
THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Simon Collison
Foreword by Andy Clarke

Beginning

CSS
Web Development
From Novice to Professional

Packed with essential, practical techniques—

you’ll learn CSS from the ground up in no time.

Beginning CSS
Web Development
From Novice to Professional

■ ■ ■

Simon Collison

Beginning CSS Web Development: From Novice to Professional

Copyright © 2006 by Simon Collison

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-689-0

ISBN-10 (pbk): 1-59059-689-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills

Technical Reviewers: Richard Rutter and Dan Rubin

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,

Keir Thomas, Matt Wade

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Susan Glinert

Proofreader: Nancy Riddiough

Indexer: John Collin

Artist: Susan Glinert

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA

94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly

by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

For Mam and Dad.

Sorry about the lack of plot . . .

v

Contents at a Glance

Foreword . xvii

About the Author . xix

About the Technical Reviewers . xxi

About the Foreword Writer . xxiii

Acknowledgments . xxv

Introduction . xxvii

PART 1 ■ ■ ■ Get to Know CSS
■CHAPTER 1 Getting Started . 3

■CHAPTER 2 Core Concepts of CSS . 17

■CHAPTER 3 CSS Building Blocks . 39

■CHAPTER 4 Text . 55

■CHAPTER 5 Color, Backgrounds, and Images . 79

■CHAPTER 6 Lists . 103

■CHAPTER 7 Links . 129

■CHAPTER 8 Tables and Definition Lists . 145

■CHAPTER 9 Forms . 167

PART 2 ■ ■ ■ Logical Layouts

■CHAPTER 10 Layout Basics . 209

■CHAPTER 11 Classic Layouts . 235

■CHAPTER 12 Layout Manipulation . 275

■CHAPTER 13 The Journey from Layout to Template . 291

■CHAPTER 14 Usability and Accessibility Enhancements . 315

■CHAPTER 15 Tips, Tricks, and Troubles . 329

■CHAPTER 16 Case Study: The Dead Goods . 347

■APPENDIX CSS Reference . 371

■INDEX . 387

vii

Contents

Foreword . xvii

About the Author . xix

About the Technical Reviewers . xxi

About the Foreword Writer . xxiii

Acknowledgments . xxv

Introduction . xxvii

PART 1 ■ ■ ■ Get to Know CSS

■CHAPTER 1 Getting Started . 3

Applying CSS to (X)HTML . 3

Preparing a Base (X)HTML Template . 3

Inline Styles . 5

Embedded Styles . 6

External Styles. 6

Importing and Combining Styles . 7

Print Style Sheets . 8

Other Style Sheets . 8

Maintaining and Organizing Style Sheets . 9

Multiple Directories . 9

Multiple Style Sheets . 10

Utilizing Screen Style Sheets for Other Devices 11

Effective CSS Syntax . 12

Defining a Style . 12

Commenting . 13

Flagging Rules. 14

Indenting for Clarity . 15

You’re Ready to Proceed . 15

viii ■C O N T E N T S

■CHAPTER 2 Core Concepts of CSS . 17

ID vs. Class . 17

IDs . 18

Class. 19

Using the Cascade . 22

The Cascade Through Varying Methods of Application 23

The Cascade Through Multiple External Style Sheets 23

The Cascade Through Imported Style Sheets 24

Bottom of the Ladder . 25

Careful with the Cascade . 25

Grouping . 26

Group Exceptions . 26

Inheritance . 27

Parents and Children . 27

So How Does Inheritance Work?. 27

Inheriting the Body . 28

A Word of Warning . 29

Contextual Selectors . 30

CSS Measurements . 31

Absolute Measurements . 31

Relative Measurements . 32

Pixels . 32

Percentage . 33

Ems . 34

To Conclude... 37

■CHAPTER 3 CSS Building Blocks . 39

Divisions (Divs) . 39

Adding a Div . 39

Adding Child Divs . 40

Divs and Contextual Selectors. 41

Dimensions: Width and Height . 44

Margin . 45

Margin Declarations . 45

Centering with margin: auto . 47

Padding . 48

Padding Declarations . 48

Padding Shortcuts . 49

■C O N T E N T S ix

Margin, Padding, and the Body . 49

Border . 50

Border Properties . 50

Bordering on the Obvious . 53

To Conclude... 54

■CHAPTER 4 Text . 55

Why Is Text So Important? . 55

Convey the Mood with the Right Font. 56

ClearType Font Smoothing. 56

Primary Font Properties . 57

Specifying Fonts . 57

Font Shorthand . 59

Available Fonts . 59

Web-Safe Fonts . 59

Interesting Alternatives . 62

Be Careful with Fonts . 64

Default Browser Display . 64

Apply Some Style . 65

Define Your Style Sheet . 65

Body Declarations . 65

Please, Please Use line-height! . 66

Setting the line-height Using Percentage . 67

Other line-height Values . 68

letter-spacing (Kerning) . 68

Other Key Font Properties . 70

font-weight . 70

font-style . 70

font-variant . 70

text-transform . 70

Combining Several Font Properties . 71

More Font Shorthand . 72

Getting Clever with Text . 73

Quote Me on This . 73

Indenting Paragraphs . 75

Ye Olde Drop Caps . 75

May the Font Be with You . 76

x ■C O N T E N T S

■CHAPTER 5 Color, Backgrounds, and Images . 79

A Brief History of Color . 79

Web Safety First? . 80

Specifying Color . 80

Using the 17 Named Colors . 81

Must We Be Web Safe? . 82

Selecting a Color Palette for Your Design . 83

Color for Text . 84

Background Color . 84

Adding Background Color to Text . 84

Adding Background Color to Headings . 86

Background for Other Elements . 87

Image Formats for Backgrounds . 90

GIF . 90

JPEG . 93

PNG. 94

Got the Picture? . 94

Background Image . 94

Sensible Use . 95

Prepare Your Template and Style Sheet . 95

Specifying a Background Image . 96

Repeat . 97

Position . 99

Attachment . 100

Background Shorthand . 101

To Conclude... 102

■CHAPTER 6 Lists . 103

Why Use Lists? . 103

The Unordered List . 103

Basic List CSS . 104

Using Background Images for List Bullets . 111

The Inline List . 112

Taking Control with IDs . 114

Grouping Items with Classes . 116

Nested Lists. 118

Lists for Navigation . 121

The Vertical Navigation Bar . 121

■C O N T E N T S xi

The Ordered List . 124

Controlling the Ordered List. 125

Creating Custom Numbers. 125

Declaring the Numbers Using the Unique Classes 125

Dressing Up the Ordered List . 126

To Conclude... 128

■CHAPTER 7 Links . 129

Link Markup . 129

Default Link Styling . 130

Simple CSS Rules . 130

Setup . 130

Changing Link Color . 131

A Note About Order: LoVe HAte . 133

Other Useful Link Properties . 133

text-decoration . 134

Using Borders with Links . 134

Adding Symbols with Background Images 136

Targeting Links with Descendant Selectors . 137

Transforming a Navigation Bar with Links . 139

Prepare the Template . 139

Define All Shared Link Declarations and Clickable Area 140

Define Background Colors . 142

Highlight the Current Page. 142

To Conclude... 143

■CHAPTER 8 Tables and Definition Lists . 145

Tables . 145

A Note About Accessibility . 146

What Is a Table For?. 146

The Not Very Occasional Table . 147

border-collapse . 152

Customizing Elements . 154

Definition Lists . 158

Definition List Markup . 158

A List Inside a Definition List . 161

Care with Definition Lists . 165

Further Reading . 166

To Conclude... 166

xii ■C O N T E N T S

■CHAPTER 9 Forms . 167

Markup Refresher . 167

Form Elements . 168

Accessibility Aids . 170

Ready-Made IDs . 171

Browser Rendering of Form Elements . 172

Basics of Form Styling . 174

Prepare a File and Style Sheet . 174

The Form CSS Block Is Complete . 182

Three Approaches . 182

About Each Example. 182

Table-Based Forms . 183

Paragraph and Break Element Layout . 186

Definition List Layout . 194

So Which Approach Is Best? . 204

To Conclude... 205

PART 2 ■ ■ ■ Logical Layouts

■CHAPTER 10 Layout Basics . 209

Floats and Clearing . 209

The float Property . 211

Floating Images. 211

Clearing Floats . 214

Clearing Your Floated Image . 218

Positioning . 225

Basic Position Properties and Values . 226

Position This in Your Mind . 233

To Conclude... 233

■CHAPTER 11 Classic Layouts . 235

Types of Layout . 236

Fixed. 236

Liquid . 237

Elastic. 238

Variable Fixed Width . 238

■C O N T E N T S xiii

Before You Build . 239

Liquid Floated Two-Column Layout . 241

Masthead and Footer . 241

The Floated Sidebar . 242

Liquid Float Left, Float Right . 248

Liquid Floated Three-Column Layout . 250

Liquid Positioned Two-Column Layout . 255

Height Is Important . 255

Footer Woes . 258

Liquid Positioned Three-Column Layout . 259

Fixed-Width Layout . 264

The Box Model . 264

Fixed and Floated Three-Column Layout . 267

To Conclude... 273

■CHAPTER 12 Layout Manipulation . 275

Switching Layout with Contextual Selectors . 275

Setup . 276

The Body . 279

Faux Columns . 284

Get Set Up . 285

What About the Box Model? . 288

Fluid Faux Columns . 289

To Conclude... 289

■CHAPTER 13 The Journey from Layout to Template 291

Masthead . 291

Basic Masthead. 292

Floated Right Content (Search Tool) . 295

Headings . 297

Navigation . 298

Cool Footers . 299

Quirky Footer . 299

The Action-Packed Footer . 302

To Conclude... 311

xiv ■C O N T E N T S

■CHAPTER 14 Usability and Accessibility Enhancements 315

Guidelines and Legalities . 315

Web Content Accessibility Guidelines. 316

Section 508 . 316

User Style Sheets . 317

!important . 317

Inherit . 317

Being Helpful . 318

Styling Abbreviations and Acronyms . 318

Specialized Style Sheets . 320

Print Style Sheets . 320

Mobile/Handheld Style Sheets . 325

To Conclude... 328

■CHAPTER 15 Tips, Tricks, and Troubles . 329

Rollover Images . 329

In the Old Days . 329

The (X)HTML . 330

The Image . 330

The CSS . 331

The Overflow Property . 332

Overflow Values . 332

overflow:auto. 332

overflow:hidden . 334

Combining Classes . 336

Hacks and Filters . 338

Safe Hacks. 339

IE7 Is Coming . 341

Troubleshooting . 342

Common Problems . 342

Recommendations . 344

To Conclude... 346

■C O N T E N T S xv

■CHAPTER 16 Case Study: The Dead Goods . 347

The Case Study . 347

The Process . 347

Design . 348

Content. 350

Presentation . 350

Setting Up . 351

Wireframing the Layout . 351

Bodywork . 352

Container . 352

Masthead . 352

Columns . 353

Footer . 353

Organized Layout . 354

Background Work . 355

Masthead Background . 355

Sidebar Background . 355

Main Column Background . 357

Footer Background . 357

Page Background . 358

Background Work Completed . 358

Text Treatment . 360

Back to Body . 360

Headings . 360

Column Text . 361

The Final Touches . 362

Logo As Home Link. 362

Main Navigation . 363

Login Form . 365

Footer Content. 366

Finished! . 368

It’s the End of the Book! . 369

■APPENDIX CSS Reference . 371

Background . 371

Border . 372

Margin . 373

Padding . 374

Dimension . 374

xvi ■C O N T E N T S

Text . 375

Font . 376

List and Marker . 377

Positioning . 378

Classification . 379

Table . 380

Pseudo Classes . 380

Pseudo Elements . 381

Outline . 381

Shorthand . 382

Font Shorthand . 382

Background Shorthand . 382

List Shorthand . 383

Margin and Padding Shorthand. 383

Border Shorthand . 384

■INDEX . 387

xvii

Foreword

As a bloke of that “certain age,” I can remember the television series that were shown in the

1970s and early 1980s. My brother and I would stay glued to the telly each Saturday teatime.

From Roddy McDowell’s unconvincing ape suit in the TV spin-off from the Planet of the Apes

movies, to Logan’s Run; from “Grasshopper” David Carradine in Kung Fu, to my own personal

favorite, Bill Bixby and Lou Ferrigno in the pre-CGI Incredible Hulk; we couldn’t get enough.

These shows and many more just like them shared a common 1970s theme. While the Hulk

of the original comic books just got angry, the television Banner, unexpectedly dosed by gamma

radiation before he could slap on the sun block, lived outside of society. Sure, he got angry and

ripped his trousers, but as he traveled across the country from place to place, along the way he

met new people and helped to solve their problems—problems that no one had been able to

solve before.

Like the rag-tag band of ships that followed Battlestar Gallactica on its quest for a faraway

Earth, each of the characters in these series knew where they wanted to go, they just didn’t

know how to get there. The map to Earth or Logan’s Sanctuary, or for the Hulk a course on

anger management, just hadn’t been written.

By now you might be wondering, “What on Earth is Malarkey rambling on about? This book

is about web design, not television trivia from the decade that time best forgot.” But as a web

designer who came late to the world of meaningful markup and CSS, I can identify with the Hulk.

Solving problems is what web designers do, and not just for half an hour every Saturday

teatime. We solve problems every day for our clients and for their visitors; we also solve the

problem of how to implement our designs with web standards.

When I started my own journey toward web standards, I knew very little about CSS floats

and positioning, and I got angry when my design layouts fell apart in a browser. While my

trousers (almost) always stayed intact, I was filled with an inner rage when my columns dropped,

my margins collapsed, or my font sizing misbehaved. I knew the results that I wanted to achieve

and where I wanted to go, but I didn’t know how to get there. At that time there was no clear

map for people like me who understood design but needed a book to show the way between my

design visuals and the standards-based web pages that I wanted to deliver to my clients.

If you are starting out on a similar journey, you’re in luck. Simon Collison has written that

roadmap, a book that clearly explains how to make your designs a reality using XHTML and CSS.

Simon knows what it’s like to design at the sharp end of the web design business. He comes to

web standards not from an academic interest but from a real need to get stuff done. I have long

admired his design skills and his uncanny ability to explain complex subjects in clear language.

I know that beginning to work with web standards will sometimes make you angry; that’s

unavoidable. I also know that this book will help you to keep any outbursts free from shirt button

popping, trouser ripping, or maybe even car throwing. Thanks to Simon Collison, the world is a

safer place for us to live.

Andy Clarke

June 2006

xix

About the Author

■SIMON COLLISON has been working with web sites for almost six years.

In 1999, he didn’t even have a computer and was a bit web-phobic.

How times change.

 As lead web developer at Agenzia (www.agenzia.co.uk) since 2002,

he has worked on numerous web projects for record labels (Universal,

Vertigo, and Poptones), high-profile recording artists (The Libertines,

Dirty Pretty Things, and The Beta Band), and leading visual artists and

illustrators (Jon Burgerman, Black Convoy, and Paddy Hartley). Simon

also oversees a production line of business, community, and voluntary

sector web sites, and passionately ensures everything is accessible and complies with current

web standards.

Away from the office, Simon runs the popular blog Colly Logic (www.collylogic.com), and

he is an active member of the so-called Britpack—a collective of laid-back designers and devel-

opers who all share a passion for responsible web design. When prised away from the laptop,

Simon can most likely be found in the pub or at a gig, waffling incessantly about good music,

football, or biscuits.

