
M A N N I N G

Lukas Ruebbelke
FOREWORD BY Martin Gontovnikas

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

AngularJS in Action

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

AngularJS in Action

LUKAS RUEBBELKE
with BRIAN FORD

M A N N I N G
Shelter Island

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Leonardo Cassarani
PO Box 761 Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Richard Scott-Robinson
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617291333
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

 To my father, Daniel Ruebbelke,
who is the foundation of my life

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

vii

brief contents
PART 1 GET ACQUAINTED WITH ANGULARJS1

1 ■ Hello AngularJS 3

2 ■ Structuring your AngularJS application 20

PART 2 MAKE SOMETHING WITH ANGULARJS33

3 ■ Views and controllers 35

4 ■ Models and services 57

5 ■ Directives 80

6 ■ Animations 115

7 ■ Structuring your site with routes 130

8 ■ Forms and validations 142

APPENIDXES ..153

 A ■ Setting up Karma 153

B ■ Setting up a Node.js server 158

C ■ Setting up a Firebase server 160

D ■ Running the app 162

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ix

contents
foreword xiii
preface xv
acknowledgments xvi
about this book xvii
about the authors xx
about the cover illustration xxi

PART 1 GET ACQUAINTED WITH ANGULARJS1

1 Hello AngularJS 3
1.1 Advantages of using AngularJS 4

1.2 The AngularJS big picture 6

1.3 Build your first AngularJS application 7
The module 10 ■ Views and controllers 11 ■ Services 15
Directives 17

1.4 Summary 18

2 Structuring your AngularJS application 20
2.1 Hello Angello 20

2.2 AngularJS application structure 23

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

2.3 Laying the Angello foundation 25

2.4 Basic routes and navigation 26

2.5 A few best practices 30

2.6 Summary 31

PART 2 MAKE SOMETHING WITH ANGULARJS........................33

3 Views and controllers 35
3.1 The big picture 36

3.2 What is an AngularJS view? 38

3.3 What is an AngularJS controller? 39
The digest cycle 40 ■ Controller as syntax 41 ■ AngularJS
events 42

3.4 Properties and expressions 43
Display stories with ngRepeat 43 ■ Filters 46 ■ Expressions 48

3.5 Best practices and testing 54

3.6 Summary 56

4 Models and services 57
4.1 What are models and services? 58

Hello services 59 ■ The service lifecycle 59 ■ The different types
of services 60

4.2 Models with $http 63
What is $http? 63 ■ Create your first model 64
$http convenience methods 65

4.3 Promises 67
What are promises? 68 ■ Promises in action 68 ■ $http.success
and $http.error 69 ■ Elegant sequencing with promises 70

4.4 $http interceptors 71
Why intercept? 71 ■ Interceptors in action 72

4.5 Service decorators 73
Why decorate? 73 ■ Enhanced logging 73

4.6 Testing consideration 75
Testing a service 75

Using $httpBackend to mock server calls 76 ■ Best practices 78

4.7 Summary 78

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi

5 Directives 80
5.1 Introduction to directives 80

What are directives? 80 ■ Why we need directives 81 ■ Why we
want directives 81

5.2 Directives 101: a quick foundation 81
The user story directive 82

5.3 A more advanced feature 87
The drag-and-drop feature 87 ■ Use the drag-container
directive 89 ■ Build the controller 90 ■ Create the drop-
container directive 92 ■ Use the drop-container directive 93
Build the controller 94 ■ Create the drop-target directive 100
Use the drop-target directive 102 ■ Build the controller 102
Create the $dragging service 103 ■ Update the
StoryboardCtrl 104

5.4 Integrating with third-party libraries again! 106
Install Flot 106 ■ Build the directive 107 ■ Use the
directive 107 ■ Massage our data 107 ■ It’s time we had the
“isolated scope talk” 109 ■ Grand finale: breathe life into Flot 110

5.5 Testing a directive 112

5.6 Best practices 113

5.7 Summary 114

6 Animations 115
6.1 Intro to animations 115

How AngularJS handles animations 116 ■ The animation-
naming convention 116 ■ Animations enable! 117

6.2 CSS transitions 118
Define the base transition 118 ■ Define the ng-enter
transitions 118 ■ Define the ng-leave transitions 119
Making it move 119

6.3 CSS animations 121
Define the base animation classes 121 ■ Define the animation
keyframes 121 ■ Make it move 124

6.4 JavaScript animations 124
Defining the JavaScript animation 125 ■ The JavaScript
animation events 126 ■ The JavaScript animation class 126
TweenMax 127 ■ Making it move 127

6.5 Testing 128

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii

6.6 Best practices 128

6.7 Summary 129

7 Structuring your site with routes 130
7.1 The components of AngularJS routes 131

7.2 How to create routes in AngularJS 132
Create your first route with ngRoute and ngView 132 ■ Add
ngView 132 ■ Set up your route with $routeProvider 132
Set up route navigation 134 ■ Review 134

7.3 Using parameters with routes 135
Review 137

7.4 Using resolve with routes 137
Review 138

7.5 Route events 139
Review 139

7.6 Testing 139

7.7 Best practices 140

7.8 Summary 141

8 Forms and validations 142
8.1 The big picture: AngularJS form validation 143

Extending HTML form elements 143 ■ Adding validations 144
Form validation and CSS 148 ■ Form validation, $setPristine,
and $setUntouched 149

8.2 Testing 149

8.3 Best practices 152

8.4 Summary 152

appendix A Setting up Karma 153
appendix B Setting up a Node.js server 158
appendix C Setting up a Firebase server 160
appendix D Running the app 162

index 163

Licensed to Mark Watson <nordickan@gmail.com>

xiii

foreword
I realized how awesome Lukas was the day we met at ng-europe. After the conference,
we started talking more and I participated in a hackathon he organized, and the other
way around. The one passion we share, and what has brought us together, is helping
people build awesome stuff. I know for a fact that was the reason he decided to write
this book. Not for him, but for you!

 AngularJS is quickly becoming one of the front-end frameworks to use. It’s also one
of the most rapidly changing frameworks out there. In this book, you’ll learn how you
can build an exciting application from top to bottom with AngularJS, while learning
what controllers, templates, directives, services, factories, and providers are. Instead of
an extensive in-depth guide to Angular’s features, in this book you’ll get a quick
glance at what they are and then get your hands dirty so you can learn by using them!
You’ll learn not only how to code this application, but also how to test it.

 Angello is the exciting application—it uses some of the most interesting libraries
out there for AngularJS. It’s a project management tool very similar to Trello.
Throughout the book, you’ll learn how to implement the different pieces of this
application, and how to use ui-router, Auth0, and Firebase, among others.

 I know you’ll find this book really useful. Happy hacking!
 MARTIN GONTOVNIKAS

 DEVELOPER ADVOCATE, AUTH0

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

xv

preface
Never in my wildest dreams did I think that I would be an author, and yet here I am. I
vividly remember the panic that I felt as I clicked “Publish” on my first WordPress post
on AngularJS. It felt like I was pressing the launch button for a series of missiles, and I
had no idea where they would go! Little did I know that I had in fact released a series
of missiles that would change my life in the most profound and unexpected ways.

 The moment I decided that I cared more about being helpful than being perfect
was one of the most important turning points of my life. Beginning with a series of
barely passable blog posts, by accepting every opportunity to implement feedback I
gradually grasped what it takes to write a solid blog post. It was also during that time
that I had the opportunity to become friends with the AngularJS core team. AngularJS
at the time was still relatively unknown, and so it was much easier to get on their radar
than it is now. Lucky me!

 I’ll never forget that afternoon when I got the email asking if I was interested in
writing this book. When I was pretty sure that no one was looking, I would break out
into this little happy dance for days. If only my high school English teacher could see
me now!

 From that moment, I have considered it a great privilege to share with you the
things I’ve learned while building some large applications and writing untold lines of
AngularJS code. It’s been a most excellent journey, and I thank each and every one of
you for making this possible!

 LUKAS RUEBBELKE

Licensed to Mark Watson <nordickan@gmail.com>

xvi

acknowledgments
This book wouldn’t have been possible without the input and support from the amaz-
ing AngularJS community. I want to thank Brad Green, Igor Minar, Miško Hevery, Brian
Ford, and Matias Niemela for their friendship and for setting such a great example of
what it looks like to build awesome things. I would also like to thank Jeff Whelpley, Bran-
don Tilley, Omar Gonzalez, Martin Gontovnikas, Joe Eames, and about a hundred
other people for their feedback. They helped me craft Angello and the book that’s built
around it. I would also like to thank Geoff Goodman for his contributions on the awe-
some drag-and-drop example. And I owe Jonathan Garvey a huge debt of gratitude for
helping me get this book over the finish line. You are holding this book right now
because of his help and tough love. Special thanks to Martin for penning the foreword
to the book, and to Brian for his contributions at the beginning of the project.

 I especially want to thank my saint of an editor, Cynthia Kane, for her infinite
patience, for helping me to become a better writer, and for sometimes nudging me to
do things I didn’t want to do—like write! Thanks also to everyone else on the Man-
ning team who worked with me during the development and production of the book.

 Many people read early drafts of the manuscript and sent in corrections and com-
ments as it was being written, including numerous MEAP (Manning Early Access Pro-
gram) readers, as well as the following reviewers: Ahmed Khattab, Brian Cooksey,
Chad Davis, Daniel Bretoi, Fernando Monteiro Kobayashi, Gregor Zurowski, Jeelani
Shaik, Jeff Condal, Jeff Cunningham, Richard Scott-Robinson, Robert Casto, Roberto
Rojas, and William E. Wheeler. Thanks to all, with a special acknowledgment to tech-
nical proofreader Richard Scott-Robinson, who checked the code and read the manu-
script one last time, shortly before it went into production.

Licensed to Mark Watson <nordickan@gmail.com>

xvii

about this book
The goal of this book is to equip you, the reader, with an arsenal of practical tech-
niques that you can use in the real world—to help you build a non-trivial web applica-
tion from the ground up, and offer commentary on the most pertinent pieces. The
sample application presented in the book, Angello, comes with a fully functional back
end in either Firebase or Node.js with a few extra bonuses such as social logins with
Auth0.

 We had to make some hard decisions about what we were going to cover in the
book and, more importantly, what we would not cover. It would have been easy to go
down a rabbit trail as we tried to explain AngularJS on a molecular level, but the actual
application of this knowledge is relegated to edge cases at best. We’ll be the first to
admit that we don’t cover everything about AngularJS—that would make for a book
three times the size of what is currently in your possession.

 We make some assumptions about the readers of this book so they’ll get the most
out of the material. We assume a fundamental knowledge of HTML, CSS, and
JavaScript. We don’t call out the CSS or HTML in the application unless it pertains spe-
cifically to what we’re doing in AngularJS.

Roadmap
We’ve divided the book into two main sections: a gentle introduction to AngularJS and
then an in-depth commentary on the pieces of AngularJS, as we start to build out
Angello.

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOKxviii

 Part 1, “Get acquainted with AngularJS,” introduces the high-level pieces of Angu-
larJS and talks about what each piece does and how they fit together (chapter 1). To
reiterate these concepts, we build out our first AngularJS application, a simplified ver-
sion of the main sample application, in chapter 2.

 Part 2, “Make something with AngularJS,” gets into more advanced and specific top-
ics, such as server-side communication, directives, animations, routing, and forms and
validations. In each chapter, we look at the underpinnings of the topic and then see
how it appears in the context of a real application. We end each chapter with a discus-
sion on testing and best practices. Chapter 3 discusses how views and controllers work
together in AngularJS to control what the user sees, as well as capture user interactions
and convey those events for processing. Chapter 4 expands on controllers by introduc-
ing services and then showing how to communicate with a remote server using the
$http service. Chapter 5 introduces directives and shows how directives turn layouts
into components while providing complex functionality. We’ll kick our layouts up a
notch in chapter 6 by adding in animations using ngAnimate. Chapter 7 digs into using
routes in AngularJS to deep-link to specific states in the application, preloading specific
data using resolve, and passing variables from route to route using $routeParams.
Chapter 8 finishes off with a discussion on how to use form validation to enhance the
user experience while providing safeguards around the data being entered.

 There are also four appendixes about setting up Karma, setting up a Node.js
server, setting up a Firebase server, and running the sample app.

Source code conventions and downloads
The source code in the book, whether in code listings or snippets, is in a fixed-width
font like this, which sets it off from the surrounding text. In some listings, the code
is annotated to point out key concepts, and numbered bullets are sometimes used in
the text to provide additional information about the code. The code is formatted so
that it fits within the available page space in the book by adding line breaks and using
indentation carefully.

 All of the source code for the examples in the book can be found at this Github
link: https://github.com/angularjs-in-action. The sample application for the book is
at this repository: https://github.com/angularjs-in-action/angello. The simplified
version of the application is at this repository: https://github.com/angularjs-in-
action/angello-lite.

 You can also find detailed instructions on how to get the applications up and run-
ning in the readme file. Visit the repo often for updates and bug fixes to the project as
well as bonus repositories.

 The source code is also available for download from the publisher’s website at
www.manning.com/AngularJSinAction.

NOTE At the time of this writing, Angular 2 is in an alpha release and not
yet ready for writing non-trivial applications. With that said, we’ll be pub-
lishing an Angular 2 version of Angello as soon as it makes sense.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angularjs-in-action
https://github.com/angularjs-in-action/angello
https://github.com/angularjs-in-action/angello-lite
https://github.com/angularjs-in-action/angello-lite
http://www.manning.com/AngularJS

ABOUT THIS BOOK xix

Software requirements
To run the sample applications, you’ll need to have Node.js installed. You can find the
installation instructions for Node.js at this link: https://nodejs.org/. To run the tests,
it’s also necessary to have Karma installed to execute the unit tests. You can find instruc-
tions on how to install Karma at their website: http://karma-runner.github.io/0.12/
index.html.

 We also recommend installing the serve npm module, a lightweight web server to
display your web applications in the browser: https://www.npmjs.com/package/serve.

Resources
■ The most valuable resources for the book are the repositories you will find at

the link https://github.com/angularjs-in-action.
■ You can also see a live version of Angello at the companion site for the book at

this link: http://www.angelloinaction.com/.
■ And you’ll find a ton of helpful material at the blog “One Hungry Mind” here:

http://onehungrymind.com/. Additional content relating to Angello, based
on reader feedback, will be posted.

Author Online
Purchase of AngularJS in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and other users. To access the forum and
subscribe to it, point your web browser to www.manning.com/AngularJSinAction. This
Author Online (AO) page provides information on how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog among individual readers and between readers and authors can take place. It’s
not a commitment to any specific amount of participation on the part of the authors,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the authors some challenging questions, lest their interest stray!

 The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

https://nodejs.org/
http://karma-runner.github.io/0.12/index.html
http://karma-runner.github.io/0.12/index.html
https://www.npmjs.com/package/serve
https://github.com/angularjs-in-action
http://www.angelloinaction.com/
http://onehungrymind.com/
www.manning.com/AngularJSinAction
http://www.allitebooks.org

xx

about the authors
LUKAS RUEBBELKE started programming in 2001
when he discovered Flash. He learned to program in
ActionScript 1.0, which is a prototypical language.
Almost fifteen years later, he has come full circle as he
spends almost all of his time writing JavaScript.

 Lukas lives in Phoenix, Arizona, where he is passion-
ately dedicated to the community and cohosts one of
the largest meetups in the valley. He’s also an avid blog-
ger at http://onehungrymind.com/ and has spoken at
many conferences, including ng-conf, ng-europe, and

ng-vegas. He is completely sold on the belief that programming changes lives, and this
book is one of the artifacts of his deeply held conviction.

BRIAN FORD is a developer working on the Angular core team at Google. Self-
described as often “the most millennial person in the room,” Brian started commit-
ting to Angular core while studying Computer Science Engineering at the University
of Michigan.

Licensed to Mark Watson <nordickan@gmail.com>

http://onehungrymind.com/

xxi

about the cover illustration
The figure on the cover of AngularJS in Action is captioned “Man from Vukovar, Croa-
tia.” The illustration is taken from a reproduction of an album of traditional Croatian
costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Eth-
nographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a
helpful librarian at the museum, itself situated in the Roman core of the medieval
center of the town: the ruins of Emperor Diocletian’s retirement palace from around
AD 304. The book includes finely colored illustrations of figures from different
regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Vukovar is a mid-sized town in eastern Croatia. It has the country’s largest river
port, located at the confluence of the Vuka River with the Danube. Vukovar has always
been a thriving community due to its fortunate location, and it has served as a gateway
to Austria and the west for centuries. The figure on the cover is dressed in his Sunday
finery—blue woolen pants, a black woolen vest over a while linen shirt, topped by a
voluminous black cloak—all richly adorned with the intricate and colorful embroi-
dery that is typical for this region of Croatia.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THE COVER ILLUSTRATIONxxii

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Licensed to Mark Watson <nordickan@gmail.com>

Part 1

Get acquainted
 with AngularJS

Welcome to the world of AngularJS! Part 1 of this book provides a high-
level overview of AngularAS, as well as a gentle introduction to AngularJS
through building a simple—yet useful—web application.

 In chapter 1 we introduce all the major pieces of AngularJS and discuss what
they do and how they fit together. We also introduce a simplified version of the
book’s sample application and build it from the ground up. In chapter 2 we dis-
cuss how to assemble your AngularJS applications using best practices to make
sure that your applications are maintainable and extensible.

 By the end of part 1, you should have a good grasp of the major pieces of
AngularJS and be conversational in how they all work together. If you work
through how to build the sample application, you’ll also have a good foundation
for beginning your AngularJS journey.

 AngularJS is a very dynamic and quickly evolving framework, so please refer-
ence the repository for the latest code samples as well as bonus content: https://
github.com/angularjs-in-action. You can also find the code for the first project
here: https://github.com/angularjs-in-action/angello-lite.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angularjs-in-action
https://github.com/angularjs-in-action
https://github.com/angularjs-in-action/angello-lite

Licensed to Mark Watson <nordickan@gmail.com>

3

Hello AngularJS

There was a time many internet years ago when any kind of logic within a web page
had to be sent to the server for processing and then re-rendered as an entirely new
web page. This “call and refresh” arrangement made for a disjointed user experi-
ence, which was only exacerbated when network latency was especially high.

 The entire paradigm was upended with the introduction of XMLHttpRequest
and the ability to make asynchronous calls to the server without actually having to
refresh the page. This made for a much more coherent user experience because
the user could perform a task that required a remote call and still interact with the
application as the call was being made and processed. This is where the first wave of
JavaScript frameworks landed and managed to prove that working with JavaScript
could be done in a mostly sane way and no one was going to lose life or limb.

This chapter covers
■ Why you need AngularJS
■ How AngularJS makes your life easier
■ Understanding AngularJS from a high level
■ Building your first AngularJS application

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Hello AngularJS

 Most people would agree that jQuery won that round, partially because jQuery
did such a good job of abstracting away all of the insanity surrounding browser varia-
tions, and allowed developers to use a single, simplified API to build websites. The
next frontier was to make websites behave and operate as if they were actual applica-
tions; this ushered in an entirely new set of challenges. For instance, jQuery has done
an exceptional job of providing tools to manipulate the DOM, but it offers no real
guidance on how to organize your code into an application structure. We’ve all heard
horror stories of how a jQuery “application” ballooned out into a monstrosity that
could barely be maintained, much less extended.

 This desperate need to write large, maintainable JavaScript applications has given
birth to a JavaScript framework renaissance. In the last couple of years, a slew of frame-
works has burst onto the scene, with many of them quietly fading off into oblivion. But
a few frameworks have proven themselves to be solid options for writing large-scale web
applications that can be maintained, extended, and tested. One of the most popular, if
not the most popular, frameworks to emerge is AngularJS from Google.

 AngularJS is an open-source web application framework that offers quite a bit to a
developer through a stable code base, vibrant community, and rich ecosystem. Let’s
identify some of the high-level advantages of using AngularJS before we get into some
of the more technical details of the framework.

1.1 Advantages of using AngularJS
In this section we’ll take a quick look at what makes AngularJS so great.

AN INTUITIVE FRAMEWORK MAKES IT EASY TO ORGANIZE YOUR CODE

As previously stated, there’s a pressing need to be able to organize your code in a way
that promotes maintenance, collaboration, readability, and extension. AngularJS is
constructed in such a way that code has an intuitive place to live, with clear paths to
refactor code when it has reached a tipping point. Do you have code that needs to
provide information on how a user interface is supposed to look and behave? There’s
a place for that. Do you have code that needs to contain a portion of your domain
model and be available for the rest of the application to use? There’s a place for that.
Do you need to programmatically perform DOM manipulation? There’s even a sane
place for that as well!

TESTABLE CODE MAKES IT EASIER TO SLEEP AT NIGHT

Testable code isn’t going to win any awards for being the most exciting feature of a
framework, but it’s the unsung hero of any mature framework. AngularJS was written
from the ground up to be testable, and likely this feature, along with the design deci-
sions that came from this commitment, has played a huge role in the adoption of
AngularJS. How do you actually know if your application works? The fact that it hasn’t
broken yet is a flimsy answer, as it’s only a matter of time before that black swan shows
up at your door.

 You can never entirely mitigate against bugs, but you can truly eliminate certain pos-
sibilities through rigorous testing. A framework that is conducive to writing testable

Licensed to Mark Watson <nordickan@gmail.com>

5Advantages of using AngularJS

code is a framework that you’re going to write tests in. And when you write tests, you’ll
spend less time looking over your shoulder wondering when everything is going to come
crashing down. You’ll be able to go to bed at night and not have to worry about a 2 a.m.
call from DevOps that something has gone awry and you need to fix it immediately.

TWO-WAY DATA BINDING SAVES YOU HUNDREDS OF LINES OF CODE

Two-way data binding is the supermodel of the feature set. Hundreds of years ago, when
we were writing jQuery applications, you would’ve had to use jQuery to query the DOM
to find a specific element, listen for an event, parse the value of the DOM element, and
then perform some action on that value. In AngularJS, you simply have to define a
JavaScript property and then bind to it in our HTML, and you’re done. There are obvi-
ously some variations to this scenario, but it’s not uncommon to hear of jQuery appli-
cations being rewritten and thousands of lines of JavaScript just disappearing.

 By cutting out all of the boilerplate code that was previously required to keep our
HTML and JavaScript in sync, you’re able to accomplish more work in less time with
significantly less effort. This gives you more time to do more of what you love.

TEMPLATES THAT ARE HTML MEANS YOU ALREADY KNOW HOW TO WRITE THEM

HTML is an inherently limited language that was designed to facilitate layout and
structure, not complex interactions. In other words, it wasn’t created to live in the
world of the modern web application as we know it now. Some frameworks try to over-
come this limitation by abstracting out HTML entirely into strings or some preproces-
sor dialect. The problem is that HTML is actually good as a declarative mechanism and
there’s this annoying reality about HTML—pretty much everyone knows it.

 If you’re working on a large team, there’s a good chance that you’re going to have
a UI/UX contributor who’ll be responsible for generating your HTML templates. It’s
important to leverage a workflow and skill set that they’re already familiar with, and
AngularJS makes this a breeze. AngularJS embraces HTML while giving developers the
ability to overcome its limitations by extending it to do whatever it is we need.

DATA STRUCTURES THAT ARE JUST JAVASCRIPT MAKE INTEGRATION REALLY EASY

On the flip side, being able to work with Plain Old JavaScript Objects (POJOs) makes
integrating with other technologies incredibly easy. By consuming and emitting
JavaScript without having to wrap and unwrap it in proprietary framework mecha-
nisms, you’re able to consume data from other sources much more efficiently.

 You can render JSON models from the server and instantly consume them in Angu-
larJS when the application bootstraps. You can also take the model that you’re work-
ing with and pass it off to another technology—such as an application server—without
having to transform it at all.

 There are some pretty interesting features of AngularJS that are fairly academic in
nature; we’ve tried to outline a few major points of how AngularJS makes our lives eas-
ier in a very practical sense. At the end of the day, having a framework that allows us to
write stable code quickly and efficiently so that we have more time and energy to do
other meaningful things is a tool that we want to use!

Licensed to Mark Watson <nordickan@gmail.com>

6 CHAPTER 1 Hello AngularJS

1.2 The AngularJS big picture
We’ll introduce AngularJS from a 10,000-foot view and lay the foundation for what
we’ll reinforce throughout the entire book (see table 1.1). If you reach the end of the
book and you have a solid grasp of figure 1.1 and how all the pieces fit together, we’ll
have succeeded as authors. If you’ve absorbed these concepts in such a way that these
pieces form a vocabulary in which you start to articulate and express ways to solve your
own problems, then we’ll have succeeded in a spectacular way!

Although we’ll get into each of these AngularJS mechanisms in considerable depth in
the following chapters, we wanted to introduce you to the major players at the outset
so you would have a foundation to build on.

Table 1.1 AngularJS at a glance

Component Purpose

Module Modules serve as containers to help you organize code within your AngularJS application.
Modules can contain sub-modules, making it easy to compose functionality as needed.

Config The config block of an AngularJS application allows for configuration to be applied before
the application actually runs. This is useful for setting up routes, dynamically configuring
services, and so on.

Routes Routes allow you to define ways to navigate to specific states within your application. They
also allow you to define configuration options for each specific route, such as which tem-
plate and controller to use.

Views The view in AngularJS is what exists after AngularJS has compiled and rendered the DOM
with all of the JavaScript wiring in place.

$scope $scope is essentially the glue between the view and controller within an AngularJS appli-
cation. With the introduction of the controller-as syntax, the need to explicitly use $scope
has been greatly reduced.

Controller The controller is responsible for defining methods and properties that the view can bind to
and interact with. As a matter of best practice, controllers should be lightweight and only
focus on the view they’re controlling.

Directive A directive is an extension of a view in AngularJS in that it allows you to create custom,
reusable elements that encapsulate behavior. You can think of directives as components or
decorators for your HTML. Directives are used to extend views and to make these exten-
sions available for use in more than one place.

Service Services provide common functionality to an AngularJS application. For instance, if you
have data that more than one controller needs, you would promote that data to a service
and then make it available to the controllers via the service. Services extend controllers
and make them more globally accessible.

Licensed to Mark Watson <nordickan@gmail.com>

7Build your first AngularJS application

1.3 Build your first AngularJS application
Now that you have the AngularJS game pieces on the table, how do you actually use
them to put together something useful? This is the perfect time to build something
easy with AngularJS. You’ll get your feet wet by building a scaled-down version of the
sample application for the book; and, in the process, you’ll see how these AngularJS
pieces fit together without getting too advanced. True to the title of this book, you’ll
learn AngularJS by seeing it in action and assembling examples that tie into a larger,
fully functional application.

 The sample application for the book is called Angello; it’s a Trello clone that’s
used to manage user stories. What do we mean by a Trello clone? Well, as some of you
may know, Trello is a project management tool that is web-based and founded on a
technique that was originally popularized by the Japanese car manufacturer Toyota in
the 1980s. Units of work in a project are represented by items—stories, if you will—
that can be moved to different positions on a board corresponding to each story’s
state of progress. The board itself represents the project. We’ll properly introduce
Angello in the next chapter, but you can see the main screen of Angello in figure 1.2
and the lite version of Angello in figure 1.3. The completed source code for Angello
Lite can be found at https://github.com/angularjs-in-action/angello-lite. Download
the latest version to your local machine by following the instructions in the
README.md on that page.

 Over the course of the book, we’ll be building out Angello, which you can see in
figure 1.2. In the left portion of the screen, the items of work are represented by the
white boxes named First Story and Second Story, and the flow of progress is repre-
sented by the columns To Do, In Progress, Code Review, QA Review, and Verified,
moving from left to right across the screen. As work progresses, each box is moved by

Module
<HTML NG-APP="MODULENAME">

Config

Routes

View

Directive

Controller

Service

$scope

Figure 1.1 The AngularJS big picture

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

https://github.com/angularjs-in-action/angello-lite
http://www.allitebooks.org

8 CHAPTER 1 Hello AngularJS

drag-and-drop to represent its state of completion within the project. The details of
each work item, each story, can be viewed on the right of the screen. As you may have
guessed, each story in Angello represents a unit of computer software that can pass
from inception to completion as the project unfolds.

 We’ll start out by building a simplified version, which you can see in figure 1.3.

Figure 1.2 Angello

Figure 1.3 Angello Lite

Licensed to Mark Watson <nordickan@gmail.com>

9Build your first AngularJS application

ANGELLO LITE Because you’re pulling files from a CDN, you’ll need to run
Angello Lite from a web server. There are a few ways to do this, but one of the
easiest ways is to use the npm package serve.

The steps for installing Angello Lite are as follows:

■ Install Node.js. You can find all of the information to do that at http://
nodejs.org/.

■ Install the serve package by running npm install -g serve from the command
line.

■ Download Angello Lite from GitHub, using the URL given above, and place it
on your local machine in a directory named angello-lite.

■ Navigate to the angello-lite directory from the command line and run serve.
■ Go to http://localhost:3000 in your browser to see the application.

Angello Lite is a simplified version of the Angello app that we’ll develop from chap-
ter 2 onwards. All the data you add here will be stored in memory alone and not
persisted, so when you reload the page, it will be lost. To display the details of an
existing story, click the box showing its title and description on the left of the screen.
Its details will appear on the right. Use these text boxes and drop-down lists to alter
or augment the story and these updates will remain for as long as the page is loaded
in the browser. To create a new story, click the plus sign on the left. A new title and
description box will appear. Place a new title and description, along with other data,
into the text boxes on the right and see how the title and description in the sum-
mary box change in real time as you type.

 As a high-level overview, figure 1.4 shows the pieces that we’ll be building out as
they relate to the big picture. We’ll start by constructing the module and then build

Module
<HTML NG-APP="ANGELLO">

Config

Routes

index.html

Story

MainCtrl

AngelloModel

$scope

Figure 1.4 Angello and the big picture

Licensed to Mark Watson <nordickan@gmail.com>

http://nodejs.org/
http://nodejs.org/

10 CHAPTER 1 Hello AngularJS

out the view and controller via index.html and MainCtrl, respectively. From there
we’ll introduce services by creating AngelloModel and a directive by creating the
story directive.

 We won’t go through Angello Lite line by line, but we’ll sufficiently cover the high-
lights so that you’ll be conversant in what’s happening. By the time you finish this
chapter, you’ll at least be able to fake your way through an AngularJS dinner party!

 The thing to keep in mind when building out Angello Lite is that it is a master-
detail interface, which shows up in almost every single web application in one form or
another. Understanding how to put together a master-detail interface is one of the
best foundations for learning how to build web applications in general.

1.3.1 The module

Modules in AngularJS serve as containers to help you organize your application into
logical units. Modules tell AngularJS how an application is configured and how it’s
supposed to behave. You can see how it fits into the big picture in figure 1.5.

 In our code, we’ll create a module called Angello and assign it to the myModule
variable:

// app.js
var myModule = angular.module(’Angello’, []);

The second parameter is an array that accepts other sub-modules to provide addi-
tional functionality, if necessary. It’s considered best practice to divide features into
sub-modules and then inject them into the main application module. This makes it
much easier to move a module around as well as test it.

Module
<HTML NG-APP="MODULENAME">

Config

Routes

View

Directive

Controller

Service

$scope

Figure 1.5 The module

Licensed to Mark Watson <nordickan@gmail.com>

11Build your first AngularJS application

You can now define the necessary components for Angello Lite on the myModule prop-
erty. For instance, here we define two services called AngelloHelper and Angello-
Model, as well as a controller called MainCtrl and a directive called story:

// app.js
var myModule = angular.module(’Angello’, []);
myModule.factory(’AngelloHelper’, function() { });
myModule.service(’AngelloModel’, function() { });
myModule.controller(’MainCtrl’, function() { });
myModule.directive(’story’, function() { });

With the Angello module defined and all of the necessary pieces stubbed out, you can
now bootstrap your AngularJS application, using Angello as a starting point. The easi-
est way to bootstrap an AngularJS application is to add the ng-app attribute to the
HTML element where you want the AngularJS application to reside. In our case, we
want our application to use the entire page, so we’ll add ng-app="Angello" to the
html tag. This will bootstrap AngularJS with the Angello module:

<!-- index.html -->
<html ng-app="Angello">

From here, we’ll flesh out the remaining pieces with commentary on how they work.

1.3.2 Views and controllers

One of the most critical concepts to understand when learning AngularJS is the sepa-
ration of state from the DOM. AngularJS is officially a Model-View-Whatever (MVW)
framework—“Whatever” being whatever pattern helps you be most productive. For
the sake of conversation, let’s assume that AngularJS follows the Model-View-View-
Model (MVVM) design pattern, as established in figure 1.6.

Module
<HTML NG-APP="MODULENAME">

Config

Routes

View

Directive

Controller

Service

$scope

Figure 1.6 Views and controllers

Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 Hello AngularJS

We’ll get to the Model portion in the services section; but for now let’s focus on the
View and ViewModel parts of this pattern. The View in the MVVM pattern is the view in
AngularJS (naturally), and the controller plays the part of the ViewModel, as you can
see in figure 1.7.

 The controller is responsible for providing state for the view to bind to and com-
mands that the view can issue back to the controller to do units of work. This frees up
the view from having to maintain state (since it only has to display whatever state the
controller is in) and it frees up the view from having to do any work (as the view always
defers to the controller).

 To illustrate this in action, we’ll first instantiate the MainCtrl by adding it to the
DOM with the ng-controller directive. We use the controller-as syntax by declaring the
controller to be MainCtrl as main, which means that we’ll reference the MainCtrl as
main within the HTML file going forward:

<!--index.html-->
<div ng-controller="MainCtrl as main">
</div>

Making a property available for binding within the view is just a matter of declaring it
on the controller. For instance, you could declare a property on MainCtrl such as
this.title and then immediately bind to it in the view using double curly braces like
this: <h1>{{main.title}}</h1>. Any changes to the title property would instantly
be reflected in the DOM. Binding to a simple string property is fairly simplistic, so let’s
do something more in-depth and bind to an actual collection. We’ll create an array
containing multiple story objects and define it as stories on MainCtrl:

View
AngularJS compiled HTML

Commands: The View delegates
responsibility by calling methods
on the ViewModel. The ViewModel
can also delegate responsibility
by calling methods on the Model.

Data bindings: The View is bound to the
ViewModel so that when a property is
changed in the ViewModel, it is instantly
reflected in the View. Data bindings can
work both ways in special cases like HTML
forms, where a user can manipulate a
property directly.

ViewModel
AngularJS controllers

Model
AngularJS models

Model-View-ViewModel (MVVM)

Change notification: The Model notifies
the ViewModel that the domain model
has changed, and it should update
itself accordingly.

