulating Form Execution | 615

System.Net.TcpClient and connects to the server by calling the TcpClient.Connect
method. Connect targets the server using an IPEndPoint built from the address and
port that you passed to the MyTcpClient constructor.

MyTcpClient.ConnectToServer then gets the bytes for the string using the Encoding.
ASCII.GetBytes method. Once it has the bytes to send, it gets the NetworkStream from
the underlying System.Net.TcpClient by calling its GetStream method and then sends
the message using the TcpClient.Write method.

In order to receive the response from the server, the blocking TcpClient.Read method
is called. Once Read returns, the bytes are decoded to get the string that contains the
response from the server. The connections are then closed and the client ends.

See Also
The “TcpClient Class,” “NetworkStream Class,” and “Encoding.ASCII Property”
topics in the MSDN documentation.

16.3 Simulating Form Execution

Problem
You need to send a collection of name-value pairs to simulate a form being executed
on a browser to a location identified by a URL.

Solution
Use the System.Net.WebClient class to send a set of name-value pairs to the web
server using the UploadValues method. This class enables you to masquerade as the
browser executing a form by setting up the name-value pairs with the input data.
The input field ID is the name, and the value to use in the field is the value:

 using System;
 using System.Net;
 using System.Text;
 using System.Collections.Specialized;

 // In order to use this, you need to run the CSCBWeb project first.
 Uri uri = new Uri("http://localhost:7472/CSCBWeb/WebForm1.aspx");
 WebClient client = new WebClient();

 // Create a series of name/value pairs to send
 // Add necessary parameter/value pairs to the name/value container.
 NameValueCollection collection = new NameValueCollection()
 { {"Item", "WebParts"},
 {"Identity", "foo@bar.com"},
 {"Quantity", "5"} };

616 | Chapter 16: Networking

 Console.WriteLine("Uploading name/value pairs to URI {0} ...",
 uri.AbsoluteUri);

 // Upload the NameValueCollection.
 byte[] responseArray =
 client.UploadValues(uri.AbsoluteUri,"POST",collection);
 // Decode and display the response.
 Console.WriteLine("\nResponse received was {0}",
 Encoding.ASCII.GetString(responseArray));

The WebForm1.aspx page, which receives and processes this data, looks like this:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="WebForm1.aspx.cs"
 Inherits="WebForm1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:Table ID="Table1" runat="server" Height="139px" Width="361px">
 <asp:TableRow runat="server">
 <asp:TableCell runat="server"><asp:Label ID="Label1"
 runat="server" Text="Identity"></asp:Label></asp:TableCell>
 <asp:TableCell runat="server"><asp:TextBox
ID="Identity"
 runat="server"/></asp:TableCell>
 </asp:TableRow>
 <asp:TableRow runat="server">
 <asp:TableCell runat="server"><asp:Label ID="Label2"
 runat="server" Text="Item"></asp:Label></asp:TableCell>

<asp:TableCell runat="server"><asp:TextBox ID="Item"
 runat="server"/></asp:TableCell>
 </asp:TableRow>
 <asp:TableRow runat="server">
 <asp:TableCell runat="server"><asp:Label ID="Label3"
 runat="server" Text="Quantity"></asp:Label></asp:TableCell>
 <asp:TableCell runat="server"><asp:TextBox
ID="Quantity"
 runat="server"/></asp:TableCell>
 </asp:TableRow>
 <asp:TableRow runat="server">
 <asp:TableCell runat="server"></asp:TableCell>
 <asp:TableCell runat="server"><asp:Button
ID="Button1"
 runat="server" onclick="Button1_Click" Text="Submit" />
 </asp:TableCell>

Simulating Form Execution | 617

 </asp:TableRow>
 </asp:Table>

 </div>
 </form>
</body>
</html>

The WebForm1.aspx.cs code-behind looks like this. The added code is highlighted:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class WebForm1 : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if(HttpContext.Current.Request.HttpMethod.ToUpper() == "POST")
 WriteOrderResponse();
 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 WriteOrderResponse();
 }

 private void WriteOrderResponse()
 {
 string response = "Thanks for the order!
";
 response += "Identity: " + Request.Form["Identity"] + "
";
 response += "Item: " + Request.Form["Item"] + "
";
 response += "Quantity: " + Request.Form["Quantity"] + "
";
 Response.Write(response);
 }
}

The output from the form execution looks like this:

Uploading name/value pairs to URI http://localhost:7472/CSCBWeb/WebForm1.aspx ..

Response received was Thanks for the order!
Identity: foo@bar.com
Item:
WebParts
Quantity: 5

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.or
g/TR/xhtml1/DTD/xhtml1-transitional.dtd">

618 | Chapter 16: Networking

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>
 Untitled Page
</title></head>
<body>
 <form name="form1" method="post" action="WebForm1.aspx" id="form1">
<input type="hidden" name="_ _VIEWSTATE" id="_ _VIEWSTATE" value="/wEPDwULLTE3NDA4
NzI1OTJkZB2moEknx/mTLCJNLTrBOEGrhM3D" />

 <div>

 <table id="Table1" border="0" height="139" width="361">
 <tr>
 <td>Identity</td><td><input name="Ident
ity" type="text" id="Identity" /></td>
 </tr><tr>
 <td>Item</td><td><input name="Item" typ
e="text" id="Item" /></td>
 </tr><tr>
 <td>Quantity</td><td><input name="Quant
ity" type="text" id="Quantity" /></td>
 </tr><tr>
 <td></td><td><input type="submit" name="Button1" value="Submit"
id="Button1" /></td>
 </tr>
</table>

 </div>

<input type="hidden" name="_ _EVENTVALIDATION" id="_ _EVENTVALIDATION" value="/wEW
BQLktuPhBwKM4NreDQL4grehBwKA7JylAQKM54rGBgRICl8TJUTG4pCLohSUmn9Hivnl" /></form>
</body>
</html>

Discussion
The WebClient class makes it easy to upload form data to a web server in the com-
mon format of a set of name-value pairs. You can see this technique in the call to
UploadValues that takes an absolute URI (http://localhost/FormSim/WebForm1.aspx),
the HTTP method to use (POST), and the NameValueCollection you created
(collection). The NameValueCollection is populated with the data for each of the
fields on the form by calling its Add method, passing the id of the input field as the
name and the value to put in the field as the value. In this example, you fill in the
Identity field with foo@bar.com, the Item field with Book, and the Quantity field
with 5. You then print out the resulting response from the POST to the console
window.

See Also
The “WebClient Class” topic in the MSDN documentation.

Transferring Data via HTTP | 619

16.4 Transferring Data via HTTP

Problem
You need to download data from or upload data to a location specified by a URL;
this data can be either an array of bytes or a file.

Solution
Use the WebClient.UploadData or WebClient.DownloadData methods to transfer data
using a URL.

To download the data for a web page, do the following:

 Uri uri = new Uri("http://localhost:4088/CSCBWeb/DownloadData16_4.aspx");

 // make a client
 using (WebClient client = new WebClient())
 {
 // get the contents of the file
 Console.WriteLine("Downloading {0} ",uri.AbsoluteUri);
 // download the page and store the bytes
 byte[] bytes;
 try
 {
 bytes = client.DownloadData(uri);
 }
 catch (WebException we)
 {
 Console.WriteLine(we.ToString());
 return;
 }
 // Write the content out
 string page = Encoding.ASCII.GetString(bytes);
 Console.WriteLine(page);
 }

This will produce the following output:

Downloading http://localhost:4088/CSCBWeb/DownloadData16_4.aspx

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.or
g/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>
 Untitled Page
</title></head>
<body>
 <form name="Form1" method="post" action="DownloadData16_4.aspx" id="Form2">
 <input type="hidden" name="_ _VIEWSTATE"
value="dDwyMDQwNjUzNDY2Ozs+kS9hguYm9369sybDqmIow0AvxBg=" />

620 | Chapter 16: Networking

 <span id="Label1" style="Z-INDEX: 101; LEFT: 142px; POSITION: absolute;
TOP: 164px">This is downloaded html!
 </form>
</body>
</html>

You can also download data to a file using DownloadFile:

 Uri uri = new Uri("http://localhost:4088/CSCBWeb/DownloadData16_4.aspx");
 // Make a client
 using (WebClient client = new WebClient())
 {
 // go get the file
 Console.WriteLine("Retrieving file from {0}...\r\n", uri);
 // get file and put it in a temp file
 string tempFile = Path.GetTempFileName();
 try
 {
 client.DownloadFile(uri, tempFile);
 }
 catch (WebException we)
 {
 Console.WriteLine(we.ToString());
 return;
 }
 Console.WriteLine("Downloaded {0} to {1}", uri, tempFile);
 }

This will produce the following output:

Retrieving file from http://localhost:4088/CSCBWeb/DownloadData16_4.aspx...

Downloaded http://localhost:4088/CSCBWeb/DownloadData16_4.aspx to C:\Documents a
nd Settings\Jay Hilyard\Local Settings\Temp\tmp6F0.tmp

To upload a file to a URL, use UploadFile like so:

 // Make a client
 using (WebClient client = new WebClient())
 {
 // Go get the file
 Console.WriteLine("Retrieving file from {0}...\r\n", uri);
 // Get file and put it in a temp file
 string tempFile = Path.GetTempFileName();
 client.DownloadFile(uri,tempFile);
 Console.WriteLine("Downloaded {0} to {1}",uri,tempFile);
 }

The code for an ASPX page that could receive this would look like this:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Linq;
using System.Web;
using System.Web.Security;

Using Named Pipes to Communicate | 621

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Diagnostics;

public partial class UploadData16_4 : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 foreach (string f in Request.Files.AllKeys)
 {
 HttpPostedFile file = Request.Files[f];
 // need to have write permissions for the directory to write to
 try
 {
 string path = Server.MapPath(".") + @"\" + file.FileName;
 file.SaveAs(path);
 Response.Write("Saved " + path);
 }
 catch (HttpException hex)
 {
 // return error information specific to the save
 Response.Write("Failed to save file with error: " +
 hex.Message);
 }
 }
 }
}

This will produce the following output:

Uploading to http://localhost:4088/CSCBWeb/UploadData16_4.aspx
Uploaded successfully to http://localhost:4088/CSCBWeb/UploadData16_4.aspx

Discussion
WebClient simplifies downloading of files and bytes in files, as these are common
tasks when dealing with the Web. The more traditional stream-based method for
downloading can also be accessed via the OpenRead method on the WebClient.

See Also
The “WebClient Class” topic in the MSDN documentation.

16.5 Using Named Pipes to Communicate

Problem
You need a way to use named pipes to communicate with another application across
the network.

622 | Chapter 16: Networking

Solution
Use the new NamedPipeClientStream and NamedPipeServerStream in the System.IO.
Pipes namespace. You can then create a client and server to work with named pipes.

In order to use the NamedPipeClientStream class, you need some code like that shown
in Example 16-3.

Example 16-3. Using the NamedPipeClientStream class

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Diagnostics;
using System.IO.Pipes;

namespace NamedPipes
{
 class NamedPipeClientConsole
 {
 static void Main()
 {
 // set up a message to send
 string messageText = "This is my message!";
 int bytesRead;

 // set up the named pipe client and close it when complete
 using (NamedPipeClientStream clientPipe =
 new NamedPipeClientStream(".","mypipe",
 PipeDirection.InOut,PipeOptions.None))
 {
 // connect to the server stream
 clientPipe.Connect();
 // set the read mode to message
 clientPipe.ReadMode = PipeTransmissionMode.Message;

 // write the message ten times
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Sending message: " + messageText);
 byte[] messageBytes = Encoding.Unicode.GetBytes(messageText);
 // check and write the message
 if (clientPipe.CanWrite)
 {
 clientPipe.Write(messageBytes, 0, messageBytes.Length);
 clientPipe.Flush();
 // wait till it is read
 clientPipe.WaitForPipeDrain();
 }

 // set up a buffer for the message bytes
 messageBytes = new byte[256];

Using Named Pipes to Communicate | 623

Then, to set up a server for the client to talk to, you use the NamedPipeServerStream
class, as shown in Example 16-4.

 do
 {
 // collect the message bits in the stringbuilder
 StringBuilder message = new StringBuilder();

 // read all of the bits until we have the
 // complete response message
 do
 {
 // read from the pipe
 bytesRead =
 clientPipe.Read(messageBytes, 0, messageBytes.Length);
 // if we got something, add it to the message
 if (bytesRead > 0)
 {
 message.Append(
 Encoding.Unicode.GetString(messageBytes,
 0, bytesRead));
 Array.Clear(messageBytes, 0, messageBytes.Length);
 }
 }
 while (!clientPipe.IsMessageComplete);

 // set to zero as we have read the whole message
 bytesRead = 0;
 Console.WriteLine(" Received message: " +
 message.ToString());
 }
 while (bytesRead != 0);

 }
 }

 Console.WriteLine("Press Enter to exit...");
 Console.ReadLine();
 }
 }
}

Example 16-4. Setting up a server for the client

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.ComponentModel;
using System.IO.Pipes;

namespace NamedPipes

Example 16-3. Using the NamedPipeClientStream class (continued)

624 | Chapter 16: Networking

{
 class NamedPipeServerConsole
 {
 static void Main(string[] args)
 {
 // Start up our named pipe in message mode and close the pipe
 // when done.
 using (NamedPipeServerStream serverPipe = new
 NamedPipeServerStream("mypipe", PipeDirection.InOut, 1,
 PipeTransmissionMode.Message, PipeOptions.None))
 {
 // wait for a client...
 serverPipe.WaitForConnection();

 // process messages until the client goes away
 while (serverPipe.IsConnected)
 {
 int bytesRead = 0;
 byte[] messageBytes = new byte[256];
 // read until we have the message, then respond
 do
 {
 // build up the client message
 StringBuilder message = new StringBuilder();

 // check that we can read the pipe
 if (serverPipe.CanRead)
 {
 // loop until the entire message is read
 do
 {
 bytesRead =
 serverPipe.Read(messageBytes,
 0, messageBytes.Length);

 // got bytes from the stream so add them to the message
 if (bytesRead > 0)
 {
 message.Append(
 Encoding.Unicode.GetString(messageBytes,
 0,bytesRead));
 Array.Clear(messageBytes,
 0, messageBytes.Length);
 }
 }
 while (!serverPipe.IsMessageComplete);
 }

 // if we got a message, write it out and respond
 if (message.Length > 0)
 {
 // set to zero, as we have read the whole message

Example 16-4. Setting up a server for the client (continued)

Using Named Pipes to Communicate | 625

Discussion
Named pipes are a mechanism to allow interprocess or intermachine communica-
tions in Windows. The .NET Framework has finally provided managed access to
named pipes in .NET 3.5, which helps to make it much easier to utilize named pipes
in managed applications. In many cases, you could use Windows Communication
Foundation (WCF) to set up the server and client code and even provide a named
pipe binding to accomplish this as well. It depends on what your application require-
ments call for as well as what level of the application stack you want to work at. If
you have an existing application that sets up a named pipe, why use WCF when you
can just connect directly? Using named pipes is like using sockets and keeps your

 bytesRead = 0;
 Console.WriteLine("Received message: " + message.ToString());

 // return the message text we got from the
 // client in reverse
 char[] messageChars =
 message.ToString().Trim().ToCharArray();
 Array.Reverse(messageChars);
 string reversedMessageText = new string(messageChars);

 // show the return message
 Console.WriteLine(" Returning Message: " +
 reversedMessageText);

 // write the response
 messageBytes = Encoding.Unicode.GetBytes(messageChars);
 if (serverPipe.CanWrite)
 {
 // write the message
 serverPipe.Write(messageBytes, 0, messageBytes.Length);
 // flush the buffer
 serverPipe.Flush();
 // wait till read by client
 serverPipe.WaitForPipeDrain();
 }
 }
 }
 while (bytesRead != 0);
 }
 }

 // make our server hang around so you can see the messages sent
 Console.WriteLine("Press Enter to exit...");
 Console.ReadLine();
 }
 }
}

Example 16-4. Setting up a server for the client (continued)

626 | Chapter 16: Networking

code very close to the pipe. The positive side of this is that there are less code layers
to process; the drawback is that you have to do more in terms of message processing.

In the Solution, we created some code to use NamedPipeClientStream and
NamedPipeServerStream. The interaction between these two goes like this:

1. The server process is started; it fires up a NamedPipeServerStream and then calls
WaitForConnection to wait for a client to connect:
 // Start up our named pipe in message mode and close the pipe
 // when done.
 using (NamedPipeServerStream serverPipe = new
 NamedPipeServerStream("mypipe", PipeDirection.InOut, 1,
 PipeTransmissionMode.Message, PipeOptions.None))
 {
 // wait for a client...
 serverPipe.WaitForConnection();

2. The client process is created; it fires up a NamedPipeClientStream, calls Connect,
and connects to the server process:
 // set up the named pipe client and close it when complete
 using (NamedPipeClientStream clientPipe =
 new NamedPipeClientStream(".","mypipe",
 PipeDirection.InOut,PipeOptions.None))
 {
 // connect to the server stream
 clientPipe.Connect();

3. The server process sees the connection from the client and then calls IsConnected
in a loop looking for messages from the client until the connection is gone:
 // process messages until the client goes away
 while (serverPipe.IsConnected)
 {
 // More processing code in here...
 }

4. The client process then writes a number of messages to the server process using
Write, Flush, and WaitForPipeDrain:
 // set up a message to send
 string messageText = "This is my message!";

 // write the message ten times
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Sending message: " + messageText);
 byte[] messageBytes = Encoding.Unicode.GetBytes(messageText);
 // check and write the message
 if (clientPipe.CanWrite)
 {
 clientPipe.Write(messageBytes, 0, messageBytes.Length);
 clientPipe.Flush();
 // wait till it is read
 clientPipe.WaitForPipeDrain();
 }

Using Named Pipes to Communicate | 627

 // response processing....
 }

5. When the client process receives the response from the server, it reads the mes-
sage bytes until complete. If the message sending is complete, the
NamedPipeClientStream goes out of the scope of the using statement and closes
(thereby closing the connection on the client side) and then waits to go away
when the user presses Enter:
 // set up a buffer for the message bytes
 messageBytes = new byte[256];
 do
 {
 // collect the message bits in the stringbuilder
 StringBuilder message = new StringBuilder();

 // read all of the bits until we have the
 // complete response message
 do
 {
 // read from the pipe
 bytesRead =
 clientPipe.Read(messageBytes, 0, messageBytes.
Length);
 // if we got something, add it to the message
 if (bytesRead > 0)
 {
 message.Append(
 Encoding.Unicode.GetString(messageBytes,
 0, bytesRead));
 Array.Clear(messageBytes, 0, messageBytes.Length);
 }
 }
 while (!clientPipe.IsMessageComplete);

 // set to zero as we have read the whole message
 bytesRead = 0;
 Console.WriteLine(" Received message: " +
 message.ToString());
 }
 while (bytesRead != 0);

6. The server process notes that the client has closed the pipe connection via the
failed IsConnected call in the while loop. It closes by the NamedPipeServerStream
going out of scope of the using statement, which closes the pipe.

The client output looks like this:

Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT

628 | Chapter 16: Networking

Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT
Sending message: This is my message!
 Received message: !egassem ym si sihT
Press Enter to exit...

The server output looks like this:

Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Received message: This is my message!
 Returning Message: !egassem ym si sihT
Press Enter to exit...

The PipeOptions enumeration controls how the pipe operations function. The enu-
meration values are described in Table 16-1.

Table 16-1. PipeOptions enumeration values

Member name Description

None No specific options are specified.

WriteThrough When writing to the pipe, operations will not return control until the write is accomplished at the server.
Without this flag, writes are buffered, and the write returns more quickly.

Asychronous Enables Asynchronous pipe usage (calls return immediately and process in the background).

Pinging Programmatically | 629

See Also
The “Named Pipes,” “NamedPipeClientStream Class,” “NamedPipeServerStream
Class,” and “System.IO.Pipes Namespace” topics in the MSDN documentation.

16.6 Pinging Programmatically

Problem
You want to check a computer’s availability on the network.

Solution
Use the System.Net.NetworkInformation.Ping class to determine if a machine is avail-
able. In the TestPing method, an instance of the Ping class is created. A ping request
is sent using the Send method. The Send method is synchronous and returns a
PingReply that can be examined for the result of the ping. You perform the second
ping request asynchronously using the SendAsync method, after hooking up to the
Ping class for the PingCompleted event. The second parameter of the SendAsync
method holds a user token value that will be returned to the pinger_PingCompleted
event handler when the ping is complete. This token can be used to identify requests
between the initiation and completion code:

 public static void TestPing()
 {
 System.Net.NetworkInformation.Ping pinger =
 new System.Net.NetworkInformation.Ping();
 PingReply reply = pinger.Send("www.oreilly.com");
 DisplayPingReplyInfo(reply);

 pinger.PingCompleted += pinger_PingCompleted;
 pinger.SendAsync("www.oreilly.com", "oreilly ping");
 }

The DisplayPingReplyInfo method shows some of the more common items you want
to know from a ping, such as the RoundtripTime and the Status of the reply. These
can be accessed from those properties on the PingReply:

 private static void DisplayPingReplyInfo(PingReply reply)
 {
 Console.WriteLine("Results from pinging " + reply.Address);
 Console.WriteLine("\tFragmentation allowed?: {0}", !reply.Options.
DontFragment);
 Console.WriteLine("\tTime to live: {0}", reply.Options.Ttl);
 Console.WriteLine("\tRoundtrip took: {0}", reply.RoundtripTime);
 Console.WriteLine("\tStatus: {0}", reply.Status.ToString());
 }

630 | Chapter 16: Networking

The event handler for the PingCompleted event is the pinger_PingCompleted method.
This event handler follows the usual EventHandler convention of the sender object
and event arguments. The argument type for this event is PingCompletedEventArgs.
The PingReply can be accessed in the Reply property of the event arguments. If the
ping was canceled or an exception was thrown, that information can be accessed via
the Cancelled and Error properties. The UserState property on the
PingCompletedEventArgs class holds the user token value provided in SendAsync:

 private static void pinger_PingCompleted(object sender,
PingCompletedEventArgs e)
 {
 PingReply reply = e.Reply;
 DisplayPingReplyInfo(reply);

 if(e.Cancelled)
 {
 Console.WriteLine("Ping for " + e.UserState.ToString() + " was
cancelled");
 }
 else if (e.Error != null)
 {
 Console.WriteLine("Exception thrown during ping: {0}", e.Error.
ToString());
 }
 }

The output from DisplayPingReplyInfo looks like this:

 Results from pinging 208.201.239.37
 Fragmentation allowed?: True
 Time to live: 39
 Roundtrip took: 103
 Status: Success

Discussion
Ping uses an Internet Control Message Protocol (ICMP) echo request message as
defined in RFC 792. If a computer is not reached successfully by the ping request, it
does not necessarily mean that the computer is unreachable. Many factors can pre-
vent a ping from succeeding aside from the machine being offline. Network topol-
ogy, firewalls, packet filters, and proxy servers all can interrupt the normal flow of a
ping request. By default, the Windows Firewall installed with Windows XP Service
Pack 2 disables ICMP traffic, so if you are having difficulty pinging a machine run-
ning XP, check the firewall settings on that machine.

See Also
The “Ping Class,” “PingReply Class,” and “PingCompleted Event” topics in the
MSDN documentation.

Send SMTP Mail Using the SMTP Service | 631

16.7 Send SMTP Mail Using the SMTP Service

Problem
You want to be able to send email via SMTP from your program, but you don’t want
to learn the SMTP protocol and hand-code a class to implement it.

Solution
Use the System.Net.Mail namespace, which contains classes to take care of the
harder parts of constructing an SMTP-based email message. The System.Net.Mail.
MailMessage class encapsulates constructing an SMTP-based message, and the
System.Net.Mail.SmtpClient class provides the sending mechanism for sending the
message to an SMTP server. SmtpClient does depend on there being an SMTP server
set up somewhere for it to relay messages through. Attachments are added by creat-
ing instances of System.Net.Mail.Attachment and providing the path to the file as
well as the media type:

 // Send a message with attachments
 string from = "hilyard@comcast.net";
 string to = "hilyard@comcast.net";
 MailMessage attachmentMessage = new MailMessage(from, to);
 attachmentMessage.Subject = "Hi there!";
 attachmentMessage.Body = "Check out this cool code!";
 // Many systems filter out HTML mail that is relayed
 attachmentMessage.IsBodyHtml = false;
 // Set up the attachment
 string pathToCode = @"..\..\16_Networking.cs";
 Attachment attachment =
 new Attachment(pathToCode,
 MediaTypeNames.Application.Octet);
 attachmentMessage.Attachments.Add(attachment);

To send a simple email with no attachments, call the System.Net.Mail.MailMessage
constructor with just the to, from, subject, and body information. This version of the
MailMessage constructor simply fills in those items, and then you can pass it to
SmtpClient.Send to send it along:

 // Bounce this off the local SMTP service. The local SMTP service needs to
 // have relaying set up to go through a real email server...
 // This could also set up to go against an SMTP server available to
 // you on the network
 SmtpClient client = new SmtpClient("localhost");
 client.Send(attachmentMessage);

 // Or just send text
 MailMessage textMessage = new MailMessage("hilyard@comcast.net",
 "hilyard@comcast.net",
 "Me again",

"You need therapy, talking to yourself is one thing but "
+

632 | Chapter 16: Networking

 "writing code to send email is a whole other thing...");
 client.Send(textMessage);

Discussion
SMTP stands for the Simple Mail Transfer Protocol, as defined in RFC 821. To take
advantage of the support for SMTP mail in the .NET Framework using the System.
Net.Mail.SmtpClient class, an SMTP server must be specified to relay the messages
through. Since Windows 2000, the operating system has come with an SMTP server
that can be installed as part of IIS. In the Solution, the SmtpClient takes advantage of
this by specifying “localhost” for the server to connect to, which indicates the local
machine is the SMTP relay server. Setting up the SMTP service may not be possible
in your network environment, and you may need to use the SmtpClient class to set
up credentials to connect to the SMTP server on the network directly.

To set up SMTP relaying after installing the SMTP service via Add/Remove Win-
dows Components in the Control Panel, open the Internet Information Services
applet and right-click on the Default SMTP Virtual Server entry. Next, choose Prop-
erties. When you select the Delivery tab, you will see the dialog shown in
Figure 16-1.

Figure 16-1. Configuring SMTP relaying

Send SMTP Mail Using the SMTP Service | 633

Now, click the Advanced button to display the Advanced Delivery dialog that you
will use to set the relay parameters, as shown in Figure 16-2.

Supply your domain name and the SMTP address for a valid SMTP host, and then
email away. Once you have the SMTP service set up, you should configure it to
respond to requests from only the local machine, or you could become a target for
spammers. To do this, go to the Access tab of the Default SMTP Virtual Server Prop-
erties dialog, as shown in Figure 16-3, and select Connection.

Then, once you have selected Connection, select the “Only from the list below”
option in the Connection dialog, as shown in Figure 16-4, and click the Add button
to add an IP address.

Finally, enter the IP address 127.0.0.1 to give access to only this machine, as shown
in Figure 16-5.

Your list will now look like Figure 16-6.

The MediaTypeNames.class used in the solution identifies the Attachment type. The
valid attachment types are listed in Table 16-2.

Figure 16-2. SMTP relaying, Advanced Delivery options

634 | Chapter 16: Networking

Figure 16-3. Configuring SMTP service

Figure 16-4. Specifying the connections

Send SMTP Mail Using the SMTP Service | 635

Figure 16-5. Entering the IP address

Figure 16-6. The resulting list

636 | Chapter 16: Networking

See Also
The “Using SMTP for Outgoing Messages,” “SmtpMail Class,” “MailMessage
Class,” and “MailAttachment Class” topics in the MSDN documentation.

16.8 Use Sockets to Scan the Ports on a Machine

Problem
You want to determine the open ports on a machine to see where the security risks
are.

Solution
Use the CheapoPortScanner class constructed for your use; its code is shown in
Example 16-5. CheapoPortScanner uses the Socket class to attempt to open a socket
and connect to an address on a given port. The OpenPortFound event is available for a
callback when an open port is found in the range supplied to the CheapoPortScanner
constructor or in the default range (1 to 65535). By default, CheapoPortScanner will
scan the local machine.

Table 16-2. MediaTypeNames.Attachment values

Name Description

Octet The data is not interpreted as any specific type.

Pdf The data is in Portable Data Format.

Rtf The data is in Rich Text Format.

Soap The data is a SOAP document.

Zip The data is compressed.

Example 16-5. CheapoPortScanner class

class CheapoPortScanner
{
 #region Private consts and members
 const int PORT_MIN_VALUE = 1;
 const int PORT_MAX_VALUE = 65535;

 private int _minPort = PORT_MIN_VALUE;
 private int _maxPort = PORT_MAX_VALUE;
 private List<int> _openPorts = null;
 private List<int> _closedPorts = null;
 private string _host = "127.0.0.1"; // localhost
 #endregion

 #region Event
 public class OpenPortEventArgs : EventArgs
 {

Use Sockets to Scan the Ports on a Machine | 637

 int _portNum;
 public OpenPortEventArgs(int portNum) : base()
 {
 _portNum = portNum;
 }

 public int PortNum
 {
 get { return _portNum; }
 }
 }

 public delegate void OpenPortFoundEventHandler(object sender, OpenPortEventArgs args);
 public event OpenPortFoundEventHandler OpenPortFound;
 #endregion // Event

 #region CTORs & Init code
 public CheapoPortScanner()
 {
 // Defaults are already set for ports and localhost
 SetupLists();
 }

 public CheapoPortScanner(string host, int minPort, int maxPort)
 {
 if (minPort > maxPort)
 throw new
 ArgumentException("Min port cannot be greater than max port");
 if (minPort < PORT_MIN_VALUE || minPort > PORT_MAX_VALUE)
 throw new ArgumentOutOfRangeException("Min port cannot be less than "+
 PORT_MIN_VALUE + " or greater than " + PORT_MAX_VALUE);
 if (maxPort < PORT_MIN_VALUE || maxPort > PORT_MAX_VALUE)
 throw new ArgumentOutOfRangeException("Max port cannot be less than "+
 PORT_MIN_VALUE + " or greater than " + PORT_MAX_VALUE);

 _host = host;
 _minPort = minPort;
 _maxPort = maxPort;
 SetupLists();
 }

 private void SetupLists()
 {
 // Set up lists with capacity to hold half of range
 // Since we can't know how many ports are going to be open,
 // we compromise and allocate enough for half

 // rangeCount is max - min + 1
 int rangeCount = (_maxPort - _minPort) + 1;

 // If there are an odd number, bump by one to get one extra slot.
 if (rangeCount % 2 != 0)

Example 16-5. CheapoPortScanner class (continued)

638 | Chapter 16: Networking

There are two properties on CheapoPortScanner that bear mentioning. The OpenPorts
and ClosedPorts properties return a ReadOnlyCollection of type int that is a list of
the ports that are open and closed, respectively. Their code is shown in
Example 16-6.

 rangeCount += 1;

 // Reserve half the ports in the range for each
 _openPorts = new List<int>(rangeCount / 2);
 _closedPorts = new List<int>(rangeCount / 2);
 }
 #endregion // CTORs & Init code

Example 16-6. OpenPorts and ClosedPorts properties

#region Properties public ReadOnlyCollection<int> OpenPorts
{
 get { return new ReadOnlyCollection<int>(_openPorts); }
}
 public ReadOnlyCollection<int> ClosedPorts
{
 get { return new ReadOnlyCollection<int>(_closedPorts); }
}
#endregion // Properties

#region Private Methods
private void CheckPort(int port)
{
 if (IsPortOpen(port))
 {
 // If we got here, it is open
 _openPorts.Add(port);

 // Notify anyone paying attention
 OpenPortFoundEventHandler openPortFound = OpenPortFound;
 if (openPortFound != null)
 openPortFound(this, new OpenPortEventArgs(port));
 }
 else
 {
 // Server doesn't have that port open
 _closedPorts.Add(port);
 }
}

private bool IsPortOpen(int port)
{
 Socket sock = null;
 try
 {
 // Make a TCP-based socket
 sock = new Socket(AddressFamily.InterNetwork,

Example 16-5. CheapoPortScanner class (continued)

Use Sockets to Scan the Ports on a Machine | 639

The trigger method for the CheapoPortScanner is Scan. Scan will check all of the ports
in the range specified in the constructor. The ReportToConsole method will dump the
pertinent information about the last scan to the console output stream:

 #region Public Methods
 public void Scan()
 {
 for (int port = _minPort; port <= _maxPort; port++)
 {
 CheckPort(port);
 }
 }
 public void ReportToConsole()
 {
 Console.WriteLine("Port Scan for host at {0}:", _host.ToString());
 Console.WriteLine("\tStarting Port: {0}; Ending Port: {1}",
 _minPort, _maxPort);
 Console.WriteLine("\tOpen ports:");
 foreach (int port in _openPorts)
 {

 SocketType.Stream,
 ProtocolType.Tcp);
 // Connect
 sock.Connect(_host, port);
 return true;
 }
 catch (SocketException se)
 {
 if (se.SocketErrorCode == SocketError.ConnectionRefused)
 {
 return false;
 }
 else
 {
 // An error occurred when attempting to access the socket
 Debug.WriteLine(se.ToString());
 Console.WriteLine(se.ToString());
 }
 }
 finally
 {
 if (sock != null)
 {
 if (sock.Connected)
 sock.Disconnect(false);
 sock.Close();
 }
 }
 return false;
}
#endregion

Example 16-6. OpenPorts and ClosedPorts properties (continued)

640 | Chapter 16: Networking

 Console.WriteLine("\t\tPort {0}", port);
 }
 Console.WriteLine("\tClosed ports:");
 foreach (int port in _closedPorts)
 {
 Console.WriteLine("\t\tPort {0}", port);
 }
 }

 #endregion // Public Methods
}

The PortScan method demonstrates how to use CheapoPortScanner by scanning ports
1–30 on the local machine. It first subscribes to the OpenPortFound event. The han-
dler method for this event, cps_OpenPortFound, writes out the number of any port
found open. Next, PortScan calls the Scan method. Finally, it calls ReportToConsole to
show the full results of the scan, including the closed ports as well as the open ones:

 public static void PortScan ()
 {
 // Do a specific range
 Console.WriteLine("Checking ports 1-30 on localhost...");
 CheapoPortScanner cps = new CheapoPortScanner("127.0.0.1",1,30);
 cps.OpenPortFound +=
 new CheapoPortScanner.OpenPortFoundEventHandler(cps_OpenPortFound);
 cps.Scan();
 Console.WriteLine("Found {0} ports open and {1} ports closed",
 cps.OpenPorts.Count, cps.ClosedPorts.Count);

 // Do the local machine, whole port range 1-65535
 cps = new CheapoPortScanner();
 cps.Scan();
 cps.ReportToConsole();
 }

 static void cps_OpenPortFound(object sender, CheapoPortScanner.
OpenPortEventArgs
 args)
 {
 Console.WriteLine("OpenPortFound reported port {0} was open",args.
PPortNumP);
 }

The output for the port scanner as shown appears here:

 Checking ports 1-30 on localhost...
 OpenPortFound reported port 22 was open
 OpenPortFound reported port 26 was open
 Found 2 ports open and 28 ports closed

Discussion
Open ports on a machine are significant because they indicate the presence of a pro-
gram listening on those ports. Hackers look for “open” ports as ways to enter your

Use the Current Internet Connection Settings | 641

systems without permission. CheapoPortScanner is an admittedly rudimentary mecha-
nism for checking for open ports, but it demonstrates the principle well enough to
provide a good starting point.

If you run this on a corporate network, you may quickly get a visit
from your network administrator, as you may set off alarms in some
intrusion-detection systems. Be judicious in your use of this code.

See Also
The “Socket Class” and “Sockets” topics in the MSDN documentation.

16.9 Use the Current Internet Connection Settings

Problem
Your program wants to use the current Internet connection settings without forcing
the user to add them to your application manually.

Solution
Read the current Internet connectivity settings with the InternetSettingsReader class
provided for you in Example 16-7. InternetSettingsReader calls some methods of
the WinINet API via P/Invoke to retrieve current Internet connection information.
The majority of the work is done in setting up the structures that WinINet uses and
then marshaling the structure pointers correctly to retrieve the values.

Example 16-7. InternetSettingsReader class

public class InternetSettingsReader
{
 #region WinInet structures
 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
 public struct InternetPerConnOptionList
 {
 public int dwSize; // size of the INTERNET_PER_CONN_OPTION_LIST struct
 public IntPtr szConnection; // Connection name to set/query options
 public int dwOptionCount; // Number of options to set/query
 public int dwOptionError; // On error, which option failed
 public IntPtr options;
 };

 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
 public struct InternetConnectionOption
 {
 static readonly int Size;
 public PerConnOption m_Option;
 public InternetConnectionOptionValue m_Value;

642 | Chapter 16: Networking

 static InternetConnectionOption()
 {
 InternetConnectionOption.Size =
 Marshal.SizeOf(typeof(InternetConnectionOption));
 }

 // Nested Types
 [StructLayout(LayoutKind.Explicit)]
 public struct InternetConnectionOptionValue
 {
 // Fields
 [FieldOffset(0)]
 public System.Runtime.InteropServices.ComTypes.FILETIME m_FileTime;
 [FieldOffset(0)]
 public int m_Int;
 [FieldOffset(0)]
 public IntPtr m_StringPtr;
 }
 }
 #endregion

 #region WinInet enums
 // Options used in INTERNET_PER_CONN_OPTON struct
 //
 public enum PerConnOption
 {
 // Sets or retrieves the connection type. The Value member will contain one
 // or more of the values from PerConnFlags
 INTERNET_PER_CONN_FLAGS = 1,
 // Sets or retrieves a string containing the proxy servers
 INTERNET_PER_CONN_PROXY_SERVER = 2,
 // Sets or retrieves a string containing the URLs that do not use the
 // proxy server
 INTERNET_PER_CONN_PROXY_BYPASS = 3,
 // Sets or retrieves a string containing the URL to the automatic
 // configuration script
 INTERNET_PER_CONN_AUTOCONFIG_URL = 4,
 }

 //
 // PER_CONN_FLAGS
 //
 [Flags]
 public enum PerConnFlags
 {
 PROXY_TYPE_DIRECT = 0x00000001, // Direct to net
 PROXY_TYPE_PROXY = 0x00000002, // Via named proxy
 PROXY_TYPE_AUTO_PROXY_URL = 0x00000004, // Autoproxy URL
 PROXY_TYPE_AUTO_DETECT = 0x00000008 // Use autoproxy detection
 }

 #region P/Invoke defs

Example 16-7. InternetSettingsReader class (continued)

Use the Current Internet Connection Settings | 643

Each of the properties of InternetSettingsReader shown in Example 16-8 call into the
GetInternetConnectionOption method, which returns an InternetConnectionOption.
The InternetConnectionOption structure holds all of the pertinent data for the value
being returned, and that value is then retrieved based on what type of value was asked
for by the specific properties.

 [DllImport("WinInet.dll", EntryPoint = "InternetQueryOption",
 SetLastError = true)]

 public static extern bool InternetQueryOption(
 IntPtr hInternet,
 int dwOption,
 ref InternetPerConnOptionList optionsList,
 ref int bufferLength
);
 #endregion

 #region Private Members
 string _proxyAddr = "";
 int _proxyPort = -1;
 bool _bypassLocal = false;
 string _autoConfigAddr = "";
 string[] _proxyExceptions = null;
 PerConnFlags _flags;
 #endregion

 #region CTOR
 public InternetSettingsReader()
 {
 }
 #endregion

Example 16-8. InternetSettingsReader properties

#region Properties
public string ProxyAddr
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_SERVER);
 // Parse out the addr and port
 string proxyInfo = Marshal.PtrToStringUni(
 ico.m_Value.m_StringPtr);
 ParseProxyInfo(proxyInfo);
 return _proxyAddr;
 }
}
public int ProxyPort
{

Example 16-7. InternetSettingsReader class (continued)

644 | Chapter 16: Networking

 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_SERVER);
 // Parse out the addr and port
 string proxyInfo = Marshal.PtrToStringUni(
 ico.m_Value.m_StringPtr);
 ParseProxyInfo(proxyInfo);
 return _proxyPort;
 }
}
public bool BypassLocalAddresses
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_BYPASS);
 // Bypass is listed as <local> in the exceptions list
 string exceptions =
 Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);

 if (exceptions.IndexOf("<local>") != -1)
 _bypassLocal = true;
 else
 _bypassLocal = false;
 return _bypassLocal;
 }
}
public string AutoConfigurationAddr
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_AUTOCONFIG_URL);
 // Get these straight
 _autoConfigAddr =
 Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);
 if (_autoConfigAddr == null)
 _autoConfigAddr = "";
 return _autoConfigAddr;
 }
}
public string[] ProxyExceptions
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_BYPASS);

Example 16-8. InternetSettingsReader properties (continued)

Use the Current Internet Connection Settings | 645

 // Exceptions are separated by semicolon
 string exceptions =
 Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);
 if (!string.IsNullOrEmpty(exceptions))
 {
 _proxyExceptions = exceptions.Split(';');
 }
 return _proxyExceptions;
 }
}
public PerConnFlags ConnectionType
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_FLAGS);
 _flags = (PerConnFlags)ico.m_Value.m_Int;

 return _flags;
 }
}

#endregion
private void ParseProxyInfo(string proxyInfo)
{
 if(!string.IsNullOrEmpty(proxyInfo))
 {
 string [] parts = proxyInfo.Split(':');
 if (parts.Length == 2)
 {
 _proxyAddr = parts[0];
 try
 {
 _proxyPort = Convert.ToInt32(parts[1]);
 }
 catch (FormatException)
 {
 // No port
 _proxyPort = -1;
 }
 }
 else
 {
 _proxyAddr = parts[0];
 _proxyPort = -1;
 }
 }
}

Example 16-8. InternetSettingsReader properties (continued)

646 | Chapter 16: Networking

The GetInternetConnectionOption method shown in Example 16-9 does the heavy
lifting as far as communicating with WinINet. First, an InternetPerConnOptionList is
created as well as an InternetConnectionOption structure to hold the returned value.
The InternetConnectionOption structure is then pinned so that the garbage collector
does not move the structure in memory, and the PerConnOption value is assigned to
determine what Internet option to retrieve. Marshal.SizeOf is used to determine the
size of the two managed structures in unmanaged memory. These values are used to
initialize the size values for the structures, which allows the operating system to
determine the version of the unmanaged structure being dealt with.

The InternetPerConnOptionList is initialized to hold the option values, and then the
WinINet function IntrenetQueryOption is called. The InternetConnectionOption type
is filled by using the Marshal.PtrToStructure method, which maps the data from the
unmanaged structure containing the InternetConnectionOption data from unman-
aged code to the managed object instance, and then the managed version is returned
with the value.

Example 16-9. GetInternetConnectionOption method

private InternetConnectionOption GetInternetConnectionOption(PerConnOption pco)
{
 // Allocate the list and option
 InternetPerConnOptionList perConnOptList = new InternetPerConnOptionList();
 InternetConnectionOption ico = new InternetConnectionOption();
 // Pin the option structure
 GCHandle gch = GCHandle.Alloc(ico, GCHandleType.Pinned);
 // Initialize the option for the data we want
 ico.m_Option = pco;
 // Initialize the option list for the default connection or LAN
 int listSize = Marshal.SizeOf(perConnOptList);
 perConnOptList.dwSize = listSize;
 perConnOptList.szConnection = IntPtr.Zero;
 perConnOptList.dwOptionCount = 1;
 perConnOptList.dwOptionError = 0;
 // Figure out sizes and offsets
 int icoSize = Marshal.SizeOf(ico);
 int optionTotalSize = icoSize;
 // Alloc enough memory for the option
 perConnOptList.options =
 Marshal.AllocCoTaskMem(icoSize);

 long icoOffset = (long)perConnOptList.options + (long)icoSize;
 // Make pointer from the structure
 IntPtr optionListPtr = perConnOptList.options;
 Marshal.StructureToPtr(ico, optionListPtr, false);

 // Make the query
 if (InternetQueryOption(
 IntPtr.Zero,
 75, //(int)InternetOption.INTERNET_OPTION_PER_CONNECTION_OPTION,
 ref perConnOptList,

Use the Current Internet Connection Settings | 647

Using the InternetSettingsReader is demonstrated in the GetInternetSettings
method shown in Example 16-10. The proxy information is retrieved and displayed
to the console here, but could easily be stored in another program for use as proxy
information when connecting. See Recipe 14.6 for details on setting up the proxy
information for a WebRequest.

Output for the Solution:

 Current Proxy Address: CORPORATEPROXY
 Current Proxy Port: 8080
 Current ByPass Local Address setting: True
 Exception addresses for proxy (bypass):
 corporate.com
 <local>
 Proxy connection type: PROXY_TYPE_DIRECT, PROXY_TYPE_PROXY

 ref listSize) == true)
 {
 // Retrieve the value.
 ico =
(InternetConnectionOption)Marshal.PtrToStructure(perConnOptList.options,
 typeof(InternetConnectionOption));
 }
 // Free the COM memory
 Marshal.FreeCoTaskMem(perConnOptList.options);

 // Unpin the structs
 gch.Free();

 return ico;
}

Example 16-10. Using the InternetSettingsReader

public static void GetInternetSettings()
{
 InternetSettingsReader isr = new InternetSettingsReader();
 Console.WriteLine("Current Proxy Address: {0}",isr.ProxyAddr);
 Console.WriteLine("Current Proxy Port: {0}",isr.ProxyPort);
 Console.WriteLine("Current ByPass Local Address setting: {0}",
 isr.BypassLocalAddresses);
 Console.WriteLine("Exception addresses for proxy (bypass):");
 if(isr.ProxyExceptions != null)
 {
 foreach(string addr in isr.ProxyExceptions)
 {
 Console.WriteLine("\t{0}",addr);
 }
 }
 Console.WriteLine("Proxy connection type: {0}",isr.ConnectionType.ToString());
}

Example 16-9. GetInternetConnectionOption method (continued)

648 | Chapter 16: Networking

Discussion
The WinInet Windows Internet (WinInet) API is the unmanaged API for interacting
with the FTP, HTTP, and Gopher protocols. This API can be used to fill in where
managed code leaves off, such as with the Internet configuration settings shown in
the Solution. It can also be used for downloading files, working with cookies, and
participating in Gopher sessions. You need to understand that WinInet is meant to
be a client-side API and is not suited for server-side or service applications; issues
could arise in your application from improper usage.

There is a huge amount of information available to the C# programmer directly
through the BCL, but at times, you still need to roll up your sleeves and talk to the
Win32 API. Even in situations in which restricted privileges are the norm, it is not
always out of bounds to create a small assembly that needs enhanced access to do P/
Invoke. It can have its access locked down so as not to become a risk to the system.

See Also
The “InternetQueryOption Function [WinInet]” topic in the MSDN documentation.

16.10 Transferring Files Using FTP

Problem
You want to programmatically download and upload files using the File Transfer
Protocol (FTP).

Solution
Use the System.Net.FtpWebRequest class to perform these operations. FtpWebRequests
are created from the WebRequest class Create method by specifying the URI for the
FTP download. In the example that follows, the source code from the first edition of
the C# Cookbook is the target for the download. A FileStream is opened for the tar-
get and then is wrapped by a BinaryWriter. A BinaryReader is created with the
response stream from the FtpWebRequest. Then, the stream is read, and the target is
written until the entire file has been downloaded. This series of operations is demon-
strated in Example 16-11.

Example 16-11. Using the System.Net.FtpWebRequest class

// Go get the same code from edition 1
FtpWebRequest request =
 (FtpWebRequest)WebRequest.Create(
 "ftp://ftp.oreilly.com/pub/examples/csharpckbk/CSharpCookbook.zip");

request.Credentials = new NetworkCredential("anonymous", "hilyard@oreilly.com");
using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())

Transferring Files Using FTP | 649

To upload a file, use FtpWebRequest to get a stream on the request using
GetRequestStream and use it to upload the file with. Once the file has been opened
and written into the request stream, execute the request by calling GetResponse and
check the StatusDescription property for the result of the operation:

string uploadFile = "SampleClassLibrary.dll";
// go get the code from edition 1
Uri ftpSite =
 new Uri("ftp://localhost/Upload/" + uploadFile);
FileInfo fileInfo = new FileInfo(uploadFile);
FtpWebRequest request =
 (FtpWebRequest)WebRequest.Create(
 ftpSite);
request.Method = WebRequestMethods.Ftp.UploadFile;
request.UseBinary = true;
request.ContentLength = fileInfo.Length;
request.Credentials = new NetworkCredential("anonymous", "hilyard@oreilly.com");
byte[] byteBuffer = new byte[4096];
using (Stream requestStream = request.GetRequestStream())
{
 using (FileStream fileStream = new FileStream(uploadFile, FileMode.Open))
 {
 int bytesRead = 0;
 do
 {
 bytesRead = fileStream.Read(byteBuffer, 0, byteBuffer.Length);
 if (bytesRead > 0)
 {
 requestStream.Write(byteBuffer, 0, bytesRead);
 }

{
 Stream data = response.GetResponseStream();
 string targetPath = "CSharpCookbook.zip";
 if (File.Exists(targetPath))
 File.Delete(targetPath);

 byte[] byteBuffer = new byte[4096];
 using (FileStream output = new FileStream(targetPath, FileMode.CreateNew))
 {
 int bytesRead = 0;
 do
 {
 bytesRead = data.Read(byteBuffer, 0, byteBuffer.Length);
 if (bytesRead > 0)
 {
 output.Write(byteBuffer, 0, bytesRead);
 }
 }
 while (bytesRead > 0);
 }
}

Example 16-11. Using the System.Net.FtpWebRequest class (continued)

650 | Chapter 16: Networking

 }
 while (bytesRead > 0);
 }
}
using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())
{
 Console.WriteLine(response.StatusDescription);
}

Discussion
The File Transfer Protocol (FTP) is defined in RFC 959 and is one of the main ways
files are distributed over the Internet. The port number for FTP is usually 21. Hap-
pily, you don’t have to really know much about how FTP works in order to use it.
This could be useful to your applications in automatic download of information
from a dedicated FTP site or in providing automatic update capabilities.

See Also
The “FtpWebRequest Class,” “FtpWebResponse Class,” “WebRequest Class,” and
“WebResponse Class” topics in the MSDN documentation.

651

Chapter 17 CHAPTER 17

Security17

17.0 Introduction
There are many ways to secure different parts of your application. The security of
running code in .NET revolves around the concept of Code Access Security (CAS).
CAS determines the trustworthiness of an assembly based upon its origin and the
characteristics of the assembly itself, such as its hash value. For example, code
installed locally on the machine is more trusted than code downloaded from the
Internet. The runtime will also validate an assembly’s metadata and type safety
before that code is allowed to run.

There are many ways to write secure code and protect data using the .NET Frame-
work. In this chapter, we explore such things as controlling access to types, encryp-
tion and decryption, random numbers, securely storing data, and using
programmatic and declarative security.

17.1 Controlling Access to Types in a Local Assembly

Problem
You have an existing class that contains sensitive data, and you do not want clients
to have direct access to any objects of this class. Instead, you want an intermediary
object to talk to the clients and to allow access to sensitive data based on the client’s
credentials. What’s more, you would also like to have specific queries and modifica-
tions to the sensitive data tracked, so that if an attacker manages to access the object,
you will have a log of what the attacker was attempting to do.

Solution
Use the proxy design pattern to allow clients to talk directly to a proxy object. This
proxy object will act as gatekeeper to the class that contains the sensitive data. To
keep malicious users from accessing the class itself, make it private, which will at

652 | Chapter 17: Security

least keep code without the ReflectionPermissionFlag. MemberAccess access (which
is currently given only in fully trusted code scenarios such as executing code interac-
tively on a local machine) from getting at it.

The namespaces we will be using are:

 using System;
 using System.IO;
 using System.Security;
 using System.Security.Permissions;
 using System.Security.Principal;

Let’s start this design by creating an interface, as shown in Example 17-1, that will be
common to both the proxy objects and the object that contains sensitive data.

The CompanyData class shown in Example 17-2 is the underlying object that is
“expensive” to create.

Example 17-1. ICompanyData interface

internal interface ICompanyData
{
 string AdminUserName
 {
 get;
 set;
 }

 string AdminPwd
 {
 get;
 set;
 }

 string CEOPhoneNumExt
 {
 get;
 set;
 }

 void RefreshData();
 void SaveNewData();
}

Example 17-2. CompanyData class

internal class CompanyData : ICompanyData
{
 public CompanyData()
 {
 Console.WriteLine("[CONCRETE] CompanyData Created");
 // Perform expensive initialization here.
 this.AdminUserName = "admin";
 this.AdminPwd = "password";

Controlling Access to Types in a Local Assembly | 653

The code shown in Example 17-3 for the security proxy class checks the caller’s per-
missions to determine whether the CompanyData object should be created and its
methods or properties called.

 this.CEOPhoneNumExt = "0000";
 }

 public string AdminUserName
 {
 get;
 set;
 }

 public string AdminPwd
 {
 get;
 set;
 }

 public string CEOPhoneNumExt
 {
 get;
 set;
 }

 public void RefreshData()
 {
 Console.WriteLine("[CONCRETE] Data Refreshed");
 }

 public void SaveNewData()
 {
 Console.WriteLine("[CONCRETE] Data Saved");
 }
}

Example 17-3. CompanyDataSecProxy security proxy class

public class CompanyDataSecProxy : ICompanyData
{
 public CompanyDataSecProxy()
 {
 Console.WriteLine("[SECPROXY] Created");

 // Must set principal policy first.
 appdomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.
 WindowsPrincipal);
 }

 private ICompanyData coData = null;
 private PrincipalPermission admPerm =
 new PrincipalPermission(null, @"BUILTIN\Administrators", true);

Example 17-2. CompanyData class (continued)

654 | Chapter 17: Security

 private PrincipalPermission guestPerm =
 new PrincipalPermission(null, @"BUILTIN\Guest", true);
 private PrincipalPermission powerPerm =
 new PrincipalPermission(null, @"BUILTIN\PowerUser", true);
 private PrincipalPermission userPerm =
 new PrincipalPermission(null, @"BUILTIN\User", true);

 public string AdminUserName
 {
 get
 {
 string userName = "";
 try
 {
 admPerm.Demand();
 Startup();
 userName = coData.AdminUserName;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_get failed! {0}",e.ToString());
 }
 return (userName);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminUserName = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_set failed! {0}",e.ToString());
 }
 }
 }

 public string AdminPwd
 {
 get
 {
 string pwd = "";
 try
 {
 admPerm.Demand();
 Startup();
 pwd = coData.AdminPwd;
 }
 catch(SecurityException e)
 {

Example 17-3. CompanyDataSecProxy security proxy class (continued)

Controlling Access to Types in a Local Assembly | 655

 Console.WriteLine("AdminPwd_get Failed! {0}",e.ToString());
 }

 return (pwd);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminPwd = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminPwd_set Failed! {0}",e.ToString());
 }
 }
 }

 public string CEOPhoneNumExt
 {
 get
 {
 string ceoPhoneNum = "";
 try
 {
 admPerm.Union(powerPerm).Demand();
 Startup();
 ceoPhoneNum = coData.CEOPhoneNumExt;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("CEOPhoneNum_set Failed! {0}",e.ToString());
 }
 return (ceoPhoneNum);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.CEOPhoneNumExt = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("CEOPhoneNum_set Failed! {0}",e.ToString());
 }
 }
 }
 public void RefreshData()

Example 17-3. CompanyDataSecProxy security proxy class (continued)

656 | Chapter 17: Security

When creating the PrincipalPermissions as part of the object construction, you are
using string representations of the built-in objects ("BUILTIN\Administrators") to set
up the principal role. However, the names of these objects may be different depend-
ing on the locale the code runs under. It would be appropriate to use the
WindowsAccountType.Administrator enumeration value to ease localization because
this value is defined to represent the administrator role as well. We used text here to

 {
 try
 {
 admPerm.Union(powerPerm.Union(userPerm)).Demand();
 Startup();
 Console.WriteLine("[SECPROXY] Data Refreshed");
 coData.RefreshData();
 }
 catch(SecurityException e)
 {
 Console.WriteLine("RefreshData Failed! {0}",e.ToString());
 }
 }

 public void SaveNewData()
 {
 try
 {
 admPerm.Union(powerPerm).Demand();
 Startup();
 Console.WriteLine("[SECPROXY] Data Saved");
 coData.SaveNewData();
 }
 catch(SecurityException e)
 {
 Console.WriteLine("SaveNewData Failed! {0}",e.ToString());
 }
 }

 // DO NOT forget to use [#define DOTRACE] to control the tracing proxy.
 private void Startup()
 {
 if (coData == null)
 {
#if (DOTRACE)
 coData = new CompanyDataTraceProxy();
#else
 coData = new CompanyData();
#endif
 Console.WriteLine("[SECPROXY] Refresh Data");
 coData.RefreshData();
 }
 }
}

Example 17-3. CompanyDataSecProxy security proxy class (continued)

Controlling Access to Types in a Local Assembly | 657

clarify what was being done and also to access the PowerUsers role, which is not
available through the WindowsAccountType enumeration.