Simon has lived in many cities, including London and Reykjavik, but has now settled back

in his beloved Nottingham, where the grass is green and the girls are pretty.

xxi

About the Technical
Reviewers

Music, design, typography, web standards, South Florida beaches—

what could these things possibly have in common? DAN RUBIN, that’s

what . . . er, who. From vocal coaching and performing to graphic design

and (almost literally) everything in between, Dan does his best to spread

his talent as thin and as far as he possibly can while still leaving time for

a good cup of tea and the occasional nap.

 His passion for all things creative and artistic isn’t a solely selfish

endeavor either—you don’t have to hang around too long before you’ll

find him waxing educational about a cappella jazz and barbershop harmony (his design of the

Rounders web site [http://roundersquartet.com] is just one example of these two worlds colliding),

interface design, usability, web standards, graphic design in general, and which typeface was

on the bus ad that just whizzed by at 60 mph.

In addition to his work on sites including Blogger, the CSS Zen Garden, and Microsoft’s

ASP.net portal, Dan has been known to write the occasional entry on his blog, SuperfluousBanter

(http://superfluousbanter.org—you might even find a podcast or two if you poke around

enough), and his professional work can be found at his agency’s site, http://webgraph.com.

■RICHARD RUTTER is cofounder and production director of Clearleft

(http://clearleft.com), a web design consultancy based in Brighton, UK.

Richard has been designing and building web sites for over ten years,

and is a practitioner and evangelist of the web standards approach to

developing web sites. He is coauthor of Web Accessibility: Web Standards

and Regulatory Compliance (friends of ED, 2006) and Blog Design

Solutions (friends of ED, 2006).

 A more personal side of Richard can be found at Clagnut

(http://clagnut.com), a popular weblog where he writes about acces-

sibility and web standards issues, as well as his passions for music and

mountain biking.

xxiii

About the Foreword Writer

■ANDY CLARKE is a sought-after designer, writer, and speaker who is passionate about design,

web standards, and accessibility. He specializes in the design of user experiences for web appli-

cations and e-commerce stores, and bridges the gap between design and code. Andy writes

about aspects of design and popular culture on his personal web site, And All That Malarkey

(www.stuffandnonsense.co.uk) and is the author of Transcending CSS: The Fine Art of Web Design

(New Riders Press, 2006).

xxv

Acknowledgments

The Icelanders have a word called trúnó, which they use when somebody explodes with

embarrassing love for their friends, family, and colleagues. I am about to hit you with some

serious trúnó.

My eternal gratitude to my friends and colleagues at Agenzia: Lee Hickman, Simon Rudkin,

Maxwell Harrison, and Alun Edwards. Without my years at Agenzia, I wouldn’t be anywhere

near qualified to write this book. You’ve pushed me hard, and I thank you for it.

Love, hugs, and gushing praise to my unbelievably tolerant and close friends Oliver Wood,

Emma Crosby, Michael Armstrong, Jamie Craven, Jon Burgerman, Lee Walker, Si, Cass, Ben,

Sally, Sarah, Rick, Josh, and Rob—I’m gonna come out to play again soon!

Unparalleled thanks to my very patient Mam and Dad, and also the Granddads (who don’t

realize how much I admire them). Thanks too to my Auntie Christine for inspiring me to be

creative when I was a nipper. I should probably thank the cats, too—Ziggy, Bear-Face, and

Mute-Puss.

I can’t thank the Apress team enough. I am indebted to Chris Mills (you, Sir, are a true

legend), Beth Christmas, Ami Knox, and Laura Esterman (and all the behind-the-scenes folks,

too). It has been a pleasure to have Richard Rutter and Dan Rubin doing the tech reviewing, and

I’m over the moon that the incomparable Andy Clarke agreed to write the foreword. Collectively,

you all made it so much easier.

A big thanks to my pant-wearing BritPack friends, and to the foreigners who keep me

inspired (or give me free stuff), particularly Roger Johansson, Cameron Moll, Veerle Pieters,

Shaun Inman, Jason Santa Maria, Ryan Carson—and anyone anywhere who has adopted or

advanced web standards.

Geeky love to the ExpressionEngine team, and hat doffs to the creators of the other tools I

used while writing this book: MAMP, DropSend, Basecamp, TextMate, Transmit, good browsers,

my trusty Powerbook, iTunes, and the person who invented tea.

Finally, I must thank all Colly Logic readers for keeping my ego waxed, and last but not

least, you, the reader, for buying the book. You’ve made my day!

xxvii

Introduction

How excited are you then? Is the prospect of becoming a professional CSS genius getting you

tingling in all the right places? Once you have read this book, you’re going to be a full-fledged

web wizard, using CSS to save you and your clients time, money, and stress.

Before you board the bus to CSS enlightenment, it is worth acquainting yourself with some

of the terms bandied about by web designers and developers, and this author in particular.

Web Standards and Accessibility
This demands a brief history lesson. In 1994, as dinosaurs lay gasping their final breaths, the

World Wide Web Consortium (www.w3.org) was formed to promote common approaches and

interoperability for the Internet. Part of their work was to create web standards specifications

such as (X)HTML and CSS, evolving these specifications in line with the requirements of web

developers and web users to make the Web a better place for all of us.

For years, web standards didn’t carry much weight with browser manufacturers, who were

often slow to realize their importance. Web sites built using standards would render inconsis-

tently across user agents, making the whole thing very frustrating for designers and users alike.

If you weren’t around in these bad old days of web design, then you are very lucky indeed.

Helping to fight the corner since 1998 has been the Web Standards Project (WaSP), which

fights for standards that reduce the cost and complexity of development while increasing the

accessibility and long-term viability of any site published on the Web. The WaSP team works

with browser manufacturers, authoring tool makers, and web designers to push for greater web

standards. Fueled by the blood, sweat, and tears of passionate, responsible web evangelists,

the Web Standards Project is a grassroots coalition fighting for standards that ensure simple,

affordable access to web technologies for all. Visit http://webstandards.org, the opening page

of which you see in Figure 1, for more of the “buzz.”

In 2003, a very nice man with a woolly hat wrote a book called Designing with Web Standards

(New Riders). That man was Jeffrey Zeldman (www.zeldman.com), and his book revolutionized

the way many approached web design. A core text cited by many as the beginning of the true

revolution, Jeffrey’s book made many think twice about how they built web sites, and uncom-

promisingly made the case for using CSS, while also increasing awareness of accessibility

and usability.

xxviii ■I N T R O D U CT I O N

Figure 1. The Web Standards Project (WaSP) web site at http://webstandards.org

The Benefits

Web standards bring many benefits. Web pages are reduced in size, making download times

faster, in turn using much less bandwidth. Compatibility with user agents (browsers, cell phones,

PDAs, assistive software) is increased, making sites more accessible. Importantly, sites built

with web standards are future-proof—primed and ready for whatever path the Web takes next.

In addition, standards also are great because they allow for the separation of content from

presentation and do wonders for site accessibility. Let’s have a little look at what these terms mean.

Separating Content and Presentation

Perhaps the most fundamental rule of web standards is that content should be separated from

presentation—by applying all decorative presentational richness using an external style sheet,

the core content (the (X)HTML) remains pure and focused. With all presentational material

kept separate from the markup, sitewide style changes can be made with little or no fuss by

amending a single CSS file, rather than having to update every page in the site, making whole-

sale redesigns a veritable breeze. Equally important is the facility for users to take control of

your content themselves by applying their own style sheet to your web site should they need to.

■I N T R O D U C T I O N xxix

Accessibility

This is the great thing about designing with web standards—accessibility comes as default.

Sure, there are further methods and approaches that can enhance accessibility and provide

greater benefits to the user, but by keeping presentation separate from content, and by using

the right markup for the right job, you increase the chances that any visitor, regardless of ability,

can access your content unhindered.

The golden rule of accessibility is simple. Anyone, anywhere, regardless of platform,

technology, experience, or ability, should be able to access your core content. By adhering to web

standards with your content, you are free to apply outrageous presentation using CSS, safe in the

knowledge that under the hood, none of your content is compromised, so a person with visual

impairments using a screenreader will be able to use your web site just fine. Of course, web acces-

sibility isn’t just about visual impairments—there are also cognitive disabilities to consider, and

many more. For more information about web accessibility, check out the book Web Accessibility:

Web Standards and Regulatory Compliance (friends of ED, 2006) and look at the great online

resources available, such as www.accessify.com and http://diveintoaccessibility.org.

This book specifically looks at CSS for accessibility in Chapter 14.

Making the Move Toward Standards

So, I think that by now you can see the arguments for moving to web standards–based web

design . . . you probably knew before you picked up the book in fact! But why hasn’t everyone

adopted CSS for styling and layout? Many argue that CSS is difficult to implement; that it only

works for certain browsers; that the learning curve is too steep. The big problem is that a large

quantity of old-school designers are slow to adopt web standards. Many still make a living creating

appallingly weighty web sites using outdated markup, often reliant on tables for layout, and

littering the code with font tags and other extraneous, deprecated methods. They can still make

their money doing what they do, and they don’t see the need to change. These people are

dangerous and should not be approached.

Still, the Internet community is chock-full of good, responsible people, and the benefits of

web standards have not gone unnoticed. Since Zeldman wrote that book, thousands have made

the move to CSS-based design, and very few would ever go back. The myth that an accessible

site is an unattractive site has long since gone away, and some of the most accessible, usable

web sites out there are also the most attractive, stylish designs thanks to smart and experimental

use of CSS (see the examples in Figure 2).

I hope that after reading this book, you too will be producing designs that challenge, excite,

and inspire. It’s in your hands.

xxx ■I N T R O D U CT I O N

Figure 2. Stunning web sites produced using 100% web standards. From top: Veerle’s Blog
(http://veerle.duoh.com); BearSkin Rug (www.bearskinrug.co.uk); And All That Malarkey
(www.stuffandnonsense.co.uk).

About This Book
This is the book I needed when I began experimenting with CSS. If I’d had this book, I’d have

saved myself an immeasurable amount of wasted time. It assumes a fairly comfortable knowl-

edge of (X)HTML markup, but little or no knowledge of CSS. For the latter, we start from scratch.

Some books wrap you in cotton wool, gently easing you in. Not this book. The first three

chapters attempt to explore the core concepts of CSS, giving you a firm foundation for the chapters

that follow. CSS is a simple technology, but its magic stems from the complex approaches and

quirks at the heart of the specification. Therefore, the first three chapters establish grounding

for everything that follows. It is not essential to read these first, but it is important to become

familiar with their subject matter so that you can quickly refer back when a technique mentioned

in a later chapter gets a bit involved. For example, if I mention “the cascade” in Chapter 14 and

you are not sure what I mean, you know you can flick back to an early chapter to work out what

this is.

■I N T R O D U C T I O N xxxi

After this deep-end, lung-filling beginning, each following chapter of Part 1 focuses on styling a

particular markup group, such as tables, links, lists, or text, providing a sensibly structured

reference of common approaches to element styling.

For Part 2 of the book, the focus shifts to layout and real-world issues. Here, you begin thinking

like a professional web designer, looking at methods for pulling everything you have learned

into accessible, lightweight, and stylish templates. Part 2 also sprinkles a few extras into the mix,

detailing useful hacks, filters, and accessibility techniques that give you even greater power.

Finally, many of the techniques used in the book are pulled together for the Dead Goods

case study, which details the ins and outs of styling a living, breathing web site with pure, honest-

to-goodness CSS. It’s a revelation!

I have also provided a CSS syntax reference at the back of the book detailing all the properties

and values covered, allowing you to look up those troublesome properties, etc., quickly and easily.

You can read this book from cover to cover if you wish, as it has a logical narrative. Likewise,

it works as a dip-in reference guide for the astute designer who simply wants to get on with the

job. Either way, I think you’ll enjoy it.

Conventions Used in This Book
For the most part, any strange references in this book will have been explained in earlier chapters.

That said, there are a few conventions worthy of your attention before we begin:

• (X)HTML refers to both the HTML and XHTML languages.

• Unless otherwise stated, all CSS is compliant with the CSS 2.1 specification.

• It is assumed that all (X)HTML examples in this book are placed within the <body> of a

valid document, while the CSS is placed in an external style sheet linked from the <head>

of the (X)HTML document, unless stated otherwise.

• In most cases, when an (X)HTML tag appears followed by the word element in the text,

this refers to the whole element. For example, element refers to the whole

element, from the opening tag to the closing tag and everything

contained within.

• Tea and biscuits are recommended throughout. For the sake of clarity, the tea is tradi-

tional English tea, and the biscuits are typically chocolate digestives.

I think that’s it, so put the kettle on, kick off your slippers, and get set for enlightenment!

■ ■ ■

P A R T 1

Get to Know CSS

And so our journey begins, logically at Part 1. The first three chapters explore the major

whys and wherefores of CSS, getting as much of the technical theory out of the way as

quickly as possible.

From then on, Part 1 deals with the common elements of any design and how to trans-

form them with CSS, and for the most part, these elements—headings, forms, tables,

paragraphs, and so on—will be familiar to you. Each chapter builds a little on the

preceding chapters, gradually increasing your CSS aptitude before throwing you into Part 2,

where you’ll get to grips with layout and more advanced approaches.

Chapter 1, “Getting Started,” sets you on your way by analyzing first the methods of

applying style sheets to your (X)HTML. Within a few minutes, you will be ready to pick and

choose from several possible methods, and be aware of when to use each approach. This

chapter also looks at correct CSS syntax and ideas for making everything more manageable.

Chapter 2, “Core Concepts of CSS,” looks into IDs and classes—two core methods of

calling styles within your documents. This chapter also helps to explain the intricacies of

style sheets by examining the cascade itself, and some of the more complicated magic

within. The chapter concludes with an overview of CSS measurements—when to use

them, and why.

Chapter 3, “CSS Building Blocks,” examines the tools used to extend the capabilities

of both your markup and your CSS, with particular attention to things called divs and

common CSS properties such as margins, padding, borders, and dimensions.

Chapter 4, “Text,” lets you loose with your existing (X)HTML elements, by discussing

the numerous methods available for controlling text, and making it more legible, more

accessible, and more attractive. There is also an overview of font use and responsibility

regarding the Web.

Chapter 5, “Color, Backgrounds, and Images,” fills the gap left by many CSS books by

exploring issues relating to color and image use. Which image type should you use, and

when? What methods are available for applying color for cross-browser support? How can

background images be used to decorate the (X)HTML document? All of these questions

and more are answered in this chapter.

Chapter 6, “Lists,” looks at the humble list, and how to magically transform it using

pure CSS and occasional additions to the markup. Ordered and unordered lists are examined

in detail, including how to use a list for site navigation and how to use custom bullets.

Chapter 7, “Links,” takes umbrage with the boring old blue and purple hyperlinks, and

gives them a complete makeover. From simple changes of color, to smart links with back-

ground images, this chapter gets you thinking about links in a completely new way and

also extends the list-based navigation you created in Chapter 6.

Chapter 8, “Tables and Definition Lists,” details ways of organizing related data using

web standards. The case for tables is made, and some cunning CSS tablecloths are added

to spice things up. The second half deals with the unsung definition list, a very flexible

method of ordering related items that can also be magically manipulated using good old

style sheets.