Figure 1.7 Model-View-ViewModel

Licensed to Mark Watson <nordickan@gmail.com>

13Build your first AngularJS application

// app.js
myModule.controller(’MainCtrl’, function() {

var main = this;

//...
main.stories = [

{
title: ’First story’,
description: ’Our first story.’,
criteria: ’Criteria pending.’,
status: ’To Do’,
type: ’Feature’,
reporter: ’Lukas Ruebbelke’,
assignee: ’Brian Ford’

},
{

title: ’Second story’,
description: ’Do something.’,
criteria: ’Criteria pending.’,
status: ’Back Log’,
type: ’Feature’,
reporter: ’Lukas Ruebbelke’,
assignee: ’Brian Ford’

},
{

title: ’Another story’,
description: ’Just one more.’,
criteria: ’Criteria pending.’,
status: ’Code Review’,
type: ’Enhancement’,
reporter: ’Lukas Ruebbelke’,
assignee: ’Brian Ford’

}
];
//...

});

THIS Per common convention, we like to store a reference to the top-level
this object in case we need it later; this has a habit of changing context
based on function level scope. We also like to name the reference to this the
same name we declare the controller-as in the view—as in main for MainCtrl
as main. This makes it easier to read and connect the dots as you jump
between the HTML and the JavaScript.

We’ll display the main.stories collection as a list of items that comprise the master por-
tion of the master-detail view. The first thing we need to do is to repeat over the main
.stories array and create an individual display element for each story item in the array.
The ng-repeat directive accomplishes this by going through every item in the main
.stories collection and creating a copy of the HTML element it was declared on and all
of its child elements. So by declaring ng-repeat="story in main.stories" on our call-
out div, we’re essentially telling AngularJS to loop through main.stories and reference
each individual item as story—which we can bind to within the child elements:

Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 1 Hello AngularJS

<!-- index.html -->
<div ng-controller="MainCtrl as main">

<div class="col-md-4">
<h2>Stories</h2>
<div class="callout"

ng-repeat="story in main.stories"
ng-click="main.setCurrentStory(story)">

<h4>{{story.title}}</h4>
<p>{{story.description}}</p>

</div>
</div>

</div>

Each story object has a title and description property, which we can bind to via
{{story.title}} and {{story.description}}. AngularJS is really good at providing
context within each template instance, so we don’t have to worry about the story
instance getting overwritten with each iteration. This is important when we want to
start doing things like ng-click="main.setCurrentStory(story)", in which the spe-
cific instance of story matters a great deal.

 This is a perfect segue for moving beyond binding to properties and learning how
to bind to expressions. You can also make methods available to the view by declaring
them on the controller. For instance, we’ll define a method called main.createStory
that pushes a new story object into the main.stories array:

// app.js
myModule.controller(’MainCtrl’, function() {

var main = this;

//...
main.createStory = function() {

main.stories.push({
title:’New Story’,
description:’Description pending.’,
criteria:’Criteria pending.’,
status:’Back Log’,
type:’Feature’,
reporter:’Pending’,
assignee:’Pending’

});
};
//...

});

Now that createStory is defined on the MainCtrl, it’s available to be called from the view.
We can then call main.createStory from the view by using ng-click on an anchor tag:

<!-- index.html -->
<div ng-controller="MainCtrl as main">

<div class="col-md-4">
<h2>Stories</h2>
<div class="callout"

ng-repeat="story in main.stories"
ng-click="main.setCurrentStory(story)">

Licensed to Mark Watson <nordickan@gmail.com>

15Build your first AngularJS application

<h4>{{story.title}}</h4>
<p>{{story.description}}</p>

</div>

</div>
</div>

Using a ViewModel inverts the application flow that traditionally existed in jQuery-
style applications. In jQuery, you would’ve queried the DOM and attached an event lis-
tener. When that event fired, you would try to interpret the event and parse the DOM
for state so that you could perform some imperative operation. This forces a tight cou-
pling between the HTML and the JavaScript that drives it. By introducing a View-
Model, you’re able to break this relationship. The controller no longer is responsible
for listening to the view, but rather the view is responsible for issuing specific com-
mands to the controller that it operates on.

MVVM A full-fledged discussion on the MVVM pattern is outside the scope of this
book, but we recommend reading up on it here: http://en.wikipedia.org/wiki/
Model_View_ViewModel. Having a clear separation between declarative markup
and imperative logic is conducive to better, more stable code that is easier to test.

1.3.3 Services

If controllers should be lightweight and specific to the view for which they’re responsi-
ble, what happens if two controllers need to share the same information? Controllers
definitely shouldn’t know about each other. So what happens if some piece of infor-
mation starts in one controller and you realize that it needs to be available in another
controller? The answer to these questions is an AngularJS service. You promote
(extract) the common data from the controller and make it available to the entire
application by exposing it via a service. As you can see in figure 1.8, this is the Model
portion of the Model-View-ViewModel pattern.

Module
<HTML NG-APP="MODULENAME">

Config

Routes

View

Directive

Controller

Service

$scope

Figure 1.8 Services

Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel

16 CHAPTER 1 Hello AngularJS

In the previous section, we populated our stories collection directly in the MainCtrl,
but now we’ll promote that collection to the AngelloModel service and make it avail-
able to the MainCtrl. We’ll declare a stories property in AngelloModel and then
populate it with the same collection we used in MainCtrl:

// app.js
myModule.service(’AngelloModel’, function() {

var service = this,
stories = [

{
title: ’First story’,
description: ’Our first story.’,
criteria: ’Criteria pending.’,
status: ’To Do’,
type: ’Feature’,
reporter: ’Lukas Ruebbelke’,
assignee: ’Brian Ford’

},
//...

];

service.getStories = function() {
return stories;

};
});

From here, we’ll make AngelloModel available to MainCtrl by passing it into the
constructor function as a parameter. AngularJS uses dependency injection (DI) to pro-
vide dependencies where they’re needed. Dependency injection is fancier in name
than it is in implementation. AngularJS can detect that we need an instance of
AngelloModel, so it creates an instance for use and injects it into MainCtrl, thus ful-
filling that dependency:

// app.js
myModule.controller(’MainCtrl’, function(AngelloModel) {

var main = this;

//...
main.stories = AngelloModel.getStories();
//...

});

We can now populate main.stories by assigning to it the return value of Angello-
Model.getStories(). The beauty of this arrangement is that MainCtrl is completely
oblivious to where the stories data is coming from or how we got it. We’ll get into this
in much greater depth in the following chapters, but we could’ve just as easily made a
remote server call and populated the data that way.

 One more quick example, and then we’ll move on to directives. AngularJS services
aren’t just for storing common state, but also for sharing common functionality, such
as utility functions. For example, we needed a very general buildIndex method to
take an array and create an index based on a property parameter. That way we

Licensed to Mark Watson <nordickan@gmail.com>

17Build your first AngularJS application

wouldn’t have to loop over the array every single time we needed to find an object in
it. This type of a general function could be used in more than one place, so we put it
in an AngelloHelper service:

// app.js
myModule.factory(’AngelloHelper’, function() {

var buildIndex = function(source, property) {
var tempArray = [];

for(var i = 0, len = source.length; i < len; ++i) {
tempArray[source[i][property]] = source[i];

}

return tempArray;
};

return {
buildIndex: buildIndex

};
});

This kind of finely grained code is much easier to maintain and test because it is in iso-
lation and doesn’t depend on some other runtime context.

1.3.4 Directives

Directives are one of the most powerful and exciting things in AngularJS. In fact, you’ve
already seen some directives in action in the previous sections. For instance, when you
attach ng-click to an element, you’re using a built-in AngularJS directive to augment
the behavior of that specific element. When you add ng-app or ng-controller to the
page, you’re using AngularJS directives to provide new behavior to an otherwise static
page. In figure 1.9, you can see how they fit into the big picture.

Module
<HTML NG-APP="MODULENAME">

Config

Routes

View

Directive

Controller

Service

$scope

Figure 1.9 Directives

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 1 Hello AngularJS

We’ll introduce a simple directive to Angello Lite to get our feet wet. We’ll create a
story directive that represents a story in the page. Directives are defined similarly to
controllers and services in that they take a name and a function defining their behavior:

// app.js
myModule.directive(’story’, function(){

return {
scope: true,
replace: true,
template:’<div><h4>{{story.title}}</h4>

 ➥ <p>{{story.description}}</p></div>’
}

});

The function returns a directive definition object (DDO) that defines how the directive is
supposed to be configured. We’re telling AngularJS that each instance of this directive
gets a new scope and that the template we defined replaces the element the directive
was defined on. The template markup should be familiar, as it’s the same code we
used previously to display the title and description of the current story item.

 Now that we’ve defined the directive, we update the HTML in our page to use a
story tag and not a div tag. A story tag? Is there even such a thing? There is now!

<div ng-controller="MainCtrl as main">
<div class="col-md-4">

<h2>Stories</h2>
<story class="callout"

ng-repeat="story in main.stories"
ng-click="main.setCurrentStory(story)">

</story>
<!-- ... -->

</div>
</div>

Even though this is a small example of how to extend HTML to do new things by using
directives, we want to start your wheels turning on what kind of applications you
would write if you could create HTML tags and attributes to do whatever you wanted.

1.4 Summary
This concludes our tour of Angello Lite. Now that you’ve seen most of the major play-
ers from figure 1.1 in action, we’ll spend the rest of the book digging into these con-
cepts a lot deeper and in a more useful context as we start to work with Angello.

 Let’s do a quick review before we finish this chapter and head into the next one:

■ AngularJS was created as a framework designed to make it easier to write and
organize large JavaScript applications.

■ AngularJS was written from the ground up to be testable; as a result, it’s much
easier to write clean, stable code that can scale.

Licensed to Mark Watson <nordickan@gmail.com>

19Summary

■ Data binding saves you from writing literally thousands—if not tens of thou-
sands—of lines of code because you no longer have to write tedious boilerplate
around DOM events.

■ Because AngularJS templates are just HTML, it’s easy to leverage existing skill
sets to build out UIs in AngularJS.

■ Plain Old JavaScript Objects make integration with other systems much easier.
■ AngularJS modules are containers for organizing your application.
■ Views in AngularJS are compiled and rendered HTML with a controller

attached.
■ A controller is the ViewModel for the view and is responsible for providing data

and methods for the view to bind to.
■ Services encapsulate and provide common functionality in an AngularJS

application.
■ A directive is a custom component or attribute that extends HTML to do new

and powerful things.

Licensed to Mark Watson <nordickan@gmail.com>

20

Structuring your
 AngularJS application

2.1 Hello Angello
In the previous chapter, using a limited example, you saw how the major pieces of
AngularJS fit together to build web applications. Though Angello Lite is a great
place to get acquainted with AngularJS, it’s our desire to show you how a non-trivial
AngularJS application fits together in the real world. To that end, we’d like to intro-
duce you to the official sample application of the book—Angello.

This chapter covers
■ Introduction to Angello
■ How to structure an AngularJS project so it can

scale
■ Introducing basic routes and navigation
■ Building the basic structure for starting a web

application
■ Some basic best practices for developing

AngularJS applications

Licensed to Mark Watson <nordickan@gmail.com>

21Hello Angello

WHY ANGELLO? One of the first really impressive web applications that we
remember seeing was Trello, and it has always had a special place in our
hearts. Just as a reminder, Trello is a web application that allows you to orga-
nize lists within lists and claims to have “everything you need to organize proj-
ects of any size.” That’s why we wanted to use Trello as the inspiration for
building out an AngularJS version of Trello for the book, for organizing cod-
ing projects. That’s also why it’s fondly called Angello.

The source code for Angello can be found on GitHub at the repository https://
github.com/angularjs-in-action/angello, and you can also check out a live version of
Angello at http://www.angelloinaction.com/.

 A lot of thought has gone into the process of adequately covering server-side com-
munication while staying focused on AngularJS and minimizing the cognitive over-
head that comes with spinning up a development server. At the time of this writing,
there are two fairly painless options for running a back-end server.

 The first and easiest option is to use Firebase as the back end. This can be set up
and integrated in just a few minutes from a totally free account. The second option is
to use the Node.js API that’s at the AngularJS in Action GitHub site. We recommend try-
ing both because they provide equally valuable learning opportunities. Check the
appendixes for detailed instructions on how to set up the back end of your choosing.

 There are four main sections to Angello: the login screen, the home or storyboard
screen, the user screen, and the dashboard screen.

 The login screen (see figure 2.1) is where users authenticate before they can navigate
anywhere else in the application. This will be the splash screen if you’re a logged-out
o
r

i
f

y
o
u
’
r
e

a

n
e
w

Figure 2.1 The Angello login screen

Licensed to Mark Watson <nordickan@gmail.com>

http://www.angelloinaction.com/
https://github.com/angularjs-in-action/angello
https://github.com/angularjs-in-action/angello

22 CHAPTER 2 Structuring your AngularJS application

user. To use Angello, you must create a username. If you haven’t already, fill out the Log
In form and click Sign Up.

 The home screen (see figure 2.2) is where most of the interaction within Angello
takes place. Users can create and manage user stories, visualizing them as cards divided
into swimlanes. You work on these user stories by creating software that will go through
a process of testing and validation and final acceptance; the cards representing these
units of work will be positioned on the screen in a way that reflects this process.

 The user screen (see figure 2.3) is where new users can be added or existing users
can be updated. There’s also a secondary screen (which we’ll cover in the routing
chapter) that allows you to see all the stories assigned to that user.

 The dashboard screen (see figure 2.4) allows you to visualize user stories by status
and type in graph form. We’ll cover how this happens in chapter 5.

 The goal with Angello is to cover as many common development tasks as possible
with code and techniques that can be quickly modified to suit your needs. We’ll use

Figure 2.2 The Angello home screen

Figure 2.3 The Angello user screen

Licensed to Mark Watson <nordickan@gmail.com>

23AngularJS application structure

Angello as a context, but try to think of ways that you can apply the things you’re
learning to the work you’re doing right now.

2.2 AngularJS application structure
With that in mind, the first thing that warrants a discussion when building web appli-
cations is this: how does someone actually structure their application so that they
don’t live to regret it as complexity increases? The interesting thing about a good file
structure is that it has almost the same requirements as good code. In fact, it’s not
uncommon to see a distinct parallel between the file structure and code organization
of an application.

CLEAN CODE One our favorite programming books is Clean Code: A Handbook
of Agile Software Craftsmanship by Robert C. Martin (2009, Pearson Education).
We recommend that everyone read it. Once a year.

Figure 2.4 The Angello dashboard

File structure
A good file structure makes it easy to navigate, maintain, and extend. It’s also impor-
tant that the file structure be self-documenting and clearly indicate intention. Some-
one should be able to look at the file structure and quickly have a high-level
understanding of what elements make up the app and what the app does.

Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 2 Structuring your AngularJS application

Remember the four main Angello features that we
discussed earlier? Look at figure 2.5 and see if you
notice anything interesting.

 In the angello folder, there’s a folder for each
of the features in Angello. There’s also an app
folder that contains all of the common functional-
ity that needs to be shared across all of the spe-
cific features.

 There are two common approaches to structur-
ing an AngularJS application—by type or by fea-
ture. For example, if you were to organize your files
by type, you’d put all your controllers in a folder, all
your services in a folder, and so forth. If you’re
organizing by feature, you’ll put all of the files that
support a single feature in that directory. A hybrid
approach has also emerged that we tend to favor—
to organize file structure by feature and then,
within feature, organize by type. This allows for a
modular design but makes it easier for new developers to get up to speed quickly on a
project. If you’re using Grunt or Gulp, this becomes less of an implementation
detail—all of your source files are concatenated in the distribution build anyway. See
figure 2.6.

Figure 2.5 The Angello file structure

Figure 2.6 A deeper look at the file
structure

Licensed to Mark Watson <nordickan@gmail.com>

25Laying the Angello foundation

DO WHAT’S RIGHT FOR YOU Best practices have a way of becoming religious
topics, and we encourage everyone to avoid that entirely. We believe we
should favor a convention that helps us build things better and faster. Choose
a solution that works best for you and your team and stick with it. Consistency
is more important than being “right.”

2.3 Laying the Angello foundation
The first topic we’ll cover in starting to build out Angello is how the AngularJS mod-
ules fit together. Modules are the building blocks of your application, and understand-
ing how these fit together will make adding new functionality in the future easier. In
fact, we often visualize our applications from a high level by their module structure.

 In every AngularJS application, there will be a single, top-level module that will
serve as the initialization point for every other module in the application. Generally,
this top-level module will do little other than connect the appropriate sub-modules
and apply some application-wide configuration settings. In Angello, our top-level
module is appropriately called Angello. We’ll use it to bootstrap our application in
the index.html file via ng-app="Angello":

<!-- client/index.html -->
<html ng-app="Angello">

<!-- HTML -->

In our Angello.js file, we’ll create the Angello module and declare its sub-module depen-
dencies. Because we’re using AngularJS routing and animations, we’re going to inject
the ngRoute and ngAnimate sub-modules. As mentioned before, we’re offering two
options for handling back-end communication and authentication: Firebase and
Node.js. To enable them, we need to inject the firebase, auth0, angular-jwt, and
angular-storage sub-modules. Last but not least, we’ll use the sub-module ngMessages
for form validation:

// client/src/angello/Angello.js
var myModule = angular.module(’Angello’,

[
’ngRoute’,
’ngAnimate’,
’firebase’,
’ngMessages’,
’Angello.Common’,
’Angello.Dashboard’,
’Angello.Login’,
’Angello.Storyboard’,
’Angello.User’,
’auth0’,
’angular-jwt’,
’angular-storage’

]);

We also have a sub-module for every feature of Angello, including one for the com-
mon functionality that’s shared between the features. This allows us to look at how the

Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 2 Structuring your AngularJS application

Angello module is being constructed and quickly establish a mental picture of the
pieces that make up the application. It would appear that Angello is actually serving as
a platform on which we’re attaching a bunch of smaller, more specific applications;
that’s by design.

 You’ve seen how the top-level module is configured, but what about a sub-module?
Let’s examine the Angello.Storyboard module to see how it’s constructed. It’s con-
structed using the same angular.module method call that takes the name of the new
module as a string and an array of its dependencies:

// client/src/angello/storyboard/Storyboard.js
angular.module(’Angello.Storyboard’, [’Angello.Common’]);

The Angello.Storyboard module needs to have access to the user stories, but so do
all of the other modules, which is why the StoriesModel is part of Angello.Common.
Generally speaking, models will go into the common module so that they can be
shared across the entire application. Once we’ve injected Angello.Common into the
Angello.Storyboard module, we can now make calls to the StoriesModel, as you can
see in the StoryboardCtrl:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module(’Angello.Storyboard’)

.controller(’StoryboardCtrl’,
function () {
//...

});

You can see in the following code that StoriesModel is being declared on
Angello.Common:

// client/src/angello/app/models/StoriesModel.js
angular.module(’Angello.Common’)

.service(’StoriesModel’,
function () {

//...
});

PLEASE BE CAREFUL To get an AngularJS module, you’ll call angular.module
without the second parameter. We’ve unfortunately run into some unpredict-
able behavior by accidentally putting in an empty array as the second parame-
ter, which will overwrite the module definition and create a new one. It’s easy
to make this mistake when you’re tired.

2.4 Basic routes and navigation
With the modules in place, the next step is to set up the ability to navigate from one
feature to another. We’ll start out with ngRoute, since it’s incredibly simple (albeit lim-
ited) to implement within an application.

DON’T WANT TO KEEP IT SIMPLE? We’re only covering ngRoute in the book, but we
recommend looking into ui-router also, because it’s a powerful, full-featured
router. You can read about it here: https://github.com/angular-ui/ui-router.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angular-ui/ui-router

27Basic routes and navigation

Routes allow you to define and route to a unique state of the application based on the
current URL. For instance, if we wanted to link a colleague directly to the users section
of the application, we could send them a link such as http://angelloinaction.com/#/
users and expect that Angello would be able to route our colleague to that portion of
the application.

 Using the Angello header as our reference point (see figure 2.7), we’ll define a
route for each navigation item. We’ll start by defining a route for the root of the site,
which is denoted with a forward slash.
Because the storyboard is the most
important feature of the application,
we’ll make this the feature at the root
of the site.

 The module class in AngularJS comes with a handful of convenience methods that
make configuring our application a lot easier. The module.config method is a conve-
nient method for defining configuration options before the application has actually
run. Routes are exactly the kind of thing that we want in place before the application
is exposed to the user.

 In our main application file, we’ll call myModule.config and pass in the
$routeProvider service, which is responsible for configuring routes. Routes are con-
figured by calling $routeProvider.when and passing in a route (a.k.a. URL string)
and a configuration object for that particular route. The route configuration object
can vary in complexity, but in its simplest form, it’s responsible for associating a tem-
plate and a controller to a particular route.

// client/src/angello/Angello.js
myModule.config(function($routeProvider) {

$routeProvider
.when(’/’, {

templateUrl: ’src/angello/storyboard/tmpl/storyboard.html’,
controller: ’StoryboardCtrl’,
controllerAs: ’storyboard’

});
});

We accomplish this by defining the templateUrl property to point to the story-
board.html template and the controller property to reference the StoryboardCtrl.
Because we’re using the controller-as syntax, we’ll add the controllerAs property and
give it a value of storyboard.

 Now that we’ve defined a route, how does it actually make it on the page? Routing
with ngRoute is generally used in tandem with the ng-view directive. When a route is
matched with the $routeProvider, it will look for the ng-view directive and then load
and compile the template into it. In the following simplified version of the
index.html page, when the page is loaded for the first time, the $routeProvider will
detect that we’re at the root of the application and load the storyboard.html template
into the div with ng-view="" declared on it. Prior to loading the template, it will be

Figure 2.7 The Angello header

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://angelloinaction.com/#/
http://www.allitebooks.org

28 CHAPTER 2 Structuring your AngularJS application

compiled with StoryboardCtrl so that all of the bindings are in place and render
properly. Note that in the Angello application proper, a URL request for the root of
the application will bring up the login screen if the user isn’t currently logged in.

<!-- client/index.html -->
<html ng-app="Angello">

<head></head>
<body ng-controller="MainCtrl as main">

<div class="navbar navbar-fixed-top navbar-default"></div>
<div ng-view=""></div>
<div class="modal"></div>

</body>
</html>

NGROUTE LIMITATION You’re only allowed to declare one ng-view on your
page; this is one of the most glaring shortcomings of ngRoute.

With a root route defined for the root of the application, we’ll set up the logo to
return us to the root of the site:

<!-- client/index.html -->
<div class="navbar navbar-fixed-top navbar-default">

<div class="navbar-header">

</div>
</div>
<!-- ... -->

We’ll wrap the logo in an anchor tag and set the href to navigate to #/. By default,
routes work with a hashtag, but you can set it to HTML5 mode to not use the hashtag or
override the default delimiter if you wish. Because you have to turn some dials at the
server to make HTML5 mode work properly, we’ll go with the default implementation.

 So we know that the $routeProvider matches the URL to a route and then orches-
trates the template and controller for that route, but what happens if there isn’t a
route match? We can mitigate the risk of a user finding themselves in the weeds by
defining a fallback using the otherwise method on $routeProvider. In the following
code, we tell the application to match a route if it can; otherwise, just redirect to the
root of the application:

// client/src/angello/Angello.js
myModule.config(function($routeProvider) {

$routeProvider
.when(’/’, {

templateUrl: ’src/angello/storyboard/tmpl/storyboard.html’,
controller: ’StoryboardCtrl’,
controllerAs: ’storyboard’

})
.otherwise({redirectTo: ’/’});

});

Licensed to Mark Watson <nordickan@gmail.com>

29Basic routes and navigation

One of the beautiful things with $routeProvider is that we can daisy-chain our routes,
which makes for a more elegant route table. We’ve established a pattern for a single
route; now check out the entire route table and notice the consistency and conven-
tion that exists for all of the routes:

// client/src/angello/Angello.js
myModule.config(function($routeProvider) {

$routeProvider
.when(’/’, {

templateUrl: ’src/angello/storyboard/tmpl/storyboard.html’,
controller: ’StoryboardCtrl’,
controllerAs: ’storyboard’

})
.when(’/dashboard’, {

templateUrl: ’src/angello/dashboard/tmpl/dashboard.html’,
controller: ’DashboardCtrl’,
controllerAs: ’dashboard’

})
.when(’/users’, {

templateUrl: ’src/angello/user/tmpl/users.html’,
controller: ’UsersCtrl’,
controllerAs: ’users’

})
.when(’/users/:userId’, {

templateUrl: ’src/angello/user/tmpl/user.html’,
controller: ’UserCtrl’,
controllerAs: ’myUser’

})
.when(’/login’, {

templateUrl: ’src/angello/login/tmpl/login.html’,
controller: ’LoginCtrl’,
controllerAs: ’login’

})
.otherwise({redirectTo: ’/’});

});

And in the navigation bar, we link to the root, users, and dashboard pages via #/, #/
users, and #/dashboard, respectively:

<!-- client/index.html -->
<div class="navbar navbar-fixed-top navbar-default">

<div class="navbar-header">

</div>
<div class="btn-group pull-right" ng-show="main.currentUser">

Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 Structuring your AngularJS application

<!-- ... -->

</div>
</div>

We could have used ng-click and the $location service to change the route, but it’s
considered best practice to use anchor tags where possible to stay consistent with how
a user expects the browser to work. Manually changing routes with JavaScript breaks
things, for example, the ability to click and open in a new tab.

2.5 A few best practices
We’ll take a moment to cover a few principles that are important for writing an Angu-
larJS application that can evolve in terms of features and complexity.

 Controllers should be lightweight and specific to the view they control. A controller should
be solely concerned with consuming data, preparing it for the view, and transmitting
data to services for processing.

 Controllers should be oblivious to the world around them unless you specifically tell them
about it. In other words, a controller shouldn’t know about the view it controls and
should definitely not know about other controllers.

 Services should hold your domain model and do all of the heavy lifting, including server-side
communication.

 Keep your declarative markup outside of your controllers; conversely, keep your imperative logic
outside of your views. It’s really easy to clutter up your view with a complex condition such
as ng-if="thisCondition && anotherCondition && yetAnotherCondition". This is
hard to maintain and test. Instead, extract that logic structure into a method and bind
to that like so: ng-if="shouldShowThis()". This way it is easy to extend should-
ShowThis and actually possible to test it.

 If you must programmatically manipulate the DOM, then do it in a link function in a direc-
tive. This is 99.9% true with a few exceptions, such as a modal service.

 Keep your methods fine-grained and as functional (pure) as possible to make testing them eas-
ier. This is a general programming principle that’s worth its weight in gold.

STYLE GUIDES Todd Motto and John Papa have written excellent style guides
that we recommend you check out. These guides are designed to offer help-
ful suggestions that have worked well for them on large projects; but they sug-
gest you pick what works for you:

■ Todd Motto’s Style Guide—https://github.com/toddmotto/angularjs-styleguide
■ John Papa’s Style Guide—https://github.com/johnpapa/angularjs-styleguide

There are many tips and tricks that we could get into, but these are the fundamental
principles that have the most value for developers learning AngularJS. JavaScript can
be idiosyncratic, but it hasn’t negated the timeless principles that have existed in soft-
ware development for years.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/toddmotto/angularjs-styleguide
https://github.com/johnpapa/angularjs-styleguide

31Summary

2.6 Summary
In this chapter, we laid the foundation for our sample application by discussing file
structure, module composition, and basic routes. We also touched on some best prac-
tices that we’ll use to guide our project as we continue to develop it throughout the
book.

 Let’s do a quick review before we move on:

■ The sample application is called Angello, and it’s a Trello clone, built in Angu-
larJS, that manages user stories.

■ The file structure for an application should be self-documenting and easy to
work with. The best approach for this is to divide your files by feature (and pos-
sibly by type within that feature). The goal is to treat each feature as if it were a
miniature application unto itself.

■ The top-level module is responsible for composing the sub-modules into a
working application.

■ The file structure and the module composition of an AngularJS application
often mirror each other.

■ Basic routes can be set up in the module.config block using $routeProvider.
■ A basic route definition involves matching a template and a controller together

to be loaded into the ng-view directive when $routeProvider detects a match-
ing route.

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Part 2

Make something
 with AngularJS

The next five chapters expand on the project from part 1 as we start to build
out a full-fledged version of the sample application, Angello. Angello pays hom-
age to the web application Trello while using it as the backdrop for discussing
various AngularJS techniques such as server-side communication, directives,
forms and validations, animations, and so on.

 In chapter 3, you’ll learn how views and controllers work together in Angu-
larJS to control what the user sees, as well as capture user interactions and con-
vey those events for processing. We expand on controllers in chapter 4 by
introducing services and then showing how to communicate with a remote
server using the $http service. In chapter 5 we extend our views by introducing
directives and showing how directives turn our layouts into components while
providing complex functionality. We’ll kick our layout up a notch in chapter 6 by
easily adding in animations using ngAnimate. In chapter 7, we’ll dig into how to
use routes in AngularJS to deep-link to specific states in our application by pre-
loading specific data using resolve and passing variables from route to route
using $routeParams. We’ll finish things off in chapter 8 with a discussion on how
to use form validation to enhance the user experience while providing safe-
guards around the data being entered.

 You can find the source code for the final project here: https://github.com/
angularjs-in-action/angello. You can also see a production version of Angello
here: http://www.angelloinaction.com/.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angularjs-in-action/angello
https://github.com/angularjs-in-action/angello
http://www.angelloinaction.com/

Licensed to Mark Watson <nordickan@gmail.com>

35

Views and controllers

In this chapter, we’ll get into the most fundamental and important facet in Angu-
larJS. You’ll learn what views and controllers are in AngularJS, and more impor-
tantly the relationship that they have with each other. There may be some edge case
that we haven’t considered but by our approximation, everything in AngularJS is
designed to either support views and controllers, or to extend their functionality.

 The goal of this chapter is to build out the storyboard view in Angello, as seen in
figure 3.1. This storyboard view will give you plenty of opportunities to learn how a
view works in AngularJS and how you can control that view with a controller. You’ll
learn how to take an array of JavaScript objects and display them as user stories, and

This chapter covers
■ What a view is in AngularJS
■ Creating controllers to manage views
■ Declaring properties and methods in a

controller
■ Binding to properties and expressions in an

AngularJS template
■ Best practices for creating views and

controllers and how to test them

Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 3 Views and controllers

then how to create, update, and delete items in the user story collection by exposing
that functionality via the controller.

 In Angello, we’re binding to an array of story objects in order to display them in
the view, but we could just as easily bind to an array of song objects and display a play-
list or an array of ingredients to make a recipe. You can literally take any collection of
values and display them with an AngularJS template. Using built-in AngularJS direc-
tives, you can capture user interactions and then modify the collection by adding,
updating, or deleting items within the collection.

3.1 The big picture
Before we get into the specific implementation details of how the storyboard view is
constructed, we’ll spend a brief moment talking about the relationship between views
and controllers, as seen in figure 3.2.

Figure 3.1 The storyboard view

Module
<HTML NG-APP="MODULENAME">

Config

Routes

View

Directive

Controller

Service

$scope

Figure 3.2 View and
controller big picture

Licensed to Mark Watson <nordickan@gmail.com>

37The big picture

A view in AngularJS is the HTML after it has been compiled by AngularJS, and is the
interface that the user sees. At the core, a controller is a JavaScript object that contains
methods and properties. The view contains the declarative markup and the controller
possesses code to define imperative behavior. As it stands, the view and controller are
completely separated from each other, with nothing to connect the two. This is where
scope comes into the picture (see figure 3.3).

 The glue between the view and the controller is scope. The controller is responsible
for exposing methods and properties to the view by attaching them to scope. When a
method or property is declared on scope, it’s available to interact with the view. For
the sake of convenience, most people generally think of the controller and scope as a
single entity that behaves essentially like a ViewModel.

 If you examine figure 3.4, you can see how this relationship exists with some simple
pseudocode. The form in user.html is bound to the user object on $scope in the User-
Controller. When the form changes, $scope.user is immediately updated to reflect
the changes. The converse is also true when $scope.user is updated; the form will also
update to reflect the state of the object. When the Save button is clicked, the view issues
a command to the controller in the form of a $scope.save method call. The controller
can also issue commands to services, which you see in the UserModel.save method call.

Scope:
Glue

Controller:
Imperative behavior

View (DOM):
Declarative view Figure 3.3 Scope

is the glue

Name
$scope.user={
 name:'Lukas',
 status:'Active'
};

$scope.save=function(user){
 UserModel.save(user);
};

Lukas
Binding

Command

Command

Save

View

Model

ViewModel

Status Active

user.html

userController.js

save=function(user){
 //Important domain stuff
}

UsersModel.js

Model-View-ViewModel (MVVM)
According to AngularJS

Figure 3.4 MVVM according to AngularJS

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 3 Views and controllers

We’ll get into services and models in the following chapter, but for now let’s focus on
views and controllers.

3.2 What is an AngularJS view?
If you go to the AngularJS home page at https://angularjs.org, you’ll see a bold proc-
lamation front and center of what AngularJS is, and that is “HTML enhanced for web
apps!” What exactly does that mean? The implications of this statement will continue to
unfold as you learn and experiment with AngularJS. At the most rudimentary level, it
means that you have a convenient way to bind HTML to JavaScript objects and keep
them synchronized while eliminating the boilerplate code that was traditionally neces-
sary to accomplish this. This also means that you have some custom HTML tags and ele-
ments, also known as directives, that you can use to do some clever things fairly quickly.

 Declaring a property on scope such as $scope.name and then displaying it in HTML
is as simple as <p>{{name}}</p>, and this relationship between the HTML and JavaScript
is established seamlessly behind the scenes with AngularJS. If you had an array of values
such as $scope.values = [0,1,2,3,4] and you wanted to display them in the HTML, it
would be as simple as <p ng-repeat="value in values">{{value}}</p>. AngularJS pro-
vides an entire set of custom attributes and elements that allow you to perform opera-
tions efficiently and with little ceremony. Learning how to declare bindings and leverage
AngularJS directives is exciting, and most people are blown away at how much they are
able to accomplish with so little.

 The built-in AngularJS directives can’t possibly account for every real-world sce-
nario, and so the AngularJS team provided a way to address this by allowing you to
write your own custom directives. This is where the relationship with AngularJS
expands beyond being just about productivity to encompass expression. It’s easy to get
excited about writing HTML when you realize that you can literally create any tag or
attribute you want to express whatever it is you’re trying to accomplish. We’ll get into
directives in a later chapter, but this discussion brings us back full circle: once you
learn to write directives, you’ll have a moment of realization where you realize what
those funny tags you used when you started with AngularJS actually are, and how they
work. AngularJS is essentially using itself to do most of the heavy lifting for you!

 With that in mind, what exactly is an AngularJS view? The simplest answer is this:
what exists after AngularJS has compiled the DOM. We’ll get into what actually hap-
pens during the compilation process, but for now let’s think of compilation as the act
of gluing the HTML and controllers together with scope.