If the call to the CompanyData object passes through the CompanyDataSecProxy, then the
user has permissions to access the underlying data. Any access to this data may be
logged, so the administrator can check for any attempt to hack the CompanyData
object. The code shown in Example 17-4 is the tracing proxy used to log access to
the various method and property access points in the CompanyData object (note that
the CompanyDataSecProxy contains the code to turn this proxy object on or off).

Example 17-4. CompanyDataTraceProxy tracing proxy class

public class CompanyDataTraceProxy : ICompanyData
{
 public CompanyDataTraceProxy()
 {
 Console.WriteLine("[TRACEPROXY] Created");
 string path = Path.GetTempPath() + @"\CompanyAccessTraceFile.txt";
 fileStream = new FileStream(path, FileMode.Append,
 FileAccess.Write, FileShare.None);
 traceWriter = new StreamWriter(fileStream);
 coData = new CompanyData();
 }

 private ICompanyData coData = null;
 private FileStream fileStream = null;
 private StreamWriter traceWriter = null;

 public string AdminPwd
 {
 get
 {
 traceWriter.WriteLine("AdminPwd read by user.");
 traceWriter.Flush();
 return (coData.AdminPwd);
 }
 set
 {
 traceWriter.WriteLine("AdminPwd written by user.");
 traceWriter.Flush();
 coData.AdminPwd = value;
 }
 }

 public string AdminUserName
 {
 get
 {
 traceWriter.WriteLine("AdminUserName read by user.");
 traceWriter.Flush();
 return (coData.AdminUserName);
 }

658 | Chapter 17: Security

The proxy is used in the following manner:

 // Create the security proxy here.
 CompanyDataSecProxy companyDataSecProxy = new CompanyDataSecProxy();

 // Read some data.
 Console.WriteLine("CEOPhoneNumExt: " + companyDataSecProxy.CEOPhoneNumExt);

 // Write some data.
 companyDataSecProxy.AdminPwd = "asdf";
 companyDataSecProxy.AdminUserName = "asdf";

 // Save and refresh this data.
 companyDataSecProxy.SaveNewData();
 companyDataSecProxy.RefreshData();

 set
 {
 traceWriter.WriteLine("AdminUserName written by user.");
 traceWriter.Flush();
 coData.AdminUserName = value;
 }
 }

 public string CEOPhoneNumExt
 {
 get
 {
 traceWriter.WriteLine("CEOPhoneNumExt read by user.");
 traceWriter.Flush();
 return (coData.CEOPhoneNumExt);
 }
 set
 {
 traceWriter.WriteLine("CEOPhoneNumExt written by user.");
 traceWriter.Flush();
 coData.CEOPhoneNumExt = value;
 }
 }

 public void RefreshData()
 {
 Console.WriteLine("[TRACEPROXY] Refresh Data");
 coData.RefreshData();
 }

 public void SaveNewData()
 {
 Console.WriteLine("[TRACEPROXY] Save Data");
 coData.SaveNewData();
 }
}

Example 17-4. CompanyDataTraceProxy tracing proxy class (continued)

Controlling Access to Types in a Local Assembly | 659

Note that as long as the CompanyData object was accessible, you could have also writ-
ten this to access the object directly:

 // Instantiate the CompanyData object directly without a proxy.
 CompanyData companyData = new CompanyData();

 // Read some data.
 Console.WriteLine("CEOPhoneNumExt: " + companyData.CEOPhoneNumExt);

 // Write some data.
 companyData.AdminPwd = "asdf";
 companyData.AdminUserName = "asdf";

 // Save and refresh this data.
 companyData.SaveNewData();
 companyData.RefreshData();

If these two blocks of code are run, the same fundamental actions occur: data is read,
data is written, and data is updated/refreshed. This shows you that your proxy
objects are set up correctly and function as they should.

Discussion
The proxy design pattern is useful for several tasks. The most notable—in COM,
COM+, and .NET remoting—is for marshaling data across boundaries such as
AppDomains or even across a network. To the client, a proxy looks and acts exactly the
same as its underlying object; fundamentally, the proxy object is just a wrapper
around the object.

A proxy can test the security and/or identity permissions of the caller before the
underlying object is created or accessed. Proxy objects can also be chained together
to form several layers around an underlying object. Each proxy can be added or
removed depending on the circumstances.

For the proxy object to look and act the same as its underlying object, both should
implement the same interface. The implementation in this recipe uses an
ICompanyData interface on both the proxies (CompanyDataSecProxy and
CompanyDataTraceProxy) and the underlying object (CompanyData). If more proxies are
created, they, too, need to implement this interface.

The CompanyData class represents an expensive object to create. In addition, this class
contains a mixture of sensitive and nonsensitive data that requires permission checks
to be made before the data is accessed. For this recipe, the CompanyData class simply
contains a group of properties to access company data and two methods for updat-
ing and refreshing this data. You can replace this class with one of your own and cre-
ate a corresponding interface that both the class and its proxies implement.

The CompanyDataSecProxy object is the object that a client must interact with. This
object is responsible for determining whether the client has the correct privileges to

660 | Chapter 17: Security

access the method or property that it is calling. The get accessor of the AdminUserName
property shows the structure of the code throughout most of this class:

 public string AdminUserName
 {
 get
 {
 string userName = "";
 try
 {
 admPerm.Demand();
 Startup();
 userName = coData.AdminUserName;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_get Failed!: {0}",e.ToString());
 }
 return (userName);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminUserName = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_set Failed! {0}",e.ToString());
 }
 }
 }

Initially, a single permission (AdmPerm) is demanded. If this demand fails, a
SecurityException, which is handled by the catch clause, is thrown. (Other excep-
tions will be handed back to the caller.) If the Demand succeeds, the Startup method is
called. It is in charge of instantiating either the next proxy object in the chain
(CompanyDataTraceProxy) or the underlying CompanyData object. The choice depends
on whether the DOTRACE preprocessor symbol has been defined. You may use a differ-
ent technique, such as a registry key to turn tracing on or off, if you wish.

This proxy class uses the private field coData to hold a reference to an ICompanyData
type, which can be either a CompanyDataTraceProxy or the CompanyData object. This
reference allows you to chain several proxies together.

The CompanyDataTraceProxy simply logs any access to the CompanyData object’s infor-
mation to a text file. Since this proxy will not attempt to prevent a client from access-
ing the CompanyData object, the CompanyData object is created and explicitly called in
each property and method of this object.

Encrypting/Decrypting a String | 661

See Also
Design Patterns by Gamma et al. (Addison-Wesley).

17.2 Encrypting/Decrypting a String

Problem
You have a string you want to be able to encrypt and decrypt—perhaps a password
or software key—which will be stored in some form, such as in a file or the registry.
You want to keep this string a secret so that users cannot take this information from
you.

Solution
Encrypting the string will help to prevent users from being able to read and decipher
the information. The CryptoString class shown in Example 17-5 contains two static
methods to encrypt and decrypt a string and two static properties to retrieve the gen-
erated key and initialization vector (IV—a random number used as a starting point
to encrypt data) after encryption has occurred.

Example 17-5. CryptoString class

using System;
using System.Security.Cryptography;

public sealed class CryptoString
{
 private CryptoString() {}

 private static byte[] savedKey = null;
 private static byte[] savedIV = null;

 public static byte[] Key
 {
 get { return savedKey; }
 set { savedKey = value; }
 }

 public static byte[] IV
 {
 get { return savedIV; }
 set { savedIV = value; }
 }

 private static void RdGenerateSecretKey(RijndaelManaged rdProvider)
 {
 if (savedKey == null)
 {
 rdProvider.KeySize = 256;

662 | Chapter 17: Security

 rdProvider.GenerateKey();
 savedKey = rdProvider.Key;
 }
 }

 private static void RdGenerateSecretInitVector(RijndaelManaged rdProvider)
 {
 if (savedIV == null)
 {
 rdProvider.GenerateIV();
 savedIV = rdProvider.IV;
 }
 }

 public static string Encrypt(string originalStr)
 {
 // Encode data string to be stored in memory.
 byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);
 byte[] originalBytes = {};

 // Create MemoryStream to contain output.
 using (MemoryStream memStream = new
 MemoryStream(originalStrAsBytes.Length))
 {
 using (RijndaelManaged rijndael = new RijndaelManaged())
 {
 // Generate and save secret key and init vector.
 RdGenerateSecretKey(rijndael);
 RdGenerateSecretInitVector(rijndael);

 if (savedKey == null || savedIV == null)
 {
 throw (new NullReferenceException(
 "savedKey and savedIV must be non-null."));
 }

 // Create encryptor and stream objects.
 using (ICryptoTransform rdTransform =
 rijndael.CreateEncryptor((byte[])savedKey.
 Clone(),(byte[])savedIV.Clone()))
 {
 using (CryptoStream cryptoStream = new CryptoStream(memStream,
 rdTransform, CryptoStreamMode.Write))
 {
 // Write encrypted data to the MemoryStream.
 cryptoStream.Write(originalStrAsBytes, 0,
 originalStrAsBytes.Length);
 cryptoStream.FlushFinalBlock();
 originalBytes = memStream.ToArray();
 }
 }
 }

Example 17-5. CryptoString class (continued)

Encrypting/Decrypting a String | 663

Discussion
The CryptoString class contains only static members, except for the private instance
constructor, which prevents anyone from directly creating an object from this class.

This class uses the Rijndael algorithm to encrypt and decrypt a string. This algorithm
is found in the System.Security.Cryptography.RijndaelManaged class. This algorithm
requires a secret key and an initialization vector; both are byte arrays. A random

 }
 // Convert encrypted string.
 string encryptedStr = Convert.ToBase64String(originalBytes);
 return (encryptedStr);
 }

 public static string Decrypt(string encryptedStr)
 {
 // Unconvert encrypted string.
 byte[] encryptedStrAsBytes = Convert.FromBase64String(encryptedStr);
 byte[] initialText = new Byte[encryptedStrAsBytes.Length];

 using (RijndaelManaged rijndael = new RijndaelManaged())
 {
 using (MemoryStream memStream = new MemoryStream(encryptedStrAsBytes))
 {
 if (savedKey == null || savedIV == null)
 {
 throw (new NullReferenceException(
 "savedKey and savedIV must be non-null."));
 }

 // Create decryptor and stream objects.
 using (ICryptoTransform rdTransform =
 rijndael.CreateDecryptor((byte[])savedKey.
 Clone(),(byte[])savedIV.Clone()))
 {
 using (CryptoStream cryptoStream = new CryptoStream(memStream,
 rdTransform, CryptoStreamMode.Read))
 {
 // Read in decrypted string as a byte[].
 cryptoStream.Read(initialText, 0, initialText.Length);
 }
 }
 }
 }

 // Convert byte[] to string.
 string decryptedStr = Encoding.ASCII.GetString(initialText);
 return (decryptedStr);
 }
}

Example 17-5. CryptoString class (continued)

664 | Chapter 17: Security

secret key can be generated for you by calling the GenerateKey method on the
RijndaelManaged class. This method accepts no parameters and returns void. The
generated key is placed in the Key property of the RijndaelManaged class. The
GenerateIV method generates a random initialization vector and places this vector in
the IV property of the RijndaelManaged class.

The byte array values in the Key and IV properties must be stored for later use and
not modified. This is due to the nature of private-key encryption classes, such as
RijndaelManaged. The Key and IV values must be used by both the encryption and
decryption routines to successfully encrypt and decrypt data.

The SavedKey and SavedIV private static fields contain the secret key and initializa-
tion vector, respectively. The secret key is used by both the encryption and decryp-
tion methods to encrypt and decrypt data. This is why there are public properties for
these values, so they can be stored somewhere secure for later use. This means that
any strings encrypted by this object must be decrypted by this object. The initializa-
tion vector is there to make deducing the secret key from the encrypted string much
more difficult. The initialization vector does this by causing two identical encrypted
strings (encrypted with the same key) to look very different in their encrypted form.

Two methods in the CryptoString class, RdGenerateSecretKey and
RdGenerateSecretInitVector, are used to generate a secret key and initialization vec-
tor when none exists. The RdGenerateSecretKey method generates the secret key,
which is placed in the SavedKey field. Likewise, the RdGenerateSecretInitVector gen-
erates the initialization vector, which is placed in the SavedIV field. There is only one
key and one IV generated for this class. This enables the encryption and decryption
routines to have access to the same key and IV information at all times.

The Encrypt and Decrypt methods of the CryptoString class do the actual work of
encrypting and decrypting a string. The Encrypt method accepts a string that you
want to encrypt and returns an encrypted string. The following code calls this
method and passes in a string to be encrypted:

 string encryptedString = CryptoString.Encrypt("MyPassword");
 Console.WriteLine("encryptedString: {0}", encryptedString);
 // Get the key and IV used so you can decrypt it later.
 byte [] key = CryptoString.Key;
 byte [] IV = CryptoString.IV;

Once the string is encrypted, the key and IV are stored for later decryption. This
method displays:

 encryptedString: Ah4vkmVKpwMYRT97Q8cVgQ==

Note that your output may differ since you will be using a different key and IV value.
The following code sets the key and IV used to encrypt the string and then calls the
Decrypt method to decrypt the previously encrypted string:

 CryptoString.Key = key;
 CryptoString.IV = IV;

Encrypting and Decrypting a File | 665

 string decryptedString = CryptoString.Decrypt(encryptedString);
 Console.WriteLine("decryptedString: {0}", decryptedString);

This method displays:

 decryptedString: MyPassword

There does not seem to be any problem with using escape sequences such as \r, \n,
\r\n, or \t in the string to be encrypted. In addition, using a quoted string literal,
with or without escaped characters, works without a problem:

 @"MyPassword"

See Also
Recipe 17.3; the “System.Cryptography Namespace,” “MemoryStream Class,”
“ICryptoTransform Interface,” and “RijndaelManaged Class” topics in the MSDN
documentation.

17.3 Encrypting and Decrypting a File

Problem
You have sensitive information that must be encrypted before it is written to a file
that might be in a nonsecure area. This information must also be decrypted before it
is read back in to the application.

Solution
Use multiple cryptography providers and write the data to a file in encrypted format.
This is accomplished in the following class, which has a constructor that expects an
instance of the System.Security.Cryptography.SymmetricAlgorithm class and a path
for the file. The SymmetricAlgorithm class is an abstract base class for all crypto-
graphic providers in .NET, so you can be reasonably assured that this class could be
extended to cover all of them. This example implements support for TripleDES and
Rijndael.

The following namespaces are needed for this solution:

 using System;
 using System.Text;
 using System.IO;
 using System.Security.Cryptography;

The class SecretFile (implemented in this recipe) can be used for TripleDES as
shown:

 // Use TripleDES.
 using (TripleDESCryptoServiceProvider tdes = new
TripleDESCryptoServiceProvider())

666 | Chapter 17: Security

 {
 SecretFile secretTDESFile = new SecretFile(tdes,"tdestext.secret");

 string encrypt = "My TDES Secret Data!";
 Console.WriteLine("Writing secret data: {0}",encrypt);
 secretTDESFile.SaveSensitiveData(encrypt);
 // Save for storage to read file.
 byte [] key = secretTDESFile.Key;
 byte [] IV = secretTDESFile.IV;

 string decrypt = secretTDESFile.ReadSensitiveData();
 Console.WriteLine("Read secret data: {0}",decrypt);
 }

To use SecretFile with Rijndael, just substitute the provider in the constructor like
this:

 // Use Rijndael.
 using (RijndaelManaged rdProvider = new RijndaelManaged())
 {
 SecretFile secretRDFile = new SecretFile(rdProvider,"rdtext.secret");

 string encrypt = "My Rijndael Secret Data!";

 Console.WriteLine("Writing secret data: {0}",encrypt);
 secretRDFile.SaveSensitiveData(encrypt);
 // Save for storage to read file.
 byte [] key = secretRDFile.Key;
 byte [] IV = secretRDFile.IV;

 string decrypt = secretRDFile.ReadSensitiveData();
 Console.WriteLine("Read secret data: {0}",decrypt);
 }

Example 17-6 shows the implementation of SecretFile.

Example 17-6. SecretFile class

public class SecretFile
{
 private byte[] savedKey = null;
 private byte[] savedIV = null;
 private SymmetricAlgorithm symmetricAlgorithm;
 string path;

 public byte[] Key
 {
 get { return savedKey; }
 set { savedKey = value; }
 }

 public byte[] IV
 {
 get { return savedIV; }
 set { savedIV = value; }
 }

Encrypting and Decrypting a File | 667

 public SecretFile(SymmetricAlgorithm algorithm, string fileName)
 {
 symmetricAlgorithm = algorithm;
 path = fileName;
 }

 public void SaveSensitiveData(string sensitiveData)
 {
 // Encode data string to be stored in encrypted file.
 byte[] encodedData = Encoding.Unicode.GetBytes(sensitiveData);

 // Create FileStream and crypto service provider objects.
 using (FileStream fileStream = new FileStream(path,
 FileMode.Create,
 FileAccess.Write))
 {
 // Generate and save secret key and init vector.
 GenerateSecretKey();
 GenerateSecretInitVector();

 // Create crypto transform and stream objects.
 using (ICryptoTransform transform =
 symmetricAlgorithm.CreateEncryptor(savedKey,
 savedIV))
 {
 using (CryptoStream cryptoStream =
 new CryptoStream(fileStream, transform, CryptoStreamMode.Write))
 {
 // Write encrypted data to the file.
 cryptoStream.Write(encodedData, 0, encodedData.Length);
 }
 }
 }
 }

 public string ReadSensitiveData()
 {
 string decrypted = "";

 // Create file stream to read encrypted file back.
 using (FileStream fileStream = new FileStream(path,
 FileMode.Open,
 FileAccess.Read))
 {
 // Print out the contents of the encrypted file.
 using (BinaryReader binReader = new BinaryReader(fileStream))
 {
 Console.WriteLine("---------- Encrypted Data ---------");
 int count = (Convert.ToInt32(binReader.BaseStream.Length));
 byte [] bytes = binReader.ReadBytes(count);
 char [] array = Encoding.Unicode.GetChars(bytes);
 string encdata = new string(array);

Example 17-6. SecretFile class (continued)

668 | Chapter 17: Security

 Console.WriteLine(encdata);
 Console.WriteLine("---------- Encrypted Data ---------\r\n");

 // Reset the file stream.
 fileStream.Seek(0,SeekOrigin.Begin);

 // Create decryptor.
 using (ICryptoTransform transform =
 symmetricAlgorithm.CreateDecryptor(savedKey, savedIV))
 {
 using (CryptoStream cryptoStream = new CryptoStream(fileStream,
 transform,
 CryptoStreamMode.Read))
 {
 // Print out the contents of the decrypted file.
 StreamReader srDecrypted = new StreamReader(cryptoStream,
 new UnicodeEncoding());
 Console.WriteLine("---------- Decrypted Data ---------");
 decrypted = srDecrypted.ReadToEnd();
 Console.WriteLine(decrypted);
 Console.WriteLine("---------- Decrypted Data ---------");
 }
 }
 }
 }

 return decrypted;
 }

 private void GenerateSecretKey()
 {
 if (null != (symmetricAlgorithm as TripleDESCryptoServiceProvider))
 {
 TripleDESCryptoServiceProvider tdes;
 tdes = symmetricAlgorithm as TripleDESCryptoServiceProvider;
 tdes.KeySize = 192; // Maximum key size
 tdes.GenerateKey();
 savedKey = tdes.Key;
 }
 else if (null != (symmetricAlgorithm as RijndaelManaged))
 {
 RijndaelManaged rdProvider;
 rdProvider = symmetricAlgorithm as RijndaelManaged;
 rdProvider.KeySize = 256; // Maximum key size
 rdProvider.GenerateKey();
 savedKey = rdProvider.Key;
 }
 }

 private void GenerateSecretInitVector()
 {
 if (null != (symmetricAlgorithm as TripleDESCryptoServiceProvider))

Example 17-6. SecretFile class (continued)

Encrypting and Decrypting a File | 669

If the SaveSensitiveData method is used to save the following text to a file:

 This is a test
 This is sensitive data!

the ReadSensitiveData method will display the following information from this same
file:

 ---------- Encrypted Data --------
 ??
 ---------- Encrypted Data --------

 ---------- Decrypted Data ---------
 This is a test
 This is sensitive data!
 ---------- Decrypted Data ---------

Discussion
Encrypting data is essential to many applications, especially ones that store informa-
tion in easily accessible locations. Once data is encrypted, a decryption scheme is
required to restore the data back to an unencrypted form without losing any infor-
mation. The same underlying algorithms can be used to authenticate the source of a
file or message.

The encryption schemes used in this recipe are TripleDES and Rijndael. The reasons
for using Triple DES are:

• TripleDES employs symmetric encryption, meaning that a single private key is
used to encrypt and decrypt data. This process allows much faster encryption
and decryption, especially as the streams of data become larger.

• TripleDES encryption is much harder to crack than the older DES encryption
and is widely considered to be of high strength.

 {
 TripleDESCryptoServiceProvider tdes;
 tdes = symmetricAlgorithm as TripleDESCryptoServiceProvider;
 tdes.GenerateIV();
 savedIV = tdes.IV;
 }
 else if (null != (symmetricAlgorithm as RijndaelManaged))
 {
 RijndaelManaged rdProvider;
 rdProvider = symmetricAlgorithm as RijndaelManaged;
 rdProvider.GenerateIV();
 savedIV = rdProvider.IV;
 }
 }

Example 17-6. SecretFile class (continued)

670 | Chapter 17: Security

• If you wish to use another type of encryption, this recipe can be easily converted
using any provider derived from the SymmetricAlgorithm class.

• TripleDES is widely deployed in the industry today.

The main drawback to TripleDES is that both the sender and receiver must use the
same key and initialization vector (IV) in order to encrypt and decrypt the data suc-
cessfully. If you wish to have an even more secure encryption scheme, use the
Rijndael scheme. This type of encryption scheme is highly regarded as a solid encryp-
tion scheme, since it is fast and can use larger key sizes than TripleDES. However, it
is still a symmetric cryptosystem, which means that it relies on shared secrets. Use an
asymmetric cryptosystem, such as RSA or DSA, for a cryptosystem that uses shared
public keys with private keys that are never shared between parties.

See Also
The “SymmetricAlgorithm Class,” “TripleDESCryptoServiceProvider Class,” and
“RijndaelManaged Class” topics in the MSDN documentation.

17.4 Cleaning Up Cryptography Information

Problem
You will be using the cryptography classes in the FCL to encrypt and/or decrypt
data. In doing so, you want to make sure that no data (e.g., seed values or keys) is
left in memory for longer than you are using the cryptography classes. Hackers can
sometimes find this information in memory and use it to break your encryption or,
worse, to break your encryption, modify the data, and then reencrypt the data and
pass it on to your application.

Solution
In order to clear out the key and initialization vector (or seed), you need to call the
Clear method on whichever SymmetricAlgorithm- or AsymmetricAlgorithm-derived
class you are using. Clear reinitializes the Key and IV properties, preventing them
from being found in memory. This is done after saving the key and IV so that you
can decrypt later. Example 17-7 encodes a string and then cleans up immediately
afterward to provide the smallest window possible for potential attackers.

Example 17-7. Cleaning up cryptography information

using System;
using System.Text;
using System.IO;
using System.Security.Cryptography;

string originalStr = "SuperSecret information";
// Encode data string to be stored in memory.

Cleaning Up Cryptography Information | 671

You can also make your life a little easier by taking advantage of the using state-
ment, instead of having to remember to manually call each of the Close methods
individually. This code block shows how to use the using statement:

 public static void CleanUpCryptoWithUsing()
 {
 string originalStr = "SuperSecret information";
 // Encode data string to be stored in memory.
 byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);
 byte[] originalBytes = { };

 // Create MemoryStream to contain output.
 using (MemoryStream memStream = new MemoryStream(originalStrAsBytes.
Length))
 {
 using (RijndaelManaged rijndael = new RijndaelManaged())
 {
 // Generate secret key and init vector.

byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);

// Create MemoryStream to contain output.
MemoryStream memStream = new MemoryStream(originalStrAsBytes.Length);
RijndaelManaged rijndael = new RijndaelManaged();

// Generate secret key and init vector.
rijndael.KeySize = 256;
rijndael.GenerateKey();
rijndael.GenerateIV();

// Save the key and IV for later decryption.
byte [] key = rijndael.Key;
byte [] IV = rijndael.IV;

// Create encryptor and stream objects.
ICryptoTransform transform = rijndael.CreateEncryptor(rijndael.Key,
 rijndael.IV);
CryptoStream cryptoStream = new CryptoStream(memStream, transform,
 CryptoStreamMode.Write);

// Write encrypted data to the MemoryStream.
cryptoStream.Write(originalStrAsBytes, 0, originalStrAsBytes.Length);
cryptoStream.FlushFinalBlock();

// Release all resources as soon as we are done with them
// to prevent retaining any information in memory.
memStream.Close();
cryptoStream.Close();
transform.Dispose();
// This clear statement regens both the key and the init vector so that
// what is left in memory is no longer the values you used to encrypt with.
rijndael.Clear();

Example 17-7. Cleaning up cryptography information (continued)

672 | Chapter 17: Security

 rijndael.KeySize = 256;
 rijndael.GenerateKey();
 rijndael.GenerateIV();
 // Save off the key and IV for later decryption.
 byte[] key = rijndael.Key;
 byte[] IV = rijndael.IV;

 // Create encryptor and stream objects.
 using (ICryptoTransform transform =
 rijndael.CreateEncryptor(rijndael.Key, rijndael.IV))
 {
 using (CryptoStream cryptoStream = new
 CryptoStream(memStream, transform,
 CryptoStreamMode.Write))
 {
 // Write encrypted data to the MemoryStream.
 cryptoStream.Write(originalStrAsBytes, 0,
 originalStrAsBytes.Length);
 cryptoStream.FlushFinalBlock();
 }
 }
 }
 }
 }

Discussion
To make sure your data is safe, you need to close the MemoryStream and CryptoStream
objects as soon as possible, as well as calling Dispose on the ICryptoTransform imple-
mentation to clear out any resources used in this encryption. The using statement
makes this process much easier, makes your code easier to read, and leads to fewer
programming mistakes.

See Also
The “SymmetricAlgorithm.Clear Method” and “AsymmetricAlgorithm.Clear
Method” topics in the MSDN documentation.

17.5 Verifying That a String Remains Uncorrupted
Following Transmission

Problem
You have some text that will be sent across a network to another machine for pro-
cessing. You need to verify that this message has not been modified in transit.

Verifying That a String Remains Uncorrupted Following Transmission | 673

Solution
Calculate a hash value from the string and append it to the string before it is sent to
its destination. Once the destination receives the string, it can remove the hash value
and determine whether the string is the same one that was initially sent. It is critical
that both sides agree on a hash algorithm that will be used. The SHA-256 algorithm
is a good choice and an industry standard.

The CreateStringHash method takes a string as input, adds a hash value to the end
of it, and returns the new string, as shown in Example 17-8.

Example 17-8. Verifying that a string remains uncorrupted following transmission

public class HashOps
{
 // The number 44 is the exact length of the base64 representation
 // of the hash value, which was appended to the string.
 private const int HASH_LENGTH = 44;

 public static string CreateStringHash(string unHashedString)
 {
 byte[] encodedUnHashedString = Encoding.Unicode.GetBytes(unHashedString);
 string stringWithHash = "";

 using (SHA256Managed hashingObj = new SHA256Managed())
 {
 byte[] hashCode = hashingObj.ComputeHash(encodedUnHashedString);

 string hashBase64 = Convert.ToBase64String(hashCode);
 stringWithHash = unHashedString + hashBase64;
 }

 return (stringWithHash);
 }

public static bool IsStringCorrupted(string stringWithHash,
 out string originalStr)
 {
 // Code to quickly test the handling of a tampered string.
 //stringWithHash = stringWithHash.Replace('a', 'b');

 if (stringWithHash.Length <= HASH_LENGTH)
 {
 originalStr = null;
 return (true);
 }

 string hashCodeString =
 stringWithHash.Substring(stringWithHash.Length - HASH_LENGTH);
 string unHashedString =
 stringWithHash.Substring(0, stringWithHash.Length - HASH_LENGTH);

674 | Chapter 17: Security

The IsStringCorrupted method is called by the code that receives a string with a hash
value appended. This method removes the hash value, calculates a new hash value
for the string, and checks to see whether both hash values match. If they match, both
strings are exactly the same, and the method returns false. If they don’t match, the
string has been tampered with, and the method returns true.

Since the CreateStringHash and IsStringCorrepted methods are static members of a
class named HashOps, you can call these methods with code like the following:

 public static void VerifyNonStringCorruption()
 {
 string testString = "This is the string that we'll be testing.";
 string unhashedString;
 string hashedString = HashOps.CreateStringHash(testString);

 bool result = HashOps.IsStringCorrupted(hashedString, out
unhashedString);
 Console.WriteLine(result);
 if (!result)
 Console.WriteLine("The string sent is: " + unhashedString);
 else

 byte[] hashCode = Convert.FromBase64String(hashCodeString);

 byte[] encodedUnHashedString = Encoding.Unicode.GetBytes(unHashedString);

 bool hasBeenTamperedWith = false;
 using (SHA256Managed hashingObj = new SHA256Managed())
 {
 byte[] receivedHashCode = hashingObj.ComputeHash(encodedUnHashedString);
 for (int counter = 0; counter < receivedHashCode.Length; counter++)
 {
 if (receivedHashCode[counter] != hashCode[counter])
 {
 hasBeenTamperedWith = true;
 break;
 }
 }

 if (!hasBeenTamperedWith)
 {
 originalStr = unHashedString;
 }
 else
 {
 originalStr = null;
 }
 }

 return (hasBeenTamperedWith);
 }
}

Example 17-8. Verifying that a string remains uncorrupted following transmission (continued)

Verifying That a String Remains Uncorrupted Following Transmission | 675

 Console.WriteLine("The string: " + unhashedString +
 " has become corrupted.");
 }

The output of this method is shown here when the string is uncorrupted:

 False
 The string sent is: This is the string that we'll be testing.

The output of this method is shown here when the string is corrupted:

 False
 The string: This is the string that we'll #$%^(&&*2 be testing.
 has become corrupted.

Discussion
You can use a hash, checksum, or cyclic redundancy check (CRC) to calculate a value
based on a message. This value is then used at the destination to determine whether
the message has been modified during transmission between the source and
destination.

This recipe uses a hash value as a reliable method of determining whether a string
has been modified. The hash value for this recipe is calculated using the
SHA256Managed class. This hash value is 256 bits in size and produces greatly differing
results when calculated from strings that are very similar, but not exactly the same.
In fact, if a single letter is removed or even capitalized, the resulting hash value will
change considerably.

By appending this value to the string, both the string and hash values can be sent to
their destination. The destination then removes the hash value and calculates a hash
value of its own based on the received string. These two hash values are then com-
pared. If they are equal, the strings are exactly the same. If they are not equal, you
can be sure that somewhere between the source and destination, the string was cor-
rupted. This technique is great for verifying that transmission succeeded without
errors, but it does not guarantee against malicious tampering. To protect against
malicious tampering, use an asymmetric algorithm: sign the string with a private key
and verify the signature with a public key.

The CreateStringHash method first converts the unhashed string into a byte array
using the GetBytes method of the UnicodeEncoding class. This byte array is then
passed to the ComputeHash method of the SHA256Managed class.

Once the hash value is calculated, the byte array containing the hash code is con-
verted to a string containing base64 digits, using the Convert.ToBase64String
method. This method accepts a byte array, converts it to a string of base64 digits,
and returns that string. The reason for doing this is to convert all unsigned integers
in the byte array to values that can be represented in a string data type. The last thing
that this method does is to append the hash value to the end of the string and return
the newly hashed string.

676 | Chapter 17: Security

The IsStringCorrupted method accepts a hashed string and an out parameter that
will return the unhashed string. This method returns a Boolean; as previously men-
tioned, true indicates that the string has been modified, false indicates that the
string is unmodified.

This method first removes the hash value from the end of the StringWithHash vari-
able. Next, a new hash is calculated using the string portion of the StringWithHash
variable. These two hash values are compared. If they are the same, the string has
been received, unmodified. Note that if you change the hashing algorithm used, you
must change it in both this method and the CreateStringHash method. You must also
change the HASH_LENGTH constant in the IsStringCorrupted method to an appro-
priate size for the new hashing algorithm. This number is the exact length of the
base64 representation of the hash value, which was appended to the string.

See Also
The “SHA256Managed Class,” “Convert.ToBase64String Method,” and “Convert.
FromBase64String Method” topics in the MSDN documentation.

17.6 Storing Data Securely

Problem
You need to store settings data about individual users for use by your application
and keep this data isolated from other instances of your application run by different
users.

Solution
You can use isolated storage to establish per-user data stores for your application
data and then use hashed values for critical data.

To illustrate how to do this for settings data, you create the following UserSettings
class. UserSettings holds only two pieces of information: the user identity (current
WindowsIdentity) and the password for your application. The user identity is
accessed via the User property, and the password is accessed via the Password prop-
erty. Note that the password field is created the first time and is stored as a salted
hashed value to keep it secure. The combination of the isolated storage and the hash-
ing of the password value helps to strengthen the security of the password by using
the defense in depth principle. Salting the hash is an extra measure of protection that
not only protects the password against dictionary type attacks, but it also prevents an
attacker from easily determining if two users have the same password by comparing
the hashes.

The settings data is held in XML that is stored in the isolated storage scope and
accessed via an XmlDocument instance.

Storing Data Securely | 677

This solution uses the following namespaces:

 using System;
 using System.IO;
 using System.IO.IsolatedStorage;
 using System.Xml;
 using System.Text;
 using System.Diagnostics;
 using System.Security.Principal;
 using System.Security.Cryptography;

The UserSettings class is shown in Example 17-9.

Example 17-9. UserSettings class

// Class to hold user settings
public class UserSettings
{
 isoFileStream = null;
 XmlDocument settingsDoc = null;
 const string storageName = "SettingsStorage.xml";

 // Constructor
 public UserSettings(string password)
 {
 // Get the isolated storage.
 using (IsolatedStorageFile isoStorageFile =
 IsolatedStorageFile.GetUserStoreForDomain())
 {
 // Create an internal DOM for settings.
 settingsDoc = new XmlDocument();
 // If no settings, create default.
 if(isoStorageFile.GetFileNames(storageName).Length == 0)
 {
 using (IsolatedStorageFileStream isoFileStream =
 new IsolatedStorageFileStream(storageName,
 FileMode.Create,
 isoStorageFile))
 {
 using (XmlTextWriter writer = new
 XmlTextWriter(isoFileStream,Encoding.UTF8))
 {
 writer.WriteStartDocument();
 writer.WriteStartElement("Settings");
 writer.WriteStartElement("User");
 // Get current user.
 WindowsIdentity user = WindowsIdentity.GetCurrent();
 writer.WriteString(user.Name);
 writer.WriteEndElement();
 writer.WriteStartElement("Password");

 // Pass null to CreateHashedPassword as the salt
 // to establish one
 // CreateHashedPassword appears shortly

678 | Chapter 17: Security

The User property provides access to the WindowsIdentity of the user that this set of
settings belongs to:

 // User property
 public string User
 {
 get
 {
 XmlNode userNode = settingsDoc.SelectSingleNode("Settings/User");
 if(userNode != null)
 {
 return userNode.InnerText;
 }
 return "";
 }
 }

The Password property gets the salted and hashed password value from the XML
store and, when updating the password, takes the plain text of the password and cre-
ates the salted and hashed version, which is then stored:

 // Password property
 public string Password
 {
 get
 {
 XmlNode pwdNode =
 settingsDoc.SelectSingleNode("Settings/Password");
 if(pwdNode != null)

 string hashedPassword =
 CreateHashedPassword(password,null);
 writer.WriteString(hashedPassword);
 writer.WriteEndElement();
 writer.WriteEndElement();
 writer.WriteEndDocument();
 Console.WriteLine("Creating settings for " + user.Name);
 }
 }
 }

 // Set up access to settings store.
 using (IsolatedStorageFileStream isoFileStream =
 new IsolatedStorageFileStream(storageName,
 FileMode.Open,
 isoStorageFile))
 {
 // Load settings from isolated filestream
 settingsDoc.Load(isoFileStream);
 Console.WriteLine("Loaded settings for " + User);
 }
 }
 }

Example 17-9. UserSettings class (continued)

Storing Data Securely | 679

 {
 return pwdNode.InnerText;
 }
 return "";
 }
 set
 {
 XmlNode pwdNode =
 settingsDoc.SelectSingleNode("Settings/Password");

 string hashedPassword = CreateHashedPassword(value,null);
 if(pwdNode != null)
 {
 pwdNode.InnerText = hashedPassword;
 }
 else
 {
 XmlNode settingsNode =
 settingsDoc.SelectSingleNode("Settings");
 XmlElement pwdElem =
 settingsDoc.CreateElement("Password");
 pwdElem.InnerText=hashedPassword;
 settingsNode.AppendChild(pwdElem);
 }
 }
 }

The CreateHashedPassword method creates the salted and hashed password. The
password parameter is the plain text of the password; the existingSalt parameter is
the salt to use when creating the salted and hashed version. If no salt exists, such as
the first time a password is stored, existingSalt should be passed as null, and a ran-
dom salt will be generated.

Once you have the salt, it is combined with the plain text password and hashed
using the SHA512Managed class. The salt value is then appended to the end of the
hashed value and returned. The salt is appended so that when you attempt to vali-
date the password, you know what salt was used to create the hashed value. The
entire value is then base64-encoded and returned:

 // Make a hashed password.
 private string CreateHashedPassword(string password,
 byte[] existingSalt)
 {
 byte [] salt = null;
 if(existingSalt == null)
 {
 // Make a salt of random size.
 // Create a stronger hash code using RNGCryptoServiceProvider.
 byte[] random = new byte[1];
 RNGCryptoServiceProvider rngSize = new RNGCryptoServiceProvider();
 // Populate with random bytes.
 rngSize.GetBytes(random);
 // Convert random bytes to string.

680 | Chapter 17: Security

 int size = Convert.ToInt32(random);

 // Create salt array.
 salt = new byte[size];

 // Use the better random number generator to get
 // bytes for the salt.
 RNGCryptoServiceProvider rngSalt =
 new RNGCryptoServiceProvider();
 rngSalt.GetNonZeroBytes(salt);
 }
 else
 salt = existingSalt;

 // Turn string into bytes.
 byte[] pwd = Encoding.UTF8.GetBytes(password);

 // Make storage for both password and salt.
 byte[] saltedPwd = new byte[pwd.Length + salt.Length];

 // Add pwd bytes first.
 pwd.CopyTo(saltedPwd,0);
 // now add salt
 salt.CopyTo(saltedPwd,pwd.Length);

 // Use SHA512 as the hashing algorithm.
 byte[] hashWithSalt = null;
 using (SHA512Managed sha512 = new SHA512Managed())
 {
 // Get hash of salted password.
 byte[] hash = sha512.ComputeHash(saltedPwd);

 // Append salt to hash so we have it.
 hashWithSalt = new byte[hash.Length + salt.Length];

 // Copy in bytes.
 hash.CopyTo(hashWithSalt,0);
 salt.CopyTo(hashWithSalt,hash.Length);
 }

 // Return base64-encoded hash with salt.
 return Convert.ToBase64String(hashWithSalt);
 }

To check a given password against the stored value (which is salted and hashed), you
call IsPasswordValid and pass in the plain text password to check. First, the stored
value is retrieved using the Password property and converted from base64. Since you
know you used SHA512, there are 512 bits in the hash. But you need the byte size, so
you do the math and get that size in bytes. This allows you to figure out where to get
the salt from in the value, so you copy it out of the value and call
CreateHashedPassword using that salt and the plain text password parameter. This
gives you the hashed value for the password that was passed in to verify. Once you

Storing Data Securely | 681

have that, you just compare it to the Password property to see whether you have a
match and return true or false as appropriate:

 // Check the password against our storage.
 public bool IsPasswordValid(string password)
 {
 // Get bytes for password.
 // This is the hash of the salted password and the salt.
 byte[] hashWithSalt = Convert.FromBase64String(Password);

 // We used 512 bits as the hash size (SHA512).
 int hashSizeInBytes = 512 / 8;

 // Make holder for original salt.
 int saltSize = hashWithSalt.Length - hashSizeInBytes;
 byte[] salt = new byte[saltSize];

 // Copy out the salt.
 Array.Copy(hashWithSalt,hashSizeInBytes,salt,0,saltSize);

 // Figure out hash for this password.
 string passwordHash = CreateHashedPassword(password,salt);

 // If the computed hash matches the specified hash,
 // the plain text value must be correct.
 // See if Password (stored) matched password passed in.
 return (Password == passwordHash);
 }
 }

Code that uses the UserSettings class is shown here:

 class IsoApplication
 {
 static void Main(string[] args)
 {
 if(args.Length > 0)
 {
 UserSettings settings = new UserSettings(args[0]);
 if(settings.IsPasswordValid(args[0]))
 {
 Console.WriteLine("Welcome");
 return;
 }
 }
 Console.WriteLine("The system could not validate your credentials");
 }
 }

The way to use this application is to pass the password on the command line as the
first argument. This password is then checked against the UserSettings, which is
stored in the isolated storage for this particular user. If the password is correct, the
user is welcomed; if not, the user is shown the door.

682 | Chapter 17: Security

Discussion
Isolated storage allows an application to store data that is unique to the application
and the user running it. This storage allows the application to write out state infor-
mation that is not visible to other applications or even other users of the same appli-
cation. Isolated storage is based on the code identity as determined by the CLR, and
it stores the information either directly on the client machine or in isolated stores
that can be opened and roam with the user. The storage space available to the appli-
cation is directly controllable by the administrator of the machine on which the
application operates.

The Solution uses isolation by User, AppDomain, and Assembly by calling
IsolatedStorageFile.GetUserStoreForDomain. This creates an isolated store that is
accessible by only this user in the current assembly in the current AppDomain:

 // Get the isolated storage.
 isoStorageFile = IsolatedStorageFile.GetUserStoreForDomain();

The Storeadm.exe utility will allow you to see which isolated-storage stores have
been set up on the machine by running the utility with the /LIST command-line
switch. Storeadm.exe is part of the .NET Framework SDK and can be located in your
Visual Studio installation directory under the \SDK\v2.0\Bin subdirectory.

The output after using the UserSettings class would look like this:

 C:\>storeadm /LIST
 Microsoft (R) .NET Framework Store Admin 1.1.4322.573
 Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

 Record #1
 [Domain]
 <System.Security.Policy.Url version="1">
 <Url>file://D:/PRJ32/Book/IsolatedStorage/bin/Debug/IsolatedStorage.exe</
Url>

 </System.Security.Policy.Url>

 [Assembly]
 <System.Security.Policy.Url version="1">
 <Url>file://D:/PRJ32/Book/IsolatedStorage/bin/Debug/IsolatedStorage.exe</
Url>

 </System.Security.Policy.Url>

 Size : 1024

Passwords should never be stored in plain text, period. It is a bad habit to get into, so
in the UserSettings class, you have added the salting and hashing of the password
value via the CreateHashedPassword method and verification through the
IsPasswordValid method. Adding a salt to the hash helps to strengthen the protec-
tion on the value being hashed so that the isolated storage, the hash, and the salt
now protect the password you are storing.

Making a Security Assert Safe | 683

See Also
The “IsolatedStorageFile Class,” “IsolatedStorageStream Class,” “About Isolated
Storage,” and “ComputeHash Method” topics in the MSDN documentation.

17.7 Making a Security Assert Safe

Problem
You want to assert that at a particular point in the call stack, a given permission is
available for all subsequent calls. However, doing this can easily open a security hole
to allow other malicious code to spoof your code or to create a back door into your
component. You want to assert a given security permission, but you want to do so in
a secure and efficient manner.

Solution
In order to make this approach secure, you need to call Demand on the permissions that
the subsequent calls need. This makes sure that code that doesn’t have these permis-
sions can’t slip by due to the Assert. The Demand is done to ensure that you have indeed
been granted this permission before using the Assert to short-circuit the stackwalk.
This is demonstrated by the function CallSecureFunctionSafelyAndEfficiently, which
performs a Demand and an Assert before calling SecureFunction, which in turn does a
Demand for a ReflectionPermission.

The code listing for CallSecureFunctionSafelyAndEfficiently is shown in
Example 17-10.

Example 17-10. CallSecureFunctionSafelyAndEfficiently function

public static void CallSecureFunctionSafelyAndEfficiently()
{

 // Set up a permission to be able to access nonpublic members
 // via reflection.
 ReflectionPermission perm =
 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the permission set we have compiled before using Assert
 // to make sure we have the right before we Assert it. We do
 // the Demand to ensure that we have checked for this permission
 // before using Assert to short-circuit stackwalking for it, which
 // helps us stay secure, while performing better.
 perm.Demand();

 // Assert this right before calling into the function that
 // would also perform the Demand to short-circuit the stack walk
 // each call would generate. The Assert helps us to optimize
 // our use of SecureFunction.

684 | Chapter 17: Security

The code listing for SecureFunction is shown here:

 public static void SecureFunction()
 {
 // Set up a permission to be able to access nonpublic members
 // via reflection.
 ReflectionPermission perm =
 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the right to do this and cause a stackwalk.
 perm.Demand();

 // Perform the action here...
 }

Discussion
In the demonstration function CallSecureFunctionSafelyAndEfficiently, the func-
tion you are calling (SecureFunction) performs a Demand on a ReflectionPermission to
ensure that the code can access nonpublic members of classes via reflection. Nor-
mally, this would result in a stackwalk for every call to SecureFunction. The Demand in
CallSecureFunctionSafelyAndEfficiently is there only to protect against the usage of
the Assert in the first place. To make this more efficient, you can use Assert to state
that all functions issuing Demands that are called from this one do not have to stack-
walk any further. The Assert says stop checking for this permission in the call stack.
In order to do this, you need the permission to call Assert.

The problem comes in with this Assert, as it opens up a potential luring attack where
SecureFunction is called via CallSecureFunctionSafelyAndEfficiently, which calls
Assert to stop the Demand stackwalks from SecureFunction. If unauthorized code with-
out ReflectionPermission were able to call CallSecureFunctionSafelyAndEfficiently,
the Assert would prevent the SecureFunction Demand call from determining that there is
some code in the call stack without the proper rights. This is the power of the call stack
checking in the CLR when a Demand occurs.

In order to protect against this, you issue a Demand for the ReflectionPermission
needed by SecureFunction in CallSecureFunctionSafelyAndEfficiently to close this

 perm.Assert();
 // We call the secure function 100 times but only generate
 // the stackwalk from the function to this calling function
 // instead of walking the whole stack 100 times.
 for(int i=0;i<100;i++)
 {
 SecureFunction();
 }
}

Example 17-10. CallSecureFunctionSafelyAndEfficiently function (continued)

Verifying That an Assembly Has Been Granted Specific Permissions | 685

hole before issuing the Assert. The combination of this Demand and the Assert causes
you to do one stackwalk instead of the original 100 that would have been caused by
the Demand in SecureFunction.

Security optimization techniques, such as using Assert in this case (even though it
isn’t the primary reason to use Assert), can help class library as well as control devel-
opers who are trusted to perform Asserts in order to speed the interaction of their
code with the CLR; but if used improperly, these techniques can also open up holes
in the security picture. This example shows that you can have both performance and
security where secure access is concerned.

If you are using Assert, be mindful that stackwalk overrides should never be made in
a class constructor. Constructors are not guaranteed to have any particular security
context, nor are they guaranteed to execute at a specific point in time. This lack leads
to the call stack not being well defined, and Assert used here can produce unex-
pected results.

One other thing to remember with Assert is that you can have only one active Assert
in a function at a given time. If you Assert the same permission twice, a
SecurityException is thrown by the CLR. You must revert the original Assert first
using RevertAssert. Then, you can declare the second Assert.

See Also
The “CodeAccessSecurity.Assert Method,” “CodeAccessSecurity.Demand Method,”
“CodeAccessSecurity.RevertAssert Method,” and “Overriding Security Checks” top-
ics in the MSDN documentation.

17.8 Verifying That an Assembly Has Been Granted
Specific Permissions

Problem
When your assembly requests optional permissions (such as asking for disk access to
enable users to export data to disk as a product feature) using the SecurityAction.
RequestOptional flag, it might or might not get those permissions. Regardless, your
assembly will still load and execute. You need a way to verify whether your assembly
actually obtained those permissions. This can help prevent many security exceptions
from being thrown. For example, if you optionally requested read/write permissions
on the registry but did not receive them, you could disable the user interface con-
trols that are used to read and store application settings in the registry.

686 | Chapter 17: Security

Solution
Check to see if your assembly received the optional permissions using the
SecurityManager.IsGranted method like this:

 using System;
 using System.Text.RegularExpressions;
 using System.Web;
 using System.Net;
 using System.Security;

 Regex regex = new Regex(@"http://www\.oreilly\.com/.*");
 WebPermission webConnectPerm = new WebPermission(NetworkAccess.
Connect,regex);
 if(SecurityManager.IsGranted(webConnectPerm))
 {
 // Connect to the O'Reilly site.
 }

This code sets up a Regex for the O’Reilly web site and then uses it to create a
WebPermission for connecting to that site and all sites containing the string. You then
check the WebPermission by calling SecurityManager.IsGranted to see whether you
have permission to do this.

Discussion
The IsGranted method is a lightweight way of determining whether permission is
granted for an assembly without first incurring the full stackwalk that a Demand gives
you. Note, however, that once you exercise the code that performs the Demand, the
full stackwalk will then take place. The drawback to this approach is that the code is
still subject to a luring attack if Assert is misused, so you need to consider where the
call to IsGranted is being made in the overall scheme of your security.

Some of the reasons you might design an assembly to have optional permissions is
for deployment in different customer scenarios. In some scenarios (such as desktop
applications), it might be acceptable to have an assembly that can perform more
robust actions (talk to a database, create network traffic via HTTP, etc.). In other
scenarios, you can defer these actions if the customer does not wish to grant enough
permissions for these extra services to function.

See Also
The “WebPermission Class,” “SecurityManager Class,” and “IsGranted Method”
topics in the MSDN documentation.

Minimizing the Attack Surface of an Assembly | 687

17.9 Minimizing the Attack Surface of an Assembly

Problem
Someone attacking your assembly will first attempt to find out as many things as
possible about your assembly and then use this information in constructing the
attack(s). The more surface area you give to attackers, the more they have to work
with. You need to minimize what your assembly is allowed to do so that, if an
attacker is successful in taking it over, the attacker will not have the necessary privi-
leges to do any damage to the system.

Solution
Use the SecurityAction.RequestRefuse enumeration member to indicate, at an
assembly level, the permissions that you do not wish this assembly to have. This will
force the CLR to refuse these permissions to your code and will ensure that, even if
another part of the system is compromised, your code cannot be used to perform
functions that it does not need the rights to do.

The following example allows the assembly to perform file I/O as part of its minimal
permission set but explicitly refuses to allow this assembly to have permissions to
skip verification:

 [assembly: FileIOPermission(SecurityAction.RequestMinimum,Unrestricted=true)]
 [assembly: SecurityPermission(SecurityAction.RequestRefuse,
 SkipVerification=false)]

Discussion
Once you have determined what permissions your assembly needs as part of your
normal security testing, you can use RequestRefuse to lock down your code. If this
seems extreme, think of scenarios in which your code could be accessing a data store
containing sensitive information, such as social security numbers or salary informa-
tion. This proactive step can help you show your customers that you take security
seriously and can help defend your interests in case a break-in occurs on a system
that your code is part of.

One serious consideration with this approach is that the use of RequestRefuse marks
your assembly as partially trusted. This in turn prevents it from calling any strong-
named assembly that hasn’t been marked with the AllowPartiallyTrustedCallers
attribute.

See Also
Chapter 8 of Microsoft Patterns & Practices Group: http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp; see the “SecurityAction
Enumeration” and “Global Attributes” topics in the MSDN documentation.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp

688 | Chapter 17: Security

17.10 Obtaining Security/Audit Information

Problem
You need to obtain the security rights and/or audit information for a file or registry
key.

Solution
When obtaining security/audit information for a file, use the static GetAccessControl
method of the File class to obtain a System.Security.AccessControl.FileSecurity
object. Use the FileSecurity object to access the security and audit information for
the file. These steps are demonstrated in Example 17-11.

Example 17-11. Obtaining security audit information

public static void ViewFileRights()
{
 // Get security information from a file.
 string file = @"c:\FOO.TXT";
 FileSecurity fileSec = File.GetAccessControl(file);
 DisplayFileSecurityInfo(fileSec);
}

public static void DisplayFileSecurityInfo(FileSecurity fileSec)
{
 Console.WriteLine("GetSecurityDescriptorSddlForm: {0}",
 fileSec.GetSecurityDescriptorSddlForm(AccessControlSections.All));

 foreach (FileSystemAccessRule ace in
 fileSec.GetAccessRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAccessControlType: {0}", ace.AccessControlType);
 Console.WriteLine("\tFileSystemRights: {0}", ace.FileSystemRights);
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);
 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }

 foreach (FileSystemAuditRule ace in
 fileSec.GetAuditRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAuditFlags: {0}", ace.AuditFlags);
 Console.WriteLine("\tFileSystemRights: {0}", ace.FileSystemRights);
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);

Obtaining Security/Audit Information | 689

These methods produce the following output:

 GetSecurityDescriptorSddlForm: O:BAG:SYD:PAI(A;;FA;;;SY)(A;;FA;;;BA)
 IdentityReference.Value: NT AUTHORITY\SYSTEM
 AccessControlType: Allow
 FileSystemRights: FullControl
 InheritanceFlags: None
 IsInherited: False
 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Administrators
 AccessControlType: Allow
 FileSystemRights: FullControl
 InheritanceFlags: None
 IsInherited: False
 PropagationFlags: None

 GetGroup(typeof(NTAccount)).Value: NT AUTHORITY\SYSTEM
 GetOwner(typeof(NTAccount)).Value: BUILTIN\Administrators

When obtaining security/audit information for a registry key, use the GetAccess-
Control instance method of the Microsoft.Win32.RegistryKey class to obtain a
System. Security.AccessControl.RegistrySecurity object. Use the RegistrySecurity
object to access the security and audit information for the registry key. These steps
are demonstrated in Example 17-12.