Chapter 9, “Forms,” knows that you don’t like dealing with these frighteningly night-

marish beasts. To counter your fright, the markup is stripped down to a bare minimum and

reinvented using three different techniques, each making use of some simple yet effective

CSS to aid usability and accessibility. You’ll also learn how to develop a reusable set of

styles that can be employed to dress up all of your forms to save on time and stress.

3

■ ■ ■

C H A P T E R 1

Getting Started

As you’ve already seen from the introduction, Cascading Style Sheets (CSS) are the saviors of

responsible web design. The impact of CSS upon the way developers build web sites has been

immense, and the possibilities they bring are endless. Removing most or all of the presentational

information from an (X)HTML file and placing it in a style sheet has numerous advantages,

including reduced file sizes, huge bandwidth savings, and easier maintenance. What’s more,

by keeping all presentational information separate from the core content of a site, the web

designer is able to make small or large changes to a whole web site in a matter of seconds.

These are just a few advantages that style sheets give us, and as you progress through this book,

you’ll begin to realize just why CSS is so important, and why web designers cannot stop talking

about it.

However, no matter how beautifully crafted your CSS, it is pretty useless on its own.

Applying styles to well-formed (X)HTML is the first step that may seem arbitrary to you, but

this vital procedure is very often the first stumbling block for newcomers. Many seasoned

developers still fail to exploit the true flexibility of CSS at this stage, and never fully embrace the

glory of the cascade.

In this initial chapter, you’ll explore the variety of methods available for applying CSS to

(X)HTML, and discover the benefits and pitfalls of each. In every facet of web design, there are

numerous methods available to us, and it’s important to identify the right method for the right

task. Applying CSS falls comfortably into this description, and while one particular method will

be strongly suggested above all others, the ability to call on others when required will see you

armed for any eventuality.

The chapter closes with several productivity recommendations that explore good organi-

zational practice, essential for keeping your style sheets legible and well organized. Let’s dig in.

Applying CSS to (X)HTML
Working through this chapter from start to finish will have you fully prepared for anything this

book will throw at you. The result will be a set of (X)HTML files, each taking their basic styling

from CSS served using all the available methods. It’s then up to you which method you choose

to work with through the following chapters. It’s time to learn the methods one by one.

Preparing a Base (X)HTML Template

For each example in this chapter, you’ll need a fresh copy of the base template provided in this

section. This is a very simple (X)HTML page consisting of some standard document sections

4 C H A P T E R 1 ■ G E T T I N G S T A R T E D

(<head> and <body>) and familiar elements (headings, paragraphs, and links to further

templates in an unordered list) thrown in, all of which you’d expect to see in a typical web page.

We won’t deal with tables or images just yet.

To appreciate the effects of the applied CSS, it is worth copying this template verbatim at

this stage, as that’ll help you understand the examples discussed. Note that the list of links will

tie together further templates in this section, giving you a cut-out-and-keep mini-site for reference.

The (X)HTML is also available to download from www.apress.com if you’re one of those who

doesn’t like typing very much. For reference, it’s also printed here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

 <head>

 <title>Applying CSS Mini-site</title>

 </head>

 <body>

 <h1>Applying CSS Templates</h1>

 <p>A mini-site containing several (X)HTML templates, each being➥

 styled using a different method of CSS application.</p>

 <p>Click an example below.</p>

 <h2>Examples</h2>

 Base template

 Inline CSS template

 Embedded CSS template

 External CSS template

 Imported CSS template

 </body>

</html>

Note that there has as yet been no CSS in this chapter whatsoever. So to create a base template

file, go through the following steps:

1. Create a new file called base.html.

2. Add the (X)HTML.

3. Save the file to a new folder on your computer.

4. Drag the file onto an empty browser window to see the basic web page as it stands.

Now you are ready to build a set of templates, each influenced by CSS in a different way.

This mini-site can then be used to revisit and play with the methods discussed in this book,

applying the CSS however you see fit.

C H A P T E R 1 ■ G E T T I N G S T A R T E D 5

5. Next make four copies of base.html, and name them inline.html, embedded.html,

external.html, and imported.html.

6. Ensure you save these new files to the same folder as base.html.

7. The four new files should now be available from your base.html file in your web browser.

Great! Now for each following method, you will have a corresponding (X)HTML file with

which to work. Let’s work through the main methods of applying CSS to XHTML one by one.

Later you’ll learn how the numerous methods can be combined for a more powerful effect.

Inline Styles

Inline styles make use of the style attribute applied to specific tags within the document,

where the actual style value is declared using the form name:value, or property:value, if you

want to use the correct terminology. There is a more detailed explanation of correct CSS syntax

later in the “Effective CSS Syntax” section.

1. Open inline.html in your text editor.

2. Find the first opening paragraph tag <p>.

3. Replace the <p> with <p style="color: #F00"> and save the template. This very simple

declaration will ensure that the paragraph text will be red.

Notice now that the text contained within that paragraph will be red. Only that paragraph

is affected, and the second paragraph defaults to black. This method can be applied to any

(X)HTML element within the <body> of the page.

Pros of Inline Styles

There are times when this method is useful, but these times are few and far between. You’ve

just learned how to make a paragraph red using CSS—that was useful, right? This method

might also be useful for testing out simple CSS examples within this book. However, I think it

best to skip to the “Cons of Inline Styles” paragraph rather than seek poor justification for

inline CSS—as you’ll soon find out when you have a bit more experience, it’s not a good idea

generally.

Cons of Inline Styles

Your (X)HTML should always be as presentation-free as possible. Peppering your code with

inline styles is going to weigh the page down significantly. As if that were not reason enough,

imagine having to declare the styles for every paragraph, every link, every header, and so on. To

further scare you off, consider redesigning a site containing hundreds of pages where inline styles

litter the markup. You’d have to go into every page and change each CSS property individually—

not good.

6 C H A P T E R 1 ■ G E T T I N G S T A R T E D

Embedded Styles

Embedded styles still have you working exclusively within the (X)HTML template, but this time

all styles are grouped together in the head of the document, as part of one element.

1. Open embedded.html in your text editor.

2. Within the <head> section of the template, just after the <title> element, paste the

following: <style type="text/css">p {color: #F00;}</style>. Again, you are using

a simple CSS declaration to render the text red.

3. Save the template, and open it in the web browser.

Notice now that the text contained within both paragraphs is red. This time around, all

paragraphs in the document are affected by the declaration, as the style is applied without

exception to all <p> tags within the page.

Pros of Embedded Styles

There are times when this method is useful, but again they are rare. Admittedly, this approach

is much better than inline CSS, as it allows you to make blanket changes to all instances of an

element rather than using duplicated inline styles. The idea of grouping all styles in one place

is much more sensible too, although as before, the actual (X)HTML document isn’t the best

place for this. Many seasoned developers will tell you that this method can be ideal during

initial testing.

Cons of Embedded Styles

Embedded styles are again loading presentational bloat into the document. Also, the styles

need to be downloaded again and again with every page load. Every page of your web site will

need its own embedded styles, and making sitewide style changes is going to be very labor

intensive (unless perhaps you pull the styles in as an include). Hey, that’s a good idea actually.

Let’s move on.

External Styles

I don’t want to influence you too much here, but please use this method for your day-to-day

CSS sites! Forget all the pros and cons of inline and embedded styles, and rejoice over external

style sheets. In this example, your external style sheet will only contain one rule, but this sheet

will grow to be the most influential file of the whole web site.

1. Open external.html in your text editor.

2. Within the <head> section, and after the <title> element, paste the element <link

rel="stylesheet" type="text/css" href="external.css" /> and save the file. This line

tells the browser to look for an external file called external.css, which is a CSS file, and

that it is stored in the same directory.

3. Create a new file called external.css.

C H A P T E R 1 ■ G E T T I N G S T A R T E D 7

4. Into external.css paste the following: p {color: #F00;}.

5. Save external.css to the same folder as the .html files, and again open it in your

web browser.

See that the paragraphs are again red, but note that there is not a single CSS rule or style

element anywhere in your (X)HTML file. Your (X)HTML is free of presentational bloat, and the

color is being controlled via the external style sheet.

The big take-home message here is that you can now use the link element as seen earlier

to apply the style sheet to any number of other (X)HTML pages, resulting in the paragraphs on

those pages also being turned red! So you can now change styles on 10 or 100 web pages, just

by altering one style sheet—now that’s control!

Pros of External Styles

How long have we got here? First, when you think about CSS for your site, you think only about

one external style sheet, and not the markup, which means sitewide style changes are a one-sheet

job. Second, once the browser accesses the style sheet, it is cached and need not be downloaded

again. The result of this is that not only are pages rendered faster, but also the saving on band-

width is considerable, with just one CSS file replacing the same or similar code that would be

needed in each and every (X)HTML page if working with embedded CSS. Third, your markup

can be devoid of any presentational information, keeping it lean and content-only.

Cons of External Styles

Not much to report here really. Maybe if the external CSS was for some reason unavailable,

none of the (X)HTML pages would be styled, but this is a rare occurrence.

So, you should now understand and have examples of the three basic methods of applying

CSS to a (X)HTML document. At such a stage, many developers will stick with linking to an

external file and live happily ever after. There’s nothing wrong with that, and they will feel that

they have for themselves a very comfortable methodology; but this is CSS, and the possibilities

for improvement are endless.

There’s another method of applying styles to a web page called importing, and we’ll look

at that next.

Importing and Combining Styles
Serving presentational information with the @import rule is a key part of web standards flexi-

bility. The site structure—the actual content—is uncompromised, and you are free to make

separate choices about the presentational styling. The @import rule was not designed to be

used in the (X)HTML document, and is meant as a method for importing one or more style

sheets via the main external style sheet. However, by importing an external style sheet via the

(X)HTML, you can ensure that old browsers such as Netscape 4.x and IE4 ignore specific styles.

You would then provide a standard link to an external style sheet for those browsers. We’ll look

at further uses of @import in Chapter 2, but first it is worthwhile to gain a basic understanding

of how this method works.

8 C H A P T E R 1 ■ G E T T I N G S T A R T E D

The following example assumes you created the style sheet external.css in the previous

section:

1. Open imported.html in your text editor.

2. Within the <head> section, and after the <title> element, paste the element <style

type="text/css">@import url(external.css);</style> and save the file.

3. Save imported.html and view it in the browser.

Nothing looks any different, and the paragraphs are still red, but you’ve just taken a very

important step toward sensible and productive style sheet management, which you’ll find out

more about in the “Maintaining and Organizing Style Sheets” section that follows shortly.

The @import rule is particularly useful for hiding your style sheet from old and infirm browsers

with poor CSS support, such as Netscape 4.x, which don’t support @import. Rather than attempt

to do something half-useful with your CSS, that browser will just completely ignore your style

sheet and leave the (X)HTML unstyled. If you served the CSS as usual, and poor old Netscape

tried to follow its rules, it would more than likely balk at many of them and produce an unhinged

mess, which is best avoided.

Print Style Sheets

At some point in the (hopefully near) future, your sites will be wonderful works of art full of

color, graphics, and interesting column separation. Good for you, and good for the screen, but

that’s not so good for printing. Nobody wants to print an article written in white text on a solid

black or extravagant rainbow background. That uses way too much ink, and is thankfully

avoidable.

All modern browsers support the most common media attributes, which are applied within

the <link> element to target specific style sheets in a specific situation. For example, to ensure only

visitors viewing the web site on a monitor see your glamorous design, you add media="screen" to

the <link> element to call your default style sheet. Underneath that, a second <link> element

can be used with media="print" added to call a print style sheet with only basic styling, such as

black text on a plain white background, and all graphics removed:

<link rel="stylesheet" media="screen" type="text/css" href="screen.css" />

<link rel="stylesheet" media="print" type="text/css" href="print.css" />

If a style sheet has a media type of screen, it will not be used when the page is printed. If no

media type were specified, the style sheet would influence the printed result. Note also that any

style sheet intended only for printing purposes must be given the print media type to prevent

it from being implemented on screen. It is therefore very important to specify media type correctly.

The finer aspects of print style sheet management are covered in Chapter 14 much later in this

book, but it’s very useful to understand the possibilities of the media attribute at this stage.

Other Style Sheets

Why stop with print style sheets? The next most popular media attribute is media="handheld",

which, while not supported by all mobile devices, is still in common use as browsers will ignore

C H A P T E R 1 ■ G E T T I N G S T A R T E D 9

its content, allowing many cell phone or PDA users to access a stripped-down version of your

styling depending upon support. Again, all that is required is another <link> element with

media="handheld" specified, calling a specific style sheet such as handheld.css or mobile.css.

■Note The only media declarations currently supported by IE are all, screen, and print, so many of

the other declarations, such as projection (for projectors, funnily enough), aural (for speech synthesizers), and

braille should only be used when you are targeting a specific device for a specific end audience.

Maintaining and Organizing Style Sheets
Ask developers proficient in CSS about its virtues and they’ll wax lyrical until the cows come

home. Ask those same developers how they organize their style sheets, and you may get a less

informed response. Like it or not, your external style sheet will invariably start small, and end

up ballooning out of control. The more rules you add, the longer the style sheet. Consider this

for a large organization such as the BBC (www.bbc.co.uk), which has an almost unique design

for each of its many sections, and style sheets can soon become unmanageable. What was that

rule you wrote to define the style for sublists only in the third column and only when the page

is defined as an “article” page? Where was that rule put again? You need a system of organiza-

tion, and this is a principle you will do well to employ very early on.

Multiple Directories

You might be thinking about serving a default style sheet, a print style sheet, and maybe one for

mobile devices in the future. That’s superb, but remember that it’s really important to keep

things well organized. Soon we’ll look at multiple style sheets for one platform—if that method

is combined with style sheets for other platforms, things can get a bit unmanageable.

The best approach here is to use folders. This might seem obvious, but you’d be amazed

how few people do this, and it can be a challenge to work with someone else’s design if such

methods haven’t been implemented. When you are ready to make use of alternate style sheets,

the following example can be employed. Here a new folder is created for each potential platform or

action (such as handheld for mobile devices and print for the printable, stripped-down version

of the page):

1. Create a high-level folder called css.

2. Inside that, create a folder for each platform you’ll be catering to, such as handheld,

print, screen, and so on.

3. Inside each subfolder, you then place the actual CSS files for that platform.

So, you end up with a sensible folder structure that can be reflected in your <link> elements,

as these examples show:

10 C H A P T E R 1 ■ G E T T I N G S T A R T E D

<link rel="stylesheet" media="screen" type="text/css" ➥

href="css/screen/default.css" />

<link rel="stylesheet" media="print" type="text/css" href="css/print/default.css" />

<link rel="stylesheet" media="handheld" type="text/css" ➥

href="css/handheld/default.css" />

This might not seem important, or even worthwhile at the moment, but when you start using

multiple style sheets for a particular platform, it’s useful to be able to keep them inside a

specific folder.

Keep this approach in mind should you need to serve different style sheets for different

sections on a larger site. For example, if your main pages use your default screen styles, they’ll

live in the css/screen folder, yet your member pages are styled differently and so would live in

css/screen/members. This is a simple approach, but more useful than might seem apparent

right now.

Multiple Style Sheets

Consider a style sheet that contains all of the rules you’ve created for an entire site. Let’s say

that site is equivalent in size to the BBC web site, which is very, very big indeed. All the styles

required would result in one long, unmanageable style sheet, so splitting the style sheet into

manageable chunks is a much better option here.