 The AngularJS compilation cycle happens in two parts: the compilation phase and
the linking phase. When the HTML is fully loaded, AngularJS parses the DOM and
compiles a list of all of the AngularJS directives; this is known as the compilation phase.
Once full inventory has been made of the HTML, AngularJS enters the linking phase,
which is responsible for linking the AngularJS pieces to an appropriate scope instance
(see figure 3.5).

 Once the AngularJS template has been linked with its appropriate controller via
scope, the bindings become active and the two can communicate.

Licensed to Mark Watson <nordickan@gmail.com>

https://angularjs.org

39What is an AngularJS controller?

The compilation process is implicit, and the linking between the AngularJS templates
and scope is seamless, but you can also manually compile templates and scope
together. The need to actually do this is a bit of an edge case, but the function call is
surprisingly effective at illustrating what’s happening:

$compile(element.contents())(scope);

In the method call, we’re taking the contents of an HTML element and “zipping” it up
with a scope object.

3.3 What is an AngularJS controller?
We’ve established that scope is the glue that binds the view and controller together,
but what is it exactly? If you were to throw back the curtain to reveal the wizard that’s
making all of this happening, you’d simply have a plain old JavaScript object with
some events baked into it. These events exist to facilitate a digest cycle in AngularJS,
which is what keeps the view and controller synchronized (see figure 3.6).

Load!

Compile:
“Hey HTML,
give me your

directives”

App!

Link:
“This directive

gets this scope…
This directive gets

this scope…”

HTML

“Take these link functions…
they need scope.”

The AngularJS compilation cycle

Figure 3.5 HTML meets scope meets HTML

Template

View

Digest cycle

Model

Changes to model
Update view

Changes to view
Update model

Compile

Figure 3.6 The digest cycle

Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 3 Views and controllers

3.3.1 The digest cycle

So let’s take a moment and answer the burning question: how does AngularJS know
when something has changed and it’s time to update? It works on a concept of dirty
checking, and it’s one of the core tenets of how the entire framework operates.

 Here we need a disclaimer that the next couple of paragraphs slant toward the aca-
demic side. AngularJS works just fine without a deep understanding of what’s going on
at a molecular level. Feel free to skip this section, but for the curious, read on!

 Dirty checking is the simple process of comparing a value with its previous value, and
if it has changed, then a change event is fired.

 AngularJS performs dirty checking via a digest cycle that’s controlled by $digest.
$digest happens implicitly, and you never have to call this directly. If you need to ini-
tiate a digest cycle, then use $apply; it calls $digest but has error-handling mecha-
nisms built around it.

 During the compilation phase, $scope evaluates all of its properties and creates a
watch expression for each one. You can manually create watch expressions, but implic-
itly created watch expressions are simple functions that compare the value of the
property with the previous value using angular.equals.

 It’s during the $digest cycle that all watch expressions for a scope object are eval-
uated. When a watch expression detects that a $scope property has changed, then a
listener function is fired.

 Occasionally a property is changed without AngularJS knowing about it, and at that
time you can manually kick off a digest cycle via $apply. The most common reason for
this is that you’ve made an API call or a third-party library has done something that
AngularJS needs to know about (see figure 3.7).

Event queue
(wait)

DOM render

Native JavaScript

function()$apply(function)

AngularJS

$eval
asynchronous

queue

$watch
list

$digest loop

Event loop

Figure 3.7 The
academic digest
cycle

Licensed to Mark Watson <nordickan@gmail.com>

41What is an AngularJS controller?

3.3.2 Controller as syntax

In AngularJS 1.3, a new convention was introduced for working with controllers known
as the controller-as syntax. In a hypothetical situation, instead of declaring a controller on
the view as ng-controller="StoryboardCtrl", you’d define it as ng-controller
="StoryboardCtrl as storyboard". Throughout the rest of the view, you’d refer to
that controller as storyboard. For instance, if you wanted to bind to someProperty that
existed on the controller, it would look like {{storyboard.someProperty}} and
not {{someProperty}}.

 This new syntax accomplishes two things: it reduces ambiguity in the markup
about where a property is coming from and hedges the bad habit of implicitly inherit-
ing from scope. All scope objects prototypically inherit from their parent scope object
all the way up to $rootScope. If a property or method was referenced on a controller
and it didn’t exist, AngularJS would go up the scope’s prototype chain until it found
what it was looking for. A lazy developer would be okay relying on the existence of a
property or method on a parent scope, because it would appear to be convenient at
first. This unfortunately is a recipe for disaster and all kinds of unpredictable behavior
when various entities start to manipulate shared data with no understanding of how
it’s being used elsewhere in the application.

 In the simplest terms, the controller-as syntax creates a variable on scope and binds
it to the actual instance of the controller function. This allows you to attach methods
and properties directly to the instance in the form of this.someProperty or
this.someMethod.

 Continuing with our hypothetical scenario, you can see in the following code how
this would work:

angular.module('Angello.Storyboard')
.controller('StoryboardCtrl', function($scope) {

var storyboard = this;

storyboard.someProperty = 'My property';
storyboard.someMethod = function() {

// Do something;
};

$scope.scopeProperty = 'Scope property';

console.log('$scope', $scope);
});

As you can see from the console log in figure 3.8, AngularJS just created a variable on
scope for the name we used when we defined our controller using controller-as syn-
tax. All of our properties and methods then get defined on the storyboard object,

When you use controller-as syntax,
you don’t need to inject $scope
unless you need it for a specific

purpose like eventing.
We store a top-

level reference to
this, which is a

common JavaScript
pattern and useful

if you run into
scoping issues—

purely optional, but
also convenient.

Here we define a
property and
method directly on
the instance of the
controller.

We can also define
properties directly

on $scope. We’ll log this out to the console
to see what’s happening under
the hood.

Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 3 Views and controllers

which is bound to $scope under the hood. Therefore, the controller for each view in
an application is instantiated as an object that is itself a property of $scope. Note that
the scopeProperty we defined on $scope is on the same level of storyboard.

 This syntax is entirely optional, but the AngularJS team encourages people to use it
because it allows you to write more precise views, and it significantly simplifies your
controllers by eliminating the need for $scope.

3.3.3 AngularJS events

AngularJS has an event system that’s useful for raising particular events and then
responding to them elsewhere in the application (see table 3.1). The two ways of send-
ing an event are $broadcast and $emit, which differ only in the direction the event is
going. Listening and responding to a specific event is handled by $on.

Using events requires the presence of a scope object, which means that if you want to
broadcast an event from a service, you need to inject $rootScope. It’s generally best
practice to avoid using $rootScope directly, but the one place where it comes in really

Table 3.1 Events in AngularJS

Event Behavior

$broadcast Sends events from a parent scope downward to its children.

$emit Sends events from a child upward to its parent.

$on Listens for an event and responds.

Figure 3.8 Console output of controller-as

Licensed to Mark Watson <nordickan@gmail.com>

43Properties and expressions

handy is when it’s operating as an event bus. $broadcast sends an event from parent
to child, so you’re guaranteed that all scope objects will have an opportunity to
respond to the event because all scope objects are under $rootScope in hierarchy.

 Because of the presence of a scope object, most developers prefer to use promises
to handle asynchronous events in their services.

3.4 Properties and expressions
At the core of this chapter, we’re really trying to demonstrate how to do two things:
bind to properties and execute expressions. We’ll show the various ways to do that as
we build out the storyboard view in Angello.

IT’S SIMPLER THAN IT MAY SEEM AngularJS can seem fairly overwhelming
when you first start using it, but as time goes on, you’ll tend to see it in these
simple terms. Most of what a developer does in AngularJS comes down to
binding to properties and executing expressions.

3.4.1 Display stories with ngRepeat

How would you take a collection of objects and display them on the page without hav-
ing to define a layout for each item? Wouldn’t it be nice if you could define a template
once and then just repeat it over and over for each item in the collection? This is
exactly the role that ngRepeat was designed to play.

 We’ll set the stage by defining the data structures that we’re going to be working
with for this example. We have a stories array that contains story objects as well as a
statuses array that we’ll use to define our status columns in the view:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl', function() {
var storyboard = this;

storyboard.stories = [
{

"assignee": "1",
"criteria": "It tests!",
"description": "This is a test",
"id": "1",
"reporter": "2",
"status": "To Do",
"title": "First Story",
"type": "Spike"

},
{

"assignee": "2",
"criteria": "It works!",
"description": "testing something",
"id": "2",
"reporter": "1",
"status": "In Progress",
"title": "Second Story",

Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 3 Views and controllers

"type": "Enhancement"
}

];

storyboard.statuses = [
{name: 'To Do'},
{name: 'In Progress'},
{name: 'Code Review'},
{name: 'QA Review'},
{name: 'Verified'}

];
});

We’ll start out by creating a column for each status in storyboard.statuses using
ngRepeat on an ul element. The ngRepeat directive duplicates the element that it was
declared on for each item in the collection that’s providing data to the directive.
Because it duplicates the child elements as well, we can define the layout once and just
repeat it over and over. The expression "status in storyboard.statuses" essentially
is telling AngularJS to repeat over the storyboard.statuses array, assign each item in
the array, and refer to the current item in the iteration as status. This allows us to bind
to a specific item in the array within the template, for example, {{status.name}}:

SCOPING AngularJS is able to keep the instances of each item separate by
implicitly creating a child scope for each template that’s created by ngRepeat.
Scope does an excellent job of providing context, so you don’t have to worry
about those types of things colliding.

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="list-area">

<div class="list-wrapper">
<ul class="list"

ng-repeat="status in storyboard.statuses">
<h3 class="status">{{status.name}}</h3>

<hr/>

</div>
</div>

Because we have five statuses in the storyboard.statuses array, the final result is five
columns with the status name on top (shown in figure 3.9).

Figure 3.9 The status columns

Licensed to Mark Watson <nordickan@gmail.com>

45Properties and expressions

We’ll nest another ngRepeat within our first ngRepeat to add a list item for every story
in storyboard.stories:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="list-area">

<div class="list-wrapper">
<ul class="list"

ng-repeat="status in storyboard.statuses">
<h3 class="status">{{status.name}}</h3>
<hr/>
<li class="story"

ng-repeat="story in storyboard.stories">
<article>

<div>
<button type="button" class="close">×</button>
<p class="title">{{story.title}}</p>

</div>
<div class="type-bar {{story.type}}"></div>
<div>

<p>{{story.description}}</p>
</div>

</article>

</div>

</div>

We’ll use the same convention as before and define our second ngRepeat as ng-repeat
="story in storyboard.stories", which will loop over the storyboard.stories array
and create a reference to each individual element as story. We then will use that ref-
erence to bind to and display story.title and story.description, as well as assign a
class based on story.type.

One-way data binding
Two-way data binding is one of the major selling points of AngularJS, but there’s a
memory and overhead loss when using this feature. AngularJS 1.3 to the rescue!
AngularJS 1.3 introduces a one-time binding feature that allows you to flag collections
and values that only need to be evaluated once. Simply place two colons before the
collection or value you want to bind once to.

// client/src/angello/storyboard/tmpl/storyboard.html
<ul class="list my-repeat-animation"

ng-repeat="status in ::storyboard.statuses">
<h3 class="status">{{::status.name}}</h3>
<!-- … -->

Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 3 Views and controllers

The result (shown in figure 3.10) is that we’ve created a story element for each story
in each of the status columns. This is obviously visually incorrect; we need a way to fil-
ter what we’re displaying to show only the stories that match the status of the column
they’re in.

3.4.2 Filters

Filters allow you to filter the contents of a collection to give you exactly what you want
based on some sort of predefined criteria. In our case, we want to filter the stories
array to return only the stories that match the status that we’re currently on.

 In AngularJS, you can modify the contents of an ngRepeat by adding a pipe symbol
and then declaring a filter and what you want to use as your criteria. This looks like

Figure 3.10 Stories in every column

Scope properties on ng-repeat
There are some special properties created on the local scope of each ng-repeat
instance. These include $index, $first, and $even, among others. Here’s an exam-
ple of how you could implement a simple expand/contract feature:

// Hypothetical Scenario

 <li ng-repeat="item in items"
 ng-click="ctrl.currentIndex == $index" >
 <h2>{{item.title}}</h2>
 <p ng-if="ctrl.currentIndex == $index”>
 {{item.longDescription}}
 </p>

Licensed to Mark Watson <nordickan@gmail.com>

47Properties and expressions

| filter: {status:status.name} in the following code. We’re telling AngularJS to
return only the stories where its status property matches the value of status.name:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="list-area">

<div class="list-wrapper">
<ul class="list"

ng-repeat="status in storyboard.statuses">
<h3 class="status">{{status.name}}</h3>
<hr/>
<li class="story"

ng-repeat="story in storyboard.stories
 | filter: {status:status.name}">

<article>
<div>

<button type="button" class="close">×</button>
<p class="title">{{story.title}}</p>

</div>
<div class="type-bar {{story.type}}"></div>
<div>

<p>{{story.description}}</p>
</div>

</article>

</div>

</div>

This results in a much more useful rendering of the interface, as seen in figure 3.11.
 We’ve managed to create a fairly sophisticated layout in approximately 20 lines of

code using two instances of ngRepeat and a filter. Now you’ll learn how to interact

Using ng-repeat to iterate over an object
In addition to using ng-repeat to iterate over a collection, you can use it to iterate
over an object. This is effected by changing the syntax with which the ng-repeat is
declared; for instance, suppose that stories were not a collection of objects but they
were an object of objects. You could change up your declaration syntax a bit and gain
access to the key as well as the value:

// Hypothetical Scenario

 <li ng-repeat="(key, item) in items">
 <h2>{{key}}</h2>
 <h3>{{item.title}}</h3>

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

48 CHAPTER 3 Views and controllers

with a story on an individual level as we start to add CRUD functionality to our story-
board view.

3.4.3 Expressions

As simple as it sounds, the foundation of great applications is the ability to capture
and convey user interactions with the appropriate data and context. AngularJS comes
with some powerful built-in directives to capture these user interactions, such as
ngClick, ngBlur, ngFocus, ngSubmit, and so on. AngularJS also captures user interac-
tions by binding the input of form elements to a data structure using ngModel. This
allows for the implicit two-way data binding of an input to a property in your control-
ler so that changes are automatically propagated.

 In the following sections, you’ll learn how to use the AngularJS interaction direc-
tives to call expressions that you expose on your controller to perform units of work.
You’ll use these elements to build out the standard CRUD (create, read, update, and
delete) functionality for the storyboard.

DISPLAY A STORY’S DETAILS

You’ve learned how to display the stories collection with a template and ngRepeat and
arrange them into columns using a filter, but how do you work with individual stories?
If you’re going to create or update a story, then you need the ability to display and
modify the individual properties of each story object.

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl', function() {
var storyboard = this;

storyboard.currentStory = null;
storyboard.editedStory = {};

Figure 3.11 Stories filtered by status

We store a reference to the
currently selected story.

We also store a reference to a copy of the
currently selected story so that we can
edit it without affecting the original.

Licensed to Mark Watson <nordickan@gmail.com>

49Properties and expressions

//...

storyboard.setCurrentStory = function(story) {
storyboard.currentStory = story;
storyboard.editedStory =

 ➥ angular.copy(storyboard.currentStory);
};

});

To capture when a user selects a story, we’ll attach ngClick to the story template,
which will call storyboard.setCurrentStory with the story object that was selected as
a parameter:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<li class="story"

ng-repeat="story in storyboard.stories
| filter: {status:status.name}"

ng-click="storyboard.setCurrentStory(story)">
<article>

<div>
<button type="button" class="close">×</button>
<p class="title">{{story.title}}</p>

</div>
<div class="type-bar {{story.type}}"></div>
<div>

<p>{{story.description}}</p>
</div>

</article>

In the right side of the storyboard (shown in figure 3.12), we have a column with a
form in it. When we select a story, we’ll bind that form to the individual properties of
the currently selected story.

 The storyboard.detailsForm consists of mainly two types of inputs: text inputs
and select controls. We’ll examine one instance of each and in doing so will establish
fairly well how the rest of the form is working.

 The simplest element to work with in an AngularJS form is a text input, because
you can bind the value of the input to a property using ngModel. To display and edit
the title of the story we’re editing, we can use the directive ng-model="story-
board.editedStory.title". When we enter a new value in that field, the value of
storyboard.editedStory.title is instantly updated in the controller:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="details">

<h3>Card Details</h3>
<form name="storyboard.detailsForm">

<div class="form-group">
<div class="controls">

<label class="control-label" for="inputTitle">*Title</label>

This method gets
called when a

story is selected
in the view.

The story parameter
gets assigned to the
currentStory property.

We then use angular.copy to
store a copy of currentStory

as editedStory.

Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 3 Views and controllers

<input type="text" id="inputTitle" name="inputTitle"
placeholder="Title"

 ➥ ng-model="storyboard.editedStory.title"
ng-required="true" ng-minlength="3" ng-maxlength="30"
class="form-control">

</div>
</div>
<!-- ... -->

</form>
</div>

We can also do the same for a select control using ngModel in the form of
ng-model="storyboard.editedStory.reporter". A select control is significantly
more complex than a simple text input, and so we don’t have the luxury of just bind-
ing to a string value to populate it. We could technically populate a select control

Figure 3.12 Story details

Licensed to Mark Watson <nordickan@gmail.com>

51Properties and expressions

using ngRepeat, but AngularJS provides a similar directive called ngOptions that was
created specifically for populating options in a select control:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<select id="inputReporter" name="inputReporter"

ng-model="storyboard.editedStory.reporter" ng-required="true"
ng-options="user.id as user.name for user in storyboard.users"
class="form-control">

<option value="">Please select...</option>
</select>

The ngOptions directive works in a way similar to its ngRepeat cousin in that we start
out with the same basic declaration that looks like user in storyboard.users. There
are a few extra things that we want to define, such as what to use as the label and
value. To define the label that’s displayed, we need to extend that statement to look
like user.name for user in storyboard.users, which means we’ll use the user.name
property as the label. Because we’re storing the identity of storyboard.reporter as
an id that exists in the storyboard.users array, we’ll explicitly set the selected value
to work with that property. This will create the final version of this statement to look
like ng-options="user.id as user.name for user in storyboard.users". This allows
us to immediately select that appropriate user in the dropdown based on a match
between storyboard.editedStory.reporter and storyboard.users.id.

UPDATE A STORY

As we update elements in storyboard.detailsForm, the values are immediately
reflected in storyboard.editedStory. With that in mind, to make our changes perma-
nent, we just need to copy the updated properties back to the storyboard.current-
Story reference. At the bottom of our form, we have a div that contains a button to
update the story, and another to cancel the update altogether. We’ll show this div when
storyboard.currentStory is not null.

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="details">

<h3>Card Details</h3>
<form name="storyboard.detailsForm">

<!-- ... -->
</form>
<hr/>
<div ng-if="storyboard.currentStory">

<button class="btn btn-default"
 ➥ ng-click="storyboard.updateCancel()">

Cancel
</button>
<button class="btn pull-right btn-default"

ng-disabled="!storyboard.detailsForm.$valid"
ng-click="storyboard.updateStory()">Update Story</button>

</div>
<!-- ... -->

</div>

Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 3 Views and controllers

We’ll use ngClick to call storyboard.updateCancel if we want to cancel, and story-
board.updateStory to complete the update. Calling updateCancel calls resetForm,
which we covered previously. The updateStory method is interesting in that we have
an array of properties that we want to update and we’re iterating over them and copy-
ing them back to the storyboard.currentStory object. Once we’ve done that, we call
resetForm to clean up after ourselves:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl', function() {
//...

storyboard.updateStory = function() {
var fields = ['title', 'description', 'criteria',

'status', 'type', 'reporter', 'assignee'];

fields.forEach(function(field) {
storyboard.currentStory[field]

 ➥ = storyboard.editedStory[field];
});

storyboard.resetForm();
};

storyboard.updateCancel = function() {
storyboard.resetForm();

};

storyboard.resetForm = function() {
storyboard.currentStory = null;
storyboard.editedStory = {};

storyboard.detailsForm.$setPristine();
storyboard.detailsForm.$setUntouched();

};
});

CREATE A STORY

Creating a story works almost exactly like updating a story except that we don’t have a
current story selected. When storyboard.currentStory is null, we hide the update
controls and show the button to create a new story:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="details">

<h3>Card Details</h3>
<form name="storyboard.detailsForm">

<!-- ... -->
</form>
<hr/>
<!-- ... -->
<div ng-if="!storyboard.currentStory">

<button class="btn pull-right btn-default"
 ng-disabled="!storyboard.detailsForm.$valid"
 ng-click="storyboard.createStory()">

The updateStory method
gets called when a story is
currently selected and the
Update button is clicked.

We iterate over an array of
property names and copy the
property values corresponding to
those names from the editedStory
back to the currentStory.

If the user wants to cancel the update,
we just need to call resetForm.

This method resets the currentStory
and editedStory properties as well
as resets the detailsForm back into
a pristine, untouched state.

Licensed to Mark Watson <nordickan@gmail.com>

53Properties and expressions

 Create Story
</button>

</div>
</div>

The createStory method creates a copy of the storyboard.editedStory and pushes
it into the storyboard.stories array as a new story. And just like updateStory, we’re
calling resetForm to reset everything:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl', function() {
//...

// Utility function for this example
function ID() {

return '_' + Math.random().toString(36).substr(2, 9);
};

storyboard.createStory = function() {
var newStory = angular.copy(storyboard.editedStory);
newStory.id = ID();

storyboard.stories.push(newStory);
storyboard.resetForm();

};
//...

});

SUGAR Because array management isn’t straightforward in JavaScript, we’re
using a utility library to manipulate collections until we hook up the applica-
tion to a server-side technology that will handle that for us. We used Sugar.js
in Angello because it makes working with arrays feel like how we wish they
worked in the first place. With that said, you can accomplish the same thing
with Lodash or Underscore.

DELETE A STORY

We’ll round out the CRUD circuit by adding the ability to delete a story from the
storyboard.stories collection. We create a method called deleteStory that accepts
a story ID, and we’ll use a Sugar.js method to actually remove the story object from
the stories array:

angular.module('Angello.Storyboard')
.controller('StoryboardCtrl', function() {

//...

storyboard.deleteStory = function(storyId) {
storyboard.stories.remove(function(story) {

This is a utility method to
generate a unique ID. In real
life, this would get generated
by the database.

This method creates a copy of
editedStory which, because of

AngularJS data binding, contains as
properties all the new form values

that have just been selected or
typed into the form, and then

assigns a generated ID to the new
story. We then push it into the

stories array and call resetForm to
reset the form.

The deleteStory method is
called with the ID of the
story we want to delete.

We use the Sugar.js remove
method to remove the story
from the stories array based

on the value of storyId.

Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 Views and controllers

return story.id === storyId;
});

storyboard.resetForm();
};

});

As a matter of housecleaning, we’re calling resetForm after the story has been deleted.
Now that we’ve created and exposed the method for deleting a story, we can call delete-
Story with ngClick and pass in the story.id for the story we want to delete:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<!-- although illustrating a slightly different implementation -->
<li class="story"

ng-repeat="story in storyboard.stories
| filter: {status:status.name}"

ng-click="storyboard.setCurrentStory(story)">
<article>

<div>
<button type="button" class="close"

ng-click="storyboard.deleteStory(story.id)">
 ➥ ×</button>
<p class="title">{{story.title}}</p>

</div>
<div class="type-bar {{story.type}}"></div>
<div>

<p>{{story.description}}</p>
</div>

</article>

3.5 Best practices and testing
Now that you’ve seen several examples of what you can do with views and controllers,
let’s take a moment to cover some best practices as well as how to test a controller.

 Controllers should be lightweight and specific to the view they control. Controllers are
responsible for receiving data from services and processing it for display in the view, as
well as communicating data back to services for logic processing. It’s generally a bad
sign when you have a “fat” controller that’s performing large amounts of logic to
transform data based on a user’s input. Those units of logic should first be examined
for opportunities to simplify and then be promoted to a service, so that the controller
is acting more as a communicator or a mediator between the view and the services the
view interacts with.

 Controllers should have no knowledge of the view they control. If this is executed correctly,
it’s entirely possible to use one controller for many views. This works well if a view is a
subset of another view. Isolating the controller from the view makes testing the con-
troller significantly easier, since you’re not dependent on a browser to render opera-
tional DOM elements in conjunction with trying to execute JavaScript.

Licensed to Mark Watson <nordickan@gmail.com>

55Best practices and testing

 A lot of developers new to testing find the most challenging part is figuring out
how to initialize the particular piece of code they want to test. Let’s step through how
we initialize StoryboardCtrl to see how this can be approached:

// client/tests/specs/controllers/StoryboardController.spec.js
describe('StoryboardCtrl', function() {

var ctrl;

beforeEach(module('Angello.Storyboard'));

beforeEach(inject(function($controller) {
ctrl = $controller('StoryboardCtrl', {});
ctrl.detailsForm = {

$setPristine: function() { },
$setUntouched: function() { }

};
}));

});

With the StoryboardCtrl properly initialized and stored as a reference, testing it
becomes a lot like pressing buttons on a calculator and making sure that everything
adds up. For instance, when we call ctrl.resetForm, the result is that ctrl.current-
Story is null and ctrl.editedStory is an empty object. This is the expected end
result, and in order to make sure that ctrl.resetForm is working, we’ll set
ctrl.editedStory and ctrl.currentStory to an arbitrary value, which in this case is
{assignee: '1'}. We can then call ctrl.resetForm, and then assert our expected
outcome through our Jasmine1 assertions:

// client/tests/specs/controllers/StoryboardController.spec.js
it('should reset the form', function() {

ctrl.editedStory = ctrl.currentStory = {assignee: '1'};

ctrl.resetForm();

expect(ctrl.currentStory).toBeNull();
expect(ctrl.editedStory).toEqual({});

});

Let’s examine one more test for good measure. When we delete a story, the expected
outcome is that the story is no longer in the ctrl.stories collection. We set the
stage by storing a reference to the first story in the ctrl.stories array. Using that

1 Jasmine is a behavior-driven development framework for testing JavaScript code; see http://jasmine
.github.io/2.0/introduction.html.

We create a
placeholder for

the controller
we’re going to

initialize.

Using the module object from
ngMock, we initialize the

Angello.Storyboard module.

Inject the
$controller

service so that
we can initialize

our controller.

Because StoryboardCtrl
has no dependencies,
we initialize it with an
empty object and store
a reference to it on the
ctrl variable.Forms implicitly create properties and

methods on controllers, so we mock
out just enough of the ctrl.detailsForm

object for our tests to pass.

Licensed to Mark Watson <nordickan@gmail.com>

http://jasmine.github.io/2.0/introduction.html
http://jasmine.github.io/2.0/introduction.html

56 CHAPTER 3 Views and controllers

story reference, we then call ctrl.deleteStory and pass in the ID of the story refer-
ence we just made. In Jasmine, we can make an assertion negative by adding not as a
prefix to the assertion. Because we want to make sure that ctlr.stories doesn’t con-
tain the story we just deleted, we can use the assertion .not.toContain(story) to test
for that condition:

// client/tests/specs/controllers/StoryboardController.spec.js
it('should delete a story', function() {

var story = ctrl.stories[0];

ctrl.deleteStory(story.id);

expect(ctrl.stories).not.toContain(story);
});

3.6 Summary
Understanding how views and controllers work—and more importantly how they
relate to each other—is the foundation for understanding AngularJS. Much of the
prototype work that we do starts with a simple view and controller, and as we achieve
the desired functionality, we’ll start to refactor out the view to directives and the con-
troller to services.

 Let’s review what we’ve covered so far before we move on to the next chapter:

■ A view is the HTML after it has been through the AngularJS compilation process.
■ A controller is responsible for defining methods and properties on scope so

that they’re available to the view.
■ Scope in AngularJS is simply a JavaScript object that has some events built into it

so that the view and controller can be synchronized. It’s essentially the glue
between the view and controller.

■ The new controller-as syntax simplifies our controllers by implicitly assigning
the controller instance to the scope itself.

■ When a property is declared on scope, it’s immediately available for binding in
the view.

■ When a method is declared on scope, it’s available to be called from the view.
■ AngularJS comes with prebuilt directives that you can use to perform opera-

tions such as ngRepeat for iterating over a collection and displaying each
instance with a template or ngClick for capturing a mouse click and calling a
method on the controller.

■ You can use filters to filter out items in a collection in ngRepeat so that you only
display a subset of the original array, as you saw in the case of our storyboard
columns.

Licensed to Mark Watson <nordickan@gmail.com>

57

Models and services

If a controller is supposed to be lightweight and only concern itself with the view
it’s controlling, what happens when you need functionality to be available to your
entire application? If a controller should never communicate directly with other
controllers, how do they share information? Whereas controllers are constrained to
a specific context, AngularJS services exist to provide functionality that’s available
to the entire application.

 In this chapter we’ll explore what a service is and how to create a simple service.
From there, we’ll show how to use services to communicate with a remote server
and serve as a domain model for the entire application. After that we’ll dip our toes

This chapter covers
■ The vital role that models and services play
■ Different types of services and how to create them
■ Using $http to communicate with remote servers
■ How promises handle asynchronous communication
■ Using $http interceptors
■ How to use decorators to enhance services
■ Testing models and services

Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 4 Models and services

into some advanced functionality and see how to intercept remote server calls as well
as decorate existing services. Figure 4.1 shows a high-level view of services.

4.1 What are models and services?
Before we start digging into the technical underpinnings of how services work in
AngularJS and all of the amazing things you can do with them, we need to agree on
some semantics. The phrase service is admittedly an overloaded term in AngularJS that
can lead to some confusion, especially if you’re coming from other languages. Techni-
cally, a service in AngularJS is any piece of common functionality that can be shared
across your entire application. In quite a few other languages, a “service” refers to a
mechanism that communicates with a remote service, whereas a “model” is responsi-
ble for not only communicating with the remote service but managing the state sur-
rounding that data.

 For the course of this book, we’ll refer to a service in the most generic AngularJS
sense, in that a service may or may not communicate with a remote service, but it’s
available to provide some functionality to the application. It’s a service to the applica-
tion, and one or more of these services may contain the model on which the applica-
tion relies for its data. We’ll refer to any service that communicates with a remote
service and manages that state as a model.

TEAM TALK Don’t get hung up too much on this, as it’s just semantics, but it’s
extremely helpful to agree on what exactly a service means when you’re com-
municating with your team.

Module
<HTML NG-APP="MODULENAME">

Config

Routes

View

Directive

Controller

Service

$scope

Figure 4.1 Services and the big picture

Licensed to Mark Watson <nordickan@gmail.com>

59What are models and services?

4.1.1 Hello services

Services are ultimately registered with the application with the built-in $provide service,
but in most cases it’s easier to use the syntactic sugar provided by angular.module.
These convenience methods are module.value, module.constant, module.service,
module.factory, and module.provider. We’ll get into each of these methods in this
chapter, but let’s start out by creating a simple service to define the available story types
and then make it available in the StoryboardCtrl.

 In the Angello.js file, we’ll register a value that will be available as a service
throughout the application via myModule.value, give it a name of STORY_TYPES, and
pass in an array of objects as the second parameter:

// client/src/angello/Angello.js
myModule.value('STORY_TYPES', [

{name: 'Feature'},
{name: 'Enhancement'},
{name: 'Bug'},
{name: 'Spike'}

]);

And now the STORY_TYPES service is available for injection anywhere in the Angello
application:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl',
function (STORY_TYPES) {
var myStory = this;

//...

myStory.types = STORY_TYPES;

//...
});

In the StoryboardController.js file, we’re injecting STORY_TYPES into StoryboardCtrl.
We then make the story types service available to the view by attaching it to the con-
troller via myStory.types = STORY_TYPES. The beauty of extracting the different story
types into a service is that we can pass it into any other controller, directive, and even
another service without having to redefine it. For instance, we use STORY_TYPES in our
dashboard view when we’re generating our graphs. Define once, use everywhere.

4.1.2 The service lifecycle

Now that you’ve seen a service in action, let’s take a moment to talk about the actual
lifecycle of a service.

 The lifecycle is as follows:

1 A service is defined on angular.module using one of the convenience func-
tions, or in some cases directly with $provide.

Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 4 Models and services

2 During the compilation cycle, services are then registered in an instance factory
for creation.

3 When a service is required, the $injector service will check the instance cache
to see if an instance of the requested service exists. If it does, $injector will use
the instance from cache and inject it into whatever requested the service. If not,
$injector will request a new instance from the instance factory and then
return the new instance after it has stored it in cache for future retrieval. See
figure 4.2.

There are two important things to note about the lifecycle of a service: a service
doesn’t get loaded until something requests it, and a service only gets instantiated
once, making it an application singleton. The service object is passed by reference
into every controller that needs access to it. There are a few ways around this, but the
necessity to create multiple instances of a service is an edge case at best. Keeping a sin-
gle source of truth is a good thing!

4.1.3 The different types of services

There are five different ways to define a service, as shown in table 4.1. In the following
sections, we’ll cover the differences between the five and which one is appropriate for
different situations.

Table 4.1 When to use which service module

Type Reason

module.value Good for storing simple values that may need to change during runtime.

module.constant Good for storing simple values that will never need to change.

Configure

NG-APP="MYMODULE"
myModule.factory(“myService”,...)

Instance cache Instance factory$injector

$injector.get(“myService”)

Check cache

Create new

Figure 4.2 Service lifecycle

Licensed to Mark Watson <nordickan@gmail.com>

61What are models and services?

VALUE SERVICE

The simplest of all services is a value service. The value service method takes two param-
eters: the name of the service and the value that is to be returned when the value service
is instantiated. This can be a primitive value, object, or even a function.

// client/src/angello/Angello.js
myModule.value('STORY_TYPES', [

{name: 'Feature'},
{name: 'Enhancement'},
{name: 'Bug'},
{name: 'Spike'}

]);

And we consume STORY_TYPES by injecting it into our StoryboardController:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl',
function (STORY_TYPES) {
var myStory = this;

//...

myStory.types = STORY_TYPES;

//...
});

Value services are limited in the sense that they can’t be accessed in the module.config
block during compilation. With that said, they can be modified during the application
lifecycle.

CONSTANT SERVICE

A constant service is similar to a value service except that it’s available to the module
.config block and can’t be modified during runtime. Constant services are especially
handy for configuration values that aren’t going to change during the course of the
application lifecycle.

 For instance, we can use the constant service to define a remote URI like the
following:

module.service Creates a service using a constructor method. This is good for developers who
prefer OOP-style programming and like using the this keyword.

module.factory Creates a service using a constructor function. Developers using the Revealing
Module pattern will be at home with this style.

module.provider Provides the most control over defining your service but is more complex and verbose.
Good for modifying behavior of a service while the application is being configured.