 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }

 Console.WriteLine("GetGroup(typeof(NTAccount)).Value: {0}",
 fileSec.GetGroup(typeof(NTAccount)).Value);
 Console.WriteLine("GetOwner(typeof(NTAccount)).Value: {0}",
 fileSec.GetOwner(typeof(NTAccount)).Value);

 Console.WriteLine("---------------------------------------\r\n\r\n\r\n");
}

Example 17-12. Getting security or audit information for a registry key

public static void ViewRegKeyRights()
{
 // Get security information from a registry key.
 using (RegistryKey regKey =
 Registry.LocalMachine.OpenSubKey(@"SOFTWARE\MyCompany\MyApp"))
 {
 RegistrySecurity regSecurity = regKey.GetAccessControl();
 DisplayRegKeySecurityInfo(regSecurity);
 }

Example 17-11. Obtaining security audit information (continued)

690 | Chapter 17: Security

These methods produce the following output:

GetSecurityDescriptorSddlForm: O:S-1-5-21-329068152-1383384898-682003330-1004G:S-1-
5-21-329068152-1383384898-682003330-513D:

AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)(A;ID;KA;;;SY)(A;CI
 IOID;GA;;;SY)(A;ID;KA;;;S-1-5-21-329068152-1383384898-682003330-
 1004)(A;CIIOID;GA;;;CO)
 IdentityReference.Value: BUILTIN\Users
 AccessControlType: Allow
 RegistryRights: ReadKey

}

public static void DisplayRegKeySecurityInfo(RegistrySecurity regSec)
{
 Console.WriteLine("GetSecurityDescriptorSddlForm: {0}",
 regSec.GetSecurityDescriptorSddlForm(AccessControlSections.All));

 foreach (RegistryAccessRule ace in
 regSec.GetAccessRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAccessControlType: {0}", ace.AccessControlType);
 Console.WriteLine("\tRegistryRights: {0}", ace.RegistryRights.ToString());
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);
 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }

 foreach (RegistryAuditRule ace in
 regSec.GetAuditRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAuditFlags: {0}", ace.AuditFlags);
 Console.WriteLine("\tRegistryRights: {0}", ace.RegistryRights.ToString());
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);
 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }
 Console.WriteLine("GetGroup(typeof(NTAccount)).Value: {0}",
 regSec.GetGroup(typeof(NTAccount)).Value);
 Console.WriteLine("GetOwner(typeof(NTAccount)).Value: {0}",
 regSec.GetOwner(typeof(NTAccount)).Value);

 Console.WriteLine("---------------------------------------\r\n\r\n\r\n");
}

Example 17-12. Getting security or audit information for a registry key (continued)

Obtaining Security/Audit Information | 691

 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Users
 AccessControlType: Allow
 RegistryRights: -2147483648
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 IdentityReference.Value: BUILTIN\Administrators
 AccessControlType: Allow
 RegistryRights: FullControl
 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Administrators
 AccessControlType: Allow
 RegistryRights: 268435456
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 IdentityReference.Value: NT AUTHORITY\SYSTEM
 AccessControlType: Allow
 RegistryRights: FullControl
 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

 IdentityReference.Value: NT AUTHORITY\SYSTEM
 AccessControlType: Allow
 RegistryRights: 268435456
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 IdentityReference.Value: OPERATOR-C1EFE0\Admin
 AccessControlType: Allow
 RegistryRights: FullControl
 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

692 | Chapter 17: Security

 IdentityReference.Value: CREATOR OWNER
 AccessControlType: Allow
 RegistryRights: 268435456
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 GetGroup(typeof(NTAccount)).Value: OPERATOR-C1EFE0\None
 GetOwner(typeof(NTAccount)).Value: OPERATOR-C1EFE0\Admin

Discussion
The essential method that is used to obtain the security information for a file or reg-
istry key is the GetAccessControl method. When this method is called on the
RegistryKey object, a RegistrySecurity object is returned. However, when this
method is called on a File class, a FileSecurity object is returned. The
RegistrySecurity and FileSecurity objects essentially represent a Discretionary
Access Control List (DACL), which is what developers writing code in unmanaged
languages such as C++ are used to working with.

The RegistrySecurity and FileSecurity objects each contain a list of security rules
that has been applied to the system object that it represents. The RegistrySecurity
object contains a list of RegistryAccessRule objects, and the FileSecurity object con-
tains a list of FileSystemAccessRule objects. These rule objects are the equivalent of
the Access Control Entries (ACE) that make up the list of security rules within a
DACL.

System objects other than just the File class and RegistryKey object allow security
privileges to be queried. Table 17-1 lists all the .NET Framework classes that return a
security object type and what that type is. In addition, the rule-object type that is
contained in the security object is also listed.

Table 17-1. List of all *Security and *AccessRule objects and the types to which they apply

Class
Object returned by the
GetAccessControl method

Rule-object type contained
within the security object

Directory DirectorySecurity FileSystemAccessRule

DirectoryInfo DirectorySecurity FileSystemAccessRule

EventWaitHandle EventWaitHandleSecurity EventWaitHandleAccessRule

File FileSecurity FileSystemAccessRule

FileInfo FileSecurity FileSystemAccessRule

FileStream FileSecurity FileSystemAccessRule

Mutex MutexSecurity MutexAccessRule

RegistryKey RegistrySecurity RegistryAccessRule

Semaphore SemaphoreSecurity SemaphoreAccessRule

Granting/Revoking Access to a File or Registry Key | 693

The abstraction of a system object’s DACL through the *Security objects and the
abstraction of a DACL’s ACE through the *AccessRule objects allows easy access to
the security privileges of that system object. In previous versions of the .NET Frame-
work, these DACLs and their ACEs would have been accessible only in unmanaged
code. With the .NET 2.0 Framework and later, you now have access to view and
program these objects.

See Also
Recipe 17.11; the “System.IO.File.GetAccessControl Method,” “System.Security.
AccessControl.FileSecurity Class,” “Microsoft.Win32.RegistryKey.GetAccessCon-
trol Method,” and “System.Security.AccessControl.RegistrySecurity Class” topics in
the MSDN documentation.

17.11 Granting/Revoking Access to a File or Registry
Key

Problem
You need to change the security privileges of either a file or registry key
programmatically.

Solution
The code shown in Example 17-13 grants and then revokes the ability to perform
write actions on a registry key.

Example 17-13. Granting and revoking the right to perform write actions on a registry key

public static void GrantRevokeRegKeyRights()
{
 NTAccount user = new NTAccount(@"WRKSTN\ST");

 using (RegistryKey regKey = Registry.LocalMachine.OpenSubKey(
 @"SOFTWARE\MyCompany\MyApp"))
 {
 GrantRegKeyRights(regKey, user, RegistryRights.WriteKey,
 InheritanceFlags.None, PropagationFlags.None, AccessControlType.Allow);
 RevokeRegKeyRights(regKey, user, RegistryRights.WriteKey,
 InheritanceFlags.None, PropagationFlags.None,
 AccessControlType.Allow)
 }
}

public static void GrantRegKeyRights(RegistryKey regKey,
 NTAccount user,
 RegistryRights rightsFlags,
 InheritanceFlags inherFlags,

694 | Chapter 17: Security

The code shown in Example 17-14 grants and then revokes the ability to delete a file.

 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 RegistrySecurity regSecurity = regKey.GetAccessControl();

 RegistryAccessRule rule = new RegistryAccessRule(user, rightsFlags, inherFlags,
 propFlags, actFlags);
 regSecurity.AddAccessRule(rule);
 regKey.SetAccessControl(regSecurity);
}

public static void RevokeRegKeyRights(RegistryKey regKey,
 NTAccount user,
 RegistryRights rightsFlags,
 InheritanceFlags inherFlags,
 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 RegistrySecurity regSecurity = regKey.GetAccessControl();

 RegistryAccessRule rule = new RegistryAccessRule(user, rightsFlags, inherFlags,
 propFlags, actFlags);
 regSecurity.RemoveAccessRuleSpecific(rule);

 regKey.SetAccessControl(regSecurity);
}

Example 17-14. Granting and revoking the right to delete a file

public static void GrantRevokeFileRights()
{
 NTAccount user = new NTAccount(@"WRKSTN\ST");

 string file = @"c:\FOO.TXT";
 GrantFileRights(file, user, FileSystemRights.Delete, InheritanceFlags.None,
 PropagationFlags.None, AccessControlType.Allow);
 RevokeFileRights(file, user, FileSystemRights.Delete, InheritanceFlags.None,
 PropagationFlags.None, AccessControlType.Allow);
}

public static void GrantFileRights(string file,
 NTAccount user,
 FileSystemRights rightsFlags,
 InheritanceFlags inherFlags,
 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 FileSecurity fileSecurity = File.GetAccessControl(file);

Example 17-13. Granting and revoking the right to perform write actions on a registry key

Granting/Revoking Access to a File or Registry Key | 695

Discussion
When granting or revoking access rights on a file or registry key, you need two
things. The first is a valid NTAccount object. This object essentially encapsulates a
user or group account. A valid NTAccount object is required in order to create either a
new RegistryAccessRule or a new FileSystemAccessRule. The NTAccount identifies the
user or group this access rule will apply to. Note that the string passed in to the
NTAccount constructor must be changed to a valid user or group name that exists on
your machine. If you pass in the name of an existing user or group account that has
been disabled, an IdentityNotMappedException will be thrown with the message
“Some or all identity references could not be translated.”

The second item that is needed is either a valid RegistryKey object, if you are modify-
ing security access to a registry key, or a string containing a valid path and filename
to an existing file. These objects will have security permissions either granted to
them or revoked from them.

Once these two items have been obtained, you can use the second item to obtain a
security object, which contains the list of access-rule objects. For example, the fol-
lowing code obtains the security object for the registry key HKEY-LOCAL_
MACHINE\SOFTWARE\MyCompany\MyApp:

 RegistryKey regKey = Registry.LocalMachine.OpenSubKey(
 @"SOFTWARE\MyCompany\MyApp");
 RegistrySecurity regSecurity = regKey.GetAccessControl();

 FileSystemAccessRule rule = new FileSystemAccessRule(user, rightsFlags,
 inherFlags, propFlags,
 actFlags);
 fileSecurity.AddAccessRule(rule);
 File.SetAccessControl(file, fileSecurity);
}

public static void RevokeFileRights(string file,
 NTAccount user,
 FileSystemRights rightsFlags,
 InheritanceFlags inherFlags,
 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 FileSecurity fileSecurity = File.GetAccessControl(file);

 FileSystemAccessRule rule = new FileSystemAccessRule(user, rightsFlags,
 inherFlags, propFlags,
 actFlags);
 fileSecurity.RemoveAccessRuleSpecific(rule);
 File.SetAccessControl(file, fileSecurity);
}

Example 17-14. Granting and revoking the right to delete a file (continued)

696 | Chapter 17: Security

The following code obtains the security object for the FOO.TXT file:

 string file = @"c:\FOO.TXT";
 FileSecurity fileSecurity = File.GetAccessControl(file);

Now that you have your particular security object, you can create an access-rule
object that will be added to this security object. To do this, you need to create a new
access rule. For a registry key, you have to create a new RegistryAccessRule object,
and for a file, you have to create a new FileSystemAccessRule object. To add this
access rule to the correct security object, you call the SetAccessControl method on
the security object. Note that RegistryAccessRule objects can be added only to
RegistrySecurity objects, and FileSystemAccessRule objects can be added only to
FileSecurity objects.

To remove an access-rule object from a system object, you follow the same set of
steps, except that you call the RemoveAccessRuleSpecific method instead of
AddAccessRule. RemoveAccessRuleSpecific accepts an access-rule object and attempts
to remove the rule that exactly matches this rule object from the security object. As
always, you must remember to call the SetAccessControl method to apply any
changes to the actual system object.

For a list of other classes that allow security permissions to be modified programmat-
ically, see Recipe 17.12.

See Also
Recipe 17.10; the “System.IO.File.GetAccessControl Method,” “System.Security.
AccessControl.FileSecurity Class,” “System.Security.AccessControl.FileSystemAc-
cessRule Class,” “Microsoft.Win32.RegistryKey.GetAccessControl Method,” “Sys-
tem.Security.AccessControl.RegistrySecurity Class,” and “System.Security.
AccessControl.RegistryAccessRule Class” topics in the MSDN documentation.

17.12 Protecting String Data with Secure Strings

Problem
You need to store sensitive information, such as a social security number, in a string.
However, you do not want prying eyes to be able to view this data in memory.

Solution
Use the SecureString object. To place text from a stream object within a
SecureString object, use the following method:

 public static SecureString CreateSecureString(StreamReader secretStream)
 {
 SecureString secretStr = new SecureString();
 char buf;

Protecting String Data with Secure Strings | 697

 while (secretStream.Peek() >= 0)
 {
 buf = (char)secretStream.Read();
 secretStr.AppendChar(buf);
 }

 // Make the secretStr object read-only.
 secretStr.MakeReadOnly();

 return (secretStr);
 }

To pull the text out of a SecureString object, use the following method:

 public static void ReadSecureString(SecureString secretStr)
 {
 // In order to read back the string, you need to use some special
methods.
 IntPtr secretStrPtr = Marshal.SecureStringToBSTR(secretStr);
 string nonSecureStr = Marshal.PtrToStringBSTR(secretStrPtr);

 // Use the unprotected string.
 Console.WriteLine("nonSecureStr = {0}", nonSecureStr);

 Marshal.ZeroFreeBSTR(secretStrPtr);

 if (!secretStr.IsReadOnly())
 {
 secretStr.Clear();
 }
 }

Discussion
A SecureString object is designed specifically to contain string data that you want to
keep secret. Some of the data you may want to store in a SecureString object would
be a social security number, a credit card number, a PIN number, a password, an
employee ID, or any other type of sensitive information.

This string data is automatically encrypted immediately upon being added to the
SecureString object, and it is automatically decrypted when the string data is
extracted from the SecureString object. The encryption is one of the highlights of
using this object.

Another feature of a SecureString object is that when the MakeReadOnly method is
called, the SecureString becomes immutable. Any attempt to modify the string data
within the read-only SecureString object causes an InvalidOperationException to be
thrown. Once a SecureString object is made read-only, it cannot go back to a read/
write state. However, you need to be careful when calling the Copy method on an
existing SecureString object. This method will create a new instance of the
SecureString object on which it was called, with a copy of its data. However, this
new SecureString object is now readable and writable. You should review your code

698 | Chapter 17: Security

to determine if this new SecureString object should be made read-only similarly to
its original SecureString object.

The SecureString object can be used only on Windows 2000 (with
Service Pack 3 or greater) or later operating system.

In this recipe, you create a SecureString object from data read in from a stream. This
data could also come from a char* using unsafe code. The SecureString object con-
tains a constructor that accepts a parameter of this type in addition to an integer
parameter that takes a length value, which determines the number of characters to
pull from the char*.

Getting data out of a SecureString object is not obvious at first glance. There are no
methods to return the data contained within a SecureString object. In order to
accomplish this, you must use two static methods on the Marshal class. The first is
the SecureStringToBSTR, which accepts your SecureString object and returns an
IntPtr. This IntPtr is then passed into the PtrToStringBSTR method, also on the
Marshal class. The PtrToStringBSTR method then returns an unsecure String object
containing your decrypted string data.

Once you are done using the SecureString object, you should call the static
ZeroFreeBSTR method on the Marshal class to zero out any memory allocated when
extracting the data from the SecureString. As an added safeguard, you should call
the Clear method of the SecureString object to zero out the encrypted string from
memory. If you have made your SecureString object read-only, you will not be able
to call the Clear method to wipe out its data. In this situation, you must either call
the Dispose method on the SecureString object (the use of a using block would be
preferable here) or rely on the garbage collector to remove the SecureString object
and its data from memory.

Notice that when you pull a SecureString object into an unsecure String, its data
becomes viewable by a malicious hacker. So it may seem pointless to go through the
trouble of using a SecureString when you are just going to convert it into an inse-
cure String. However, by using a SecureString, you narrow the window of opportu-
nity for a malicious hacker to view this data in memory. In addition, some APIs
accept a SecureString as a parameter so that you don’t have to convert it to an unse-
cure String. The ProcessStartInfo, for example, accepts a password in its Password
property as a SecureString object.

The SecureString object is not a silver bullet for securing your data. It
is, however, another layer of defense you can add to your application.

Securing Stream Data | 699

See Also
The “SecureString Class” topic in the MSDN documentation.

17.13 Securing Stream Data

Problem
You want to use the TCP server in Recipe 17.1 to communicate with the TCP client
in Recipe 17.2. However, you need to encrypt the communication and verify that it
has not been tampered with in transit.

Solution
Replace the NetworkStream class with the more secure SslStream class on both the cli-
ent and the server. The code for the more secure TCP client, TCPClient_SSL, is shown
in Example 17-15 (changes are in boldface).

Example 17-15. TCPClient_SSL class

class TCPClient_SSL
{
 private TcpClient _client = null;
 private IPAddress _address = IPAddress.Parse("127.0.0.1");
 private int _port = 5;
 private IPEndPoint _endPoint = null;

 public TCPClient_SSL(string address, string port)
 {
 _address = IPAddress.Parse(address);
 _port = Convert.ToInt32(port);
 _endPoint = new IPEndPoint(_address, _port);
 }

 public void ConnectToServer(string msg)
 {
 try
 {
 using (client = new TcpClient())
 {
 client.Connect(_endPoint);

using (SslStream sslStream = new SslStream(_client.GetStream(),
false, new RemoteCertificateValidationCallback(

 CertificateValidationCallback)))
 {
 sslStream.AuthenticateAsClient("MyTestCert2");

 // Get the bytes to send for the message.
 byte[] bytes = Encoding.ASCII.GetBytes(msg);

700 | Chapter 17: Security

 // Send message.
 Console.WriteLine("Sending message to server: " + msg);
 sslStream.Write(bytes, 0, bytes.Length);

 // Get the response.
 // Buffer to store the response bytes.
 bytes = new byte[1024];

 // Display the response.
int bytesRead = sslStream.Read(bytes, 0, bytes.Length);

 string serverResponse = Encoding.ASCII.GetString(bytes, 0,
 bytesRead);
 Console.WriteLine("Server said: " + serverResponse);
 }
 }
 }
 catch (SocketException e)
 {
 Console.WriteLine("There was an error talking to the server: {0}",
 e.ToString());
 }
 }

private bool CertificateValidationCallback(object sender,
 X509Certificate certificate, X509Chain chain,
 SslPolicyErrors sslPolicyErrors)
 {
 if (sslPolicyErrors == SslPolicyErrors.None)
 {
 return true;
 }
 else
 {
 if (sslPolicyErrors == SslPolicyErrors.RemoteCertificateChainErrors)
 {
 Console.WriteLine("The X509Chain.ChainStatus returned an array " +
 "of X509ChainStatus objects containing error information.");
 }
 else if (sslPolicyErrors ==
 SslPolicyErrors.RemoteCertificateNameMismatch)
 {
 Console.WriteLine("There was a mismatch of the name " +
 "on a certificate.");
 }
 else if (sslPolicyErrors ==
 SslPolicyErrors.RemoteCertificateNotAvailable)
 {
 Console.WriteLine("No certificate was available.");
 }
 else
 {
 Console.WriteLine("SSL Certificate Validation Error!");

Example 17-15. TCPClient_SSL class (continued)

Securing Stream Data | 701

The new code for the more secure TCP server, TCPServer_SSL, is shown in
Example 17-16 (changes are in boldface).

 }
 }
 Console.WriteLine(Environment.NewLine +
 "SSL Certificate Validation Error!");
 Console.WriteLine(sslPolicyErrors.ToString());
 return false;
 }
}

Example 17-16. TCPServer_SSL class

class TCPServer_SSL
{
 private TcpListener _listener = null;
 private IPAddress _address = IPAddress.Parse("127.0.0.1");
 private int _port = 55555;

 #region CTORs
 public TCPServer_SSL()
 {
 }

 public TCPServer_SSL(string address, string port)
 {
 _port = Convert.ToInt32(port);
 _address = IPAddress.Parse(address);
 }
 #endregion // CTORs

 #region Properties
 public IPAddress Address
 {
 get { return _address; }
 set { _address = value; }
 }

 public int Port
 {
 get { return _port; }
 set { _port = value; }
 }
 #endregion

 public void Listen()
 {
 try
 {
 using(listener = new TcpListener(_address, _port))
 {

Example 17-15. TCPClient_SSL class (continued)

702 | Chapter 17: Security

 // Fire up the server.
 listener.Start();

 // Enter the listening loop.
 while (true)
 {
 Console.Write("Looking for someone to talk to... ");

 // Wait for connection.
 TcpClient newClient = _listener.AcceptTcpClient();
 Console.WriteLine("Connected to new client");

 // Spin a thread to take care of the client.
 ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessClient),
 newClient);
 }
 }
 }
 catch (SocketException e)
 {
 Console.WriteLine("SocketException: {0}", e);
 }
 finally
 {
 // Shut it down.
 _listener.Stop();
 }

 Console.WriteLine("\nHit any key (where is ANYKEY?) to continue...");
 Console.Read();
 }

 private void ProcessClient(object client)
 {
 using (TcpClient newClient = (TcpClient)client)
 {
 // Buffer for reading data.
 byte[] bytes = new byte[1024];
 string clientData = null;

 using (SslStream sslStream = new SslStream(newClient.GetStream()))
 {
 sslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"), false,
 SslProtocols.Default, true);

 // Loop to receive all the data sent by the client.
 int bytesRead = 0;

while ((bytesRead = sslStream.Read(bytes, 0, bytes.Length)) != 0)
 {
 // Translate data bytes to an ASCII string.
 clientData = Encoding.ASCII.GetString(bytes, 0, bytesRead);
 Console.WriteLine("Client says: {0}", clientData);

Example 17-16. TCPServer_SSL class (continued)

Securing Stream Data | 703

Discussion
For more information about the inner workings of the TCP server and client and
how to run these applications, see Recipes 17.1 and 17.2. In this recipe, you will
cover only the changes needed to convert the TCP server and client to use the
SslStream object for secure communication.

The SslStream object uses the SSL protocol to provide a secure encrypted channel on
which to send data. However, encryption is just one of the security features built into
the SslStream object. Another feature of SslStream is that it detects malicious or even
accidental modification to the data. Even though the data is encrypted, it may
become modified during transit. To determine if this has occurred, the data is signed
with a hash before it is sent. When it is received, the data is rehashed and the two
hashes are compared. If both hashes are equivalent, the message arrived intact; if the
hashes are not equivalent, then something modified the data during transit.

The SslStream object also has the ability to use client and/or server certificates to
authenticate the client and/or the server as well as allowing the client to pass a certifi-
cate to the server if the client also needs to prove identity to the server. These certifi-
cates are used to prove the identity of the issuer. For example, if a client attaches to a
server using SSL, the server must provide a certificate to the client that is used to
prove that the server is who it says it is. In order to do this, the certificate must be

 // Thank them for their input.
 bytes = Encoding.ASCII.GetBytes("Thanks call again!");

 // Send back a response.
sslStream.Write(bytes, 0, bytes.Length);

 }
 }
 }
 }

 private static X509Certificate GetServerCert(string subjectName)
 {
 X509Store store = new X509Store(StoreName.My, StoreLocation.LocalMachine);
 store.Open(OpenFlags.ReadOnly);
 X509CertificateCollection certificate =
 store.Certificates.Find(X509FindType.FindBySubjectName,
 subjectName, true);
 if (certificate.Count > 0)
 return (certificate[0]);
 else
 return (null);
 }
}

Example 17-16. TCPServer_SSL class (continued)

704 | Chapter 17: Security

issued by a trusted authority. All trusted certificates are stored on the client in its
root certificate store.

To allow the TCP server and client to communicate successfully, you need to set up
an X.509 certificate that will be used to authenticate the TCP server. To do this, you
set up a test certificate using the makecert.exe utility. This utility can be found in the
<drive>:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\Bin directory.
The syntax for creating a simple certificate is as follows:

 makecert -r -pe -n "CN=MyTestCert2" -e 01/01/2036
 -sr localMachine c:\MyAppTestCert.cer

The options are defined as follows:

-r
The certificate will be self-signed. Self-signed certificates are often created and
signed by the developer of a web site in order to facilitate testing of that site
before it is moved into production. Self-signed certificates offer no evidence that
the site is legitimate.

-pe
The certificate’s private key will be exportable so that it can be included in the
certificate.

-n "CN=MyTestCert2"
The publisher’s certificate name. The name follows the “CN=” text.

-e 01/01/2036
The date at which this certificate expires.

-sr localMachine
The store where this certificate will be located. In this case, it is localMachine.
However, you can also specify currentUser (which is the default if this switch is
omitted).

The final argument to the makecert.exe utility is the output filename, in this case c:\
MyAppTestCert.cer. This will create the certificate in the c:\MyAppTestCert.cer file on
the hard drive.

The next step involves opening Windows Explorer and right-clicking on the c:\
MyAppTestCert.cer file. This will display a pop-up menu with the Install Certificate
menu item. Click this menu item and a wizard will be started to allow you to import
this .cer file into the certificate store. The first dialog box of the wizard is shown in
Figure 17-1. Click the Next button to go to the next step in the wizard.

The next step in the wizard allows you to choose the certificate store in which you
want to install your certificate. This dialog is shown in Figure 17-2. Keep the defaults
and click the Next button.

The final step in the wizard is shown in Figure 17-3. On this dialog, click the Finish
button.

Securing Stream Data | 705

After you click the Finish button, the message box shown in Figure 17-4 is dis-
played, warning you to verify the certificate that you wish to install. Click the Yes
button to install the certificate.

Finally, the message box in Figure 17-5 is displayed, indicating that the import was
successful.

At this point, you can run the TCP server and client, and they should communicate
successfully.

To use the SslStream in the TCP server project, you need to create a new SslStream
object to wrap the TcpClient object:

 SslStream sslStream = new SslStream(newClient.GetStream());

Before you can use this new stream object, you must authenticate the server using
the following line of code:

 sslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"),
 false, SslProtocols.Default, true);

The GetServerCert method finds the server certificate used to authenticate the server.
Notice the name passed in to this method; it is the same as the publisher’s certificate
name switch used with the makecert.exe utility (see the –n switch). This certificate is
returned from the GetServerCert method as an X509Certificate object. The next

Figure 17-1. The first step of the Certificate Import Wizard

706 | Chapter 17: Security

argument to the AuthenticateAsServer method is false, indicating that a client certif-
icate is not required. The SslProtocols.Default argument indicates that the authenti-
cation mechanism (SSL 2.0, SSL 3.0, TLS 1.0, or PCT 1.0) is chosen based on what is

Figure 17-2. Specifying a certificate store in the Certificate Import Wizard

Figure 17-3. The last step of the Certificate Import Wizard

Securing Stream Data | 707

available to the client and server. The final argument indicates that the certificate will
be checked to see whether it has been revoked.

To use the SslStream in the TCP client project, you create a new SslStream object, a
bit differently from how it was created in the TCP server project:

 SslStream sslStream = new SslStream(_client.GetStream(), false,
 new
RemoteCertificateValidationCallback(CertificateValidationCallback));

Figure 17-4. The security warning

Figure 17-5. The import successful message

708 | Chapter 17: Security

This constructor accepts a stream from the _client field, a false indicating that the
stream associated with the _client field will be closed when the Close method of the
SslStream object is called, and a delegate that validates the server certificate. The
CertificateValidationCallback method is called whenever a server certificate needs
to be validated. The server certificate is checked, and any errors are passed into this
delegate method to allow you to handle them as you wish.

The AuthenticateAsClient method is called next to authenticate the server:

 sslStream.AuthenticateAsClient("MyTestCert2");

As you can see, with a little extra work, you can replace the current stream type you
are using with the SslStream to gain the benefits of the SSL protocol.

See Also
The “SslStream Class” topic in the MSDN documentation.

17.14 Encrypting web.config Information

Problem
You need to encrypt data within a web.config file programmatically.

Solution
To encrypt data within a web.config file section, use the following method:

 public static void EncryptWebConfigData(string appPath,
 string protectedSection,
 string dataProtectionProvider)
 {
 System.Configuration.Configuration webConfig =
 WebConfigurationManager.OpenWebConfiguration(appPath);
 ConfigurationSection webConfigSection = webConfig.
GetSection(protectedSection);

 if (!webConfigSection.SectionInformation.IsProtected)
 {
 webConfigSection.SectionInformation.
ProtectSection(dataProtectionProvider);
 webConfig.Save();
 }
 }

To decrypt data within a web.config file section, use the following method:

 public static void DecryptWebConfigData(string appPath, string
protectedSection)
 {
 System.Configuration.Configuration webConfig =
 WebConfigurationManager.OpenWebConfiguration(appPath);

Encrypting web.config Information | 709

 ConfigurationSection webConfigSection = webConfig.
GetSection(protectedSection);

 if (webConfigSection.SectionInformation.IsProtected)
 {
 webConfigSection.SectionInformation.UnprotectSection();
 webConfig.Save();
 }
 }

You will need to add the System.Web and System.Configuration DLLs to your project
before this code will compile.

Discussion
To encrypt data, you can call the EncryptWebConfigData method with the following
arguments:

 EncryptWebConfigData("/WebApplication1", "appSettings",
 "DataProtectionConfigurationProvider");

The first argument is the virtual path to the web application, the second argument is
the section that you want to encrypt, and the last argument is the data protection
provider that you want to use to encrypt the data.

The EncryptWebConfigData method uses the virtual path passed into it to open the
web.config file. This is done using the OpenWebConfiguration static method of the
WebConfigurationManager class:

 System.Configuration.Configuration webConfig =
 WebConfigurationManager.OpenWebConfiguration(appPath);

This method returns a System.Configuration.Configuration object, which you use to
get the section of the web.config file that you wish to encrypt. This is accomplished
through the GetSection method:

 ConfigurationSection webConfigSection = webConfig.
GetSection(protectedSection);

This method returns a ConfigurationSection object that you can use to encrypt the
section. This is done through a call to the ProtectSection method:

 webConfigSection.SectionInformation.ProtectSection(dataProtectionProvider);

The dataProtectionProvider argument is a string identifying which data protection
provider you want to use to encrypt the section information. The two available provid-
ers are DpapiProtectedConfigurationProvider and RsaProtectedConfigurationProvider.
The DpapiProtectedConfigurationProvider class makes use of the Data Protection API
(DPAPI) to encrypt and decrypt data. The RsaProtectedConfigurationProvider class
makes use of the RsaCryptoServiceProvider class in the .NET Framework to encrypt
and decrypt data.

710 | Chapter 17: Security

The final step to encrypting the section information is to call the Save method of the
System.Configuration.Configuration object. This saves the changes to the web.con-
fig file. If this method is not called, the encrypted data will not be saved.

To decrypt data within a web.config file, you can call the DecryptWebConfigData
method with the following parameters:

 DecryptWebConfigData("/WebApplication1", "appSettings");

The first argument is the virtual path to the web application; the second argument is
the section that you want to encrypt.

The DecryptWebConfigData method operates very similarly to the
EncryptWebConfigData method, except that it calls the UnprotectSection method to
decrypt the encrypted data in the web.config file:

 webConfigSection.SectionInformation.UnprotectSection();

If you encrypt data in the web.config file using this technique, the data will automati-
cally be decrypted when the web application accesses the encrypted data in the web.
config file.

See Also
The “System.Configuration.Configuration Class” topic in the MSDN
documentation.

17.15 Obtaining the Full Reason a SecurityException
Was Thrown

Problem
You need more information as to why a SecurityException was thrown.

Solution
Use the new properties available on the SecurityException object, as shown in
Table 17-2.

Table 17-2. SecurityException Properties

Property Description

Action This property returns a SecurityAction enumeration value indicating the
cause of the security check failure. Possible values can be any of the following:

Assert

Demand

DemandChoice

Deny

Obtaining the Full Reason a SecurityException Was Thrown | 711

InheritanceDemand

InheritanceDemandChoice

LinkDemand

LinkDemandChoice

PermitOnly

RequestMinimum

RequestOptional

RequestRefuseusing

Data An IDictionary of user-defined key-value pairs.

Demanded Returns the permission(s) that caused the Demand to fail. The returned object
needs to be cast to a Permission, PermissionSet, or
PermissionSetCollection type in order to access its information. You can
use the is keyword to determine which one of these types this property returned.

DenySetInstance Returns the denied permission(s) that caused the Demand to fail. This property
contains a value whenever a Deny higher up in the stack causes a Demand to fail.
The returned object needs to be cast to a Permission, PermissionSet, or
PermissionSetCollection type in order to access its information. You can
use the is keyword to determine which one of these types this property returned.

FailedAssemblyInfo Returns an AssemblyName object for the assembly where this exception
occurred (i.e., the assembly where the Demand that failed was called).

FirstPermissionThatFailed Returns an IPermission object of the first permission that failed. This is useful
when several permissions in a permission set were demanded at one time. This
property identifies which permission caused the exception to occur.

Method Returns a MethodInfo object for the method where this exception originated. If
the cause of the exception was due to a Deny or PermitOnly, the method con-
taining the Deny or PermitOnly will be returned by this property. From this
object you can also obtain information on the type and assembly that contain this
method.

PermitOnlySetInstance Returns the permission(s) that were set by aPermitOnly at the point where the
security exception was thrown. The returned object needs to be cast to a
Permission, PermissionSet, or PermissionSetCollection type in
order to access its information. You can use the is keyword to determine which
one of these types this property returned.

URL Returns a string representing the URL of the assembly where this exception
originated.

Zone Returns a SecurityZone enumeration value indicating the zone of the assem-
bly where this exception originated. Possible values can be any of the following:

Internet

Intranet

MyComputer

NoZone

Trusted

Untrusted

Table 17-2. SecurityException Properties (continued)

Property Description

712 | Chapter 17: Security

Discussion
These new properties on the SecurityException class provide much more insight into
what caused the exception to be thrown. For example, if you think a Demand has
failed, you can examine the Action property to determine that it was in fact the
Demand. Next, you can use the Demanded property to find out exactly what permis-
sion(s) the Demand attempted to demand. You can compare this to the GrantedSet
property, which contains the permission(s) that were granted to the assembly. Now
that you know what caused the Demand to fail, you can use the Method,
FailedAssemblyInfo, and URL properties to determine where the failure occurred.

The Data property can be a very useful property to a developer. This property con-
tains key-value pairs that the developer creates and fills with information concerning
why this exception occurred. In this property, you can place variable names and the
data they contained at the time of the exception. This can give you even more clues
as to why this exception was thrown. Be very careful that you do not leak this infor-
mation out to the user. An attacker can use this information to gain more under-
standing of your application and overcome its defenses. See Recipe 17.11 for more
information on the Exception.Data property.

See Also
The “SecurityException” topic in the MSDN documentation.

17.16 Achieving Secure Unicode Encoding

Problem
You want to make sure that your UnicodeEncoding or UTF8Encoding class detects any
errors, such as an invalid sequence of bytes.

Solution
Use the constructor for the UnicodeEncoding class that accepts three parameters:

 UnicodeEncoding encoding = new UnicodeEncoding(false, true, true);

Or use the constructor for the UTF8Encoding class that accepts two parameters:

 UTF8Encoding encoding = new UTF8Encoding(true, true);

Discussion
The final argument to both these constructors should be true. This turns on error
detection for this class. Error detection will help when an attacker somehow is able
to access and modify a Unicode- or a UTF8-encoded stream of characters. If the
attacker is not careful, she can invalidate the encoded stream. If error detection is
turned on, it will be a first defense in catching these invalid encoded streams.

Obtaining a Safer File Handle | 713

When error detection is turned on, errors such as the following are dealt with by
throwing an ArgumentException:

• Leftover bytes that do not make up a complete encoded character sequence
exist.

• An invalid encoded start character was detected. For example, a UTF8 character
does not fit into one of the following classes: Single-Byte, Double-Byte, Three-
Byte, Four-Byte, Five-Byte, or Six-Byte.

• Extra bits are found after processing an extra byte in a multibyte sequence.

• The leftover bytes in a sequence could not be used to create a complete charac-
ter.

• A high surrogate value is not followed by a low surrogate value.

• In the case of the GetBytes method, the byte[] that is used to hold the resulting
bytes is not large enough.

• In the case of the GetChars method, the char[] that is used to hold the resulting
characters is not large enough.

If you use a constructor other than the one shown in this recipe or if you set the last
parameter in this constructor to false, any errors in the encoding sequence are
ignored, and no exception is thrown.

See Also
The “UnicodeEncoding Class” and “UTF8Encoding Class” topic in the MSDN
documentation.

17.17 Obtaining a Safer File Handle

Problem
You want more security when manipulating an unmanaged file handle than a simple
IntPtr can provide.

Solution
Use the Microsoft.Win32.SafeHandles.SafeFileHandle object to wrap an existing
unmanaged file handle:

 public static void WriteToFileHandle(IntPtr hFile)
 {
 // Wrap our file handle in a safe handle wrapper object.
 using (Microsoft.Win32.SafeHandles.SafeFileHandle safeHFile =
 new Microsoft.Win32.SafeHandles.SafeFileHandle(hFile, true))
 {
 // Open a FileStream object using the passed-in safe file handle.
 using (FileStream fileStream = new FileStream(safeHFile,
 FileAccess.ReadWrite))

714 | Chapter 17: Security

 {
 // Flush before we start to clear any pending unmanaged actions.
 fileStream.Flush();

 // Operate on file here.
 string line = "Using a safe file handle object";

 // Write to the file.
 byte[] bytes = Encoding.ASCII.GetBytes(line);
 fileStream.Write(bytes,0,bytes.Length);
 }
 }
 // Note that the hFile handle is invalid at this point.
 }

The SafeFileHandle constructor takes two arguments. The first is an IntPtr that con-
tains a handle to an unmanaged resource. The second argument is a Boolean value,
where true indicates that the handle will always be released during finalization, and
false indicates that the safeguards that force the handle to be released during final-
ization are turned off. Unless you have an extremely good reason to turn off these
safeguards, it is recommended that you always set this Boolean value to true.

Discussion
A SafeFileHandle object contains a single handle to an unmanaged file resource. This
class has two major benefits over using an IntPtr to store a handle—critical finaliza-
tion and prevention of handle recycling attacks. The SafeFileHandle is seen by the
garbage collector as a critical finalizer, due to the fact that one of the
SafeFileHandle’s base classes is CriticalFinalizerObject. The garbage collector sep-
arates finalizers into two categories: critical and noncritical. The noncritical finaliz-
ers are run first, followed by the critical finalizers. If a FileStream’s finalizer flushes
any data, it can assume that the SafeFileHandle object is still valid, because the
SafeFileHandle finalizer is guaranteed to run after the FileStream’s.

The Close method on the FileStream object will also close its underly-
ing SafeFileHandle object.

Since the SafeFileHandle falls under critical finalization, it means that the underlying
unmanaged handle is always released (i.e., the SafeFileHandle.ReleaseHandle
method is always called), even in situations in which the AppDomain is corrupted and/
or shutting down or the thread is being aborted. This will prevent resource handle
leaks.

Obtaining a Safer File Handle | 715

The SafeFileHandle object also helps to prevent handle recycling attacks. The operat-
ing system aggressively tries to recycle handles, so it is possible to close one handle
and open another soon afterward and get the same value for the new handle. One
way an attacker will take advantage of this is by forcing an accessible handle to close
on one thread while it is possibly still being used on another in the hope that the
handle will be recycled quickly and used as a handle to a new resource, possibly one
that the attacker does not have permission to access. If the application still has this
original handle and is actively using it, data corruption could be an issue.

Since this class inherits from the SafeHandleZeroOrMinusOneIsInvalid class, a handle
value of zero or minus one is considered an invalid handle.

See Also
The “Microsoft.Win32.SafeHandles.SafeFileHandle Class” topic in the MSDN
documentation.

716

Chapter 18CHAPTER 18

Threading and Synchronization 18

18.0 Introduction
A thread represents a single flow of execution logic in a program. Some programs
never need more than a single thread to execute efficiently, but many do, and that is
what this chapter is about. Threading in .NET allows you to build responsive and
efficient applications. Many applications have a need to perform multiple actions at
the same time (such as user interface interaction and processing data), and threading
provides the capability to achieve this. Being able to have your application perform
multiple tasks is a very liberating and yet complicating factor in your application
design. Once you have multiple threads of execution in your application, you need to
start thinking about what data in your application needs to be protected from multi-
ple accesses, what data could cause threads to develop an interdependency that
could lead to deadlocking (Thread A has a resource that Thread B is waiting for, and
Thread B has a resource that Thread A is waiting for), and how to store data you
want to associate with the individual threads. You will explore some of these issues
to help you take advantage of this wonderful capability of the .NET Framework. You
will also see the areas where you need to be careful and items to keep in mind while
designing and creating your multithreaded application.

18.1 Creating Per-Thread Static Fields

Problem
Static fields, by default, are shared between threads within an application domain.
You need to allow each thread to have its own nonshared copy of a static field, so
that this static field can be updated on a per-thread basis.

Creating Per-Thread Static Fields | 717

Solution
Use ThreadStaticAttribute to mark any static fields as not shareable between
threads:

 using System;
 using System.Threading;

 public class Foo
 {
 [ThreadStaticAttribute()]
 public static string bar = "Initialized string";
 }

Discussion
By default, static fields are shared between all threads that access these fields in the
same application domain. To see this, you’ll create a class with a static field called
bar and a static method to access and display the value contained in this field:

 using System;
 using System.Threading;

 public class ThreadStaticField
 {
 public static string bar = "Initialized string";

 public static void DisplayStaticFieldValue()
 {
 string msg =
 string.Format("{0} contains static field value of: {1}",
 Thread.CurrentThread.GetHashCode(),
 ThreadStaticField.bar);
 Console.WriteLine(msg);
 }
 }

Next, create a test method that accesses this static field both on the current thread
and on a newly spawned thread:

 public static void TestStaticField()
 {
 ThreadStaticField.DisplayStaticFieldValue();

 Thread newStaticFieldThread =
 new Thread(ThreadStaticField.DisplayStaticFieldValue);

 newStaticFieldThread.Start();

 ThreadStaticField.DisplayStaticFieldValue();
 }

718 | Chapter 18: Threading and Synchronization

This code displays output that resembles the following:

 9 contains static field value of: Initialized string
 10 contains static field value of: Initialized string
 9 contains static field value of: Initialized string

In the preceding example, the current thread’s hash value is 9, and the new thread’s
hash value is 10. These values will vary from system to system. Notice that both
threads are accessing the same static bar field. Next, add the ThreadStaticAttribute
to the static field:

 public class ThreadStaticField
 {
 [ThreadStaticAttribute()]
 public static string bar = "Initialized string";

 public static void DisplayStaticFieldValue()
 {
 string msg =
 string.Format("{0} contains static field value of: {1}",
 Thread.CurrentThread.GetHashCode(),
 ThreadStaticField.bar);
 Console.WriteLine(msg);
 }
 }

Now, output resembling the following is displayed:

 9 contains static field value of: Initialized string
 10 contains static field value of:
 9 contains static field value of: Initialized string

Notice that the new thread returns a null for the value of the static bar field. This is
the expected behavior. The bar field is initialized only in the first thread that accesses
it. In all other threads, this field is initialized to null. Therefore, it is imperative that
you initialize the bar field in all threads before it is used.

Remember to initialize any static field that is marked with
ThreadStaticAttribute before it is used in any thread. That is, this
field should be initialized in the method passed in to the ThreadStart
delegate. You should make sure to not initialize the static field using a
field initializer as shown in the prior code, since only one thread gets
to see that initial value.

The bar field is initialized to the "Initialized string" string literal before it is used
in the first thread that accesses this field. In the previous test code, the bar field was
accessed first, and, therefore, it was initialized in the current thread. Suppose you
were to remove the first line of the TestStaticField method, as shown here:

 public static void TestStaticField()
 {
 // ThreadStaticField.DisplayStaticFieldValue();

Providing Thread-Safe Access to Class Members | 719

 Thread newStaticFieldThread =
 new Thread(ThreadStaticField.DisplayStaticFieldValue);
 newStaticFieldThread.Start();

 ThreadStaticField.DisplayStaticFieldValue();
 }

This code now displays similar output to the following:

 10 contains static field value of: Initialized string
 9 contains static field value of:

The current thread does not access the bar field first and therefore does not initialize
it. However, when the new thread accesses it first, it does initialize it.

Note that adding a static constructor to initialize the static field marked with this
attribute will still follow the same behavior. Static constructors are executed only one
time per application domain.

See Also
The “ThreadStaticAttribute Attribute” and “Static Modifier (C#)” topics in the
MSDN documentation.

18.2 Providing Thread-Safe Access to Class Members

Problem
You need to provide thread-safe access through accessor functions to an internal
member variable.

The following NoSafeMemberAccess class shows three methods: ReadNumericField,
IncrementNumericField, and ModifyNumericField. While all of these methods access
the internal numericField member, the access is currently not safe for multithreaded
access:

 public static class NoSafeMemberAccess
 {
 private static int numericField = 1;

 public static void IncrementNumericField()
 {
 ++numericField;
 }

 public static void ModifyNumericField(int newValue)
 {
 numericField = newValue;
 }

 public static int ReadNumericField()
 {

720 | Chapter 18: Threading and Synchronization

 return (numericField);
 }
 }

Solution
NoSafeMemberAccess could be used in a multithreaded application, and therefore it
must be made thread-safe. Consider what would occur if multiple threads were call-
ing the IncrementNumericField method at the same time. It is possible that two calls
could occur to IncrementNumericField while the numericField is updated only once.
In order to protect against this, you will modify this class by creating an object that
you can lock against in critical sections of the code:

 public static class SaferMemberAccess
 {

 private static int numericField = 1;
 private static object syncObj = new object();

 public static void IncrementNumericField()
 {

 lock(syncObj) {
 ++numericField;
 }
 }

 public static void ModifyNumericField(int newValue)
 {
 lock(syncObj) {
 numericField = newValue;
 }
 }

 public static int ReadNumericField()
 {
 lock (syncObj) {
 return (numericField);
 }
 }
 }

Using the lock statement on the syncObj object lets you synchronize access to the
numericField member. This now makes all three methods safe for multithreaded
access.

Discussion
Marking a block of code as a critical section is done using the lock keyword. The
lock keyword should not be used on a public type or on an instance out of the con-
trol of the program, as this can contribute to deadlocks. Examples of this are using
the "this" pointer, the type object for a class (typeof(MyClass)), or a string literal

Providing Thread-Safe Access to Class Members | 721

("MyLock"). If you are attempting to protect code in only public static methods, the
System.Runtime.CompilerServices.MethodImpl attribute could also be used for this
purpose with the MethodImplOption.Synchronized value:

 [MethodImpl (MethodImplOptions.Synchronized)]
 public static void MySynchronizedMethod()
 {
 }

There is a problem with synchronization using an object such as syncObj in the
SaferMemberAccess example. If you lock an object or type that can be accessed by
other objects within the application, other objects may also attempt to lock this same
object. This will manifest itself in poorly written code that locks itself, such as the
following code:

 public class DeadLock
 {
 public void Method1()
 {
 lock(this)
 {
 // Do something.
 }
 }
 }

When Method1 is called, it locks the current DeadLock object. Unfortunately, any
object that has access to the DeadLock class may also lock it. This is shown here:

 using System;
 using System.Threading;

 public class AnotherCls
 {
 public void DoSomething()
 {
 DeadLock deadLock = new DeadLock();
 lock(deadLock)
 {
 Thread thread = new Thread(deadLock.Method1);
 thread.Start();

 // Do some time-consuming task here.
 }
 }
 }

The DoSomething method obtains a lock on the deadLock object and then attempts to
call the Method1 method of the deadLock object on another thread, after which a very
long task is executed. While the long task is executing, the lock on the deadLock
object prevents Method1 from being called on the other thread. Only when this long
task ends, and execution exits the critical section of the DoSomething method, will the

722 | Chapter 18: Threading and Synchronization

Method1 method be able to acquire a lock on the this object. As you can see, this can
become a major headache to track down in a much larger application.

Jeffrey Richter has come up with a relatively simple method to remedy this situation,
which he details quite clearly in the article “Safe Thread Synchronization” in the Jan-
uary 2003 issue of MSDN Magazine. His solution is to create a private field within
the class on which to synchronize. Only the object itself can acquire this private field;
no outside object or type may acquire it. This solution is also now the recommended
practice in the MSDN documentation for the lock keyword. The DeadLock class can
be rewritten, as follows to fix this problem:

 public class DeadLock
 {
 private object syncObj = new object();

 public void Method1()
 {
 lock(syncObj)
 {
 // Do something.
 }
 }
 }

Now in the DeadLock class, you are locking on the internal syncObj, while the
DoSomething method locks on the DeadLock class instance. This resolves the deadlock
condition, but the DoSomething method still should not lock on a public type. There-
fore, change the AnotherCls class like so:

 public class AnotherCls
 {
 private object deadLockSyncObj = new object();

 public void DoSomething()
 {
 DeadLock deadLock = new DeadLock();
 lock(deadLockSyncObj)
 {
 Thread thread = new Thread(deadLock.Method1);
 thread.Start();

 // Do some time-consuming task here.
 }
 }
 }

Now the AnotherCls class has an object of its own to protect access to the DeadLock
class instance in DoSomething instead of locking on the public type.

To clean up your code, you should stop locking any objects or types except for the
synchronization objects that are private to your type or object, such as the syncObj in
the fixed DeadLock class. This recipe makes use of this pattern by creating a static

Providing Thread-Safe Access to Class Members | 723

syncObj object within the SaferMemberAccess class. The IncrementNumericField,
ModifyNumericField, and ReadNumericField methods use this syncObj to synchronize
access to the numericField field. Note that if you do not need a lock while the
numericField is being read in the ReadNumericField method, you can remove this lock
block and simply return the value contained in the numericField field.

Minimizing the number of critical sections within your code can sig-
nificantly improve performance. Use what you need to secure resource
access, but no more.

If you require more control over locking and unlocking of critical sections, you might
want to try using the overloaded static Monitor.TryEnter methods. These methods
allow more flexibility by introducing a timeout value. The lock keyword will attempt
to acquire a lock on a critical section indefinitely. However, with the TryEnter
method, you can specify a timeout value in milliseconds (as an integer) or as a
TimeSpan structure. The TryEnter methods return true if a lock was acquired and
false if it was not. Note that the overload of the TryEnter method that accepts only a
single parameter does not block for any amount of time. This method returns imme-
diately, regardless of whether the lock was acquired.

The updated class using the Monitor methods is shown in Example 18-1.

Example 18-1. Using Monitor methods

using System;
using System.Threading;

public static class MonitorMethodAccess
{
 private static int numericField = 1;
 private static object syncObj = new object();

 public static object SyncRoot
 {
 get { return syncObj; }
 }

 public static void IncrementNumericField()
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 ++numericField;
 }
 finally
 {
 Monitor.Exit(syncObj);
 }

724 | Chapter 18: Threading and Synchronization

Note that with the TryEnter methods, you should always check to see whether the
lock was in fact acquired. If not, your code should wait and try again or return to the
caller.

You might think at this point that all of the methods are thread-safe. Individually,
they are, but what if you are trying to call them and you expect synchronized access
between two of the methods? If ModifyNumericField and ReadNumericField are used
one after the other by Class 1 on Thread 1 at the same time Class 2 is using these
methods on Thread 2, locking or Monitor calls will not prevent Class 2 from modify-
ing the value before Thread 1 reads it. Here is a series of actions that demonstrates
this:

Class 1 Thread 1
Calls ModifyNumericField with 10.

 }
 }

 public static void ModifyNumericField(int newValue)
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 numericField = newValue;
 }
 finally
 {
 Monitor.Exit(syncObj);
 }
 }
 }

 public static int ReadNumericField()
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 return (numericField);
 }
 finally
 {
 Monitor.Exit(syncObj);
 }
 }

 return (–1);
 }
}

Example 18-1. Using Monitor methods (continued)

Preventing Silent Thread Termination | 725

Class 2 Thread 2
Calls ModifyNumericField with 15.

Class 1 Thread 1
Calls ReadNumericField and gets 15, not 10.

Class 2 Thread 2
Calls ReadNumericField and gets 15, which it expected.

In order to solve this problem of synchronizing reads and writes, the calling class
needs to manage the interaction. The external class can accomplish this by using the
Monitor class to establish a lock on the exposed synchronization object SyncRoot
from MonitorMethodAccess, as shown here:

 int num = 0;
 if(Monitor.TryEnter(MonitorMethodAccess.SyncRoot,250))
 {
 MonitorMethodAccess.ModifyNumericField(10);
 num = MonitorMethodAccess.ReadNumericField();
 Monitor.Exit(MonitorMethodAccess.SyncRoot);
 }
 Console.WriteLine(num);

See Also
The “Lock Statement,” “Thread Class,” and “Monitor Class” topics in the MSDN
documentation; see the “Safe Thread Synchronization” article in the January 2003
issue of MSDN Magazine.

18.3 Preventing Silent Thread Termination

Problem
An exception thrown in a spawned worker thread will cause this thread to be silently
terminated if the exception is unhandled. You need to make sure all exceptions are
handled in all threads. If an exception happens in this new thread, you want to han-
dle it and be notified of its occurrence.

Solution
You must add exception handling to the method that you pass to the ThreadStart
delegate with a try-catch, try-finally, or try-catch-finally block. The code to do
this is shown in Example 18-2 in bold.

Example 18-2. Preventing silent thread termination

using System;
using System.Threading;

public class MainThread

726 | Chapter 18: Threading and Synchronization

Discussion
If an unhandled exception occurs in the main thread of an application, the main
thread terminates, along with your entire application. An unhandled exception in a
spawned worker thread, however, will terminate only that thread. This will happen
without any visible warnings, and your application will continue to run as if nothing
happened.

Simply wrapping an exception handler around the Start method of the Thread class
will not catch the exception on the newly created thread. The Start method is called
within the context of the current thread, not the newly created thread. It also returns
immediately once the thread is launched, so it isn’t going to wait around for the
thread to finish. Therefore, the exception thrown in the new thread will not be
caught since it is not visible to any other threads.

If the exception is rethrown from the catch block, the finally block of this struc-
tured exception handler will still execute. However, after the finally block is fin-
ished, the rethrown exception is, at that point, rethrown. The rethrown exception
cannot be handled and the thread terminates. If there is any code after the finally
block, it will not be executed, since an unhandled exception occurred.