Modular CSS

It pays here to think of your CSS as modules. For example, many rules will apply directly to

layout—a number of key rules (font control, color, headings) will apply to every page and can

be considered as your default rules. On the other hand, some rules will be applied to <form>

elements, so will only be used on a few pages.

So how about creating a specific style sheet for each module, such as the default module,

forms module, navigation module, and so on? By combining each module, you end up with the

CSS for a complete site, yet everything remains separated, and you can be pretty sure that you

placed your submit button styles in the forms style sheet.

This is where our friend @import again comes in very handy. First, you link to a basic style

sheet that in turn imports all the modular sheets using @import. Such a method has other benefits

such as easier debugging and problem solving.

In the following example, the basic style sheet (external.css) is used to import two

modular ones (default.css and layout.css) to have a combined effect on the (X)HTML:

1. Create a new style sheet called default.css.

2. Place the CSS p {color: #F00;} in it and save the file.

3. Create another new style sheet called layout.css.

4. Place the following CSS into layout.css: #header {height: 100px; width: 100%;

border: 1px solid #999;}; save the file.

C H A P T E R 1 ■ G E T T I N G S T A R T E D 11

5. Open external.css and replace the existing CSS with the following:

@import url("default.css");

@import url("layout.css");

6. Save the file.

The CSS is now prepared and still hidden from Netscape 4.x by @import. What you now

have is three style sheets. The first (external.css) is used to import the two modular style sheets

default.css (your basic styling for the body, paragraphs, color, etc.) and layout.css (for layout

elements such as the header you just created styles for).

7. Open external.html and ensure the link to external.css is still in place.

8. Find <h1>Applying CSS Templates</h1> and wrap this with the hooks for the header,

so you end up with <div id="header"><h1>Applying CSS Templates</h1></div>.

9. Save external.html and view it in your browser.

Notice that the CSS from default.css is still giving you a red paragraph, but also that the

header rule from layout.css is placing a box 100 pixels high by 100% width around the heading

text. The external.css file is successfully combining the two style sheets it imports for a

complete effect upon the (X)HTML.

From that point on, you would then think about adding the most common rules to

default.css and anything to do with layout to layout.css. Already this means that you are

thinking about well-organized CSS that remains manageable from the earliest design stage.

Utilizing Screen Style Sheets for Other Devices

Earlier I mentioned how modular CSS can help you manage style sheets aimed specifically

at other platforms. Take for example a style sheet aimed specifically at print media. It’s fairly

likely that this style sheet will be devoid of any layout or form styling, and all you really need is

some well-formed type to be printed on a clean white background.

Instead of creating a whole new style sheet for printing, why not just serve up your default.css

styles using the media="print" attribute in the <link> element? Because default.css contains no

layout styles, and does not itself import any other style sheets, the resulting printout will ignore

all other styles assigned to your design. If you are following the modular approach with a certain

amount of discipline, it makes sense to simply knock out the other modular sheets and just

leave the font, paragraph, and other common rules available for the printed version. By adding

the <link> for print media below your main style sheets, you bypass any further importing

controlled by the external.css file. Note also that if no print-specific style sheet is specified,

then the printer will do its best to print your design as it appears on the computer screen,

potentially costing your users a fortune in ink.

12 C H A P T E R 1 ■ G E T T I N G S T A R T E D

1. In external.html, add the media declaration for screen to the existing <link> element:

<link rel="stylesheet" media="screen" type="text/css" href="css/screen/

external.css" />.

2. Next, add the <link> element and media declaration for print devices: <link

rel="stylesheet" media="print" type="text/css" href="css/screen/default.css" />.

3. Save external.html and refresh or load it in your browser.

The first thing to note is that this method goes against the sensible folder structure

discussed earlier, in that the print style sheet is now coming from the css/screen folder. To get

around this, either don’t use the folder structure method, and just keep all your CSS files in one

folder, or retain the folder structure, and put your default.css file in the css root folder as it is

no longer media specific, seeing as it is being used for both screen and print.

The benefits far outweigh the problems anyway, as now your site is using one less style

sheet, and any changes you make to the default CSS styles in default.css will impact upon any

printed pages also. Again, if you are disciplined about what you place in the default.css style

sheet, this can only be a bonus.

As default.css only contains basic style rules, it seems sensible to use it for handheld

devices, thereby removing all layout information for them also, although if you’re a control

freak, you’ll appreciate the much more specific approaches to handhelds in Chapter 15.

Effective CSS Syntax
Sensibly organizing your style sheets is vital, but of equal importance is how you structure the

actual CSS within those sheets.

None of the methods in this section actually affect functionality, but they do aid navigation

and debugging, and certainly make it easier for you or a colleague to revisit the CSS to make

tweaks later on.

Defining a Style

At this stage, all CSS rules you create will follow a very simple formula. CSS syntax is made up

of a selector (the element or tag you wish to control), followed by at least one declaration

comprising a property and its value, as Figure 1-1 illustrates.

Figure 1-1. Correct CSS syntax

Selector

Property

Value

C H A P T E R 1 ■ G E T T I N G S T A R T E D 13

The selector defines the exact element(s) that will be affected by the rule you create. The

following example uses the paragraph tag as the selector, and the color property set with the

hexadecimal reference for red as the value:

p {

 color: #F00;

 }

Note that after the selector, the property and value are contained within curly braces.

Almost without exception, this syntax will define all your CSS rules. See that a colon follows the

property (color:) and a semicolon follows the value (#F00;). To omit either the colon or a curly

brace will result in the style sheet failing to various degrees, so it is vital to watch for syntax

errors that occur easily while busily defining new rules. Failing to include the semicolon after

each value when adding more properties will also screw things up. If there is only one property

and value, or it is the last of several, the semicolon can be omitted.

Any further properties and values for that selector are added within the curly braces. You

do not have to place them on a new line so long as each is separated with a semicolon, but for

clarity it is recommended that each does fall on a new line:

p {

 color: #F00;

 font-size: 12px;

 }

Now all paragraphs will not only be red, but will also have a set font size of 12 pixels. The

selector (in this case the p) acts as the link between the CSS and the (X)HTML, and as a result all

paragraphs will be styled accordingly. Note that the selector is defined in lowercase, as required

by XHTML only, as HTML is case insensitive

It’s then a case of adding new rules to the style sheet using the same syntax. Here, a rule to

make all top-level headings (<h1>) dark gray and 16 pixels high is added to the style sheet:

p {

 color: #F00;

 font-size: 12px;

 }

h1 {

 color: #333;

 font-size: 16px;

 }

Very simple properties are used in this example, and property syntax will be explored in much

more detail in the following chapters. For now though, we’ll concentrate on how a style sheet

is structured.

Commenting

Defining rules is one thing, but consider how unmanageable a style sheet can become once

it holds 20 or 30 rules. This is where commenting becomes invaluable. The following example

includes simple comments that remind us what the rules are there for:

14 C H A P T E R 1 ■ G E T T I N G S T A R T E D

/* Default styling for paragraphs */

p {

 color: #F00;

 font-size: 12px;

 }

/* Make all top-level headings gray and 16px high */

h1 {

 color: #333;

 font-size: 16px;

 }

Introducing some plain English into the style sheet makes things much more friendly

immediately. All comments begin with a forward slash and asterisk (/*), and end with the

asterisk followed by the forward slash (*/). This is a very simple and easy to remember method

that you may prefer to use in more complicated or important styles, so you can work out what

does what when you return to your style sheets at a later date. Also bear in mind that adding

comments will increase file sizes, but this shouldn’t have a significant impact, especially as

browsers only have to the load the style sheet file once.

A method preferred by many designers further highlights the rule by adding a dashed line

with the comment—a great way of carving up the style sheet and making it more visually

manageable:

/* Default styling for paragraphs

-- */

p {

 color: #F00;

 font-size: 12px;

 }

Again this is very easy to add on the fly, and is arguably the best approach to commenting.

Without question, commenting makes troubleshooting and revisits to old designs much more

bearable, and is a huge timesaver.

Flagging Rules

Basic comments are of great benefit when scrolling through a style sheet, but there is a quicker

way to track down a rule—vital with large style sheets. Douglas Bowman (www.stopdesign.com)

introduced the idea of flags, where a character not typically found in style sheets is used at the

beginning of a comment to aid retrieval in conjunction with your text editor’s Find tool. It

should also be noted at this point that some CSS-specific software such as TopStyle and CSSEdit

have selector searches built into their feature sets.

Doug suggests adding an equals sign at the beginning of the comment, immediately

followed by the selector to act as a flag. Doing a search in the style sheet for p would typically

find all instances of p, either alone or within other words, and would be pretty useless. However,

searching for =p would bring the rule into focus immediately, as that character combination is

unlikely to appear anywhere else.

C H A P T E R 1 ■ G E T T I N G S T A R T E D 15

/* =p Default styling for paragraphs

-- */

p {

 color: #F00;

 font-size: 12px;

 }

This technique requires discipline, and is something to either adopt completely or leave

well alone. You could end up searching for something you think you’ve flagged, but haven’t.

Therefore I recommend that you flag all rules in this way if you intend to make use of this method.

Indenting for Clarity

Further to sensible commenting and flags, responsible CSS developers can make their style

sheets even more legible. The following example makes use of comments and flags, but also

aims to make the layout even more legible using white space:

/* =p Default styling for paragraphs

-- */

 p {

 color: #F00;

 font-size: 12px;

 }

/* =h1 Make all top-level headings gray and 16px high

--*/

 h1 {

 color: #333;

 font-size: 16px;

 }

For the purposes of this book, I’m using two-space indents for the selector and four-space

indents for the declarations. Indenting is used to provide clarity. In the real world (or your

favorite text editor, to be precise), many developers use one tab click to indent the selector, and

two tab clicks to indent the declarations and closing curly brace. This might seem arbitrary, but

such a layout makes regular searching for rules a whole lot easier. The eye can scan immediate

left for comments, next right for the selectors, and farthest right for the rules.

Embracing such methods at this stage is not essential, but doing so will certainly help

you stay focused and avoid confusion as your style sheets begin to grow. Very few developers

consider these methods as they begin to learn CSS, but thinking and coding logically from day

one are two of the things that separate a great CSS designer from an average one.

You’re Ready to Proceed
If you have followed this chapter from start to finish, you are now armed to proceed with all the

organizational skills of any renowned CSS developer. Sticking to these recommendations should

help you avoid any confusion as you progress and learn to write your own CSS rules.

16 C H A P T E R 1 ■ G E T T I N G S T A R T E D

The basic templates you have created in this chapter can form the starting point for other

examples in this book. As for your method of applying the CSS, that is up to you. Whether you

choose to work with an embedded style sheet as in embedded.html, or prefer to use the combi-

nation of external.html and external.css is your choice. Perhaps you’ll want to stick with

modules and may therefore decide to place your additional rules in the existing style sheets

(default.css and layout.css) and also add new ones later for other modules, importing them

through external.css. The important thing is that you are aware of the methods of applying

CSS and have a choice.

So, what’s next? Well, we’ve covered the organizational groundwork you’ll need to take on

board before starting your CSS development, so next we’ll dive into the core CSS basics—all

that juicy syntax stuff!

17

■ ■ ■

C H A P T E R 2

Core Concepts of CSS

Or “Why didn’t anyone explain all of this madness to me when I began?”

Use CSS sparingly to control a few page elements, and you’d be right to call it a simple method-

ology. Start pushing the envelope and begin working across multiple style sheets with all sorts

of conflicting selectors, and all hell can break loose.

The thing is, this “hell” is intentional. Well, not intended to be hell as such, but it is a

system designed to flex its muscles and produce results more powerful than anyone could

imagine when they begin to toy with CSS.

CSS cascades, it inherits, it can be grouped and contextualized. As if that were not enough,

there are numerous units of measurement to be considered before diving in, each relevant to a

particular scenario. I’m not trying to alarm you here, but I am suggesting that a basic knowl-

edge of these quirky goings on can give you a much greater awareness of what is possible with

CSS, and allow you to make informed decisions throughout the following chapters. Be brave,

and don’t be afraid to reread this section. Understanding these core concepts will turn you into

a pro overnight!

Specifically, I’ll cover

• ID vs. class

• Using the cascade

• Grouping

• Inheritance

• Contextual selectors

• CSS measurements

ID vs. Class
So far you’ve only looked at base selectors to perform styling. A base selector takes an existing

(X)HTML tag and redefines some or all of its default properties to style the whole element, such

as the following rule which sets all paragraphs to red:

p {color: #F00;}

18 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

Thankfully, CSS allows you define your own custom selectors, known as ID and class

selectors. IDs and classes are applied to (X)HTML elements as simple attributes that provide

much tighter control and more hooks for your design.

Throughout the history of time, many developers have confused IDs with classes, either

failing to utilize the real purpose of each or simply using one instead of the other.

■Note Let’s begin with a very simple definition. Think of ID as identification. Your ID is unique to you and

is not shared with anyone else. A class is different, in that there can be many people in a class, be it at school,

in society, or wherever. This translates to CSS where an ID can only be used once per page, whereas classes

can be used an unlimited number of times.

IDs

An ID can only be used once per page, and is a unique identifier to an element. Typically, an

ID is used for any unique page element such as the header, main navigation, footer, or other

key part of the user interface.

Applying an ID

The most common way to apply an ID is to reference it in the (X)HTML using the id="name"

attribute immediately after the opening tag within an element. In this case, our two IDs are

named highlight and default, respectively, and are applied to two paragraphs:

<p id="highlight">This paragraph has red text.</p>

<p id="default">This paragraph has dark gray text.</p>

The corresponding CSS uses the hash (#) character to denote the rule is a unique ID. The

hash is combined with the ID name to start the rule, followed by the property declarations:

/* Define highlighted text */

 #highlight {

 color:#F00;

 }

/* Define default text */

 #default {

 color:#333;

 }

Combining IDs with Selectors

Existing or new IDs can be combined with selectors in the style sheet to add further control. In

the following example, the base CSS defines all h2 headings as dark gray and 16 pixels in size:

/* Basic heading style */

 h2 {

 color:#333;

 font-size:16px;

 }

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 19

That is fine for most uses of <h2>, but let’s say the main <h2> on your page (the title of

an article) needs to be emphasized with a different color. This calls for a new rule where the

selector is defined in the form element#name:

/* Adjust the color of h2 when used as a title */

 h2#title {

 color:#F00;

 }

Here the new rule will override the default <h2> color (color: #333;) with red (color: #F00;)

whenever an <h2> is identified with id="title" in the (X)HTML. The new rule does not redefine

font-size, so that will be carried over and unchanged. Simply add the unique identifier to

the page:

<h2 id="title">Title Of My Article</h2>

Remember that title is a unique identifier, so it cannot be used again within that template.

Any other instances of <h2> on the page will be rendered with the default styling.

When to Use an ID

Only one element on each page can be styled by each unique ID, and therefore IDs should be

reserved for unique, single-use elements such as a header or sidebar, or the main navigation or

page footer. This makes scanning your markup easier, as all ID attributes will denote unique

content areas or special regions of the page, while also providing greater flexibility for more

complex CSS application. Later in this chapter, further uses for IDs will be discussed in the

“Contextual Selectors” selection.