Table 4.1 When to use which service module (continued)

Type Reason

Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 4 Models and services

// client/src/angello/app/services/EndpointConfigService.js
angular.module('Angello.Common')

.constant('CURRENT_BACKEND', 'firebase');

This allows us to encapsulate our back-end choice into a single place and pass it
around as needed.

SERVICE CONSTRUCTOR AND SERVICE FACTORY

The most common type of a service is one created by a service constructor or a service
factory. We’ll examine these together because the distinction between the two is subtle
and really comes down to stylistic preference.

SERVICE FAULT This is another case where the term service creates awkward-
ness because it’s overloaded. A service-defined service, anyone?

When you define a service using module.service, the instance is returned via a con-
structor function. This lends itself well to developers who prefer writing object-oriented
code and like to define methods and properties on the this keyword.

// client/src/angello/app/services/LoadingService.js
angular.module('Angello.Common')

.service('LoadingService',
function ($rootScope) {

var service = this;

service.setLoading = function (loading) {
$rootScope.loadingView = loading;

};
});

In the preceding code, we’ve defined the LoadingService that’s responsible for set-
ting the loadingView variable on $rootScope that controls the loading modal in
Angello. Note that we’ve created a variable called service and assigned it the value of
this. The reason we’ve done this is because this is a context-sensitive value, and it’s a
common technique to store the top-level function reference to this so that it can be
accessed within children function blocks.

 Now we’ll show the same service using module.factory to declare the Loading-
Service. This works in exactly the same way as the previous service, but it returns an
object that exposes methods and properties:

angular.module('Angello.Common')
.factory('LoadingService',

function ($rootScope) {
var setLoading = function (loading) {

$rootScope.loadingView = loading;
};

return {
setLoading: setLoading

}
});

Licensed to Mark Watson <nordickan@gmail.com>

63Models with $http

This is very similar to the Revealing Module design pattern, in that only the methods
and properties that you expose on the return object are publicly accessible. This is a
great way to delineate between public and private members of a service.

 The differences between these two services are nearly indistinguishable to any-
thing that consumes them, so you’re able to use the style that you’re most comfortable
with.

PROVIDER FUNCTION

The provider function is the core method for defining a service, and the most ver-
bose. In most cases it’s unnecessary to define a service using module.provider unless
you need to add additional configuration during the configuration phase of your
application. An example of this is if you need to share a service across multiple appli-
cations but also want to introduce application-specific behavior during compilation.
Though we haven’t used module.provider directly in Angello, we’ll configure built-in
providers when we get into $http interceptors and service decorators.

FURTHER READING We’ve done our best to keep everything anchored to spe-
cific code in the application, but if you want to read more about the different
types of services, check out the docs at the following links:

https://docs.angularjs.org/api/auto/service/$provide

https://docs.angularjs.org/guide/providers

4.2 Models with $http
Applications don’t live in a vacuum—especially not web applications—so we’ll transi-
tion from services to models. We need a way to persist data outside of the client, and
that involves communicating with a remote server. AngularJS makes server-side com-
munication easy with the built-in $http service, and in this section we’ll walk through
a fully functional model built around $http.

BACK END We’ve tried to shield the actual server-side code from this chapter
as much as possible so we could focus on AngularJS. For the absolute minimal
amount of setup to get Angello running, we recommend using Firebase, but
have also provided a Node.js back end that you can run locally. You can find
instructions on how to get up and running with either solution in the appen-
dixes. The goal is that you simply need to change the CURRENT_BACKEND con-
stant and provide your URI, and because both solutions provide a REST API,
the application will work without having to change anything else.

4.2.1 What is $http?

$http is an AngularJS service that uses the browser’s XMLHttpRequest object or JSONP
to communicate with a remote server via HTTP. Server-side communication is asyn-
chronous by nature, and $http is built with a deferred/promise API based on the $q
service. We’ll get into promises later in this chapter, but it’s important to know that
there’s an elegant mechanism in place to handle sequencing asynchronous activities.

Licensed to Mark Watson <nordickan@gmail.com>

https://docs.angularjs.org/api/auto/service/$provide
https://docs.angularjs.org/guide/providers

64 CHAPTER 4 Models and services

 RESTful APIs provide a convention for communicating with remote servers that
make the underlying technology of the remote server secondary. AngularJS embraces
this and exposes convenience functions based on RESTful verbs and even goes a step
further by creating a higher-level abstraction around REST with the $resource service.

LIMITED RESOURCE We’re not going to get into the $resource service in this
book, but it’s easy to pick up if you understand the concepts around $http.

4.2.2 Create your first model

We’ll create our first model, StoriesModel, which calls the remote server and gets all
of the stories for the logged-in user.

 The first thing we’ll do is define StoriesModel on the Angello.Common module
using the service method. We’ll pass in three dependencies—$http, AuthModel, and
ENDPOINT_URI—to help set up communication to the remote server. The $http ser-
vice will do the actual heavy lifting, with AuthModel and ENDPOINT_URI helping con-
struct the appropriate URI for the call.

// client/src/angello/app/models/StoriesModel.js
angular.module('Angello.Common')

.service('StoriesModel',
function ($http, EndpointConfigService, UtilsService) {

//...
});

Now that we have all the ingredients to build out a proper model, we need to get a few
things in order before we make the actual call:

// client/src/angello/app/models/StoriesModel.js
angular.module('Angello.Common')

.service('StoriesModel',
function ($http, EndpointConfigService, UtilsService) {

var service = this,
MODEL = "/stories/";

//...
});

The first thing we’ll do is create a variable called service that’s assigned the value of
this. Then we’ll create a variable called MODEL and assign a string that helps us create
a proper URL.

 And now it’s time to construct the actual call to the server:

// client/src/angello/app/models/StoriesModel.js
angular.module('Angello.Common')

.service('StoriesModel',
function ($http, EndpointConfigService, UtilsService) {

var service = this,
MODEL = "/stories/";

service.all = function () {

Licensed to Mark Watson <nordickan@gmail.com>

65Models with $http

return $http.get(EndpointConfigService.getUrl(
MODEL + EndpointConfigService.getCurrentFormat()))

.then(
function(result) {

return UtilsService.objectToArray(result);
}

);
};

//...
});

We’ll do a GET request to the remote server to get all of the stories for the logged-in
user’s account. Because $http is built with REST convenience methods, the call will
look like $http.get(YOUR_URL). The URL is created by the EndpointConfigService
and is based on our MODEL variable and the CURRENT_BACKEND constant. We create and
expose a method on the StoriesModel appropriately named all, which returns the
results of calling $http.get.

 We’ll elaborate on how to handle the server response in greater depth when we get
into promises, but we can see the general idea by examining the service call from the
StoryboardCtrl:

// client/src/angello/storyboard/controllers/StoryboardController.js
storyboard.getStories = function () {

StoriesModel.all()
.then(function (result) {

console.log(result.data);
});

};

When getStories is executed, StoriesModel.all gets called and the result of that
call is handled in the then method. The first parameter of the then method is the
handler for a successful call and the first parameter of that handler is the result of
that call. We can then see the actual data by calling console.log(result.data).

PROMISES Promises can be a really tricky concept to wrap your mind around,
and so they get an entire section in this chapter for explanation. For now, all
you need to know is that when you call a method that returns an $http result,
you can process the result with this bit of code:

.then(function(result) { /* Handle result here */ });

4.2.3 $http convenience methods

You’ve seen a quick example of how to do GET requests to return a collection of user
stories, but how do you do other useful things at the server level? How do you get a
single user story? How do you create a user story? Update a user story? Delete one?

 This is where the RESTful convenience methods provided by $http prove to be really
helpful. You can actually call $http directly with a single configuration argument such

Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 4 Models and services

as $http({method: 'GET', url: '/someUrl'}), but using the shortcut methods are eas-
ier to read and more self-documenting.

 Using the acronym CRUD as a foundation, let’s examine table 4.2, which shows the
$http methods you’d call to engage this functionality.

Note that you call a function getUrlForId when dealing with calls that require inter-
action with a specific story. Because the URLs for dealing with the individuals calls are
pretty much the same, creating getUrl and getUrlForId to generate the URLs for the
actual calls reduces cruft in the service. If you need to change the URL structure, you
can change the CURRENT_BACKEND constant in EndpointConfigService.js and the
MODEL variable in the specific model file, and the change in URL structure is reflected
in that entire service:

// client/src/angello/app/services/EndpointConfigService.js
angular.module('Angello.Common')

//.constant('CURRENT_BACKEND', 'node')
.constant('CURRENT_BACKEND', 'firebase')

// client/src/angello/app/models/StoriesModel.js
angular.module('Angello.Common')

.service('StoriesModel',
function ($http, EndpointConfigService, UtilsService) {

var service = this,
MODEL = "/stories/";

//...
});

And now StoriesModel in its entirety:

// client/src/angello/app/models/StoriesModel.js
angular.module('Angello.Common')

.service('StoriesModel',

Table 4.2 CRUD operations and $http methods

Operation Method

Get all stories $http.get(EndpointConfigService.getUrl(MODEL +
EndpointConfigService.getCurrentFormat()));

Get a single story based
on the story_id

$http.get(EndpointConfigService.getUrlForId(MODEL,
story_id));

Create a story $http.post(EndpointConfigService.getUrl(MODEL +
EndpointConfigService.getCurrentFormat()), story);

Update a story based
on the story_id

$http.put(EndpointConfigService.getUrlForId(MODEL,
story_id), story);

Delete a story based
on the story_id

$http.delete(EndpointConfigService.getUrlForId(MODEL,
story_id));

Licensed to Mark Watson <nordickan@gmail.com>

67Promises

function ($http, EndpointConfigService, UtilsService) {
var service = this,

MODEL = "/stories/";

service.all = function () {
return $http.get(EndpointConfigService.getUrl(

MODEL + EndpointConfigService.getCurrentFormat()))
.then(

function(result) {
return UtilsService.objectToArray(result);

}
);

};

service.fetch = function (story_id) {
return $http.get(

EndpointConfigService.getUrlForId(MODEL, story_id)
);

};

service.create = function (story) {
return $http.post(EndpointConfigService.getUrl(

MODEL
 ➥ + EndpointConfigService.getCurrentFormat()), story

);
};

service.update = function (story_id, story) {
return $http.put(

EndpointConfigService.getUrlForId(MODEL, story_id),
 ➥ story
);

};

service.destroy = function (story_id) {
return $http.delete(

EndpointConfigService.getUrlForId(MODEL, story_id)
);

};
});

And in exactly 40 lines of code, we’re able to realize complete CRUD functionality
using two clever helper methods from EndpointConfigService.js to generate the
appropriate URLs and the $http shortcut methods. Now that we’ve completed
another lap around the track on how to call a remote service, let’s get into how to han-
dle the results with promises.

4.3 Promises
Calling a remote server is an asynchronous operation with no guarantee of when a
response will be returned. How do you sequence code when you don’t know precisely
when things are going to happen? It would be nice if you could make your call and

Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 4 Models and services

move on with your life until the call returned, and even better if the call would let you
know when it was back. Promises are just the tool for the job!

4.3.1 What are promises?

Here’s an illustration that makes promises a bit easier to visualize. Imagine you’re in a
restaurant where you walk up to the host and make a request for a table for you and
all your friends. The host takes your name and gives you a buzzer to hold. When a
table is ready, the buzzer will go off and you’ll know that you’re ready to be seated.
You’re not sitting near the door wringing your hands wondering if you’re going to get
seated, because you have the buzzer and it’s definitely going to go off sometime in the
future with the promise of a table.

 And here we are! A promise is much like that buzzer at the restaurant. When you
make a remote server call, a promise object is returned and patiently sits there until
it’s resolved and then performs whatever logic you desire. It’s an object with a promise
that it will be dealt with sometime in the future.

4.3.2 Promises in action

Let’s anchor this freshly painted visual into actual code. We’ll revisit the $http.get
example we used previously and elaborate and then extend it.

 Firstly, we need to set up our GET call to get all of the stories available for the
logged-in user:

// client/src/angello/app/models/StoriesModel.js
service.all = function () {

return $http.get(EndpointConfigService.getUrl(
MODEL + EndpointConfigService.getCurrentFormat()))

.then(
function(result) {

return UtilsService.objectToArray(result);
}

);
};

The service.all method returns the result of $http.get, which is a promise object:

// client/src/angello/storyboard/controllers/StoryboardController.js
storyboard.getStories = function () {

StoriesModel.all()
.then(function (result) {

storyboard.stories = (result !== 'null') ? result : {};
$log.debug('RESULT', result);

}, function (reason) {
$log.debug('REASON', reason);

});
};

The result of StoriesModel.all is essentially a promise object that has a then method
that will get called when the $http call is resolved. The then method takes three func-
tion parameters that will get called at appropriate states of the promise. The three

Licensed to Mark Watson <nordickan@gmail.com>

69Promises

methods are the success callback, error callback, and notify callback. The success call-
back gets called when the promise is successfully resolved, whereas the error callback
is called when the promise is rejected. The notify callback is called with an update to
the value of the call.

 Let’s use the preceding code and break it down into pieces.
 We call StoriesModel.all and then resolve it with the then method:

StoriesModel.all()
.then();

From here we want to add in the success and error callbacks. The success callback
takes a single parameter, which is the value of the server call. The error callback also
gets a single parameter, which is a result object with information on the failed call:

StoriesModel.all()
.then(function (result) {
}, function (reason) {
});

And now we can do something specific with regard to the StoryBoardCtrl. We’ll
assign result.data to storyboard.stories as well as log the result via $log.debug:

StoriesModel.all().then(function (result) {
storyboard.stories = (result !== 'null') ? result : {};
$log.debug('RESULT', result);

}, function (reason) {
$log.debug('REASON', reason);

});

And in case something goes totally awry, we’ll log the reason for the rejection with
$log.debug as well.

 The beauty of arriving at this point with a grasp on how we’ve constructed how
we’re handling the response is that we simply apply the pattern to other calls. For
example, let’s look at how we handle the response to StoriesModel.update:

StoriesModel.update(storyboard.currentStoryId, storyboard.editedStory)
.then(function (result) {

storyboard.getStories();
storyboard.resetForm();
$log.debug('RESULT', result);

}, function (reason) {
$log.debug('REASON', reason);

});

It’s exactly the same pattern!

4.3.3 $http.success and $http.error

Calling $http returns a promise object that has a then method, which we’ve covered
up to this point, but there are two extra HTTP-specific methods called success and
error.

Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 4 Models and services

The success and error methods work almost exactly like then, but the callbacks have
additional parameters to give you more information about the HTTP call:

$http.get(EndpointConfigService.getUrl(
MODEL + EndpointConfigService.getCurrentFormat())

)
.success(function(data, status, headers, config) {

// this callback will be called asynchronously
// when the response is available

})
.error(function(data, status, headers, config) {

// called asynchronously if an error occurs
// or server returns response with an error status.

});

This is a convenient alternative if you need to perform extra logic specific to the HTTP
call.

4.3.4 Elegant sequencing with promises

In the previous section, you learned that the return value of calling a method on
$http is a promise object which has a then method to handle the response. What if
you could create your own promise object and control when it was resolved or
rejected? This would be useful if you needed to perform some transformative process
on the result before making it available to the rest of the application. Another useful
scenario is if you wanted to implement a caching mechanism to eliminate unnecessary
calls to the server.

 You’ll learn a technique for caching the response and then manually resolving the
promise if you already have it stored in the model. The annotations walk through the
code in a way that mirrors the sequence of execution when it’s run:

Using .then(), .catch(), and .finally()
Angular 1.3 introduced a concept of using a .then().catch().finally() syntax to
resolve promises instead of using just .then(). The choice is yours, as both meth-
ods work fine, but we find that the new syntax works better to articulate exactly
what’s going on. Here’s a code snippet:

// Hypothetical Scenario
myPromise()

.then(function(result) {
// Success Callback

})
.catch(function(error) {

// Error Callback
})
.finally(function() {

// Gets executed no matter what
})

;

Using .then(), .catch(), and .finally()
Angular 1.3 introduced a concept of using a .then().catch().finally() syntax to
resolve promises instead of using just .then(). The choice is yours, as both meth-
ods work fine, but we find that the new syntax works better to articulate exactly
what’s going on. Here’s a code snippet:

// Hypothetical Scenario
myPromise()

.then(function(result) {
// Success Callback

})
.catch(function(error) {

// Error Callback
})
.finally(function() {

// Gets executed no matter what
})

;

Licensed to Mark Watson <nordickan@gmail.com>

71$http interceptors

service.all = function () {
var deferred = $q.defer(); // $q will be explained shortly

if(service.stories) {
deferred.resolve(service.stories);

} else {
$http.get(EndpointConfigService.getUrl(

MODEL + EndpointConfigService.getCurrentFormat())
)
.success(function(data, status, headers, config) {

service.stories = data;
deferred.resolve(service.stories);

})
.error(deferred.reject);

}

return deferred.promise;
};

By using a deferred object directly, you can resolve a promise whenever you see fit.
You now have the ability to insert a level of logic between the server call and the
moment when the rest of the application has an opportunity to respond to the result
of that call.

4.4 $http interceptors
In this section you’ll see why services created using the provide method create some
powerful opportunities.

4.4.1 Why intercept?

Imagine a scenario where you need to perform an action every time a remote service
call is initiated, or possibly when it’s returned. For instance, let’s say that you have an
authorization token you need to dynamically add to your endpoint URL as a URL
parameter. You could go through and modify every single model to update the URL
accordingly, but that could get tedious if you have a large number of services.
Wouldn’t it be nice if you could just set that in once for all outgoing calls? Wouldn’t it
be nice to be able to intercept any incoming or outgoing service call and perform
some logic in one single place?

Our promise begins with a deferred object
created by calling $q.defer. Though it’s not

visible in the code snippet, make sure to
inject the $q service into your model.

We then return
the promise

object via return
deferred.promise.

When we make a
successful call to the
server, we store the

result for future use.

We then tell the
deferred object to
resolve the
promise with the
service.stories
value by calling
deferred.resolve(
service.stories).

If something goes
wrong with the call,

we can pass in the
deferred.reject

method to handle
that scenario. This is where the caching mechanism

comes into play. When service.all is called,
we check to see if service.stories exists

and, if so, we resolve the promise with the
existing value. If not, then we go ahead

and make that initial server call.

Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 4 Models and services

 Using $httpProvider, you can create your own interceptors and make them
available by pushing them into the $httpProvider.interceptors array. There are
four types of interceptors that you can use: request, requestError, response, and
responseError.

ON A PRACTICAL NOTE This is by no means a comprehensive discussion of
interceptors. We’ll focus on a practical example that exists in Angello to get
your feet wet. If you want to learn more about interceptors, please check out
the documentation at https://docs.angularjs.org/api/ng/service/$http.

4.4.2 Interceptors in action

You’ll learn how to use an interceptor to trigger a loading indicator when there’s an
outgoing server call and to turn it off when the call is completed.

 The first thing we need to do is to create our interceptor. We’ll call it loading-
Interceptor and inject the LoadingService into it:

// client/src/angello/Angello.js
myModule.factory('loadingInterceptor', function (LoadingService) {

var loadingInterceptor = {
request: function (config) {

LoadingService.setLoading(true);
return config;

},
response: function (response) {

LoadingService.setLoading(false);
return response;

}
};
return loadingInterceptor;

});

We want to intercept the request and response calls, and so we need to define meth-
ods for each of those interceptors on our loadingInterceptor factory object. We’re
not going to do anything with the config and response parameters, but we need to
make sure to return them so that the actual handlers have access to them. And within
the request and response methods, we call LoadingService.setLoading(true)
and LoadingService.setLoading(false) to turn the loading indicator on and
off, respectively.

 Now that our interceptor has been created, we need to make it available by push-
ing it into the $httpProvider.interceptors array:

// client/src/angello/Angello.js
myModule.config(function ($routeProvider, $httpProvider) {

//...

// Interceptor
$httpProvider.interceptors.push('loadingInterceptor');

//...
});

Licensed to Mark Watson <nordickan@gmail.com>

https://docs.angularjs.org/api/ng/service/$http

73Service decorators

In the myModule.config block, we need to inject the $httpProvider so that it’s avail-
able for us to push into the interceptors array. And once it’s available, the mission is
accomplished with this single line of code: $httpProvider.interceptors.push
('loadingInterceptor').

 This example is fairly simple, but by showing the pattern of how to set up an inter-
ceptor, we’ve opened the door to all kinds of possibilities.

4.5 Service decorators
The wonderful (and scary) thing about JavaScript is that it’s dynamic and can be mod-
ified at the lowest levels to behave in a totally custom manner. This means that you can
take an existing service and “decorate” it to enhance its functionality or change its
behavior entirely. Let the monkey patching begin!

4.5.1 Why decorate?

In all seriousness, there are often real reasons to enhance an existing service to make
it behave in a way that better suits your needs. Fixed languages are in a sense broken,
because they force you to write thousands of lines of code to work around and provide
functionality you wish you had right out of the box. This is where JavaScript and Angu-
larJS excel, because they allow you to extend your imperative logic and declarative
markup to do whatever you need.

 To prove this point, we’ll show in the next section how to enhance the $log service
to provide better output to the console.

4.5.2 Enhanced logging

In the following section you’ll learn how to decorate the $log service to prepend a
timestamp to every $log.debug call that you make.

ENHANCING ANGULARJS LOGGING USING DECORATORS I (Lukas) learned this tech-
nique from my good friend and mentor, Thomas Burleson. We’ll cover just the
rudimentary pieces of enhancing the logging service, but if you want to learn
more please check out Thomas’s excellent post at http://solutionoptimist
.com/2013/10/07/.

The first thing we need to do is inject the $provide service into the config block of
Angello. From here we can register our service decorator using $provide.decorator.
This method takes two parameters: the name of the service we’re decorating and the
decorator function. The $delegate parameter to the decorator function is a refer-
ence to the original service we’re decorating:

// client/src/angello/Angello.js
myModule.config(function ($routeProvider, $httpProvider, $provide) {

//...

// Decorator
We inject $provide into

myModule.config so we can
use it to decorate $log.

Licensed to Mark Watson <nordickan@gmail.com>

http://solutionoptimist.com/2013/10/07/
http://solutionoptimist.com/2013/10/07/

74 CHAPTER 4 Models and services

$provide.decorator('$log', function ($delegate) {
//…
return $delegate;

});
});

And now that we have nuts and bolts in place, it’s time to decorate!

// client/src/angello/Angello.js
myModule.config(function ($routeProvider, $httpProvider, $provide) {

//...

// Decorator
$provide.decorator('$log', function ($delegate) {

function timeStamp() {
//...

}

// Save the original $log.debug()
var debugFn = $delegate.debug;

$delegate.debug = function () {
// Prepend timestamp
arguments[0] = timeStamp() + ' - ' + arguments[0];

// Call the original with the output
 ➥ prepended with formatted timestamp

debugFn.apply(null, arguments)
};

return $delegate;
});

});

And now we can continue to call $log.debug as we before:

// client/src/angello/storyboard/controllers/StoryboardController.js
storyboard.getStories = function () {

StoriesModel.all()
.then(function (result) {

 storyboard.stories = (result !== 'null') ? result : {};
 $log.debug('RESULT', result);
 }, function (reason) {
 $log.debug('REASON', reason);
 });
};

We call $provide.decorator
and pass in $log as the first
parameter and our decorator
as the second parameter.

Because $delegate represents the $log service in
this case, we need to return it so it’s available to
the rest of the application. This will become
extremely important once we decorate it.

This is a simple
timestamp

function that
we’ll use to

output a pretty
timestamp

string. Check out
the source code

for the entire
function.

We store a reference
to the original debug
method so we can call
apply on it later.

We overwrite the
$log.debug with a

new, decorated
function.

We take the first
argument to the method

call and prepend the
timestamp to it.

Finally, we call apply on the
original debug function with
the decorated arguments.

Licensed to Mark Watson <nordickan@gmail.com>

75Testing consideration

But the output we get is a little more interesting than before, as shown in figure 4.3.

4.6 Testing consideration
As always, we want to test our code to ensure quality and scalability. Let’s dive into a
couple scenarios that involve testing services.

4.6.1 Testing a service

We’ll start by testing a simple service that performs a simple unit of logic. The perfect
candidate for this task is the LoadingService, because its primary job is to control a
property on $rootScope.

 We’ll start the test by declaring two variables called $rootScope and LoadingService
that we’ll assign the actual $rootScope and LoadingService to so that they’re available
for the entire spec:

// client/tests/specs/services/LoadingService.spec.js
describe('Loading Service', function () {

var $rootScope, LoadingService;

beforeEach(module('Angello.Common'));

//...
});

We’ll then load the Angello.Common module configuration code by calling
module('Angello.Common') in the first beforeEach call. From there, we inject the
$rootScope and LoadingService references into our spec and assign them to our
local variables:

describe('Loading Service', function () {
var $rootScope, LoadingService;

beforeEach(module('Angello.Common'));

beforeEach(inject(function (_$rootScope_, _LoadingService_) {

Figure 4.3 Console with decorated output

Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 4 Models and services

$rootScope = _$rootScope_;
LoadingService = _LoadingService_;

}));

//...
});

Note that we actually inject _$rootScope_ and _LoadingService_ as parameters. This
is called underscore wrapping and is done so that we can assign those variables to the
actual service name in our code. The inject method knows to strip out the under-
scores and return the actual service.

 And now that we have a reference to $rootScope and LoadingService, we can call
LoadingService.setLoading and test the result. What is the result of calling Loading-
Service.setLoading? Whatever parameter we pass into the method is what $root-
Scope.loadingView will be set to, and we can set up our assertions appropriately:

// client/tests/specs/services/LoadingService.spec.js
describe('Loading Service', function () {

var $rootScope, LoadingService;

beforeEach(module('Angello.Common'));

beforeEach(inject(function (_$rootScope_, _LoadingService_) {
$rootScope = _$rootScope_;
LoadingService = _LoadingService_;

}));

it('should update $rootScope to false when setLoading is set to false',
function () {

LoadingService.setLoading(false);
expect($rootScope.loadingView).toEqual(false);

});

it('should update $rootScope to true when setLoading is set to true',
function () {

LoadingService.setLoading(true);
expect($rootScope.loadingView).toEqual(true);

});
});

And now that we’ve walked through a spec for a simple service, let’s take this a step
further by writing a spec for a model that actually makes $http calls to a remote
server.

4.6.2 Using $httpBackend to mock server calls

When writing tests for anything, it’s important to stay focused on what you’re actually
testing. In the case of writing a spec for a model that makes remote server calls, it’s
important to understand that you’re testing the logic in the model and not the results
returned from the server or the ability of the $http service to do its job.

Licensed to Mark Watson <nordickan@gmail.com>

77Testing consideration

 We’ll test StoriesModel, and the first questions we need to ask are What logic is hap-
pening in the service? and How do we test that? Because we’ve implemented the model to
be stateless, the only real logic we have to test is whether the URLs are being generated
correctly to hit the right resource. We’ll use $httpBackend to mock out specific server
calls and then verify that StoriesModel did indeed hit our mock endpoints.

 We can verify this in an afterEach block and by calling verifyNoOutstanding-
Expectation and verifyNoOutstandingRequest on $httpBackend. This essentially
asserts that $httpBackend was able to satisfy the request.

// client/tests/specs/services/StoriesModel.spec.js
describe('Stories Model', function () {

//...

afterEach(inject(function($httpBackend) {
$httpBackend.verifyNoOutstandingExpectation();
$httpBackend.verifyNoOutstandingRequest();

}));

//...
});

And just like that, we’re ready to test! We’ll examine the structure of one test to establish
the pattern and then just point out the differences between the remaining tests. We’ll
test StoriesModel.all, so the first thing we need to do is to set up $httpBackend to
handle the response:

describe('Stories Model', function () {
//...

it('Should get all', inject(function(StoriesModel, $httpBackend,
 $rootScope) {

var response = [];
$httpBackend.when(

'GET', 'https://angello-angularjs.firebaseio
 ➥ .com/clients/1/stories/.json'
).respond(response);

$rootScope.$broadcast('onCurrentUserId', 1);

var promise = StoriesModel.all();
$httpBackend.flush();

promise.then(function(result) {
expect(result).toEqual(response);

});
$rootScope.$digest();

}));

//...
});

Create a variable
to store our

response to use
for comparison

later. Define the endpoint call we want to
mock out and the response we

want to return.

Call
StoriesModel.all()

and store the result.
Call $httpBackend.flush
to trigger the trained
response.

Define the response
in the then method
of the promise.

Assert that the result
of the call is the same

as the response we
stored earlier.

Call $rootScope.$digest
to trigger the promise.

Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 4 Models and services

The remaining tests are simply variations of the same pattern. We only have to change
the $httpBackend response and call the StoriesModel method we want with the
appropriate parameters.

GET ALL STORIES

$httpBackend.when(
'GET', 'https://angello-angularjs.firebaseio.com/clients/1/stories/.json'

).respond(response);
var promise = StoriesModel.all();

CREATE A STORY

$httpBackend.when(
'POST', 'https://angello-angularjs.firebaseio.com/clients/1/stories/.json'

).respond(response);
var promise = StoriesModel.create({});

GET A STORY

$httpBackend.when(
'GET', 'https://angello-angularjs.firebaseio.com/clients/1/stories/1.json'

).respond(response);
var promise = StoriesModel.fetch(1);

UPDATE A STORY

$httpBackend.when(
'PUT', 'https://angello-angularjs.firebaseio.com/clients/1/stories/1.json'

).respond(response);
var promise = StoriesModel.update(1, {});

DELETE A STORY

$httpBackend.when('DELETE',
'https://angello-angularjs.firebaseio.com/clients/1/stories/1.json'

).respond(response);
var promise = StoriesModel.destroy(1);

4.6.3 Best practices

The best practice when unit testing services, as with anything, is to keep your tests
focused on the item you’re testing. Testing actual calls to the server or the $http ser-
vice itself is unnecessary, as $http has it own set of tests, and integration tests are bet-
ter suited for testing actual service calls.

 Another technique worth mentioning is that you can manually resolve a promise
by kicking off a digest cycle via $rootScope.$digest.

4.7 Summary
We’ve covered an incredible amount of ground in this chapter, and for that we con-
gratulate you! We’ve laid the foundation for you to take these techniques and apply
them to your own work in interesting ways. As with anything, AngularJS is not so much
a collection of really complex topics, but a composition of rather fundamental tech-
niques used in appropriate and clever ways.

Licensed to Mark Watson <nordickan@gmail.com>

79Summary

 Let’s take a moment to review what we’ve covered in this chapter before moving
on to the next chapter:

■ Services are a way to define functionality that’s common to the entire application.
■ There are five types of services that you can define using the module conve-

nience methods: module.constant, module.value, module.service, module
.factory, and module.provider.

■ Communication with remote servers is facilitated with the $http service, which
has shortcut methods built into it that mirror REST verbs.

■ The $http service is based on a deferred / promise API that provides mecha-
nisms for you to handle asynchronous calls to the server.

■ Further control over asynchronous operations can be exerted by using a
deferred object returned by calling $q.deferred.

■ Calls made using $http can be intercepted by creating an interceptor and push-
ing it into the $httpProvider.interceptors array during the module.config
block.

■ Services can be enhanced by capturing them in a $provide.decorator call in
the module.config block and modifying its behavior.

■ $httpBackend is great for mocking out server-side calls and defining the
response.

■ Manually resolve a promise in a unit test by calling $rootScope.$digest.

Licensed to Mark Watson <nordickan@gmail.com>

80

Directives

5.1 Introduction to directives
Welcome to the world of directives: one of the most powerful and important fea-
tures of the AngularJS framework. In this chapter we’ll build three directives for
Angello and discuss the techniques and reasoning behind each one. We’ll start out
simple and work our way up in complexity to some really neat things you can use in
your own web applications.

5.1.1 What are directives?

AngularJS proclaims that it’s “HTML enhanced for web apps!” What does it mean to
enhance HTML?

 HTML was born from a mentality rooted in print media, which was quite
appropriate at the time. Browsers were limited, and the best you could hope for

This chapter covers
■ What directives are and why they’re helpful
■ Different kinds of directives and what they’re

best suited for
■ The main components that make up a directive
■ Some directives we use in Angello

Licensed to Mark Watson <nordickan@gmail.com>

81Directives 101: a quick foundation

was to lay out content on a page much like you would a magazine or a newspaper. But
fast-forward to the modern browser and HTML is incredibly limited and fixed when it
comes to performing modern tasks like handling dynamic content, interactions,
animations, and so on.

 AngularJS solves this limitation by allowing you to define your own HTML behavior
with directives. Directives are essentially custom HTML tags and attributes that you can
create to do some very clever things. And by “clever,” we mean “anything you want.”

5.1.2 Why we need directives

HTML is a fixed language in the sense that you get what’s on the spec and that’s that.
And because it’s fixed, it’s broken before you even get started. Countless developers
have torn their hair out working around the limitations that HTML has imposed on
them. Most of the time, workarounds involve augmenting HTML with other technolo-
gies like CSS and JavaScript.

 So why do you need directives? For your sanity, that’s why. All kidding aside, when
you can find a way to elegantly extend HTML to overcome its limitations, you’re in a
position to write modern web applications without resorting to circus tricks.

5.1.3 Why we want directives

Setting aside the need to overcome the limitations of HTML for a moment, there’s
something elegant and artistic about writing code that’s expressive and describes the
domain you’re in and the problems you’re trying to solve. One outstanding feature of
directives is that they allow you to turn your HTML into a domain-specific language.

 We’re building a project management board that tracks user stories. Wouldn’t it be
convenient if we had a tag called user-story that we could use in our markup? Would we
have any question in our minds about what that tag did? That’s the beauty of directives!

5.2 Directives 101: a quick foundation
We’ll lay the foundation as to what generally goes into
a directive so we can start building our own as quickly
as possible (see figure 5.1). Directives generally have
three parts in them—the controller function, the link
function, and the directive definition object (DDO). A
directive will always have a DDO but may only have a
link or controller function depending on the context.

 The DDO is the foundation of the directive. It tells
AngularJS how the directive should be handled during
the compilation cycle and what it should do. The DDO is
where you can set things like how the directive’s going to
be marked up in the HTML, how its scope is going to inter-
act with the outside world, and whether it’s going to use
the existing HTML or load new HTML into the directive.

Link

Directive

Controller

DDO

Figure 5.1 When you condense
directives into three main parts,
things get much simpler.

Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 5 Directives

 The controller function works just like controllers in the rest of your application.
It’s responsible for setting state for the directive and defining functionality for it as
well. This is also where you would interact with a service if the directive needs to per-
form an action outside of its narrow area of focus.

 The link function is where any DOM manipulation in
your application goes. This is also where you put any initial-
ization and interaction code for third-party plugins. For
instance, we’re going to integrate with a jQuery plugin in
our second example, and the link function is where we ini-
tialize that plugin. It’s also where you would capture any
events emitted by a third-party plugin and process it for the
rest of the AngularJS application.