{
 public void CreateNewThread()
 {
 // Spawn new thread to do concurrent work.
 Thread newWorkerThread = new Thread(Worker.DoWork);
 newWorkerThread.Start();
 }
}

public class Worker
{
 // Method called by ThreadStart delegate to do concurrent work
 public static void DoWork ()
 {
 try {
 // Do thread work here.
 } catch {
 // Handle thread exception here.
 // Do not re-throw exception.
 } finally {
 // Do thread cleanup here.
 }
 }
}

Example 18-2. Preventing silent thread termination (continued)

Being Notified of the Completion of an Asynchronous Delegate | 727

Never rethrow an exception at the highest point in the exception-han-
dling hierarchy within a thread. Since no exception handlers can catch
this rethrown exception, it will be considered unhandled, and the
thread will terminate after all finally blocks have been executed.

What if you use the ThreadPool and QueueUserWorkItem? This method will still help
you because you added the handling code that will execute inside the thread. Just
make sure you have the finally block set up so that you can notify yourself of excep-
tions in other threads as shown earlier.

In order to provide a last-chance exception handler for your WinForms application,
you need to hook up to two separate events. The first event is the System.AppDomain.
CurrentDomain.UnhandledException event, which will catch all unhandled exceptions
in the current AppDomain on worker threads; it will not catch exceptions that occur
on the main UI thread of a WinForms application. See Recipe 7.13 for more informa-
tion on the System.AppDomain.UnhandledException event. In order to catch those, you
also need to hook up to the System.Windows.Forms.Application.ThreadException,
which will catch unhandled exceptions in the main UI thread. See Recipe 7.13 for
more information about the ThreadException event.

See Also
The “Thread Class” and “Exception Class” topics in the MSDN documentation.

18.4 Being Notified of the Completion of an
Asynchronous Delegate

Problem
You need a way of receiving notification from an asynchronously invoked delegate
that it has finished. This scheme must allow your code to continue processing with-
out having to constantly call IsCompleted in a loop or to rely on the WaitOne method.
Since the asynchronous delegate will return a value, you must be able to pass this
return value back to the invoking thread.

Solution
Use the BeginInvoke method to start the asynchronous delegate, but use the first
parameter to pass a callback delegate to the asynchronous delegate, as shown in
Example 18-3.

728 | Chapter 18: Threading and Synchronization

This callback delegate will call the DelegateCallback method on the thread the
method was invoked on when the asynchronous delegate is finished processing.

The following code defines the AsyncInvoke delegate and the asynchronously invoked
static method TestAsyncInvoke.Method1:

 public delegate int AsyncInvoke();

 public class TestAsyncInvoke
 {
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1 on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 return (1);
 }
 }

To run the asynchronous invocation, create an instance of the AsyncAction class and
call the CallbackAsyncDelegate method like so:

Example 18-3. Getting notification on completion of an anonymous delegate

using System;
using System.Threading;

public class AsyncAction2
{
 public void CallbackAsyncDelegate()
 {
 AsyncCallback callBack = DelegateCallback;

 AsyncInvoke method1 = TestAsyncInvoke.Method1;
 Console.WriteLine("Calling BeginInvoke on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 IAsyncResult asyncResult = method1.BeginInvoke(callBack, method1);

 // No need to poll or use the WaitOne method here, so return to the calling
// method.
 return;
 }

 private static void DelegateCallback(IAsyncResult iresult)
 {
 Console.WriteLine("Getting callback on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 AsyncResult asyncResult = (AsyncResult)iresult;
 AsyncInvoke method1 = (AsyncInvoke)asyncResult.AsyncDelegate;

 int retVal = method1.EndInvoke(asyncResult);
 Console.WriteLine("retVal (Callback): " + retVal);
 }
}

Being Notified of the Completion of an Asynchronous Delegate | 729

 AsyncAction aa2 = new AsyncAction();
 aa2.CallbackAsyncDelegate();

The output for this code is shown next. Note that the thread ID for Method1 is
different:

 Calling BeginInvoke on Thread 9
 Invoked Method1 on Thread 10
 Getting callback on Thread 10
 retVal (Callback): 1

Discussion
The asynchronous delegates in this recipe are created and invoked in the same fash-
ion as the asynchronous delegate in Recipe 18.3. Instead of using the IsCompleted
property to determine when the asynchronous delegate is finished processing (or the
WaitOne method to block for a specified time while the asynchronous delegate contin-
ues processing), This recipe uses a callback to indicate to the calling thread that the
asynchronous delegate has finished processing and that its return value, ref parame-
ter values, and out parameter values are available.

Invoking a delegate in this manner is much more flexible and efficient than simply
polling the IsCompleted property to determine when a delegate finishes processing.
When polling this property in a loop, the polling method cannot return and allow
the application to continue processing. A callback is also better than using a WaitOne
method, since the WaitOne method will block the calling thread and allow no process-
ing to occur.

The CallbackAsyncDelegate method in this recipe makes use of the first parameter to
the BeginInvoke method of the asynchronous delegate to pass in another delegate.
This contains a callback method to be called when the asynchronous delegate fin-
ishes processing. After calling BeginInvoke, this method can now return, and the
application can continue processing; it does not have to wait in a polling loop or be
blocked while the asynchronous delegate is running.

The AsyncInvoke delegate that is passed into the first parameter of the BeginInvoke
method is defined as follows:

 public delegate void AsyncCallback(IAsyncResult ar)

When this delegate is created, as shown here, the callback method passed in,
DelegateCallback, will be called as soon as the asynchronous delegate completes:

 AsyncCallback callBack = new AsyncCallback(DelegateCallback);

DelegateCallback will not run on the same thread as BeginInvoke but rather on a
Thread from the ThreadPool. This callback method accepts a parameter of type
IAsyncResult. You can cast this parameter to an AsyncResult object within the
method and use it to obtain information about the completed asynchronous dele-
gate, such as its return value, any ref parameter values, and any out parameter val-
ues. If the delegate instance that was used to call BeginInvoke is still in scope, you can

730 | Chapter 18: Threading and Synchronization

just pass the IAsyncResult to the EndInvoke method. In addition, this object can
obtain any state information passed into the second parameter of the BeginInvoke
method. This state information can be any object type.

The DelegateCallback method casts the IAsyncResult parameter to an AsyncResult
object and obtains the asynchronous delegate that was originally called. The
EndInvoke method of this asynchronous delegate is called to process any return value,
ref parameters, or out parameters. If any state object was passed in to the
BeginInvoke method’s second parameter, it can be obtained here through the follow-
ing line of code:

 object state = asyncResult.AsyncState;

See Also
The “AsyncCallback Delegate” topic in the MSDN documentation.

18.5 Storing Thread-Specific Data Privately

Problem
You want to store thread-specific data discovered at runtime. This data should be
accessible only to code running within that thread.

Solution
Use the AllocateDataSlot, AllocateNamedDataSlot, or GetNamedDataSlot method on
the Thread class to reserve a thread local storage (TLS) slot. Using TLS, a large object
can be stored in a data slot on a thread and used in many different methods. This can
be done without having to pass the structure as a parameter.

For this example, a class called ApplicationData here represents a set of data that can
grow to be very large in size:

 public class ApplicationData
 {
 // Application data is stored here.
 }

Before using this structure, a data slot has to be created in TLS to store the class.
GetNamedDataSlot is called to get the appDataSlot. Since that doesn’t exist, the default
behavior for GetNamedDataSlot is to just create it. The following code creates an
instance of the ApplicationData class and stores it in the data slot named
appDataSlot:

 ApplicationData appData = new ApplicationData();
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

Storing Thread-Specific Data Privately | 731

Whenever this class is needed, it can be retrieved with a call to Thread.GetData. The
following line of code gets the appData structure from the data slot named
appDataSlot:

 ApplicationData storedAppData =
 (ApplicationData)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

At this point, the storedAppData structure can be read or modified. After the action
has been performed on storedAppData, then storedAppdata must be placed back into
the data slot named appDataSlot:

 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), storedAppData);

Once the application is finished using this data, the data slot can be released from
memory using the following method call:

 Thread.FreeNamedDataSlot("appDataSlot");

The HandleClass class in Example 18-4 shows how TLS can be used to store a
structure.

Example 18-4. Using TLS to store a structure

using System;
using System.Threading;

public class HandleClass
{
 public static void Main()
 {
 // Create structure instance and store it in the named data slot.
 ApplicationData appData = new ApplicationData();
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

 // Call another method that will use this structure.
 HandleClass.MethodB();

 // When done, free this data slot.
 Thread.FreeNamedDataSlot("appDataSlot");
 }

 public static void MethodB()
 {
 // Get the structure instance from the named data slot.
 ApplicationData storedAppData =
 (ApplicationData)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

 // Modify the ApplicationData.

 // When finished modifying this data, store the changes back
 // into the named data slot.
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),
 storedAppData);

732 | Chapter 18: Threading and Synchronization

Discussion
Thread local storage is a convenient way to store data that is usable across method
calls without having to pass the structure to the method or even without knowledge
about where the structure was actually created.

Data stored in a named TLS data slot is available only to that thread; no other thread
can access a named data slot of another thread. The data stored in this data slot is
accessible from anywhere within the thread. This setup essentially makes this data
global to the thread.

To create a named data slot, use the static Thread.GetNamedDataSlot method. This
method accepts a single parameter, name, that defines the name of the data slot. This
name should be unique; if a data slot with the same name exists, then the contents of
that data slot will be returned, and a new data slot will not be created. This action
occurs silently; there is no exception thrown or error code available to inform you
that you are using a data slot someone else created. To be sure that you are using a
unique data slot, use the Thread.AllocateNamedDataSlot method. This method
throws a System.ArgumentException if a data slot already exists with the same name.
Otherwise, it operates similarly to the GetNamedDataSlot method.

It is interesting to note that this named data slot is created on every thread in the pro-
cess, not just the thread that called this method. This fact should not be much more
than an inconvenience to you, though, since the data in each data slot can be
accessed only by the thread that contains it. In addition, if a data slot with the same
name was created on a separate thread and you call GetNamedDataSlot on the current
thread with this name, none of the data in any data slot on any thread will be
destroyed.

 // Call another method that will use this data.
 HandleClass.MethodC();
 }

 public static void MethodC()
 {
 // Get the instance from the named data slot.
 ApplicationData storedAppData =
 (ApplicationData)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

 // Modify the data.

 // When finished modifying this data, store the changes back into
 // the named data slot.
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), storedAppData);
 }
}

Example 18-4. Using TLS to store a structure (continued)

Storing Thread-Specific Data Privately | 733

GetNamedDataSlot returns a LocalDataStoreSlot object that is used to access the data
slot. Note that this class is not creatable through the use of the new keyword. It must
be created through one of the AllocateDataSlot or AllocateNamedDataSlot methods
on the Thread class.

To store data in this data slot, use the static Thread.SetData method. This method
takes the object passed in to the data parameter and stores it in the data slot defined
by the dataSlot parameter.

The static Thread.GetData method retrieves the object stored in a data slot. This
method retrieves a LocalDataStoreSlot object that is created through the Thread.
GetNamedDataSlot method. The GetData method then returns the object that was
stored in that particular data slot. Note that the object returned might have to be cast
to its original type before it can be used.

The static method Thread.FreeNamedDataSlot will free the memory associated with a
named data slot. This method accepts the name of the data slot as a string and, in
turn, frees the memory associated with that data slot. Remember that when a data
slot is created with GetNamedDataSlot, a named data slot is also created on all of the
other threads running in that process. This is not really a problem when creating
data slots with the GetNamedDataSlot method because, if a data slot exists with this
name, a LocalDataStoreSlot object that refers to that data slot is returned, a new data
slot is not created, and the original data in that data slot is not destroyed.

This situation becomes more of a problem when using the FreeNamedDataSlot
method. This method will free the memory associated with the data slot name
passed in to it for all threads, not just the thread that it was called on. Freeing a data
slot before all threads have finished using the data within that data slot can be disas-
trous to your application.

A way to work around this problem is to not call the FreeNamedDataSlot method at
all. When a thread terminates, all of its data slots in TLS are freed automatically. The
side effect of not calling FreeNamedDataSlot is that the slot is taken up until the gar-
bage collector determines that the thread the slot was created on has finished and the
slot can be freed.

If you know the number of TLS slots you need for your code at compile time, con-
sider using the ThreadStaticAttribute on a static field of your class to set up TLS-like
storage.

See Also
The “Thread Local Storage and Thread Relative Static Fields,” “ThreadStaticAt-
tribute Attribute,” and “Thread Class” topics in the MSDN documentation.

734 | Chapter 18: Threading and Synchronization

18.6 Granting Multiple Access to Resources with a
Semaphore

Problem
You have a resource you want only a certain number of clients to access at a given
time.

Solution
Use a semaphore to enable resource-counted access to the resource. For example, if
you have an Xbox 360 and a copy of Halo3 (the resource) and a development staff
eager to blow off some steam (the clients), you have to synchronize access to the
Xbox 360. Since the Xbox 360 has four controllers, up to four clients can be playing
at any given time. The rules of the house are that when you die, you give up your
controller.

To accomplish this, create a class called Halo3Session with a Semaphore called _Xbox360
like this:

public class Halo3Session
{
 // A semaphore that simulates a limited resource pool.
 private static Semaphore _Xbox360;

In order to get things rolling, you need to call the Play method, as shown in
Example 18-5, on the Halo3Session class.

Example 18-5. Play method

public static void Play()
{
 // An Xbox360 has 4 controller ports so 4 people can play at a time
 // We use 4 as the max and zero to start with, as we want Players
 // to queue up at first until the Xbox360 boots and loads the game
 //
 using (_Xbox360 = new Semaphore(0, 4, "Xbox360"))
 {
 using (ManualResetEvent GameOver =
 new ManualResetEvent(false))
 {
 //
 // 9 Players log in to play
 //
 List<Xbox360Player.PlayerInfo> players =
 new List<Xbox360Player.PlayerInfo>() {
 new Xbox360Player.PlayerInfo { Name="Igor", Dead=GameOver},
 new Xbox360Player.PlayerInfo { Name="AxeMan", Dead=GameOver},
 new Xbox360Player.PlayerInfo { Name="Dr. Death",Dead=GameOver},
 new Xbox360Player.PlayerInfo { Name="HaPpyCaMpEr",Dead=GameOver},
 new Xbox360Player.PlayerInfo { Name="Executioner",Dead=GameOver},

Granting Multiple Access to Resources with a Semaphore | 735

The first thing the Play method does is to create a new semaphore that has a maxi-
mum resource count of 4 and a name of _Xbox360. This is the semaphore that will be
used by all of the player threads to gain access to the game. A ManualResetEvent
called GameOver is created to track when the game has ended:

public class Xbox360Player
{
 public class PlayerInfo
 {
 public ManualResetEvent Dead {get; set;}
 public string Name {get; set;}
 }

 //... more class
}

 new Xbox360Player.PlayerInfo { Name="FragMan",Dead=GameOver},
 new Xbox360Player.PlayerInfo { Name="Beatdown",Dead=GameOver},
 new Xbox360Player.PlayerInfo { Name="Stoney",Dead=GameOver},
 new Xbox360Player.PlayerInfo { Name="Pwned",Dead=GameOver}
 };

 foreach (Xbox360Player.PlayerInfo player in players)
 {
 Thread t = new Thread(Xbox360Player.JoinIn);

 // put a name on the thread
 t.Name = player.Name;
 // fire up the player
 t.Start(player);
 }

 // Wait for the Xbox360 to spin up and load Halo3 (3 seconds)
 Console.WriteLine("Xbox360 initializing...");
 Thread.Sleep(3000);
 Console.WriteLine(
 "Halo3 loaded & ready, allowing 4 players in now...");

 // The Xbox360 has the whole semaphore count. We call
 // Release(4) to open up 4 slots and
 // allow the waiting players to enter the Xbox360(semaphore)
 // up to four at a time.
 //
 _Xbox360.Release(4);

 // wait for the game to end...
 GameOver.WaitOne();
 }
 }
}

Example 18-5. Play method (continued)

736 | Chapter 18: Threading and Synchronization

To simulate the developers, you create a thread for each with its own Xbox360Player.
PlayerInfo class instance to contain the player name and a reference to the original
GameOver ManualResetEvent held in the Dead event on the PlayerInfo, which indicates
the player has died. The thread creation is using the ParameterizedThreadStart dele-
gate, which takes the method to execute on the new thread in the constructor, but
also allows you to pass the data object directly to a new overload of the Thread.Start
method.

Once the players are in motion, the Xbox 360 “initializes” and then calls Release on
the semaphore to open four slots for player threads to grab onto, and then waits until
it detects that the game is over from the firing of the Dead event for the player.

The players initialize on separate threads and run the JoinIn method, as shown in
Example 18-6. First they open the Xbox 360 semaphore by name and get the data
that was passed to the thread. Once they have the semaphore, they call WaitOne to
queue up to play. Once the initial four slots are opened or another player “dies,”
then the call to WaitOne unblocks and the player “plays” for a random amount of
time, and then dies. Once the players are dead, they call Release on the semaphore to
indicate their slot is now open. If the semaphore reaches its maximum resource
count, the GameOver event is set.

Example 18-6. JoinIn method

public static void JoinIn(object info)
{
 // open up the semaphore by name so we can act on it
 using (Semaphore Xbox360 = Semaphore.OpenExisting("Xbox360"))
 {

 // get the data object
 PlayerInfo player = (PlayerInfo)info;

 // Each player notifies the Xbox360 they want to play
 Console.WriteLine("{0} is waiting to play!", player.Name);

 // they wait on the Xbox360 (semaphore) until it lets them
 // have a controller
 Xbox360.WaitOne();

 // The Xbox360 has chosen the player! (or the semaphore has
 // allowed access to the resource...)
 Console.WriteLine("{0} has been chosen to play. " +
 "Welcome to your doom {0}. >:)", player.Name);

 // figure out a random value for how long the player lasts
 System.Random rand = new Random(500);
 int timeTillDeath = rand.Next(100, 1000);

 // simulate the player is busy playing till they die
 Thread.Sleep(timeTillDeath);

Granting Multiple Access to Resources with a Semaphore | 737

When the Play method is run, output similar to the following is generated:

Igor is waiting to play!
AxeMan is waiting to play!
Dr. Death is waiting to play!
HaPpyCaMpEr is waiting to play!
Executioner is waiting to play!
FragMan is waiting to play!
Beatdown is waiting to play!
Xbox360 initializing...
Stoney is waiting to play!
Pwned is waiting to play!
Halo3 loaded & ready, allowing 4 players in now...
Igor has been chosen to play. Welcome to your doom Igor. >:)
Dr. Death has been chosen to play. Welcome to your doom Dr. Death. >:)
AxeMan has been chosen to play. Welcome to your doom AxeMan. >:)
Executioner has been chosen to play. Welcome to your doom Executioner. >:)
Dr. Death has was captured and gives way to another player
AxeMan has was captured and gives way to another player
Executioner has was captured and gives way to another player
Pwned has been chosen to play. Welcome to your doom Pwned. >:)
HaPpyCaMpEr has been chosen to play. Welcome to your doom HaPpyCaMpEr. >:)
Beatdown has been chosen to play. Welcome to your doom Beatdown. >:)
Igor has was captured and gives way to another player
FragMan has been chosen to play. Welcome to your doom FragMan. >:)
Beatdown has shot their own foot and gives way to another player
Stoney has been chosen to play. Welcome to your doom Stoney. >:)
HaPpyCaMpEr has shot their own foot and gives way to another player
Pwned has shot their own foot and gives way to another player
FragMan has shot their own foot and gives way to another player
Stoney has choked on a rocket and gives way to another player
Thank you for playing, the game has ended.

 // figure out how they died
 rand = new Random();
 int deathIndex = rand.Next(6);

 // notify of the player's passing
 Console.WriteLine("{0} has {1} and gives way to another player",
 player.Name, _deaths[deathIndex]);

 // if all ports are open, everyone has played and the game is over
 int semaphoreCount = Xbox360.Release();
 if (semaphoreCount == 3)
 {
 Console.WriteLine("Thank you for playing, the game has ended.");
 // set the Dead event for the player
 player.Dead.Set();
 // close out the semaphore
 Xbox360.Close();
 }
 }
}

Example 18-6. JoinIn method (continued)

738 | Chapter 18: Threading and Synchronization

Discussion
Semaphores are primarily used for resource counting and are available cross-process
when named (as they are based on the underlying kernel semaphore object). Cross-
process may not sound too exciting to many .NET developers until they realize that
cross-process also means cross-AppDomain. Say you are creating additional AppDo-
mains to hold assemblies you are loading dynamically that you don’t want to stick
around for the whole life of your main AppDomain; the semaphore can help you
keep track of how many are loaded at a time. Being able to control access up to a cer-
tain number of users can be useful in many scenarios (socket programming, custom
thread pools, etc.).

See Also
The “Semaphore,” “ManualResetEvent,” and “ParameterizedThreadStart” topics in
the MSDN documentation.

18.7 Synchronizing Multiple Processes with the Mutex

Problem
You have two processes or AppDomains that are running code with actions that you
need to coordinate.

Solution
Use a named Mutex as a common signaling mechanism to do the coordination. A
named Mutex can be accessed from both pieces of code even when running in differ-
ent processes or AppDomains.

One situation in which this can be useful is when you are using shared memory to
communicate between processes. The SharedMemoryManager class presented in this
recipe will show the named Mutex in action by setting up a section of shared memory
that can be used to pass serializable objects between processes. The “server” process
creates a SharedMemoryManager instance, which sets up the shared memory and then
creates the Mutex as the initial owner. The “client” process then also creates a
SharedMemoryManager instance that finds the shared memory and hooks up to it. Once
this connection is established, the “client” process then sets up to receive the serial-
ized objects and waits until one is sent by waiting on the Mutex the “server” process
created. The “server” process then takes a serializable object, serializes it into the
shared memory, and releases the Mutex. It then waits on it again so that when the
“client” is done receiving the object, it can release the Mutex and give control back to
the “server.” The “client” process that was waiting on the Mutex then deserializes the
object from the shared memory and releases the Mutex.

Synchronizing Multiple Processes with the Mutex | 739

In the example, you will send the Contact structure, which looks like this:

 [StructLayout(LayoutKind.Sequential)]
 [Serializable()]
 public struct Contact
 {
 public string _name;
 public int _age;
 }

The “server” process code to send the Contact looks like this:

 // Create the initial shared memory manager to get things set up.
 using(SharedMemoryManager<Contact> sm =
 new SharedMemoryManager<Contact>("Contacts",8092))
 {
 // This is the sender process.

 // Launch the second process to get going.
 string processName = Process.GetCurrentProcess().MainModule.FileName;
 int index = processName.IndexOf("vshost");
 if (index != -1)
 {

 string first = processName.Substring(0, index);
 int numChars = processName.Length - (index + 7);
 string second = processName.Substring(index + 7, numChars);

 processName = first + second;
 }
 Process receiver = Process.Start(
 new ProcessStartInfo(
 processName,
 "Receiver"));

 // Give it 5 seconds to spin up.
 Thread.Sleep(5000);

 // Make up a contact.
 Contact man;
 man._age = 23;
 man._name = "Dirk Daring";

 // Send it to the other process via shared memory.
 sm.SendObject(man);
}

The “client” process code to receive the Contact looks like this:

 // Create the initial shared memory manager to get things set up.
 using(SharedMemoryManager<Contact> sm =
 new SharedMemoryManager<Contact>("Contacts",8092))
 {

 // Get the contact once it has been sent.
 Contact c = (Contact)sm.ReceiveObject();

740 | Chapter 18: Threading and Synchronization

 // Write it out (or to a database...)
 Console.WriteLine("Contact {0} is {1} years old.",
 c._name, c._age);
 // Show for 5 seconds.
 Thread.Sleep(5000);
 }

The way this usually works is that one process creates a section of shared memory
backed by the paging file using the unmanaged Win32 APIs CreateFileMapping and
MapViewOfFile. Currently there is no purely managed way to do this, so you have to
use P/Invoke, as you can see in Example 18-7 in the constructor code for the
SharedMemoryManager and the private SetupSharedMemory method. The constructor
takes a name to use as part of the name of the shared memory and the base size of
the shared memory block to allocate. It is the base size because the
SharedMemoryManager has to allocate a bit extra for keeping track of the data moving
through the buffer.

Example 18-7. Constructor and SetupSharedMemory private method

public SharedMemoryManager(string name,int sharedMemoryBaseSize)
{
 if (string.IsNullOrEmpty(name))
 throw new ArgumentNullException("name");

 if (sharedMemoryBaseSize <= 0)
 throw new ArgumentOutOfRangeException("sharedMemoryBaseSize",
 "Shared Memory Base Size must be a value greater than zero");

 // Set name of the region.
 _memoryRegionName = name;
 // Save base size.
 _sharedMemoryBaseSize = sharedMemoryBaseSize;
 // Set up the memory region size.
 _memRegionSize = (uint)(_sharedMemoryBaseSize + sizeof(int));
 // Set up the shared memory section.
 SetupSharedMemory();
}

private void SetupSharedMemory()
{
 // Grab some storage from the page file.
 _handleFileMapping =
 PInvoke.CreateFileMapping((IntPtr)INVALID_HANDLE_VALUE,
 IntPtr.Zero,
 PInvoke.PageProtection.ReadWrite,
 0,
 _memRegionSize,
 _memoryRegionName);
 if (_handleFileMapping == IntPtr.Zero)
 {
 throw new Win32Exception(
 "Could not create file mapping");

Synchronizing Multiple Processes with the Mutex | 741

The code to send an object through the shared memory is contained in the
SendObject method, as shown in Example 18-8. First, it checks to see if the object
being sent is indeed serializable by checking the IsSerializable property on the type
of the object. If the object is serializable, an integer with the size of the serialized
object and the serialized object content are written out to the shared memory

 }

 // Check the error status.
 int retVal = Marshal.GetLastWin32Error();
 if (retVal == ERROR_ALREADY_EXISTS)
 {

 // We opened one that already existed.
 // Make the mutex not the initial owner
 // of the mutex since we are connecting
 // to an existing one.
 _mtxSharedMem = new Mutex(false,
 string.Format("{0}mtx{1}",
 typeof(TransferItemType), _memoryRegionName));
 }
 else if (retVal == 0)
 {
 // We opened a new one.
 // Make the mutex the initial owner.
 _mtxSharedMem = new Mutex(true,
 string.Format("{0}mtx{1}",
 typeof(TransferItemType), _memoryRegionName));
 }
 else
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error creating file mapping");
 }

 // Map the shared memory.
 _ptrToMemory = PInvoke.MapViewOfFile(_handleFileMapping,
 FILE_MAP_WRITE,
 0, 0, IntPtr.Zero);
 if (_ptrToMemory == IntPtr.Zero)
 {
 retVal = Marshal.GetLastWin32Error();
 throw new Win32Exception(retVal, "Could not map file view");
 }

 retVal = Marshal.GetLastWin32Error();
 if (retVal != 0 && retVal != ERROR_ALREADY_EXISTS)
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error mapping file view");
 }
}

Example 18-7. Constructor and SetupSharedMemory private method (continued)

742 | Chapter 18: Threading and Synchronization

section. Then, the Mutex is released to indicate that there is an object in the shared
memory. It then waits on the Mutex again to wait until the “client” has received the
object.

Example 18-8. SendObject method

public void SendObject(TransferItemType transferObject)
{
 // Can send only Seralizable objects.
 if (!transferObject.GetType().IsSerializable)
 throw new ArgumentException(
 string.Format("Object {0} is not serializeable.",
 transferObject));
 // Create a memory stream, initialize size.
 using (MemoryStream ms = new MemoryStream())
 {
 // Get a formatter to serialize with.
 BinaryFormatter formatter = new BinaryFormatter();
 try
 {
 // Serialize the object to the stream.
 formatter.Serialize(ms, transferObject);

 // Get the bytes for the serialized object.
 byte[] bytes = ms.GetBuffer();

 // Check that this object will fit.
 if(bytes.Length + sizeof(int) > _memRegionSize)
 {
 string fmt =
 "{0} object instance serialized to {1} bytes " +
 "which is too large for the shared memory region";

 string msg =
 string.Format(fmt,
 typeof(TransferItemType),bytes.Length);

 throw new ArgumentException(msg, "transferObject");
 }

 // Write out how long this object is.
 Marshal.WriteInt32(this._ptrToMemory, bytes.Length);

 // Write out the bytes.
 Marshal.Copy(bytes, 0, this._ptrToMemory, bytes.Length);
 }
 finally
 {
 // Signal the other process using the mutex to tell it
 // to do receive processing.
 _mtxSharedMem.ReleaseMutex();

 // Wait for the other process to signal it has received
 // and we can move on.

Synchronizing Multiple Processes with the Mutex | 743

The ReceiveObject method shown in Example 18-9 allows the client to wait until
there is an object in the shared memory section and then reads the size of the serial-
ized object and deserializes it to a managed object. It then releases the Mutex to let the
sender know to continue.

 _mtxSharedMem.WaitOne();
 }
 }
}

Example 18-9. ReceiveObject method

public TransferItemType ReceiveObject()
{
 // Wait on the mutex for an object to be queued by the sender.
 _mtxSharedMem.WaitOne();

 // Get the count of what is in the shared memory.
 int count = Marshal.ReadInt32(_ptrToMemory);
 if (count <= 0)
 {
 throw new InvalidDataException("No object to read");
 }

 // Make an array to hold the bytes.
 byte[] bytes = new byte[count];

 // Read out the bytes for the object.
 Marshal.Copy(_ptrToMemory, bytes, 0, count);

 // Set up the memory stream with the object bytes.
 using (MemoryStream ms = new MemoryStream(bytes))
 {

 // Set up a binary formatter.
 BinaryFormatter formatter = new BinaryFormatter();

 // Get the object to return.
 TransferItemType item;
 try
 {
 item = (TransferItemType)formatter.Deserialize(ms);
 }
 finally
 {
 // Signal that we received the object using the mutex.
 _mtxSharedMem.ReleaseMutex();
 }
 // Give them the object.
 return item;
 }
}

Example 18-8. SendObject method (continued)

744 | Chapter 18: Threading and Synchronization

Discussion
A Mutex is designed to give mutually exclusive (thus the name) access to a single
resource. A Mutex can be thought of as a cross-process named Monitor, where the
Mutex is “entered” by waiting on it and becoming the owner, then “exited” by releas-
ing the Mutex for the next thread that is waiting on it. If a thread that owns a Mutex
ends, the Mutex is released automatically.

Using a Mutex is slower than using a Monitor as a Monitor is a purely managed con-
struct, whereas a Mutex is based on the Mutex kernel object. A Mutex cannot be
“pulsed” as can a Monitor, but it can be used across processes which a Monitor can-
not. Finally, the Mutex is based on WaitHandle, so it can be waited on with other
objects derived from WaitHandle, like Semaphore and the event classes.

The SharedMemoryManager and PInvoke classes are listed in their entirety in
Example 18-10.

Example 18-10. SharedMemoryManager and PInvoke classes

/// <summary>
/// Class for sending objects through shared memory using a mutex
/// to synchronize access to the shared memory
/// </summary>
public class SharedMemoryManager<TransferItemType> : IDisposable
{
 #region Consts
 const int INVALID_HANDLE_VALUE = -1;
 const int FILE_MAP_WRITE = 0x0002;
 /// <summary>
 /// Define from Win32 API.
 /// </summary>
 const int ERROR_ALREADY_EXISTS = 183;
 #endregion

 #region Private members
 IntPtr _handleFileMapping = IntPtr.Zero;
 IntPtr _ptrToMemory = IntPtr.Zero;
 uint _memRegionSize = 0;
 string _memoryRegionName;
 bool disposed = false;
 int _sharedMemoryBaseSize = 0;
 Mutex _mtxSharedMem = null;
 #endregion

 #region Construction / Cleanup
 public SharedMemoryManager(string name,int sharedMemoryBaseSize)
 {
 // Can be built for only Seralizable objects
 if (!typeof(TransferItemType).IsSerializable)
 throw new ArgumentException(
 string.Format("Object {0} is not serializeable.",
 typeof(TransferItemType)));

Synchronizing Multiple Processes with the Mutex | 745

 if (string.IsNullOrEmpty(name))
 throw new ArgumentNullException("name");

 if (sharedMemoryBaseSize <= 0)
 throw new ArgumentOutOfRangeException("sharedMemoryBaseSize",
 "Shared Memory Base Size must be a value greater than zero")

 // Set name of the region.
 _memoryRegionName = name;
 // Save base size.
 _sharedMemoryBaseSize = sharedMemoryBaseSize;
 // Set up the memory region size.
 _memRegionSize = (uint)(_sharedMemoryBaseSize + sizeof(int));
 // Set up the shared memory section.
 SetupSharedMemory();
 }

 private void SetupSharedMemory()
 {
 // Grab some storage from the page file.
 _handleFileMapping =
 PInvoke.CreateFileMapping((IntPtr)INVALID_HANDLE_VALUE,
 IntPtr.Zero,
 PInvoke.PageProtection.ReadWrite,
 0,
 _memRegionSize,
 _memoryRegionName);

 if (_handleFileMapping == IntPtr.Zero)
 {
 throw new Win32Exception(
 "Could not create file mapping");
 }

 // Check the error status.
 int retVal = Marshal.GetLastWin32Error();
 if (retVal == ERROR_ALREADY_EXISTS)
 {
 // We opened one that already existed.
 // Make the mutex not the initial owner
 // of the mutex since we are connecting
 // to an existing one.
 _mtxSharedMem = new Mutex(false,
 string.Format("{0}mtx{1}",
 typeof(TransferItemType), _memoryRegionName));
 }
 else if (retVal == 0)
 {
 // We opened a new one.
 // Make the mutex the initial owner.
 _mtxSharedMem = new Mutex(true,
 string.Format("{0}mtx{1}",

Example 18-10. SharedMemoryManager and PInvoke classes (continued)

746 | Chapter 18: Threading and Synchronization

 typeof(TransferItemType), _memoryRegionName));
 }
 else
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error creating file mapping");
 }

 // Map the shared memory.
 _ptrToMemory = PInvoke.MapViewOfFile(_handleFileMapping,
 FILE_MAP_WRITE,
 0, 0, IntPtr.Zero);

 if (_ptrToMemory == IntPtr.Zero)
 {
 retVal = Marshal.GetLastWin32Error();
 throw new Win32Exception(retVal, "Could not map file view");
 }

 retVal = Marshal.GetLastWin32Error();
 if (retVal != 0 && retVal != ERROR_ALREADY_EXISTS)
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error mapping file view");
 }
 }

 ~SharedMemoryManager()
 {
 // Make sure we close.
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 // Check to see if Dispose has already been called.
 if (!this.disposed)
 {
 CloseSharedMemory();
 }
 disposed = true;
 }

 private void CloseSharedMemory()
 {
 if (_ptrToMemory != IntPtr.Zero)

Example 18-10. SharedMemoryManager and PInvoke classes (continued)

Synchronizing Multiple Processes with the Mutex | 747

 {
 // Close map for shared memory.
 PInvoke.UnmapViewOfFile(_ptrToMemory);
 _ptrToMemory = IntPtr.Zero;
 }
 if (_handleFileMapping != IntPtr.Zero)
 {
 // Close handle.
 PInvoke.CloseHandle(_handleFileMapping);
 _handleFileMapping = IntPtr.Zero;
 }
 }
 public void Close()
 {
 CloseSharedMemory();
 }
 #endregion

 #region Properties
 public int SharedMemoryBaseSize
 {
 get { return _sharedMemoryBaseSize; }
 }
 #endregion

 #region Public Methods
 /// <summary>
 /// Send a serializable object through the shared memory
 /// and wait for it to be picked up.
 /// </summary>
 /// <param name="transferObject"></param>
 public void SendObject(TransferItemType transferObject)
 {
 // Create a memory stream, initialize size.
 using (MemoryStream ms = new MemoryStream())
 {
 // Get a formatter to serialize with.
 BinaryFormatter formatter = new BinaryFormatter();
 try
 {
 // Serialize the object to the stream.
 formatter.Serialize(ms, transferObject);

 // Get the bytes for the serialized object.
 byte[] bytes = ms.ToArray();

 // Check that this object will fit.
 if(bytes.Length + sizeof(int) > _memRegionSize)
 {

 string fmt = "
 "{0} object instance serialized to {1} bytes " +

Example 18-10. SharedMemoryManager and PInvoke classes (continued)

748 | Chapter 18: Threading and Synchronization

 "which is too large for the shared memory region";

 string msg =
 string.Format(fmt,
 typeof(TransferItemType),bytes.Length);

 throw new ArgumentException(msg, "transferObject");
 }

 // Write out how long this object is.
 Marshal.WriteInt32(this._ptrToMemory, bytes.Length);

 // Write out the bytes.
 Marshal.Copy(bytes, 0, this._ptrToMemory, bytes.Length);
 }
 finally
 {
 // Signal the other process using the mutex to tell it
 // to do receive processing.
 _mtxSharedMem.ReleaseMutex();

 // Wait for the other process to signal it has received
 // and we can move on.
 _mtxSharedMem.WaitOne();
 }
 }
 }

 /// <summary>
 /// Wait for an object to hit the shared memory and then deserialize it.
 /// </summary>
 /// <returns>object passed</returns>
 public TransferItemType ReceiveObject()
 {

 // Wait on the mutex for an object to be queued by the sender.
 _mtxSharedMem.WaitOne();

 // Get the count of what is in the shared memory.
 int count = Marshal.ReadInt32(_ptrToMemory);
 if (count <= 0)
 {
 throw new InvalidDataException("No object to read");
 }

 // Make an array to hold the bytes.
 byte[] bytes = new byte[count];

 // Read out the bytes for the object.
 Marshal.Copy(_ptrToMemory, bytes, 0, count);

 // Set up the memory stream with the object bytes.

Example 18-10. SharedMemoryManager and PInvoke classes (continued)

Synchronizing Multiple Processes with the Mutex | 749

 using (MemoryStream ms = new MemoryStream(bytes))
 {

 // Set up a binary formatter.
 BinaryFormatter formatter = new BinaryFormatter();

 // Get the object to return.
 TransferItemType item;
 try
 {
 item = (TransferItemType)formatter.Deserialize(ms);
 }
 finally
 {
 // Signal that we received the object using the mutex.
 _mtxSharedMem.ReleaseMutex();
 }
 // Give them the object.
 return item;
 }
 }
 #endregion
}

public class PInvoke
{
 #region PInvoke defines
 [Flags]
 public enum PageProtection : uint
 {

 NoAccess = 0x01,
 Readonly = 0x02,
 ReadWrite = 0x04,
 WriteCopy = 0x08,
 Execute = 0x10,
 ExecuteRead = 0x20,
 ExecuteReadWrite = 0x40,
 ExecuteWriteCopy = 0x80,
 Guard = 0x100,
 NoCache = 0x200,
 WriteCombine = 0x400,
 }
 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern IntPtr CreateFileMapping(IntPtr hFile,
 IntPtr lpFileMappingAttributes, PageProtection flProtect,
 uint dwMaximumSizeHigh,
 uint dwMaximumSizeLow, string lpName);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern IntPtr MapViewOfFile(IntPtr hFileMappingObject, uint
 dwDesiredAccess, uint dwFileOffsetHigh, uint dwFileOffsetLow,

Example 18-10. SharedMemoryManager and PInvoke classes (continued)

750 | Chapter 18: Threading and Synchronization

See Also
The “Mutex” and “Mutex Class” topics in the MSDN documentation and Program-
ming Applications for Microsoft Windows, Fourth Edition, by Jeffrey Richter
(Microsoft Press).

18.8 Using Events to Make Threads Cooperate

Problem
You have multiple threads that need to be served by a server, but only one can be
served at a time.

Solution
Use an AutoResetEvent to notify each thread when it is going to be served. For exam-
ple, a diner has a cook and multiple waitresses. The waitresses can keep bringing in
orders, but the cook can serve up only one at a time. You can simulate this with the
Cook class shown in Example 18-11.

 IntPtr dwNumberOfBytesToMap);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool UnmapViewOfFile(IntPtr lpBaseAddress);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool CloseHandle(IntPtr hObject);
 #endregion
}

Example 18-11. Using events to make threads cooperate

public class Cook
{
 public static AutoResetEvent OrderReady = new AutoResetEvent(false);

 public void CallWaitress()
 {
 // We call Set on the AutoResetEvent and don't have to
 // call Reset like we would with ManualResetEvent to fire it
 // off again. This sets the event that the waitress is waiting for
 // in PlaceOrder.
 OrderReady.Set();
 }
}

Example 18-10. SharedMemoryManager and PInvoke classes (continued)

Using Events to Make Threads Cooperate | 751

The Cook class has an AutoResetEvent called OrderReady that the cook will use to tell
the waiting waitresses that an order is ready. Since there is only one order ready at a
time, and this is an equal-opportunity diner, the waitress who has been waiting long-
est gets her order first. The AutoResetEvent allows for just signaling the single thread
when you call Set on the OrderReady event.

The Waitress class has the PlaceOrder method that is executed by the thread.
PlaceOrder takes an object parameter, which is passed in from the call to t.Start in
the next code block. The Start method uses a ParameterizedThreadStart delegate,
which takes an object parameter. PlaceOrder has been set up to be compatible with
it. It takes the AutoResetEvent passed in and calls WaitOne to wait until the order is
ready. Once the Cook fires the event enough times that this waitress is at the head of
the line, the code finishes:

 public class Waitress
 {
 public static void PlaceOrder(object signal)
 {
 // Cast the AutoResetEvent so the waitress can wait for the
 // order to be ready.
 AutoResetEvent OrderReady = (AutoResetEvent)signal;
 // Wait for the order...
 OrderReady.WaitOne();
 // Order is ready....
 Console.WriteLine("Waitress got order!");
 }
 }

The code to run the “diner” creates a Cook and spins off the Waitress threads, and
then calls all waitresses when their orders are ready by calling Set on the
AutoResetEvent:

 // We have a diner with a cook who can serve up only one meal at a time.
 Cook Mel = new Cook();

 // Make up five waitresses and tell them to get orders.
 for (int i = 0; i < 5; i++)
 {
 Thread t = new Thread(Waitress.PlaceOrder);
 // The Waitress places the order and then waits for the order.
 t.Start(Cook.OrderReady);
 }

 // Now we can go through and let people in.
 for (int i = 0; i < 5; i++)
 {
 // Make the waitresses wait...
 Thread.Sleep(2000);
 // OK, next waitress, pickup!
 Mel.CallWaitress();
 }

752 | Chapter 18: Threading and Synchronization

Discussion
There are two types of events, AutoResetEvent and ManualResetEvent. There are two
main differences between the events. The first is that AutoResetEvents release only
one of the threads that are waiting on the event while a ManualResetEvent will release
all of them when Set is called. The second difference is that when Set is called on an
AutoResetEvent, it is automatically reset to a nonsignaled state, while the
ManualResetEvent is left in a signaled state until the Reset method is called.

See Also
The “AutoResetEvent” and “ManualResetEvent” topics in the MSDN documenta-
tion and Programming Applications for Microsoft Windows, (Fourth Edition) by
Microsoft Press.

18.9 Get the Naming Rights for Your Events

Problem
You want to have code running in worker threads, or in other processes or AppDo-
mains, to be able to wait on an event.

Solution
Use the EventWaitHandle class. With it, you can create a named event that will allow
any code running on the local machine to find and wait on the event. AutoResetEvent
and ManualResetEvent are excellent for signaling events in threaded code and even
between AppDomains if you are willing to go through the hassle of passing the event
reference around. Why bother? Both of them derive from EventWaitHandle, but nei-
ther exposes the naming facility. EventWaitHandle can not only take the name of the
event, but also can take an EventResetMode parameter to indicate if it should act like a
ManualResetEvent (EventResetMode.ManualReset) or an AutoResetEvent
(EventResetMode.AutoReset). Named events have been available to Windows devel-
opers for a long time, and the EventWaitHandle class can serve as a named version of
either an AutoResetEvent or a ManualResetEvent.

To set up a named EventWaitHandle that operates as a ManualResetEvent, do this:

 // Make a named manual reset event.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false, // Not initially signaled
 EventResetMode.ManualReset,
 @"Champs");
 // Spin up three threads to listen for the event.
 for (int i = 0; i < 3; i++)
 {
 Thread t = new Thread(ManualFan);

Get the Naming Rights for Your Events | 753

 // The fans wait anxiously...
 t.Name = "Fan " + i;
 t.Start();
 }
 // Play the game.
 Thread.Sleep(10000);
 // Notify people.
 Console.WriteLine("Patriots win the SuperBowl!");
 // Signal all fans.
 ewhSuperBowl.Set();
 // Close the event.
 ewhSuperBowl.Close();

The ManualFan method is listed here:

 public static void ManualFan()
 {
 // Open the event by name.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false,
 EventResetMode.ManualReset,
 @"Champs");

 // Wait for the signal.
 ewhSuperBowl.WaitOne();
 // Shout out.
 Console.WriteLine("\"They're great!\" says {0}",Thread.CurrentThread.Name);
 // Close the event.
 ewhSuperBowl.Close();
 }

The output from the manual event code will resemble the listing here (the ManualFan
threads might be in a different order):

 Patriots win the SuperBowl!
 "They're great!" says Fan 2
 "They're great!" says Fan 1
 "They're great!" says Fan 0

To set up a named EventWaitHandle to operate as an AutoResetEvent, do this:

 // Make a named auto reset event.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false, // Not initially signalled
 EventResetMode.AutoReset,
 @"Champs");
 // Spin up three threads to listen for the event.
 for (int i = 0; i < 3; i++)
 {
 Thread t = new Thread(AutoFan, i);
 // The fans wait anxiously...
 t.Name = "Fan " + i;
 t.Start();
 }
 // Play the game.
 Thread.Sleep(10000);

754 | Chapter 18: Threading and Synchronization

 // Notify people.
 Console.WriteLine("Patriots win the SuperBowl!");
 // Signal one fan at a time.
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("Notify fans");
 ewhSuperBowl.Set();
 }
 // Close the event.
 ewhSuperBowl.Close();

The AutoFan method is listed here:

 public static void AutoFan()
 {
 // Open the event by name.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false,
 EventResetMode.AutoReset,
 @"Champs");
 // Wait for the signal.
 ewhSuperBowl.WaitOne();
 // Shout out.
 Console.WriteLine("\"Yahoo!\" says {0}", Thread.CurrentThread.Name);
 // Close the event.
 ewhSuperBowl.Close();
 }

The output from the automatic event code will resemble the listing here (the AutoFan
threads might be in a different order):

 Patriots win the SuperBowl!
 Notify fans
 "Yahoo!" says Fan 0
 Notify fans
 "Yahoo!" says Fan 2
 Notify fans
 "Yahoo!" says Fan 1

Discussion
EventWaitHandle is defined as deriving from WaitHandle, which in turn derives from
MarshalByRefObject. EventWaitHandle implements the IDisposable interface:

 public class EventWaitHandle : WaitHandle

 public abstract class WaitHandle : MarshalByRefObject, IDisposable

WaitHandle derives from MarshalByRefObject so you can use it across AppDomains, and
it implements IDisposable to make sure the event handle gets released properly.

The EventWaitHandle class can also open an existing named event by calling the
OpenExisting method and get the event’s access-control security from
GetAccessControl.

Performing Atomic Operations Among Threads | 755

When naming events, one consideration is how it will react in the presence of termi-
nal sessions. Terminal sessions are the underlying technology behind Fast User
switching and Remote Desktop, as well as Terminal Services. The consideration is
due to how kernel objects (such as events) are created with respect to the terminal
sessions. If a kernel object is created with a name and no prefix, it belongs to the
Global namespace for named objects and is visible across terminal sessions. By
default, EventWaitHandle creates the event in the Global namespace. A kernel object
can also be created in the Local namespace for a given terminal session, in which
case the named object belongs to the specific terminal session namespace. If you pass
the Local namespace prefix (Local\[EventName]), then the event will be created in
the local session for events that should be visible from only one terminal session:

 // Open the event by local name.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false,
 EventResetMode.ManualReset,
 @"Local\Champs");

Named events can be quite useful not only when communicating between processes,
AppDomains, or threads, but also when debugging code that uses events, as the
name will help you identify which event you are looking at if you have a number of
them.

See Also
The “EventWaitHandle,” “AutoResetEvent,” “ManualResetEvent,” and “Kernel
Object Namespaces (Platform SDK Help)” topics in the MSDN documentation.

18.10 Performing Atomic Operations Among Threads

Problem
You are operating on data from multiple threads and want to insure that each opera-
tion is carried out fully before performing the next operation from a different thread.

Solution
Use the Interlocked family of functions to insure atomic access. Interlocked has
methods to increment and decrement values, add a specific amount to a given value,
exchange an original value for a new value, compare the current value to the original
value, and exchange the original value for a new value if it is equal to the current
value.

To increment or decrement an integer value, use the Increment or Decrement meth-
ods, respectively:

 int i = 0;
 long l = 0;

756 | Chapter 18: Threading and Synchronization

 Interlocked.Increment(ref i); // i = 1
 Interlocked.Decrement(ref i); // i = 0
 Interlocked.Increment(ref l); // l = 1
 Interlocked.Decrement(ref i); // l = 0

To add a specific amount to a given integer value, use the Add method:

 Interlocked.Add(ref i, 10); // i = 10;
 Interlocked.Add(ref l, 100); // l = 100;

To replace an existing value, use the Exchange method:

 string name = "Mr. Ed";
 Interlocked.Exchange(ref name, "Barney");

To check if another thread has changed a value out from under the existing code
before replacing the existing value, use the CompareExchange method:

 int i = 0;
 double runningTotal = 0.0;
 double startingTotal = 0.0;
 double calc = 0.0;
 for (i = 0; i < 10; i++)
 {
 do
 {
 // Store of the original total
 startingTotal = runningTotal;

 // Do an intense calculation.
 calc = runningTotal + i * Math.PI * 2 / Math.PI;
 }
 // Check to make sure runningTotal wasn't modified
 // and replace it with calc if not. If it was,
 // run through the loop until we get it current.
 while (startingTotal !=
 Interlocked.CompareExchange(
 ref runningTotal, calc, startingTotal));
 }

Discussion
In an operating system like Microsoft Windows, with its ability to perform preemp-
tive multitasking, certain considerations must be given to data integrity when work-
ing with multiple threads. There are many synchronization primitives to help secure
sections of code, as well as signal when data is available to be modified. To this list is
added the capability to perform operations that are guaranteed to be atomic in
nature.

If there has not been much threading or assembly language in your past, you might
wonder what the big deal is and why you need these atomic functions at all. The
basic reason is that the line of code written in C# ultimately has to be translated
down to a machine instruction, and along the way, the one line of code written in
C# can turn into multiple instructions for the machine to execute. If the machine has

Optimizing Read-Mostly Access | 757

to execute multiple instructions to perform a task and the operating system allows
for preemption, it is possible that these instructions may not be executed as a block.
They could be interrupted by other code that modifies the value being changed by
the original line of C# code in the middle of the C# code being executed. As you can
imagine, this could lead to some pretty spectacular errors, or it might just round off
the lottery number that keeps a certain C# programmer from winning the big one.

Threading is a powerful tool, but like most “power” tools, you have to understand
its operation to use it effectively and safely. Threading bugs are notorious for being
some of the most difficult to debug, as the runtime behavior is not constant. Trying
to reproduce them can be a nightmare. Recognizing that working in a multithreaded
environment imposes a certain amount of forethought about protecting data access,
and understanding when to use the Interlocked class will go a long way toward pre-
venting long, frustrating evenings with the debugger.

See Also
The “Interlocked” and “Interlocked Class” topics in the MSDN documentation.

18.11 Optimizing Read-Mostly Access

Problem
You are operating on data that is mostly read with occasional updates and want to
perform these actions in a thread-safe but efficient manner.

Solution
Use the ReaderWriterLockSlim to give multiple read/single write access with the
capacity to upgrade the lock from read to write. The example we use to show this is
that of a Developer starting a new project. Unfortunately, the project is under-
staffed, so the Developer has to respond to tasks from many other individuals on the
team by themselves. Each of the other team members will also ask for status updates
on their tasks, and some can even change the priority of the tasks the Developer is
assigned.

The act of adding a task to the Developer using the AddTask method is protected with
a write lock using the ReaderWriterLockSlim by calling EnterWriteLock and
ExitWriteLock when complete:

 public void AddTask(Task newTask)
 {
 try
 {
 _rwlSlim.EnterWriteLock();
 // if we already have this task (unique by name)
 // then just accept the add as sometimes people
 // give you the same task more than once :)

758 | Chapter 18: Threading and Synchronization

 var taskQuery = from t in _tasks
 where t == newTask
 select t;
 if (taskQuery.Count<Task>() == 0)
 {
 Console.WriteLine("Task " + newTask.Name + " was added to
developer");
 _tasks.Add(newTask);
 }
 }
 finally
 {
 _rwlSlim.ExitWriteLock();
 }
 }

When a project team member needs to know about the status of a task, they call the
IsTaskDone method, which uses a read lock on the ReaderWriterLockSlim by calling
EnterReadLock and ExitReadLock:

 public bool IsTaskDone(string taskName)
 {
 try
 {
 _rwlSlim.EnterReadLock();
 var taskQuery = from t in _tasks
 where t.Name == taskName
 select t;
 if (taskQuery.Count<Task>() > 0)
 {
 Task task = taskQuery.First<Task>();
 Console.WriteLine("Task " + task.Name + " status was reported.");
 return task.Status;
 }
 }
 finally
 {
 _rwlSlim.ExitReadLock();
 }
 return false;
 }

There are certain managerial members of the team that have the right to increase the
priority of the tasks they assigned to the Developer. This is accomplished by calling
the IncreasePriority method on the Developer. IncreasePriority uses an upgrad-
able lock on the ReaderWriterLockSlim by first calling the EnterUpgradeableLock
method to acquire a read lock, and then, if the task is in the queue, it upgrades to a
write lock in order to adjust the priority of the task. Once the priority is adjusted, the
write lock is released, which degrades the lock back to a read lock, and that lock is
released by calling ExitUpgradeableReadLock:

Optimizing Read-Mostly Access | 759

 public void IncreasePriority(string taskName)
 {
 try
 {
 _rwlSlim.EnterUpgradeableReadLock();
 var taskQuery = from t in _tasks
 where t.Name == taskName
 select t;
 if(taskQuery.Count<Task>()>0)
 {
 Task task = taskQuery.First<Task>();
 _rwlSlim.EnterWriteLock();
 task.Priority++;
 Console.WriteLine("Task " + task.Name +
 " priority was increased to " + task.Priority +
 " for developer");
 _rwlSlim.ExitWriteLock();
 }
 }
 finally
 {
 _rwlSlim.ExitUpgradeableReadLock();
 }
 }

Discussion
The ReaderWriterLockSlim was created to replace the existing ReaderWriterLock for a
number of reasons:

• Performance: ReaderWriterLock was more than 5 times slower than using a
Monitor.

• Recursion semantics of ReaderWriterLock were not standard and were broken in
some thread reentrancy cases.

• The upgrade lock method is nonatomic in ReaderWriterLock.

While the ReaderWriterLockSlim is only about two times slower than the Monitor, it
is more flexible and prioritizes writes, so in few write, many read scenarios, it is more
scalable than the Monitor. There are also methods to determine what type of lock is
held as well as how many threads are waiting to acquire it.

By default, lock acquisition recursion is disallowed. If you call EnterReadLock twice,
you get a LockRecursionException. Lock Recursion can be enabled by passing a
LockRecusionPolicy.SupportsRecursion enumeration value to the constructor over-
load of ReaderWriterLockSlim that accepts it. Even though it is possible to enable
lock recursion, it is generally discouraged, as it complicates things to no small
degree, and these are not fun issues to debug.