When to Avoid an ID

IDs must be avoided when there is more than one requirement for the CSS rule. Do not use an

ID for anything you are likely to multiply in the future, such as multiple images, link styles, or

paragraphs where more than one will need to be styled a particular way.

Class

A class can be used an infinite number of times per page, making it a very flexible method of

applying CSS. A class defines an element as belonging to a group, or as a reusable object or

style. Classes solve problems in the short term, but can provide less flexibility for more compli-

cated CSS designs.

Applying Classes

The most common way to apply a class is to reference it in the (X)HTML using a class="name"

attribute of an element. As with our ID example, the two classes are named highlight (for red

text) and default (for dark gray text):

<p class="highlight">This paragraph has red text.</p>

<p class="default">This paragraph has dark gray text.</p>

<p class="default">This paragraph also has dark gray text.</p>

20 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

Note that as the identifiers are classes, they can be used more than once, hence in the

example two paragraphs have been identified as default, so will be styled the same way. That

would not be acceptable if using IDs.

The corresponding CSS uses a full stop (.) character to denote the rule is a reusable class.

The full stop is combined with the class name to start the rule, followed by the property

declarations:

/* Define highlight class */

 .highlight {

 color:#F00;

 }

/* Define default class */

 .default {

 color:#333;

 }

Combining IDs with Multiple Classes

Classes are especially useful when you wish to have control over a number of elements. Consider

the following drinks list, the source code for which is available in the drinks.html file:

<ul id="drinks">

 <li class="alcohol">Beer

 <li class="alcohol">Spirits

 <li class="mixer">Cola

 <li class="mixer">Lemonade

 <li class="hot">Tea

 <li class="hot">Coffee

Note first that the unordered list () is given a unique ID. Thus, id="drinks" will not be

used again on the page at any time, allowing that particular list to be styled uniquely. Note also

that Beer and Spirits are within list elements defined with class="alcohol", Cola and Lemonade

are within list elements defined with class="mixer", and finally Tea and Coffee are defined in

list elements with class="hot". This allows each drinks group to be treated individually.

The CSS declares that the default text for that list will be red, so any list items without a

class attribute will default to red text:

/* Drinks list styling */

 ul#drinks {

 color:#F00;

 }

Next, the classes for each drink type are defined with unique shades of gray for font color:

/* Define alcohol color */

 .alcohol {

 color:#333;

 }

/* Define mixer color */

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 21

 .mixer {

 color:#999;

 }

/* Define hot drinks color */

 .hot {

 color:#CCC;

 }

The result sees the list of items move through shades of gray (defined by the classes).

Any further drinks added to the list can be assigned to a particular drinks group, such as

<li class="alcohol">Wine. Thus a logical color key is established using simple CSS classes.

■Tip Before adding a class to an element, be sure that the element needs it. Too often web designers

overuse classes when the (X)HTML is already providing more than enough hooks for the CSS. Make sure that

the element cannot be targeted using a descendant selector or other method before opting for a class. This

will help keep your code lean and make future redesigning much easier.

Overriding Base Styling with Classes

Later in the book you will learn much better methods for controlling repeated elements within

a page, and in reality there are far easier ways of defining paragraph styles and other elements

that do not require identifiers to be added to the (X)HTML. In fact, you have already been doing

this to a degree.

In Chapter 1, an example base CSS rule was used to turn all paragraphs red. Let’s use that

base rule again, declaring all instances of paragraphs red, but this time add a class rule to the

CSS that will bleach out any element it is identified with by turning text light gray:

/* Default styling for paragraphs */

 p {

 color:#F00;

 font-size:12px;

 }

/* Use this style to turn anything light gray */

 .bleached {

 color:#CCC;

 }

All paragraphs will still be red by default, but this can still be overridden when necessary

by identifying an element with the bleached class, as in this (X)HTML:

<p>This paragraph has red text.</p>

<p class="bleached">This paragraph has light gray text.</p>

The second paragraph will now be light gray, as the color declaration in bleached overrides

the red. Note that the paragraph is still rendered 12 pixels high, as bleached does not redefine

font-size. Add a font-size declaration in bleached, and that value will override the original

size for all paragraphs identified with class="bleached".

22 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

Linking a Class Directly to an Element

In this example, the CSS is constructed with the class attached directly to the element in the

form element.classname, and like before, it is referenced using the class="classname" format

within the (X)HTML.

/* Use this style to turn anything light gray */

 .bleached {

 color:#CCC;

 }

/* Override the color of bleached when it identifies a paragraph */

 p.bleached {

 color:#000;

 }

This method would be used when the standard declaration for the bleached class needs to

be overruled. For example, any element given a class of bleached will remain light gray (color:

#CCC;), but any instances of paragraph elements with a class of bleached will be rendered black

(color: #000;). This method is useful when numerous instances of a class are littering your

(X)HTML, and it would be too difficult to remove them all manually. Instead, simply target that

class when it identifies the element you need to change using the form element.classname.

When to Use a Class

As described previously, classes are a very flexible method for applying your CSS rules, and can

be used again and again within a page. Use classes to control elements that belong to a group,

for temporary items, and also to enhance the behavior of an ID.

When Not to Use a Class

It is not recommended that classes be used for main structural elements within a page, such as

headers and main navigation, although they will work. Doing so would decrease the flexibility

of your design and make further customization difficult without overhaul or extra markup.

Also, be sure a class is needed, and make sure the element cannot be targeted by defining a rule

for the existing (X)HTML before getting class-happy. Remember that a class is used for excep-

tions to normal styling, and not to define the standard.

Using the Cascade
CSS. Cascading Style Sheets. Cascading. Lovely word. Hmm. Many never stop to think about

that first word, and we are all guilty of just referring to CSS as style sheets. It is a shame that

many ignore the first part of the acronym, when it is the cascade that gives CSS developers the

most power.

Remember that a class value will override that of a base CSS rule. Well, there is also a hier-

archy to be embraced with multiple style sheets dependent on the order and method by which

they are applied to the (X)HTML. That is the cascade.

If you are applying CSS only from one external style sheet, then there is no cascade, as

nothing is applied before or after that style sheet. Things get interesting when you begin to

combine style sheets or methods of application. Let’s look at three examples.

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 23

The Cascade Through Varying Methods of Application

In Chapter 1, you learned of the various methods for applying CSS—inline, embedded, external,

and importing. It is possible to combine these methods to have an effect on the cascade.

Let’s say that you are storing all of your CSS rules in an external style sheet that is dictating

the presentation across your vast web site. For whatever reason, you need to overrule some of

the external styles for just one web page.

Time to embrace the cascade. For that one web page, you could use embedded CSS in the

<head> of the page, redefining the appropriate rules right there. When that web page is loaded,

the browser will apply the CSS it first encounters—the embedded CSS—before looking at your

external CSS to apply the remaining rules. Any identical selectors in the external style sheet will

be ignored.

Need further control? No problem. At the top of the hierarchy are inline styles—the CSS

added directly to the (X)HTML elements. Whatever styles you apply inline will overrule any

declarations in the <head> of the page or in an external style sheet.

Example

To see this in action, you can run through the following simple example:

1. Open external.css and define the default paragraph color (as in Chapter 1) with

p {color#F00;} and save the file.

2. View external.html in your browser. Assuming you are still applying CSS using

external.css, any default paragraphs should be red.

3. Now open external.html and apply the embedded style <style type="text/css">p

{color: #333;}</style> in the head of the template and save the file.

4. Reload external.html in your browser. Now any default paragraphs should be dark

gray, as the embedded CSS is overriding the linked style sheet.

5. Finally, find a default paragraph in external.html and define it with an inline style, such

as <p style="color: #CCC">, and save the template.

6. Reload external.html in your browser. Now the paragraph to which you applied the

inline style should be light gray, as the inline CSS is overriding the embedded CSS and

the linked style sheet. Any other default paragraphs should still be dark gray based on

the embedded style.

Thus the hierarchy is in place. The browser performs the inline rule first, and then looks

to perform any other rules embedded in the <head>, and finally looks to any external files to

complete its understanding of the CSS you created.

The Cascade Through Multiple External Style Sheets

Another method of exploiting the cascade uses multiple external style sheets. You already

know how to link to one or more external style sheets for various platforms (such as printers

and mobile devices), and this approach is similar, except all the external files here are specifically

for the screen:

24 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

<link rel="stylesheet" media="screen" type="text/css" href="css/screen/one.css" />

<link rel="stylesheet" media="screen" type="text/css" href="css/screen/two.css" />

<link rel="stylesheet" media="screen" type="text/css" href="css/screen/three.css" />

Imagine that each of the three style sheets features a rule called #header. The declaration

for #header in each style sheet features the same properties (say height, width, and color),

although the value of each is different in some way.

In this instance, the browser will consider the last linked style sheet (three.css) as most

important and perform any rules it contains first of all. Any rules not defined in three.css will

be performed from the second style sheet (two.css). Any duplicate selectors in two.css will be

ignored, overridden by the selectors in three.css. Finally, the browser will perform any remaining

styles from one.css, assuming they are not also defined in the preceding style sheets.

So the rule for #header that was declared in three.css is performed, while any other instances

of it are ignored. Always remember that the later a rule is specified, the more weight it is given.

The Cascade Through Imported Style Sheets

The hierarchy is also present with imported style sheets. As with the previous examples, it’s all

about the order in which the style sheets are specified. In Chapter 1, we looked at modular CSS,

where the CSS for a site is organized into relevant style sheets, such as default styles, layout

styles, navigation styles, and so on. Here’s a similar example where four modules are imported

via a master external style sheet called external.css. external.css contains the following lines:

@import url("default.css");

@import url("layout.css");

@import url("navigation.css");

@import url("forms.css");

As you’d expect from the order, forms.css is highest in the hierarchy, whereas default.css

is apparently lowest. Let’s assume that in navigation.css (second in the hierarchy) there is a

class called highlight, used to render text red. Let’s also assume that highlight appears in

default.css, but is used to render text orange. As navigation.css has more weight due to its

place in the hierarchy, the rendered text will be red.

Yet still, forms.css isn’t necessarily top of the tree. Remember that these style sheets are

being imported via a master external style sheet. In Chapter 1, you used external.css to call in

two modular sheets. Here external.css can be used again to import the modular sheets. If you

define highlight in external.css, the declared color will override either the red or the orange

specified in the imported style sheets.

Even then, the rule in external.css can still be overridden using embedded or inline CSS

in the (X)HTML template. It’s up to you when you stop the cascade, but be careful not to get

washed away by the cascade and tie yourself in knots.

■Note If another style sheet were to be imported through one of the modular style sheets using @import,

it would automatically be lower in the hierarchy. In a nutshell, a style sheet always has less weight than the

one calling it.

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 25

Bottom of the Ladder

Always at the bottom of the cascade hierarchy is the browser’s own default style sheet. Typically,

the browser style sheet will have default settings for headings, paragraphs, lists, and all common

(X)HTML elements. It is the browser style sheet that makes links blue and visited links purple.

View any page in your browser that isn’t styled with CSS, and you will see the default browser styles.

So long as you define all the elements you wish to control, the default browser CSS will be

overridden. Remember that the default styling was designed for numerous reasons, specifically

legibility, accessibility, and common understanding. It is up to you to integrate these accepted

conventions into your designs, and seek to improve them, not disregard them.

Careful with the Cascade

It can sometimes be hard to track the cascade across several style sheets. For example, if two

selectors have matching properties but varying values, e.g., each instance of a selector was made up

of font-family, color, and background, but with different values for each, the selector in the

style sheet with the highest hierarchy would win out and be rendered. Things get even more

interesting when each selector has unique properties.

Let’s clarify this with an example. Imagine that in a modular style sheet such as forms.css

you have defined a class called highlight as follows:

/* Highlight important form information */

 .highlight {

 color:#F00;

 font-style:italic;

 text-decoration:underline;

 }

Should there be no other instance of that selector in any style sheets higher up the hier-

archy, highlight will indeed be rendered in red italicized text with a neat underline. However,

imagine that a few weeks later in external.css, a style sheet of more hierarchical importance,

you’ve forgotten about the original class and decide to reuse highlight as follows:

/* Highlight author’s name underneath articles */

 .highlight {

 color:#F00;

 font-style:normal;

 }

First, the cascade dictates that the font-style value for highlight in external.css (font-

style: normal;) is of greater importance than the value in forms.css (font-style: italic;).

Therefore, all instances of highlight sitewide will be normal red text, not italicized. Without

realizing it, you have just turned all your lovely italicized form text into boring normal text, and

you probably won’t notice until you revisit your forms in your browser.

And to further illustrate this pitfall, the new highlight class in external.css does not define a

value for text-decoration, so the normal red text you wished to create will be underlined, taking

that value from forms.css. Sure, your new highlight class takes precedence in the hierarchy,

but unless you turn off the underline in external.css, the cascade will still find its way to the

original rule and look for anything not being overruled.

26 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

Grouping
Another key principle for creating well-organized CSS is grouping. Consider the following CSS,

used to apply styles to the first three (X)HTML headings:

/* Heading styles */

 h1 {

 font-family:Helvetica,Arial,sans-serif;

 line-height:140%;

 color:#333;

 }

 h2 {

 font-family:Helvetica,Arial,sans-serif;

 line-height:140%;

 color:#333;

 }

 h3 {

 font-family:Helvetica,Arial,sans-serif;

 line-height:140%;

 color:#333;

 }

Note that aside from the selector, every rule is the same. The rules are using 13 lines and

are bloating the style sheet unnecessarily. Thankfully, the three rules can be grouped to save

space and keep things manageable:

/* Heading styles */

 h1, h2, h3 {

 font-family:Helvetica,Arial,sans-serif;

 line-height:140%;

 color:#333;

 }

That’s now just five lines! The three selectors (h1, h2, and h3) are grouped in a comma-

separated list, and this technique can be used to group any selectors with common values. If

later you should decide to treat h3 differently, simply remove it from the list and isolate the

h3 style.

Group Exceptions

What if you still wish to treat one of those headings slightly differently? Let’s say you’re happy

with the font, line-height, and color, but wish to render the <h1> heading in italicized text.

Luckily, there is a way to do that while still grouping h1 with the other selectors.

To create the italicized text, none of the existing declarations need to be altered. A new

declaration, font-style: italic, is required, however. If that were to be added to the group, all

headings would be italicized. Instead, a new style is added to the existing group:

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 27

/* Heading styles */

 h1, h2, h3 {

 font-family:Helvetica,Arial,sans-serif;

 line-height:140%;

 color:#333;

 }

/* Additionally, render all h1 headings in italics */

 h1 {

 font-style:italic;

 }

Now the browser will collate both h1 selectors (one from the grouping and the stand-alone

selector) to render top-level headings as specified in the grouping and also in italics. Again, this

method can be applied to any selectors.

Inheritance
Inheritance describes situations where (X)HTML elements inherit stylistic properties from a

parent element. By not declaring a particular CSS value for the child element, that child element

may in some circumstances inherit the CSS value given to the parent element. Where CSS

cascades, so (X)HTML inherits.

Inheritance is both a blessing and a curse, and is another very powerful methodology that

is often misunderstood. It can cause confusion across multiple style sheets—especially when

debugging your CSS, and is something to be aware of from the start. On the plus side, it can be

embraced to minimize the size of style sheets and markup, and enable wholesale changes to

many CSS rules with minimal work. Generally, inheritance is always happening to your (X)HTML

elements, and in most cases intervention is only necessary to control the inherited values for a

specific reason.