5.2.1 The user story directive

Our first directive will be a user story directive that’s purposely
simplistic so that you can get your feet wet with the basic struc-
ture of how a directive is put together—see figure 5.2.

CREATE THE DIRECTIVE

Defining a directive is very similar to defining a controller or
service, in that you give it a name and a factory function that will return an object of a
defined sort when the directive is needed. Following is the basic syntax for creating a
controller. Notice that you give it a name as the first parameter of the controller
method call and then a factory function as the second parameter:

myModule.controller('MainCtrl', function ($scope) {
// ...

});

When you define a directive, the pattern is the same. We’ll give this directive a name
of userstory, and then we’ll start to build out the factory function as we progress:

myModule.directive('userstory', function () {
// ...

});

Now let’s fill out the directive with a link function, a controller function, and a defini-
tion object to lay the foundation for the rest of the functionality in the directive.
Notice that we also have a controllerAs attribute on the definition object so we can
reference the controller everywhere in the template:

// client/src/angello/user/directives/UserStoryDirective.js
angular.module('Angello.User')

.directive('userstory',
function () {

var linker = function (scope, element, attrs) {
// Pending

};
var controller = function ($scope) {

Figure 5.2 The user story
directive

Licensed to Mark Watson <nordickan@gmail.com>

83Directives 101: a quick foundation

// Pending
};
return {

restrict: 'A',
controller: controller,
controllerAs: 'userStory',
link: linker

};
});

THE DIRECTIVE DEFINITION OBJECT

The definition object is just an extension of the module pattern where you return an
object to be instantiated during an AngularJS compilation cycle. The difference is that
a specific API is available to tell AngularJS exactly how the directive should behave. In
the preceding example, we stated that we want to restrict the directive to only be used
as an attribute, as noted by the line restrict: 'A'. Then we indicated that we want to
use the linker function and controller function as the link and controller func-
tions, respectively.

 AngularJS is incredibly powerful, with almost infinite possibilities of what you can
do, but the 80/20 rule definitely applies. Nowhere is this more true than in the case of
directives. There are some pretty exotic options you can invoke from the definition
object, but they’re generally relegated to edge cases and rarely seen in the wild. For
the sake of space and sanity, we’ll endeavor to stay within the confines of what’s rea-
sonably useful.

THE LINK FUNCTION

Remember when we talked about the link function being the primary place to do
DOM manipulation? Everything you need to accomplish this is delivered to you via an
AngularJS care package in the form of the function parameters. The scope parameter
is simply the scope of the current instantiation of the directive you’re working with.
It’s worth mentioning that this is the same scope object as the $scope parameter in
the controller function. The element parameter is the element that the directive is
declared on, but wrapped in a jQuery object. The attrs parameter is an array of all of
the attributes on the element that the directive was declared on.

JQUERY AngularJS ships with a subset of jQuery out of the box, but if you’ve
included jQuery in your project, then AngularJS defers to that instance

THE CONTROLLER FUNCTION

The controller function works almost exactly like a controller you’d define on your
application. Just as you want to segment DOM manipulation to the link function, you
want to keep imperative logic in the controller. Because the link function and the con-
troller function share the same scope object, it’s not uncommon to call a function in
the controller from the link function. The only difference worth noting is that services
are injected into the directive and are then available to the controller as opposed to
injecting services into stand-alone controllers directly.

Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 5 Directives

USE THE DIRECTIVE

Now that we have the skeleton of our user story directive in place, let’s go ahead and
actually use the directive in our markup.

 This is the HTML that visually represents the user story currently:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<li ng-repeat="story in storyboard.stories | filter:{status:status.name}"

class="story"
ng-click="storyboard.setCurrentStory(story)">

<article>
<div>

<button type="button" class="close"
ng-click="userStory.deleteStoryBoard(story.id)">

×
</button>
<p class="title">{{story.title}}</p>

</div>
<div class="type-bar {{story.type}}"></div>
<div>

<p>{{story.description}}</p>
</div>

</article>

This is the same HTML with the userstory directive defined on it:

// client/src/angello/storyboard/tmpl/storyboard.html
<li userstory

ng-repeat="story in storyboard.stories | filter:{status:status.name}"
class="story"
ng-click="storyboard.setCurrentStory(story)">

<article>
<div>

<button type="button" class="close"
ng-click="userStory.deleteStoryBoard(story.id)">

×
</button>
<p class="title">{{story.title}}</p>

</div>
<div class="type-bar {{story.type}}"></div>
<div>

<p>{{story.description}}</p>
</div>

</article>

Notice the difference. A single attribute. Without turning into a cheerleader, being
able to extend the user story HTML to include all of the extra functionality we’re
going to define in a single attribute is a really powerful feature!

Licensed to Mark Watson <nordickan@gmail.com>

85Directives 101: a quick foundation

ADD DOM EVENT HANDLERS TO THE DIRECTIVE LINK FUNCTION

Speaking of functionality, let’s actually do something with the directive. We’ll start
with the link function and add a slight fade when the user mouses over the user story,
and then restore it when the user mouses out.

 If you go to the jQuery website and look up the .mouseover() function, you’ll see
a snippet of code that looks like this:

$('#outer').mouseover(function() {
 $('#log').append('<div>Handler for .mouseover() called.</div>');
});

We’ll do something similar, but you’ll soon see that the task is actually much easier
within the link function:

// client/src/angello/user/directives/UserStoryDirective.js
angular.module('Angello.User')

.directive('userstory',
function () {

var linker = function (scope, element, attrs) {
element

.mouseover(function () {
element.css({ 'opacity': 0.9 });

})
.mouseout(function () {

element.css({ 'opacity': 1.0 })
});

};
var controller = function ($scope) {

// Pending
};
return {

restrict: 'A',
controller: controller,
controllerAs: 'userStory',
link: linker

};
});

Because the element object is already a jQuery wrapped object, you can attach the
event handler directly to the element object without having to query the DOM. You
also don’t have to worry about the DOM element being ready, since the directive
doesn’t fire until the element has been added to the page and the compilation cycle
has run. It is like a premium valet service just for your DOM!

 With that said, we chain two events together like this,

element.mouseover(function () {
// ...

}).mouseout(function () {
// ...

});

and then set the opacity in the event handler.

Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 5 Directives

CREATE A DELETE STORY METHOD ON ANGELLOMODEL

Let’s shift gears and add the ability to delete a story by clicking the Delete button on
the user story, that is, the X in the top right-hand corner of the Summary box.

 Practically speaking, an object shouldn’t be responsible for moving itself from the
collection that it lives in. We need to inject StoriesModel to accommodate this func-
tionality, since it owns all of the stories for the application. We’ll also use the $root-
Scope and $log services in a callback function:

// client/src/angello/user/directives/UserStoryDirective.js
angular.module('Angello.User')

.directive('userstory',
function ($rootScope, StoriesModel, $log) {

//...

});

CREATE A DELETE STORY METHOD ON THE DIRECTIVE CONTROLLER

Now we need to create a deleteStory method and make it available to the directive.
This is simply a matter of adding a deleteStory method on the reference to the
$scope object (userStory), and from there calling the destroy method on Stories-
Model and passing the id parameter to it. We no longer need to pass the $scope object
into the controller, since we assign a reference to the this keyword:

// client/src/angello/user/directives/UserStoryDirective.js
angular.module('Angello.User')

.directive('userstory',
function ($rootScope, StoriesModel, $log) {

//...
var controller = function () {

var userStory = this;
userStory.deleteStory = function (id) {

StoriesModel.destroy(id)
.then(function (result) {

$rootScope.$broadcast('storyDeleted');
$log.debug('RESULT', result);

}, function (reason) {
$log.debug('ERROR', reason);

});
};

};
return {

//...
controller: controller,

};
});

In the same fashion as StoryboardCtrl, we call the destroy method on the Stories-
Model service and use .then to execute success and error functions. All the $root-
Scope.$broadcast does is alert the StorboardCtrl about the deletion so that it can
update the stories collection and reset the form.

Licensed to Mark Watson <nordickan@gmail.com>

87A more advanced feature

ADD A BUTTON TO CALL DELETESTORY ON CLICK

The last thing we need to do is write up the deleteStory method on userStory to the
actual view. This is familiar territory, as we add a button with ng-click defined to call
deleteStory and pass story.id in as the parameter:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<li userstory

ng-repeat="story in storyboard.stories | filter:{status:status.name}"
class="story"
ng-click="storyboard.setCurrentStory(story)">
<article class="{{story.type}}">

<div>
<button type="button" class="close"

 ➥ ng-click="deleteStory(story.id)">
×

</button>
<p class="title">{{story.title}}</p>

</div>
<div class="type-bar {{story.type}}"></div>
<div>

<p>{{story.description}}</p>
</div>

</article>

Hooray! The user story directive is done. Time for a quick review before we move on:

■ We defined a directive, including the three main parts: link function, controller
function, and definition object.

■ We explored the parameters of the link function and why they make DOM
manipulation so breezy.

■ We talked about how a controller function works pretty much like an applica-
tion controller, but shares $scope with the link function.

■ We showed how the directive definition object is used to define the directive,
and more importantly, that the 80/20 rule definitely applies here.

Onward and upward!

5.3 A more advanced feature
So being able to fade HTML on mouseover is a good start, but how about something
more ambitious? We’ve got it. We’ll flex our DOM muscles and create three directives that
allow the user to drag a user story from one status column to another—see figure 5.3.

5.3.1 The drag-and-drop feature

The three directives that comprise our drag-and-drop feature are drag-container,
drop-container, and drop-target. In a nutshell, the drag-container is the element
we drag, drop-container is the element where a drag-container will be dropped,
and drop-target decides which area inside the drop-container the drag-container

Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 5 Directives

should be dropped into. We’ll also create a service so we can share data between the
drag-container and drop-container directives. We’ll call this service $dragging.

CREATE THE FILE

Before we get started, let’s create a file called DragAndDrop.js and put it in client/
src/angello/storyboard/directives. Don’t forget to add it to boot.js!

// client/assets/js/boot.js
{ file: 'src/angello/storyboard/directives/DragAndDrop.js' },

CREATE THE DRAG-CONTAINER DIRECTIVE

The first piece of the puzzle is creating a draggable container. We follow the same pat-
tern as before: declare the directive with the name dragContainer and a factory func-
tion that has a link function and a definition object:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.directive(‘dragContainer’, function () {
return {

restrict: 'A',
controller: 'DragContainerController',
controllerAs: 'dragContainer',
link: function ($scope, $element, $attrs, dragContainer) {

dragContainer.init($element);

$element.on('dragstart',
 ➥ dragContainer.handleDragStart.bind(dragContainer));

$element.on('dragend',
 ➥ dragContainer.handleDragEnd.bind(dragContainer));

$scope.$watch($attrs.dragContainer,
 ➥ dragContainer.updateDragData.bind(dragContainer));

$attrs.$observe('mimeType',
 ➥ dragContainer.updateDragType.bind(dragContainer));

Figure 5.3 The drag-
and-drop feature

Licensed to Mark Watson <nordickan@gmail.com>

89A more advanced feature

$attrs.$set('draggable', true);
}

};
})

.controller('DragContainerController', function ($dragging) {
});

NOTE We actually define the link function inline, and we define the control-
ler function outside of the directive entirely this time. This is just semantics;
you can do it whatever way suits you.

Let’s take a look at the link function. We define it with four parameters: $scope,
$element, $attrs, and dragContainer. You’ve already seen the first three parameters
in action; the fourth parameter is actually a reference to the DragContainer-
Controller. We reference the controller using the same name as the controllerAs
property on the DDO for consistency.

 Our first order of action is to call the init method on the DragContainer-
Controller and pass in the current directive’s element. Don’t worry; we’ll dive into
DragContainerController’s methods in a minute.

 Because $element is just a jQuery-wrapped DOM element, we can listen for browser
events on it. Yes, HTML5 has native dragging events! We want to listen for the drag-
start and dragend events and then invoke the appropriate controller callbacks. The
bind method appended to both of the callbacks essentially makes sure that they’re
called within the context of the DragContainerController, or that the this keyword
refers to DragContainerController, not the link function in which it was called.

 Next, we use $scope.$watch to listen for changes to $attrs.dragContainer. As
you’ll see, $attrs.dragContainer is assigned to the story data model, and any time
that data changes, we want to call updateDragData on the controller.

 Now we want to listen for changes to the mimeType attribute and trigger the
updateDragType on the controller. We use $observe instead of $watch because the
value we’re watching is evaluated as text, not an actual Angular expression.

 Lastly, when everything is initialized, we set the draggable attribute on our direc-
tive to true. We do this so the browser knows that this element is draggable.

5.3.2 Use the drag-container directive

Now that we’ve created the drag-container directive, let’s add it to our HTML:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<li userstory

ng-repeat="story in storyboard.stories | filter: {status:status.name}"
drag-container="story" mime-type="application/x-angello-status"
class="story my-repeat-animation"
ng-click="storyboard.setCurrentStory(story)">

We define the drag-container directive on the same li as our userstory directive. We
then assign it the data model we want to use, in this case story, and define a mime-type

Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 5 Directives

attribute as application/x-angello-status. This could be any value, as long as the
drop-container directive has an accepts attribute with a value (or array of values) that
contains the mime-type value.

5.3.3 Build the controller

Now that we’ve created the directive and placed it in the HTML, let’s go ahead and
build out the controller:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DragContainerController', function ($dragging) {
var dragContainer = this;

dragContainer.init = function (el) {
dragContainer.el = el;

};
});

First, as always, we create a top-level reference to this for use later in our controller.
We then define an init function that takes the element from the link function and
assigns it to the controller so we have access to it:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DragContainerController', function ($dragging) {

//...

dragContainer.handleDragStart = function (e) {
if (e.originalEvent) e = e.originalEvent;

e.dataTransfer.dropEffect = 'move';
e.dataTransfer.effectAllowed = 'move';

dragContainer.el.addClass('drag-container-active');
dragContainer.dragging = true;

$dragging.setData(dragContainer.data);
$dragging.setType(dragContainer.type);

};
});

If e.originalEvent exists, we assign it back to e. We then set the effectAllowed and
dropEffect properties on the e.dataTransfer object. These let the browser know
which effects are allowed and what kind of visual effect to use on the element when
dropped, respectively.

 Then we add a class, set the dragging property on the controller to true, and set
data and type on the $dragging service:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DragContainerController', function ($dragging) {

Licensed to Mark Watson <nordickan@gmail.com>

91A more advanced feature

//…

dragContainer.handleDragEnd = function (e) {
if (e.originalEvent) e = e.originalEvent;

angular.element(e.target).removeClass('drag-active');

dragContainer.el.removeClass('drag-container-active');
dragContainer.dragging = false;

$dragging.setData(null);
$dragging.setType(null);

};
});

Here we assign the originalEvent to e, remove a couple of classes, set the dragging
property on the controller to false, and set both properties in the $dragging service to
null.

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DragContainerController', function ($dragging) {

//...

dragContainer.updateDragData = function (data) {
dragContainer.data = data;

if (dragContainer.dragging)
 ➥ $dragging.setData(dragContainer.data);

};
});

We assign the passed-in data to the controller and then, if the dragging property on
the controller is true (or the element is still being dragged), we update the data prop-
erty on the $dragging service:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DragContainerController', function ($dragging) {

//...

dragContainer.updateDragType = function (type) {
dragContainer.type = type || 'text/x-drag-and-drop';

if (dragContainer.dragging)
 ➥ $dragging.setType(dragContainer.type);
};

});

Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 5 Directives

We initialize the type property on the controller to the type parameter if it exists, and
to text/x-drag-and-drop if it doesn’t. Then, if the element is still being dragged, we
update the type property on the $dragging service.

5.3.4 Create the drop-container directive

Next, we need a container that can receive our drag-container directive when the
drag-container is dragged over it. Naturally, we call it drop-container:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.directive('dropContainer', function ($document, $parse) {
return {

restrict: 'A',
controller: 'DropContainerController',
controllerAs: 'dropContainer',
link: function ($scope, $element, $attrs, dropContainer) {

var bindTo = function (event) {
return function (e) {

return $scope.$apply(function () {
return dropContainer['handle' + event](e);

});
};

};

var dragEnd =
 ➥ dropContainer.handleDragEnd.bind(dropContainer);

var handleDragEnter = bindTo('DragEnter');
var handleDragOver = bindTo('DragOver');
var handleDragLeave = bindTo('DragLeave');
var handleDrop = bindTo('Drop');

dropContainer.init($element, $scope, {
onDragEnter: $parse($attrs.onDragEnter),
onDragOver: $parse($attrs.onDragOver),
onDragLeave: $parse($attrs.onDragLeave),
onDrop: $parse($attrs.onDrop),

});

$element.on('dragenter', handleDragEnter);
$element.on('dragover', handleDragOver);
$element.on('dragleave', handleDragLeave);
$element.on('drop', handleDrop);

$scope.$watch($attrs.accepts,
 ➥ dropContainer.updateMimeTypes.bind(dropContainer));

$document.on('dragend', dragEnd);

$scope.$on('$destroy', function () {
$document.off('dragend', dragEnd);

});
}

};
});

Licensed to Mark Watson <nordickan@gmail.com>

93A more advanced feature

We continue the pattern: a DDO with an inline link function that has four parameters,
the fourth being a reference to the controller created outside of the directive.

 In the link function, we create a bindTo method that takes an event name and
turns it into a method that can respond to a DOM event with the appropriate control-
ler method call and, which passes in the original DOM event. The $scope.$apply
method takes an expression from outside the AngularJS framework (DOM events,
XHR, and so on) and executes it within the context of the framework (triggers a
$digest cycle so all the watchers are evaluated properly).

 Then we create a reference to the controller’s handleDragEnd function (again
notice that we use .bind so that the method is executed in the context of the controller,
not the link function). Then we use our freshly baked bindTo method to create four
different callback methods that we’ll use to respond to four different DOM events.

 Next we call init on the DropContainerController and pass in three parameters:
the jQuery-wrapped DOM element on which the directive was defined, the link func-
tion’s scope, and a list of callbacks that the controller can access and execute. The
$parse service takes an AngularJS expression from $attrs and converts it into a func-
tion so we can call it.

 Hooray for simple jQuery! Now we listen for four different DOM events—
dragenter, dragover, dragleave, and drop—and attach the appropriate controller
methods as callbacks.

 Moving right along, we listen for three different events. First, we watch the accepts
attribute on the directive; every time accepts changes, we invoke the updateMimeTypes
method on the controller. We then create a watcher on $document (which is equivalent
to window.document) so that any time the dragend event is triggered, we invoke the con-
troller’s dragEnd method. Lastly, we create an AngularJS watcher that removes this han-
dler whenever the $destroy event is triggered in Angular.

5.3.5 Use the drop-container directive

In the following code, we instantiate the drop-container directive by attaching it to
the list items created by ngRepeat:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<li userstory

ng-repeat="story in storyboard.stories | filter: {status:status.name}"
drag-container="story" mime-type="application/x-angello-status"

 drop-container="" accepts="['application/x-angello-status']"
class="story my-repeat-animation"
ng-click="storyboard.setCurrentStory(story)">

<!-- … -->

<div class="emptystatus" drop-container=""
 accepts="['application/x-angello- status']"
 on-drop="storyboard.finalizeDrop(data)"
 on-drag-enter="storyboard.changeStatus(data, status)"
 ng-if="storyboard.isEmptyStatus(status)">
</div>

Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 5 Directives

Notice that we actually define the drop-container directive in two places: the user-
story li and another div that represents the unoccupied area of each status column.
We don’t add the on-drop and on-drag-enter attributes to the userstory element
because we’re going to add drop-target directives as children of userstory and
define those attributes there.

 We define another attribute called accepts and assign it an array of MIME types
that we can drag over it. In this case, we only need one value, ['application/
x-angello-status'], because there’s only one type of element we need to drag.

 Lastly, we pass the appropriate StoryboardCtrl callbacks to the on-drop and
on-drag-enter attributes so that they can be invoked from the directive.

5.3.6 Build the controller

Buckle your seatbelts because we’re about to dive into the unknown! Okay, that was a
bit dramatic, but do pay extra attention; it’ll be worth it.

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {
var dropContainer = this;
var targets = {};
var validAnchors = 'center top top-right right

 bottom-right bottom bottom-left left top-left'.split(' ');

dropContainer.init = function (el, scope, callbacks) {
dropContainer.el = el;
dropContainer.scope = scope;
dropContainer.callbacks = callbacks;
dropContainer.accepts = ['text/x-drag-and-drop'];

dropContainer.el.addClass('drop-container');
};

});

We create a top-level reference to this, and we create two other variables: a targets
object that will hold all of the available drop targets and a validAnchors array that
holds all of the valid anchor types. We then create an init method that takes the
$element, $scope, and callbacks arguments and assigns them to the controller so we
can use them throughout. We also default the accepts attribute to ['text/x-drag-
and-drop'] and add a drop-container class to the directive’s element.

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//...

dropContainer.addDropTarget = function (anchor, dropTarget) {
if (validAnchors.indexOf(anchor) < 0)

 ➥ throw new Error('Invalid anchor point ' + anchor);
if (targets[anchor])

Licensed to Mark Watson <nordickan@gmail.com>

95A more advanced feature

 ➥ throw new Error('Duplicate drop targets for the anchor ' + anchor);

targets[anchor] = dropTarget;
};

dropContainer.removeDropTarget = function (anchor) {
if (targets[anchor] && targets[anchor] === anchor) {

dropContainer.activeTarget = null;
}

delete targets[anchor];
};

});

Our next stop is the addDropTarget method. As you’ll see, this method actually gets
called from the drop-target directive. It takes an anchor and a reference to an
instance of the drop-target directive; and if the anchor is not a valid anchor type or if
a drop-target instance already exists for the provided anchor type, we throw the
appropriate error. Otherwise, we set an attribute on the targets object whose key is
the provided anchor and whose value is the drop-target instance.

 Next, in the removeDropTarget method (which also gets called from the drop-
target directive), we simply remove the drop-target instance at the provided anchor
key in the targets object:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//...

dropContainer.updateMimeTypes = function (mimeTypes) {
if (!mimeTypes) mimeTypes = ['text/x-drag-and-drop'];
if (!angular.isArray(mimeTypes)) mimeTypes = [mimeTypes];

dropContainer.accepts = mimeTypes;
};

});

If the mimeTypes parameter is empty, we initialize it to an array with one value, text/
x-drag-and-drop; similarly, if that same parameter is not an array, we go ahead and
make it one. Then we assign it to the controller so we can use it later:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//...

dropContainer.updateDragTarget = function (e, skipUpdateTarget) {
if (e.originalEvent) e = e.originalEvent;

var activeTarget = null;
var activeAnchor = null;
var minDistanceSq = Number.MAX_VALUE;

Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 5 Directives

var prevAnchor = dropContainer.activeAnchor;
var prevTarget = dropContainer.activeTarget;

if (!skipUpdateTarget) {
angular.forEach(targets, function (dropTarget, anchor) {

var width = dropContainer.el[0].offsetWidth;
var height = dropContainer.el[0].offsetHeight;
var anchorX = width / 2;
var anchorY = height / 2;

if (anchor.indexOf('left') >= 0) anchorX = 0;
if (anchor.indexOf('top') >= 0) anchorY = 0;
if (anchor.indexOf('right') >= 0) anchorX = width;
if (anchor.indexOf('bottom') >= 0) anchorY = height;

var distanceSq = Math.pow(anchorX - e.offsetX, 2)
+ Math.pow(anchorY - e.offsetY, 2);

if (distanceSq < minDistanceSq) {
activeAnchor = anchor;
activeTarget = dropTarget;
minDistanceSq = distanceSq;

}
});

}

dropContainer.activeAnchor = activeAnchor;
dropContainer.activeTarget = activeTarget;

var eventData = {
$event: e,
data: $dragging.getData(),
anchor: activeAnchor,
target: activeTarget,
prevAnchor: prevAnchor,
prevTarget: prevTarget

};

if (prevTarget !== activeTarget) {
if (prevTarget) {

dropContainer.el.
 ➥ removeClass('drop-container-active-' + prevAnchor);

prevTarget.handleDragLeave(eventData);
}

if (activeTarget) {
dropContainer.el.

 ➥ addClass('drop-container-active-' + activeAnchor);
activeTarget.handleDragEnter(eventData);

}
}

return eventData;
};

});

Licensed to Mark Watson <nordickan@gmail.com>

97A more advanced feature

Hold on to your seats; this is where it gets intense. We first assign the e.original-
Event to e. Then we create the activeTarget and activeAnchor variables and initial-
ize them to null, and create the minDistanceSq variable and assign it Number
.MAX_VALUE. Number.MAX_VALUE represents the “maximum numeric value represent-
able in JavaScript” (from https://developer.mozilla.org). Really, we just needed a
large number that would never realistically be reached, so it was just another way of
saying “a really big number.”

 We then define two more variables, prevAnchor and prevTarget, that hold refer-
ences to dropContainer.activeAnchor and dropContainer.activeTarget.

 There may be times when we don’t want to update our drop-target instances. If we
do, then we loop over each of the targets and perform some spatial logic. This consists
of getting the current element’s width and height, saving them, and then dividing both
of those by two to initialize a couple of anchor points. At initialization, these two anchor
points represent the “center” of the drop-container directive element. Now we check
for keywords in the anchor parameter and update our anchor points accordingly.

 You math majors get ready to party—we’re going to use the Pythagorean Theorem!
We get the mouse pointer’s distance from anchorX and the mouse pointer’s distance
from anchorY by subtracting e.offsetX and e.offsetY from them, respectively. Then
we square both these values and add them together. The result is the square of the dis-
tance between the mouse pointer and the position represented by the two anchor
points. Then, if that distance is less than minDistanceSq, we set the current anchor and
current target, and update minDistanceSq to the distanceSq we just evaluated.

 Then we update the activeAnchor and activeTarget properties on the controller
to the latest values.

 Next, we define an eventData object and populate it with the current event, data
from the $dragging service, the current anchor, current target, previous anchor, and
previous target.

 Now, if the previous target and the current target are different and there was a pre-
vious target, we remove the appropriate class and call the handleDragLeave method
on the previous target, passing in our newly formed eventData. If there is a current
target, we add the appropriate class to it and call the handleDragEnter method on it,
passing in the eventData.

 Finally, we return the eventData. Whew!

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//...

dropContainer.handleDragEnter = function (e) {
if (e.originalEvent) e = e.originalEvent;

if (!dropContainer.accepts
 || dropContainer.accepts.indexOf($dragging.getType()) >= 0) {

Licensed to Mark Watson <nordickan@gmail.com>

https://developer.mozilla.org

98 CHAPTER 5 Directives

e.preventDefault();
} else {

return;
}

var eventData = dropContainer.updateDragTarget(e);

dropContainer.el.children().css({'pointer-events': 'none'});
dropContainer.el.addClass('drop-container-active');

if (dropContainer.callbacks.onDragEnter) {
dropContainer.callbacks

 ➥ .onDragEnter(dropContainer.scope, eventData);
}

};
});

As usual, we want the original event. If the accepts property on the controller is not
defined or if the current type in the $dragging service is included in the list of types in
the accepts array, then we prevent the default DOM actions from occurring and pro-
ceed with the rest of the method. We have to prevent the default action if we want to
implement our own functionality. If we don’t, the drop-container won’t react to the
dragenter event.

 Then we call the updateDragTarget method, pass in the current event, and assign
the variable eventData to the return value of that call. Also, we get rid of pointer events
on the drop-container element’s children and add a class to that same element.

 Lastly, we invoke the proper callback if it exists and pass in the current scope and
the eventData object:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//...

dropContainer.handleDragOver = function (e) {
if (e.originalEvent) e = e.originalEvent;

if (!dropContainer.accepts
|| dropContainer.accepts.indexOf($dragging.getType()) >= 0) {

e.preventDefault();
} else {

return;
}

var eventData = dropContainer.updateDragTarget(e);

if (eventData.target) {
eventData.target.handleDragOver(eventData);

}

if (dropContainer.callbacks.onDragOver) {

Licensed to Mark Watson <nordickan@gmail.com>

99A more advanced feature

dropContainer.callbacks
 ➥ .onDragOver(dropContainer.scope, eventData);
}

};
});

Once again, we grab the original event, proceed if we have the right mime-type, and
call updateDragTarget to get the event data. If eventData has a target, we call that
target’s handleDragOver method (the handleDragOver method defined on the
DropTargetController). Then, if an onDragOver callback has been defined on the
controller, we call it and pass in the current scope and eventData.

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//...

dropContainer.handleDragLeave = function (e) {
if (e.originalEvent) e = e.originalEvent;

var eventData = dropContainer.updateDragTarget(e, true);

dropContainer.el.children().css({'pointer-events': null});
dropContainer.el.removeClass('drop-container-active');

if (dropContainer.callbacks.onDragLeave) {
dropContainer.callbacks

 ➥ .onDragLeave(dropContainer.scope, eventData);
}

};
});

You probably have noticed the pattern by now. The only difference here is that we
reset the pointer-events rule on the drop-container element’s children to null and
remove a class from the element:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//…

dropContainer.handleDragEnd = function (e) {

dropContainer.el.children().css({'pointer-events': null});
dropContainer.el.removeClass('drop-container-active');

};
});

Again, we reset the pointer-events rule on the element’s children to null and
remove a class from the element:

Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 5 Directives

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropContainerController', function ($dragging) {

//…

dropContainer.handleDrop = function (e) {
if (e.originalEvent) e = e.originalEvent;

if (!dropContainer.accepts
 || dropContainer.accepts.indexOf($dragging.getType()) >= 0) {

e.preventDefault();
} else {

return;
}

var eventData = dropContainer.updateDragTarget(e);

if (eventData.target) {
eventData.target.handleDrop(eventData);

}

if (dropContainer.callbacks.onDrop) {
dropContainer.callbacks

 ➥ .onDrop(dropContainer.scope, eventData);
}

dropContainer.handleDragEnd(e);
};

});

The handleDrop method is nearly identical to the handleDragOver method. We only
need to change the method called on eventData.target to handleDrop, update the
controller callback method to onDrop, and call the handleDragEnd method defined
on the controller.

5.3.7 Create the drop-target directive

The drop-container can use nested drop-target directives to delegate the region of
the drop-container in which the drag-container gets dropped. Here’s what that
drop-target directive looks like:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.directive('dropTarget', function ($parse) {
return {

restrict: 'A',
require: ['^dropContainer', 'dropTarget'],
controller: 'DropTargetController',
controllerAs: 'dropTarget',
link: function ($scope, $element, $attrs, ctrls) {

var dropContainer = ctrls[0];
var dropTarget = ctrls[1];
var anchor = $attrs.dropTarget || 'center';

Licensed to Mark Watson <nordickan@gmail.com>

101A more advanced feature

var destroy =
 ➥ dropContainer.removeDropTarget.bind(dropContainer, anchor);

$element.addClass('drop-target drop-target-' + anchor);

dropTarget.init($element, $scope, {
onDragEnter: $parse($attrs.onDragEnter),
onDragOver: $parse($attrs.onDragOver),
onDragLeave: $parse($attrs.onDragLeave),
onDrop: $parse($attrs.onDrop),

});

dropContainer.addDropTarget(anchor, dropTarget);

$scope.$on('$destroy', destroy);
}

};
})

.controller('DropTargetController', function () {
});

Yes, this directive is a little different. We add the require attribute to the DDO and assign
it an array of directives whose functionality we want to include in the drop-target direc-
tive. The ^ at the beginning of dropContainer denotes the fact that we want to search
the directive’s parents for the controller. We also need to add dropTarget to the
required dependencies. With this done, we then add a fourth parameter to the link func-
tion called ctrls. This parameter is an array that contains our two controllers, which we
can access in the link function via ctrls[0] and ctrls[1].

 In the first two lines of the link function, we get our controllers from the ctrls
parameter and assign them to local variables for use in our link function. Then we
assign the dropTarget attribute to an anchor variable, and if the dropTarget attribute
was left blank, we default anchor to center. Our last variable assignment takes the
removeDropTarget method on the dropContainer controller and assigns it to the vari-
able destroy. The second parameter that we passed to the bind method is an argu-
ment that will prepend any other arguments sent to the method that bind was called
on. For example, if we called the destroy method as destroy(x,y), the method
would actually execute as if it had been called as destroy(anchor, x, y).

 This entire process is standard procedure for registering one directive with
another directive; it’s important that drop-container has access to drop-target,
since the updateDropTarget method on the drop-container delegates events to
drop-target.

 Next, we add some classes that we’ll use in the CSS to style our targets appropriately.
 Then we call init on the dropTarget controller and pass in three parameters: the

jQuery-wrapped DOM element on which the directive was defined, the link function’s
scope, and a list of callbacks that the controller can access and execute.

 Two last bits and we’re done with the link function. We call addDropTarget on the
DropContainerCtrl and pass in the anchor variable (or basically the position of our

Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 5 Directives

dropTarget directive), and then pass in the drop-target instance. Lastly, we create an
event listener that listens on $scope for the $destroy event, at which point our newly
created destroy method will be invoked. Since we actually bound an argument to
destroy when we defined it, calling destroy() will end up executing as
destroy(anchor), which is what we want.

5.3.8 Use the drop-target directive

Now let’s take a look at the HTML for the drop-target directive:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<li userstory

ng-repeat="story in storyboard.stories | filter: {status:status.name}"
drag-container="story" mime-type="application/x-angello-status"
drop-container="" accepts="['application/x-angello-status']"
class="story my-repeat-animation"
ng-click="storyboard.setCurrentStory(story)">

<div drop-target="top"
 on-drag-enter="storyboard.insertAdjacent(story, data, true)"
 on-drop="storyboard.finalizeDrop(data)"></div>
<div drop-target="bottom"
 on-drag-enter="storyboard.insertAdjacent(story, data, false)"
 on-drop="storyboard.finalizeDrop(data)"></div>

<!-- … -->

We define the drop-target directive and give it a position value like “top” or “bot-
tom.” Whenever a story is dragged over the “top” target on another story, it splices
into the array above that story and vice versa. The splicing is controlled by the third
parameter in the insertAdjacent method, which we’ll examine shortly.

 Then we add two more attributes, on-drag-enter and on-drop, and assign them
callbacks that—you guessed it—get called when a drag-container is pulled over the
drop-target area and when the drag-container is dropped in the drop-container
area, respectively.

5.3.9 Build the controller

Let’s move on to the controller, shall we?

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropTargetController', function () {
var dropTarget = this;

dropTarget.init = function (el, scope, callbacks) {
dropTarget.el = el;
dropTarget.scope = scope;
dropTarget.callbacks = callbacks;

};
});

As usual, we assign this to a dropTarget variable for usage in the rest of the controller.