760 | Chapter 18: Threading and Synchronization

There are some scenarios where the ReaderWriterLockSlim is not appropriate for use,
although most of these are not applicable to everyday development:

• SQLCLR: Due to the incompatible HostProtection attributes, ReaderWriter-
LockSlim is precluded from use in SQL Server CLR scenarios.

• Host using Thread aborts: Because it doesn’t mark critical regions, hosts that use
this won’t know that it will be harmed by thread aborts, so if the host uses them,
it will cause issues in the hosted AppDomains.

• It cannot handle asynchronous exceptions (thread aborts, out of memory, etc.)
and could end up with corrupt lock state, which could cause deadlocks or other
issues.

The entire code base for the example is listed here:

static Developer _dev = new Developer(15);
static bool _end = false;

/// <summary>
/// </summary>
public static void TestReaderWriterLockSlim()
{
 LaunchTeam(_dev);
 Thread.Sleep(10000);
}

private static void LaunchTeam(Developer dev)
{
 LaunchManager("CTO", dev);
 LaunchManager("Director", dev);
 LaunchManager("Project Manager", dev);
 LaunchDependent("Product Manager", dev);
 LaunchDependent("Test Engineer", dev);
 LaunchDependent("Technical Communications Professional", dev);
 LaunchDependent("Operations Staff", dev);
 LaunchDependent("Support Staff", dev);
}

public class TaskInfo
{
 private Developer _dev;
 public string Name { get; set; }
 public Developer Developer
 {
 get { return _dev; }
 set { _dev = value; }
 }
}

private static void LaunchManager(string name, Developer dev)
{
 ThreadPool.QueueUserWorkItem(
 new WaitCallback(CreateManagerOnThread),

Optimizing Read-Mostly Access | 761

 new TaskInfo() { Name = name, Developer = dev });
}

private static void LaunchDependent(string name, Developer dev)
{
 ThreadPool.QueueUserWorkItem(
 new WaitCallback(CreateDependentOnThread),
 new TaskInfo() { Name = name, Developer = dev });
}

private static void CreateManagerOnThread(object objInfo)
{
 TaskInfo taskInfo = (TaskInfo)objInfo;
 Console.WriteLine("Added " + taskInfo.Name + " to the project...");
 TaskManager mgr = new TaskManager(taskInfo.Name, taskInfo.Developer);
}

private static void CreateDependentOnThread(object objInfo)
{
 TaskInfo taskInfo = (TaskInfo)objInfo;
 Console.WriteLine("Added " + taskInfo.Name + " to the project...");
 TaskDependent dep = new TaskDependent(taskInfo.Name, taskInfo.Developer);
}

public class Task
{
 public Task(string name)
 {
 Name = name;
 }

 public string Name { get; set; }
 public int Priority { get; set; }
 public bool Status { get; set; }

 public override string ToString()
 {
 return this.Name;
 }

 public override bool Equals(object obj)
 {
 Task task = obj as Task;
 if(task != null)
 return this.Name == task.Name;
 return false;
 }

 public override int GetHashCode()
 {
 return this.Name.GetHashCode();
 }
}

762 | Chapter 18: Threading and Synchronization

public class Developer
{
 /// <summary>
 /// Dictionary for the tasks
 /// </summary>
 private List<Task> _tasks = new List<Task>();
 private ReaderWriterLockSlim _rwlSlim = new ReaderWriterLockSlim();
 private System.Threading.Timer _timer;
 private int _maxTasks;

 public Developer(int maxTasks)
 {
 // the maximum number of tasks before the developer quits
 _maxTasks = maxTasks;
 // do some work every 1/4 second
 _timer = new Timer(new TimerCallback(DoWork), null, 1000, 250);
 }

 // Execute a task
 protected void DoWork(Object stateInfo)
 {
 ExecuteTask();
 try
 {
 _rwlSlim.EnterWriteLock();
 // if we finished all tasks, go on vacation!
 if (_tasks.Count == 0)
 {
 _end = true;
 Console.WriteLine("Developer finished all tasks, go on vacation!");
 return;
 }

 if (!_end)
 {
 // if we have too many tasks quit
 if (_tasks.Count > _maxTasks)
 {
 // get the number of unfinished tasks
 var query = from t in _tasks
 where t.Status == false
 select t;
 int unfinishedTaskCount = query.Count<Task>();

 _end = true;
 Console.WriteLine("Developer has too many tasks, quitting! " +
 unfinishedTaskCount + " tasks left unfinished.");
 }
 }
 else
 _timer.Dispose();
 }
 finally
 {

Optimizing Read-Mostly Access | 763

 _rwlSlim.ExitWriteLock();
 }
 }

 public void AddTask(Task newTask)
 {
 try
 {
 _rwlSlim.EnterWriteLock();
 // if we already have this task (unique by name)
 // then just accept the add as sometimes people
 // give you the same task more than once :)
 var taskQuery = from t in _tasks
 where t == newTask
 select t;
 if (taskQuery.Count<Task>() == 0)
 {
 Console.WriteLine("Task " + newTask.Name + " was added to
developer");
 _tasks.Add(newTask);
 }
 }
 finally
 {
 _rwlSlim.ExitWriteLock();
 }
 }

 /// <summary>
 /// Increase the priority of the task
 /// </summary>
 /// <param name="taskName">name of the task</param>
 public void IncreasePriority(string taskName)
 {
 try
 {
 _rwlSlim.EnterUpgradeableReadLock();
 var taskQuery = from t in _tasks
 where t.Name == taskName
 select t;
 if(taskQuery.Count<Task>()>0)
 {
 Task task = taskQuery.First<Task>();
 _rwlSlim.EnterWriteLock();
 task.Priority++;
 Console.WriteLine("Task " + task.Name +
 " priority was increased to " + task.Priority +
 " for developer");
 _rwlSlim.ExitWriteLock();
 }
 }
 finally
 {
 _rwlSlim.ExitUpgradeableReadLock();

764 | Chapter 18: Threading and Synchronization

 }
 }

 /// <summary>
 /// Allows people to check if the task is done
 /// </summary>
 /// <param name="taskName">name of the task</param>
 /// <returns>False if the taks is undone or not in the list, true if done</
returns>
 public bool IsTaskDone(string taskName)
 {
 try
 {
 _rwlSlim.EnterReadLock();
 var taskQuery = from t in _tasks
 where t.Name == taskName
 select t;
 if (taskQuery.Count<Task>() > 0)
 {
 Task task = taskQuery.First<Task>();
 Console.WriteLine("Task " + task.Name + " status was reported.");
 return task.Status;
 }
 }
 finally
 {
 _rwlSlim.ExitReadLock();
 }
 return false;
 }

 private void ExecuteTask()
 {
 // look over the tasks and do the highest priority
 var queryResult = from t in _tasks
 where t.Status == false
 orderby t.Priority
 select t;
 if (queryResult.Count<Task>() > 0)
 {
 // do the task
 Task task = queryResult.First<Task>();
 task.Status = true;
 task.Priority = -1;
 Console.WriteLine("Task " + task.Name + " executed by developer.");
 }
 }
}

public class TaskManager : TaskDependent
{
 private System.Threading.Timer _mgrTimer;

 public TaskManager(string name, Developer taskExecutor) :

Optimizing Read-Mostly Access | 765

 base(name, taskExecutor)
 {
 // intervene every 2 seconds
 _mgrTimer = new Timer(new TimerCallback(Intervene), null, 0, 2000);
 }

 // Intervene in the plan
 protected void Intervene(Object stateInfo)
 {
 ChangePriority();
 // developer ended, kill timer
 if (_end)
 {
 _mgrTimer.Dispose();
 _developer = null;
 }
 }

 public void ChangePriority()
 {
 if (_tasks.Count > 0)
 {
 int taskIndex = _rnd.Next(0, _tasks.Count - 1);
 Task checkTask = _tasks[taskIndex];
 // make those developers work faster on some random task!
 if (_developer != null)
 {
 _developer.IncreasePriority(checkTask.Name);

Console.WriteLine(Name + " intervened and changed priority for task "
+
 checkTask.Name);
 }
 }
 }
}

public class TaskDependent
{
 protected List<Task> _tasks = new List<Task>();
 protected Developer _developer;
 protected Random _rnd = new Random();
 private Timer _taskTimer;
 private Timer _statusTimer;

 public TaskDependent(string name, Developer taskExecutor)
 {
 Name = name;
 _developer = taskExecutor;
 // add work every 1 second
 _taskTimer = new Timer(new TimerCallback(AddWork), null, 0, 1000);
 // check status every 3 seconds
 _statusTimer = new Timer(new TimerCallback(CheckStatus), null, 0, 3000);
 }

766 | Chapter 18: Threading and Synchronization

 // Add more work to the developer
 protected void AddWork(Object stateInfo)
 {
 SubmitTask();
 // developer ended, kill timer
 if (_end)
 {
 _taskTimer.Dispose();
 _developer = null;
 }
 }

 // Check Status of work with the developer
 protected void CheckStatus(Object stateInfo)
 {
 CheckTaskStatus();
 // developer ended, kill timer
 if (_end)
 {
 _statusTimer.Dispose();
 _developer = null;
 }
 }

 public string Name { get; set; }

 public void SubmitTask()
 {
 int taskId = _rnd.Next(10000);
 string taskName = "(" + taskId + " for " + Name + ")";
 Task newTask = new Task(taskName);
 if (_developer != null)
 {
 _developer.AddTask(newTask);
 _tasks.Add(newTask);
 }
 }

 public void CheckTaskStatus()
 {
 if (_tasks.Count > 0)
 {
 int taskIndex = _rnd.Next(0, _tasks.Count - 1);
 Task checkTask = _tasks[taskIndex];
 if (_developer != null &&
 _developer.IsTaskDone(checkTask.Name))
 {
 Console.WriteLine("Task " + checkTask.Name + " is done for " + Name);
 // remove it from the todo list
 _tasks.Remove(checkTask);
 }
 }
 }
}

Optimizing Read-Mostly Access | 767

You can see the series of events in the project in the output. The point at which the
Developer has had enough is highlighted:

Added CTO to the project...
Added Director to the project...
Added Project Manager to the project...
Added Product Manager to the project...
Added Test Engineer to the project...
Added Technical Communications Professional to the project...
Added Operations Staff to the project...
Added Support Staff to the project...
Task (6267 for CTO) was added to developer
Task (6267 for CTO) status was reported.
Task (6267 for CTO) priority was increased to 1 for developer
CTO intervened and changed priority for task (6267 for CTO)
Task (6267 for Director) was added to developer
Task (6267 for Director) status was reported.
Task (6267 for Director) priority was increased to 1 for developer
Director intervened and changed priority for task (6267 for Director)
Task (6267 for Project Manager) was added to developer
Task (6267 for Project Manager) status was reported.
Task (6267 for Project Manager) priority was increased to 1 for developer
Project Manager intervened and changed priority for task (6267 for Project
Manager)
Task (6267 for Product Manager) was added to developer
Task (6267 for Product Manager) status was reported.
Task (6267 for Technical Communications Professional) was added to developer
Task (6267 for Technical Communications Professional) status was reported.
Task (6267 for Operations Staff) was added to developer
Task (6267 for Operations Staff) status was reported.
Task (6267 for Support Staff) was added to developer
Task (6267 for Support Staff) status was reported.
Task (6267 for Test Engineer) was added to developer
Task (5368 for CTO) was added to developer
Task (5368 for Director) was added to developer
Task (5368 for Project Manager) was added to developer
Task (6153 for Product Manager) was added to developer
Task (913 for Test Engineer) was added to developer
Task (6153 for Technical Communications Professional) was added to developer
Task (6153 for Operations Staff) was added to developer
Task (6153 for Support Staff) was added to developer
Task (6267 for Product Manager) executed by developer.
Task (6267 for Technical Communications Professional) executed by developer.
Task (6267 for Operations Staff) executed by developer.
Task (6267 for Support Staff) executed by developer.
Task (6267 for CTO) priority was increased to 2 for developer
CTO intervened and changed priority for task (6267 for CTO)
Task (6267 for Director) priority was increased to 2 for developer
Director intervened and changed priority for task (6267 for Director)
Task (6267 for Project Manager) priority was increased to 2 for developer
Project Manager intervened and changed priority for task (6267 for Project
Manager)
Task (6267 for Test Engineer) executed by developer.
Task (7167 for CTO) was added to developer

768 | Chapter 18: Threading and Synchronization

Task (7167 for Director) was added to developer
Task (7167 for Project Manager) was added to developer
Task (5368 for Product Manager) was added to developer
Task (6153 for Test Engineer) was added to developer
Task (5368 for Technical Communications Professional) was added to developer
Task (5368 for Operations Staff) was added to developer
Task (5368 for Support Staff) was added to developer
Task (5368 for CTO) executed by developer.
Task (5368 for Director) executed by developer.
Task (5368 for Project Manager) executed by developer.
Task (6267 for CTO) status was reported.
Task (6267 for Director) status was reported.
Task (6267 for Project Manager) status was reported.
Task (913 for Test Engineer) status was reported.
Task (6267 for Technical Communications Professional) status was reported.
Task (6267 for Technical Communications Professional) is done for Technical
Communications Professional
Task (6267 for Product Manager) status was reported.
Task (6267 for Product Manager) is done for Product Manager
Task (6267 for Operations Staff) status was reported.
Task (6267 for Operations Staff) is done for Operations Staff
Task (6267 for Support Staff) status was reported.
Task (6267 for Support Staff) is done for Support Staff
Task (6153 for Product Manager) executed by developer.
Task (2987 for CTO) was added to developer
Task (2987 for Director) was added to developer
Task (2987 for Project Manager) was added to developer
Task (7167 for Product Manager) was added to developer
Task (4126 for Test Engineer) was added to developer
Task (7167 for Technical Communications Professional) was added to developer
Task (7167 for Support Staff) was added to developer
Task (7167 for Operations Staff) was added to developer
Task (913 for Test Engineer) executed by developer.
Task (6153 for Technical Communications Professional) executed by developer.
Developer has too many tasks, quitting! 21 tasks left unfinished.
Task (6153 for Operations Staff) executed by developer.
Task (5368 for CTO) priority was increased to 0 for developer
CTO intervened and changed priority for task (5368 for CTO)
Task (5368 for Director) priority was increased to 0 for developer
Director intervened and changed priority for task (5368 for Director)
Task (5368 for Project Manager) priority was increased to 0 for developer
Project Manager intervened and changed priority for task (5368 for Project
Manager)
Task (6153 for Support Staff) executed by developer.
Task (4906 for Product Manager) was added to developer
Task (7167 for Test Engineer) was added to developer
Task (4906 for Technical Communications Professional) was added to developer
Task (4906 for Operations Staff) was added to developer
Task (4906 for Support Staff) was added to developer
Task (7167 for CTO) executed by developer.
Task (7167 for Director) executed by developer.

Optimizing Read-Mostly Access | 769

Task (7167 for Project Manager) executed by developer.
Task (5368 for Product Manager) executed by developer.
Task (6153 for Test Engineer) executed by developer.
Task (5368 for Technical Communications Professional) executed by developer.
Task (5368 for Operations Staff) executed by developer.
Task (5368 for Support Staff) executed by developer.
Task (2987 for CTO) executed by developer.
Task (2987 for Director) executed by developer.
Task (2987 for Project Manager) executed by developer.
Task (7167 for Product Manager) executed by developer.
Task (4126 for Test Engineer) executed by developer.

See Also
The “ReaderWriterLockSlim” and “SQL Server Programming and Host Attributes”
topics in the MSDN documentation.

770

Chapter 19CHAPTER 19

Toolbox 19

19.0 Introduction
Every programmer has a certain set of routines that he refers back to and uses over
and over again. These utility functions are usually bits of code that are not provided
by any particular language or framework. This chapter is a compilation of utility rou-
tines that we have gathered during our time with C# and the .NET Framework. The
type of things we share in this chapter are:

• Determining the path for various locations in the operating system.

• Interacting with services.

• Inspecting the Global Assembly Cache.

• Message queuing.

It is a grab bag of code that can help to solve a specific need while you are working
on a larger set of functionality in your application.

19.1 Dealing with Operating System Shutdown,
Power Management, or User Session Changes

Problem
You want to be notified whenever the operating system or a user has initiated an
action that requires your application to shut down or be inactive (user logoff, remote
session disconnect, system shutdown, hibernate/restore, etc.). This notification will
allow you have your application respond gracefully to the changes.

Dealing with Operating System Shutdown, Power Management, or User Session Changes | 771

Solution
Use the Microsoft.Win32.SystemEvents class to get notification of operating system,
user session change, and power management events. The RegisterForSystemEvents
method shown next hooks up the five event handlers necessary to capture these
events and would be placed in the initialization section for your code:

 public static void RegisterForSystemEvents()
 {
 // Always get the final notification when the event thread is shutting down
 // so we can unregister.
 SystemEvents.EventsThreadShutdown +=
 new EventHandler(OnEventsThreadShutdown);
 SystemEvents.PowerModeChanged +=
 new PowerModeChangedEventHandler(OnPowerModeChanged);
 SystemEvents.SessionSwitch +=
 new SessionSwitchEventHandler(OnSessionSwitch);
 SystemEvents.SessionEnding +=
 new SessionEndingEventHandler(OnSessionEnding);
 SystemEvents.SessionEnded +=
 new SessionEndedEventHandler(OnSessionEnded);
 }

The EventsThreadShutdown event notifies you of when the thread that is distributing
the events from the SystemEvents class is shutting down so that you can unregister
the events on the SystemEvents class if you have not already done so. The
PowerModeChanged event triggers when the user suspends or resumes the system from
a suspended state. The SessionSwitch event is triggered by a change in the logged-on
user. The SessionEnding event is triggered when the user is trying to log off or shut
down the system, and the SessionEnded event is triggered when the user is actually
logging off or shutting down the system.

The events can be unregistered using the UnregisterFromSystemEvents method.
UnregisterFromSystemEvents should be called from the termination code of your
Windows Form, user control, or any other class that may come and go, as well as
from one other area shown later in the recipe:

 private static void UnregisterFromSystemEvents()
 {
 SystemEvents.EventsThreadShutdown -=
 new EventHandler(OnEventsThreadShutdown);
 SystemEvents.PowerModeChanged -=
 new PowerModeChangedEventHandler(OnPowerModeChanged);
 SystemEvents.SessionSwitch -=
 new SessionSwitchEventHandler(OnSessionSwitch);
 SystemEvents.SessionEnding -=
 new SessionEndingEventHandler(OnSessionEnding);
 SystemEvents.SessionEnded -=
 new SessionEndedEventHandler(OnSessionEnded);
 }

772 | Chapter 19: Toolbox

Since the events exposed by SystemEvents are static, if you are using
them in a section of code that could be invoked multiple times (sec-
ondary Windows Form, user control, monitoring class, etc.), you must
unregister your handlers, or you will cause memory leaks in the appli-
cation.

The SystemEvents handler methods are the individual event handlers for each of the
events that have been subscribed to in RegisterForSystemEvents. The first handler to
cover is the OnEventsThreadShutdown handler. It is essential that your handlers are
unregistered if this event fires, as the notification thread for the SystemEvents class is
going away, and the class may be gone before your application is. If you haven’t
unregistered before that point, you will cause memory leaks, so add a call to
UnregisterFromSystemEvents into this handler as shown here:

 private static void OnEventsThreadShutdown(object sender, EventArgs e)
 {
 Debug.WriteLine("System event thread is shutting down, no more notifications.
");
 // Unregister all our events as the notification thread is going away.
 UnregisterFromSystemEvents();
 }

The next handler to explore is the OnPowerModeChanged method. This handler can
report the type of power management event through the Mode property of the
PowerModeEventChangedArgs parameter. The Mode property has the PowerMode enumer-
ation type and specifies the event type through the enumeration value contained
therein:

 private static void OnPowerModeChanged(object sender, PowerModeChangedEventArgs
e)
 {
 // Power mode is changing.
 switch (e.Mode)
 {
 case PowerModes.Resume:
 Debug.WriteLine("PowerMode: OS is resuming from suspended state");
 break;
 case PowerModes.StatusChange:

Debug.WriteLine("PowerMode: There was a change relating to the power"
+
 " supply (weak battery, unplug, etc..)");
 break;
 case PowerModes.Suspend:
 Debug.WriteLine("PowerMode: OS is about to be suspended");
 break;
 }
 }

The next three handlers all deal with operating system session states. They are
OnSessionSwitch, OnSessionEnding, and OnSessionEnded. Handling all three of these
events covers all of the operating system session state transitions that your

Dealing with Operating System Shutdown, Power Management, or User Session Changes | 773

application may need to worry about. In OnSessionEnding, there is a
SessionEndingEventArgs parameter, which has a Cancel member. This Cancel mem-
ber allows you to request that the session not end if set to false. Code for the three
handlers is shown in Example 19-1.

Example 19-1. OnSessionSwitch, OnSessionEnding, and OnSessionEnded handlers

private static void OnSessionSwitch(object sender, SessionSwitchEventArgs e)
{
 // Check reason.
 switch (e.Reason)
 {
 case SessionSwitchReason.ConsoleConnect:
 Debug.WriteLine("Session connected from the console");
 break;
 case SessionSwitchReason.ConsoleDisconnect:
 Debug.WriteLine("Session disconnected from the console");
 break;
 case SessionSwitchReason.RemoteConnect:
 Debug.WriteLine("Remote session connected");
 break;
 case SessionSwitchReason.RemoteDisconnect:
 Debug.WriteLine("Remote session disconnected");
 break;
 case SessionSwitchReason.SessionLock:
 Debug.WriteLine("Session has been locked");
 break;
 case SessionSwitchReason.SessionLogoff:
 Debug.WriteLine("User was logged off from a session");
 break;
 case SessionSwitchReason.SessionLogon:
 Debug.WriteLine("User has logged on to a session");
 break;
 case SessionSwitchReason.SessionRemoteControl:
 Debug.WriteLine("Session changed to or from remote status");
 break;
 case SessionSwitchReason.SessionUnlock:
 Debug.WriteLine("Session has been unlocked");
 break;
 }
}

private static void OnSessionEnding(object sender, SessionEndingEventArgs e)
{
 // True to cancel the user request to end the session, false otherwise
 e.Cancel = false;
 // Check reason.
 switch(e.Reason)
 {
 case SessionEndReasons.Logoff:
 Debug.WriteLine("Session ending as the user is logging off");
 break;
 case SessionEndReasons.SystemShutdown:

774 | Chapter 19: Toolbox

Discussion
The .NET Framework provides many opportunities to get feedback from the system
when there are changes due to either user or system interactions. The SystemEvents
class exposes more events than just the ones used in this recipe. For a full listing, see
Table 19-1.

 Debug.WriteLine("Session ending as the OS is shutting down");
 break;
 }
}

private static void OnSessionEnded(object sender, SessionEndedEventArgs e)
{
 switch (e.Reason)
 {
 case SessionEndReasons.Logoff:
 Debug.WriteLine("Session ended as the user is logging off");
 break;
 case SessionEndReasons.SystemShutdown:
 Debug.WriteLine("Session ended as the OS is shutting down");
 break;
 }
}

Table 19-1. The SystemEvents events

Value Description

DisplaySettingsChanged User changed display settings.

DisplaySettingsChanging Display settings are changing.

EventsThreadShutdown Thread listening for system events is terminating.

InstalledFontsChanged User added or removed fonts.

PaletteChanged User switched to an application with a different palette.

PowerModeChanged User suspended or resumed the system.

SessionEnded User shut down the system or logged off.

SessionEnding User is attempting to shut down the system or log off.

SessionSwitch The currently logged-in user changed.

TimeChanged User changed system time.

TimerElapsed A Windows timer interval expired.

UserPreferenceChanged User changed a preference in the system.

UserPreferenceChanging User is trying to change a preference in the system.

Example 19-1. OnSessionSwitch, OnSessionEnding, and OnSessionEnded handlers (continued)

Controlling a Service | 775

Keep in mind that these are system events. Therefore, the amount of
work done in the handlers should be kept to a minimum, so the sys-
tem can move on to the next task.

The notifications from SystemEvents come on a dedicated thread for raising these
events. In a Windows Forms application, you will need to get back on to the correct
user interface thread before updating a UI with any of this information, using one of
the various methods for doing so (Control.BeginInvoke, Control.Invoke,
BackgroundWorker).

See Also
The “SystemEvents Class,” “PowerModeChangedEventArgs Class,” “SessionEnd-
edEventArgs Class,” “SessionEndingEventArgs Class,” “SessionSwitchEventArgs
Class,” “TimerElapsedEventArgs Class,” “UserPreferenceChangingEventArgs Class,”
and “UserPreferenceChangedEventArgs Class” topics in the MSDN documentation.

19.2 Controlling a Service

Problem
You need to programmatically manipulate a service that your application interacts
with.

Solution
Use the System.ServiceProcess.ServiceController class to control the service.
ServiceController allows you to interact with an existing service and to read and
change its properties. In the example, it will be used to manipulate the ASP.NET
State Service. The name, the service type, and the display name are easily available
from the ServiceName, ServiceType, and DisplayName properties:

 ServiceController scStateService = new ServiceController("COM+ Event System");
 Console.WriteLine("Service Name: " + scStateService.ServiceName);
 Console.WriteLine("Service Type: " + scStateService.ServiceType.ToString());
 Console.WriteLine("Display Name: " + scStateService.DisplayName);

The ServiceType enumeration has a number of values, as shown in Table 19-2.

Table 19-2. The ServiceType enumeration values

Value Description

Adapter Service that serves a hardware device

FileSystemDriver Driver for the filesystem (kernel level)

InteractiveProcess Service that communicates with the desktop

KernelDriver Low-level hardware device driver

776 | Chapter 19: Toolbox

One useful task is to determine a service’s dependents. The services that depend on
the current service are accessed through the DependentServices property, an array of
ServiceController instances (one for each dependent service):

 foreach (ServiceController sc in scStateService.DependentServices)
 {
 Console.WriteLine(scStateService.DisplayName + " is depended on by: " +
 sc.DisplayName);
 }

To see the services that the current service does depend on, the ServicesDependedOn
array contains ServiceController instances for each of those:

 foreach (ServiceController sc in scStateService.ServicesDependedOn)
 {
 Console.WriteLine(scStateService.DisplayName + " depends on: " +
 sc.DisplayName);
 }

One of the most important things about services is what state they are in. A service
doesn’t do much good if it is supposed to be running and it isn’t—or worse yet, it is
supposed to be disabled (perhaps as a security risk) and isn’t. To find out the cur-
rent status of the service, check the Status property. For this example, the original
state of the service will be saved, so it can be restored later in the originalState
variable:

 Console.WriteLine("Status: " + scStateService.Status);
 // Save original state.
 ServiceControllerStatus originalState = scStateService.Status;

If a service is stopped, it can be started with the Start method. First, check if the ser-
vice is stopped, and then, once Start has been called on the ServiceController
instance, the WaitForStatus method should be called to make sure that the service
started. WaitForStatus can take a timeout value so that the application is not waiting
forever for the service to start in the case of a problem:

 // If it is stopped, start it.
 TimeSpan serviceTimeout = TimeSpan.FromSeconds(60);
 if (scStateService.Status == ServiceControllerStatus.Stopped)
 {
 scStateService.Start();
 // Wait up to 60 seconds for start.
 scStateService.WaitForStatus(ServiceControllerStatus.Running,
serviceTimeout);
 }
 Console.WriteLine("Status: " + scStateService.Status);

RecognizerDriver Driver for identifying filesystems on startup

Win32OwnProcess Win32 program that runs as a service in its own process

Win32ShareProcess Win32 program that runs as a service in a shared process such as SvcHost

Table 19-2. The ServiceType enumeration values (continued)

Value Description

Controlling a Service | 777

Services can also be paused. If the service is paused, the application needs to check if
it can be continued by looking at the CanPauseAndContinue property. If so, the
Continue method will get the service going again, and the WaitForStatus method
should be called to wait until it does:

 // If it is paused, continue.
 if (scStateService.Status == ServiceControllerStatus.Paused)
 {
 if(scStateService.CanPauseAndContinue)
 {
 scStateService.Continue();
 // Wait up to 60 seconds for running.
 scStateService.WaitForStatus(ServiceControllerStatus.Running,
 serviceTimeout);
 }
 }
 Console.WriteLine("Status: " + scStateService.Status);

 // Should be running at this point.

Determining if a service can be stopped is done through the CanStop property. If it
can be stopped, then stopping it is a matter of calling the Stop method followed by
WaitForStatus:

 // Can we stop it?
 if (scStateService.CanStop)
 {
 scStateService.Stop();
 // Wait up to 60 seconds for stop.
 scStateService.WaitForStatus(ServiceControllerStatus.Stopped,
serviceTimeout);
 }
 Console.WriteLine("Status: " + scStateService.Status);

Now it is time to set the service back to how you found it. The originalState vari-
able has the original state, and the switch statement holds actions for taking the ser-
vice from the current stopped state to its original state:

 // Set it back to the original state.
 switch (originalState)
 {
 case ServiceControllerStatus.Stopped:
 if (scStateService.CanStop)
 {
 scStateService.Stop();
 }
 break;
 case ServiceControllerStatus.Running:
 scStateService.Start();
 // Wait up to 60 seconds for stop.
 scStateService.WaitForStatus(ServiceControllerStatus.Running,
 serviceTimeout);
 break;
 case ServiceControllerStatus.Paused:

778 | Chapter 19: Toolbox

 // If it was paused and is stopped, need to restart so we can pause.
 if (scStateService.Status == ServiceControllerStatus.Stopped)
 {
 scStateService.Start();
 // Wait up to 60 seconds for start.
 scStateService.WaitForStatus(ServiceControllerStatus.Running,
 serviceTimeout);
 }
 // Now pause.
 if (scStateService.CanPauseAndContinue)
 {
 scStateService.Pause();
 // Wait up to 60 seconds for stop.
 scStateService.WaitForStatus(ServiceControllerStatus.Paused,
 serviceTimeout);
 }
 break;
 }

In order to be sure that the Status property is correct on the service, the application
should call Refresh to update it before testing the value of the Status property. Once
the application is done with the service, call the Close method:

 scStateService.Refresh();
 Console.WriteLine("Status: " + scStateService.Status.ToString());

 // Close it.
 scStateService.Close();

Discussion
Services run many of the operating system functions today. They usually run under a
system account (LocalSystem, NetworkService, LocalService) or a specific user
account that has been granted specific permissions and rights. If your application
uses a service, then this is a good way to determine if everything for the service to run
is set up and configured properly before your application attempts to use it. Not all
applications depend on services directly. But if your application does, or you have
written a service as part of your application, it can be handy to have an easy way to
check the status of your service and possibly correct the situation.

See Also
The “ServiceController Class” and “ServiceControllerStatus Enumeration” topics in
the MSDN documentation.

19.3 List What Processes an Assembly Is Loaded In

Problem
You want to know what current processes have a given assembly loaded.

List What Processes an Assembly Is Loaded In | 779

Solution
Use the GetProcessesAssemblyIsLoadedIn method that we’ve created for this pur-
pose to return a list of processes that a given assembly is loaded in.
GetProcessesAssemblyIsLoadedIn takes the filename of the assembly to look for
(such as System.Data.dll), and then gets a list of the currently running processes on
the machine by calling Process.GetProcesses. It then searches the processes to see
if the assembly is loaded into any of them. When found in a process, that Process
object is projected into an enumerable set of Process objects. The iterator for the
set of processes found is returned from the query:

 public static IEnumerable<Process> GetProcessesAssemblyIsLoadedIn(
 string assemblyFileName)
 {
 var processes = from process in Process.GetProcesses()
 where process.ProcessName != "System" &&
 process.ProcessName != "Idle"
 from ProcessModule processModule in process.Modules
 where processModule.ModuleName.Equals(assemblyFileName,
 StringComparison.OrdinalIgnoreCase)
 select process;
 return processes;
 }

Discussion
In some circumstances, such as when uninstalling software or debugging version
conflicts, it is beneficial to know if an assembly is loaded into more than one pro-
cess. By quickly getting a list of the Process objects that the assembly is loaded in,
you can narrow the scope of your investigation.

The following code uses this routine:

 string searchAssm = "System.Data.dll";
 var processes = Toolbox.GetProcessesAssemblyIsLoadedIn(searchAssm);
 foreach (Process p in processes)
 {
 Console.WriteLine("Found {0} in {1}",searchAssm, p.MainModule.ModuleName);
 }

The preceding code might produce output like this (you may see more if you have
other applications running):

 Found System.Data.dll in WebDev.WebServer.EXE
 Found System.Data.dll in devenv.exe
 Found System.Data.dll in CSharpRecipes.vshost.exe

Since this is a diagnostic function, you will need FullTrust security access to use this
method.

780 | Chapter 19: Toolbox

Note that in the query, the System and Idle processes are avoided for inspection by
the query:

 var processes = from process in Process.GetProcesses()
 where process.ProcessName != "System" &&
 process.ProcessName != "Idle"
 from ProcessModule processModule in process.Modules

This is due to the Modules collection throwing a Win32Exception as those processes
are not able to be examined using the Modules collection on the process.

See Also
The “Process Class,” “ProcessModule Class,” and “GetProcesses Method” topics in
the MSDN documentation.

19.4 Using Message Queues on a Local Workstation

Problem
You need a way to disconnect two components of your application (such as a web
service endpoint and processing logic) so that the first component has to worry
about only formatting the instructions, and the bulk of the processing occurs in the
second component.

Solution
Use the MQWorker class shown here in both the first and second components to write
and read messages to and from a message queue. MQWorker uses the local message-
queuing services to do this. The queue pathname is supplied in the constructor, and
the existence of the queue is checked in the SetUpQueue method:

 class MQWorker : IDisposable
 {
 private bool _disposed;
 private string _mqPathName;
 MessageQueue _queue;

 public MQWorker(string queuePathName)
 {
 if (string.IsNullOrEmpty(queuePathName)
 throw new ArgumentNullException("queuePathName");

 _mqPathName = queuePathName;

 SetUpQueue();
 }

Using Message Queues on a Local Workstation | 781

SetUpQueue creates a message queue of the supplied name using the MessageQueue
class if none exists. It accounts for the scenario in which the message-queuing ser-
vices are running on a workstation computer. In that situation, it makes the queue
private, as that is the only type of queue allowed on a workstation:

 private void SetUpQueue()
 {
 // See if the queue exists; create it if not.
 if (!MessageQueue.Exists(_mqPathName))
 {
 try
 {
 _queue = MessageQueue.Create(_mqPathName);
 }
 catch (MessageQueueException mqex)
 {
 // See if we are running on a workgroup computer.
 if (mqex.MessageQueueErrorCode ==
 MessageQueueErrorCode.UnsupportedOperation)
 {
 string origPath = _mqPathName;
 // Must be a private queue in workstation mode.
 int index = _mqPathName.ToLower().IndexOf("private$");
 if (index == -1)
 {
 // Get the first \.
 index = _mqPathName.IndexOf(@"\");
 // Insert private$\ after server entry.
 _mqPathName = _mqPathName.Insert(index + 1, @"private$\");

 if (!MessageQueue.Exists(_mqPathName))
 _queue = MessageQueue.Create(_mqPathName);
 else
 _queue = new MessageQueue(_mqPathName);
 }
 }
 }
 }
 else
 {
 _queue = new MessageQueue(_mqPathName);
 }
 }

The SendMessage method sends a message to the queue to set up in the constructor.
The body of the message is supplied in the body parameter, and then an instance of
System.Messaging.Message is created and populated. The BinaryMessageFormatter is
used to format the message, as it enables larger volumes of messages to be sent with
fewer resources than does the default XmlMessageFormatter. Messages are set to be

782 | Chapter 19: Toolbox

persistent by setting the Recoverable property to true. Finally, the Body is set, and the
message is sent:

 public void SendMessage(string label, string body)
 {
 if (_queue != null)
 {
 Message msg = new Message();
 // Label our message.
 msg.Label = label;

 // Override the default XML formatting with binary
 // as it is faster (at the expense of legibility while debugging).
 msg.Formatter = new BinaryMessageFormatter();
 // Make this message persist (causes message to be written
 // to disk).
 msg.Recoverable = true;
 msg.Body = body;
 _queue.Send(msg);
 }
 }

The ReadMessage method reads messages from the queue set up in the constructor by
creating a Message object and calling its Receive method. The message formatter is set
to the BinaryMessageFormatter for the Message, since that is how we write to the
queue. Finally, the body of the message is returned from the method:

 public string ReadMessage()
 {
 Message msg = null;
 msg = _queue.Receive();
 msg.Formatter = new BinaryMessageFormatter();
 return (string)msg.Body;
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (!this._disposed)
 {
 if (disposing)
 _queue.Dispose();

 _disposed = true;
 }
 }
 }

Finding the Path to the Current Framework Version | 783

To show how the MQWorker class is used, the following example creates an MQWorker.
It then sends a message (a small blob of XML) using SendMessage and then retrieves it
using ReadMessage:

 // NOTE: Message Queue services must be set up for this to work.
 // This can be added in Add/Remove Windows Components.

 // This is the right syntax for workstation queues.
 //MQWorker mqw = new MQWorker(@".\private$\MQWorkerQ");
 using (MQWorker mqw = new MQWorker(@".\MQWorkerQ"))
 {
 string xml = "<MyXml><InnerXml location=\"inside\"/></MyXml>";
 Console.WriteLine("Sending message to message queue: " + xml);
 mqw.SendMessage("Label for message", xml);
 string retXml = mqw.ReadMessage();
 Console.WriteLine("Read message from message queue: " + retXml);
 }

Discussion
Message queues are very useful when you are attempting to distribute the processing
load for scalability purposes. Without question, using a message queue adds over-
head to the processing; as the messages must travel through the infrastructure of
MSMQ, overhead would not incur without it. One benefit is that MSMQ allows
your application to spread out across multiple machines, so there can be a net gain in
production. Another advantage is that this supports reliable asynchronous handling
of the messages so that the sending side can be confident that the receiving side will
get the message without the sender having to wait for confirmation. The Message
Queue services are not installed by default but can be installed through the Add/
Remove Windows Components applet in Control Panel. Using a message queue to
buffer your processing logic from high volumes of requests (such as in the web ser-
vice scenario presented earlier) can lead to more stability and ultimately can produce
more throughput for your application through using multiple reader processes on
multiple machines.

See Also
The “Message Class” and “MessageQueue Class” topics in the MSDN
documentation.

19.5 Finding the Path to the Current Framework
Version

Problem
You need the path to where the version of the .NET Framework you are running on
is located.

784 | Chapter 19: Toolbox

Solution
Use the GetRuntimeDirectoryRuntimeDirectory method (implemented in System.
Runtime.InteropServices.RuntimeEnvironment) to return the full path to the folder
that the current version of .NET is installed in:

 public static string GetCurrentFrameworkPath()
 {

 return
 System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory();
 }

Discussion
There are many reasons why you might want to know the current framework path,
including:

• Manually loading the configuration files in the config directory to check settings.

• Dynamically adding references for system components in a code generator.

The list could go on and on. Since the method to get to the path is pretty far down a
namespace chain (System.Runtime.InteropServices.RuntimeEnvironment), it is pro-
vided for your programming convenience.

See Also
The “Version Class” and “Version.ToString Method” topics in the MSDN
documentation.

19.6 Determining the Versions of an Assembly That
Are Registered in the Global Assembly Cache
(GAC)

Problem
You need to determine all of the versions of an assembly that are currently installed
in the GAC.

Solution
Use the PrintGacRegisteredVersions method (implemented here) to display all of the
versions (both native and managed) of an assembly in the GAC. In order to be com-
plete, the code looks for .dll, .exe, and the native versions of .dll and // .exe files in
the Global Assembly Cache:

Determining the Versions of an Assembly That Are Registered in the Global Assembly Cache (GAC) | 785

 public static void PrintGacRegisteredVersions(string assemblyFileName)
 {

 Console.WriteLine("Searching for GAC Entries for {0}\r\n", assemblyFileName);
 // Get the filename without the extension as that is the subdirectory
 // name in the GAC where it would be registered.
 string assemblyFileNameNoExt = Path.
GetFileNameWithoutExtension(assemblyFileName);

 // Need to look for both the native images as well as "regular" .dlls and .
exes.
 string searchDLL = assemblyFileNameNoExt + ".dll";
 string searchEXE = assemblyFileNameNoExt + ".exe";
 string searchNIDLL = assemblyFileNameNoExt + ".ni.dll";
 string searchNIEXE = assemblyFileNameNoExt + ".ni.exe";

The Directory.GetFiles method is used in a LINQ query to determine if any of those
versions are present in the GAC, which is located in the [Windows]\ASSEMBLY
folder.

The ASSEMBLY folder is not visible through Windows Explorer, as
the GAC shell extension gets in the way. But if you run a Command
Prompt window, you can maneuver to the [Windows]\ASSEMBLY
folder and see how things are stored in the GAC.

// Query the GAC
var files = from file in Directory.GetFiles(gacPath, "*", SearchOption.
AllDirectories)
 let fileInfo = new FileInfo(file)
 where fileInfo.Name == searchDLL ||
 fileInfo.Name == searchEXE ||
 fileInfo.Name == searchNIDLL ||
 fileInfo.Name == searchNIEXE
 select fileInfo.FullName;

Now that you have a master list of the versions of this file in the GAC, you display
the information for each individual item by examining the FileVersionInfo and writ-
ing it out to the console:

 foreach (string file in files)
 {
 // Grab the version info and print.
 FileVersionInfo fileVersion = FileVersionInfo.GetVersionInfo(file);
 if (file.IndexOf("NativeImage",StringComparison.OrdinalIgnoreCase) != -1)
 {
 Console.WriteLine("Found {0} in the GAC under {1} as a native image",
 assemblyFileNameNoExt, Path.GetDirectoryName(file));
 }
 else
 {
 Console.WriteLine("Found {0} in the GAC under {1} with version " +
 "information:\r\n{2}",

786 | Chapter 19: Toolbox

 assemblyFileNameNoExt, Path.GetDirectoryName(file),
 fileVersion.ToString());
 }
 }
 }

The output from this when looking for mscorlib looks like this:

 Searching for GAC Entries for mscorlib

 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.50727_32\m
 scorlib\9a485a2c7533b6601064c8e660bb8a5d as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages1_v1.1.4322\msco
 rlib\1.0.5000.0_ _b77a5c561934e089_c6f4d3b7 as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages1_v1.1.4322\msco
 rlib\1.0.5000.0_ _b77a5c561934e089_65ce95c7 as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\GAC_32\mscorlib\2.0.0.0_ _b77
 a5c561934e089 with version information:
 File: C:\WINDOWS\ASSEMBLY\GAC_32\mscorlib\2.0.0.0_ _b77a5c561934e089\
 mscorlib.dll
 InternalName: mscorlib.dll
 OriginalFilename: mscorlib.dll
 FileVersion: 2.0.50727.1378 (REDBITSB2.050727-1300)
 FileDescription: Microsoft Common Language Runtime Class Library
 Product: Microsoftr .NET Framework
 ProductVersion: 2.0.50727.1378
 Debug: False
 Patched: False
 PreRelease: False
 PrivateBuild: False
 SpecialBuild: False
 Language: English (United States)

 Searching for GAC Entries for System.Web.dll

 Found System.Web in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.50727_32
 \System.Web\48209ad55221a8f04c621153965925e4 as a native image
 Found System.Web in the GAC under C:\WINDOWS\ASSEMBLY\GAC_32\System.Web\2.0.0.0_
 _b03f5f7f11d50a3a with version information:
 File: C:\WINDOWS\ASSEMBLY\GAC_32\System.Web\2.0.0.0_ _b03f5f7f11d50a3
 a\System.Web.dll
 InternalName: System.Web.dll
 OriginalFilename: System.Web.dll
 FileVersion: 2.0.50727.1378 (REDBITSB2.050727-1300)
 FileDescription: System.Web.dll
 Product: Microsoftr .NET Framework
 ProductVersion: 2.0.50727.1378
 Debug: False
 Patched: False
 PreRelease: False
 PrivateBuild: False
 SpecialBuild: False
 Language: English (United States)

Capturing Output from the Standard Output Stream | 787

 Found System.Web in the GAC under C:\WINDOWS\ASSEMBLY\GAC\System.Web\1.0.5000.0_
 _b03f5f7f11d50a3a with version information:
 File: C:\WINDOWS\ASSEMBLY\GAC\System.Web\1.0.5000.0_ _b03f5f7f11d50a3
 a\System.Web.dll
 InternalName: System.Web.dll
 OriginalFilename: System.Web.dll
 FileVersion: 1.1.4322.2037
 FileDescription: System.Web.dll
 Product: Microsoft (R) .NET Framework
 ProductVersion: 1.1.4322.2037
 Debug: False
 Patched: False
 PreRelease: False
 PrivateBuild: False
 SpecialBuild: False
 Language: English (United States)

Discussion
The ability to have multiple versions of assemblies on a machine and having abso-
lute binding mechanisms to the specific version of an assembly, were proclaimed as
the cure to .dll hell. .dll hell was the case in which two applications linked to a .dll of
the same name in a common folder (such as System32), but each application needed
a different version of the .dll. Problems occurred when you attempted to run one
application or the other, depending upon which version was present. With assem-
blies and the GAC, this scenario occurs only when the application is improperly con-
figured by allowing it to use newer versions of an assembly automatically or via
publisher policy issues. Perhaps things are better now. In any case, they are differ-
ent, and the starting point for debugging assembly loads is to figure out what is on
the system. This can be helped by looking at the Assembly Binding Log Viewer (FUS-
LOGVW.exe). But having a way to just see what is on the system with a particular
filename and what versions are included can be a very useful thing.

See Also
The “Directory Class,” “ArrayList Class,” and “FileVersionInfo Class” topics in the
MSDN documentation.

19.7 Capturing Output from the Standard Output
Stream

Problem
You want to capture output that is going to the standard output stream from within
your C# program.

788 | Chapter 19: Toolbox

Solution
Use the Console.SetOut method to capture and release the standard output stream.
SetOut sets the standard output stream to whatever System.IO.TextWriter-based
stream it is handed. To capture the output to a file, create a StreamWriter to write to
it, and set that writer using SetOut. Now when Console.WriteLine is called, the out-
put goes to the StreamWriter, not to stdout, as shown here:

 try
 {
 Console.WriteLine("Stealing standard output!");
 using (StreamWriter writer = new StreamWriter(@"c:\log.txt"))
 {
 // Steal stdout for our own purposes...
 Console.SetOut(writer);

 Console.WriteLine("Writing to the console... NOT!");

 for (int i = 0; i < 10; i++)
 Console.WriteLine(i);

 }
 }
 catch(IOException e)
 {
 Debug.WriteLine(e.ToString());
 return ;
 }

To restore writing to the standard output stream, create another StreamWriter. This
time, call the Console.OpenStandardOutput method to acquire the standard output
stream and use SetOut to set it once again. Now calls to Console.WriteLine appear on
the console again:

 // Recover the standard output stream so that a
 // completion message can be displayed.
 using (StreamWriter standardOutput =
 new StreamWriter(Console.OpenStandardOutput()))
 {
 standardOutput.AutoFlush = true;
 Console.SetOut(standardOutput);
 Console.WriteLine("Back to standard output!");
 }

The console output from this code looks like this:

 Stealing standard output!
 Back to standard output!

log.txt contains the following after the code is executed:

 Writing to the console... NOT!
 0
 1

Running Code in Its Own AppDomain | 789

 2
 3
 4
 5
 6
 7
 8
 9

Discussion
Redirecting the standard output stream inside of the program may seem a bit anti-
quated. But consider the situation when you’re using another class that writes infor-
mation to this stream. You don’t want the output to appear in your application, but
you have to use the class. This could also be useful if you create a small launcher
application to capture output from a console application.

See Also
The “Console.SetOut Method,” “Console.OpenStandardOutput Method,” and
“StreamWriter Class” topics in the MSDN documentation.

19.8 Running Code in Its Own AppDomain

Problem
You want to run code isolated from the main part of your application.

Solution
Create a separate AppDomain to run the code using the AppDomain.CreateDomain
method. CreateDomain allows the application to control many aspects of the
AppDomain being created like the security environment, the AppDomain settings, and
base paths for the AppDomain. To demonstrate this, the code creates an instance of the
RunMe class (shown in full later in this recipe) and calls the
PrintCurrentAppDomainName method. This prints the name of the AppDomain where the
code is running:

 public static void RunCodeInNewAppDomain()
 {
 AppDomain myOwnAppDomain = AppDomain.CreateDomain("MyOwnAppDomain");
 // Print out our current AppDomain name.
 RunMe rm = new RunMe();
 rm.PrintCurrentAppDomainName();

Now, you create an instance of the RunMe class in the "MyOwnAppDomain" AppDomain by
calling CreateInstance on the AppDomain. We pass CreateInstance the module and
type information necessary for constructing the type, and it returns an ObjectHandle.

790 | Chapter 19: Toolbox

We can then retrieve a proxy to the instance running in the AppDomain by taking the
returned ObjectHandle and casting it to a RunMe reference using the Unwrap method:

 // Create our RunMe class in the new AppDomain.
 Type adType = typeof(RunMe);
 ObjectHandle objHdl =
 myOwnAppDomain.CreateInstance(adType.Module.Assembly.FullName,
 adType.FullName);

 // Unwrap the reference.
 RunMe adRunMe = (RunMe)objHdl.Unwrap();

The PrintCurrentAppDomainName method is called on the RunMe instance in the
"MyOwnAppDomain" AppDomain, and it prints out "Hello from MyOwnAppDomain!". The
AppDomain is unloaded using AppDomain.Unload and the program terminates:

 // Make a call on the toolbox.
 adRunMe.PrintCurrentAppDomainName();

 // Now unload the AppDomain.
 AppDomain.Unload(myOwnAppDomain);
 }

The RunMe class is defined here. It inherits from MarshalByRefObject, as that allows
you to retrieve the proxy reference when you call Unwrap on the ObjectHandle and
have the calls on the class remoted into the new AppDomain. The PrintCurrentApp-
DomainName method simply accesses the FriendlyName property on the current
AppDomain and prints out the “Hello from {AppDomain}!” message:

 public class RunMe : MarshalByRefObject
 {
 public RunMe()
 {
 PrintCurrentAppDomainName();
 }

 public void PrintCurrentAppDomainName()
 {
 string name = AppDomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Hello from {0}!", name);
 }
 }

The output from this example is shown here:

 Hello from CSharpRecipes.vshost.exe!
 Hello from CSharpRecipes.vshost.exe!
 Hello from MyOwnAppDomain!
 Hello from MyOwnAppDomain!

Discussion
Isolating code in a separate AppDomain is overkill for something as trivial as this exam-
ple, but it demonstrates that code can be executed remotely in an AppDomain created

Determining the Operating System and Service Pack Version of the Current Operating System | 791

by your application. There are six overloads for the CreateDomain method, and each
adds a bit more complexity to the AppDomain creation. In situations in which the iso-
lation or configuration benefits outweigh the complexities of not only setting up a
separate AppDomain but debugging code in it as well, it is a useful tool. A good real-
world example is hosting a separate AppDomain to run ASP.NET pages outside of the
normal ASP.NET environment, though this is truly a nontrivial usage.

See Also
The “AppDomain Class,” “AppDomain.CreateDomain Method,” and “ObjectHan-
dle Class” topics in the MSDN documentation.

19.9 Determining the Operating System and Service
Pack Version of the Current Operating System

Problem
You want to know the current operating system and service pack.

Solution
Use the GetOSAndServicePack method shown in Example 19-2 to get a string repre-
senting the current operating system and service pack. GetOSAndServicePack uses the
Environment.OSVersion property to get the version information for the operating sys-
tem and then determines the “official” name of the OS from that. The
OperatingSystem class retrieved from Environment.OSVersion has a property for the
service pack called ServicePack. The two strings are then merged together and
returned as the OS and service pack string.

Example 19-2. GetOSAndServicePack method

public static string GetOSAndServicePack()
{
 // Get the current OS info
 OperatingSystem os = Environment.OSVersion;
 string osText = string.Empty;
 // if version is 5, then it is Win2K, XP, or 2003
 switch (os.Version.Major)
 {
 case 5:
 switch (os.Version.Minor)
 {
 case 0: osText = "Windows 2000";
 break;
 case 1: osText = "Windows XP";
 break;
 case 2: osText = "Windows Server 2003";
 break;

792 | Chapter 19: Toolbox

Discussion
Enabling your application to know the current operating system and service pack
allows you to include that information in debugging reports and in the about box (if
you have one) for your application. The simple knowledge of the correct operating
system and service pack transmitted through your support department can save you
hours in debugging time. It is well worth making available, so your support depart-
ment can easily direct your clients to it in case they cannot otherwise locate it.

See Also
The “Environment.OSVersion Property” and “OperatingSystem Class” topics in the
MSDN documentation.

 default: osText = os.ToString();
 break;
 }
 break;
 case 6:
 switch (os.Version.Minor)
 {
 case 0: osText = "Windows Vista";
 break;
 case 1: osText = "Windows Server 2008";
 break;
 default: osText = os.ToString();
 break;
 }
 break;
 }
 if (!string.IsNullOrEmpty(osText))
 {
 // get the text for the service pack
 string spText = os.ServicePack;
 // build the whole string
 return string.Format("{0} {1}", osText, spText);
 }
 // Unknown OS so return version
 return os.VersionString;
}

Example 19-2. GetOSAndServicePack method (continued)

793

Chapter 20 CHAPTER 20

Numbers and Enumerations20

20.0 Introduction
Simple types are value types that are a subset of the built-in types in C#, although, in
fact, the types are defined as part of the .NET Framework Class Library (.NET FCL).
Simple types are made up of several numeric types and a bool type. These numeric
types consist of a decimal type (decimal), nine integral types (byte, char, int, long,
sbyte, short, uint, ulong, ushort), and two floating-point types (float, double).
Table 20-1 lists the simple types and their fully qualified names in the .NET Frame-
work.

Table 20-1. The simple data types

Fully qualified name Alias Value range

System.Boolean bool true or false

System.Byte byte 0 to 255

System.SByte sbyte -128 to 127

System.Char char 0 to 65535

System.Decimal decimal -79,228,162,514,264,337,593,543,950,335 to
79,228,162,514,264,337,593,543,950,335

System.Double double -1.79769313486232e308
to
1.79769313486232e308

System.Single float -3.40282347E+38 to 3.40282347E+38

System.Int16 short -32768 to 32767

System.Uint16 ushort 0 to 65535

System.Int32 int -2,147,483,648 to 2,147,483,647

System.UInt32 uint 0 to 4,294,967,295

System.Int64 long -9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

System.UInt64 ulong 0 to 18,446,744,073,709,551,615

794 | Chapter 20: Numbers and Enumerations

When dealing with floating point data types, precision can be can be more impor-
tant than the range of the data values. The precision of the floating point data types
is listed in Table 20-2.

When trying to decide between using floats and decimals, think of the following:

• Floats were designed for scientists to represent inexact quantities over the entire
range of precisions and magnitudes used in physics.

• Decimals were designed for use by ordinary humans who do math in base ten
and do not require more than a handful of digits past the decimal point.

The C#-reserved words for the various data types are simply aliases for the fully
qualified type name. Therefore, it does not matter whether you use the type name or
the reserved word: the C# compiler will generate identical code.