Parents and Children

To understand inheritance, it pays to think of some (X)HTML elements as parents, and the

elements they contain as children. A parent owns a child, and passes what he or she knows

down to the child. In CSS, inheritance works in a similar way, except that it hands down style

values, and not advice about education or the opposite sex.

Moving through (X)HTML markup, it is clear that some child elements act as parents to

other child elements and so on, and thus a containment hierarchy develops. This containment

hierarchy is also referred to as the tree.

So How Does Inheritance Work?

To illustrate inheritance, let’s stay with headings. The <h1> heading in this example is styled

with the following very simple rule:

/* Top-level heading */

 h1 {

 color:#333;

 }

28 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

The rule is pretty simple, and you are right to assume that the heading will be rendered

dark gray. Now let’s assume that in the (X)HTML the markup dictates that a few of the words

should be emphasized using :

<h1>This is the greatest heading in the world</h1>

At this stage, no CSS rule exists to manipulate the element. Therefore, the text within

the element will inherit the color from the h1 rule (its parent element) and will therefore

also be dark gray. To overrule this inherited color, simply define in the style sheet:

/* Make emphasized text shine brightly */

 em {

 color:#F00;

 }

Now all emphasized text sitewide will be rendered in red, and the element is no longer

inheriting its color from any parent element. Note that unless otherwise defined in your em

selector, other declarations will still be inherited. Thus, if you want just your emphasized text

to be twice the font-size it currently is, declare that specific font-size in your em rule. If you

defined this rule in the p rule, all the text would grow to twice the size.

Inheriting the Body

It is strongly recommended that all serious CSS designs begin with a <body> element declaration in

the main style sheet. The <body> element is more than just a requirement of a well-formatted

(X)HTML page, it is also the parent of every visible element in your template (i.e., not those

within the <head>, which concern meta information and other items not displayed by the browser),

and every element can inherit from it.

<body>

 <h1>Absolutely everything else!</h1>

 <p>Yep, every visible element is contained within the body.</p>

 <p>And so on.</p>

</body>

Therefore it makes sense to define all default CSS using body as the first selector in the first

style sheet. Later in the book, the body selector will be used to define key elements such as a

margin for the page, the background color or tiled image, the default font and font color, and

so on, as in this example:

/* Define all main values for the web site */

 body {

 margin:10px;

 font-family:Helvetica,Arial,sans-serif;

 background:#CCC;

 color:#000;

 }

As a result of these declarations, every other rule in the CSS will inherit the values unless

specified otherwise. So all headers, paragraphs, lists, and other elements will be rendered with

black text (color: #000) using the first available font from the suggested options on the end

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 29

user’s machine (font-family: Helvetica, Arial, sans-serif;) unless the selector for each

child element specifies otherwise, or that child element is housed inside a more immediate

parent (such as a column or container) that contradicts the inherited values from body.

Note that some style properties are not inherited from the parent element—the back-

ground property being the main example. The child element does not actually inherit the light

gray background (background: #CCC;), but rather the parent element’s background appears by

default. In other words, the child element can be thought of as having the inherited font color,

but it should not be assumed that it has the same background color.

■Note It is worth remembering that all elements have a transparent background unless you specify otherwise.

A Word of Warning

Much like the cascade through multiple style sheets, inheritance can cause severe headaches if

you do not keep track of what is going on. Often, CSS is as much about what you don’t do as

what you do. The following is a classic example of how inheritance can cause confusion.

Let’s say you are using nested lists (that’s at least one list within another list). The markup

might be something like this three-level list:

Top level one

Top level two

 Second level one

 Second level two

 Third level one

 Third level two

 Second level three

Top level three

You might then apply some basic CSS to that list to control font-size, as follows:

/* Font size for list elements */

 li {

 font-size:2em;

 }

Your first thought might be that this selector would ensure that all text will be 2em in size,

but this is not the case. Each nested list will inherit the font-size value from the one above, and

as the em is a relative measurement (more on that later in the “Ems” section), this will result in

30 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

the text size being doubled with every nested list. So, a list item within another list will inherit

the font-size rule and become twice as big as its parent.

In Chapter 6, you will learn all about lists and how to apply CSS correctly to avoid such a

hazard, but this is a fine example of how inheritance can cause problems. The flip side of this

is that there will be many times where such powerful inheritance can also be used to do the

work of several targeted selectors, and it’s all about knowing when it’s happening and when it

needs to be tamed.

■Caution “Where on earth did that underline come from?” Inheritance can confuse anyone working

across multiple style sheets. Be very careful not to duplicate an existing selector unwittingly. If in doubt,

search your style sheets and ensure there won’t be a conflict. It pays to develop your own system of control

here, perhaps noting all ID/class names you’ve used in a separate text file or notepad.

Contextual Selectors
Now there’s a horribly scary term. In the previous section, a heading containing emphasized

text was used to illustrate basic inheritance. Remember that the em selector was added to ensure the

 element in the (X)HTML would be rendered with red text. Here’s the CSS again:

/* Top-level heading */

 h1 {

 color:#333;

 }

/* Make emphasized text shine brightly */

 em {

 color:#F00;

 }

The downside of this is that all emphasized text across the whole web site would also

become red, regardless of its parent element. Assuming the rule is only meant to target the

element when a child of <h1> headings, a simple adjustment can be made to put the emphasized

text into context:

/* Make emphasized text shine brightly ONLY when it’s the child of an h1 heading */

 h1 em {

 color:#F00;

 }

Contextual selectors consist of two or more simple selectors separated by whitespace.

Here the contextual selector is constructed to show that the rule will only have an effect when

the last selector (em) is a direct descendent (be it a child, grandchild, great grandchild, or so on)

of the first selector (h1). If the browser does not find an exact match (i.e., it only finds elements

outside of <h1> elements), it will not apply the styles dictated by the contextual selector to them.

Here’s similar markup to the original example, but with a paragraph acting as the parent

to a second element:

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 31

<h1>This is the greatest heading in the world</h1>

 <p>I'm sorry but it simply is not, you fool.</p>

The element owned by the <h1> element will be red, whereas the one owned by the

paragraph will not—it will inherit the default font color. To control the style of any emphasized

text that is out of context, simply define a new selector for em with the values you desire, or

maybe create a new contextual selector with p as the parent to your em.

In Chapter 6, contextual selectors will be used to gain tight control of nested elements

such as hierarchical lists and other problematic situations.

CSS Measurements
CSS rules can be declared to control text height, text spacing, border widths, spacing between

any element and its neighbor—pretty much any necessary measurement you need.

One of the strengths of a CSS-based design is its ability to remain flexible. As a designer,

you want your finely crafted masterpieces to look the same for every end user, and the desire to

pin elements down with exact measurements can be very tempting. On the flip side, most web

designers are aware of the inherent flexibility of the Web as a viewing platform, and are keen to

explore methods of customization and ensure their creations are viewed in the best context for

the end user.

Two options of measurement are available—absolute and relative. The former seeks to

freeze a design, ensuring widths, heights, and so on are not adjusted no matter how the site is

viewed. The latter enables web pages to be manipulated by the user or viewing device. So long

as web designers apply a measure of control in their style sheets, relative measurements can

actually do a much better job of tightening the design while also making it bulletproof in

display terms.

Absolute Measurements

Absolute values have a fixed, specific measurement. They let you be exact in your measure-

ments and control the display of your web pages. Absolute values are inches (in), centimeters

(cm), millimeters (mm), points (pt), and picas (pc) as Table 2-1 describes.

Absolute measurements will only give the desired results if the browser knows how many

pixels are on the screen and how big the screen is. Often, this is not the case. Not all computers

Table 2-1. Absolute CSS Measurements

Unit Description

in Absolute measurement in inches.

cm Absolute measurement in centimeters.

mm Absolute measurement in millimeters.

pt Absolute measurement in points. A point is 11/72 of an inch.

pc Absolute measurement in picas. A pica is equivalent to 12 points, or 6 of an inch.

32 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

know how big the screen is, as not all screens tell the computer how big they are. In these cases,

the browser must make a guess.

It is my pleasure to inform you that for almost all day-to-day CSS design, no absolute

measurements are needed, and to keep things on course, we can skip straight to the much

more interesting relative measurements.

Relative Measurements

Relative measurements have no fixed, specific value. Instead, they are calculated in compar-

ison to an inherited value. Relative values are percentage (%), x-height (ex), ems (em), and pixels

(px), as Table 2-2 describes.

Why Use Only Relative Measurements?

Your web sites will be viewed primarily on computer screens, but at what screen resolution and

on which browser? Some end users will view your site on PDAs, cell phones, projectors, or even

televisions.

Each end device has its own quirks and unique methods of display. Consider also that many

users manually configure their devices to suit their own preferences (think screen resolutions), so

it’s imperative that your design is not compromised in such situations.

A very important issue in web design is accessibility—ensuring all visitors can access all of

your content. Relative measurements are proven to provide the best solution for text resizing

and the knock-on effect this has on other page elements, and can therefore be considered best

practice.

While relative values give the designer less absolute control, they do create a better experi-

ence for the end user. Let’s look at the primary relative measurements one by one, and consider

how they apply to text size.

Pixels

Pixel measurements give designers the most control over their layouts. By far the most consis-

tent unit of measurement, pixels are most commonly used for declaring the margin, padding,

borders, height, and width of custom elements such as containers, columns, and buttons, and can

be successfully combined with other relative measurements for all kinds of layout requirements.

Table 2-2. Relative CSS Measurements

Unit Description

% Measurement as a percentage relative to another value

ex Measurement relative to a font’s x-height, determined by the height of the font’s
lowercase letter x

em Relative measurement for the height of a font in em spaces

px Relative measurement in screen pixels

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 33

Pixels are not, however, the best option for sizing text—text sized with pixels will ignore

user preferences, so if a low-vision user has set his or her browser to always show text at 20 pixels,

this will often be overridden by your pixel-based declarations.

Pixel-sized text offers consistency across most end devices. However your pages are viewed,

and at whatever resolution, 11px text should always scale appropriately with text set at other

pixel sizes. Thus in an ideal world, we could all use pixels without worry, safe in the knowledge

that our designs will retain their integrity on any platform and in any situation. Sadly, it isn’t an

ideal world, as there is a rather popular browser called Internet Explorer to consider.

Consider IE/Win Users

It is very important to consider the fact that an IE/Win user cannot use the browser’s text resizing

tools to resize pixel-sized text. An option is to use a style switcher, which gives users an on-page

option of adjusting viewing preferences. It is preferable to do this with PHP or similar languages.

JavaScript-based style switcher scripts are available and make switching seem seamless, but it

is always important to consider users who have JavaScript switched off. A brilliant example can

be found in Chris Clark’s “Build a PHP Switcher” article at the super-useful A List Apart web site

(www.alistapart.com/articles/phpswitch). Another important factor with style switchers is

that many users might miss the option, or fail to understand the point of it.

To ensure all end users can enforce their own viewing preferences upon your design, it is

strongly suggested that you declare font size using the em measurement (examples of which

follow throughout the “Ems” section).

Percentage

Providing incredible flexibility and often the solution to adventurous layouts is the percentage

measurement. Percentage values are always relative to another value, such as a width or height

declared in the parent element. In other words, a percentage can only be declared in relation

to a defined size earlier in that rule, within a parent element, or based on the width of the

browser window.

Percentage is particularly powerful for layout, and is an integral ingredient of liquid designs

where pages and their elements stretch to fit the browser window. You can learn more about

that aspect of percentage in Part 2 of this book.

Caution must be applied with percentage values, where inheritance can cause chaos.

While pixels and ems retain a modicum of control, the results of percentage values can end up

somewhat different than what you might expect when calculated by the browser, and as a

result layouts can be chewed and elements misplaced or shunted underneath each other.

Example

Here the percentage value is given for line-height, used to control the distance between the

lines of text, and relates directly to the font-size value within the rule.

/* Define default paragraph values */

 p {

 font-size:10px;

 line-height:120%;

 }

34 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

In this case, line-height will be applied to the text as a pixel value that is 120% of 10px, which

gives a line height of 12px.

Ems

It is a great shame that the humble em is the most misunderstood unit of relative measurement

in CSS, as it is by far the most flexible, and is ideally suited to a design principle where the end

user’s viewing device and text preferences are unpredictable.

The origin of the word itself is useful, for it stems from the idea of an em roughly equaling

the size of an uppercase letter M, hence it is pronounced “emm.” However, in reality an em is

actually larger than that. The em is a traditional typographic measurement, though because some

fonts don’t even have an M in them, the term has come to mean the height of the given font.

The thing about ems is that they make your style sheets scalable. Unlike the traditional,

typographic em, the CSS measurement can be employed to define the lengths (and by “length”

I mean both horizontal and vertical) of almost any CSS property. This makes it especially powerful

when applied to fonts and their containing elements. Resize the text with the browser tools,

and the containing element (be it a column, header, or more immediate container) can scale

with it. Reduce that text, and the scaling works the other way too. Remember that IE/Win will

not allow users to resize text that has been sized in pixels.

So How Do Ems Scale?

Well, an em is a measurement equal to the size of the type. Therefore, if within a given element

the font-size is set to 11 pixels, one em is equal to 11 pixels. If the font-size in another element

is 30 pixels, one em in that element is equal to 30 pixels, and so on. Thus 1em can have many

different values within one style sheet. The key to successful em usage is an understanding of a

given em’s relative status.

Richard Rutter (www.clagnut.com) explains this methodology with a similar example to the

following. Two rules for basic containers are identical except for the font-size, which is 11px

and 30px,respectively. Both rules have a width and height of 1em. A black border is added to

illustrate the extent of each container.

/* First container for the em example */

 #firstbox {

 margin:10px;

 font-size:11px;

 width:1em;

 height:1em;

 border:1px solid black;

 }

/* Second container for the em example */

 #secondbox {

 margin:10px;

 font-size:30px;

 width:1em;

 height:1em;

 border:1px solid black;

 }

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 35

On the resulting web page, the two boxes will look as shown in Figure 2-1.

Figure 2-1. The result of the two containers viewed in the browser

Although both boxes have a height and width of 1em, the two different font sizes make one

box larger than the other. The first box is 11px × 11px, and 1em × 1em. The second box is 30px × 30px

but is still 1em × 1em.

Thus each resulting em measurement is relative to whatever contains it. Further rules

within #firstbox would be free to define measurements based on the em, knowing that it is

equal to 11px. For example, paragraphs that are children of #firstbox could be defined with a

value of 0.8em, making the paragraph text t the size of that container’s default text.

Work outside of #firstbox and em is reset to its default, unless you are working within

#secondbox, where em has been defined as 30px.

■Tip 1em displays at the default size for a font character as it appears within an (X)HTML element where

the user agent assigns the default display. Therefore, text styled with a font-size of 1em will display as if

no size declarations were assigned.

Ems and the Body

For most designers, the default font size is often way too big. The usual font-size defined by

the browser style sheet is 16px (which means 1em is of course equal to 16px). That’s a very acces-

sible size indeed, but most designers (and users) seem to prefer 11px.

You now know from the containers example in the previous section that the em measure-

ment is relative to the containing element. Earlier in the chapter, we looked at how all page

elements can inherit from the <body> element, as it contains all visual page elements. Therefore

<body> is the ideal place to make your em declaration in order for all child elements in the tree

to inherit that value.