Licensed to Mark Watson <nordickan@gmail.com>

103A more advanced feature

 The init method takes the passed-in element, scope, and callback functions and
assigns them to the controller for further use:

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.controller('DropTargetController', function () {

//…

dropTarget.handleDragEnter = function (eventData) {
dropTarget.el.addClass('drop-target-active');

if (dropTarget.callbacks.onDragEnter) {
dropTarget.callbacks

 ➥ .onDragEnter(dropTarget.scope, eventData);
}

};

dropTarget.handleDragOver = function (eventData) {
if (dropTarget.callbacks.onDragOver) {

dropTarget.callbacks
 ➥ .onDragOver(dropTarget.scope, eventData);
}

};

dropTarget.handleDragLeave = function (eventData) {
dropTarget.el.removeClass('drop-target-active');

if (dropTarget.callbacks.onDragLeave) {
dropTarget.callbacks

 ➥ .onDragLeave(dropTarget.scope, eventData);
}

};

dropTarget.handleDrop = function (eventData) {
if (dropTarget.callbacks.onDrop) {

dropTarget.callbacks.onDrop(dropTarget.scope, eventData);
}

};
});

The rest of the methods in the controller follow the exact same convention: if the
appropriate callback is available, execute it. The only deviation from this is in handle-
DragEnter and handleDragLeave, where we add/remove the drop-target-active
class.

5.3.10 Create the $dragging service

The $dragging service is simply used to share data between the controllers of the
drag-container and drop-container directives.

// client/src/angello/storyboard/directives/DragAndDrop.js
angular.module('Angello.Storyboard')

.factory('$dragging', function () {

Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 5 Directives

var data = null;
var type = null;

return {
getData: function () {

return data;
},
getType: function () {

return type;
},
setData: function (newData) {

data = newData;
return data;

},
setType: function (newType) {

type = newType;
return type;

}
};

});

Here we define two variables, data and type, and expose them via a getter-setter API.
The API has four methods: getData, getType, setData, and setType. As you would
imagine, these methods return the data variable, return the type variable, set and return
the data variable, and set and return the type variable. Pretty straightforward stuff.

5.3.11 Update the StoryboardCtrl

The last piece of the puzzle is the interaction between the drop-container/drop-
target directives and the StoryboardCtrl. Both of the aforementioned directives
have on-drag-enter and on-drop attributes that allow controller methods to be exe-
cuted in those directives. Let’s take a look at the methods passed to the drop-target
directives: insertAdjacent and finalizeDrop:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl',
function ($scope, $log, StoriesModel, UsersModel,

STORY_STATUSES, STORY_TYPES) {

//...

storyboard.insertAdjacent = function (target, story, insertBefore) {
if (target === story) return;

var fromIdx = storyboard.stories.indexOf(story);
var toIdx = storyboard.stories.indexOf(target);

if (!insertBefore) toIdx++;

if (fromIdx >= 0 && toIdx >= 0) {
storyboard.stories.splice(fromIdx, 1);

Licensed to Mark Watson <nordickan@gmail.com>

105A more advanced feature

if (toIdx >= fromIdx) toIdx--;

storyboard.stories.splice(toIdx, 0, story);

story.status = target.status;
}

};

storyboard.finalizeDrop = function (story) {
StoriesModel.update(story.id, story)

.then(function (result) {
$log.debug('RESULT', result);

}, function (reason) {
$log.debug('REASON', reason);

});
};

storyboard.changeStatus = function (story, status) {
story.status = status.name;

};

//…
});

Whenever a story is dragged over another story, the method assigned to the appropriate
drop-target directive’s on-drag-enter attribute is triggered (in our case, insert-
Adjacent). This method takes three parameters—target, story, and insertBefore—
and inserts a story properly in a status column (target and story actually come from
the eventData object inside the dropContainer.updateDragTarget method). If the
existing or target story is not the same as the story being moved, we then use their indices
and the Boolean parameter insertBefore to place the story data at the proper position
in the array for the status column.

 The method assigned to the on-drop attribute of either a drop-container or
drop-target directive is triggered when a story is dropped over that directive. This
method just takes a story, grabs its ID, and updates the back end, notifying it of the sta-
tus change.

 A unique situation arises when the method assigned to the on-drag-enter attri-
bute on the drop-container with class emptystatus is triggered. Since this directive
has no stories in it, we don’t have to figure out where in the array a story goes; we can
simply change that story’s status.

 And that completes our foray into the drag-and-drop feature. We did a lot in this
section, so let’s do a quick review:

■ We created three different directives: drag-container, drop-container, and
drop-target.

■ We defined a service called $dragging that lets you share data between the
DragContainerController and the DropContainerController.

■ You learned how to use JavaScript’s .bind to execute a method in the context of
a specific object.

Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 5 Directives

■ We used $scope.$watch and $attrs.$observe to listen for changes to attri-
butes on our directives.

■ We wrapped the code that changed AngularJS data in a $scope.$apply so that
AngularJS knew to perform a digest cycle.

■ We showed how to import a controller from another directive using require
and how to use multiple controllers in the link function.

■ You saw how drop-container and drop-target directives interacted with the
StoryboardCtrl.

5.4 Integrating with third-party libraries again!
So far we’ve written two directives that relied on jQuery and jQuery UI, which has
been a pleasant experience so far, but let’s try for something more ambitious.

 We’ll build a directive that integrates with Flot and displays user story statistics—
see figure 5.4.

FLOT Flot is a gorgeous graphing library that’s built in JavaScript. You can
read more about Flot at http://www.flotcharts.org/.

5.4.1 Install Flot

First we need to install Flot in our application. Flot comes with a core library, and then
you add a plugin for the visualization you want to accomplish. In our case, we want to
use the categories plugin because we want to segment our data based on categories.

 We’ll make Flot available to our application by adding references to the appropri-
ate files in the following code:

// client/assets/js/boot.js
{ file: 'vendor/flot/jquery.flot.js' },
{ file: 'vendor/flot/jquery.flot.categories.js' },

The next two steps will go by pretty quickly, now that we’ve established muscle mem-
ory, but they’re necessary steps to getting started.

Figure 5.4 We may not have a lot, but we’ve got a Flot!

Licensed to Mark Watson <nordickan@gmail.com>

http://www.flotcharts.org/

107Integrating with third-party libraries again!

5.4.2 Build the directive

Call us creatures of habit, but we’re going to start this directive the same way we
kicked off the other two directives—with the basic skeleton:

// client/src/angello/dashboard/directives/ChartDirective.js
angular.module('Angello.Dashboard')

.directive('chart',
function () {

var linker = function (scope, element, attrs) {
// Link goes here

};
var controller = function($scope) {

// Controller goes here
};
return {

restrict: 'A',
link: linker,
controller: controller

};
});

5.4.3 Use the directive

We’ll use the chart directive in two places, so we need to add it in two places:

<!-- client/src/angello/dashboard/tmpl/dashboard.html -->
<div class="container chart-wrapper">

<h3>User Stories by Status</h3>
<hr/>
<div class="chart-container">

<div chart class="chart-placeholder"></div>
</div>
<h3>User Stories by Type</h3>
<hr/>
<div class="chart-container">

<div chart class="chart-placeholder"></div>
</div>

</div>

5.4.4 Massage our data

Technically, the directive is working, but it doesn’t actually do much yet. The interest-
ing challenge with Flot integration is that Flot expects a very specific data structure to
properly render the chart.

 Here you can see the data structure that it expects, which was pulled from the Flot
sample files:

var data = [
["January", 10],
["February", 8],
["March", 4],
["April", 13],
["May", 17],
["June", 9]

];

Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 5 Directives

To make this work with the user stories, we need to come up with a data structure that
looks like the following array:

var data = [
["Log", 1],
["To Do", 2],
["In Progress", 0],
["Code Review", 1],
["QA Review", 0],
["Verified", 1],
["Done", 1]

];

We’ll delve into a pretty heavy utility function that will produce this very data struc-
ture. Bear with us and it’ll make sense in a moment, and balance will be restored in
the universe.

 We’ll unpack a heavy utility function that’s used to produce the data structure that
Flot needs. It’s easiest to articulate what it does in natural language before we start to
look at the code. In a nutshell, we tell parseDataForCharts to “Loop over Array A, and
on each iteration, get the value that exists at Property A. Then, when you have that
value, go to Array B and count how many times that value occurs on Property B, m’kay?”

// client/src/angello/dashboard/directives/ChartDirective.js
angular.module('Angello.Dashboard')

.directive('chart',
function () {

var parseDataForCharts = function(sourceArray, sourceProp,
referenceArray, referenceProp) {

var data = [];
referenceArray.each(function (r) {

var count = sourceArray.count(function (s) {
return s[sourceProp] == r[referenceProp];

});
data.push([r[referenceProp], count]);

});
return data;

};
//...

});

The two main pieces of this function are the Sugar each method that iterates over the
referenceArray and the Sugar count method that counts the matches between
sourceArray[sourceProp] and referenceArray[referenceProp]. From there it’s a
matter of pushing the result in the right format into the data array for the return state-
ment. Flot expects a format of [['property', number], ['property', number], etc],
which we honor in the following line:

data.push([r[referenceProp], count]);

This was the part of the directive that got the most mind-share when it was being writ-
ten, and now that we have our data in the format we need, it’s going to be pretty much
a matter of wiring up the pieces.

Licensed to Mark Watson <nordickan@gmail.com>

109Integrating with third-party libraries again!

5.4.5 It’s time we had the “isolated scope talk”

Scope, by default, prototypically inherits from its parent, and if we were to reference a
property on the child scope, AngularJS would walk up the prototype chain until it
found it. This is a non-issue in most cases, but there are times when you do want to iso-
late the directive’s scope entirely from its parent scope to completely mitigate poten-
tial side effects.

 AngularJS allows you to accomplish this via isolated scope, which creates an ironclad
perimeter around the directive’s scope, and then it’s the responsibility of the developer
to define exactly how the directive will communicate with the outside world. This essen-
tially provides an API for your directive with clearly defined channels of communication.

 There are three types of isolated scope: attribute-isolated scope, binding-isolated
scope, and expression-isolated scope. Attribute-isolated scope binds on a single attribute,
and communication is only from the parent to the child. The value that you define is
interpreted as a string, and therefore is really only suitable for simple values. Binding-
isolated scope enables two-way communication between the parent and child scope,
and can bind to collections and objects as well as simple values. This is the most com-
mon type of isolated scope and is what most of the built-in AngularJS directives use.
Expression-isolated scope works by allowing the child to execute an expression on the
parent. Although not as common, expression-isolated scope is a great way to dynami-
cally attach behavior to your application by letting the parent define the expression
to be executed when the child calls the expression defined in the isolated scope.

GOING UP We make an elevator pitch for isolated scope, and the topic warrants
an entire discussion dedicated to it. Check out http://onehungrymind.com/
infographic-understanding-angularjs-isolated-scope for a more thorough
examination of isolated scope and how it works.

Let’s examine an instance of isolated scope as it relates to our project before we go
any further:

// client/src/angello/dashboard/directives/ChartDirective.js
angular.module('Angello.Dashboard')

.directive('chart',
function () {

//...
return {

restrict: 'A',
link: linker,
controller: controller,
scope: {

sourceArray: '=',
referenceArray: '='

}
};

});

We want to bind to sourceArray and referenceArray so that if they change, we’ll
know about it in the directive. Conversely, if we modified the arrays in the directive,

Licensed to Mark Watson <nordickan@gmail.com>

http://onehungrymind.com/infographic-understanding-angularjs-isolated-scope
http://onehungrymind.com/infographic-understanding-angularjs-isolated-scope

110 CHAPTER 5 Directives

we’d want the outside world to know as well. Isolated scope is accomplished on the
definition object by passing in an object with the properties you want to expose and
some special syntax to define the kind of isolation you want. In our case, we want bind-
ing-isolated scope and so we’ll use an = sign to indicate this.

ISOLATED SCOPE Attribute-isolated scope is defined with an @ symbol, binding-
isolated scope is defined with an equals sign (=), and expression-isolated scope
is defined with an ampersand (&). If the property name you’re isolating is the
same to the outside world as what you’re using internally, no other configura-
tion is necessary. If for some reason you wanted to use a different name inter-
nally, then the format is as follows: externalProperty: '=internalProperty'.

We then exercise our right to isolated scope in the HTML:

<!-- client/src/angello/dashboard/tmpl/dashboard.html -->
<div class="container chart-wrapper">

<h3>User Stories by Status</h3>
<hr/>
<div class="chart-container">

<div chart class="chart-placeholder"
source-array="dashboard.stories" source-prop="status"
reference-array="dashboard.statuses" reference-prop="name">

</div>
</div>
<h3>User Stories by Type</h3>
<hr/>
<div class="chart-container">

<div chart class="chart-placeholder"
source-array="dashboard.stories" source-prop="type"
reference-array="dashboard.types" reference-prop="name">

</div>
</div>

</div>

We told the outside world to put any array in the source-array attribute, and the
directive will internally treat it as sourceArray.

CAMEL CASE AND SNAKE CASE AngularJS converts JavaScript camel case into
snake case in HTML. This is why in the directive we use sourceArray, and on
the HTML it’s source-array.

You may have noticed that we also define source-prop and reference-prop on the
directive element, but we haven’t set up isolated scope around these properties. This
was a design decision that didn’t warrant isolated scope, because those properties only
need to be read once, and it’s not worth incurring the cost of binding in any direc-
tion. We’ll read them from the attrs array in the next section.

5.4.6 Grand finale: breathe life into Flot

And now that we’ve created communication channels with all of the data that we
need, it’s time to lock this down in style. It’s time to actually hook up Flot:

Licensed to Mark Watson <nordickan@gmail.com>

111Integrating with third-party libraries again!

// client/src/angello/dashboard/tmpl/dashboard.html
angular.module('Angello.Dashboard')

.directive('chart', function () {
//...
var linker = function (scope, element, attrs) {

scope.$watch('sourceArray', function () {
scope.data = parseDataForCharts(

scope.sourceArray,
attrs['sourceProp'],
scope.referenceArray,
attrs['referenceProp']

);

if(element.is(':visible')){
$.plot(element, [scope.data], {

series: {
bars: {

show: true,
barWidth: 0.6,
align: "center"

}
},
xaxis: {

mode: "categories",
tickLength: 0

}
});

}
});

};

//...
});

The first thing we do is parse the data via our parseDataForCharts method, passing
in our isolated scope arrays and the property values we read off of the attrs array. We
set the result of that method call to the data property on scope so that we can use it
when we spin up the Flot chart.

 The one caveat about Flot is that the element it’s drawing in has to be visible or it com-
pletely falls apart. That is why we use element.is(':visible') as a condition for pro-
ceeding any further. Then we instantiate Flot with $.plot(element, [scope.data],
{ });, passing in element, scope.data and the appropriate configuration object.

BE INQUISITIVE When this directive was being created, we used the configura-
tion object from the Flot sample files, and it works right out of the box. For
fun, we encourage you to explore the different options that Flot has available,
such as mouse interaction, colors, and so on.

Stop. Review time!

■ We performed some more array wizardry with Sugar to get our data into a for-
mat that Flot could use.

Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 5 Directives

■ We talked about isolated scope and the benefits it provides.

■ We instantiated Flot to show two completely different sets of data.

5.5 Testing a directive
The spec for a directive is actually a simple recipe: create an Angular element and
then compile that element with $rootScope. We’ll use our userstory directive as an
example.

 Let’s begin by creating a userStory variable that will hold our directive’s scope, an
element variable that will contain our Angular element, a StoriesModel variable to
reference the StoriesModel service, and lastly a $rootScope variable to, you guessed
it, hold our root scope! Since the directive was declared on the Angello.User module,
we also need to include that module:

client/tests/specs/directives/UserStoryDirective.spec.js
'use strict';

describe('userstory Directive', function () {
var userStory,

element,
StoriesModel,
$rootScope;

beforeEach(module('Angello.User'));
});

Now we need to inject all of our dependencies. In a beforeEach call, we inject the $q,
$compile, $rootScope, and StoriesModel references. We assign our global $root-
Scope reference, create an Angular element out of HTML markup, and then compile
the element with $rootScope.

 Now remember how the controller-as syntax works? That’s right, it creates a top-
level object on $scope. So when a directive is defined using controllerAs, we can get
its controller’s methods and properties by calling the scope method on our compiled
element and then getting the userStory property on that scope, since we defined our
directive’s controllerAs property as userStory.

 We also spy on StoriesModel.destroy. Since we’re not testing that service, we
don’t care what that method actually does, so we mock it out by calling .and.call-
Fake and defining a simple function that returns a promise. In our directive, when
StoriesModel.destroy is called successfully, we broadcast a storyDeleted event, so
we spy on the $broadcast method on $rootScope:

client/tests/specs/directives/UserStoryDirective.spec.js
'use strict';

describe('userstory Directive', function () {

//...

beforeEach(inject(function($q, $compile, _$rootScope_, _StoriesModel_) {

Licensed to Mark Watson <nordickan@gmail.com>

113Best practices

$rootScope = _$rootScope_;

var directiveMarkup = angular.element('<li userstory>');
element = $compile(directiveMarkup)($rootScope);
userStory = element.scope().userStory;

StoriesModel = _StoriesModel_;

spyOn(StoriesModel, 'destroy').and.callFake(function() {
var deferred = $q.defer();
deferred.resolve('data');
return deferred.promise;

});

spyOn($rootScope,'$broadcast').and.callThrough();
}));

});

As usual, the actual test is much more straightforward than the rigmarole needed to
set it up. We simply call the deleteStory method on the directive’s scope, pass it an
argument with value 0, and then test to make sure that the method was indeed called
with 0. We then resolve the promise using $rootScope.$digest() and then test to
make sure the appropriate event was broadcasted:

client/tests/specs/directives/UserStoryDirective.spec.js
it('should delete a story', function() {
 userStory.deleteStory('0');
 expect(StoriesModel.destroy).toHaveBeenCalledWith('0');
 $rootScope.$digest();
 expect($rootScope.$broadcast).toHaveBeenCalledWith('storyDeleted');
});

5.6 Best practices
DOM manipulation should be done in the link function and imperative logic in the controller.
One of the advantages of using a JavaScript framework like AngularJS is the separation
of concerns, especially the separation of the DOM from our imperative logic. We like
to keep this theme rolling by putting all of the DOM manipulation logic in our direc-
tives’ link function and all of our business logic in our directives’ controller.

Using bindToController
We’ve already talked about the controller-as syntax and why we use it. It turns out
that there’s a small disconnect between controllerAs in a directive DDO and iso-
late scope. If you use both of these features, you have to watch $scope for changes
inside the controller and then update the this property whenever an attribute on
isolate scope is changed. This completely defeats the purpose of controllerAs!
In Angular 1.3, all you need to do is add bindToController: true to your DDO, and
this will be updated every time an attribute on isolate scope is updated.

Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 5 Directives

 Favor a compartmentalized approach to writing directives. Oftentimes, we’ll start build-
ing out a feature using a directive and then, perhaps a couple weeks later, we have a
whale of a directive on our hands. It’s not that our code is bad, it’s just that our direc-
tive is doing too much at once. At this point, we like to break our directive into inde-
pendent logical components and then use them together. This kills two birds with one
stone: not only do we have cleaner, more maintainable code, but we can also reuse
one or more of our components in other parts of the application.

5.7 Summary
And we have crossed the finish line with three directives we’ve built from the ground
up. While we sacrificed covering the entire academic tome of directives in favor of
illustrating practical, working examples, we hope that you’ve started to see the
immense power of directives and dig deeper. Let’s review:

■ Directives allow you to extend HTML however you want.
■ You learned what directives are, why you want them, and why you need them.
■ There are three main parts to a directive: the Directive Definition Object, the link

function, and the controller; you saw the purpose of each and how to use them.
■ You learned what isolated scope is and how to leverage it in providing the maxi-

mum functionality to your directives.
■ You saw how to include one directive’s controller in the DDO of another direc-

tive and how to inject that controller into that directive’s controller.
■ You built complex features using directives, including a drag-and-drop feature

and a third-party integration with a jQuery plugin to give you pretty graphs.

Licensed to Mark Watson <nordickan@gmail.com>

115

Animations

6.1 Intro to animations
AngularJS was originally created as a framework to handle enterprise CRUD applica-
tions. With the introduction of the new animations API, AngularJS has broadened
the possibilities to offer something for designers and developers alike.

 The most powerful aspect of AngularJS is directives, and AngularJS animations
are essentially class-based directives that have the power to harness complex anima-
tions with the addition of a single class to your markup.

 The goal of this chapter is to show you the AngularJS animation events, the
naming convention around those events, and the three types of animations you can
do in AngularJS, with practical examples for each. We’re not going to examine CSS3
animations or JavaScript animations in depth, but rather endeavor to lay a strong
foundation that you can let your creativity run wild on.

This chapter covers
■ How AngularJS handles animations
■ Understanding the animation-naming convention
■ The three types of animations
■ Concrete examples of each type as it relates to

Angello

Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 6 Animations

6.1.1 How AngularJS handles animations

AngularJS animations can be distilled down to five events and a class-based naming
convention. Once you’ve grasped the events at play and the naming convention,
AngularJS animations fade into the background and the animations themselves take
center stage.

 There are three types of animations that you can create with AngularJS: CSS transi-
tions, CSS animations, and JavaScript animations. Each type of animation is well suited
for varying contexts, and we’ll explore each of them later in the chapter.

 AngularJS doesn’t actually do any of the animations themselves, but simply pro-
vides the hooks for you to apply your own animations as you see fit. These hooks come
in the form of events, and there are only five of them.

 The five animation events are enter, leave, move, addClass, and removeClass (see
table 6.1).

The enter and leave events are fired when a DOM element is added or removed from
the DOM tree, respectively. The move event is fired when a DOM element changes posi-
tion within the DOM tree. Last but not least, the addClass and removeClass events are
fired when a class is added to or removed from an element, respectively.

6.1.2 The animation-naming convention

AngularJS animations are entirely class-based, which is a design decision that makes
integration with third-party libraries easier. Even JavaScript animations follow a class-
based naming convention for consistency.

Table 6.1 The AngularJS animation furious five

Event Function Description

enter $animate.enter(element,
parent, after, callback);

Appends the element object after the
after node or within the parent node
and then runs the enter animation
on the element

leave $animate.leave(element,
callback);

Runs the leave animation and then
removes the element from the DOM

move $animate.move(element,
parent, after, callback);

Moves the element node either after
the after node or inside of the v
node and then runs the move anima-
tion on the element

addClass $animate.addClass(element,
className, callback);

Runs the addClass animation based
on the className value and then
adds the class to the element

removeClass $animate.removeClass(element,
className, callback);

Runs the removeClass animation
based on the className value and
then removes the class from the element

Licensed to Mark Watson <nordickan@gmail.com>

117Intro to animations

The animation-naming convention follows a [class]-
[event]-[state] pattern, as shown in figure 6.1. This
figure indicates that we’re dealing with a mute class
that’s being added and removed, as seen by .mute-
add and .mute-remove. The animation defaults to
the starting state and then progresses to the active
state, as in “the class has been actively applied.” The
starting state is .mute-add, and .mute-add-active is
the active or completed state.

 If your animations are defined within CSS and
the events are triggered by an AngularJS directive such as ng-if or ng-repeat, then
the class name will be prefixed with an ng, as in ng-enter and ng-leave.

6.1.3 Animations enable!

The most logical place to start from a pragmatic sense is with how you enable anima-
tions within your AngularJS application. AngularJS animations aren’t part of the Angu-
larJS core, and so you have to include that as a separate file. We’ll use GreenSock
Animation Platform (GSAP), which is a JavaScript animation framework. We want the
TweenMax library, which contains everything GreenSock has to offer.

// client/assets/js/boot.js
{ file:

'//cdnjs.cloudflare.com/ajax/libs/

 ➥ angular.js/1.3.3/angular-animate.min.js'
},
{ file:

'//cdnjs.cloudflare.com/ajax/libs/gsap/latest/TweenMax.min.js'
},

GREENSOCK You can read more about GreenSock at http://www.greensock
.com/gsap-js/.

Now that angular-animate.min.js has been included, we need to inject it as a sub-module
into our application:

// client/src/angello/Angello.js
var myModule = angular.module('Angello', [

//...
'ngAnimate',
//...

]);

With those two steps completed, we’re ready to start adding animations to our
application.

Figure 6.1 The animation-naming
convention applied to directives

Licensed to Mark Watson <nordickan@gmail.com>

http://www.greensock.com/gsap-js/
http://www.greensock.com/gsap-js/

118 CHAPTER 6 Animations

6.2 CSS transitions
The easiest animations to implement are CSS transitions. The ease of implementation
comes from the fact that they’re entirely CSS-based and much more concise to express
than CSS animations.

 We’ll create a my-fade animation and apply it to a div that will trigger the anima-
tion when the div is added or removed from the DOM via ng-if. This animation will
toggle the visibility of the story details in the right column when the Angello applica-
tion is running in storyboard mode (see table 6.2).

6.2.1 Define the base transition

The first thing you need to do when constructing a CSS transition within AngularJS is
set up the base transition. Because we’re using ng-if to trigger the animation and the
event is caused by an AngularJS directive, we need to define the classes for ng-enter
and ng-leave:

/* client/assets/css/animations.css */
.my-fade-animation.ng-enter, .my-fade-animation.ng-leave {

-webkit-transition: 0.5s linear all;
-moz-transition: 0.5s linear all;
-o-transition: 0.5s linear all;
transition: 0.5s linear all;

}

In this code we define the transition for ng-enter and ng-leave on the my-fade ani-
mation to use linear easing that lasts for 0.5 seconds and applies to all properties.

6.2.2 Define the ng-enter transitions

The next step is to define the starting and stopping states for ng-enter. We’ll start
with an opacity of 0 and finish with an opacity of 1. This means that when the element
is added, it’ll start completely transparent and then fade in to full opacity.

/* client/assets/css/animations.css */
.my-fade-animation.ng-enter {

opacity: 0;
}

.my-fade-animation.ng-enter.ng-enter-active {
opacity: 1;

}

Table 6.2 The animation-naming convention

Event Starting CSS class Ending CSS class Directives that fire it

enter .ng-enter .ng-enter-active ngRepeat, ngInclude, ngIf, ngView

leave .ng-leave .ng-leave-active ngRepeat, ngInclude, ngIf, ngView

move .ng-move .ng-move-active ngRepeat

Licensed to Mark Watson <nordickan@gmail.com>

119CSS transitions

6.2.3 Define the ng-leave transitions

We’ll now define the transition for ng-leave, which is usually the reverse of what you
did for ng-enter. We’ll start with an opacity of 1 and end with an opacity of 0:

.my-fade-animation.ng-leave {
opacity: 1;

}

.my-fade-animation.ng-leave.ng-leave-active {
opacity: 0;

}

For the sake of illustration, we’ve separated the ng-enter and ng-leave classes, but
you could easily combine them for conciseness:

.my-fade-animation.ng-enter,

.my-fade-animation.ng-leave.ng-leave-active {
opacity: 0;

}

.my-fade-animation.ng-leave,

.my-fade-animation.ng-enter.ng-enter-active {
opacity: 1;

}

6.2.4 Making it move

Now that the CSS classes have been defined, it’s a matter of attaching them to the
DOM for use. Now you’ll see what we mean when we say AngularJS transitions are
essentially class-based directives that encapsulate animation functionality.

 This is the HTML without the animation:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="details">

<!-- ... -->

<div ng-if="storyboard.detailsVisible">
<!-- ... -->

</div>
</div>

This is the HTML with the animation:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="details">

<!-- ... -->

<div ng-if="storyboard.detailsVisible" class="my-fade-animation">
<!-- ... -->

</div>
</div>

Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 6 Animations

And so the only part left in this section is to actually toggle ng-if:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl',
function ($scope, $log, StoriesModel, UsersModel,

STORY_STATUSES, STORY_TYPES) {
//...
storyboard.detailsVisible = true;
//...
storyboard.setDetailsVisible = function (visible) {

storyboard.detailsVisible = visible;
};

});

In the StoryboardCtrl, we create a property on our $scope reference, called
detailsVisible, that we’ll use to bind ng-if to. We also create a method called set-
DetailsVisible that we use to set detailsVisible to true or false based on the value
of the visible parameter.

 In the HTML, we bind to detailsVisible via ng-if="storyboard.detailsVisible":

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="details">

<div class="details-nav">
<div ng-if="!storyboard.detailsVisible">

<button class="btn pull-left btn-default"
ng-click="storyboard.setDetailsVisible(true)">

</button>

</div>
<div ng-if="storyboard.detailsVisible">

<button class="btn pull-right btn-default"
ng-click="storyboard.setDetailsVisible(false)">

</button>

</div>
</div>

<div ng-if="storyboard.detailsVisible"
class="my-fade-animation">

<!-- ... -->
</div>

</div>

Note that we also have two other divs that are being toggled based on the property of
detailsVisible. If detailsVisible is true, then the button to set detailsVisible to
false is shown, and vice versa.

 We’ve now completed the functionality for attaching a CSS transition to our appli-
cation. In the next section we’ll cover another animation, but this time we’ll do it with
a CSS animation.

Licensed to Mark Watson <nordickan@gmail.com>

121CSS animations

6.3 CSS animations
Now that you’ve seen AngularJS animations using CSS transitions, let’s build on that
with another animation using CSS animations. CSS animations tend to be more ver-
bose than CSS transitions, but they’re also significantly more powerful.

 For this example, we’ll do another fade animation, but this time with ng-repeat. If
you recall, in table 6.2 ng-repeat has three events that we need to style for. These
three events are ng-enter, ng-leave, and ng-move.

6.3.1 Define the base animation classes

The first thing we need to do is to define the base animation classes:

/* client/assets/css/animations.css */
.my-repeat-animation.ng-enter {

-webkit-animation: 0.5s repeat-animation-enter;
-moz-animation: 0.5s repeat-animation-enter;
-o-animation: 0.5s repeat-animation-enter;
animation: 0.5s repeat-animation-enter;

}

.my-repeat-animation.ng-leave {
-webkit-animation: 0.5s repeat-animation-leave;
-moz-animation: 0.5s repeat-animation-leave;
-o-animation: 0.5s repeat-animation-leave;
animation: 0.5s repeat-animation-leave;

}

.my-repeat-animation.ng-move {
-webkit-animation: 0.5s repeat-animation-move;
-moz-animation: 0.5s repeat-animation-move;
-o-animation: 0.5s repeat-animation-move;
animation: 0.5s repeat-animation-move;

}

We define our base CSS class as my-repeat-animation and then define animations
for ng-enter, ng-leave, and ng-move. We then define the animation property with
a 0.5-second duration and the appropriate keyframe for the animation.

VENDOR PREFIXES The reason why CSS animations are so verbose is because
you have to define the animation for every vendor prefix. Using a CSS prepro-
cessor such as Sass or Less eliminates the need to type all of this out by hand.

6.3.2 Define the animation keyframes

Now that the base animation classes are defined, it’s just a matter of defining the key-
frames with the from and to states defined. Also, with CSS animations, it’s not neces-
sary to use the active convention that CSS transitions use.

 The following is a fairly lengthy piece of code, but the pattern is easy to identify.
The ng-enter animations go from 0 opacity to an opacity of 1, while ng-leave does
the exact opposite, and ng-move goes from an opacity of 0.5 to an opacity of 1:

Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 6 Animations

/* client/assets/css/animations.css */
@keyframes repeat-animation-enter {

from {
opacity:0;

}
to {
opacity:1;

}
}

@-webkit-keyframes repeat-animation-enter {
from {
opacity:0;

}
to {
opacity:1;

}
}

@-moz-keyframes repeat-animation-enter {
from {
opacity:0;

}
to {
opacity:1;

}
}

@-o-keyframes repeat-animation-enter {
from {
opacity:0;

}
to {
opacity:1;

}
}

@keyframes repeat-animation-leave {
from {
opacity:1;

}
to {
opacity:0;

}
}

@-webkit-keyframes repeat-animation-leave {
from {
opacity:1;

}
to {
opacity:0;

}
}

Licensed to Mark Watson <nordickan@gmail.com>

123CSS animations

@-moz-keyframes repeat-animation-leave {
from {
opacity:1;

}
to {
opacity:0;

}
}

@-o-keyframes repeat-animation-leave {
from {
opacity:1;

}
to {
opacity:0;

}
}

@keyframes repeat-animation-move {
from {
opacity:0.5;

}
to {
opacity:1;

}
}

@-webkit-keyframes repeat-animation-move {
from {
opacity:0.5;

}
to {
opacity:1;

}
}

@-moz-keyframes repeat-animation-move {
from {
opacity:0.5;

}
to {
opacity:1;

}
}

@-o-keyframes repeat-animation-move {
from {
opacity:0.5;

}
to {
opacity:1;

}
}

Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 6 Animations

6.3.3 Make it move

To show the portability of AngularJS animations, we can actually attach the same ani-
mation to two different ng-repeat instances with little fanfare:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="list-area-animation"

ng-class="{'list-area-expanded':!storyboard.detailsVisible}">
<div class="list-wrapper">

<ul class="list my-repeat-animation"
ng-repeat="status in storyboard.statuses">
<h3 class="status">{{status.name}}</h3>
<hr/>
<li userstory

ng-repeat="story in storyboard.stories
 ➥ | filter:{status:status.name}"

drag-container="story"
 ➥ mime-type="application/x-angello-status"

drop-container=""
 ➥ accepts="['application/x-angello-status']"

class="story my-repeat-animation"
ng-click="storyboard.setCurrentStory(story)">

<!-- ... -->

</div>

</div>

We attach it to the ul items, which render the status columns that the user stories are
organized into, and to the li items that represent the user stories themselves.

 We asserted at the beginning of the chapter that AngularJS animations are just a
matter of a handful of events and a naming convention. We believe that this section
really proved it in the sense that we haven’t introduced any new concepts other than
the CSS animation syntax itself. It was to a point anticlimactic, because by now some of
these elements should start to feel familiar.

6.4 JavaScript animations
The final type in the AngularJS animations triad is JavaScript animations. For this exam-
ple we’ll toggle the position of the details section by animating it on and off the screen.
We’ll accomplish this by dynamically attaching a details-visible class using ng-class.

 You can see the details section shown in figure 6.2, and in figure 6.3 it’s in its hid-
den state.

 You can use any JavaScript animation library, but for our example we’ll use Tween-
Max, which is a part of the GreenSock Animation Platform. TweenMax is an incredi-
bly powerful and feature-rich animation library that performs well on desktop and
mobile browsers.

Licensed to Mark Watson <nordickan@gmail.com>

125JavaScript animations

6.4.1 Defining the JavaScript animation

JavaScript animations are defined using the animation service:

// client/src/angello/app/animations/DetailsAnimation.js
angular.module('Angello.Common')

.animation('.details-animation',
function () {

//...
});

Defining the animation is similar to defining an AngularJS service or controller.
The only difference is that the animation name is class-based, so instead of details-
animation, it’s .details-animation.