It should be noted that the following types are not Common Language Specification-
compliant (CLS-compliant): sbyte, ushort, uint, and ulong. They might not be sup-
ported by other .NET languages as a result of this. Enumerations implicitly inherit
from System.Enum, which in turn inherits from System.ValueType. Enumerations have
a single use: to describe items of a specific group. For example, the colors red, blue,
and yellow could be defined by the enumeration ShapeColor; likewise, square, circle,
and triangle could be defined by the enumeration Shape. These enumerations would
look like the following:

 enum ShapeColor
 {
 Red, Blue, Yellow
 }

 enum Shape
 {
 Square = 2, Circle = 4, Triangle = 6
 }

Each item in the enumeration receives a numeric value regardless of whether you
assign one or not. Since the compiler automatically adds the numbers starting with
zero and incrementing by one, for each item in the enumeration, the ShapeColor enu-
meration previously defined would be exactly the same if it were defined in the fol-
lowing manner:

 enum ShapeColor
 {

Table 20-2. Floating point precision

Floating point type Precision

System.Single (float) 7 digits

System.Double (double) 15–16 digits

System.Decimal (decimal) 28–29 digits

Converting Between Degrees and Radians | 795

 Red = 0, Blue = 1, Yellow = 2
 }

Enumerations are good code-documenting tools. For example, it is more intuitive to
write the following:

 ShapeColor currentColor = ShapeColor.Red;

instead of this:

 int currentColor = 0;

Either mechanism will work, but the first method is easy to read and understand,
especially for a new developer taking over someone else’s code. It also has the bene-
fit of being type-safe in C#, which the use of raw ints does not provide. The CLR
sees enumerations as members of their underlying types, so it is not type-safe for all
languages.

20.1 Converting Between Degrees and Radians

Problem
When using the trigonometric functions of the Math class, all units are in radians.
You have some angles measured in degrees and want to convert these to radians in
order to use them with the members of the Math class, and some angles measured in
radians that need to be in degrees.

Solution
To convert a value in degrees to radians, multiply it by math.PI/180:

 using System;

 public static double ConvertDegreesToRadians (double degrees)
 {
 return ((Math.PI / 180) * degrees);
 }

To convert a value in radians to degrees, multiply it by 180/mathPI:

 using System;

 public static double ConvertRadiansToDegrees(double radians)
 {
 return ((180 / Math.PI) * radians);
 }

Discussion
All of the static trigonometric methods in the Math class use radians as their unit of
measure for angles. It is very handy to have conversion routines to convert between

796 | Chapter 20: Numbers and Enumerations

radians and degrees, especially when a user is required to enter data in degrees rather
than radians. After all, humans understand degrees better than radians.

The static field Math.PI contains the constant 3.14151265358979323846.

20.2 Using the Bitwise Complement Operator with
Various Data Types

Problem
The bitwise complement operator (~) is overloaded to work directly with int, uint,
long, ulong, and enumeration data types consisting of the underlying types int, uint,
long, and ulong. However, you need to perform a bitwise complement operation on a
different numeric data type.

Solution
To use the bitwise complement operator with any data type, you must cast the
resultant value of the bitwise operation to the type you wish to work with. The fol-
lowing code demonstrates this technique with the byte data type:

 byte y = 1;
 byte result = (byte)~y;

The value assigned to result is 254.

Discussion
The following code shows incorrect use of the bitwise complement operator on the
byte data type:

 byte y = 1;
 Console.WriteLine("~y = " + ~y);

This code outputs the following surprising value:

 -2

Clearly, the result from performing the bitwise complement of the byte variable is
incorrect; it should be 254. In fact, byte is an unsigned data type, so it cannot be
equal to a negative number. If you rewrite the code as follows:

 byte y = 1;
 byte result = ~y;

you get a compile-time error: “Cannot implicitly convert type ‘int’ to ‘byte.’” This
error message gives some insight into why this operation does not work as expected.
To fix this problem, you must explicitly cast this value to a byte before you assign it
to the result variable, as shown here:

 byte y = 1;
 byte result = (byte)~y;

Converting a Number in Another Base to Base10 | 797

This cast is required because the bitwise operators are overloaded to operate only on
int, uint, long, ulong, bool, and enumeration data types. When one of the bitwise
operators is used on another data type, that data type is converted to the supported
data type that is the best conversion based on overload resolution. Therefore, a byte
data type is converted to an int before the bitwise complement operator is evaluated:

 0x01 // byte y = 1;
 0xFFFFFFFE // The value 01h is converted to an int and its
 // bitwise complement is taken.
 // This bit pattern equals -2 as an int.
 0xFE // The resultant int value is cast to its original byte data type.

Notice that the int data type is a signed data type, unlike the byte data type. This is
why you receive -2 for a result instead of the expected value 254. This conversion of
the byte data type to its nearest equivalent is called numeric promotion. Numeric pro-
motion also comes into play when you use differing data types with binary opera-
tors, including the bitwise binary operators.

Numeric promotion is discussed in detail in the C# Language Specifi-
cation document in section 7.2.6 (this document is available at http://
msdn2.microsoft.com/en-us/vcsharp/Aa336809.aspx). Understanding
how numeric promotion works is essential when using operators on
differing data types and when using operators with a data type that is
not overloaded to handle them. Knowing this can save you hours of
debugging time.

20.3 Converting a Number in Another Base to Base10

Problem
You have a string containing a number in base2 (binary), base8 (octal), base10 (deci-
mal), or base16 (hexadecimal). You need to convert this string to its equivalent inte-
ger value and display it in base10.

Solution
To convert a number in another base to base10, use the overloaded static Convert.
ToInt32 method on the Convert class:

 string base2 = "11";
 string base8 = "17";
 string base10 = "110";
 string base16 = "11FF";

 Console.WriteLine("Convert.ToInt32(base2, 2) = " +
 Convert.ToInt32(base2, 2));

 Console.WriteLine("Convert.ToInt32(base8, 8) = " +
 Convert.ToInt32(base8, 8));

http://msdn2.microsoft.com/en-us/vcsharp/Aa336809.aspx
http://msdn2.microsoft.com/en-us/vcsharp/Aa336809.aspx

798 | Chapter 20: Numbers and Enumerations

 Console.WriteLine("Convert.ToInt32(base10, 10) = " +
 Convert.ToInt32(base10, 10));

 Console.WriteLine("Convert.ToInt32(base16, 16) = " +
 Convert.ToInt32(base16, 16));

This code produces the following output:

 Convert.ToInt32(base2, 2) = 3
 Convert.ToInt32(base8, 8) = 15
 Convert.ToInt32(base10, 10) = 110
 Convert.ToInt32(base16, 16) = 4607

Discussion
The static Convert.ToInt32 method has an overload that takes a string containing a
number and an integer defining the base of this number. This method then converts
the numeric string into an integer, Console.WriteLine, and then converts the num-
ber to base10 and displays it.

The other static methods of the Convert class, such as ToByte, ToInt64, and ToInt16,
also have this same overload, which accepts a number as a string and the base in
which this number is expressed. Unfortunately, these methods convert from a string
value expressed in base2, base8, base10, and base16 only. They do not allow for con-
verting a value to a string expressed in any other base types than base10. However,
the ToString methods on the various numeric types do allow for this conversion.

See Also
The “Convert Class” and “Converting with System.Convert” topics in the MSDN
documentation.

20.4 Determining Whether a String Is a Valid Number

Problem
You have a string that possibly contains a numeric value. You need to know whether
this string contains a valid number.

Solution
Use the static TryParse method of any of the numeric types. For example, to deter-
mine whether a string contains a double, use the following method:

 string str = "12.5";
 double result = 0;
 if(double.TryParse(str,
 System.Globalization.NumberStyles.Float,
 System.Globalization.NumberFormatInfo.CurrentInfo,
 out result))

Rounding a Floating-Point Value | 799

 {

 // Is a double!
 }

Discussion
This recipe shows how to determine whether a string contains only a numeric value.
The TryParse method returns true if the string contains a valid number without the
exception that you will get if you use the Parse method.

See Also
The “Parse” and “TryParse” topics in the MSDN documentation.

20.5 Rounding a Floating-Point Value

Problem
You need to round a number to a whole number or to a specific number of decimal
places.

Solution
To round any number to its nearest whole number, use the overloaded static Math.
Round method, which takes only a single argument:

 int x = (int)Math.Round(2.5555); // x == 3

If you need to round a floating-point value to a specific number of decimal places,
use the overloaded static Math.Round method, which takes two arguments:

 decimal x = Math.Round(2.5555, 2); // x == 2.56

Discussion
The Round method is easy to use; however, you need to be aware of how the round-
ing operation works. The Round method follows the IEEE Standard 754, section 4
standard. This means that if the number being rounded is halfway between two
numbers, the Round operation will always round to the even number. An example
will show what this means to you:

 decimal x = Math.Round(1.5); // x == 2
 decimal y = Math.Round(2.5); // y == 2

Notice that 1.5 is rounded up to the nearest even whole number and 2.5 is rounded
down to the nearest even whole number. Keep this in mind when using the Round
method.

800 | Chapter 20: Numbers and Enumerations

This method is known as Banker’s Rounding; it was invented because
it introduces less bias when rounding large sets of numbers which
often have halves in them—as sets containing currencies often do.

See Also
The “Math Class” topic in the MSDN documentation.

20.6 Choosing a Rounding Algorithm

Problem
The Math.Round method will round the value 1.5 to 2; however, the value 2.5 will also
be rounded to 2 using this method. You may always want to round to the greater
number in this type of situation (e.g., round 2.5 to 3 instead of 2). Conversely, you
might want to always round to the lesser number (e.g., round 1.5 to 1).

Solution
Use the static Math.Floor method to always round up when a value is halfway
between two whole numbers:

 public static double RoundUp(double valueToRound)
 {
 return Math.Floor(valueToRound + 0.5);
 }

Use the following technique to always round down when a value is halfway between
two whole numbers:

 public static double RoundDown(double valueToRound)
 {
 double floorValue = Math.Floor(valueToRound);
 if ((valueToRound - floorValue) > .5)
 {
 return floorValue + 1;
 }
 else
 {
 return floorValue;
 }
 }

Discussion
The static Math.Round method rounds to the nearest even number (see Recipe 1.8 for
more information). However, there are some times that you do not want to round a
number in this manner. The static Math.Floor method can be used to allow for differ-
ent manners of rounding.

Converting Between Temperature Scales | 801

The methods used to round numbers in this recipe do not round to a
specific number of decimal points; rather, they round to the nearest
whole number.

See Also
The “Math Class” topic in the MSDN documentation.

20.7 Converting Between Temperature Scales

Problem
You have a temperature reading measured in one temperature scale and need to con-
vert it to another scale.

Solution
To convert between Celsius, Fahrenheit, and Kelvin, use the following methods:

public static double CelsiusToFahrenheit(double celsius)
{
 return (1.8 * celsius) + 32;
}

public static double FahrenheitToCelsius(double fahrenheit)
{
 return 1.8 * (fahrenheit - 32);
}

public static double CelsiusToKelvin(double celsius)
{
 return celsius + 273;
}

public static double KelvinToCelsius(double kelvin)
{
 return kelvin - 273;
}

public static double FahrenheitToKelvin(double fahrenheit)
{
 return CelsiusToKelvin(FahrenheitToCelsius(fahrenheit));
}

public static double KelvinToFahrenheit(double kelvin)
{
 return CelsiusToFahrenheit(KelvinToCelsius(kelvin));
}

802 | Chapter 20: Numbers and Enumerations

Discussion
There are three main temperature scales that are in use today: Celsius, Fahrenheit,
and Kelvin. The Celsius scale (˚C) is used in most of the world to measure air tem-
peratures. In the United States, the Fahrenheit scale (˚F) is used to measure tempera-
tures at or near the surface, while the Celsius scale is used to measure upper air
temperatures. The Kelvin (K) scale is used by scientists and for astronomical
temperatures.

All three temperature scales are related to each other through the “tri-
ple point of water.” The triple point of water is the temperature at
which water vapor, liquid water, and ice can coexist simultaneously.
The triple point occurs at 0.01 ˚C (273.16 K or 32.02 ˚F).

20.8 Safely Performing a Narrowing Numeric Cast

Problem
You need to cast a value from a larger value to a smaller one, while gracefully han-
dling conditions that result in a loss of information. For example, casting a long to an
int results in a loss of information only if the long data type is greater than int.
MaxSize.

Solution
The simplest way to do this check is to use the checked keyword. The following
extension method accepts two long data types and attempts to add them together.
The result is stuffed into an int data type. If an overflow condition exists, the
OverflowException is thrown:

using System;

public static class NumbersEnums
{
 public static void AddChecked(this long lhs, long rhs)
 {
 int result = checked((int)(lhs + rhs));
 }
}

This is the simplest method. However, if you do not want the overhead of throwing
an exception and having to wrap a lot of code in try/catch blocks to handle the over-
flow condition, you can use the MaxValue and MinValue fields of each type. A check
using these fields can be done prior to the conversion to insure that no loss of infor-
mation occurs. If this does occur, the code can inform the application that this cast
will cause a loss of information. You can use the following conditional statement to

Safely Performing a Narrowing Numeric Cast | 803

determine whether sourceValue can be cast to a short without losing any
information:

 // Our two variables are declared and initialized.
 int sourceValue = 34000;
 short destinationValue = 0;

 // Determine if sourceValue will lose information in a cast to a short.
 if (sourceValue <= short.MaxValue && sourceValue >= short.MinValue)
 {
 destinationValue = (short)sourceValue;
 }
 else
 {
 // Inform the application that a loss of information will occur.
 }

Discussion
A narrowing conversion occurs when a larger type is cast down to a smaller type. For
instance, consider casting a value of type Int32 to a value of type Int16. If the Int32
value is smaller than or equal to the Int16.MaxValue field and the Int32 value is
higher than or equal to the Int16.MinValue field, the cast will occur without error or
loss of information. Loss of information occurs when the Int32 value is larger than
the Int16.MaxValue field or the Int32 value is lower than the Int16.MinValue field. In
either of these cases, the most significant bits of the Int32 value are truncated and
discarded, changing the value after the cast.

If a loss of information occurs in an unchecked context, it will occur silently without
the application noticing. This problem can cause some very insidious bugs that are
hard to track down. To prevent this, check the value to be converted to determine
whether it is within the lower and upper bounds of the type that it will be cast to. If
the value is outside these bounds, then code can be written to handle this situation.
This code could force the cast not to occur and/or possibly inform the application of
the casting problem. This solution can aid in the prevention of hard-to-find arith-
metic bugs creeping into your applications.

You should understand that both techniques shown in the Solution section are valid.
However, the technique you use will depend on whether you expect to hit the over-
flow case on a regular basis or only occasionally. If you expect to hit the overflow
case quite often, you might want to choose the second technique of manually testing
the numeric value. Otherwise, it might be easier to use the checked keyword, as in
the first technique.

804 | Chapter 20: Numbers and Enumerations

In C#, code can run in either a checked or unchecked context; by
default, the code runs in an unchecked context. In a checked context,
any arithmetic and conversions involving integral types are examined
to determine whether an overflow condition exists. If so, an
OverflowException is thrown. In an unchecked context, no
OverflowException will be thrown when an overflow condition exists.

A checked context can be set up by using the /checked{+} compiler
switch by setting the Check for Arithmetic Overflow/Underflow
project property to true, or by using the checked keyword. An
unchecked context can be set up using the /checked- compiler switch
by setting the Check for Arithmetic Overflow/Underflow project prop-
erty to false or by using the unchecked keyword.

You should be aware of the following when performing a conversion:

• Casting from a float, double, or decimal type to an integral type results in the
truncation of the fractional portion of this number. Furthermore, if the integral
portion of the number exceeds MaxValue for the target type, the result will be
undefined unless the conversion is done in a checked context, in which case it
will trigger an OverflowException.

• Casting from a float or double to a decimal results in the float or double being
rounded to 28 decimal places.

• Casting from a double to a float results in the double being rounded to the near-
est float value.

• Casting from a decimal to a float or double results in the decimal being rounded
to the resulting type (float or double).

• Casting from an int, uint, or long to a float could result in the loss of precision,
but never magnitude.

• Casting from a long to a double could result in the loss of precision, but never
magnitude.

See Also
The “Checked Keyword” and “Checked and Unchecked” topics in the MSDN
documentation.

20.9 Displaying an Enumeration Value as a String

Problem
You need to display the textual or numeric value of an enumeration member.

Displaying an Enumeration Value as a String | 805

Solution
To display an enumeration value as a string, use the ToString method that each enu-
meration member inherits from System.Enum.

Using the following ValidShape enumeration type as an example, you can obtain the
textual and numeric values so that you can display them:

 enum ValidShape
 {
 Square, Circle, Cylinder, Octagon
 }

Using the ToString method of the ValidShape enumeration type, you can derive the
value of a specific ValidShape enumeration value directly:

 Console.WriteLine(ValidShape.Circle.ToString());
 Console.WriteLine(ValidShape.Circle.ToString("G"));
 Console.WriteLine(ValidShape.Circle.ToString("D"));
 Console.WriteLine(ValidShape.Circle.ToString("F"));
 Console.WriteLine(ValidShape.Circle.ToString("X"));

This generates the following output:

 Circle
 Circle
 1
 Circle
 00000001

If you are working with a variable of type ValidShape, the enumeration values can be
derived in the same manner:

 ValidShape shapeStyle = ValidShape.Cylinder;

 Console.WriteLine(shapeStyle.ToString());
 Console.WriteLine(shapeStyle.ToString("G"));
 Console.WriteLine(shapeStyle.ToString("D"));
 Console.WriteLine(shapeStyle.ToString("F"));
 Console.WriteLine(shapeStyle.ToString("X"));

The following is displayed:

 Cylinder
 Cylinder
 2
 Cylinder
 00000002

Discussion
Deriving the textual or numeric representation of an enumeration value is a simple
matter of using the ToString instance method on the Enum type. This method can
accept a character indicating the type of formatting to place on the enumeration

806 | Chapter 20: Numbers and Enumerations

value. The character can be one of the following: G, g, D, d, X, x, F, or f. See
Table 20-3 for a description of these formatting types.

When printing out the values of an enumeration with the Flags attribute, the infor-
mation displayed takes into account that more than one of the enumeration values
may have been ORed together. The output will be all of the enumerations printed
out as strings separated by commas or as the ORed numeric value, depending on the
formatting chosen. For example, consider if the Flags attribute was placed on the
IceCreamToppings enumeration as follows:

[Flags]
public enum IceCreamToppings
{
 HotFudge = 1,
 Cherry = 2,
 WhippedCream = 4
}

Now if you use the same pattern with this enumeration as the previous ones for dis-
playing the output using the different formatting types like this:

IceCreamToppings toppings =
 IceCreamToppings.HotFudge | IceCreamToppings.WhippedCream;

Console.WriteLine(toppings.ToString());
Console.WriteLine(toppings.ToString("G"));
Console.WriteLine(toppings.ToString("D"));
Console.WriteLine(toppings.ToString("F"));
Console.WriteLine(toppings.ToString("X"));

you will see the following output:

HotFudge, WhippedCream
HotFudge, WhippedCream
5
HotFudge, WhippedCream
00000005

This provides a flexible way of extracting the flags that you are currently using on an
enumeration type.

Table 20-3. Formatting types

Formatting type Name Description

G or g (General) Displays the string representation of the enumeration value.

F or f (Flag) Displays the string representation of the enumeration value. The enumeration is
treated as if it were a bit field.

D or d (Decimal) Displays decimal equivalent of the enumeration.

X or x (Hexadecimal) Displays hexadecimal equivalent of the enumeration.

Converting Plain Text to an Equivalent Enumeration Value | 807

See Also
The “Enum.ToString Method” and the “Enumeration Format Strings” topics in the
MSDN documentation.

20.10 Converting Plain Text to an Equivalent
Enumeration Value

Problem
You have the textual value of an enumeration element, possibly from a database or
text file. This textual value needs to be converted to a usable enumeration type.

Solution
The static Parse method on the Enum class allows the textual value of an enumeration
element to be converted to a usable enumeration value. For example:

 try
 {
 Language proj1Language = (Language)Enum.Parse(typeof(Language),
 "VBNET");
 Language proj2Language = (Language)Enum.Parse(typeof(Language),
 "UnDefined");
 }
 catch (ArgumentException e)
 {
 // Handle an invalid text value here
 //(such as the "UnDefined" string)
 }

where the Language enumeration is defined as:

 enum Language
 {
 Other = 0, CSharp = 1, VBNET = 2, VB6 = 3
 }

Discussion
The static Enum.Parse method converts text to a specific enumeration value. This
technique is useful when a user is presented a list of values, with each value defined
in an enumeration. When the user selects an item from this list, the text chosen can
be easily converted from its string representation to its equivalent enumeration value
using Enum.Parse. This method returns an object, which must then be cast to the tar-
get enum type in order to use it.

808 | Chapter 20: Numbers and Enumerations

In addition to passing Enum.Parse a single enumeration value as a string, you can also
pass the enumeration value as its corresponding numeric value. For example, con-
sider the following line:

 Language proj1Language = (Language)Enum.Parse(typeof(Language),
 "VBNET");

You can rewrite this as follows to perform the exact same action:

 Language proj1Language = (Language)Enum.Parse(typeof(Language), "2");

This is assuming that the Language.VBNET enumeration value is equal to 2.

Another interesting feature of the Parse method is that it can accept a comma-
delimited list of enumeration names or values and then logically OR them together.
The following example creates an enumeration with the languages VBNET and CSharp
ORed together:

 Language proj1Language = (Language)Enum.Parse(typeof(Language),
 "CSharp, VBNET");

Each individual element of the comma-delimited list is trimmed of any whitespace,
so it does not matter if you add any whitespace between each item in this list.

See Also
The “Enum.Parse Method” topic in the MSDN documentation.

20.11 Testing for a Valid Enumeration Value

Problem
When you pass a numeric value to a method that accepts an enumeration type, it is
possible to pass a value that does not exist in the enumeration. You want to perform
a test before using this numeric value to determine if it is indeed one of the ones
defined in this enumeration type.

Solution
To prevent this problem, test for the specific enumeration values that you allow for
the enumeration-type parameter using a switch statement to list the values.

Using the following Language enumeration:

 enum Language
 {
 Other = 0, CSharp = 1, VBNET = 2, VB6 = 3
 }

Suppose you have a method that accepts the Language enumeration, such as the fol-
lowing method:

Testing for a Valid Enumeration Value | 809

 public void HandleEnum(Language language)
 {
 // Use language here...
 }

You need a method to define the enumeration values you can accept in HandleEnum.
The CheckLanguageEnumValue method shown here does that:

 public static bool CheckLanguageEnumValue(Language language)
 {
 switch (language)
 {
 // All valid types for the enum listed here
 // This means only the ones we specify are valid.
 // Not any enum value for this enum
 case Language.CSharp:
 case Language.Other:
 case Language.VB6:
 case Language.VBNET:
 break;
 default:
 Debug.Assert(false, language +
 " is not a valid enumeration value to pass.");
 return false;
 }
 return true;
 }

Discussion
Although the Enum class contains the static IsDefined method, it should not be used.
IsDefined uses reflection internally, which incurs a performance penalty. Also, ver-
sioning of the enumeration is not handled well. Consider the scenario in which you
add the value ManagedCPlusPlus to the Languages enum in the next version of your
software. If IsDefined is used to check the argument here, it will allow MgdCpp as a
valid value, since it is defined in the enumeration, even though the code for which
you are validating the parameter is not designed to handle it. By being specific with
the switch statement shown in CheckLanguageEnumValue, you reject the MgdCpp value,
and the code does not try to run in an invalid context. This, after all, is what you
were after in the first place.

The enumeration check should always be used whenever the method is visible to
external objects. An external object can invoke methods with public visibility, so any
enumerated value passed in to this method should be screened before it is actually
used.

Methods with private visibility may not need this extra level of protection. Use your
own judgment on whether to use the CheckLanguageEnumValue method to evaluate
enumeration values passed in to private methods.

810 | Chapter 20: Numbers and Enumerations

The HandleEnum method can be called in several different ways. Three of these are
shown here:

 HandleEnum(Language.CSharp)
 HandleEnum((Language)1)
 HandleEnum((Language)someVar) // Where someVar is an int type

Any of these method calls is valid. Unfortunately, the following method calls are also
valid:

 HandleEnum((Language)100)

 int someVar = 100;
 HandleEnum((Language)someVar)

These method calls will also compile without errors, but odd behavior will result if
the code in HandleEnum tries to use the value passed in to it (in this case, the value
100). In many cases, an exception will not even be thrown; HandleEnum just receives
the value 100 as an argument, as if it were a legitimate value of the Language
enumeration.

The CheckLanguageEnumValue method prevents this from happening by screening the
argument for valid Language enumeration values. The following code shows the mod-
ified body of the HandleEnum method:

 public void HandleEnum(Language language)
 {
 if (CheckLanguageEnumValue(language))
 {
 // Use language here...
 }
 else
 {
 // Deal with the invalid language value here...
 }
 }

See Also
To test for a valid enumeration within an enumeration marked with the Flags
attribute, see Recipe 20.12.

20.12 Testing for a Valid Enumeration of Flags

Problem
You need to determine if a given value is a valid enumeration value or a valid combi-
nation of enumeration values (i.e., bit flags ORed together in an enumeration
marked with the Flags attribute).

Testing for a Valid Enumeration of Flags | 811

Solution
To make it possible to test whether a value is a valid enumeration value or some
combination of valid enumeration values, add an All member to the existing enu-
meration equal to all the members of the enumeration ORed together. Then, use the
HandleFlagsEnum method to do the test.

There is a problem with using Enum.IsDefined with an enumeration marked with the
Flags attribute. Consider if the IceCreamToppings enumeration was written as
follows:

[Flags]
public enum IceCreamToppings
{
 HotFudge = 1,
 Cherry = 2,
 WhippedCream = 4
}

Valid values for IceCreamToppings are the set of numbers {1, 2, 3, 4, 5, 6, 7}. How-
ever, the values 3, 5, 6, and 7 are not explicitly represented in this enumeration. The
value 3 is equal to the HotFudge and Cherry enumeration members ORed together,
and the value 7 is equal to all of the enumeration members ORed together. For the
values 3, 5, 6, and 7, the Enum.IsDefined method will return false, indicating that
these are not valid values, when in fact they are. You need a way to determine if a
correct set of flags has been passed into a method.

To fix this problem, you can add a new member to the Language enumeration to
define all values for which the Language enumeration is valid. In this case, the
Language enumeration would be rewritten as:

[Flags]
public enum IceCreamToppings
{
 HotFudge = 1,
 Cherry = 2,
 WhippedCream = 4,
 All = (HotFudge | Cherry | WhippedCream)
}

The new All enumeration member is equal to all other IceCreamToppings members
ORed together. Now, when you want to validate a IceCreamToppings flag, all you
have to do is the following:

public static bool ValidateFlagsEnum(IceCreamToppings topping)
{
 return ((topping>0) && ((topping & IceCreamToppings.All) == topping));
}

812 | Chapter 20: Numbers and Enumerations

Discussion
If you want to use the ValidateFlagsEnum method with existing code, all that is
required is to add an All member to the existing enumeration. The All member
should be equal to all the members of the enumeration ORed together.

The ValidateFlagsEnum method then uses this All member to determine if an enu-
meration value is valid. This is accomplished by ANDing the topping value with
IceCreamToppings.All and then verifying that the result equals the original topping
parameter.

This method can also be overloaded to handle the underlying type of the enumera-
tion as well (in this case, the underlying type of the IceCreamToppings enumeration is
an integer). The following code determines if an integer variable contains a valid
IceCreamToppings enumeration value:

public static bool ValidateFlagsEnum(int topping)
{
 return ((topping>0) && ((topping & (int)IceCreamToppings.All) == topping));
}

The overloaded ValidateFlagsEnum methods return true if the topping parameter is
valid and false otherwise.

See Also
To test for a valid enumeration within an enumeration not marked with the Flags
attribute, see Recipe 20.11.

20.13 Using Enumerated Members in a Bit Mask

Problem
An enumeration of values is needed to act as bit flags that can be ORed together to
create a combination of values (flags) in the enumeration.

Solution
Mark the enumeration with the Flags attribute:

[Flags]
public enum RecycleItems
{
 None = 0x00,
 Glass = 0x01,
 AluminumCans = 0x02,
 MixedPaper = 0x04,
 Newspaper = 0x08
}

Using Enumerated Members in a Bit Mask | 813

Combining elements of this enumeration is a simple matter of using the bitwise OR
operator (|). For example:

 RecycleItems items = RecycleItems.Glass | RecycleItems.Newspaper;

Discussion
Adding the Flags attribute to an enumeration marks this enumeration as individual
bit flags that can be ORed together. Using an enumeration of flags is no different
than using a regular enumeration type. It should be noted that failing to mark an
enumeration with the Flags attribute will not generate an exception or a compile-
time error, even if the enumeration values are used as bit flags.

The addition of the Flags attribute provides you with two benefits. First, if the Flags
attribute is placed on an enumeration, the ToString and ToString("G") methods
return a string consisting of the name of the constant(s) separated by commas. Oth-
erwise, these two methods return the numeric representation of the enumeration
value. Note that the ToString("F") method returns a string consisting of the name of
the constant(s) separated by commas, regardless of whether this enumeration is
marked with the Flags attribute. For an indication of why this works in this manner,
see the "F" formatting type in Table 20-3 in Recipe 20.9.

The second benefit is that when you examine the code and encounter an enumera-
tion, you can better determine the developer’s intention for this enumeration. If the
developer explicitly defined this as containing bit flags (with the Flags attribute), you
can use it as such.

An enumeration tagged with the Flags attribute can be viewed as a single value or as
one or more values combined into a single enumeration value. If you need to accept
multiple languages at a single time, you can write the following code:

 RecycleItems items = RecycleItems.Glass | RecycleItems.Newspaper;

The variable items is now equal to the bit values of the two enumeration values
ORed together. These values ORed together will equal 3, as shown here:

RecycleItems.Glass 0001
RecycleItems.AluminumCans 0010
ORed bit values 0011

The enumeration values were converted to binary and ORed together to get the
binary value 0011 or 3 in base10. The compiler views this value both as two individ-
ual enumeration values (RecycleItems.Glass and RecycleItems.AluminumCans) ORed
together or as a single value (3).

To determine if a single flag has been turned on in an enumeration variable, use the
bitwise AND (&) operator, as follows:

 RecycleItems items = RecycleItems.Glass | RecycleItems.Newspaper;
 if((items & RecycleItems.Glass) == RecycleItems.Glass)
 Console.WriteLine("The enum contains the C# enumeration value");

814 | Chapter 20: Numbers and Enumerations

 else
 Console.WriteLine("The enum does NOT contain the C# value");

This code will display the text “The enum contains the C# enumeration value.” The
ANDing of these two values either will produce zero if the variable items does not
contain the value RecycleItems.Glass, or it will produce the value RecycleItems.
Glass if items contains this enumeration value. Basically, ANDing these two values
looks like this in binary:

 RecycleItems.Glass | RecycleItems.AluminumCans 0011
 RecycleItems.Glass 0001
 ANDed bit values 0001

This is dealt with in more detail in Recipe 20.14.

In some cases, the enumeration can grow quite large. You can add many other recy-
clable items to this enumeration, as shown here:

[Flags]
public enum RecycleItems
{
 None = 0x00,
 Glass = 0x01,
 AluminumCans = 0x02,
 MixedPaper = 0x04,
 Newspaper = 0x08,
 TinCans = 0x10,
 Cardboard = 0x20,
 ClearPlastic = 0x40,
}

When a RecycleItems enumeration value is needed to represent all recyclable items,
you would have to OR together each value of this enumeration:

 RecycleItems items = RecycleItems.Glass | RecycleItems.AluminumCans |
 RecycleItems.MixedPaper;

Instead of doing this, you can simply add a new value to this enumeration that
includes all recyclable items as follows:

[Flags]
public enum RecycleItems
{
 None = 0x00,
 Glass = 0x01,
 AluminumCans = 0x02,
 MixedPaper = 0x04,
 Newspaper = 0x08,
 TinCans = 0x10,
 Cardboard = 0x20,
 ClearPlastic = 0x40,
 All = (None | Glass | AluminumCans | MixedPaper | Newspaper | TinCans |
 Cardboard | ClearPlastic)
}

Determining Whether One or More Enumeration Flags Are Set | 815

Now there is a single enumeration value, All, that encompasses every value of this
enumeration. Notice that there are two methods of creating the All enumeration
value. The second method is much easier to read. Regardless of which method you
use, if individual language elements of the enumeration are added or deleted, you
will have to modify the All value accordingly.

A None value should be provided for all enums even where “none of
the above” does not make sense, because it is always legal to assign lit-
eral zero to an enum, and because enum variables, which begin their
lives as assigned to their default values, start as zero.

Similarly, you can also add values to capture specific subsets of enumeration values
as follows:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 CobolNET = 0x000F, FortranNET = 0x0010, JSharp = 0x0020,
 MSIL = 0x0080,
 All = (CSharp | VBNET | VB6 | Cpp | FortranNET | Jsharp | MSIL),
 VBOnly = (VBNET | VB6),
 NonVB = (CSharp | Cpp | FortranNET | Jsharp | MSIL)
 }

Now you have two extra members in the enumerations, one that encompasses VB-
only languages (Languages.VBNET and Languages.VB6) and one that encompasses non-
VB languages.

20.14 Determining Whether One or More Enumeration
Flags Are Set

Problem
You need to determine if a variable of an enumeration type, consisting of bit flags,
contains one or more specific flags. For example, given the following enumeration
Language:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008
 }

determine, using Boolean logic, if the variable lang in the following line of code con-
tains a language such as Language.CSharp and/or Language.Cpp:

 Language lang = Language.CSharp | Language.VBNET;

816 | Chapter 20: Numbers and Enumerations

Solution
To determine if a variable contains a single bit flag that is set, use the following
conditional:

 if((lang & Language.CSharp) == Language.CSharp)
 {
 // Lang contains at least Language.CSharp.
 }

To determine if a variable exclusively contains a single bit flag that is set, use the fol-
lowing conditional:

 if(lang == Language.CSharp)
 {
 // lang contains only the Language.CSharp.
 }

To determine if a variable contains a set of bit flags that are all set, use the following
conditional:

 if((lang & (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))
 {
 // lang contains at least Language.CSharp and Language.VBNET.
 }

To determine if a variable exclusively contains a set of bit flags that are all set, use the
following conditional:

 if((lang | (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))
 {
 // lang contains only the Language.CSharp and Language.VBNET.
 }

Discussion
When enumerations are used as bit flags and are marked with the Flags attribute,
they usually will require some kind of conditional testing to be performed. This test-
ing necessitates the use of the bitwise AND (&) and OR (|) operators.

Testing for a variable having a specific bit flag set is done with the following condi-
tional statement:

 if((lang & Language.CSharp) == Language.CSharp)

where lang is of the Language enumeration type.

The & operator is used with a bit mask to determine if a bit is set to 1. The result of
ANDing two bits is 1 only when both bits are 1; otherwise, the result is 0. You can
use this operation to determine if a specific bit flag is set to a 1 in the number con-
taining the individual bit flags. If you AND the variable lang with the specific bit flag
you are testing for (in this case, Language.CSharp), you can extract that single specific

Determining Whether One or More Enumeration Flags Are Set | 817

bit flag. The expression (lang & Language.CSharp) is solved in the following manner if
lang is equal to Language.CSharp:

 Language.CSharp 0001
 lang 0001
 ANDed bit values 0001

If lang is equal to another value, such as Language.VBNET, the expression is solved in
the following manner:

 Language.CSharp 0001
 lang 0010
 ANDed bit values 0000

Notice that ANDing the bits together returns the value Language.CSharp in the first
expression and 0x0000 in the second expression. Comparing this result to the value
you are looking for (Language.CSharp) tells you whether that specific bit was turned
on.

This method is great for checking specific bits, but what if you want to know
whether only one specific bit is turned on (and all other bits turned off) or off (and
all other bits turned on)? To test if only the Language.CSharp bit is turned on in the
variable lang, you can use the following conditional statement:

 if(lang == Language.CSharp)

Consider if the variable lang contained only the value Language.CSharp. The expres-
sion using the OR operator would look like this:

 lang = Language.CSharp;
 if ((lang != 0) &&(Language.CSharp == (lang | Language.CSharp)))
 {
 // CSharp is found using OR logic.
 }

 Language.CSharp 0001
 lang 0001
 ORed bit values 0001

Now, add a language value or two to the variable lang and perform the same opera-
tion on lang:

 lang = Language.CSharp | Language.VB6 | Language.Cpp;
 if ((lang != 0) &&(Language.CSharp == (lang | Language.CSharp)))
 {
 // CSharp is found using OR logic.
 }

 Language.CSharp 0001
 lang 1101
 ORed bit values 1101

818 | Chapter 20: Numbers and Enumerations

The first expression results in the same value as you are testing against. The second
expression results in a much larger value than Language.CSharp. This indicates that
the variable lang in the first expression contains only the value Language.CSharp,
whereas the second expression contains other languages besides Language.CSharp
(and may not contain Language.CSharp at all).

Using the OR version of this formula, you can test multiple bits to determine if they
are both on and all other bits are off. This is done in the following conditional
statement:

 if((lang != 0) && ((lang | (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET)))

Notice that to test for more than one language you simply OR the language values
together. By switching the first | operator to an & operator, you can determine if at
least these bits are turned on. This is done in the following conditional statement:

 if((lang != 0) && ((lang & (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET)))

When testing for multiple enumeration values, it may be beneficial to add a value to
your enumeration, which ORs together all the values you want to test for. If you
wanted to test for all languages except Language.CSharp, your conditional state-
ment(s) would grow quite large and unwieldy. To fix this, you add a value to the
Language enumeration that ORs together all languages except Language.CSharp. The
new enumeration looks like this:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 AllLanguagesExceptCSharp = VBNET | VB6 | Cpp
 }

and your conditional statement might look similar to the following:

 if((lang != 0) && (lang | Language.AllLanguagesExceptCSharp) ==
 Language. AllLanguagesExceptCSharp)

This is quite a bit smaller, easier to manage, and easier to read.

Use the AND operator when testing if one or more bits are set to 1.
Use the OR operator when testing if one or more bits are set to 0.

Determining the Integral Part of a Decimal or Double | 819

20.15 Determining the Integral Part of a Decimal or
Double

Problem
You need to find the integer portion of a decimal or double number.

Solution
You can find the integer portion of a decimal or double by truncating it to the whole
number closest to zero. To do so, use the overloaded static System.Math.Truncate
method, which takes either a decimal or a double as an argument and returns the
same type:

 decimal pi = (decimal)System.Math.PI;
 decimal decRet = System.Math.Truncate(pi); // decRet = 3

 double trouble = 5.555;
 double dblRet = System.Math.Truncate(trouble);

Discussion
The Truncate method helps to “round” out the mathematical capabilities of the
Framework. The Truncate method has the net effect of simply dropping the frac-
tional portion of the number and returning the integral part. Once floating-point
numbers get over a certain size, they do not actually have a fractional part, but have
only an approximate representation of their integer portion.

See Also
The “System.Math.Truncate Method” topic in the MSDN documentation.

821

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
- character, 80–82, 112, 390
$ character, 391, 392
& bitwise AND operator, 82–85, 813,

816–818
&& operator, 82–85
* operator, 80–82
*= operator, 80–82
+ character, 80–82, 390, 501
+= operator, 80–82
, (comma), 63, 572
/ character, 80–82, 112
/= operator, 80–82
: (colon), 63
; character, 468, 469
-= operator, 80–82
== operator, 87
=> operator, 345
? type modifier, 158
?: operator, 82–85
\ character, 113
^ character, 113, 392
{ } (curly braces), 348
| bitwise OR operator, 82–85, 813, 816–818
|| operator, 82–85
~ bitwise complement operator, 193, 796,

797

A
Abrams, Brad, 124
access control

across data repositories, 16–19
changing privileges, 693–696

local variable information, 512–514
order of XML data, 548–552
read-mostly, 757–769
runtime settings, 540
semaphores and, 734–738
tables and, 18
thread-safe, 719–725
types in assemblies, 651–661

Access Control Entries (ACE), 692, 693
accessor functions, 719–725
ACE (Access Control Entries), 692, 693
Action<T> delegate, 203, 364
actions (see events)
Activator class, 510
addition operator, 80–82
AddNode method, 429
AddProxyInfoToRequest method, 526
AddUniqueNode method, 429
ADO.NET

Command object, 18, 24
Connection object, 18, 24
LINQ to ADO.NET, 1, 24
LINQ to Entities, 1, 2, 24

algorithms
calculated hash, 398
contained object cache, 396
CryptoHash method, 396, 397
DES, 669
DSA, 670
folding hash, 395
Rijndael, 663, 665–670
rounding, 800
RSA, 670
SHA-256, 672–676

822 | Index

algorithms (continued)
shift and add hash, 397
simple hash, 395, 400
storing objects in binary trees, 428
string-concatenation hash, 399
TripleDES, 665–670

aliases, data types, 793, 794
Allocation Profiler tool, 136
AllowPartiallyTrustedCallers attribute, 687
anonymous functions, 317
anonymous methods

defined, 6, 316
depicted, 317
lambda expressions and, 344, 348

App.xaml file, 281–283
AppDomain class

CreateDomain method, 789, 791
CreateInstance method, 789
FriendlyName property, 790
isolated storage and, 682
PrintCurrentAppDomainName

method, 789, 790
proxy design pattern and, 659
ReaderWriterLockSlim and, 760
running code, 789–791
safer file handles, 714
semaphores and, 738
signaling events, 754, 755
silent thread termination, 727
synchronizing processes, 738
UnhandledException handler, 282
Unload method, 790
Unwrap method, 790

appending lines to strings, 67
AppEvents class

ClearLog method, 296
CloseLog method, 296
constructing multiple classes, 297
DeleteLog method, 296
event logs and, 292–299
GetEntries method, 296
WriteToLog method, 296, 297

Application class, 280, 282
ApplicationException class, 261, 262
applications

AppDomain class and, 789–791
ArrayList equivalents, 147
collections persistence, 199–200
configuration files, 539–541
controlling debugging output, 287–290
debugging, 272–274
displaying HTML in WinForms, 528–530

dynamically invoking members, 507–511
event logs and, 292–299
locking objects and, 721
named pipes support, 621–629
parsing parameters, 106–117
storing data securely, 676–683
unhandled exceptions and, 279–283

Argument class, 106–117
ArgumentDefinition class, 106–117
ArgumentException exception

converting between types, 96
converting strings, 62
event logs and, 298
invalid parameters and, 246
regular expressions and, 374
sending information with, 277
thread-specific data and, 732
Unicode encoding and, 713

ArgumentNullException exception
converting strings, 61
parsing URIs, 520
recommendations, 246
regular expressions and, 375

ArgumentOutOfRangeException
exception, 246, 272

arguments (see parameters)
ArgumentSemanticAnalyzer class, 106–117
Array class

actions on elements, 202–204
AsReadOnly method, 204
Copy method, 189
ForEach method, 202, 203
manipulating array items, 188–190
predicates and, 364
Reverse method, 178–180
testing elements, 201–202

ArrayList class
Adapter method, 147
Add method, 147
AddRange method, 147
BinarySearch method, 147
Capacity property, 147, 148
Clear method, 132, 147
Clone method, 147, 150
collection persistence, 199–200
Contains method, 148
CopyTo method, 148
Count property, 147, 148
FixedSize method, 148
generic counterparts, 137, 146–150
GetRange method, 148, 150
IndexOf method, 148

Index | 823

Insert method, 148
InsertRange method, 148
IsFixedSize property, 147
IsReadOnly property, 147
IsSynchronized property, 147
Item property, 147, 148
LastIndexOf method, 148
ReadOnly method, 148, 149
registering assemblies, 787
Remove method, 148
RemoveAt method, 148
RemoveRange method, 148
Repeat method, 148, 149
Reverse method, 148
SetRange method, 148
snapshots of lists, 198
Sort method, 148
Synchronized method, 148
SyncRoot property, 147
ToArray method, 148
TrimToSize method, 148

arrays
actions on elements, 202–204
calculated hash, 398
creating, 176
hash codes and, 401
jagged, 177, 417
manipulating items, 188–190
multidimensional arrays, 176
read-only, 204–205
reversing quickly, 178–180
search sort order, 463
snapshots of lists, 198, 199
StackTrace class and, 182
styles, 176, 177
swapping elements, 177–178
testing elements, 201–202
two-dimensional, 177

as operator, 97–101
ASCII characters, 56
ASCIIEncoding class, 56–58
ASP.NET

prebuilding web sites, 532–534
State Service, 775–778
web.config file, 289

ASPNET user account, 305
ASPX pages, 620
assemblies

controlling access to types, 651–661
dynamically invoking members, 509
finding members, 499–500
finding subclasses, 504, 505

inheritance hierarchies, 502–504
listing, 490–492
listing processes loaded with, 778–780
minimizing attack surface, 687
nested types within, 500
reflection and, 489
serializable, 505–507
user-defined exceptions, 264
verifying permissions, 685, 686

Assembly Binding Log Viewer, 787
Assembly class

determining if type is generic, 511
GetExportedTypes method, 492, 493
GetReferencedAssemblies

method, 490–492
GetType method, 501
isolated storage and, 682
ReflectionOnlyLoad* methods, 492

AssemblyName class, 711
Association attribute, 27
AsymmetricAlgorithm class, 670–672
AsyncAction class, 728, 729
asynchronous delegates

completion notification, 727–730
converting to, 327–330
exception handling, 275, 277

AsyncInvoke delegate, 728
attachments, email, 631
attributes

manipulating directory, 455–457
manipulating file, 450–452

authentication, 526, 704–708
AutoResetEvent class

notifying threads, 750–752
signaling events, 752
Start method, 751

B
BackgroundWorker class, 775
Banker’s Rounding, 800
Bar class, 308, 310
BarTraceBehavior class, 308, 310
BarTraceInst class, 308, 310
base2 number system, 798
base8 number system, 798
base10 number system, 797, 798
base16 number system, 798
base64 representation

decoding binary data, 54–55, 675
encoding binary data, 53–54, 679

BaseOverrides class, 496–497, 503, 505
big-endian encoding, 58

824 | Index

binary data
decoding base64, 54–55, 675
encoding as base64, 53–54
encoding base64, 679

binary functions, 364
binary predicates, 364
binary trees, 418–432
BinaryFormatter class, 4
BinaryMessageFormatter class, 781, 782
BinaryPredicate<T> delegate, 364
BinaryReader class, 648
BinarySearchCountAll method, 183, 185
BinarySearchGetall method, 185–188
BinaryTree<T> class

AddNode method, 424
constructors and, 424
creating binary trees, 418–432
overview, 429
Print method, 424
Root property, 424
SearchDepthFirst method, 424
solution code example, 425–428
TreeSize property, 424

BinaryTreeNode<T> class
AddNode method, 425
AddUniqueNode method, 425
Children property, 425
constructors, 425
DepthFirstSearch method, 425
GetValue method, 425
Left property, 425
nodeValue property, 429
overview, 429
PrintDepthFirst method, 425
RemoveLeftNode method, 425
RemoveRightNode method, 425
Right property, 425
solution code example, 425–428

BinaryWriter class, 648
bit masks, enumerations in, 812–815
bitmap files, 53–55
bitwise operators

AND operator, 82–85, 813, 816–818
complement operator, 193, 796, 797
OR operator, 82–85, 813, 816–818

bmpAsString string, 54
Boolean (bool) data type

bitwise complement operator, 797
calculated hash, 398
converting, 91, 93, 95
converting strings to, 59
FalseString property, 61

listed, 793
Parse method support, 60
structures and, 69
TrueString property, 61

Boolean logic
Boolean theorems, 88–91
error-free, 85–88
overloading operators and, 82–85
setting bit flags, 815–818

BooleanSwitch class
configuration files and, 287
Enabled property, 287, 289
tracing and, 289

box command, 134
boxing operations

as operator and, 98
casting operator and, 98
defined, 70
determining occurrences, 133–136
generics and, 138, 144
structures and, 69

break statement, 222
browsers (see web browsers)
BuildManager class, 534
business entities, adding hooks, 237–239
Byte (byte) data type

bitwise complement operator, 796, 797
converting, 91, 93, 95, 96
listed, 793
Parse method support, 60

byte[]
converting to strings, 56–57
decoding strings, 54–55
encoding binary data, 53–54
passing strings to methods, 57–59
Unicode encoding and, 713

C
C# language

automatic properties, 142, 156
closures, 356–361
command-line format, 112
functionality, xvii
web site resources, xvii

cache
performance and, 541–543
tying database tables to, 530–531

CacheDependency class, 531
calculated hash, 398
CallSecureFunctionSafelyAndEfficiently

function, 683, 684
carriage-return character, 383, 578

Index | 825

CAS (Code Access Security), 651
case sensitivity

comparing characters, 40–41
comparing strings, 48
controlling for string comparisons, 46, 47
finding all string occurrences, 42–46
MultiMap<T> class methods, 418
String.Split method, 64
StringCollection class, 176

CaseInsensitiveComparer.Default value, 176
cast operator

converting between types, 92
usage recommendations, 97, 98

Cast<T> method, 33–35
casting

as operator and, 99–101
cast operator and, 97, 98
IDictionary interface and, 166, 167
IList interface, 148
is operator and, 101–103
narrowing conversions, 91–97
narrowing values, 802–804

CategorizeResponse method, 525, 527
CategoryType enumeration, 295, 298
CDATA section, 552, 570–572
Celsius temperature scale, 801, 802
Certificate Import Wizard, 704–705
certificates

creating, 704–705
self-signed, 704
X.509, 704, 704–708

Char (char) data type
built-in static methods, 37
calculated hash, 398
case sensitivity, 40–41
converting, 91, 93, 95
converting strings to, 59
determining kinds of characters, 36–40
IsControl method, 37, 38
IsDigit method, 37, 38, 39
IsHighSurrogate method, 39
IsLetter method, 37, 38, 39
IsLetterOrDigit method, 39
IsLower method, 39
IsLowSurrogate method, 39
IsNumber method, 37, 38
IsPunctuation method, 37, 38
IsSeparator method, 37, 38
IsSurrogate method, 37, 39
IsSymbol method, 37, 39
IsUpper method, 39

IsWhitespace method, 37, 39
listed, 793

characters
determining for Char structures, 36–40
iterating in strings, 64–65
pruning from strings, 65, 66
removing within strings, 51–53
(see also Char data type)

CharKind enumeration, 37
CheapoPortScanner class

ClosedPorts property, 638
OpenPortFound event, 636, 640
OpenPorts property, 638
PortScan method, 640
ReportToConsole method, 639, 640
Scan method, 639, 640
scanning ports, 636–641

checked keyword, 97, 802–804
child nodes

defined, 428
multiple XML documents, 591
storing in n-ary trees, 432–444

class keyword, 135
classes

accessor functions, 719–725
boxing and, 135
cloneable, 120–124
collection, 175–176
controlling access to types, 651–661
custom debugging displays, 313–315
delegates and, 316
generics and, 138
interfaces and, 69
multiple return values and, 104
nested foreach loops, 224–229
networking functionality, 606
partial, 207, 229–234, 234–236, 238
partial types and, 206
passing by value, 68
polymorphism and, 69
serializing, 263
structures and, 68, 69
unmanaged resources and, 126–133
usage recommendations, 69

className attribute, 510
cleanup, resource (see garbage collection)
ClientBuildManager class, 532–534
ClientBuildManagerCallback class, 533
ClientBuildManagerParameter class, 533
cloneable classes, 120–124
closures, 356–361

826 | Index

CLR (common language runtime)
assembly attack surface, 687
asserting security, 685
enumeration support, 795
exception handling, 254, 255
initializing constants, 117–120
isolated storage and, 682
ReaderWriterLockSlim and, 760
reflection and, 489
resource cleanup in, 329
security and, 651

CLS (Common Language Specification), 794
cmd.exe application, 469
Code Access Security (CAS), 651
CodeAccessSecurity class

Assert method, 683–685
asserting permissions, 683–685
Demand method, 683–685
RevertAssert method, 685

collections
actions on elements, 202–204
boxing and, 135
calculated hash, 398
Clear method and, 132
containing elements, 175
defined, 175
dictionaries and, 175
dictionaries with boundaries, 194–198
Exception.Data property and, 278
extension methods and, 12–16
IEnumerable<T> interface and, 33–35
item occurrences in lists, 182–185
List<T> class and, 191–193
manipulating arrays, 188–190
multiple operations on, 361–365
persisting between sessions, 199–200
read-only, 162–163, 204–205
retrieving list items, 185–188
reversing arrays, 178–180
sorting keys/values, 193–194
StackTrace class and, 181–182
storing list snapshots in arrays, 198, 199
swapping array elements, 177–178
System.Collections.Specialized

namespace, 175–176
testing array elements, 201–202

CollectionsUtil class, 176
colon (:), 63
Column attribute, 26
COM objects

Dispose method and, 132
exceptions and, 262
proxy design pattern and, 659

comma (,), 63, 572
Command object (ADO.NET), 18, 24
command-line parameters, 106–117
comments, 392
common language runtime (see CLR)
Common Language Specification (CLS), 794
CompareFileVersions method, 477–479
CompareHeight class, 75, 78
CompareLen class, 408, 408–410
Comparison<T> delegate, 364
CompiledQuery.Compile method, 8–10
compilers

CS1525 compiler error, 354
CS1628 compiler error, 355
CS1670 compiler error, 354
outer variables and, 348

ComplexReplace method, 377, 378
CompressFile method, 482–488
compressing files, 482–488
CompressionType enumeration, 486
conditional processing

conditional methods, 239
loops and, 65
narrowing casts and, 802
setting bit flags, 816–818

Configuration class
encrypting information, 709
GetSection method, 709
modifying settings, 539–541
Save method, 710

configuration files
diagnostics and, 287–290
encrypting, 708–710
modifying, 539–541
querying, 19–22

ConfigurationElementCollection class, 21
ConfigurationSection class

encrypting information, 709
ProtectSection method, 709
UnprotectSection method, 710

ConfigurationSectionCollection class, 22
Connection object (ADO.NET), 18, 24
Console class

OpenStandardOutput method, 788
SetOut method, 787–789
WriteLine method, 454, 788, 798

console utilities, 469–471
const field, 117–120
constructors

BinaryTree<T> class and, 424
BinaryTreeNode<T> class, 425
MaxMinValueDictionary class and, 197
NTree<T> class, 433

Index | 827

NTreeNode<U> class, 438
NTreeNodeFactory<T> class, 438
readonly fields and, 118
structures and, 69
type arguments and, 172
user-defined exceptions, 261–264

Contact structure, 738–740
contained object cache algorithm, 396
ContainedObjHash method, 401
Container<T> class

creating enumerators, 211–214
GetEnumerator method, 213, 214
GetForwardStepEnumerator method, 213
GetReverseOrderEnumerator

method, 213
GetReverseStepEnumerator method, 213

Control class, 775
ControlID_* line, 378
conversion

as operator and, 99
to base10, 797, 798
between data types, 91–97
byte[] into strings, 56–57
cast operator and, 98
between degrees and radians, 795
delegates and, 327–330
is operator and, 103
narrowing, 91, 803
numeric promotion, 797
plain text to enumerations, 807, 808
strings to other types, 59–62
between temperature scales, 801, 802