Defining a font-size smaller than 1em for body text is a good starting point for em-based

design. Let’s say that you want your default text to be 11px. The following rule would ensure

your text generally renders at that size:

36 C H A P T E R 2 ■ C O R E C O N C E P T S O F C S S

/* Define all main values for the web site */

 body {

 font-family:Helvetica,Arial,sans-serif;

 font-size:0.7em;

 color:#000;

 }

So if no other measurements are added to the style sheet, all default text will be 0.7em or

approximately 11px. However, this also means that in Mozilla-based browsers all headings

(<h1> through <h6>), paragraphs, lists, and so on will also be t their default size (other browsers

will stay with the defaults). Also, IE/Win will show form and table text at t the default size.

Therefore, these elements need their font size to be declared in the corresponding rules.

/* Define all main values for the web site */

 body {

 font-family:Helvetica,Arial,sans-serif;

 font-size:0.8em;

 color:#000;

 }

/* Define paragraph text size */

 p {

 font-size:1.1em;

 }

/* Define headings font sizes */

 h1 {

 font-size:2em;

 }

 h2 {

 font-size:1.8em;

 }

 h3 {

 font-size:1.7em;

 }

...

/* Define form and table font-size */

 input, select, th, td {

 font-size:1.1em;

 }

Thus all appropriate page elements have font-size defined based upon the font-size

declaration in body. All page text is now scalable on any browser and will scale proportionately

at any setting.

C H A P T E R 2 ■ CO R E C O N CE P T S O F C S S 37

BASING EM SIZES ON AN INITIAL PERCENTAGE DECLARATION

Richard Rutter suggests another method for resizing based on an initial font-size using percentage in his

article “How to Size Text Using Ems” (www.clagnut.com/blog/348/), whereby all em values can be easily

related to a specific pixel size.

Richard first declares font-size: 62.5% in the body selector (possible because although no previous

measurements are defined in the style sheet, the default value of the browser style sheet is cascading into it),

which effectively takes the default font-size down from 16px to 10px. It is then simple to think in terms of

pixels, but declare sizes in ems. Based on this setting, Richard suggests some correlating values between em

and pixel sizes:

• {font-size:2em} /* Displayed at 24px */

• {font-size:1.5em} /* Displayed at 18px */

• {font-size:1.25em} /* Displayed at 15px */

• {font-size:1em} /* Displayed at 12px */

This example is another great starting point for designers wishing to make better use of ems. It features

some excellent methods for calculating sizes and further explores the relationships between parent and child

selectors with regard to ems. Essential reading.

To Conclude...
In this chapter, you’ve encountered a number of core CSS principles, methods, and shortcuts.

You probably won’t be surprised to discover that there are many, many more, the majority of

which will be covered throughout the rest of the book. For now, armed with what you have

already learned, you will be prepared for the techniques to follow, many of which will build

upon these core concepts. It’s time to have some fun.

39

■ ■ ■

C H A P T E R 3

CSS Building Blocks

In this chapter, the focus is chiefly on common CSS building blocks. For the most part, their

uses should be fairly obvious, as the terms correlate well with the real world. Margin, padding,

borders, widths, heights—all familiar terms for things that do what you are probably assuming

they do.

One key aspect of CSS design is the use of divisions to provide greater flexibility and mark

out regions of the page. As a number of building block methods rely on divisions for targeting

their impact, it seems appropriate to delve into them right away.

Divisions (Divs)
Divisions—<div> elements, widely referred to as divs—are (X)HTML elements used to define

areas of an (X)HTML file. A division can, if you choose, encompass everything else within the

<body> of the page, be it additional elements, text, graphics—anything in fact, or more typically

be used for distinct areas such as headers, footers, navigation bars, and so on.

Most often, the (X)HTML in your templates does not provide enough hooks upon which to

hang your styles. For example, you know how to apply basic styling to a paragraph or header,

but turn paragraphs or headers into boxes, and you’ll find it impossible to enclose other (X)HTML

elements inside the box without compromising your code and causing extreme complications.

This is where divisions (I’ll refer to them mostly as divs from now on) are most useful—

invaluable in fact. Using divs is not unlike magically inventing your own (X)HTML tags, when-

ever and wherever you need them.

Adding a Div

You create a division element within the (X)HTML by placing the following in the body:

<div>

 <p>This is our content area.</p>

</div>

The result is a hook to which CSS can be applied. In Chapter 2, you learned about using IDs

and classes to add identifiers to a standard (X)HTML element. The same formula is used for

divs by referencing the selector in the opening tag using id="name" or class="name". In this

case, we’ve used an ID named container to define the division:

40 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

<div id="container">

 <p>This is our content area.</p>

</div>

Let’s apply some simple CSS to the container ID:

/* Container holds all visible page elements */

 #container {

 padding: 20px;

 border: 1px solid #000;

 background: #CCC;

 }

With this CSS applied to our markup, the container will have a gray background with a

black border, and any elements it contains will be padded 20px from that border, as you can see

in Figure 3-1.

Figure 3-1. Our container div as viewed in the browser

■Note We’ll look at padding and borders in more detail in their own sections later in the chapter.

Adding Child Divs

The container div can act as parent to child divs. Here, an ID holds a reusable class called box:

<div id="container">

 <p>This is our content area.</p>

 <div class="box">

 <p>I'm in a box!</p>

 </div>

 <div class="box">

 <p>I'm also in a box!</p>

 </div>

</div>

The CSS rules for the box class are almost the same as that for the parent container, except

for the background color, which will appear by default. Note that, as no set width is defined for

the box, it will stretch to fit whatever contains it, be that another div or the browser window:

C H A P T E R 3 ■ CS S B U I L D I N G B LO C K S 41

/* Define styling of our reusable box */

 .box {

 margin: 10px;

 padding: 20px;

 border: 1px solid #000;

 }

Viewed in the browser, the containing div now holds the two boxes and their content, as

Figure 3-2 demonstrates.

Figure 3-2. Our container div now contains two equal boxes.

Our three divisions are now clear in the design. Remember that each div can contain any

elements, be they headings, paragraphs, images, more divs—the possibilities are endless.

■Note Like paragraphs, headings, and many other elements, divs are known as block elements, and

unless you specify otherwise, they will always begin on a new line. Block and inline elements are revisited in

more detail in Chapter 6.

Divs and Contextual Selectors

In Chapter 2, you discovered contextual selectors, which consist of two or more selectors separated

by whitespace. These really come into their own when used to take control of the divisions

you create.

Examples

In the previous example, each div has within it a paragraph. Let’s say you want all paragraphs

inside the box class to be rendered in red, but all other paragraphs must remain the default black.

42 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

There are two ways to target those particular paragraphs, the first of which will be familiar

from Chapter 2. Now that divs have been introduced, however, it is no longer the best way.

The Bad Way

Knowing what you already know, it’s tempting to create a new class for turning the paragraphs

red, as follows:

/* Make text red */

 .highlight {

 color: #F00;

 }

Then in the (X)HTML, the identifiers for our highlight class would need to be added like

so:

<div id="container">

 <p>This is our content area.</p>

 <div class="box">

 <p class="highlight">I'm in a box!</p>

 </div>

 <div class="box">

 <p class="highlight">I'm also in a box!</p>

 </div>

</div>

The paragraphs will certainly be red now, but it’s taken extra markup for each opening

paragraph tag to accomplish the effect. This extra markup would be required for every para-

graph within the div, which is only serving to bloat the markup.

The Good Way

This time, the identifiers are not required. In fact, no changes need be made to the (X)HTML at

all. Everything can be controlled within the style sheet. Time to put the paragraphs into context

with the following combination:

/* Make text red only for paragraphs within the box class */

 .box p {

 color: #F00;

 }

Using this approach, no extra markup is required. Everything needed to take complete

control of the paragraphs is already in place. The contextual selector is constructed to show

that the rule will only have an effect when the last selector (p) is a direct descendent (the child)

of the first selector (.box). This is a strong example of how major changes to whole sections can

be achieved simply by working with what you already have.

Another contextual selector could then be used to control paragraphs in the parent

element (the container div).

C H A P T E R 3 ■ CS S B U I L D I N G B LO C K S 43

/* Make text gray only for paragraphs within the container */

#container p {

 color: #333;

 }

Now paragraphs inside the container will be rendered dark gray, unless contained by .box, in

which case they will be red.

Taking the Context Even Further

Let’s now assume that you are using the box class all over the site. Sometimes the box classes

are children of the container div, and sometimes they have a different parent. What if you only

want the paragraph text to appear bold when the box class is inside the container? This can be

achieved without extra markup also. Note that, outside of the container div, a new box div has

been added, which is not parented by anything:

<div id="container">

 Content

 <div class="box">

 <p>I'm in a box!</p>

 </div>

 <div class="box">

 <p>I'm also in a box!</p>

 </div>

</div>

<div class="box">

 <p>I'm also in a box!</p>

</div>

As for the amazing CSS, the contextual selector consists of three selectors, putting the

paragraphs into a more specific context.

/* Make text bold only for paragraphs within the box class AND within the ➥

container */

#container .box p {

 font-weight:bold;

 }

This contextual selector is very powerful. The first thing to note is that the markup is very

clean. Yes, division elements exist to separate the content, but no identifiers are required for

any base elements. The effect of the contextual selector is threefold:

• Only paragraphs (p) that are children of the box class and the container ID are affected.

• Paragraphs within the container but not within the box class are unaffected.

• Paragraphs within boxes outside of the container are unaffected.

Our example looks like Figure 3-3 when opened in a web browser.

44 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

Figure 3-3. Only paragraphs inside the box class and the container appear with bold text.

Figure 3-3 shows the results in the browser window. This example has demonstrated what

can be achieved based on very minimal markup. It should always be your intention to make the

base (X)HTML elements work as hard as possible for you, without the need to throw lots of

extraneous markup into the mix. Contextual selectors and divs add an incredible amount of

flexibility to your designs, and they should be embraced wherever possible. Keep an eye open

for opportunities to use them, as very often they’ll already be there waiting to be harnessed.

Dimensions: Width and Height
Before moving on, it is worth mentioning two very important properties that can be declared

for any element—width and height.

It might seem a little patronizing to mention them, as their uses must seem obvious. However,

these two properties have already appeared in several examples, and will continue to be used

throughout the book.

Both properties are essential for setting specific heights and widths of elements. Consider

that an element will expand widthwise to fit its container and heightwise to encompass its

content—you will start to realize before long that, in some situations, a certain amount of

control is missing. By applying width and/or height rules, you can regain control.

Values can be given as a length, percentage, or auto. Note that all of these values can be

influenced adversely by other rules within the style sheet, and also by the (X)HTML elements

they might contain. For example, the resulting display can be affected by a number of knock-

on values from margin, padding, border, or child elements.

■Note Most modern browsers support the declaration of minimum (min-width) and maximum (max-width)

width and height values also, something you’ll soon realize the need for when working with unpredictable

content. We’ll look at these in more detail later in Part 2 of this book, when dealing with CSS layouts.

C H A P T E R 3 ■ CS S B U I L D I N G B LO C K S 45

Margin
The margin property does exactly what it says on the tin. It is used to declare the margin between

an (X)HTML element and those elements outside of it. The margin can be set for the top, left,

right, and bottom of the given element. Note that margin values are not inherited from parent

elements. If they were, there would be chaos.

Margin Declarations

There are three choices of values for the margin property, which are length, percentage, or auto.

Note that if a value is 0, you do not need to add px.

Consider the following CSS for a container div. Note that it has a fixed width of 300px and

no margin properties.

/* Basic container */

 #container {

 width:300px;

 border: 1px solid #000;

 padding: 20px;

 background: #CCC;

 }

Figure 3-4 shows this container in relation to the browser window. It has no declared margin

properties, and so it sits to the left of the page, spaced away from the edges only by the margin and

padding values declared in the <body> element.

Figure 3-4. The basic container sits in the natural flow of the document, sitting immediately left,
spaced only by the <body> element’s margin and padding declarations.

By applying margin properties to each side of the container, the display can be significantly

altered:

46 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

/* Basic container */

 #container {

 width:300px;

 margin-top: 20px;

 margin-left: auto;

 margin-right: auto;

 margin-bottom: 1em;

 border: 1px solid #000;

 padding: 20px;

 background: #CCC;

 }

In Figure 3-5, you can see that the container’s relationship with the browser window now

is completely different.

Figure 3-5. With margins applied to each side of the container, the display is altered considerably.

The container is now 20 pixels from the top edge of the <body> element, and is centered

due to its set width combined with left and right margins set to auto (see the upcoming

“Centering with margin:auto” section).

Margin Shortcuts

A couple of easy shortcuts are available to reduce up to four margin:value declarations into one.

/* Basic container */

 #container {

 margin: 20px auto 1em auto;

 }

The order of the values is very important here. The order is top (20px), right (auto), bottom

(1em), and right (auto). It helps to get used to the order by thinking of it like a compass—north,

east, south, and west, the first value always being north, or like a clock—12 o’clock, 3 o’clock,

6 o’clock, and 9 o’clock, the first value being 12 o’clock.

If all four values are the same, the declaration can be shortened even further:

C H A P T E R 3 ■ CS S B U I L D I N G B LO C K S 47

/* Basic container */

 #container {

 margin: 20px;

 }

These shortcuts will also work for padding and some other properties, which you’ll find out

more about later.

Centering with margin: auto

The best way to center an element with CSS is to use the auto value for left and right margins.

For modern browsers, all this requires is a set width rule (as without it the box would naturally

stretch to fit its container—in this case the browser window) and the left and right margins

given the auto value. Building upon the earlier example, we have the following rule:

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px;

 border: 1px solid #000;

 background: #CCC;

 }

Most browsers are happy with this, although IE5/Win fails miserably, usually aligning the

element to the left. At the time of writing, most IE users are using IE6, and IE7 is on the way, but

the percentage of IE5 users is significant enough to warrant consideration.

There is a way of making it work for IE5/Win, and it’s quite simple. The trick is to make use

of the text-align property in the container’s parent element (in this case that is the <body>) to

center the container. The downside is that all child elements within <body> will now correctly

inherit that value and center all their content, which isn’t good. Therefore text-align: left is

applied to all main division elements to counter the centering:

/* Define default values for the whole site */

 body {

 text-align: center;

 }

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px; border: 1px solid #000;

 background: #CCC;

 text-align: left;

 }

This approach ensures that the container is centered horizontally in the browser window

whatever browser is used, and acts as the perfect basis for any centered design (see Figure 3-6).

48 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

Figure 3-6. The container is centered in the browser window.

Padding
Padding is the distance between the edges (borders) of an (X)HTML element and the content

within it, and can be applied to any element.

Padding Declarations

Both length and percentage values are available, although there is no auto value, and negative

values cannot be declared for padding.

Let’s take the container div again, and this time add custom padding to each side:

/* Basic container */

 #container {

 width:300px;

 margin-top: 20px;

 margin-left: auto;

 margin-right: auto;

 margin-bottom: 1em;

 border: 1px solid #000;

 padding-top: 20px;

 padding-left: 10%;

 padding-right: 1em;

 padding-bottom: 0;

 background: #CCC;

 }

Figure 3-7 shows how the paragraph within the container (highlighted by a thin border) is

spaced away from each edge by the given padding value.