Figure 6.2 Details shown

Figure 6.3 Details hidden

Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 6 Animations

6.4.2 The JavaScript animation events

Now that the animation has been defined, we need to actually configure it to handle
the animation events. Because we trigger the animation with ng-class, the two events
we want to listen to are addClass and removeClass:

// client/src/angello/app/animations/DetailsAnimation.js
angular.module('Angello.Common')

.animation('.details-animation',
function () {

return {
addClass: function (element, className, done) {

//...
},
removeClass: function (element, className, done) {

//...
}

};
});

The event handlers are defined inline to the return object. The three parameters that
each handler receives are element, className, and done. The element is the DOM ele-
ment that the event was triggered on, className is the name of the class that trig-
gered the event, and done is the callback function that needs to be called when the
animation is complete.

6.4.3 The JavaScript animation class

It’s possible to have more than one animation defined on an element, and so it’s nec-
essary to perform some logic to only act if the class that triggered the event is the one
you’ve defined:

// client/src/angello/app/animations/DetailsAnimation.js
angular.module('Angello.Common')

.animation('.details-animation',
function () {

return {
addClass: function (element, className, done) {

if (className == 'details-visible') {
//...

}
else {

done();
}

},
removeClass: function (element, className, done) {

if (className == 'details-visible') {
//...

}
else {

done();
}

}
};

});

Licensed to Mark Watson <nordickan@gmail.com>

127JavaScript animations

This is why, in the preceding code, we check to see if className is equal to details-
visible, and if it’s not then we call the done callback.

6.4.4 TweenMax

Now that we know that we’re dealing with the details-visible class specifically, it’s
time to add in the TweenMax code to actually do the animation work:

// client/src/angello/app/animations/DetailsAnimation.js
angular.module('Angello.Common')

.animation('.details-animation',
function () {

return {
addClass: function (element, className, done) {

if (className == 'details-visible') {
TweenMax.to(element, 0.5,

 ➥ {right: 0, onComplete: done });
} else {

done();
}

},
removeClass: function (element, className, done) {

if (className == 'details-visible') {
TweenMax.to(element, 0.5, {

right: -element.width() + 50,
onComplete: done

});
} else {

done();
}

}
};

});

When details-visible is added, we use TweenMax to animate the element to an
absolute position of 0 pixels to the right. When details-visible is removed, we use
TweenMax to animate it off the screen by setting the right property to the negative
value of element.width() plus 50 pixels so the Show button is still visible.

6.4.5 Making it move

The final piece to make the details-animation work is to add it to the DOM and set
ng-class to toggle the details-visible class.

 The following is the same code we used earlier, but with a few small additions to
the outer div. We’ve added details-animation to the class attribute, so now the
animation has a hook into the DOM. And we’re also dynamically adding or remov-
ing the details-visible class based on the value of detailsVisible with
ng-class="{'details-visible':storyboard.detailsVisible}":

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div class="details details-animation"

ng-class="{'details-visible':storyboard.detailsVisible}">

Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 6 Animations

<div class="details-nav">
<div ng-if="!storyboard.detailsVisible">

<button class="btn pull-left btn-default"
ng-click="storyboard.setDetailsVisible(true)">

</button>

</div>
<div ng-if="storyboard.detailsVisible">

<button class="btn pull-right btn-default"
ng-click="storyboard.setDetailsVisible(false)">

</button>

</div>
</div>

<div ng-if="storyboard.detailsVisible" class="my-fade-animation">
<!-- ... -->
</div>

</div>

The resulting animation works in conjunction with the CSS transition animation we
defined so that the details elements fade out as the details section slides off the screen,
and fade in as the details section slides back in.

MANUALLY TRIGGERED ANIMATIONS You can manually trigger your own anima-
tions using the $animate service. See http://docs.angularjs.org/api/ngAnimate
.$animate for more details.

6.5 Testing
Because animations target the visual aspect of our application more than the func-
tionality aspect, we usually leave animations out of our unit tests. But if you’d like to
know how to test animations, visit http://www.yearofmoo.com/2013/08/remastered-
animation-in-angularjs-1-2.html#testing-animations.

6.6 Best practices
Memorize the naming conventions for AngularJS animations. Seriously, you’ll be an anima-
tion alchemist. You’ll be able to throw together pro animations in no time at all.

 Use CSS transitions/animations when possible. We like to use CSS transitions and ani-
mations for simpler visuals, and only build them using JavaScript when they involve
multiple animations and/or complex transitions. That way, we can keep our styles in
our CSS files and let the JavaScript focus on the business logic.

Full-page animations
Here’s a super easy way to get full-page transitions: set an animation class on the
tag with the ng-view directive defined on it. In the context of Angello, if you were to
find the <div ng-view=""></div> element in index.html and add class="my-
fade-animation", each route would automatically start fading in and out!

Licensed to Mark Watson <nordickan@gmail.com>

http://docs.angularjs.org/api/ngAnimate.$animate
http://docs.angularjs.org/api/ngAnimate.$animate
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#testing-animations
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#testing-animations

129Summary

6.7 Summary
Now that you have three examples under your belt, we hope that it’s easy to identify
the event and naming-convention patterns that surround AngularJS animations.
AngularJS has proven itself time and time again to be a great framework for doing
functional things, but animations bring some fashion to that functionality with an
easy-to-use API that leverages all CSS and JavaScript to do any kind of animation you
can imagine. Let’s do a quick recap:

■ There are five animation event hooks in AngularJS: enter, leave, move,
addClass, and removeClass.

■ You learned what triggers each type of event.
■ You discovered the naming conventions that make animations tick.
■ You viewed examples of CSS transitions, CSS animations, and animations using

JavaScript.
■ You got a quick introduction to TweenMax and how it interacts with AngularJS.

Licensed to Mark Watson <nordickan@gmail.com>

130

Structuring
 your site with routes

Angello is starting to grow in complexity, with distinct but related areas of function-
ality such as managing users, managing user stories, and displaying visualizations.
How do you know when to show the user and when to show the user stories? What
if you want to show just the user stories for a specific user? This can get complex as
you try to account for all the possible permutations.

 Every web application has a URL, and you can use this to define the state of the
application. Based on the URL, you can intelligently route the user to the part of
the application that they want to see. This technique is called URL routing, and
AngularJS allows you to implement routing in your web applications with the

This chapter covers
■ Components of AngularJS routes
■ Creating routes
■ Route parameters
■ Creating and resolving dependencies in routes
■ Route events

Licensed to Mark Watson <nordickan@gmail.com>

131The components of AngularJS routes

ngRoute sub-module. Routes help you intelligently decide what to show and how to
show it, based on the URL of the application. We’ll spend the rest of this chapter dis-
cussing the various parts that make routes possible in AngularJS, while showing how
we can use it in Angello.

7.1 The components of AngularJS routes
Routing in AngularJS consists of four components that work together to allow you to
use URL routes to control the state of your application. See figure 7.1 and table 7.1 for
the big picture of how these components work together.

You’ll see all of these components in action in a moment, but a high-level example
would be if, say, you wanted to see the user stories assigned to a specific user. You’d use
$routeProvider to configure a route with the $route service to detect when the URL
is pointing to a specific user such as /users/123, with 123 being the user’s ID. $route
will detect this route and work with ng-view to create the appropriate controller and
view to display the user’s stories. The $routeParams service is injected into the con-
troller and exposes the user’s ID from the URL so that the controller can act upon it.

Table 7.1 ngRoute components

Component Responsibility

$routeProvider Configures routes

$route Listens to URL changes and coordinates with the ng-view instance

ng-view Responsible for coordinating the creation of the appropriate controller
and view for the current route

$routeParams Interprets and communicates URL parameters to the controller

$routeProvider

$route$routeParams

Configures

Exposes URL
parameters

Controls

Creates Creates

ng-view

ViewController

Figure 7.1 ngRoute big picture

Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 7 Structuring your site with routes

7.2 How to create routes in AngularJS
Now that we’ve identified the major components of ngRoute, it’s time to set up a few
routes within our Angello application so we can navigate from page to page. We’ll
start out with a basic implementation and build from that foundation.

7.2.1 Create your first route with ngRoute and ngView

Because ngRoute isn’t part of the AngularJS core, the first thing we need to do is to
include the ngRoute source file. You can download the source file directly from the
AngularJS website or use the CDN or Bower to fetch the file:

// client/assets/js/boot.js
{ file:

'//cdnjs.cloudflare.com/ajax/libs/angular.js/1.3.3/angular-route.min.js'
},

Now that we’ve included the source file, we need to reference the sub-module in our
application module definition:

// client/src/angello/Angello.js
var myModule = angular.module('Angello',

[
'ngRoute',
//...

]);

7.2.2 Add ngView

One final piece before we start defining our routes: we need to tell Angello where we
want to display the route’s rendered template in our application:

<!-- client/index.html -->
<body ng-controller="MainCtrl as main" ng-class="{loading:loadingView}">

<!-- ... -->
<div ng-view=""></div>
<!-- ... -->

</body>

We accomplish this by adding <div ng-view=""></div> into our main layout file.
ngView is responsible for fetching the route template and compiling it with the route’s
controller and displaying the finished, compiled view to the user.

COMPLEX LAYOUTS The relationship between a route and a view is one-to-
one, which can be a significant disadvantage if you have a complex layout that
requires nested views. A great solution to this problem is to use AngularUI
Router: https://github.com/angular-ui/ui-router.

7.2.3 Set up your route with $routeProvider

The first route that we need to set up is for the root of Angello, since this is the
entry point for the entire application. The path for this route will follow standard

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angular-ui/ui-router

133How to create routes in AngularJS

web conventions and consist of a single forward slash. We’ll define the template we
want to use for the view and the controller that we need to control that view.

PLANNING YOUR ROUTES Routes are always configured in the config block of
the module, because it’s behavior that needs to be available as soon as the
application runs.

Routes are primarily configured using the when method provided by $routeProvider.
The when method takes two arguments: the path parameter and the route configura-
tion object. The path parameter defines the URL pattern that the route will match
against, and the route configuration object defines how the matched route is sup-
posed to be handled.

// client/src/angello/Angello.js
myModule.config(

➥ function ($routeProvider, $httpProvider, $provide) {
$routeProvider

.when('/', {
templateUrl: 'src/angello/storyboard/

➥ tmpl/storyboard.html',
controller: 'StoryboardCtrl',
controllerAs: 'storyboard'

});
});

Now that we’ve set up the base route for Angello, we need to set up a way for the
viewer to get to the dashboard and users view. We can apply the same templateUrl
and controller pattern to accomplish this. The following code illustrates this in
action:

// client/src/angello/Angello.js
myModule.config(function ($routeProvider, $httpProvider, $provide) {

$routeProvider
.when('/', {

templateUrl: 'src/angello/storyboard/tmpl/storyboard.html',
controller: 'StoryboardCtrl',
controllerAs: 'storyboard'

})
.when('/dashboard', {

templateUrl: 'src/angello/dashboard/tmpl/dashboard.html',
controller: 'DashboardCtrl',
controllerAs: 'dashboard'

})
.when('/users', {

templateUrl: 'src/angello/user/tmpl/users.html',

We set up our routes
in the config block of
the module, so this is
where we begin.

We call
$routeProvider.when()
to set up a new route

with a path parameter
of / to indicate the

root of our web
application.

We need to define a
template for our

route, so in our route
configuration object

we set the
templateUrl property
with a value of views/

storyboard.html.

The second part we define on the
route configuration object is the
controller for the view, so we set
controller to StoryboardCtrl and
define how we want the controller
to be referenced in the view
(storyboard in this case).

Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 7 Structuring your site with routes

controller: 'UsersCtrl',
controllerAs: 'users'

})
.otherwise({redirectTo: '/'});

});

What happens if a user tries to go to a route that doesn’t exist? $routeProvider comes
with an additional method called otherwise that’s used when a route doesn’t match
any other definition. In the preceding code B, we call redirectTo from within other-
wise to navigate back to the root of the application if no matching route is found.

7.2.4 Set up route navigation

Now that we have our routes defined, it’s time to modify our navigation so that we can
navigate to the routes in our application. By default, AngularJS uses a hash symbol
such as #/users as a reference point for a route. To navigate to the root of the site, we
therefore would use to accomplish the task.

<!-- client/index.html -->
<div class="navbar navbar-fixed-top navbar-default">

<div class="navbar-header">

</div>
<div class="btn-group pull-right" ng-show="main.currentUser">

<button class="btn btn-default" ng-click="main.logout()">

</button>

</div>
</div>

Favor anchor tags over programmatically setting routes using $location. Program-
matically setting routes breaks a lot of accepted UX patterns such as opening a new tab
upon link click.

7.2.5 Review

We’ve just set up three routes for Angello so we can navigate to the storyboard view,
the dashboard view, and the users view. To do this, we added ngRoute to our appli-
cation, set up ngView, and defined our routes with $routeProvider. We added
ngRoute to Angello so that the entire application could have routing functionality.
We added ngView to the main HTML page so that ngRoute would know where to

B

Licensed to Mark Watson <nordickan@gmail.com>

135Using parameters with routes

render the templates for each route. We then defined our routes in the module.con-
fig block using $routeProvider. And finally, we updated our navigation to point to
the appropriate routes.

7.3 Using parameters with routes
We’re using routes to define the state of the application, and often we need to use
routes to define dynamic portions of the application state. In Angello, we have a view
that we want to use to show the user stories assigned to the user, so we need to know
what user we need to render the view for (see figure 7.2).

 A route path can contain named groups
that are delineated with a colon; for exam-
ple, :userId. $route will attempt to match
the path against $location.path and any
matched parameters will be stored in the
$routeParams service to be injected into
the appropriate controller. See figure 7.3.

 If the current URL is /users/123, then
$routeParams will have a userId property
with a value of 123.

Figure 7.2 Using route parameters to get detailed information

$routeParams

/users/123/preferences/green/eggs/and/ham

/users/:userID/preferences/:somePreference

Figure 7.3 The anatomy of route parameters

Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 7 Structuring your site with routes

 And so let’s add this exact capability to Angello by creating a route for a single
user:

// client/src/angello/Angello.js
myModule.config(function ($routeProvider, $httpProvider, $provide) {

$routeProvider
//...
.when('/users/:userId', {

templateUrl: 'src/angello/user/tmpl/user.html',
controller: 'UserCtrl',
controllerAs: 'myUser'

})
//...
.otherwise({redirectTo: '/'});

});

We’ll set the path to /users/:userId, which will attach a userId property to
$routeParams so we can use it in the UserCtrl.

 Now that we’ve defined the variable in our user route, we need to evaluate it so it’s
available as a $scope variable in our UserCtrl:

// client/src/angello/user/controllers/UserController.js
angular.module('Angello.User')

.controller('UserCtrl',
function ('$routeParams') {

var myUser = this;

myUser.userId = $routeParams['userId'];
});

To read route parameters, we need to inject the $routeParams service in our control-
ler. The property userId exists on $routeParams, and we can assign the value to
myUser.userId by evaluating $routeParams['userId'].

 We’ve been approaching route parameters from the inside out, but how do you
actually set a parameter on a route? How do you set userId so that you can use it in
the users view? The solution is simply a matter of properly crafting a URL link, and
AngularJS makes this even easier!

<!-- client/src/angello/user/tmpl/users.html -->
<tr ng-repeat="user in users.users">

<!-- ... -->
<td>

<button type="button" class="btn btn-link"
ng-click="users.removeUser(user.id)">Remove</button>

View
</td>

</tr>

The entry point to the user view will be the users view, and in that page we know
about all our users and their IDs. From within our ng-repeat, we’ll add a new link that
points to #/users/, and because we have access to the user’s ID, we can bind to it via
{{user.id}} to make a complete link of href="#/users/{{user.id}}".

Licensed to Mark Watson <nordickan@gmail.com>

137Using resolve with routes

7.3.1 Review

You’ve just learned how to use the application’s URL as a mechanism for evaluating
and passing values from one view to another. We used this technique in Angello to
pass a userId variable from the users view to the user view so that we could get spe-
cific information for that user. We also saw data binding in action in our users view to
dynamically construct the links to the user view with the appropriate userId value for
each user.

7.4 Using resolve with routes
One challenge with Angello is that we want to load a user’s available information and
a collection of stories to work with before we show the user view. AngularJS allows us
to handle this situation by defining dependencies on our routes that must be resolved
before the route’s controller is instantiated.

 At a high level, we want to make sure that the user view is given the correct user from
the users view, as well as provide all available stories so that we can assign the correct
stories to the provided user. We’ll use the resolve property on the route configuration
object (the object that’s passed as the second argument to $routeProvider.when) to
define this dependency. The resolve property is an object map that allows us to define
multiple dependencies.

// client/src/angello/Angello.js
myModule.config(function ($routeProvider, $httpProvider, $provide) {

$routeProvider
//...
.when('/users/:userId', {

templateUrl: 'src/angello/user/tmpl/user.html',
controller: 'UserCtrl',
controllerAs: 'myUser',
resolve: {

user: function ($route, $routeParams, UsersModel) {
var userId = $route.current.params['userId']

? $route.current.params['userId']
: $routeParams['userId'];

return UsersModel.fetch(userId);
},
stories: function (StoriesModel) {

return StoriesModel.all();
}

}
})
//...
.otherwise({redirectTo: '/'});

});

The interesting piece about this code is that because UsersModel.fetch(userId) and
StoriesModel.all() are returning a promise, we can attach a then method to be
called when the promise resolves. At this point we’ll be able to interact with both of
these values in the controller. Boom!

We declare a user
property and
inject $route,

$routeParams,
and UsersModel.

We’re able to
extract the userId

using $route or
$routeParams just
like we would in a

controller.

We call
UsersModel.fetch
to get the user
for userId.

We declare a
stories property

and inject
StoriesModel.

The stories property will be
resolved with the values of the

StoriesService.find call.

Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 7 Structuring your site with routes

 And now let’s jump over to the UserCtrl to see the user and stories dependencies
being used:

// client/src/angello/user/controllers/UserController.js
angular.module('Angello.User')

.controller('UserCtrl',
function ($routeParams, user, stories) {

//...
myUser.user = user.data;

myUser.getAssignedStories = function (userId, stories) {
var assignedStories = {};

Object.keys(stories, function(key, value) {
if (value.assignee == userId) {

assignedStories[key] = stories[key];
}

});

return assignedStories;
};

myUser.stories =

➥ myUser.getAssignedStories(myUser.userId, stories);
});

Dependencies defined in the route configuration object are injected just like other
services. From within the controller, we can now use these properties at our discre-
tion. In the preceding code, we simply bind the requested user’s data to myUser.user
for use in the view; then we take that same data and, in conjunction with the injected
stories collection, get all of the stories assigned to the requested user.

FLEXIBILITY If you’re astute, you may have caught the fact that we’re using
$routeParams to resolve the user property in the route configuration object,
while using it in the UserCtrl as well to get the same value. This is strictly to
illustrate the versatility and variations that are available in AngularJS. In pro-
duction, we’d choose the best option and use that exclusively.

What happens if a value returned by resolve makes a remote server call and that call
fails? If the return value of a route resolve property is a promise, a $routeChange-
Success event is fired when the promise is resolved and ngView will instantiate the
appropriate controller and render the template. If the promise is rejected, then a
$routeChangeError event is fired and additional handling is necessary.

7.4.1 Review

You’ve just learned how to use resolve in a route definition to create a route depen-
dency that will be injected into our route’s controller. In our example, we called the
UsersModel to fetch a user’s information and deliver it to the UserCtrl as a user depen-
dency. We also used the StoriesModel to deliver all of the stories to the UserCtrl as a
stories dependency.

Licensed to Mark Watson <nordickan@gmail.com>

139Testing

7.5 Route events
At this point, Angello is really starting to take
shape in terms of functionality, but there are
some UX things that we can do to make the expe-
rience better. We have a LoadingService that
sets flags on whether or not the application is
loading, which is bound to a modal preloader.
This provides the viewer with a visual cue that
Angello is doing something behind the scenes, as
shown in figure 7.4.

 We want to show the loading animation when
Angello is changing from one route to another.
We can accomplish this by listening for the $routeChangeStart and $routeChange-
Success events. We’ll set loading to true when the route starts to change, and set it to
false when the route change is completed.

 Let’s dig into the code to see how this would be accomplished:

// client/src/angello/Angello.js
myModule.run(function ($rootScope, LoadingService) {

$rootScope.$on('$routeChangeStart', function (e, curr, prev) {
LoadingService.setLoading(true);

});

$rootScope.$on('$routeChangeSuccess', function (e, curr, prev) {
LoadingService.setLoading(false);

});
});

7.5.1 Review

You just learned how to use $routeChangeStart and $routeChangeSuccess to detect
when Angello was changing from one view to another. This allowed us to set a prop-
erty on LoadingService to show and hide a modal while the new route was being
loaded and resolved.

7.6 Testing
You’re beginning to see a pattern in testing: you define variables global to the test, inject
necessary modules, inject the required dependencies, assign dependencies to your
global variables, and then test some assertions. Testing a route follows the same pattern;
you define your globals (including a variable that holds the URL of the route you want
to test), and you inject the $location, $route, $templateCache, and $rootScope

Since this behavior exists across the entire application, we put it in the run
block of the module. We inject $rootScope to listen for the route change

events and LoadingService to handle the state of the loading modal.We attach an event
listener for the

$routeChangeStart
event via

$rootScope.$on.

In our event handler, we set loading
to true on the LoadingService.

We attach an event
listener for the

$routeChangeSuccess
event via

$rootScope.$on.

And now we set loading to
false to hide the modal.

Figure 7.4 Using route events to give
the viewer appropriate visual feedback

Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 7 Structuring your site with routes

dependencies, assigning them for use later in the module. The one thing worth men-
tioning is that you have to manually grab the correct template and put it in the
$templateCache before you can proceed:

client/tests/specs/routes/UserRoute.spec.js
describe('User Route', function () {

var $route,
$rootScope,
$location,
url = 'login';

// Inject and assign the $route and $rootScope services.
// Put the template in template cache.

beforeEach(module('Angello'));

beforeEach(inject(function

➥ (_$location_, _$route_, $templateCache, _$rootScope_) {
$route = _$route_;
$rootScope = _$rootScope_;
$location = _$location_;

$templateCache.put('src/angello/login/tmpl/login.html', '');
}));

});

Now all we need to do is test whether our configuration is correct. We do this by using
$location to navigate to our URL, invoking a digest cycle with $rootScope.$digest,
and then asserting that the current route has the same controller, controllerAs,
and templateUrl properties that we defined on the route in the first place.

client/tests/specs/routes/UserRoute.spec.js

describe('User Route', function () {

//…

it('should be defined with

➥ correct controller and templateUrl', function() {
$location.path(url);
$rootScope.$digest();

expect($route.current.controller).toEqual('LoginCtrl');
expect($route.current.controllerAs).toEqual('login');
expect($route.current.templateUrl)

➥ .toEqual('src/angello/login/tmpl/login.html');
});

});

7.7 Best practices
Your route structure should look like your file structure. In chapter 2, we said that a good file
structure will often reflect the code structure, and this holds true for routes as well. If
a developer can look at your route config and see the parallels between it and the file

Licensed to Mark Watson <nordickan@gmail.com>

141Summary

structure, you can be certain that developer will not only be able to rapidly get up to
speed on the flow of your application, but will likely actually enjoy working on your
application. Happy developers are productive developers. ’Nuff said.

 Use resolve to get resources via $routeParams whenever possible. In the interest of
keeping fat models and skinny controllers, we like to interact with $routeParams
within the confines of a resolve block within a particular route. This isn’t a hard-and-
fast rule, it’s just the way we like to do things.

7.8 Summary
Let’s review what we’ve covered in this chapter:

■ The main AngularJS components that facilitate routings are $routeProvider,
$route, $routeParams, and ngView.

■ $routeProvider is responsible for setting up the route definitions and does this
in the config block of the application module.

■ $route is responsible for watching $location.path and finding matches with
preexisting route definitions. Once a route has been matched, $route hands
off the route configuration object to ngView to handle the setup.

■ ngView is responsible for loading the template for the route, compiling the tem-
plate with the route’s controller, and resolving dependencies defined in the
resolve object map.

■ URL parameters are mapped to variables and made available through the
$routeParams service.

Practically speaking, we’ve set up multiple routes within Angello that allow us to navi-
gate to various views such as the dashboard view, user view, storyboard view, and so on.
You learned to pass values such as userId from one view to another, as in the case of
navigating from the users view to the user view. We also used resolve to predeter-
mine if a viewer was logged in and respond appropriately, as well as send in user infor-
mation and stories to the user view. And finally, we used $routeChangeStart and
$routeChangeSuccess to show and hide our loading modal in between route changes.

Multiple views and side views
Using ngRoute helped us build a solid foundation for routing in AngularJS. But it
doesn’t support features like multiple views and nested views. The go-to router for
advanced routing is ui.router, and we strongly suggest learning how to use it. Visit
https://github.com/angular-ui/ui-router/wiki to learn more.

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angular-ui/ui-router/wiki

142

Forms and validations

Angello has turned into a fairly full-featured application at this point, but there’s a
major piece of functionality that we need to add. What happens if a user submits a
new story and they haven’t filled in any information? What happens if we want to
limit the length of the title field? We need to be able to enforce conformity on
the data that goes into the application, as well as provide instant feedback to the
user when something is amiss. This is where forms and validations play a crucial
role in developing an AngularJS application.

 In this chapter we’ll explore how AngularJS extends HTML forms so that you
can bind the form and its form elements to $scope. We’ll use that relationship to
enable and disable the ability to submit a form. We’ll then show how to set valida-
tions on individual form elements, and finally display feedback to the user based on
their input.

This chapter covers
■ How AngularJS extends form elements
■ Handling validations with AngularJS
■ Setting up validations on an element
■ Displaying validation errors and Angello

Licensed to Mark Watson <nordickan@gmail.com>

143The big picture: AngularJS form validation

8.1 The big picture: AngularJS form validation
When adding form validations to a project such as Angello, you start with the form
object itself and then work inwards to the input and other form elements that are the
children of this form object. We’ll outline the actual states that the form takes during
input within the controller, and then use those states to show meaningful feedback in
our view. See figure 8.1.

8.1.1 Extending HTML form elements

AngularJS is incredibly powerful when it comes to creating custom HTML elements,
but it also has the ability to override and extend existing HTML elements. In the case
of form validation, AngularJS comes with a form directive that extends the standard
HTML form elements and creates an instance of FormController to keep track of state
within the form.

 Continuing on with our Angello application, the first step to setting up validations
on our form is to give it a name via the name attribute. The name that we use will be
published on the corresponding controller so that we can monitor the various states
of the form:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<form name="storyboard.detailsForm"></form>

AngularJS

HTML
form

Form
$scope.formName.$valid

Form element
$scope.formName.formElement.$valid

Add validations
ng-required="true"

Enable/disable
ng-disabled="!formName.$valid"

Toggle feedback
ng-show="formName.formElement.$invalid"

ViewController

Figure 8.1 The big picture

Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 8 Forms and validations

The form object comes with a few predefined states that allow you to make decisions
on what actions you want to allow. These states are as follows:

■ $pristine—This Boolean flag indicates that the form is unmodified.
■ $dirty—This Boolean flag indicates that the form has been modified.
■ $valid—This Boolean flag indicates that the form is in a valid state.
■ $invalid—This Boolean flag indicates that the form is in an invalid state.
■ $error—This object contains all the validations on a form and whether they’re

valid or invalid.
■ $touched—This Boolean flag indicates that a control has lost focus.

In our Angello application, we want to prevent the user from submitting a story if
there’s something wrong with the form. We’ll bind the ng-disabled directive to
!storyboard.detailsForm.$valid so that ng-disabled is true when detailsForm
is not valid:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<div ng-if="storyboard.currentStory">

<button class="btn btn-default" ng-click="storyboard.updateCancel()">
Cancel

</button>
<button class="btn pull-right btn-default"

ng-disabled="!storyboard.detailsForm.$valid"
ng-click="storyboard.updateStory()">Update</button>

</div>
<div ng-if="!storyboard.currentStory">

<button class="btn pull-right btn-default"
ng-disabled="!storyboard.detailsForm.$valid"
ng-click="storyboard.createStory()">New Story</button>

</div>

Since we disable the buttons when the form is in an invalid state, the user can’t submit
until the form is in a valid state.

8.1.2 Adding validations

Insert awesome form validations here (no, really). We’ll use a great little sub-module
called ngMessages to help us display our error messages. As usual, we just need to
include the angular-messages.min.js file in boot.js:

// client/assets/js/boot.js
//...
{ file:'//cdnjs.cloudflare.com/ajax/libs/angular.js/1.3.3/angular-

messages.min.js' },
//...

And now that ngMessages is available to our application, we need to include the sub-
module in Angello.js:

// client/src/angello/Angello.js
var myModule = angular.module('Angello',

[

Licensed to Mark Watson <nordickan@gmail.com>

145The big picture: AngularJS form validation

//...
'ngMessages',
//...

]);

Now that we have ngMessages and the form object available, we’ll add validations for
the individual form elements. The FormController not only makes the form object
available, but exposes the individual form elements via a formName.inputFieldName
.property format.

 Taking the inputTitle input element as our first example, we can tell if it’s invalid
by hooking up the ngMessages directive to the storyboard.detailsForm.inputTitle
.$error object:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<input class="form-control" type="text" id="inputTitle" name="inputTitle"

placeholder="Title" ng-model="storyboard.editedStory.title">

<div class="alert alert-warning"
ng-messages="storyboard.detailsForm.inputTitle.$error"
ng-if="storyboard.showMessages('inputTitle')">

<div ng-message="required">
<small>Required!</small>

</div>
</div>

This code has two main parts. First, we create a div with classes alert and alert-
warning, define the ng-messages directive on it, and feed it the storyboard
.detailsForm.inputTitle.$error object. Then we create a child div, define an
ng-message directive on it, and feed it the name of the error that we want to validate
against. At this point, we can put any HTML inside of this div and it will show up when
the inputTitle field is invalid.

 It’s not uncommon for a field to initialize to an invalid state on load because the
field may be empty, which would violate a required or minimum length requirement.
It’s a bit jarring to show an error message before a user has had a chance to input any
information, and so this is why we also bind to the storyboard.showMessages
method. By using ng-if="storyboard.showMessages('inputTitle')" in conjunc-
tion with ngMessages, we tell AngularJS to only show the error container after the user
has left the field and it’s invalid:

// client/src/angello/storyboard/controllers/StoryboardController.js
angular.module('Angello.Storyboard')

.controller('StoryboardCtrl',
function($scope, $log, StoriesModel, UsersModel,

STORY_STATUSES, STORY_TYPES) {
//...
storyboard.showMessages = function (field) {

return storyboard.detailsForm[field].$touched
&& storyboard.detailsForm[field].$invalid;

};
//...

});

Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 8 Forms and validations

storyboard.showMessages takes a form field and returns true or false based on the
value of some attribute(s) of that field. We could have just as easily put this logic
directly into the ng-if; however, once we start adding more than one logic statement
to an HTML attribute, the HTML starts to get ugly. It’s better to keep that logic in the
controller and thus keep your HTML clean and pretty.

 Now that we know how to monitor the state of detailsForm, we start adding valida-
tions to the individual form elements to make sure
that our data is in a format that we want.

NG-REQUIRED

The first issue that we want to address is to ensure that
users can’t submit a user story without filling in all of
the required fields. For instance, we need to make
sure that every story has a title (see figure 8.2).

 We can accomplish this with ng-required="true"
or simply required:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<label class="control-label" for="inputTitle">*Title</label>
<input class="form-control" type="text" id="inputTitle" name="inputTitle"

placeholder="Title" ng-model="storyboard.editedStory.title"
ng-required="true">

We set ng-required="true" on the inputTitle field. This completes our required
validation; we’re now able to display a formatted
error message when someone leaves the title field
blank.

NG-MINLENGTH

We also want to make sure that the user has submitted
a title that’s descriptive, and so we’ll enforce that with
a minimum length requirement (see figure 8.3).

 We can set a minimum length requirement using
ng-minlength:

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<label class="control-label" for="inputTitle">*Title</label>
<input class="form-control" type="text" id="inputTitle" name="inputTitle"

placeholder="Title" ng-model="storyboard.editedStory.title"
ng-required="true" ng-minlength="3">

<div class="alert alert-warning"
ng-messages="storyboard.detailsForm.inputTitle.$error"
ng-if="storyboard.showMessages('inputTitle')">

<div ng-message="required">
<small>Required!</small>

</div>
<div ng-message="minlength"> <small>Too short!</small> </div>

</div>

Figure 8.2 This field is required.

Figure 8.3 The input is too short.

Licensed to Mark Watson <nordickan@gmail.com>

147The big picture: AngularJS form validation

In this case, we set a minimum length requirement to 3; then we add another child div
with the ng-message directive to the ng-messages div, and voila! We have another
error message ready to use.

Custom and asynchronous validation
Sometimes you want more complex validation than Angular can accomplish. Not to
worry, you can build your own custom validation directives. The only main difference
is that you need to include the ngModel module into your directive. Say, for example,
that you want to see if a user’s input is an integer or not. Let’s take an example
straight from the AngularJS docs:

// Javascript
var INTEGER_REGEXP = /^\-?\d+$/;
app.directive('integer', function() {

return {
require: 'ngModel',
link: function(scope, elm, attrs, ctrl) {

ctrl.$validators.integer

➥ = function(modelValue, viewValue) {
if (ctrl.$isEmpty(modelValue)) {

// consider empty models to be valid
return true;

}
if (INTEGER_REGEXP.test(viewValue)) {

// it is valid
return true;

}
// it is invalid
return false;

};
}

};
});

// HTML
<input type="number" ng-model="size" name="size"

min="0" max="10" integer />{{size}}

➥ The value is not a valid integer!
<span ng-show="form.size.$error.min

➥ || form.size.$error.max">
The value must be in range 0 to 10!

Asynchronous validations follow pretty much the same format except that you add the
validator to ctrl.$asyncValidators and return a promise instead of a value. You
can also show a loading message with <span ng-show="form.name.$pending
.asyncValidation">Doing some asynchronous validation. Actually
showing the error is exactly the same process as normal.

Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 8 Forms and validations

NG-MAXLENGTH

At the same time, we want to make sure that a user
doesn’t enter a title that will cause layout problems
because it’s so long (see figure 8.4).

 The converse to ng-minlength is ng-maxlength,
which sets a maximum length restriction on the field.