Convert class
ChangeType method, 508, 510
converting data types, 91–97
FromBase64CharArray Method, 54–55
FromBase64String method, 676
ToBase64CharArray Method, 53–54
ToBase64String method, 675
ToBoolean method, 93
ToByte method, 93, 798
ToChar method, 93
ToDateTime method, 93
ToDecimal method, 93
ToDouble method, 93
ToInt16 method, 93, 798
ToInt32 method, 92, 93, 798
ToInt64 method, 93, 798
ToSByte method, 93
ToSingle method, 93
ToString method, 93
ToUInt16 method, 93

ToUInt32 method, 93
ToUInt64 method, 93

Converter<T> delegate, 364
copying

deep, 121–124
shallow, 120–122

CountAll method, 183, 184
CounterCreationData class, 305
CounterCreationDataCollection class, 305
CounterDelta32 performance counter, 306
CounterDelta64 performance counter, 306
CounterSample class, 306
CounterTimer performance counter, 306
CounterTimerInverse performance

counter, 306
CountPerTimeInterval32 performance

counter, 306
CountPerTimeInterval64 performance

counter, 306
CRC (cyclic redundancy check), 675
CreateFileMapping API, 740
CreateInstance method, 510
CreateMultiMap method, 515
CreatePoint method, 102
CreateSqlCacheDependency method, 530
CriticalFinalizerObject class, 714
cross-process, 738, 744
cross-site scripting, 392
CryptoAPITransform class, 131
cryptography

cleaning up information, 670–672
CryptoHash method, 396, 397
encrypting/decrypting files, 665–670
encrypting/decrypting strings, 661–665
FCL support, 54
protecting string data, 696–699
securing stream data, 703
web.config file, 708–710

CryptoHash method, 396, 397
CryptoStream class, 131, 672
CryptoString class

Decrypt method, 664
Encrypt method, 664
encrypting/decrypting strings, 661–665
RdGenerateSecretInitVector method, 664
RdGenerateSecretKey method, 664

CS1525 compiler error, 354
CS1628 compiler error, 355
CS1670 compiler error, 354
CSharpRecipes namespace, 503
CSV format, 572, 573, 574, 577
CultureInfo class, 10–12, 41

828 | Index

curly braces { }, 348
Cwalina, Krzysztof, 124
cyclic redundancy check (CRC), 675

D
DACL (Discretionary Access Control

List), 692, 693
Data Protection API (DPAPI), 709
data structures (see structures)
data types

aliases, 793, 794
bitwise complement operator and, 796,

797
converting between, 91–97
creating hash code, 394–402
determining for variables, 101–103
floating-point, 794
generics and, 137
overloading operators, 80–85
Parse method support, 60
partial types, 206
searching, 77–80
simple types, 793, 794
sorting, 72–77

DatabaseNotEnabledForNotificationExceptio
n exception, 531

databases
creating XML from, 22–30
tying tables to cache, 530–531

DataContext class
accessing multiple data domains, 18–19
creating XML from databases, 24, 26
Log property, 29

DataSet
LINQ to DataSet, 1, 18
partial classes and, 236
partial types and, 207

dates, matching patterns, 390
DateTime data type

converting, 91, 93, 95
Parse method, 451

DeadLock class, 721–722
Debug class

controlling output, 287–290
overview, 286
WriteLine method, 454

DebuggerDisplayAttribute, 313–315
debugging

controlling output, 287–290
creating custom displays, 313–315

enabling/disabling, 307–310
forcing breaks, 272–274
turning on, 286

Decimal (decimal) data type
calculated hash, 398
converting, 91, 93, 95
finding integer portion, 819
listed, 793, 794
narrowing conversions and, 804
Parse method support, 60

decoding binary data, 54–55, 675
DeCompress method, 482–488
DeCompressFile method, 482–488
decompressing files, 482–488
decryption (see cryptography)
DecryptWebConfigData method, 710
deep copying, 121–124
default keyword, 173–174
defense in depth principle, 676
DeflateStream class, 482–488
degrees, converting, 795
Delegate class

BeginInvoke method, 329, 727–730
DelegateCallback method, 329
DynamicInvoke method, 510
EndInvoke method, 329, 330, 729, 730
GetInvocationList method, 318–327

DelegateCallback method, 728, 729, 730
delegates

asynchronous, 275, 277, 327–330
controlling invocation, 318–322
declaring, 344
defined, 316
lambda expressions and, 345, 346
multicast, 318–322
multiple operations by, 361–365
obtaining return values, 322–324
parameter modifiers and, 352–356
parameters and, 328, 345
predicates and, 364
synchronous, 327–330

delimiters
creating delimited strings, 62
extracting items from strings, 63
namespaces and, 501
strings and, 63
types and, 501

DepthFirstSearch method, 429
DerivedOverrides class, 496–497, 503
DES encryption algorithm, 669

Index | 829

Deserialize method, 123
design patterns

dispose, 126–133
factory, 308–310
observer, 339–343
proxy, 651–661

DetectXMLChanges method, 566–569
diagnostics

capturing process output, 311–313
controlling output, 287–290
custom debugging displays, 313–315
enabling/disabling tracing, 307–310
event logs, 292–299
monitoring event logs, 302–304
nonresponsive processes, 290–292
overview, 286
performance counters, 304–307
searching event logs, 299–302
(see also debugging; exception handling;

tracing)
dictionaries

collections and, 175
creating with boundaries, 194–198
defined, 175
observing manipulations, 332–344
sorting keys/values, 193–194

Dictionary<T> class
Add method, 165
Clear method, 165
collection persistence, 199–200
Comparer property, 165
ContainsKey method, 165, 166
ContainsValue method, 165
Count property, 165, 166
creating hash codes, 400, 401, 402
creating with boundaries, 194–198
extracting groups, 372
foreach loops and, 168–169
Hashtable class and, 164–167
Hashtable equivalents, 165–167
Item property, 165, 166
Keys property, 165, 166, 193
one-to-many maps, 410, 416–418
Remove method, 165
sorting keys/values, 193–194
TryGetValue method, 165
Values property, 165, 166, 193

DictionaryEntry structure, 168
difference operation, 446, 447
directories

manipulating attributes, 455–457
renaming, 457, 458

searching with wildcards, 459–463
waiting for events, 474–477

Directory class
Exists method, 468
GetCreationTime method, 455
GetDirectories method, 459, 461, 463
GetFiles method, 459, 461, 463, 785
GetFileSystemEntries method, 459, 461,

462
GetLastAccessTime method, 455
GetLastWriteTime method, 455
manipulating attributes, 455–457
Move method, 458
MoveTo method, 458
rights/audit information, 692
SetCreationTime method, 456
SetLastAccessTime method, 456
SetLastWriteTime method, 456

directory trees, 464–466
DirectoryEntry class

Children property, 543, 546
HttpErrors property, 543
SchemaClassName property, 543
web server error pages, 543–547

DirectoryInfo class
Attributes property, 456
CreationTime property, 455, 456
DisplayTimestamps method, 455
FileSystemInfo class and, 463
GetDirectories method, 460, 462, 463
GetFiles method, 461
GetFileSystemInfos method, 460, 462,

464–466
LastAccessTime property, 455, 456
LastWriteTime property, 455, 456
manipulating attributes, 455–457
ModifyTimestamps method, 456
MoveTo method, 457
Rename method, 458
rights/audit information, 692

Discretionary Access Control List
(DACL), 692, 693

DispatcherUnhandledException
exception, 282

DisplayDirectoryHiddenAttribute
method, 456

DisplayDirs method, 459
DisplayException method, 258
DisplayFileHiddenAttribute method, 451
DisplayInheritanceChain method, 501–504
DisplayNestedTypes method, 500, 501
DisposableList class, 171, 172

830 | Index

disposal (see garbage collection)
dispose design pattern, 126–133
Distinct method, 5–6
division operator, 80–82, 180
DLL file format, 784, 787
Dns.GetHostEntry method, 516, 517
do loops, 45
Document Object Model (DOM), 548
document type definition (DTD), 558–563,

569
document() XSLT function, 602
DOM (Document Object Model), 548
DoReversal method, 178–179
DoSomething method, 721, 722
dot operator, 501
DOTRACE preprocessor symbol, 660
Double (double) data type

converting, 91, 93, 95
finding integer portion, 819
listed, 793, 794
narrowing conversions, 804
Parse method support, 60

DPAPI (Data Protection API), 709
DpapiProtectedConfigurationProvider

class, 709
DriveInfo class

AvailableFreeSpace property, 480, 481
DriveType property, 481
GetDrives method, 481
IsReady property, 480
querying information, 479–482

DriveInfo classTotalFreeSpace property, 481
drives, querying information for, 479–482
DriveType enumeration

CDRom value, 481
Fixed value, 481
Network value, 481
NoRootDirectory value, 481
overview, 481
Ram value, 481
Removable value, 481
Unknown value, 481

DSA algorithm, 670
DTD (document type definition), 558–563,

569
DynamicInvoke method, 507–511

E
eCalc lambda expression, 359
ElapsedTime performance counter, 306

elements
collections containing, 175
defined, 175
determining occurrences, 182–185
difference operation, 447
difference operations, 446
equivalence operation, 447
hash codes and, 401
intersection operation, 446, 447
manipulating in arrays, 188–190
performing actions on, 202–204
retrieving all instances, 185–188
reversing in arrays, 178–180
subset operation, 446, 447
superset operation, 446, 447
swapping in arrays, 177–178
testing, 201–202
union operation, 446, 447

email
sending via SMTP, 631–636
verifying addresses, 390

empty strings, 66
EnableRaisingEvents property, 303
encoding binary data, 53–54, 679
Encoding class

GetBytes method, 57, 615, 713
GetChars method, 713
GetString method, 56
UTF8 property, 528

encryption (see cryptography)
EncryptWebConfigData method, 709
EndInvoke method, 275, 276
Entity Classes

accessing tables, 18
creating XML from databases, 24–27
Table attribute, 26

EntitySet<T> class, 27
EntryWrittenEventHandler delegate, 303
Enum class

boxing and, 69
CheckLanguageEnumValue method, 809
Flags attribute, 806, 810–815
HandleEnum method, 809
inheritance and, 794
IsDefined method, 809
Parse method, 62, 807, 808
ToString method, 805–807, 813

Enumerable class
Distinct method, 6
GroupJoin method, 33
OfType method, 21–22

Index | 831

SkipWhile method, 31, 32
TakeWhile method, 31, 32

enumerations
in bit masks, 812–815
bitwise complement operator, 796, 797
converting plain text to, 807, 808
creating enumerators, 211–214
exception handling, 246
functionality, 794, 795
inheritance and, 794
setting bit flags, 815–818
as string values, 804–807
testing for valid values, 808–810

Environment class
CommandLine property, 113
ExpandEnvironmentVariables

method, 469
GetCommandLineArgs method, 113
GetStackTraceInfo method, 270
NewLine constant, 453–455
OSVersion property, 791
StackTrace method, 270, 272
StackTrace property, 269–272

environment variables, 468, 469
EOL characters, 383, 453–455, 578
Equals method

case sensitivity and, 40, 41
hash codes and, 401
reversing sorted order, 162
set operations, 6, 7

equivalence operation, 447
error handling (see exception handling)
escape sequence character, 113
escaping data, 535–536, 571
event handlers

detecting document changes, 566–569
dictionary manipulation, 340
exception handling and, 254–256
setting up, 348–352

event logs
applications and, 292–299
searching entries, 299–302
watching for specific entries, 302–304

EventArgs class
dictionary manipulations, 332
EventHandler delegate and, 348, 352
functionality, 316
KeepChanges property, 332

EventHandler delegate, 316, 348–352
EventHandler<T> delegate, 350–352
EventIDType enumeration, 295, 298

EventLog class
DeleteLog method, 298
Entries property, 302
exceptions and, 298
WriteEntry method, 298

EventLogEntry class
IEnumerable<T> and, 34
monitoring event logs, 303
searching entries, 302

EventLogEntryCollection collection, 296,
302

EventLogSearch class
FindCategory method, 301
FindEntryType method, 301, 302
FindInstanceID method, 301, 302
FindMachineName method, 301
FindMessage method, 301
FindSource method, 301
overview, 299–302

events
defined, 316
delegates and, 316
dictionary manipulations, 332–344
exception handling and, 279–280
extension methods and, 14
observer design pattern and, 339
partial methods and, 207
SystemEvents class, 774
terminal sessions and, 755
threads and, 750–752, 752–755
waiting for, 474–477

EventWaitHandle class
EventResetMode parameter, 752
GetAccessControl method, 754
OpenExisting method, 754
overview, 752–755
rights/audit information, 692

EventWaitHandleAccessRule class, 692
EveryNthItem method, 213
Everything permission set, 489
Except method, 5
Exception class

creating exception classes, 261–269
Data property, 277–279
exception handling and, 241, 253
GetBaseException method, 260–261
GetNestedExceptionList

method, 283–285
HelpLine property, 258
InnerException property, 258, 262
Message property, 257, 262, 263, 374

832 | Index

Exception class (continued)
ParamName property, 374
Source property, 258
StackTrace property, 257
ToFullDisplayString method, 256, 259,

266
ToShortDisplayString method, 253
ToString method, 256–259

exception handling
analyzing errors, 283–285
asynchronous delegates and, 275, 277
bitwise complement operator, 796
catching/rethrowing exceptions, 247–248
coarse-grained approach, 241, 244
creating exception type, 261–269
CS1525 compiler error, 354
CS1628 compiler error, 355
CS1670 compiler error, 354
event logs, 298
Exception.Data property, 277–279
executable module versions, 478
fine-grained approach, 240, 241, 244
firing delegates, 322
forcing breaks, 272–274
getting information, 256–259
hash codes and, 401
identifying problems quickly, 260–261
invalid characters, 569–572
iterators and, 218
methods invoked via reflection, 251–253
multicast delegates and, 324–327
obtaining stack traces, 269–272
overview, 240–246
performance and, 244
ReaderWriterLockSlim and, 760
ReadOnlyCollection<T> class and, 325
security and, 685, 710–712
silent thread termination, 725–727
source/destination conversions, 95–96
StackTrace class and, 182
try/finally blocks and, 248–251
unhandled exceptions, 254–256
web server errors, 522–523
WinForms applications and, 279–280
WPF applications and, 281–283
(see also specific exceptions)

EXE file format, 784, 787
executable modules, 477–479
ExecuteCSharp2_0 method, 317
ExecutionEngineException exception, 246
explicit dot notation, 546, 547
explicit keyword, 100

Expression lambda, 348
expression trees, 8–10
expressions, error-free, 85–88
Extensible Markup Language (see XML)
extension methods

adding, 12–16
Standard Query Operators, 5–8
WeightedMovingAverage, 12–16

Extensions class, 15–16
ExternalException exception, 243

F
factory design pattern, 308–310
Fahrenheit temperature scale, 801, 802
false operator, 82–85
Fast User switching, 755
FCL (Framework Class Library)

Clear method, 131
Close method, 131
collection types, 175
cryptography algorithms, 54
diagnostics and, 286
exception handling and, 246
regular expressions and, 366
reserved classes, 261
simple data types, 793
string support, 36

Fibonacci sequence, 206
FieldOffsetAttribute class, 70, 71
fields, initializing at runtime, 117–120
File class

Exists method, 468
GetAccessControl method, 688
GetCreationTime method, 450
GetLastAccessTime method, 450
GetLastWriteTime method, 450
manipulating attributes, 450
ModifyFileTimestamps method, 450
Move method, 452–453
rights/audit information, 692
SetCreationTime method, 450
SetLastAccessTime method, 450
SetLastWriteTime method, 450

file extensions, patterns and, 463
file handles, 713–715
FILE protocol, 578
File Transfer Protocol (see FTP)
FileAttributes enumeration

Archive value, 452, 457
Compress value, 457
Compressed value, 452

Index | 833

Device value, 452
Directory value, 452, 457
Encrypted value, 452, 457
Hidden value, 452, 457
manipulating attributes, 451, 457
Normal value, 452, 457
NotContentIndexed value, 452, 457
Offline value, 452, 457
ReadOnly value, 452, 457
ReparsePoint value, 452, 457
SparseFile value, 452, 457
System value, 452, 457
Temporary value, 452, 457

FileComparison enumeration, 477–479
FileInfo class

Attributes property, 451
CreationTime property, 450, 451
DisplayFileInfoTimestamps method, 450
FileSystemInfo class and, 463
GetFiles method, 462, 463
LastAccessTime property, 450, 451
LastWriteTime property, 450, 451
manipulating attributes, 450
ModifyTimestamps method, 451
MoveTo method, 452–453
Rename method, 453
rights/audit information, 692

files
bitmap, 53–55
compressing, 482–488
decompressing, 482–488
directory trees and, 464–466
encrypting/decrypting, 665–670
granting/revoking access, 693–696
locking subsections, 471–474
manipulating attributes, 450–452
renaming, 452–453
rights/audit information, 688–693
searching with wildcards, 459–463
timestamps, 450, 451
transferring via FTP, 648–650
waiting for events, 474–477

FileSecurity class, 688–693
FileStream class

Close method, 131, 714
counting lines of text, 381
finalizers and, 714
Lock method, 471, 472
Open method, 472
returning lines from matches, 383
rights/audit information, 692
schemas and, 599–600

transferring files, 648
Unlock method, 472

filesystem I/O
comparing version information, 477–479
compressing files, 482–488
console utilities, 469–471
decompressing files, 482–488
directory attributes, 455–457
directory trees, 464–466
environment variables and, 468, 469
file attributes, 450–452
locking file subsections, 471–474
outputting EOL characters, 453–455
overview, 449
parsing paths, 466–468
querying drive information, 479–482
renaming directories, 457, 458
renaming files, 452–453
searching with wildcards, 459–463
waiting for events, 474–477

FileSystemAccessRule class, 692, 695, 696
FileSystemInfo class, 460, 463
FileSystemWatcher class, 474–477
FileVersionInfo class

FileBuildPart property, 478
FileMajorPart property, 478
FileMinorPart property, 478
FilePrivatePart property, 478
GetVersionInfo method, 478
registered assemblies, 785

filtering
lambda expressions and, 6
messages, 4
regular expressions and, 392

finalizers
assuring object disposal, 126
categories of, 714
unmanaged resource disposal, 130–131

finally blocks (see try/finally blocks)
FindAll method, 42, 43, 45
FindAny method, 44
FindEachOccurrenceOf method, 389
FindMethodOverrides method, 493, 494,

498
FindOccurrenceOf method, 389
FindSpecificInterfaces method, 331
first-chance exceptions, 273
FixedSizeCollection type

AddItem method, 140, 142
generic comparison, 138–140, 142–146
GetItem method, 140, 142, 144
InstanceCount property, 140, 146

834 | Index

FixedSizeCollection type (continued)
ItemCount property, 140
ToString method, 140, 146

FixedSizeCollection<T> type
AddItem method, 142
GetItem method, 142, 144
InstanceCount property, 140, 146
Items property, 140, 142
ToString method, 140, 146
type comparison, 140–146

float data type (see Single data type)
floating-point numbers

precision and, 794
rounding values, 799
(see also Single data type)

folding hash algorithm, 395
FoldingHash method, 401
for loops

controlling delegates, 319
CountAll method, 184
iterating characters in strings, 64–65
List<T> class and, 148
reversing arrays, 180

foreach loops
assuring object disposal, 126
controlling delegates, 319
creating enumerators, 211, 212, 213
event logs and, 297
EveryNthItem method, 213
generics and, 168–169
Hashtable class and, 167
iterating characters in strings, 64–65
iterators and, 206–208, 209–210, 222
nesting, 224–229
one-to-many maps, 417
parameterized queries, 9
parsing paths, 469
priority queues, 408
regular expressions and, 367
reversing sorted order, 162
terminating, 219
unmanaged resource disposal, 130

FormatException exception, 61, 246
forms, 615–618

(see also Windows Forms)
Framework Class Library (see FCL)
from keyword

description, 3, 557
solution code example, 35

FTP (File Transfer Protocol)
transferring files, 648–650

verifying URLs, 391
WinInet API, 648

FtpWebRequest class
GetRequestStream method, 649
GetResponse method, 649
StatusDescription property, 649
transferring files, 648–650

FullTrust permission set, 489, 779
Func<int> delegate, 319
functions

accessor, 719–725
binary, 364
closures and, 356–361
functors and, 361–365
generators and, 364
unary, 364

functors (function objects), 361–365
FUSLOGVW.exe, 787

G
GAC (Global Assembly Cache)

creating exception types, 264
determining versions, 784–787
interface searches, 330, 331

GameOver event, 736
garbage collection

assuring object disposal, 124–126
CLR resources, 329
outer variables and, 347
protecting string data, 698
safer file handles and, 714
structures and, 68, 69
unmanaged resources and, 126–133

GC.SuppressFinalize method, 131
Generated Entity class, 237–239
GenerateHttpWebRequest method, 527
GenerateSchemasForDirectory method, 600
GenerateSchemasForFile method, 599–600
generators, 364
generic types

constraining arguments, 169–173
creating, 514–515
creating iterators, 207–208
foreach loops and, 168–169
Hashtable class and, 164–167
initializing to null, 158–160
initializing variables, 173–174
linked lists and, 155–158
overview, 137–146
Queue counterparts, 150–154
read-only collections, 162–163

Index | 835

replacing ArrayList, 146–150
reversing sorted list, 160–162
Stack counterparts, 150–154
usage recommendations, 137–138

GetAll method, 185–188
GetBaseException().ToString method, 260
GetBaseTypeDisplay method, 502, 503
GetBaseTypeList method, 504
GetBaseTypes method, 502
GetBeginningOfLine method, 387
GetCharKind method, 38
GetEnumerator iterator, 220–224
GetErrata method, 595–599
GetFilteredValues iterator, 216–218
GetFirstHalf iterator, 216–218
GetHashCode method

creating hash codes, 394–402
set operations, 6, 7

GetHtmlFromUrl method, 527
GetLines method, 386, 387
GetLocalVars method, 513
GetNestedExceptionList method, 253
GetNonFilteredValues iterator, 216
GetOSAndServicePack method, 791, 792
GetProcessesAssemblyIsLoadedIn

method, 778–780
GetReverseFilteredValues iterator, 216–218
GetSecondHalf iterator, 216–218
GetSerializableTypeNames method, 506
Global Assembly Cache (see GAC)
Global namespace, 755
GlobalProxySelection class, 526
Gopher protocol, 648
Group class

Add method, 227
Count property, 227
CreateNestedObjects method, 228
extracting groups, 370
GetEnumerator method, 227
GetGroup method, 227
nested foreach loops, 225, 227, 229

Group<T> class, 226, 227
GZipStream class, 482–488

H
HandleClass class, 731
hash code/value

creating for data types, 394–402
salting, 676–683
securing stream data, 703
verifying uncorrupted strings, 673–676

HASH_LENGTH constant, 676

HashOps class
CreateStringHash method, 673–675
IsStringCorrupted method, 674, 676

HashSet<T> class
Add method, 444
Contains method, 445
creating hash codes, 400
ExceptWith method, 445
IntersectionWith method, 445
IsProperSubsetOf method, 445
IsProperSupersetOf method, 446
IsSubsetOf method, 445
IsSupersetOf method, 445
Overlaps method, 446
overview, 444–448
Remove method, 444
RemoveWhere method, 444
SetEquals method, 445
SymmetricExceptWith method, 445
UnionWith method, 445

Hashtable class
Add method, 165
Clear method, 132, 165
Clone method, 165, 166
collection classes and, 176
collection persistence, 199–200
Contains method, 165, 166
ContainsKey method, 165, 166
ContainsValue method, 165
CopyTo method, 165, 166, 167
Count property, 165, 166
creating hash codes, 400, 401, 402
Dictionary<T> equivalents, 165–167
generic counterparts, 137, 164–167
IsFixedSize property, 165
IsReadOnly property, 165
IsSynchronized property, 165
Item property, 165, 166
Keys property, 165, 166
Remove method, 165
Synchronized method, 165
SyncRoot property, 165
Values property, 165, 166

Hidden attribute, 451
hostnames

converting IP addresses to, 516, 517
converting to IP addresses, 517, 518
UriFormatException, 520

HRESULT value, 262
HTML

displaying in Windows Forms, 528–530
matching patterns, 391

836 | Index

HTML (continued)
obtaining from URLs, 527, 528
reformatting output, 313
XML transformation, 572, 574, 575

HTTP GET request
base64-encoded data, 53
communicating with web servers, 524,

525
HTTP POST request

base64-encoded data, 53
communicating with web servers, 524,

525
simulating form execution, 618

HTTP protocol
cached results and, 541–543
common patterns, 391
transferring data via, 619–621
web server error pages, 543–547
WinInet API, 648
XML transformation, 578

HTTP responses, 523
HttpResponse class, 523
HTTPS protocol, 391, 578
HttpStatusCode enumeration, 523
HttpWebRequest class

cached results and, 541
CachePolicy property, 542
DefaultCachePolicy property, 542
web servers and, 524, 525, 527

HttpWebResponse class
communicating with web servers, 525
GetResponseStream method, 528
IsFromCache property, 542
ResponseStream property, 527, 528
StatusCode property, 522

HybridDictionary class, 176

I
ICloneable interface

building cloneable classes, 120–122
Clone method, 122
List<T> class and, 150
Queue class and, 153
Stack class and, 153

ICMP (Internet Control Message
Protocol), 630

ICollection interface
collections not supporting, 33
CopyTo method, 165
Exception.Data property and, 278
sorting keys/values, 194

IComparable interface, 195

IComparable<T> interface
binary trees and, 429
CompareTo method, 78, 418, 429
n-ary trees and, 442, 443
searching data types, 77–80
sortable data types, 72–77

IComparer interface, 75, 176
IComparer<T> interface

application-specific sorting, 10–12
priority queues, 404, 405, 408, 410
searching data types, 77–80

IConvertible interface, 230–233
ICryptoTransform interface, 665, 672
IdentityNotMappedException

exception, 695
IDictionary interface

casting and, 166, 167
Exception.Data property and, 278
IsFixedSize property, 165, 166
IsReadOnly property, 165, 166
IsSynchronized property, 165, 166
SecurityException and, 711
SyncRoot property, 165, 166

IDictionary<T> interface
foreach loops and, 168–169
Hashtable and, 166
MakeObservableDictionary

method, 332–339
observing manipulations, 332–344

IDictionaryEnumerator interface, 278
IDisposable interface

constraining type arguments, 169–173
Dispose method, 130, 131, 133
signaling events, 754
unmanaged resources and, 130–133

IDispose interface, 126
Idle processes, 291, 780
IEEE Standard 754, 799
IEnumerable interface

Cast method, 35
ConfigurationElementCollection class, 21
creating enumerators, 211
GetEnumerator method, 168
iterators and, 206, 209–210
lambda expressions and, 6
nested foreach loops, 227
querying message queues, 3, 4
Standard Query Operators and, 6
web server error pages, 546, 547

IEnumerable<T> interface
collections not supporting, 33–35
ConfigurationElementCollection class, 21

Index | 837

creating enumerators, 214
exception handling, 284
iterators and, 206, 208
messageQueue collection, 4
nested foreach loops, 224–229
OrderBy method, 363
Queue class and, 153, 154
Reverse method, 213, 319
Stack class and, 153, 154
ToArray method, 198, 199

IEnumerator interface
Current property, 213
GetEnumerator method, 210, 213, 226
iterators and, 206
MoveNext method, 213
nested foreach loops, 226, 227

IEnumerator<T> interface
creating enumerators, 214
GetEnumerator method, 208
GetNext method, 208
iterators and, 206, 208
nested foreach loops, 227

if statement, 45, 184
if-else statement, 87, 245
IIS (Internet Information Server), 543–547,

632
Ildasm disassembler tool, 134
IList interface

casting, 148
IsFixedSize property, 147, 149
IsReadOnly property, 147, 148
IsSynchronized property, 147, 149
LocalVariableInfo objects and, 512
ReadOnlyCollection class and, 163
SyncRoot property, 147, 149

IList<T> interface, 163, 205
implicitly typed local variables, 3
indexer

exception handling, 246
MultiMap<T> class, 413, 417
set method, 340

IndexOutOfRangeException exception, 246
inheritance

enumerations and, 794
exception handling and, 263
hierarchy for types, 501–504
IDisposable interface and, 133
partial types and, 233
structures and, 70
type arguments, 172

initialization vectors
Rijndael algorithm and, 663, 664

TripleDES algorithm and, 670
initializer expressions, 65
inline statements, 6
INotifyPropertyChanged interface, 26
INotifyPropertyChanging interface, 26
InsertIntoArray method, 188–190
instance methods, 14
int data type (see Int32 data type)
Int16 (short) data type

Average method and, 15
converting, 91, 93, 95, 96
listed, 793
Parse method support, 60

Int32 (int) data type
bitwise complement operator, 796, 797
converting, 91, 93, 94, 95, 96
hash codes and, 401
listed, 793
MaxSize property, 802
narrowing conversions, 804
Parse method support, 4, 60
type arguments and, 152

Int64 (long) data type
bitwise complement operator, 796, 797
converting, 91, 93, 95, 96
listed, 793
narrowing conversions, 804
Parse method support, 60

integer division, 180
interfaces

boxing and, 135
classes and, 69
organizing implementations, 229–234
partial methods and, 239
proxies and, 652–656
searching, 330–332
structures and, 69, 135

Interlocked class
Add method, 756
CompareExchange method, 756
Decrement method, 755
Exchange method, 756
Increment method, 755
thread support, 757

Internet (see Web)
Internet Control Message Protocol

(ICMP), 630
Internet Information Server (IIS), 543–547,

632
Internet Protocol (IP), 611
InternetQueryOption function

(WinInet), 646

838 | Index

InternetSettingsReader class
current connection settings, 641–648
GetInternetConnectionOption

method, 643, 646
GetInternetSettings method, 647
InternetConnectionOption

structure, 643, 646
Intersect method, 5, 8
intersection operation, 446, 447
IntersectWith method, 447
IntPtr data type, 401
INullableValue interface

HasValue property, 158
initializing value types, 158
Value property, 158

InvalidCastException exception, 95, 98–100
InvalidDataException exception, 487
InvalidEnumArgumentException

exception, 246
InvalidOperationException exception, 158,

159, 246, 697
invocation lists, 322, 323
InvokeEveryOtherOperation method, 319
IOException exception, 472, 473, 481
IP (Internet Protocol), 611
IP addresses

converting hostnames to, 517, 518
converting to hostnames, 516, 517

IPAddress data type
Parse method support, 60
ScopeId property, 517
writing TCP servers, 611

IPHostEntry class
AddressList property, 518
HostName property, 516, 517

IPv4 addresses, 390
is operator

data type of variables, 101–103
lambda expressions and, 348
usage recommendations, 97, 98

IsCharEqual method, 41
ISerializable interface, 263
isolated storage, 676–682
IsolatedStorageFile class, 682
IsolatedStorageStream class, 683
IsSubsetOf method, 447
IsSupersetOf method, 447
Item class, 228
iterators

creating on nongeneric types, 209–210
defined, 206

examining strings, 64–65
foreach loops and, 213
generic types and, 207–208
implementing logic, 215–218
nested foreach loops and, 227
recursive, 465
stopping, 218–220
try/finally blocks and, 220–224

J
jagged arrays, 177, 417
Java language, xvii
join keyword, 16–19
JoinIn method, 736

K
Kelvin temperature scale, 801, 802
kernel objects, 755
key/value pairs

binary trees and, 428
collection classes and, 176
dictionaries and, 175, 340, 341
one-to-many maps and, 410, 416–418
reversing sorted order, 162
sorting, 193–194

KeyValuePair structure
foreach loops and, 168
Hashtable class and, 167
reversing sorted lists, 162

L
lambda expressions

closures and, 356–361
defined, 6, 317, 344
delegate signatures, 9
depicted, 317, 318
interface search mechanisms, 330–332
OrderBy method and, 363
overview, 344–348
parameter modifiers, 352–356
selective query results, 32
types of, 348
Where query operator, 6

Language enumeration
converting plain text, 807, 808
setting bit flags, 815–818
testing values, 808, 809, 810

Language Integrated Query (see LINQ)
lexers, 379–380
line-feed character, 383, 578

Index | 839

lines
appending to strings, 67
counting in text, 380–383
returning for matches, 383–387

LinkedList<T> class
Contains method, 157
Find method, 157
FindLast method, 157
Next property, 157
overview, 155–158
Previous property, 157

LINQ (Language Integrated Query)
accessing multiple data domains, 16–19
adding functional extensions, 12–16
application-specific sorting, 10–12
IEnumerable<T> interface and, 33–35
overview, 1, 2
querying configuration files, 19–22
querying message queues, 2–4
selective query results, 31–33
Standard Query Operators, 5–8

LINQ to ADO.NET, 1, 24
LINQ to Amazon, 2
LINQ to DataSet, 1, 18
LINQ to Entities, 1, 2, 24
LINQ to LDAP, 2
LINQ to Objects, 1, 160–162, 206
LINQ to SharePoint, 2
LINQ to SQL

creating XML from databases, 22–27
parameterized queries, 8–10
selective query results, 32–33
support for, 1

LINQ to XML
accessing multiple data domains, 18
creating XML from databases, 27–30
data in document order, 551
extending transformations, 595–599
querying document contents, 554–558
support for, 1, 548
transformation parameters, 601–605
transforming XML, 572–579

LinqExtensions class, 13
List<T> class

actions on elements, 202–204
Add method, 147, 148
AddRange method, 147
ArrayList class and, 146–150
AsReadOnly method, 147, 148, 149, 204
BinarySearch method, 77–78, 147, 157,

182, 184–185, 191–193
Capacity property, 147, 148

Clear method, 147
collection persistence, 199–200
Contains method, 148
ConvertAll method, 148
CopyTo method, 148
Count property, 147, 148
creating enumerators, 211
Exists method, 148
extracting groups, 372
Find method, 148
FindAll method, 148
FindIndex method, 148
FindLast method, 148
FindLastIndex method, 148
ForEach method, 148, 202, 203
GetEnumerator method, 208
GetRange method, 147, 148, 150
IndexOf method, 148
Insert method, 148, 193
InsertRange method, 148
Item property, 147, 148
LastIndexOf method, 148
LinkedList<T> class and, 157, 158
manipulating array items, 188–190
ModifySorted method, 193
nested foreach loops, 225, 227
number of item occurrences, 182–185
one-to-many maps, 410, 416–418
predicates and, 364
priority queues, 404, 405
read-only, 204–205
Remove method, 148
RemoveAll method, 148
RemoveAt method, 148
RemoveRange method, 148
retrieving item instances, 185–188
Reverse method, 148
searching data types, 78–80
snapshots of, 199
Sort method, 78, 148
sorting, 191–193
sorting data types, 72–77
testing elements, 201–202
ToArray method, 148
TrimExcess method, 148
TrimToSize method, 148
TrueForAll method, 148

ListDictionary class
AppEvents class and, 296, 297
description, 176

ListSubClassesForType method, 504
little-endian encoding, 58

840 | Index

Local namespace, 755
local variables

accessing information, 512–514
implicitly typed, 3

LocalIntranet permission set, 489
LocalService system account, 778
LocalSystem system account, 778
lock keyword, 720
lock statement

Dictionary<T> class and, 165, 166
List<T> class and, 148

locking
file subsections, 471–474
objects, 721–725

LockRecursionException exception, 759
LockRecursionPolicy enumeration, 759
logins, determining, 5, 6
long data type (see Int64 data type)

M
machine.config file

caching policy and, 542
querying, 22
TraceSwitch class and, 290

MACTripleDES class, 396, 397
MailAttachment class, 631
MailMessage class, 631–636
Main method, 254, 255
makecert.exe utility, 704, 705
MakeDirectoryHidden extension

method, 456
MakeFileHidden method, 451
managed execution environment, xvii
ManualResetEvent class

semaphores and, 735, 736, 752
signaling events, 752

maps, one-to-many, 410–418
MapViewOfFile API, 740
Marshal class

PtrToStringBSTR method, 698
PtrToStructure method, 646
ReleaseComObject method, 132
SecureStringToBSTR method, 698
SizeOf property, 646
ZeroFreeBSTR method, 698

MarshalByRefObject class, 754, 790
Match class

FindSubstrings method, 367–370
Match method, 366, 373
obtaining stack traces, 271

MatchCollection class
Count property, 271

extracting groups, 373
Matches method, 367

MatchesCollection class, 366
MatchEvaluator delegate, 376–378
Math class

converting degrees/radians, 795
Floor method, 800
PI field, 796
Round method, 799, 800
Truncate method, 819

maximum values, dictionary, 194–198
MaxMinValueDictionary class, 195–197
MediaTypeNames class, 633
MemberAccess privilege, 489, 652
MemberInfo class, 500
MemberTypes enumeration

All value, 500
Constructor value, 500
Custom value, 500
Event value, 500
Field value, 500
Method value, 500
NestedType value, 500
overview, 500
Property value, 500
TypeInfo value, 500

MemoryStream class, 665, 672
Message class

Formatter property, 4
Receive method, 782
Recoverable property, 782

message queues
local workstations and, 780–783
querying, 2–4

MessageQueue class
Close method, 131
local workstations and, 783
querying message queues, 2–4

MethodBase.Invoke method, 508
MethodBody class, 512–514
MethodImpl attribute, 721
MethodImplOption enumeration, 721
MethodInfo class

GetBaseDefinition method, 493–498
GetParameters method, 510
Invoke method, 252, 510
IsGenericMethod method, 511–512
ParameterInfo method, 508
SecurityException and, 711

methods
accepting byte[], 57–59
anonymous, 6, 316, 317, 344, 348

Index | 841

conditional, 239
delegates and, 316
exception handling, 246, 251–253
extension, 5–8, 12–16
finding within types, 499
generics and, 145
instance, 14
multiple return values, 104–105
overridden, 493–498
partial, 26, 207, 237–239
passing by value, 68

methodToInvoke.Invoke method, 253
Microsoft intermediate language

(MSIL), 207, 232
MIME standard, 54
minimum values, dictionary, 194–198
Modules collection, 780
Monitor.TryEnter method, 723–724
MonitorMethodAccess class

ModifyNumericField method, 724
ReadNumericField method, 724, 725

MQWorker class
overview, 780–783
ReadMessage method, 782, 783
SendMessage method, 781, 783
SetUpQueue method, 780

MSDN Magazine, 722
MSIL (Microsoft intermediate

language), 207, 232
MSMQ, 783
multicast delegates

controlling firing order, 318–322
exception handling, 324–327
return values and, 322–324

MulticastDelegate class, 322, 323
MulticastInvocationException

class, 325–327
multidimensional arrays, 176
MultiInstance enumeration value, 305
MultiMap<T> class

Add method, 413, 416
Clear method, 413, 417
Clone method, 413
ContainsKey method, 413, 418
ContainsValue method, 414, 418
Count method, 413
creating one-to-many maps, 410–418
indexer, 413
Remove method, 414, 417
RemoveSingleMap method, 417

multiplication operator, 80–82

Mutex class
rights/audit information, 692
synchronizing processes, 738–750

MutexAccessRule class, 692
MyTcpClient class, 612–615
MyTcpServer class, 606–611

N
named groups, 373
named Mutex, 738–750
named pipes, 621–629
NamedPipeClientStream class

Connect method, 626
Flush method, 626
overview, 621–629
WaitForPipeDrain method, 626
Write method, 626

NamedPipeServerStream class
IsConnected method, 626, 627
overview, 621–629
WaitForConnection method, 626

namespaces
delimiters in, 501
extension methods and, 14
interface search mechanisms, 331

name-value pairs, 615–618
NameValueCollection class, 176, 618
naming conventions, exceptions, 261
narrowing conversion, 91, 803
Navigated event, 529
nesting

foreach loops, 224–229
queries, 29
types within assemblies, 500

.NET Framework
current version, 783, 784
Design Guidelines, 120, 122

NetworkCredential class, 526
networking

class support, 606
current Internet settings, 641–648
named pipes and, 621–629
pinging programmatically, 629–630
scanning ports, 636–641
sending SMTP mail, 631–636
simulating form execution, 615–618
transferring data via HTTP, 619–621
transferring files via FTP, 648–650
writing TCP clients, 612–615
writing TCP servers, 606–611

NetworkService system account, 778

842 | Index

NetworkStream class
Close method, 611
GetStream method, 615
securing stream data, 699
writing TCP servers, 609

nodes
child, 428, 432–444, 591
defined, 428

non-nullable numeric type, 13
NoSafeMemberAccess class

IncrementNumericField method, 719,
720

ModifyNumericField method, 719
overview, 719–725
ReadNumericField method, 719

notification
delegate completion, 727–730
partial methods and, 237–239
power management, 770–775
session changes, 770–775
shutdown, 770–775
threads and, 750–752

NotifyFilters enumeration
Attributes value, 476
CreationTime value, 476
DirectoryName value, 476
FileName value, 476
LastAccess value, 476
LastWrite value, 476
overview, 476
Security value, 476
Size value, 476

NotSupportedException exception, 9, 204
NTAccount class, 695
NTree<T> class

AddRoot method, 433, 443
constructors, 433
creating n-ary trees, 432–444
MaxChildren property, 433
solution code example, 439–443

NTreeNode<U> class
AddNode method, 439, 443
BreadthFirstSearch method, 439, 443
childNodes property, 443
Children property, 438
constructor, 438
CountChildren property, 438
CountImmediateChildren property, 438
DepthFirstSearch method, 439, 443
GetChild method, 438
NumOfChildren property, 438
overview, 433

PrintDepthFirst method, 439
RemoveNode method, 439, 443
solution code example, 439–443
Value method, 438

NTreeNodeFactory<T> class
constructors, 438
CreateNode method, 438
MaxChildren property, 438
solution code example, 433–438,

439–443
null coalescing operator, 160
null strings, 66
Nullable class, 158–160
nullable numeric type

initializing, 158–160
LinqExtensions class, 13
type arguments and, 174

NullReferenceException exception
casting and, 99
creating exception types, 261
recommendations, 244, 246

NumberOfItems32 performance
counter, 307

NumberOfItems64 performance
counter, 307

NumberOfItemsHEX32 performance
counter, 307

NumberOfItemsHEX64 performance
counter, 307

numbers
bitwise complement operator, 796, 797
converting degrees/radians, 795
converting temperature scales, 801, 802
converting to base10, 797, 798
determining validity in strings, 798, 799
finding integer portions of, 819
floating-point data types, 794
narrowing numeric cast, 802–804
rounding algorithms, 800
rounding values, 799
simple data types, 793, 794

NumberStyles enumeration
AllowCurrencySymbol value, 60
AllowDecimalPoint value, 60
AllowExponent value, 60
AllowHexSpecifier value, 60
AllowLeadingSign value, 60
AllowLeadingWhite value, 60
AllowParentheses value, 61
AllowThousands value, 61
AllowTrailingSign value, 61
AllowTrailingWhite value, 61

Index | 843

Any value, 61
Currency value, 61
defined, 60, 61
Float value, 61
HexNumber value, 61
Integer value, 61
None value, 61
Number value, 61

numeric promotion, 797
numeric types

calculated hash, 398
converting base types, 798
MaxValue property, 802, 804
MinValue property, 802
narrowing casts, 802–804
narrowing conversions, 91, 92
nullable types and, 159
structures and, 69
ToString method, 798
TryParse method, 798

O
Object class, 69, 122
ObjectDisposedException exception, 126,

132, 246
objects

assuring disposal, 124–126
collections and, 175
controlling access to types, 651–661
delegates as, 316
dispose design pattern for, 126–133
exception handling, 246
function, 361–365
kernel, 755
LINQ to Objects, 1
locking, 721–725
serializing, 123, 199–200
storing in binary trees, 428
value equality, 401

ObservableDictionary class
Add method, 340, 341
AddedEntry event, 339, 340
AddingEntry event, 339, 340
ChangedEntry event, 339, 340
ChangingEntry event, 339, 340
observing manipulations, 332–344
OnAdded method, 339, 340
OnAdding method, 339, 340, 341
OnAddingListener method, 341
OnChanged method, 339
OnChanging method, 339, 341

OnChangingListener method, 341
solution code example, 332–339,

341–343
ObservableDictionaryEventArgs class

keepChanges property, 340, 341
key property, 340
solution code example, 332–339
value property, 340

ObservableDictionaryObserver class
ApproveAdd event, 341
ApproveChange event, 341
object observer defined, 340
observing manipulations, 332–344
OnAddedListener event handler, 340
OnAddingListener event handler, 340
OnChangedListener event handler, 340
OnChangingListener event handler, 340
Register method, 340
solution code example, 341–343

observer design pattern, 339–343
OfType<T> method, 33–35
OnEntryWritten callback method, 303
operating systems

determining versions, 791, 792
shutdown notifications, 770–775

OperatingSystem class, 791
operators

error-free expressions, 85–88
extension methods and, 14
overloading, 80–85
reducing Boolean logic, 88–91
for sets, 446–447
Standard Query Operators, 5–8
(see also specific operators)

orderby keyword, 3, 557
OrderBy query operator

application-specific sorting, 10–12
reversing sort order, 161

out keyword
lambda expressions and, 352–356
returning multiple items, 104, 105

Outer class, 493
outer variables, 347, 348
OutOfMemoryException exception, 246
OverflowException exception, 261

converting strings, 61
narrowing conversions, 93, 802, 803, 804
type conversions and, 96–97

overloading operators, 80–85
overridden methods, 493–498

844 | Index

P
P/Invoke method

current Internet settings, 641–648
usage recommendations, 69

ParameterizedThreadStart delegate, 736, 751
parameters

catch blocks and, 241
constraining, 169–173
delegates and, 328, 345
exception handling, 246
Expression lambda and, 348
generators and, 364
lambda expression modifiers, 352–356
lambda expressions and, 344, 345
multicast delegates and, 324
parsing command-line, 106–117
partial methods and, 239
XML transformation, 601–605

params modifier, 352–356
parentheses

error-free expressions, 85–88
regular expressions and, 373

Parse method, 59–62
ParsePathEnvironmentVariable method, 468
ParseURI method, 518–520
parsing

command-line parameters, 106–117
paths, 466–468
paths in environment variables, 468, 469
URIs, 518–521

partial classes
code generation and, 234–236
interface implementations, 229–234
partial methods and, 207, 238

partial keyword, 230
partial methods

functionality, 26, 207
notification via, 237–239

partial types, 206, 233
PartialClassAddin add-in, 234–236
passing by reference, 68
passing by value, 68, 69
passwords

defense in depth principle, 676
matching patterns, 391
protecting string data, 697
storing securely, 676–683
UriFormatException, 520

Path class
GetDirectoryName method, 467
GetExtension method, 467
GetFileName method, 467

GetFileNameWithoutExtension
method, 467

GetPathRoot method, 467
parsing paths, 466–468
PathSeparator property, 468, 469

PATH environment variable, 468, 470
paths

parsing, 466–468
parsing in environment variables, 468,

469
patterns

common, 389–393
enumerating matches, 367–370
file extensions and, 463
finding last match, 375
regular expressions and, 366
returning entire lines, 383–387
searching files/directories, 461
string replacement, 376–378
(see also design patterns)

PauseAndCreateFile method, 474, 475
PE (Portable Executable) file, 478
performance

ArrayList class and, 147
boxing and, 70, 133–136
cached results and, 541–543
exception handling and, 244
generics and, 138
hash codes and, 401
Queue class, 152
Stack class, 152
structures and, 68, 70
unboxing and, 133–136

performance counters, 304–307
PerformanceCounter class

CreateSimpleCounter method, 304, 305
functionality, 305
NextSample method, 306
RawValue property, 307

permissions
assembly attack surface and, 687
asserting, 683–685
proxies testing, 659
reflection, 489
SecurityException and, 711
verifying for assemblies, 685, 686

persistence, collection, 199–200
phone numbers, matching patterns, 391
Ping class

DisplayPingReplyInfo method, 629, 630
PingCompleted event, 629, 630
pinging programmatically, 629–630

Index | 845

Send method, 629
SendAsync method, 629, 630

PingCompletedEventArgs class, 630
pinging, 629–630
PingReply class

Cancelled property, 630
Error property, 630
pinging programmatically, 629, 630

PInvoke class, 744–750
PipeOptions enumeration

Asynchronous value, 628
None value, 628
WriteThrough value, 628

polymorphism
classes and, 69
structures and, 69, 70

Portable Executable (PE) file, 478
ports, scanning, 636–641
power management, 770–775
PowerMode enumeration, 772
PowerModeChangedEventArgs class, 775
PowerModeEventChangedArgs class, 772
precision, floating-point, 794
PrecompilationFlags enumeration

AllowPartiallyTrustedCallers value, 532
Clean value, 532
CodeAnalysis value, 532
Default value, 532
DelaySign value, 532
FixedNames value, 532
ForceDebug value, 533
OverwriteTarget value, 533
Updateable value, 533

PrecompileApplication method, 533
Predicate delegate, 201
Predicate<T> delegate, 364
predicates, 364
PrintGacRegisteredVersions

method, 784–787
priority queues, 402–410
PriorityQueue<T> class

BinarySearch method, 406
Clear method, 405
Clone method, 405
Contains method, 405, 406
CopyTo method, 406
Count method, 405
Count property, 405
creating priority queues, 402–410
DequeueLargest method, 405, 406
Enqueue method, 405, 406
GetEnumerator method, 406

IndexOf method, 405
PeekLargest method, 405, 406
ToArray method, 406
TrimExcess method, 405, 406

Process class
GetCurrentProcess method, 292
GetProcessById method, 292
GetProcesses method, 292, 779
GetProcessesByName method, 292
IsProcessResponding method, 291, 292
MainWindowHandle property, 291
overridden methods, 496
Responding property, 291
StandardInput property, 470
Start method, 311, 469
StartInfo property, 469, 470

processes
capturing standard output, 311–313
listing loaded assemblies, 778–780
nonresponsive, 290–292
synchronizing multiple, 738–750

ProcessInfo class, 311
ProcessRespondingState enumeration, 291
ProcessStartInfo class

console utilities and, 469
protecting string data, 698
RedirectStandardOutput

property, 311–313
projections, 317
properties

automatically implemented, 142, 156
conveying changes, 26
exception handling, 246, 256–259
extension methods and, 14

PropertyChanged event, 26
PropertyChanging event, 26
proxies

going through, 525–527
Internet connections and, 647
proxy design pattern, 651–661

proxy design pattern, 651–661
punctuation characters, 65

Q
queries/querying

configuration files, 19–22
data across repositories, 16–19
deferred execution, 114
drive information, 479–482
interface searches, 330
LINQ support, 1
message queues, 2–4

846 | Index

queries/querying (continued)
nested types in assemblies, 501
nesting queries, 29
parameterized, 8–10
registered assemblies, 785
selective results, 31–33
Standard Query Operators, 5–8
tracking, 651–661
XML document contents, 554–558

Queue class
Clone method, 153
generic counterparts, 137, 150–154
IsSynchronized property, 153
priority queues, 402
storing snapshots, 198
Synchronized method, 153
SyncRoot property, 153

Queue<T> class, 408
queues, priority, 402–410
quotation marks

command-line parameters, 112
trimming from strings, 65

R
radians, converting, 795
RateOfCountsPerSecond32 performance

counter, 307
RateOfCountsPerSecond64 performance

counter, 307
ReaderWriterLock class, 759
ReaderWriterLockSlim class

AddTask method, 757
EnterReadLock method, 758, 759
EnterUpgradeableLock method, 758
EnterWriteLock method, 757
ExitReadLock method, 758
ExitUpgradeableReadLock method, 758
ExitWriteLock method, 757
IncreasePriority method, 758
IsTaskDone method, 758
read-mostly threads, 757–769

readonly field, 117–120
ReadOnlyCollection<T> class, 162–163,

181–182, 325
recursive iterators, 465
Red Gate ANTS Profiler tool, 136
ref parameter modifier, 352–356
reference types

as operator and, 98
cast operator and, 98
constraining arguments, 172
interfaces as, 135

structures and, 68, 69
value types and, 72

Reflect class, 251–253
reflection

assembly information, 489
creating generic types, 514–515
determining if type is generic, 511–512
finding assembly members, 499–500
inheritance hierarchy for types, 501–504
invoking members, 507–511
listing assemblies, 490–492
listing exported types, 492, 493
local variables, 512–514
nested types in assemblies, 500
overridden methods, 493–498
ReflectionPermission, 489, 684
serializable types, 505–507

ReflectionEmit privilege, 489
ReflectionPermission class, 489, 684
ReflectionPermissionFlag enumeration, 652
ReflectionUtils class, 496
Regex class

assembly permissions, 686
creating objects, 366
ExtractGroupings method, 370–373
IsMatch method, 367
LineCount method, 380–383
Match method, 374, 375
Matches method, 387–389
Replace method, 376–378
Split method, 379–380
Tokenize method, 379
VerifyRegEx method, 373–375

RegexOptions enumeration, 375, 380
#region statement, 230
registry keys

granting/revoking access, 693–696
rights/audit information, 688–693

Registry Security class, 696
RegistryAccessRule class, 692, 695, 696
RegistryKey class

access rights, 695
GetAccessControl method, 689
rights/audit information, 689–692

RegistrySecurity class
access rights, 696
AddAccessRule method, 696
RemoveAccessRuleSpecific method, 696
rights/audit information, 692

regular expressions
common patterns, 389–393
counting lines of text, 380–383

Index | 847

enumerating matches, 367–370
executing, 366
extracting groups, 370–373
finding last match, 375
finding matches, 387–389
returning entire lines in

matches, 383–387
string replacement, 376–378
strings and, 366
tokenizers and, 379–380
verifying syntax, 373–375

Remote Desktop, 755
RemoveFromArray method, 189–190
RenameFile method, 453
renaming

directories, 457, 458
files, 452–453

RequestCacheLevel enumeration
BypassCache value, 541
CacheIfAvailable value, 541
CacheOnly value, 541
Default value, 541
NoCacheNoStore value, 541
Reload value, 541
Revalidate value, 541

RequestCachePolicy class, 541–543
resource cleanup (see garbage collection)
ResponseCategories enumeration, 522, 523
RestoreObj method, 200
return statement, 222
return values

delegates and, 321
lambda expressions and, 346
multicast delegates and, 322–324
multiple, 104–105
partial methods and, 238

RFC 792, 630
RFC 821, 632
RFC 959, 650
RFC 1951, 487
RFC 2396, 520, 535, 536
RFC 2616, 523
Richter, Jeffrey, 722
Rijndael algorithm, 663, 665–670
RijndaelManaged class

GenerateIV method, 664
GenerateKey method, 663
IV property, 664
Key property, 664
SavedIV field, 664
SavedKey field, 664

root node, 428, 429

rounding numbers
choosing algorithms, 800
for floating-point values, 799
narrowing conversions and, 804

RSA algorithm, 670
RsaCryptoServiceProvider class, 709
RsaProtectedConfigurationProvider

class, 709
Rundll32 process, 291
runtime (see CLR)
RuntimeEnvironment class, 783, 784

S
SafeFileHandle class, 713–715
SafeHandleZeroOrMinusOneIsInvalid

class, 715
SaferMemberAccess class

IncrementNumericField method, 723
ModifyNumericField method, 723
ReadNumericField method, 723

salting hashed value, 676–683
SampleClassLibrary assembly, 509
SaveObj method, 200
SByte (sbyte) data type