<!-- client/src/angello/storyboard/tmpl/storyboard.html -->
<label class="control-label" for="inputTitle">*Title</label>
<input class="form-control" type="text" id="inputTitle" name="inputTitle"

placeholder="Title" ng-model="storyboard.editedStory.title"
ng-required="true" ng-minlength="3" ng-maxlength="30">

<div class="alert alert-warning"
ng-messages="storyboard.detailsForm.inputTitle.$error"
ng-if="storyboard.showMessages('inputTitle')">

<!-- ... -->
<div ng-message="maxlength"> <small>Too long!</small> </div>

</div>

We want to make sure that inputTitle is not longer than 30 characters, so we’ll add
ng-maxlength="30" to the inputTitle field. Then, as before, we’ll add the div with
the ng-message directive bound to the maxlength error.

8.1.3 Form validation and CSS

Up to this point, we’ve primarily used the state of detailsForm to alter the DOM struc-
ture in terms of what we show to the user. AngularJS also adds a corresponding CSS class
to the form element, depending on its current state. This gives you the ability to define
custom styles in your CSS that determine the look and feel of your form elements.

 AngularJS adds the following classes, among others:

■ .ng-valid {}

■ .ng-invalid {}

■ .ng-pristine {}

■ .ng-dirty {}

So if you wanted a particular shade of red to style the element when it was invalid or a
particular green when it was valid, you’d add the following styles:

/* client/assets/css/angello.css */
form.ng-dirty input.ng-invalid {

border: 1px solid #B02B2C;
}

form.ng-dirty input.ng-valid {
border: 1px solid #6BBA70;

}

Figure 8.4 The input is too long.

Licensed to Mark Watson <nordickan@gmail.com>

149Testing

And the rendered HTML for an element would look like this:

<!-- angello/storyboard/tmpl/storyboard.html -->
<input class="form-control ng-pristine ng-invalid ng-invalid-required
 ng-valid-minlength ng-valid-maxlength ng-touched"

type="text" id="inputTitle" name="inputTitle"
placeholder="Title" ng-model="storyboard.editedStory.title"
ng-required="true" ng-minlength="3" ng-maxlength="30">

Note that there are actually styles for the individual states of the form, if you really
want to get explicit in your styling.

8.1.4 Form validation, $setPristine, and $setUntouched

There’s one more practical detail that we’ll cover in our Angello application, since it
pertains to forms and validation. As a user goes through the detailsForm and inputs
information, the detailsForm object is constantly updating in response to the correct-
ness of the input at that moment. When the user is finished inputting data, how do we
set the form back to its original, pristine, and untouched state?

 The way to do this is to call $setPristine and $setUntouched on the form ele-
ment on the $scope reference:

// client/src/angello/storyboard/controllers/StoryboardController.js
storyboard.resetForm = function () {

storyboard.currentStory = null;
storyboard.editedStory = {};

storyboard.detailsForm.$setPristine();
 storyboard.detailsForm.$setUntouched();
};

In this case, we want to set detailsForm back to a pristine, untouched state when we
reset the form in the StoryboardCtrl, so we call storyboard.detailsForm.$set-
Pristine() and storyboard.detailsForm.$setUntouched().

8.2 Testing
Testing a form is a lot like testing a directive in that you have to get an HTML template
and compile it with your scope. In order to load your templates without initiating
HTTP requests, you need to install karma-ng-html2js-preprocessor. Instructions for
doing this are in appendix A.

 First off, we create our top-level variables, include the Angello.Storyboard mod-
ule, and include the Angello.Templates module so we have access to our templates.
Next, we need to mock out an all method on the UsersModel and StoriesModel ser-
vices. We have to return a promise from these methods because the controller calls a
.then method after them:

client/tests/specs/forms/StoryboardForm.spec.js
describe('Storyboard form', function() {

var scope, ctrl;

Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 8 Forms and validations

beforeEach(module('Angello.Storyboard'));
beforeEach(module('Angello.Templates'));

beforeEach(inject(function($q, $rootScope, $controller,

➥ $templateCache, $compile) {

var UsersModel = {
all: function() {

var deferred = $q.defer();
deferred.resolve({});
return deferred.promise;

}
};

var StoriesModel = {
all: function() {

var deferred = $q.defer();
deferred.resolve({});
return deferred.promise;

}
};

}));
});

Pay special attention to this part of the test. We create an instance of $rootScope and
assign it to our global scope. We then create an instance of StoryboardCtrl, inject
our mocked dependencies, and assign it to a global.

 We can access $scope attributes within our test using ctrl because we defined the
controller with the controllerAs syntax within our application. But in the template
that we are including, the controller is referenced as storyboard; thus, we have to cre-
ate a storyboard attribute on the scope object in our test and assign it ctrl so that
when we compile the template and scope, the template has access to an object called
storyboard. Otherwise, storyboard.detailsVisible would not be defined, the form
would not show up in the template, and the entire test would not be possible.

 The last part of setup is simply getting the template, creating an Angular element
out of it, compiling the element with scope, and then triggering a digest cycle:

client/tests/specs/forms/StoryboardForm.spec.js
describe('Storyboard form', function() {

//…

beforeEach(inject(function($q, $rootScope, $controller,

➥ $templateCache, $compile) {

//…

scope = $rootScope.$new();

ctrl = $controller('StoryboardCtrl', {
$scope: scope,

Licensed to Mark Watson <nordickan@gmail.com>

151Testing

STORY_STATUSES: {},
STORY_TYPES: {},
UsersModel: UsersModel,
StoriesModel: StoriesModel

});

scope.storyboard = ctrl;

var templateHtml =

➥ $templateCache.get('src/angello/storyboard/tmpl/storyboard.html');
var formElem = angular.element(templateHtml);
$compile(formElem)(scope);

scope.$digest()
}));

});

We’re nearly there! All that’s left to do is test a couple of assertions. First we make sure
that the form is invalid when the page is first loaded and all the fields are empty. Then
we create a valid story, assign it to ctrl.editedStory, trigger a digest cycle so that the
validations are invoked, and then make sure that the form is valid:

client/tests/specs/forms/StoryboardForm.spec.js
describe('Storyboard form', function() {

//…

it('should be invalid by default', function() {
expect(ctrl.detailsForm.$invalid).toBeTruthy();

});

it('should be valid with populated fields', function() {
ctrl.editedStory = {

title: 'Title',
status: 'To Do',
type: 'Enhancement',
reporter: 'Lukas Ruebbelke',
assignee: 'Brian Ford'

};

scope.$digest();

expect(ctrl.detailsForm.$valid).toBeTruthy();
});

});

Using ng-model-options
By default, Angular models update immediately when a user provides input (usually
by typing). You can change that in Angular 1.3 by adding an ng-model-options attri-
bute to the form control that you want to modify. For example, if you want to update
the model when a user leaves the control, you could add ng-model-options="
{ updateOn: 'blur' }" to the form control.

Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 8 Forms and validations

8.3 Best practices
Avoid excessive use of ng-ifs and ng-show/hides when customizing error messages. We
often need to do a lot of tweaking to individual input elements to get them to show up
exactly when we want. This results in the repetition of many AngularJS directives, usu-
ally with multiple logic statements (such as ng-if="this.long.condition &&

this.other.long.condition"). This is sometimes unavoidable, but we recommend
that you promote this logic to the controller so that your HTML stays tidy (compare
the previous statement to ng-if="shouldShowField(fieldName)"). We can’t over-
emphasize the value of clean code!

8.4 Summary
Form validation is just an extension of data binding and showing appropriate feed-
back to the user, depending on the state of the AngularJS form directive as exposed by
the FormController. It really is that simple. Now let’s take a moment to review:

■ You learned how to expose the form element in the controller via the name attri-
bute on the form.

■ The form object has predefined states, such as $valid, $invalid, $pristine
and $dirty, and $touched.

■ Errors can be shown concisely using the ngMessages module along with the
appropriate requirements on the elements (ng-required, ng-minlength,
ng-email, and so on).

■ You learned how to use the classes that AngularJS provides to style the different
states of forms.

■ A form can be set back to its original condition via the $setPristine and $set-
Untouched methods.

Nesting forms
HTML doesn’t allow you to nest forms natively. In order to show proper error mes-
sages at the correct times within nested forms, you need to wrap Angular’s ng-form
directive around individual form fields. Here’s an example:

// Hypothetical Scenario
<form name="myForm">

<div ng-repeat="item in items"

➥ ng-class="{ 'has-error' : item.name.$invalid }">
<ng-form name="itemNameForm">

<label>Name</label>
<input type="text" name="name"

➥ ng-model="item.name" required>
<p ng-show="itemNameForm.name.$invalid">

➥ Name Required</p>
</ng-form>

</div>
</form>

Licensed to Mark Watson <nordickan@gmail.com>

153

appendix A
Setting up Karma

Karma is a JavaScript test runner created by the AngularJS team. It’s important to
note that it’s not a testing framework. It allows you to specify information about your
testing environment, such as which browser(s) to use, which files to include, and so
on. You then specify which testing framework you want to use (Jasmine, in our
case) and write your tests using that particular framework.

Install Node.js and Node Package Manager (npm)
First things first. If you haven’t yet installed Node.js, stop! Here are a couple
resources to get the ball rolling:

■ https://nodejs.org/download/
■ You’re in luck: Node.js comes with npm!

Install packages
If you do have Node.js and npm, welcome! First, install karma-cli globally so you
have access to it in any directory:

npm install -g karma-cli

Next, make sure you’re in the angello directory, and then install karma and save it
as a dev dependency:

npm install karma --save-dev

Now, install your necessary plugins. These include the plugins for your testing
framework of choice as well as any browsers that you need to integrate with. In this
book, we use Jasmine as our testing framework and Chrome for our browser.

npm install karma-jasmine karma-chrome-launcher --save-dev

Licensed to Mark Watson <nordickan@gmail.com>

https://nodejs.org/download/

154 APPENDIX A Setting up Karma

Initialize Karma
Now that you have all the dependencies installed, it takes only a single command in
the terminal to initialize the Karma configuration:

karma init

Rather than tell you what to type, we’ll show you. Figures A.1 and A.2 are screenshots
detailing how Karma helps you set up your configuration file.

 The first three questions are pretty straightforward. We want Jasmine as our frame-
work, we don’t want to use Require.js, and we want to use Chrome as our testing
browser. The next question asks which files we want to include. We start out including
any vendor files we need—in our case, the AngularJS core file along with the routing
file and animation file. We also include angular-mocks.js, which aids us with writing
unit tests in Angular.

 We also want to include a couple of files necessary for authentication. Then we
want to include all JavaScript files in any folder under src/angello, and we want to

Figure A.1 Building karma.conf.js, part 1

Licensed to Mark Watson <nordickan@gmail.com>

155Initialize Karma

include all JavaScript files in any folder under tests. For test-driven development
(TDD), you’d probably want to autowatch and test each of your source files whenever
they change; we decided not to do this purely for demonstration purposes.

 Here’s the full karma.conf.js file. Note that the only attribute we had to change was
the basePath. By default it’s just an empty string, but we changed it to ../ so Karma
could reference the rest of the files properly.

// client/tests/karma.conf.js
module.exports = function (config) {

config.set({

// base path that will be used to resolve

➥ all patterns (eg. files, exclude)
basePath: '../',

// frameworks to use

Figure A.2 Building karma.conf.js, part 2

Licensed to Mark Watson <nordickan@gmail.com>

156 APPENDIX A Setting up Karma

// available frameworks:

➥ https://npmjs.org/browse/keyword/karma-adapter
frameworks: ['jasmine'],

// list of files / patterns to load in the browser
files: [

'vendor/angular.js',
'vendor/angular-route.js',
'vendor/angular-animate.js',
'vendor/angular-mocks.js',
'https://cdn.auth0.com/js/lock-6.js',
'https://cdn.auth0.com/w2/auth0-angular-4.js',
'src/angello/**/*.js',
'tests/**/*.js'

],

// list of files to exclude
exclude: [],

// preprocess matching files before serving them to the browser
// available preprocessors:

➥ https://npmjs.org/browse/keyword/karma-preprocessor
preprocessors: {},

// test results reporter to use
// possible values: 'dots', 'progress'
// available reporters: https://npmjs.org/browse/keyword/karma-

reporter
reporters: ['progress'],

// web server port
port: 9876,

// enable / disable colors in the output (reporters and logs)
colors: true,

// level of logging
// possible values: config.LOG_DISABLE ||

➥ config.LOG_ERROR || config.LOG_WARN ||

➥ config.LOG_INFO || config.LOG_DEBUG
logLevel: config.LOG_INFO,

// enable / disable watching file and executing

➥ tests whenever any file changes
autoWatch: false,

Licensed to Mark Watson <nordickan@gmail.com>

157Use Karma

// start these browsers
// available browser launchers:

➥ https://npmjs.org/browse/keyword/karma-launcher
browsers: ['Chrome'],

// Continuous Integration mode
// if true, Karma captures browsers, runs the tests and exits
singleRun: false

});
};

Use Karma
Now all you need to do is run karma start --single-run from the client/tests
folder or run karma start --single-run path/to/karma.conf.js from any other
folder. Another nifty trick is to specify a script in your package.json file so that npm
can actually run tests for you.

// package.json
{

//...

"scripts": {
"test": "karma start --single-run

➥ --browsers Chrome client/tests/karma.conf.js"
},

//…
}

Here we define a test script that evaluates to a Karma command. Just run npm test any-
where in your project, and Karma will do a single pass on your tests. Go ahead: try it!

Licensed to Mark Watson <nordickan@gmail.com>

158

appendix B
Setting up a Node.js server

You can run Angello one of two ways: with Firebase or Node.js. We’ll show you how
to install Node.js and integrate it with Angello.

Install Node.js (with Node Package Manager, a.k.a.
npm) and MongoDB
If you don’t have Node.js and npm, here are a few resources to get you started:

■ Git (http://git-scm.com/)
■ Node.js (https://nodejs.org/download/)
■ You’re in luck: Node.js comes with npm!

To install MongoDB, go to http://docs.mongodb.org/manual/installation/ and
follow the directions for your specific platform.

Initialize the repo
Go to your terminal and run the following commands (after you’ve installed Git
and Node.js):

cd <your-projects-folder>
git clone https://github.com/angularjs-in-action/angello-express-api
cd angello-express-api
npm install
node server.js

In a nutshell, these commands download a copy of the server code into your proj-
ects directory, install all of the necessary dependencies, and start up a server listen-
ing on http://localhost:4000.

NOTE The code running on localhost:4000 is not the main Angello app;
it's only the back-end API that provides data persistence. If you want to set
up the main app locally, please see appendix D.

Licensed to Mark Watson <nordickan@gmail.com>

http://git-scm.com/
https://nodejs.org/download/
http://docs.mongodb.org/manual/installation/

159A note about Auth0

Update EndpointConfigService.js
If you haven’t already cloned the main Angello app, you can do so by running the
following commands in your terminal:

cd <your-projects-directory>
git clone https://github.com/angularjs-in-action/angello
cd angello

A note about Auth0
By default, the API you just initialized has an .env file that contains the following two
lines: AUTH0_CLIENT_ID and AUTH0_CLIENT_SECRET. These values come prepopu-
lated from an account that we set up with Auth0. Also, in the config block of
Angello.js in the Angello app, you’ll find an initializer (currently starting at line 64)
that looks like the following:

// client/src/angello/Angello.js
// Auth0 Authentication
authProvider.init({

domain: 'angello.auth0.com',
clientID: 'Fq8hKAkghu45WpnqrYTc6dbvXhBUdP7l'

});

If you want to create your own account and play with Auth0, go to https://
auth0.com/ and create an account. Then substitute your Client ID and Client Secret
for the AUTH0_CLIENT_ID and AUTH0_CLIENT_SECRET in the .env file in the API and
substitute your Client ID and domain for the clientID and domain in the Angello.js
file in the main Angello app.

Licensed to Mark Watson <nordickan@gmail.com>

https://auth0.com/
https://auth0.com/

160

appendix C
Setting up a Firebase server

Angello comes with Firebase already set up. However, we strongly encourage you to
set up your own account with Firebase so you can view and manipulate all your
data.

Set up an account with Firebase
Go to https://www.firebase.com/ and click Start Hacking. Once you have regis-
tered, you’ll be taken to your brand-new dashboard.

Create your first app
On the left side of your dashboard, you’ll see a form for creating new apps. Fill it out
with a name like my-first-angello (or some other descriptive name that strikes your
fancy). Then click Create New App to breathe life into your new application!

Bootstrap your Firebase app to Angello
If you haven’t yet downloaded the code for Angello, head on over to appendix D to
get set up.

 Once you have the code, go back to your browser and view your created app.
Click the provided Firebase URL; this will take you to your app’s view. Copy the
entire URL in your address bar; then open EndpointConfigService.js, find the end-
PointMap object, and update its URI property to your Firebase URL. Make sure there’s
a trailing slash at the end. In the same file, make sure that .constant

('CURRENT_BACKEND', 'firebase') (line three as of this writing) is uncommented
and .constant('CURRENT_BACKEND', 'node') (line two as of this writing) is com-
mented out. Start up the Angello app, create a user and a story, and then go back
to your Firebase URL and see the magic that is real-time data!

Licensed to Mark Watson <nordickan@gmail.com>

https://www.firebase.com/

161A note about Auth0

A note about Auth0
By default, in the config block of Angello.js in the Angello app, you’ll find an initial-
izer (currently starting at line 64) that looks like the following:

// client/src/angello/Angello.js
// Auth0 Authentication
authProvider.init({

domain: 'angello.auth0.com',
clientID: 'Fq8hKAkghu45WpnqrYTc6dbvXhBUdP7l'

});

If you want to create your own account and play with Auth0, go to https://
auth0.com/, create an account, and then substitute your Client ID and domain for the
defaults we provide here.

Licensed to Mark Watson <nordickan@gmail.com>

https://auth0.com/
https://auth0.com/

162

appendix D
Running the app

Running the app is a super-simple process. To start off, you’ll need Git (http://
git-scm.com/) and, if you don’t have a local web server, you’ll need Node.js and
npm (https://nodejs.org/download/).

Get the code
Once you have Git installed, go to your terminal and run the following:

cd <your-projects-folder>
git clone https://github.com/angularjs-in-action/angello
cd angello

These commands will download all of the code for the front-end app into your
projects folder.

Start the server
If you have a local web server that you use, simply serve the client directory of the proj-
ect. If you don’t, run the following commands in your terminal. Make sure you have
installed Node.js and npm and that you are in the angello directory you just cloned.

npm install -g serve
serve client/

These commands install the serve package on your system globally and then serve
the client directory of the Angello application for your viewing pleasure.

View the app
You now have a local copy of Angello running on http://localhost:3000. Simply
navigate to that URL in your favorite browser and you will be greeted with an
authentication page where you can create an account and use the app!

Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/angularjs-in-action/angello
http://localhost:3000
https://nodejs.org/download/
http://git-scm.com/
http://git-scm.com/

163

index

Symbols

{ } (curly braces) 12
@ (at symbol) 110
& (ampersand) 110
= (equal sign) 110
| (pipe symbol) 46

A

addClass event 116
ampersand (&) 110
anchor tags 30
Angello application

controllers 11–15
directives 17–18
module 10–11
overview 7–18
services 15–17
structure overview 20–23
views 11–15

AngularJS
advantages of

data structure integration 5
organized code 4
templates in HTML 5
testable code 4–5
two-way data binding 5

history 3–4
overview 6
version 1.3 features 45

AngularUI Router 132
animation

best practices 128
CSS

animation keyframes 121

base animation classes 121
base transition 118
ng-enter transitions 118
ng-leave transitions 119
overview 118–120, 124

enabling in application 117
JavaScript

class for 126–127
defining 125
events for 126
overview 117, 124, 127–128
TweenMax 127

naming conventions 116–117
overview 115–116
testing 128

application structure
Angello overview 20–23
best practices 30
file structure 23–25
modules 25–26
routes 26–30

$apply 40
as syntax 41–42
asynchronous validation 147
at symbol (@) 110
attrs parameter 83
Auth0 accounts 159, 161

B

binding data
advantages of AngularJS 5
one-way data binding 45

bindToController attribute 113
$broadcast event 42
Burleson, Thomas 73

Licensed to Mark Watson <nordickan@gmail.com>

INDEX164

C

camel case 110
Cascading Style Sheets. See CSS
catch method 70
clean code 23
compilation phase 38
consistency 25
constant service 61–62
constructors, service 62–63
controllerAs attribute 82, 113
controllers

Angello application 11–15
as syntax 41–42
best practices 30, 54
defined 6
digest cycle 40
directive functions 83
event system 42–43
expressions

creating story 52
deleting story 53–54
displaying story 48–51
updating story 51

filters 46–48
testing 55–56
using ngRepeat with data structures 43–47

CRUD (create, read, update, delete) 48
CSS (Cascading Style Sheets)

animation
animation keyframes 121
base animation classes 121
overview 124

form validation and 148–149
transitions

base transition 118
ng-enter transitions 118
ng-leave transitions 119

vendor prefixes 121
curly braces { } 12

D

dashboard screen 22
data binding

advantages of AngularJS 5
one-way 45

DDO (directive definition object) 18, 81
decorators 73–75
definition object 83
$delegate parameter 73
delete method 66
DI (dependency injection) 16
$digest 40
digest cycle 40

directive definition object. See DDO
directives

advantages of 81
Angello application 17–18
animation and 115
best practices 113–114
controller function 83
creating 82
defined 6, 38, 80–81
definition object 83
DOM event handlers 85
drag-and-drop feature

drag controller 90–92, 94–100
drag-container directive 87–89
$dragging service 103–104
drop controller 102–103
drop-container directive 92–93
drop-target directive 100–102
StoryboardCtrl 104–106

integrating with third-party libraries
creating directive 107
installing Flot 106
isolated scope and 109–110
overview 110–112
setting up data structure 107–108
using directive 107

link function 83
methods in 86–87
overview 81–82
testing 112–113
using 84, 89–90, 94, 102

dirty checking 40
$dirty flag 144
DOM (Document Object Model) 30

best practices 113
event handlers 85

domain-specific language. See DSL
drag-and-drop feature

drag controller 90–92, 94–100
drag-container directive 87–89
$dragging service 103–104
drop controller 102–103
drop-container directive 92–93
drop-target directive 100–102
StoryboardCtrl 104–106

DSL (domain-specific language) 81

E

element parameter 83
$emit event 42
enhanced HTML 80
enter event 116
equal sign (=) 110
error method 69–70

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 165

$error object 144
$even property 46
events

in controllers 42–43
DOM 85
for JavaScript animation 126
for routes 139

F

filters 46–48
finally method 70
Firebase 21, 161
$first property 46
Flot

creating directive 107
installing 106
isolated scope and 109–110
overview 110–112
setting up data structure 107–108
using directive 107

forms
best practices 152
extending form elements 143–144
form directive 143
nesting 152
$setPristine and $setUntouched 149
testing 149–152
validation

CSS and 148–149
ng-maxlength 148
ng-minlength 146
ng-required 146
overview 145

full-page transitions 128

G

get method 66
GSAP (GreenSock Animation Platform) 117

H

home screen 22
HTML (Hypertext Markup Language) 5
$http service

convenience methods 65–67
creating models 64–65
error method 69–70
interceptors

example using 72–73
reasons for using 71–72

models using 63–64
success method 69–70

$httpBackend 76–78

I

$index property 46
$injector service 60
interceptors

example using 72–73
reasons for using 71–72

$invalid flag 144
isolated scope 109–110

J

JavaScript
animation

class for 126–127
defining 125
events for 126
overview 117, 124, 127–128
TweenMax 127

frameworks based on 4
Sugar.js 53

jQuery 4–5, 15, 83
JSONP (JavaScript Object Notation with

Padding) 63

K

Karma
initializing 154–155
installing packages 153
Node.js installation 153
npm installation 153
using 157

L

latency 3
leave event 116
Less (Less.js) 121
lifecycle, service 59–60
$location 134
Lodash 53
$log service 73
login screen 21

M

methods 30
mocking server calls 76–78
models

defined 58–63
options for 151
using $http service

convenience methods 65–67

Licensed to Mark Watson <nordickan@gmail.com>

INDEX166

models (continued)
creating models 64–65
overview 63–64

modules
Angello application 10–11
application structure 25–26
defined 6

MongoDB 158
Motto, Todd 30
move event 116
MVVM (Model-View-ViewModel) framework

11, 15
MVW (Model-View-Whatever) framework 11

N

nested forms 152
nested views 132
ng-app attribute 11, 17, 25
ng-click attribute 17, 30, 49
ng-controller attribute 12, 17, 41
ng-dirty class 148
ng-enter event 118
ng-hide directive 152
ng-invalid class 148
ng-leave event 119
ng-maxlength attribute 148
ng-minlength attribute 146
ng-model-options attribute 151
ng-pristine class 148
ng-repeat attribute 13
ng-required attribute 146
ng-show directive 152
ng-valid class 148
ng-view attribute 27
ngAnimate module 25
ngIf directive

animation events from 116
best practices 152

ngInclude directive 116
ngMessages module 25
ngRepeat directive

animation events from 116
iterating over objects 47
scope properties on 46
using with data structures 43–47

ngRoute module 25, 28, 131–132
ngView directive 131

animation events from 116
setting up routes 132

Node.js 9
installing 153, 158
setting as backend 159
using Auth0 account 159

npm (Node Package Manager) 153

O

$on event 42
one-way data binding 45
otherwise method 134

P

Papa, John 30
pipe symbol (|) 46
POJOs (Plain Old JavaScript Objects) 5
post method 66
$pristine flag 144
promises

example using 68–70
$http.success and $http.error methods 69–70
overview 67–68
sequencing actions with 70–71

properties 46
$provide service 59, 73
provider function 63
put method 66

R

removeClass event 116
resolve property 137–138, 141
REST (Representational State Transfer) 64
$rootScope 41–42
$route 131
$routeChangeError event 138
$routeChangeStart event 139
$routeChangeSuccess event 139
$routeParams service 131, 135, 141
$routeProvider service 27–29, 131
routes

application structure 26–30
best practices 140–141
creating with ngRoute 132
defined 6
defining ngView 132
events for 139
overview 131, 134–135
parameters for 135–137
setting up navigation 134
setting up with $routeProvider 132–134
testing 139–141
using resolve property with 137–138

S

Sass (Syntactically Awesome StyleSheets) 121
$scope object 86

connection between views and controllers 37

Licensed to Mark Watson <nordickan@gmail.com>

INDEX 167

$scope object (continued)
defined 6
special properties on ngRepeat 46
using ngRepeat 44

scope parameter 83
services

Angello application 15–17
best practices 30
constant service 61–62
constructors 62–63
decorators 73–75
defined 6
lifecycle of 59–60
overview 58–59
provider function 63
service factory 62–63
testing

best practices 78
$httpBackend to mock server calls 76–78
overview 75–76

types of 60–61
value service 61

$setPristine function 149
$setUntouched function 149
snake case 110
storyboard view 35
structure, application

Angello overview 20–23
best practices 30
file structure 23–25
modules 25–26
routes 26–30

success method 69–70
Sugar.js 53
swimlanes 22

T

TDD (test-driven development) 154
templates 5
testing

animation 128
controllers 55–56
directives 112–113
forms 149–152
routes 139–141
services

best practices 78
$httpBackend to mock server calls 76–78
overview 75–76

then method 68, 70, 137
third-party libraries

installing Flot 106

isolated scope and 109–110
overview 110–112
setting up data structure 107–108
using directives with 107

this keyword 13, 86
$touched flag 144
transitions

CSS
base transition 118
ng-enter transitions 118
ng-leave transitions 119
overview 118–120

full-page 128
Trello 7, 21
TweenMax library 117, 127
two-way data binding 5

U

ui-router module 26
Underscore 53
URL routing 130
user screen 22

V

$valid flag 144
validation, form

asynchronous 147
complex 147
CSS and 148–149
ng-maxlength 148
ng-minlength 146
ng-required 146
overview 145

value service 61
vendor prefixes 121
views

Angello application 11–15
defined 6
nested 132
overview 36–39

W

when method 133

X

XMLHttpRequest 3, 63

Licensed to Mark Watson <nordickan@gmail.com>

Lukas Ruebbelke

A
ngularJS is a JavaScript-based framework that extends
HTML, so you can create dynamic, interactive web
applications in the same way you create standard static

pages. Out of the box, Angular provides most of the function-
ality you’ll need for basic apps, but you won’t want to stop
there. Intuitive, easy to customize, and test-friendly, Angular
practically begs you to build more interesting apps.

AngularJS in Action teaches you everything you need to get
started with AngularJS. As you read, you’ll learn to build
interactive single-page web interfaces, apply emerging patterns
like MVVM, and tackle key tasks like communicating with
back-end servers. All examples are supported by clear explana-
tions and illustrations along with fully annotated code listings.

What’s Inside
● Get started with AngularJS
● Write your own components
● Best practices for application architecture
● Progressively build a full-featured application
● Covers AngularJS 1.3
● Sample application updated to the latest version
 of Angular

This book assumes you know at least some JavaScript.
No prior exposure to AngularJS is required.

Lukas Ruebbelke is a full-time web developer and an active
contributor to the AngularJS community.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/AngularJSinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

AngularJS IN ACTION

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“Learn how to build an
exciting application from top
 to bottom with AngularJS.”

—From the Foreword by
Martin Gontovnikas

 Developer Advocate, Auth0

“The coolest way to create
a web application

 I have ever seen!”—William E. Wheeler
ProData Computer Services

“The best introduction
 to AngularJS so far.”

—Gregor Zurowski, Sotheby’s

“Packed with practical
 examples and best practices.”—Ahmed Khattab

Cisco Services

SEE INSERT

	AngularJS in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Source code conventions and downloads
	Software requirements
	Resources
	Author Online

	about the authors
	about the cover illustration
	Part 1: Get acquainted with AngularJS
	Chapter 1: Hello AngularJS
	1.1 Advantages of using AngularJS
	1.2 The AngularJS big picture
	1.3 Build your first AngularJS application
	1.3.1 The module
	1.3.2 Views and controllers
	1.3.3 Services
	1.3.4 Directives

	1.4 Summary

	Chapter 2: Structuring your AngularJS application
	2.1 Hello Angello
	2.2 AngularJS application structure
	2.3 Laying the Angello foundation
	2.4 Basic routes and navigation
	2.5 A few best practices
	2.6 Summary

	Part 2: Make something with AngularJS
	Chapter 3: Views and controllers
	3.1 The big picture
	3.2 What is an AngularJS view?
	3.3 What is an AngularJS controller?
	3.3.1 The digest cycle
	3.3.2 Controller as syntax
	3.3.3 AngularJS events

	3.4 Properties and expressions
	3.4.1 Display stories with ngRepeat
	3.4.2 Filters
	3.4.3 Expressions

	3.5 Best practices and testing
	3.6 Summary

	Chapter 4: Models and services
	4.1 What are models and services?
	4.1.1 Hello services
	4.1.2 The service lifecycle
	4.1.3 The different types of services

	4.2 Models with $http
	4.2.1 What is $http?
	4.2.2 Create your first model
	4.2.3 $http convenience methods

	4.3 Promises
	4.3.1 What are promises?
	4.3.2 Promises in action
	4.3.3 $http.success and $http.error
	4.3.4 Elegant sequencing with promises

	4.4 $http interceptors
	4.4.1 Why intercept?
	4.4.2 Interceptors in action

	4.5 Service decorators
	4.5.1 Why decorate?
	4.5.2 Enhanced logging

	4.6 Testing consideration
	4.6.1 Testing a service
	4.6.2 Using $httpBackend to mock server calls
	4.6.3 Best practices

	4.7 Summary

	Chapter 5: Directives
	5.1 Introduction to directives
	5.1.1 What are directives?
	5.1.2 Why we need directives
	5.1.3 Why we want directives

	5.2 Directives 101: a quick foundation
	5.2.1 The user story directive

	5.3 A more advanced feature
	5.3.1 The drag-and-drop feature
	5.3.2 Use the drag-container directive
	5.3.3 Build the controller
	5.3.4 Create the drop-container directive
	5.3.5 Use the drop-container directive
	5.3.6 Build the controller
	5.3.7 Create the drop-target directive
	5.3.8 Use the drop-target directive
	5.3.9 Build the controller
	5.3.10 Create the $dragging service
	5.3.11 Update the StoryboardCtrl

	5.4 Integrating with third-party libraries again!
	5.4.1 Install Flot
	5.4.2 Build the directive
	5.4.3 Use the directive
	5.4.4 Massage our data
	5.4.5 It’s time we had the “isolated scope talk”
	5.4.6 Grand finale: breathe life into Flot

	5.5 Testing a directive
	5.6 Best practices
	5.7 Summary

	Chapter 6: Animations
	6.1 Intro to animations
	6.1.1 How AngularJS handles animations
	6.1.2 The animation-naming convention
	6.1.3 Animations enable!

	6.2 CSS transitions
	6.2.1 Define the base transition
	6.2.2 Define the ng-enter transitions
	6.2.3 Define the ng-leave transitions
	6.2.4 Making it move

	6.3 CSS animations
	6.3.1 Define the base animation classes
	6.3.2 Define the animation keyframes
	6.3.3 Make it move

	6.4 JavaScript animations
	6.4.1 Defining the JavaScript animation
	6.4.2 The JavaScript animation events
	6.4.3 The JavaScript animation class
	6.4.4 TweenMax
	6.4.5 Making it move

	6.5 Testing
	6.6 Best practices
	6.7 Summary

	Chapter 7: Structuring your site with routes
	7.1 The components of AngularJS routes
	7.2 How to create routes in AngularJS
	7.2.1 Create your first route with ngRoute and ngView
	7.2.2 Add ngView
	7.2.3 Set up your route with $routeProvider
	7.2.4 Set up route navigation
	7.2.5 Review

	7.3 Using parameters with routes
	7.3.1 Review

	7.4 Using resolve with routes
	7.4.1 Review

	7.5 Route events
	7.5.1 Review

	7.6 Testing
	7.7 Best practices
	7.8 Summary

	Chapter 8: Forms and validations
	8.1 The big picture: AngularJS form validation
	8.1.1 Extending HTML form elements
	8.1.2 Adding validations
	8.1.3 Form validation and CSS
	8.1.4 Form validation, $setPristine, and $setUntouched

	8.2 Testing
	8.3 Best practices
	8.4 Summary

	appendix A: Setting up Karma
	Setting up Karma
	Install Node.js and Node Package Manager (npm)
	Install packages
	Initialize Karma
	Use Karma

	appendix B: Setting up a Node.js server
	Setting up a Node.js server
	Install Node.js (with Node Package Manager, a.k.a. npm) and MongoDB
	Initialize the repo
	Update EndpointConfigService.js
	A note about Auth0

	appendix C: Setting up a Firebase server
	Setting up a Firebase server
	Set up an account with Firebase
	Create your first app
	Bootstrap your Firebase app to Angello
	A note about Auth0

	appendix D: Running the app
	Running the app
	Get the code
	Start the server
	View the app

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