CLS compliance, 794
converting, 91, 93, 95, 96
listed, 793
Parse method support, 60

searching
binary search trees, 418–432
data types, 77–80
event log entries, 299–302
interfaces, 330–332
strings, 36
with wildcards, 459–463
(see also patterns)

SecretInner type, 493
SectionalListator class

GetEnumerator method, 216
GetFilteredValues method, 216–218
GetFirstHalf method, 216–218
GetReverseFilteredValues

method, 216–218
GetSecondHalf method, 216–218

SecureFunction function, 684
SecureString class

Clear method, 698
Copy method, 697
Dispose method, 698
MakeReadOnly method, 697
protecting string data, 696–699

848 | Index

security
assembly attack surface, 687
assembly permissions, 685, 686
asserting permissions, 683–685
changing security privileges, 693–696
cleaning cryptography info, 670–672
controlling access to types, 651–661
encrypting web.config file, 708–710
encrypting/decrypting files, 665–670
encrypting/decrypting strings, 661–665
protecting string data, 696–699
rights/audit information, 688–693
runtime and, 651
safer file handles, 713–715
securing stream data, 699–708
SecurityException reasons, 685, 710–712
storing data and, 676–683
string corruption, 672–676
Unicode encoding, 712, 713

security.config file, 548
SecurityAction enumeration

Assert value, 710
Demand value, 710
DemandChoice value, 710
Deny value, 710
InheritanceDemand value, 711
InheritanceDemandChoice value, 711
LinkDemand value, 711
LinkDemandChoice value, 711
PermitOnly value, 711
RequestMinimum value, 711
RequestOptional value, 685, 711
RequestRefuse value, 687
RequestRefuseusing value, 711

SecurityException class
Action property, 710, 712
Data property, 711, 712
Demanded property, 711, 712
DenySetInstance property, 711
FailedAssemblyInfo property, 711, 712
FirstPermissionThatFailed property, 711
GrantedSet property, 712
Method property, 711, 712
PermitOnlySetInstance property, 711
properties, 710–712
URL property, 711, 712
Zone property, 711

SecurityException exception, 685, 710–712
SecurityManager class, 686
SecurityZone enumeration

Internet value, 711
Intranet value, 711

MyComputer value, 711
NoZone value, 711
Trusted value, 711
Untrusted value, 711

select keyword
accessing multiple data domains, 19
description, 3, 557

Semaphore class, 692
SemaphoreAccessRule class, 692
semaphores, 734–738
SerializableAttribute attribute, 507
SerializationException exception, 263
serializing

classes, 263
objects, 123

service packs, 791, 792
ServiceController class

CanPauseAndContinue property, 777
CanStop property, 777
Close method, 778
Continue method, 777
DependentServices property, 776
DisplayName property, 775
overview, 775–778
ServiceName property, 775
ServicesDependedOn array, 776
ServiceType property, 775
Start method, 776
Status property, 776, 778
Stop method, 777
WaitForStatus method, 776, 777

ServiceType enumeration
Adapter value, 775
FileSystemDriver value, 775
InteractiveProcess value, 775
KernelDriver value, 775
RecognizerDriver value, 776
Win32OwnProcess value, 776
Win32ShareProcess value, 776

SessionEndedEventArgs class, 775
SessionEndingEventArgs class, 773, 775
sessions

change notifications, 770–775
collections persisting between, 199–200
terminal, 755

SessionSwitchEventArgs class, 775
set method, 340
Set operators, 5–8
SetEquals method, 447
sets

defined, 446
difference operation, 446, 447

Index | 849

equivalence operation, 447
intersection operation, 446, 447
subset operation, 446, 447
superset operation, 446, 447
union operation, 446, 447

SHA-256 algorithm, 672–676
SHA256Managed class, 397, 672–676
SHA512Managed class, 679
shallow copying, 120–122
SharedMemoryManager class

code example, 744–750
named Mutex, 738, 740
ReceiveObject method, 743–744
SendObject method, 741–743
SetupSharedMemory method, 740–741

shift and add hash algorithm, 397
short data type (see Int16 data type)
shutdown, notification for, 770–775
SignedNumber structure, 70, 71
SignedNumberWithText structure, 72
simple hash algorithm, 395, 400
Simple Mail Transfer Protocol

(SMTP), 631–636
simple types, 793, 794
Single (float) data type

calculated hash, 398
converting, 91, 93, 95
listed, 793, 794
narrowing conversions, 804
Parse method support, 60

SingleInstance enumeration value, 305
SMTP (Simple Mail Transfer

Protocol), 631–636
SmtpClient class, 631–636
snapshots, storing in arrays, 198, 199
SOAP, 455, 548
Social Security number, 390, 696–697
Socket class, 636–641
SocketException exception, 517
SortedDictionary class, 428
SortedDictionary<T> class, 194
SortedList class

binary trees and, 428
collection classes and, 176
Compare method, 78
CompareTo method, 78
ContainsKey method, 78
ContainsValue method, 78
reversing sorted list, 160–162

SortedList<T> class
Add method, 192
foreach loops and, 168–169

reversing sorted list, 160–162
searching data types, 78–80
sorting data types, 72–77
sorting lists, 191–193

sorting
application-specific, 10–12
data types, 72–77
keys/values, 193–194
List<T> class, 191–193
reversing list contents, 160–162

space character
delimiting character, 63
trimming from strings, 65

special characters, 383
spoolsv process, 291
SQL injection, 392
SQL Server (Microsoft)

ReaderWriterLockSlim and, 760
tying database tables to cache, 531

SqlCacheDependency class, 530–531, 540
SqlCacheDependencyAdmin class, 531
SqlMetal utility, 18, 24
Square class

searching data types, 77, 78
sorting data types, 72–75

SSL protocol, 699–708
SslStream class

AuthenticateAsClient method, 708
AuthenticateAsServer method, 706
CertificateValidationCallback

method, 708
Close method, 708
GetServerCert method, 705
securing stream data, 699–708

Stack class
Clone method, 153
generic counterparts, 137, 150–154
IsSynchronized property, 153
snapshots of lists, 198
Synchronized method, 153
SyncRoot property, 153

stack traces, 269–272
StackOverflowException exception, 246
StackTrace class, 181–182
standard output stream, 787–789
Standard Query Operators, 5–8
StandardOutput stream, 311
Startup event handler, 282
State Service (ASP.NET), 775–778
Statement lambda, 348

850 | Index

static fields
cloning and, 122
const fields and, 119
per-thread, 716–719
storing thread-specific data, 730–733

storage
child nodes in n-ary trees, 432–444
data securely, 676–683
isolated, 676–682
objects in binary trees, 428
thread-specific data, 730–733

Storeadm.exe utility, 682
stream data, securing, 699–708
StreamReader class

obtaining HTML from URLs, 528
ReadLine method, 381, 383–387
ReadToEnd method, 528

StreamWriter class
capturing output, 788
Close method, 131, 473
Write method, 474
WriteLine method, 454, 470

string alias, 36
String class

class sensitivity, 41
Compare method, 46, 47, 47–49
Contains method, 4
EndsWith method, 47–49
Format method, 9
IndexOf method, 42–46
IndexOfAny method, 42–46
Insert method, 49–50
IsNullOrEmpty method, 66
Join method, 62, 63
protecting string data, 698
reference types and, 36
Remove method, 51–53
Replace method, 51–53
Split method, 62, 63, 176, 469
StartsWith method, 47–49
StringBuilder class and, 36
Trim method, 65, 66
TrimEnd method, 65, 66
TrimStart method, 65, 66
(see also strings)

StringBuilder class
AppendFormat method, 53
AppendLine method, 67
exception handling and, 253
functionality, 36
Insert method, 50
inserting text, 50

Remove method, 51–53
Replace method, 51–53

string-concatenation hash algorithm, 399
StringDictionary class, 176
strings

appending lines, 67
case sensitivity for comparisons, 46, 47
comparing to other, 47–49
converting, 91, 93, 94, 96
converting base types, 798
converting byte[], 56–57
converting to other types, 59–62
counting lines of text, 380–383
decoding binary data, 54–55
delimited, 62, 63
determining valid numbers, 798, 799
encoding binary data, 53–54
encrypting/decrypting, 661–665
enumerating matches, 367–370
enumeration values as, 804–807
exception handling, 246
extracting groups, 370–373
finding all occurrences within, 42–46
finding last match, 375
finding specific matches, 387–389
getting exception information, 257
handling invalid characters, 569–572
inserting text, 49–50
iterating characters, 64–65
passing byte[] to methods, 57–59
protecting data, 696–699
pruning characters from, 65, 66
regular expressions and, 366
removing characters, 51–53
returning entire lines for

matches, 383–387
searching, 36
string replacement, 376–378
string-concatenation hash, 399
testing for null/empty, 66
tokenizing, 379–380
verifying uncorrupted, 672–676
(see also String class)

struct keyword, 135
StructLayoutAttribute Class, 70–72
structures

binary search trees, 418–432
boxing and, 69, 135
classes and, 68, 69
constructors and, 69
deep copies and, 123
delegates and, 316

Index | 851

HashSet<T> object, 444–448
inheritance and, 70
interfaces and, 69, 135
multiple return values and, 104
n-ary trees, 432–444
one-to-many maps, 410–418
passing by value, 69
performance and, 68, 70
polymorphism and, 69, 70
priority queues, 402–410
reference types and, 68
union-type, 70–72
usage recommendations, 69
ValueType class and, 68

Subgroup class, 227, 229
subset operation, 446, 447
subtraction operator, 80–82
Sum function, 28
superset operation, 446, 447
svchost process, 291
SwapElementsInArray method, 177
switch statement, 777, 808, 809
SymmetricAlgorithm class

Clear method, 131, 670–672
encrypting/decrypting files, 665–670

SymmetricExceptWith method, 447
synchronization

multiple processes, 738–750
thread, 721–725

synchronous delegates, 327–330
System processes, 780
System.Attribute, 236
System.CLSCompliantAttribute, 234
System.Collections namespace, 175
System.Collections.ArrayList type, 331
System.Collections.Generic namespace, 175
System.Collections.Specialized

namespace, 175–176
System.Configuration assembly, 21
System.Cryptography namespace, 665
System.Diagnostics namespace, 286
System.IO.Pipes namespace, 622
System.Messaging.MessageQueue class (see

MessageQueue class)
System.Reflection.Emit namespace, 501
System.Runtime.Remoting.Messaging

namespace, 328
System.SerializeableAttribute, 234
System.Text namespace, 56, 58
System.Text.RegularExpressions

namespace, 36, 366
System.Xml.XPath namespace, 555

%SystemDrive% environment variable, 469
SystemEvents class

change notifications, 771–775
DisplaySettingsChanged event, 774
DisplaySettingsChanging event, 774
EventsThreadShutdown event, 771, 774
InstalledFontsChanged event, 774
OnEventsThreadShutdown handler, 772
OnPowerModeChanged method, 772
OnSessionEnded handler, 772
OnSessionEnding handler, 772
OnSessionSwitch handler, 772
PaletteChanged event, 774
PowerModeChanged event, 771, 774
RegisterForSystemEvents method, 771,

772
SessionEnded event, 771, 774
SessionEnding event, 771, 774
SessionSwitch event, 771, 774
TimeChanged event, 774
TimerElapsed event, 774
UnregisterFromSystemEvents

method, 771, 772
UserPreferenceChanged event, 774
UserPreferenceChanging event, 774

SystemException class, 246, 261

T
tab character, 65
tables

accessing, 18
tying to cache, 530–531

TakeSnapshotOfList<T> method, 198, 199
TargetInvocationException exception, 252,

253
TaskManager, 290–292
TCP (Transmission Control Protocol)

securing stream data, 699–708
writing TCP clients, 612–615
writing TCP servers, 606–611

TcpClient class
Close method, 131, 611
Connect method, 615
GetStream method, 609
Read method, 615
SslStream class and, 705
Write method, 615
writing TCP clients, 612–615

TCPClient_SSL class, 699–701
TcpListener class

AcceptTcpClient method, 607, 611
Start method, 611

852 | Index

TCPServer class
Address property, 607
overview, 611
Port property, 607
StopListening method, 608, 611

TCPServer_SSL class, 701–703
temperature scales, 801, 802
Terminal Services, 755
terminal services box, 5, 6
terminal sessions, 755
ternary operator, 87
Test class

className attribute, 510
methodName attribute, 510
priority queues, 406

TestArrayReversal method, 179, 180
TestCompressNewFile method, 486
TestDynamicInvocation method, 507–511
TestFindSubstrings method, 368–369
TestIndividualInvokesExceptions

method, 327
testing

elements, 201–202
null/empty strings, 66
permissions via proxies, 659
for valid enumeration values, 808–810

TestInvoke method, 251–253
TestInvokeIntReturn class, 323, 326
TestSort method, 75, 78
TestStaticField method, 718
text

converting to enumerations, 807, 808
counting lines, 380–383
inserting into strings, 49–50
matching substrings, 367–370
regular expressions and, 366

TextReader class, 172
TextWriter class, 29, 788
this keyword, 14
Thread class

AllocateDataSlot method, 730–733
AllocateNamedDataSlot

method, 730–733
asynchronous delegates, 729
FreeNamedDataSlot method, 733
GetData method, 730, 733
GetNamedDataSlot method, 730–733
Start method, 726, 736

thread local storage (TLS), 730–733
ThreadException event, 279–280
ThreadException exception, 727

ThreadPool class
asynchronous delegates, 729
ProcessClient method, 607, 609, 611
QueueUserWorkItem method, 475, 727
writing TCP clients, 613

threads
accessor functions, 719–725
asynchronous delegates and, 328
atomic operations, 755–757
defined, 716
events and, 750–752, 752–755
exception handling and, 244, 255, 279
read-mostly operations, 757–769
shutdown notification, 771
silent termination, 725–727
static fields and, 716–719
storing data privately, 730–733
synchronizing, 721–725

ThreadStart delegate
silent termination, 725–727
static fields and, 718

ThreadStaticAttribute attribute, 716–719
throw keyword, 222, 246, 247, 248
ThrowException method, 249
TIME /T command, 469
time, matching patterns, 390
Timer100Ns performance counter, 307
Timer100nsInverse performance

counter, 307
TimerElapsedEventArgs class, 775
timestamps

directory, 455–457
file, 450, 451

TLS (thread local storage), 730–733
tokenizers, 379–380
toolbox

capturing output, 787–789
controlling services, 775–778
listing loaded assemblies, 778–780
path to .NET Framework version, 783,

784
registered assembly versions, 784–787
running applications, 789–791
system change notifications, 770–775
workstation message queues, 780–783

ToString method
accessing multiple data domains, 18
base type conversions, 798
displaying enumeration values, 805–807
set operations, 6
string-concatenation hash, 399

Index | 853

ToUpperInvariant method
case sensitivity, 41
finding all string occurrences, 44

Trace class
control output, 287–290
overview, 286
WriteLine method, 454

TraceFactory class, 307–310
TraceSwitch class

configuration files and, 288
Level property, 288
trace levels supported, 289, 290

tracing
controlling output, 287–290
enabling/disabling, 307–310
overview, 286

transferring
data via HTTP, 619–621
files via FTP, 648–650

transformations, XML
extending, 595–599
overview, 572–579
passing parameters, 601–605

TransformWithParameters
method, 601–605

Transmission Control Protocol (see TCP)
trees

creating n-ary trees, 432–444
defined, 428
directory, 464–466
functionality, 428

triple point of water, 802
TripleDES algorithm, 665–670
TripleDESCryptoServiceProvider class, 670
true operator, 82–85
TrueForAll method, 201, 202
try/catch blocks

asynchronous delegates and, 275
catching/throwing exceptions, 247–251
converting data types, 94
exception handling and, 241–244, 324,

330
getting exception information, 256–259
iterators and, 222–224
silent thread termination, 725–727
unhandled exceptions and, 254–256

try/finally blocks
catching/throwing exceptions, 248–251
exception handling and, 241, 243–245,

327
iterators and, 220–224
silent thread termination, 725–727
unhandled exceptions and, 254–256

TryParse method, 62, 798
two-dimensional arrays, 177
Type class

BaseType property, 502
BindGenericParameters method, 514–515
GetInterface method, 330
GetInterfaces method, 330
GetMember method, 499–500
GetMethod method, 498, 510
GetMethods method, 498, 512
GetNestedTypes method, 501
GetType method, 501, 502
IsGenericType method, 511–512
IsSerializable property, 507
IsSerialized property, 505–507
IsSubclassOf method, 504, 505
overridden methods, 494

U
uint data type (see UInt32 data type)
UInt16 (ushort) data type

CLS compliance, 794
converting, 91, 93, 95, 96
listed, 793
Parse method support, 60

UInt32 (uint) data type
bitwise complement operator, 796, 797
CLS compliance, 794
converting, 91, 93, 95, 96
hash codes and, 401
listed, 793
narrowing conversions, 804
Parse method support, 60

UInt64 (ulong) data type
bitwise complement operator, 796, 797
CLS compliance, 794
converting, 91, 93, 95, 96
listed, 793
Parse method support, 60

ulong data type (see UInt64 data type)
unary functions, 364
unbox command, 134
unboxing operations

as operator and, 100
casting operator and, 98
determining occurrences, 133–136
generics and, 138, 144
is operator and, 103

unchecked keyword, 96
unescaping data, 535–536
UnhandledException event, 256, 279–280,

727

854 | Index

UnicodeEncoding class
converting strings, 56–58
GetBytes method, 675
secure encoding, 712, 713

uniform resource identifier (URI), 518–521,
535, 537–539

Union method, 5, 7
union operation, 446, 447
union type, 70–72
UnionWith method, 447
Unknown enumeration value, 305
unmanaged resources, disposing of, 126–133
URI (uniform resource identifier), 518–521,

535, 537–539
Uri class

creating objects, 526
EscapeDataString method, 535, 536
EscapeUriString method, 535, 536
parsing URIs, 518–521
UnescapeDataString method, 535, 536

UriBuilder class
overview, 537–539
Query property, 537
Uri property, 539

UriBuilderFix class, 537, 538
UriFormatException exception, 520
URL

obtaining HTML from, 527, 528
transferring data via HTTP, 619–621
XmlUrlResolver class and, 578

urn:xslext namespace, 596
user accounts, 305, 695
User class, 682
user identity, storing, 676–683
UserPreferenceChangedEventArgs class, 775
UserPreferenceChangingEventArgs

class, 775
UserSettings class

CreateHashedPassword method, 679,
680, 682

IsPasswordValid method, 680, 682
Password property, 676, 678, 680, 681
storing data securely, 676–683
User property, 676, 678

ushort data type (see UInt16 data type)
using directive

case sensitive comparisons, 41
extension methods and, 14
using statement and, 125

using statement
assuring object disposal, 124–126
clearing cryptography info, 672

try/finally blocks and, 243
using directive and, 125

UTFEncoding class, 712, 713
utility routines (see toolbox)

V
validating

modified XML documents, 591–595
numbers in strings, 798, 799
XML documents, 558–563

ValidationHandler class
HandleValidation method, 592
ValidXml property, 592, 593

ValidShape enumeration, 805
value equality, 401
value types

cast operator and, 98
constraining arguments, 172
generics and, 138
initializing to null, 158–160
reference types and, 72
simple types as, 793

ValueType class
boxing and, 69
inheritance and, 794
strings and, 36
structures and, 68

var keyword
description, 3, 557
querying message queues, 4
reusing parameterized queries, 9

variables
determining type, 101–103
environment, 468, 469
hash codes and, 401
implicitly typed local, 3
initializing generic, 173–174
lambda expressions and, 347, 356
local, 512–514
outer, 347, 348
using statement and, 125

vector array, 65
version control

comparing information, 477–479
const fields and, 119
GAC and, 784–787
operating systems, 791, 792
path to .NET Framework, 783, 784

Visual Basic .NET language, xvii
visual designer (LINQ to SQL), 24

Index | 855

wVisual Studio
PartialclassAddin add-in, 234–236
Team System for Developers/Team

Suite, 136
VS.NET, 134

W
WaitForChangedResult structure

ChangeType property, 476
Name property, 476
OldName property, 476
overview, 476
TimedOut property, 476

WaitForZipCreation method, 474
WaitHandle class, 744, 754
WatcherChangeTypes enumeration, 476
WatchForAppEvent method, 303
WCF (Windows Communication

Foundation), 625
Web

application configuration files, 539–541
cached results and performance, 541–543
communicating with web servers, 524,

525
current connection settings, 641–648
escaping/unescaping data, 535–536
going through proxies, 525–527
handling web server errors, 522–523
hostname/IP address conversion, 517,

518
IP address/hostname conversion, 516,

517
obtaining HTML from URLs, 527, 528
prebuilding ASP.NET web sites, 532–534
reading XML, 552–554
tying tables to cache, 530–531
UriBuilder class, 537–539
web browser control, 528–530
web server error pages, 543–547

web browsers
embedding functionality, 528–530
simulating form execution, 615–618

Web parsing URIs, 518–521
web servers

communicating with, 524, 525
custom error pages, 543–547
handling errors, 522–523
simulating form execution, 615–618

Web Services, 455
web sites, prebuilding, 532–534

web.config file
ASP.NET-based, 289
encrypting, 708–710
manipulating, 540
tying database tables to cache, 531

WebBrowser class, 528–530
WebBrowserNavigatedEventArgs class, 529
WebClient class

DownloadData method, 619–621
DownloadFile method, 620
OpenRead method, 621
UploadData method, 619–621
UploadFile method, 620
UploadValues method, 615–618

WebConfigurationManager class
accessing settings, 540
OpenWebConfiguration method, 539,

709
overview, 539–541

WebPermission class, 686
WebProxy class

constructing objects, 526
Credentials property, 526
proxies and, 526

WebRequest class
Create method, 648
DefaultWebProxy property, 526, 527
GetSystemWebProxy method, 526
HttpWebRequest class and, 524
proxy information, 647
web communications, 525

WebResponse class, 525
WeightedMovingAverage methods, 12–16
where keyword

constraining type arguments, 172–173
creating generic types, 515
description, 3, 557
interface search mechanisms, 330–332

Where query operator, 6
while loops, 551
whitespace

command-line parameters, 112
common patterns, 390
trimming from strings, 66

wildcards
finding assembly members, 499
searching with, 459–463

Win32Exception exception, 780
Windows Communication Foundation

(WCF), 625
Windows Firewall, 630

856 | Index

Windows Forms
controlling debugging output, 289
displaying HTML, 528–530
generating code, 236
silent thread termination, 727
system change notifications, 771
unhandled exceptions, 279–280

Windows Forms controls, 236, 316
Windows Presentation Foundation

(WPF), 281–283
WindowsAccountType enumeration, 656,

657
WinInet API, 641–648
workstations, message queues, 780–783
World Wide Web (see Web)
WPF (Windows Presentation

Foundation), 281–283
WriteExceptionShortDetail method, 253

X
X.509 certificates, 704–708
XAML files, 282
XAttribute class, 551
Xbox360, 734–738
XCData class, 569–572
XComment class, 551, 569
XDocument class

data in document order, 551
detecting document changes, 566–569
Load method, 553, 591
modified XML documents, 591–595
overview, 548
reading XML on Web, 552–554
Root property, 569
Validate method, 558–563, 591–595
WriteElementInfo method, 568

XDocumentType class, 569
XDR validation, 558–563
XElement class

accessing multiple data domains, 18–19
assembling XML documents, 585–591
creating documents, 564–566
creating XML documents, 566
creating XML from databases, 27
data in document order, 551
handling invalid characters, 569–572
Load method, 553
overview, 548
splitting XML documents, 579–584
XDocument class and, 569
XPathSelectElements method, 555

XHTML strings, 391

XLINQ (see LINQ to XML)
XML (Extensible Markup Language)

creating from databases, 22–30
debugging output, 289
extending transformations, 595–599
handling invalid characters, 569–572
inferring schemas, 599–600
LINQ to XML, 1, 18, 27–30
matching patterns, 391
overview, 548
reformatting output, 313
transformation parameters, 601–605
transforming, 572–579

XML documents
assembling, 585–591
creating programmatically, 564–566
detecting changes, 566–569
order in accessing data, 548–552
querying contents, 554–558
reading on Web, 552–554
tearing apart, 579–584
transforming, 572–579
validating, 558–563
validating modified, 591–595

XmlDocument class
assembling XML documents, 587–591
creating XML documents, 565, 566
handling invalid characters, 571
ImportNode method, 591
modified XML documents, 591–595
overview, 548
SelectNodes method, 33
splitting XML documents, 581
storing data securely, 676
Validate method, 593

XmlElement class
handling invalid characters, 571
InnerText property, 570, 571, 572
InnerXML property, 571, 572

XmlMessageFormatter class, 781
XmlNode class, 584, 594
XmlNodeList class, 33
XmlNodeReader class, 594
XmlNodeType enumeration

Attribute value, 552
CDATA value, 552
Comment value, 552
Document value, 552
DocumentFragment value, 552
DocumentType value, 552
Element value, 552
EndElement value, 552

Index | 857

EndEntity value, 552
Entity value, 552
EntityReference value, 552
None value, 552
Notation value, 552
ProcessingInstruction value, 552
SignificantWhitespace value, 552
Text value, 552
Whitespace value, 552
XmlDeclaration value, 552

xmlns:xslext namespace, 596
XmlReader class

Create method, 554
creating XML documents, 566
modified XML documents, 591–595
overview, 548
Read method, 548–552
reading XML on Web, 552–554
Settings property, 551, 558–563

XmlResolver class, 578
XmlSchemaInference class, 599–600
XmlSecureResolver class, 578
XmlUrlResolver class, 554, 578
XmlWriter class

creating XML documents, 564, 566
creating XML from databases, 29
handling invalid characters, 569
overview, 548
WriteAttributeString method, 569
WriteCData method, 569, 570
WriteElementString method, 569, 570
WriteString method, 569
WriteValue method, 569

XPath, 556–558

XPathDocument class, 555
XPathNavigator class, 555
XPathNodeIterator class, 555
XProcessingInstruction class, 569
XSD (XML schema)

generating code, 236
getting in bulk, 599–600
validating, 558–563

xsl:text element, 578
xsl:value-of element, 596
XslCompiledTransform class, 574, 578
xslext:GetErrata method, 596
XSLT

document() function, 602
extending transformations, 595–599
transformation parameters, 602–605
XML transformations, 574–578

XsltArgumentList class
AddExtensionObject method, 595, 596
AddParam method, 602
transformation parameters, 602

XsltSettings class, 602

Y
yield break statement, 218, 219
yield statement, 206, 227

Z
zip codes, matching patterns, 391, 393

About the Authors
Jay Hilyard has been developing Windows applications for more than 15 years and
for .NET for more than 7 of those. He has published numerous articles in MSDN
Magazine, and he currently works on the New Product Team at Newmarket Interna-
tional in Portsmouth, New Hampshire.

Stephen Teilhet has been working with the .NET platform since the pre-alpha
version of the .NET 1.0 Framework was being developed by Microsoft. Currently, he
works for Ounce Labs, enhancing their static security code analysis tool to find
vulnerabilities in several languages, including C# and Visual Basic.

Colophon
The animal on the cover of C# 3.0 Cookbook, Third Edition, is a garter snake
(Thamnophis sirtalis). Named because their longitudinal stripes resemble those on
garters once used to hold up men’s socks, garter snakes are easily identified by their
distinctive stripes: a narrow stripe down the middle of the back with a broad stripe
on each side of it. Color and pattern variations enable them to blend into their native
environments, helping them evade predators. They are the most common snake in
North America and the only species of snake found in Alaska.

Garter snakes have keeled scales—one or more ridges down the central axis of the
scales—giving them a rough texture and lackluster appearance. Adult garter snakes
generally range in length between 46 and 130 centimeters (one and a half feet to over
four feet). Females are usually larger than males, with shorter tails and a bulge where
the body and tail meet.

Female garters are ovoviviparous, meaning they deliver “live” young that have
gestated in soft eggs. Upon delivery, most of the eggs and mucous membranes have
broken, which makes their births appear live. Occasionally, a baby will be born still
inside its soft shell. A female will usually deliver 10 to 40 babies: the largest recorded
number of live babies birthed by a garter snake is 98. Once emerging from their
mothers, baby garters are completely independent and must begin fending for them-
selves. During this time they are most susceptible to predation, and over half of all
baby garters die before they are one year old.

Garter snakes are one of the few animals able to eat toads, newts, and other amphib-
ians with strong chemical defenses. Although diets vary depending on their
environments, garter snakes mostly eat earthworms and amphibians; however, they
occasionally dine on baby birds, fish, and small rodents. Garter snakes have toxic
saliva (harmless to humans), which they use to stun or kill their prey before swal-
lowing them whole.

The cover image is from a 19th-century engraving from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.

	C# 3.0 Cookbook
	Table of Contents
	Preface
	Who This Book Is For
	What You Need to Use This Book
	Platform Notes
	How This Book Is Organized
	What Was Left Out
	Conventions Used in This Book
	About the Code
	Using Code Examples
	Comments and Questions
	Safari® Books Online
	Acknowledgments
	From Jay Hilyard
	From Steve Teilhet

	Language Integrated Query (LINQ)
	1.0 Introduction
	1.1 Query a Message Queue
	Problem
	Solution
	Discussion
	See Also

	1.2 Using Set Semantics with Data
	Problem
	Solution
	Discussion
	See Also

	1.3 Reuse Parameterized Queries with LINQ to SQL
	Problem
	Solution
	Discussion
	See Also

	1.4 Sort Results in a Culture-Sensitive Manner
	Problem
	Solution
	Discussion
	See Also

	1.5 Adding Functional Extensions for Use with LINQ
	Problem
	Solution
	Discussion
	See Also

	1.6 Query and Join Across Data Repositories
	Problem
	Solution
	Discussion
	See Also

	1.7 Querying Configuration Files with LINQ
	Problem
	Solution
	Discussion
	See Also

	1.8 Creating XML Straight from a Database
	Problem
	Solution
	Discussion
	See Also

	1.9 Being Selective About Your Query Results
	Problem
	Solution
	Discussion
	See Also

	1.10 Using LINQ with Collections That Don’t Support IEnumerable<T>
	Problem
	Solution
	Discussion
	See Also

	Strings and Characters
	2.0 Introduction
	2.1 Determining the Kind of Character a Char Contains
	Problem
	Solution
	Discussion
	See Also

	2.2 Controlling Case Sensitivity When Comparing Two Characters
	Problem
	Solution
	Discussion

	2.3 Finding the Location of All Occurrences of a String Within Another String
	Problem
	Solution
	Discussion
	See Also

	2.4 Controlling Case Sensitivity When Comparing Two Strings
	Problem
	Solution
	Discussion
	See Also

	2.5 Comparing a String to the Beginning or End of a Second String
	Problem
	Solution
	Discussion
	See Also

	2.6 Inserting Text into a String
	Problem
	Solution
	Discussion
	See Also

	2.7 Removing or Replacing Characters Within a String
	Problem
	Solution
	Discussion
	See Also

	2.8 Encoding Binary Data As Base64
	Problem
	Solution
	Discussion
	See Also

	2.9 Decoding a Base64-Encoded Binary
	Problem
	Solution
	Discussion
	See Also

	2.10 Converting a String Returned As a Byte[] Back into a String
	Problem
	Solution
	Discussion
	See Also

	2.11 Passing a String to a Method That Accepts Only a Byte[]
	Problem
	Solution
	Discussion
	See Also

	2.12 Converting Strings to Other Types
	Problem
	Solution
	Discussion

	2.13 Creating a Delimited String
	Problem
	Solution
	Discussion
	See Also

	2.14 Extracting Items from a Delimited String
	Problem
	Solution
	Discussion
	See Also

	2.15 Iterating over Each Character in a String
	Problem
	Solution
	Discussion

	2.16 Pruning Characters from the Head and/or Tail of a String
	Problem
	Solution
	Discussion
	See Also

	2.17 Testing a String for Null or Empty
	Problem
	Solution
	Discussion
	See Also

	2.18 Appending a Line
	Problem
	Solution
	Discussion
	See Also

	Classes and Structures
	3.0 Introduction
	3.1 Creating Union-Type Structures
	Problem
	Solution
	Discussion
	See Also

	3.2 Making a Type Sortable
	Problem
	Solution
	Discussion
	See Also

	3.3 Making a Type Searchable
	Problem
	Solution
	Discussion
	See Also

	3.4 Indirectly Overloading the +=, -=, /=, and *= Operators
	Problem
	Solution
	Discussion
	See Also

	3.5 Indirectly Overloading the &&, ||, and ?: Operators
	Problem
	Solution
	Discussion
	See Also

	3.6 Making Error-Free Expressions
	Problem
	Solution
	Discussion

	3.7 Reducing Your Boolean Logic
	Problem
	Solution
	Discussion
	See Also

	3.8 Converting Between Simple Types in a Programming Language-Agnostic Manner
	Problem
	Solution
	Discussion
	See Also

	3.9 Determining When to Use the cast Operator, the as Operator, or the is Operator
	Problem
	Solution
	Discussion
	See Also

	3.10 Casting with the as Operator
	Problem
	Solution
	Discussion
	See Also

	3.11 Determining a Variable’s Type with the is Operator
	Problem
	Solution
	Discussion
	See Also

	3.12 Returning Multiple Items from a Method
	Problem
	Solution
	Discussion

	3.13 Parsing Command-Line Parameters
	Problem
	Solution
	Discussion
	See Also

	3.14 Initializing a Constant Field at Runtime
	Problem
	Solution
	Discussion
	See Also

	3.15 Building Cloneable Classes
	Problem
	Solution
	Discussion
	See Also

	3.16 Assuring an Object’s Disposal
	Problem
	Solution
	Discussion
	See Also

	3.17 Disposing of Unmanaged Resources
	Problem
	Solution
	Discussion
	See Also

	3.18 Determining Where Boxing and Unboxing Occur
	Problem
	Solution
	Discussion
	See Also

	Generics
	4.0 Introduction
	4.1 Deciding When and Where to Use Generics
	Problem
	Solution
	Discussion
	See Also

	4.2 Understanding Generic Types
	Problem
	Solution
	Discussion
	See Also

	4.3 Replacing the ArrayList with Its Generic Counterpart
	Problem
	Solution
	Discussion
	See Also

	4.4 Replacing the Stack and Queue with Their Generic Counterparts
	Problem
	Solution
	Discussion
	See Also

	4.5 Using a Linked List
	Problem
	Solution
	Discussion
	See Also

	4.6 Creating a Value Type That Can Be Initialized to Null
	Problem
	Solution
	Discussion
	See Also

	4.7 Reversing the Contents of a Sorted List
	Problem
	Solution
	Discussion
	See Also

	4.8 Making Read-Only Collections the Generic Way
	Problem
	Solution
	Discussion
	See Also

	4.9 Replacing the Hashtable with Its Generic Counterpart
	Problem
	Solution
	Discussion
	See Also

	4.10 Using foreach with Generic Dictionary Types
	Problem
	Solution
	Discussion
	See Also

	4.11 Constraining Type Arguments
	Problem
	Solution
	Discussion
	See Also

	4.12 Initializing Generic Variables to Their Default Values
	Problem
	Solution
	Discussion
	See Also

	Collections
	5.0 Introduction
	5.1 Swapping Two Elements in an Array
	Problem
	Solution
	Discussion

	5.2 Reversing an Array Quickly
	Problem
	Solution
	Discussion
	See Also

	5.3 Writing a More Flexible StackTrace Class
	Problem
	Solution
	Discussion
	See Also

	5.4 Determining the Number of Times an Item Appears in a List<T>
	Problem
	Solution
	Discussion
	See Also

	5.5 Retrieving All Instances of a Specific Item in a List<T>
	Problem
	Solution
	Discussion
	See Also

	5.6 Inserting and Removing Items from an Array
	Problem
	Solution
	Discussion
	See Also

	5.7 Keeping Your List<T> Sorted
	Problem
	Solution
	Discussion
	See Also

	5.8 Sorting a Dictionary’s Keys and/or Values
	Problem
	Solution
	Discussion
	See Also

	5.9 Creating a Dictionary with Max and Min Value Boundaries
	Problem
	Solution
	Discussion
	See Also

	5.10 Storing Snapshots of Lists in an Array
	Problem
	Solution
	Discussion
	See Also

	5.11 Persisting a Collection Between Application Sessions
	Problem
	Solution
	Discussion
	See Also

	5.12 Testing Every Element in an Array or List<T>
	Problem
	Solution
	Discussion
	See Also

	5.13 Performing an Action on Each Element in an Array or List<T>
	Problem
	Solution
	Discussion
	See Also

	5.14 Creating a Read-Only Array or List<T>
	Problem
	Solution
	Discussion
	See Also

	Iterators, Partial Types, and Partial Methods
	6.0 Introduction
	6.1 Creating an Iterator on a Generic Type
	Problem
	Solution
	Discussion
	See Also

	6.2 Creating an Iterator on a Nongeneric Type
	Problem
	Solution
	Discussion
	See Also

	6.3 Creating Custom Enumerators
	Problem
	Solution
	Discussion
	See Also

	6.4 Implementing Iterator Logic
	Problem
	Solution
	Discussion
	See Also

	6.5 Forcing an Iterator to Stop Iterating
	Problem
	Solution
	Discussion
	See Also

	6.6 Dealing with Finally Blocks and Iterators
	Problem
	Solution
	Discussion
	See Also

	6.7 Implementing Nested foreach Functionality in a Class
	Problem
	Solution
	Discussion
	See Also

	6.8 Organizing Your Interface Implementations
	Problem
	Solution
	Discussion
	See Also

	6.9 Generating Code That Is No Longer in Your Main Code Paths
	Problem
	Solution
	Discussion
	See Also

	6.10 Adding Hooks to Generated Entities
	Problem
	Solution
	Discussion
	See Also

	Exception Handling
	7.0 Introduction
	7.1 Knowing When to Catch and Rethrow Exceptions
	Problem
	Solution
	Discussion

	7.2 Assuring Exceptions Are Not Lost When Using Finally Blocks
	Problem
	Solution
	Discussion
	See Also

	7.3 Handling Exceptions Thrown from Methods Invoked via Reflection
	Problem
	Solution
	Discussion
	See Also

	7.4 Preventing Unhandled Exceptions
	Problem
	Solution
	Discussion
	See Also

	7.5 Getting Exception Information
	Problem
	Solution
	Discussion
	See Also

	7.6 Getting to the Root of a Problem Quickly
	Problem
	Solution
	Discussion
	See Also

	7.7 Creating a New Exception Type
	Problem
	Solution
	Discussion
	See Also

	7.8 Obtaining a Stack Trace
	Problem
	Solution
	Discussion
	See Also

	7.9 Breaking on a First-Chance Exception
	Problem
	Solution
	See Also

	7.10 Handling Exceptions Thrown from an Asynchronous Delegate
	Problem
	Solution
	Discussion
	See Also

	7.11 Giving Exceptions the Extra Info They Need with Exception.Data
	Problem
	Solution
	Discussion
	See Also

	7.12 Dealing with Unhandled Exceptions in WinForms Applications
	Problem
	Solution
	Discussion
	See Also

	7.13 Dealing with Unhandled Exceptions in Windows Presentation Foundation (WPF) Applications
	Problem
	Solution
	Discussion
	See Also

	7.14 Analyzing Exceptions for Common Errors
	Problem
	Solution
	Discussion
	See Also

	Diagnostics
	8.0 Introduction
	8.1 Providing Fine-Grained Control over Debugging/ Tracing Output
	Problem
	Solution
	Discussion
	See Also

	8.2 Determining Whether a Process Has Stopped Responding
	Problem
	Solution
	Discussion
	See Also

	8.3 Using Event Logs in Your Application
	Problem
	Solution
	Discussion
	See Also

	8.4 Searching Event Log Entries
	Problem
	Solution
	Discussion
	See Also

	8.5 Watching the Event Log for a Specific Entry
	Problem
	Solution
	Discussion
	See Also

	8.6 Implementing a Simple Performance Counter
	Problem
	Solution
	Discussion
	See Also

	8.7 Enabling and Disabling Complex Tracing Code
	Problem
	Solution
	Discussion
	See Also

	8.8 Capturing Standard Output for a Process
	Problem
	Solution
	Discussion
	See Also

	8.9 Creating Custom Debugging Displays for Your Classes
	Problem
	Solution
	Discussion
	See Also

	Delegates, Events, and Lambda Expressions
	9.0 Introduction
	9.1 Controlling When and If a Delegate Fires Within a Multicast Delegate
	Problem
	Solution
	Discussion
	See Also

	9.2 Obtaining Return Values from Each Delegate in a Multicast Delegate
	Problem
	Solution
	Discussion
	See Also

	9.3 Handling Exceptions Individually for Each Delegate in a Multicast Delegate
	Problem
	Solution
	Discussion
	See Also

	9.4 Converting Delegate Invocation from Synchronous to Asynchronous
	Problem
	Solution
	Discussion
	See Also

	9.5 An Advanced Interface Search Mechanism
	Problem
	Solution
	Discussion
	See Also

	9.6 Observing Additions and Modifications to Dictionaries
	Problem
	Solution
	Discussion
	See Also

	9.7 Using Lambda Expressions
	Problem
	Solution
	Discussion
	See Also

	9.8 Set Up Event Handlers Without the Mess
	Problem
	Solution
	Discussion
	See Also

	9.9 Using Different Parameter Modifiers in Lambda Expressions
	Problem
	Solution
	Discussion
	See Also

	9.10 Using Closures in C#
	Problem
	Solution
	Discussion
	See Also

	9.11 Performing Multiple Operations on a List Using Functors
	Problem
	Solution
	Discussion
	See Also

	Regular Expressions
	10.0 Introduction
	10.1 Enumerating Matches
	Problem
	Solution
	Discussion
	See Also

	10.2 Extracting Groups from a MatchCollection
	Problem
	Solution
	Discussion
	See Also

	10.3 Verifying the Syntax of a Regular Expression
	Problem
	Solution
	Discussion

	10.4 Quickly Finding Only the Last Match in a String
	Problem
	Solution
	Discussion
	See Also

	10.5 Augmenting the Basic String Replacement Function
	Problem
	Solution
	Discussion
	See Also

	10.6 Implementing a Better Tokenizer
	Problem
	Solution
	Discussion
	See Also

	10.7 Counting Lines of Text
	Problem
	Solution
	Discussion
	See Also

	10.8 Returning the Entire Line in Which a Match Is Found
	Problem
	Solution
	Discussion
	See Also

	10.9 Finding a Particular Occurrence of a Match
	Problem
	Solution
	Discussion
	See Also

	10.10 Using Common Patterns
	Problem
	Solution
	Discussion
	See Also

	Data Structures and Algorithms
	11.0 Introduction
	11.1 Creating a Hash Code for a Data Type
	Problem
	Solution
	The simple hash
	The folding hash
	The contained object cache
	The CryptoHash method
	The CryptoHash method using a nonstring
	The shift and add hash
	The calculated hash
	The string-concatenation hash

	Discussion
	See Also

	11.2 Creating a Priority Queue
	Problem
	Solution
	Discussion
	See Also

	11.3 Creating a One-to-Many Map (MultiMap)
	Problem
	Solution
	Discussion
	See Also

	11.4 Creating a Binary Search Tree
	Problem
	Solution
	Discussion
	See Also

	11.5 Creating an n-ary Tree
	Problem
	Solution
	Discussion
	See Also

	11.6 Using a HashSet Object
	Problem
	Solution
	Discussion
	See Also

	Filesystem I/O
	12.0 Introduction
	12.1 Manipulating File Attributes
	Problem
	Solution
	Discussion
	See Also

	12.2 Renaming a File
	Problem
	Solution
	Discussion
	See Also

	12.3 Outputting a Platform-Independent EOL Character
	Problem
	Solution
	Discussion
	See Also

	12.4 Manipulating Directory Attributes
	Problem
	Solution
	Discussion
	See Also

	12.5 Renaming a Directory
	Problem
	Solution
	Discussion
	See Also

	12.6 Searching for Directories or Files Using Wildcards
	Problem
	Solution
	Discussion
	See Also

	12.7 Obtaining the Directory Tree
	Problem
	Solution
	Discussion
	See Also

	12.8 Parsing a Path
	Problem
	Solution
	Discussion
	See Also

	12.9 Parsing Paths in Environment Variables
	Problem
	Solution
	Discussion
	See Also

	12.10 Launching and Interacting with Console Utilities
	Problem
	Solution
	Discussion
	See Also

	12.11 Locking Subsections of a File
	Problem
	Solution
	Discussion
	See Also

	12.12 Waiting for an Action to Occur in the Filesystem
	Problem
	Solution
	Discussion
	See Also

	12.13 Comparing Version Information of Two Executable Modules
	Problem
	Solution
	Discussion
	See Also

	12.14 Querying Information for All Drives on a System
	Problem
	Solution
	Discussion
	See Also

	12.15 Compressing and Decompressing Your Files
	Problem
	Solution
	Discussion
	See Also

	Reflection
	13.0 Introduction
	13.1 Listing Referenced Assemblies
	Problem
	Solution
	Discussion
	See Also

	13.2 Listing Exported Types
	Problem
	Solution
	Discussion
	See Also

	13.3 Finding Overridden Methods
	Problem
	Solution
	Discussion
	See Also

	13.4 Finding Members in an Assembly
	Problem
	Solution
	Discussion
	See Also

	13.5 Determining and Obtaining Nested Types Within an Assembly
	Problem
	Solution
	Discussion
	See Also

	13.6 Displaying the Inheritance Hierarchy for a Type
	Problem
	Solution
	Discussion
	See Also

	13.7 Finding the Subclasses of a Type
	Problem
	Solution
	Discussion
	See Also

	13.8 Finding All Serializable Types Within an Assembly
	Problem
	Solution
	Discussion
	See Also

	13.9 Dynamically Invoking Members
	Problem
	Solution
	Discussion
	See Also

	13.10 Determining If a Type or Method Is Generic
	Problem
	Solution
	Discussion
	See Also

	13.11 Accessing Local Variable Information
	Problem
	Solution
	Discussion
	See Also

	13.12 Creating a Generic Type
	Problem
	Solution
	Discussion
	See Also

	Web
	14.0 Introduction
	14.1 Converting an IP Address to a Hostname
	Problem
	Solution
	Discussion
	See Also

	14.2 Converting a Hostname to an IP Address
	Problem
	Solution
	Discussion
	See Also

	14.3 Parsing a URI
	Problem
	Solution
	Discussion
	See Also

	14.4 Handling Web Server Errors
	Problem
	Solution
	Discussion
	See Also

	14.5 Communicating with a Web Server
	Problem
	Solution
	Discussion
	See Also

	14.6 Going Through a Proxy
	Problem
	Solution
	Discussion
	See Also

	14.7 Obtaining the HTML from a URL
	Problem
	Solution
	Discussion
	See Also

	14.8 Using the Web Browser Control
	Problem
	Solution
	Discussion
	See Also

	14.9 Tying Database Tables to the Cache
	Problem
	Solution
	Discussion
	See Also

	14.10 Prebuilding an ASP.NET Web Site Programmatically
	Problem
	Solution
	Discussion
	See Also

	14.11 Escaping and Unescaping Data for the Web
	Problem
	Solution
	Discussion
	See Also

	14.12 Using the UriBuilder Class
	Problem
	Solution
	Discussion
	See Also

	14.13 Inspect and Change Your Web Application Configuration
	Problem
	Solution
	Discussion
	See Also

	14.14 Using Cached Results When Working with HTTP for Faster Performance
	Problem
	Solution
	Discussion
	See Also

	14.15 Checking Out a Web Server’s Custom Error Pages
	Problem
	Solution
	Discussion
	See Also

	XML
	15.0 Introduction
	15.1 Reading and Accessing XML Data in Document Order
	Problem
	Solution
	Discussion
	See Also

	15.2 Reading XML on the Web
	Problem
	Solution
	Discussion
	See Also

	15.3 Querying the Contents of an XML Document
	Problem
	Solution
	Discussion
	See Also

	15.4 Validating XML
	Problem
	Solution
	Discussion
	See Also

	15.5 Creating an XML Document Programmatically
	Problem
	Solution
	Discussion
	See Also

	15.6 Detecting Changes to an XML Document
	Problem
	Solution
	Discussion
	See Also

	15.7 Handling Invalid Characters in an XML String
	Problem
	Solution
	Discussion
	See Also

	15.8 Transforming XML
	Problem
	Solution
	Discussion
	See Also

	15.9 Tearing Apart an XML Document
	Problem
	Solution
	Discussion
	See Also

	15.10 Putting Together an XML Document
	Problem
	Solution
	Discussion
	See Also

	15.11 Validating Modified XML Documents Without Reloading
	Problem
	Solution
	Discussion
	See Also

	15.12 Extending Transformations
	Problem
	Solution
	Discussion
	See Also

	15.13 Getting Your Schemas in Bulk from Existing XML Files
	Problem
	Solution
	Discussion
	See Also

	15.14 Passing Parameters to Transformations
	Problem
	Solution
	Discussion
	See Also

	Networking
	16.0 Introduction
	16.1 Writing a TCP Server
	Problem
	Solution
	Discussion
	See Also

	16.2 Writing a TCP Client
	Problem
	Solution
	Discussion
	See Also

	16.3 Simulating Form Execution
	Problem
	Solution
	Discussion
	See Also

	16.4 Transferring Data via HTTP
	Problem
	Solution
	Discussion
	See Also

	16.5 Using Named Pipes to Communicate
	Problem
	Solution
	Discussion
	See Also

	16.6 Pinging Programmatically
	Problem
	Solution
	Discussion
	See Also

	16.7 Send SMTP Mail Using the SMTP Service
	Problem
	Solution
	Discussion
	See Also

	16.8 Use Sockets to Scan the Ports on a Machine
	Problem
	Solution
	Discussion
	See Also

	16.9 Use the Current Internet Connection Settings
	Problem
	Solution
	Discussion
	See Also

	16.10 Transferring Files Using FTP
	Problem
	Solution
	Discussion
	See Also

	Security
	17.0 Introduction
	17.1 Controlling Access to Types in a Local Assembly
	Problem
	Solution
	Discussion
	See Also

	17.2 Encrypting/Decrypting a String
	Problem
	Solution
	Discussion
	See Also

	17.3 Encrypting and Decrypting a File
	Problem
	Solution
	Discussion
	See Also

	17.4 Cleaning Up Cryptography Information
	Problem
	Solution
	Discussion
	See Also

	17.5 Verifying That a String Remains Uncorrupted Following Transmission
	Problem
	Solution
	Discussion
	See Also

	17.6 Storing Data Securely
	Problem
	Solution
	Discussion
	See Also

	17.7 Making a Security Assert Safe
	Problem
	Solution
	Discussion
	See Also

	17.8 Verifying That an Assembly Has Been Granted Specific Permissions
	Problem
	Solution
	Discussion
	See Also

	17.9 Minimizing the Attack Surface of an Assembly
	Problem
	Solution
	Discussion
	See Also

	17.10 Obtaining Security/Audit Information
	Problem
	Solution
	Discussion
	See Also

	17.11 Granting/Revoking Access to a File or Registry Key
	Problem
	Solution
	Discussion
	See Also

	17.12 Protecting String Data with Secure Strings
	Problem
	Solution
	Discussion
	See Also

	17.13 Securing Stream Data
	Problem
	Solution
	Discussion
	See Also

	17.14 Encrypting web.config Information
	Problem
	Solution
	Discussion
	See Also

	17.15 Obtaining the Full Reason a SecurityException Was Thrown
	Problem
	Solution
	Discussion
	See Also

	17.16 Achieving Secure Unicode Encoding
	Problem
	Solution
	Discussion
	See Also

	17.17 Obtaining a Safer File Handle
	Problem
	Solution
	Discussion
	See Also

	Threading and Synchronization
	18.0 Introduction
	18.1 Creating Per-Thread Static Fields
	Problem
	Solution
	Discussion
	See Also

	18.2 Providing Thread-Safe Access to Class Members
	Problem
	Solution
	Discussion
	See Also

	18.3 Preventing Silent Thread Termination
	Problem
	Solution
	Discussion
	See Also

	18.4 Being Notified of the Completion of an Asynchronous Delegate
	Problem
	Solution
	Discussion
	See Also

	18.5 Storing Thread-Specific Data Privately
	Problem
	Solution
	Discussion
	See Also

	18.6 Granting Multiple Access to Resources with a Semaphore
	Problem
	Solution
	Discussion
	See Also

	18.7 Synchronizing Multiple Processes with the Mutex
	Problem
	Solution
	Discussion
	See Also

	18.8 Using Events to Make Threads Cooperate
	Problem
	Solution
	Discussion
	See Also

	18.9 Get the Naming Rights for Your Events
	Problem
	Solution
	Discussion
	See Also

	18.10 Performing Atomic Operations Among Threads
	Problem
	Solution
	Discussion
	See Also

	18.11 Optimizing Read-Mostly Access
	Problem
	Solution
	Discussion
	See Also

	Toolbox
	19.0 Introduction
	19.1 Dealing with Operating System Shutdown, Power Management, or User Session Changes
	Problem
	Solution
	Discussion
	See Also

	19.2 Controlling a Service
	Problem
	Solution
	Discussion
	See Also

	19.3 List What Processes an Assembly Is Loaded In
	Problem
	Solution
	Discussion
	See Also

	19.4 Using Message Queues on a Local Workstation
	Problem
	Solution
	Discussion
	See Also

	19.5 Finding the Path to the Current Framework Version
	Problem
	Solution
	Discussion
	See Also

	19.6 Determining the Versions of an Assembly That Are Registered in the Global Assembly Cache (GAC)
	Problem
	Solution
	Discussion
	See Also

	19.7 Capturing Output from the Standard Output Stream
	Problem
	Solution
	Discussion
	See Also

	19.8 Running Code in Its Own AppDomain
	Problem
	Solution
	Discussion
	See Also

	19.9 Determining the Operating System and Service Pack Version of the Current Operating System
	Problem
	Solution
	Discussion
	See Also

	Numbers and Enumerations
	20.0 Introduction
	20.1 Converting Between Degrees and Radians
	Problem
	Solution
	Discussion

	20.2 Using the Bitwise Complement Operator with Various Data Types
	Problem
	Solution
	Discussion

	20.3 Converting a Number in Another Base to Base10
	Problem
	Solution
	Discussion
	See Also

	20.4 Determining Whether a String Is a Valid Number
	Problem
	Solution
	Discussion
	See Also

	20.5 Rounding a Floating-Point Value
	Problem
	Solution
	Discussion
	See Also

	20.6 Choosing a Rounding Algorithm
	Problem
	Solution
	Discussion
	See Also

	20.7 Converting Between Temperature Scales
	Problem
	Solution
	Discussion

	20.8 Safely Performing a Narrowing Numeric Cast
	Problem
	Solution
	Discussion
	See Also

	20.9 Displaying an Enumeration Value as a String
	Problem
	Solution
	Discussion
	See Also

	20.10 Converting Plain Text to an Equivalent Enumeration Value
	Problem
	Solution
	Discussion
	See Also

	20.11 Testing for a Valid Enumeration Value
	Problem
	Solution
	Discussion
	See Also

	20.12 Testing for a Valid Enumeration of Flags
	Problem
	Solution
	Discussion
	See Also

	20.13 Using Enumerated Members in a Bit Mask
	Problem
	Solution
	Discussion

	20.14 Determining Whether One or More Enumeration Flags Are Set
	Problem
	Solution
	Discussion

	20.15 Determining the Integral Part of a Decimal or Double
	Problem
	Solution
	Discussion
	See Also

	Index