C H A P T E R 3 ■ CS S B U I L D I N G B LO C K S 49

Figure 3-7. The padding applied to each side of the shaded container informs the final position of
child elements, such as this paragraph.

Percentage in this case refers directly to the parent element’s width. So if padding-left:

10% is declared, that equates to 10% of the parent element’s given width. Using ems would also

allow the padding to scale proportionately with the element. Such values come in very handy

for liquid layouts, which will be discussed in Part 2 of this book.

Padding Shortcuts

The same shortcuts used for margin values are also available for padding.

/* Basic container */

 #container {

 padding: 20px 1em 0 10%;

 }

As with the margin property, order is top (20px), right (1em), bottom (0), and right (10px).

Likewise, if all four values are the same, the padding declaration can also be shortened like so:

/* Basic container */

 #container {

 padding: 20px;

 }

Margin, Padding, and the Body
Back to good old browser default style sheets again. In order to ensure your page content sits

exactly as you desire on all browsers and doesn’t inherit browser defaults, it is important to

consider resetting the page margin and padding in the body selector.

Netscape and IE place a default margin of 8px around the <body> element. The Opera browser

confuses things further by applying a default padding of 8px. Therefore, until all browsers agree

and can settle on either margin or padding to provide this default spacing, it is recommended

that margin and padding be given the values you desire in the body selector:

/* Define default values for the whole site */

 body {

 margin: 0;

 padding: 0;

 }

Obviously values of 0 will remove the default spacing entirely, so it may be that you prefer

to set the margin to 10px, 20px, or whatever you need.

Other methods are available that will reset all margins and padding to a defined value that

is inherited throughout unless you declare otherwise. Such methods should be used with caution

50 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

however, as all headings, paragraphs, lists, and so on will also inherit the value, and if the value

is 0, you might end up in trouble, with all of your page elements bunched together. This would

then require margin and/or padding values to be declared for all headings, paragraphs, and other

elements that typically have sensible default spacing values.

Border
Borders are a simple concept with a million possibilities. Any element can have a border placed

around it, and borders can be placed on all sides, or just the sides you desire. The border property

is particularly flexible as each border can be a specific width, color, or style. As a result of the

numerous values that can be applied, a greater number of shorthand declarations are available.

Border Properties

The default values are a border with a medium thickness, inheriting the text color of the parent

element. Only by applying further values can this default state be influenced. The full list of

border properties is

border-style

border-width

border-top-width

border-right-width

border-bottom-width

border-left-width

border-color

border

border-top

border-right

border-bottom

border-left

Controlling borders is relatively easy, but it is worth looking at each property in more detail.

border-style

The border-style property is used to give any element a border. The browser must first under-

stand the style of border to be drawn before moving on to further border declarations. In other

words, the style keyword is declared before the color of the border, for instance.

The property applies a defined style to one, several, or all borders. Keywords for border-style

are none, dotted, dashed, solid, double, groove, ridge, inset, and outset.

■Note Some elements have default borders. The fieldset element (used to define a series of related

form inputs) has a medium-thickness border by default. Also watch out for images used for hyperlinks, where

the image will have a border matching the declared link text color for the containing element. The borders for

both can be styled or removed using border-style. In the case of all other elements, you define your border

styles from scratch.

C H A P T E R 3 ■ CS S B U I L D I N G B LO C K S 51

The following CSS styles a container with a medium-thickness dashed border all around

the division:

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px;

 border-style: dashed;

 }

When our web page is opened in a browser, the border produced is as shown in Figure 3-8.

Figure 3-8. Border applied using border-style: dashed

Taking this further, a unique style for each side can be defined using shorthand for the

border-style property; as with margin and padding, the values are ordered top, right, bottom,

and left:

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px;

 border-style: dashed dotted solid ridge;

 }

This gives us the varied borders shown in Figure 3-9. The top border is a dashed line, the right

border dotted, the bottom border a solid line, and the left border creates the illusion of a

beveled ridge.

Figure 3-9. Four different borders (dashed, dotted, solid, ridge) from one declaration

border-width

More specifically, in this section we will look at border-width, border-top-width, border-right-

width, border-bottom-width, and border-left-width. These properties allow you to define the

width of the element’s edges one by one or all at once. Note that for a border-width value to be

applied, a border-style must first be declared.

Several keyword values are available here, as well as relative lengths. The keywords are

thin, medium, and thick, although caution is required as different browsers render these borders

52 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

in various ways. Exactly how many pixels each browser will use does vary. Note that if you

define a border-style but not a border-width, the default value is medium.

In the following example, the border-style values declared previously are combined with

specific border-width keywords and relative values:

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px;

 border-style: dashed dotted solid ridge;

 border-top-width: thin;

 border-right-width: 20px;

 border-bottom-width: medium;

 border-left-width: thick;

 }

The result of this can be seen in Figure 3-10, where the top dashed line is thinnest, the right

border is a 20-pixel dotted line, the bottom border is a medium-sized solid line, and the right

border is a thick ridge.

Figure 3-10. Width values applied to style values (dashed thin, dotted thick, solid medium,
ridge thick)

border-color

Remember that, unless you declare the color for the border, it will inherit color from the

element or parent element. As there is only one property for color (border-color), multiple

colors must be declared using shorthand:

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px;

 border-style: dashed dotted solid ridge;

 border-top-width: thin;

 border-right-width: 20px;

 border-bottom-width: medium;

 border-left-width: thick;

 border-color: #000 #999 #333 #CCC;

 }

which gives us borders from black (top) to lightest gray (left) as shown in Figure 3-11.

C H A P T E R 3 ■ CS S B U I L D I N G B LO C K S 53

Figure 3-11. Defining specific colors for each border

border

Using border and the border-top, border-right, border-bottom, and border-left properties

allows you to further shorten the given border-style and border-width and border-color

values into one property. Let’s look at an example of this shorthand.

Using the CSS from the previous example, again the same border-color, border-style,

and border-width values are assigned in that order:

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px;

 border-top: #000 thin dashed;

 border-right: #999 20px dotted;

 border-bottom: #333 medium solid;

 border-left: #CCC thick ridge;

 }

which gives us the same results, but with just four properties in the rule. If all values were to be

the same, the properties can be further combined into one using border:

/* Container for centering all our content */

 #container {

 width: 400px;

 margin: 10px auto 10px auto;

 padding: 20px;

 border: #000 thin dashed;

 }

which gives us the version shown in Figure 3-12.

Figure 3-12. All four borders declared in one property using border

Bordering on the Obvious

It pays to spend some time exploring the infinite possibilities of border styles based on the

preceding examples. Try applying very thick borders (say 30px or larger) to see how the corners

of the division become beveled like a picture frame.

54 C H A P T E R 3 ■ C S S B U I L D I N G B L O C K S

Always, always be aware of how your borders are rendered across different browsers.

Remember that not all border properties are available for every browser, and that some

border-style values produce very different results in IE compared with Safari, for example.

BORDERS FOR WIRE FRAMING

Applying simple borders to your divisions and other key elements is a brilliant way of creating a wire frame.

Wire framing a design with a thin solid or dashed line around your divs can help you understand how one

element relates to another, and also identify problems with alignment and juxtaposition.

You can apply a simple dashed line to all divs, for example, using a base selector for the <div> tag:

/* Place a thin gray border around all divisions */

 div {

 border: 1px dashed #CCC;

 }

This rule would be placed immediately after the body selector in the style sheet, and would ensure all

divs you create inherit a thin gray border, unless you specify otherwise in that element’s rule. To apply this rule

to further base elements, simply group the selectors together:

/* Place a thin gray border around the following elements */

 div, h1, h2, h3, h4, ul {

 border: 1px dashed #CCC;

 }

When you are satisfied that your design is hanging together correctly, just remove the relevant selectors

or the entire rule.

To Conclude...
In this chapter, yet more core CSS knowledge has been thrown at you, much of which forms the

bulk of all the CSS development you’ll do from now on. Grasping this basic knowledge of layout

approaches will stand you in good stead for what is to follow. If you are not sure you’ve under-

stood everything in the first three chapters, fear not. So long as you don’t tear them out, they’ll

remain in place as a dip-in guide should you need to refresh your memory.

If in doubt, just keep experimenting. Your experiments may well produce unexpected

results at this stage, but that’s the nature of CSS. Weird things might appear to be happening,

but nine times out of ten the rules are being applied correctly. The trick is to understand the

reason for a particular unexpected result, and learn to use it to your advantage.

55

■ ■ ■

C H A P T E R 4

Text

Constantly overlooked when it comes to style, yet arguably the most important element of

any page—that’s text. Specifically, your text is your content, and your content is the key to a

successful web site.

Often, all the effort will go into some incredibly beautiful masthead, logo, or background,

which makes the top of the web page look great (mostly), but scroll down to the actual content,

and you might find a CSS famine. Taking control of your text requires more than just specifying

one of the many available web fonts (I’m joking there) or setting font size. CSS provides the

conscientious designer with a multitude of tools that can be applied to boring old text, bridging

the gap between print and web design, and allowing for much flexibility.

In this chapter, we’ll look at methods for creative use of text, and how traditional methods

of typesetting can be utilized via simple CSS rules.

Why Is Text So Important?
Well, it tells people things, for a start. Without words, your images have an awful lot of work to

do. Aside from this flippant point, it should go without saying (although I’ll say it anyway) that

your text should be legible, to the point, and within easy reach. Visitors are rarely coming to a

web site to sit back and admire your graphics—it is most often information they are seeking.

Graphic embellishments are often mere decoration.

The issue of accessibility is an important one here. Responsible web developers spend a lot

of time ensuring that their designs are not compromised under user-defined viewing situa-

tions. For example, if a style sheet is not available, or images are turned off, the image-based

buttons in the navigation bar will need replacement text to assist navigation. Equally impor-

tant is replacement text for general images, especially images that convey a particular message

or act as a link to another page, and there are many circumstances where background colors

can conflict with text of the same color when images are absent. We’ll look at these issues in

more detail later in the book in Chapter 14.

Issues such as these need consideration at every stage of the design process. Essentially,

your web site should make just as much sense with or without all images, and the hierarchy of

your content should remain apparent in any situation.

56 C H A P T E R 4 ■ T E X T

Convey the Mood with the Right Font

The right font for the right job communicates with the user instantly. Your text is the first ingre-

dient to appear as the page is downloaded, and it can instantly tell the user whether the web

site is serious or friendly, modern or traditional, formal or casual. Do you want the web site to

give the impression of a newspaper or journal, newsletter or fact sheet? If you do not want to

convey such an authoritative standpoint, then maybe something humorous or light-hearted is

needed? Choosing the right font or combination of fonts is key to creating the right impression

from the outset.

Later in this chapter you’ll review the most common typefaces available to web designers,

and look at several that can be added to this list with a sprinkling of caution. Each can suggest

the tone of the web site if used carefully.

ClearType Font Smoothing

Most seasoned web designers will tell you that text renders better on Mac browsers than on

their PC equivalents, because the text is anti-aliased (meaning jagged edges are softened by

the addition of intermediately colored pixels around the characters) as shown in Figure 4-1. It

is certainly fair to say that those who build mostly with Mac browsers are often disappointed

when they review their work over on the office PC.

Figure 4-1. The letter on the left is aliased, whereas the one on the right, which is anti-aliased,
has softened edges with intermediately colored pixels.

Often, however, what’s actually happening is the font they specified in the CSS isn’t avail-

able on the PC, and so the display defaults to the next available specified font, which can carry

less clarity in some cases. However, it could also have something to do with that PC’s basic settings.

The ClearType setting is a valuable asset for PC users, and is a preference local to a partic-

ular machine. In other words, it isn’t something you the designer can dictate through your

design. It is worth considering ClearType though, as although it makes your PC-based browsing

more enjoyable, it can also give a false impression of how your PC audience will view your work.

Basically, ClearType enhances the horizontal resolution available for rendering text

through software such as web browsers, resulting in a much clearer display of text on liquid

crystal display (LCD) screens. The benefits of ClearType rendering are less obvious for users

with CRT displays, but still worth experimenting with. The outcome is less-pixilated charac-

ters, bringing the browser display a little closer to the smooth perfection of printed text.

ClearType is regrettably turned off by default, and is only available on the Windows XP

operating system or later. To enable ClearType font smoothing on your PC, right-click the

desktop, choose Properties, then choose the Appearance tab and click the Effects button. In

the dialog box that appears, there is a drop-down list that lets you choose between Standard

and ClearType font smoothing, as you see in Figure 4-2.

C H A P T E R 4 ■ T E X T 57

Figure 4-2. Turn on ClearType font smoothing on your PC.

Once you have turned on ClearType font smoothing, it is worth visiting the Microsoft help

section (www.microsoft.com/typography/cleartype/tuner/Step1.aspx) to fine-tune your settings.

■Caution It is always important to consider users who either don’t have font smoothing turned on or don’t

even know about it, which will be a significant number. Be sure to switch between Standard and ClearType

displays when testing your design, especially prior to launch. It just might be that there is a better font for the

job that can suit either preference, and other platforms, and doesn’t compromise your design as a whole.

Primary Font Properties
Initially, it might seem that the manipulation of text on the Web is severely limited, but

designers are constantly pushing the envelope with new and exciting methods of treating it.

Later we’ll delve into some more complex CSS properties, but for now it’s important to under-

stand the basic font syntax.

Specifying Fonts

First, you’ll want to override some of the browser’s default CSS properties, specifically the type-

face and the font size. This is really straightforward, but there are a few interesting issues to be

aware of. The following properties would typically be declared in the body selector, allowing all

following elements to inherit the values unless you specify otherwise.

font-family

The font-family property is a list of font family names and/or generic family names for an

element, specified in priority order. The browser will use the first available font on the user’s

machine. There are two types of font-family values:

58 C H A P T E R 4 ■ T E X T

• Family name: The name of a font family, like Times, Georgia, or Arial.

• Generic family: The name of a generic family, like serif, sans-serif, cursive, fantasy,

or monospace.

Each value must be separated with a comma, and you should always suggest a generic-

family name as the final option in the list.

If a family name contains whitespace, such as the family name Lucida Grande, it should be

enclosed in quotes ("Lucida Grande"), although single quotes need to be used if embedding the

style in HTML.

In the following example, defining the family names and generic family for the body

element will ensure that all child elements will inherit the font-family declaration, unless

specifically overridden.

/* Specify blanket rules for all elements */

 body {

 font-family: "Lucida Grande", Arial, Sans-serif;

 }

Note also that Lucida Grande is specified first, and due to its whitespace character it is

contained within quotes. Any machines with Lucida Grande will display text with that font, and

if it isn’t available, the display will default to Arial. If neither Lucida Grande nor Arial are available,

the browser knows to use whatever appropriate sans serif font it can find next, as the generic

family sans-serif is specified.

To overrule this blanket declaration, just specify a different font family for the appropriate

element. For example, many designers like to display headings and block quotes with larger,

more classic serif fonts.

font-size

In the “CSS Measurements” section of Chapter 2, you learned the various uses of the preferred

measurements, namely pixels, ems, and percentage. In particular, we looked briefly at sizing

text with ems, and the general consensus is that this is by far the best approach.

However, when it comes to discussing CSS and learning its ways stage by stage, I prefer to

use the pixel measurement, as it is the most easily understood and ensures those who simply

cannot get their head around the concept of ems can still sit at the table with everyone else. Just

to recap, using ems to resize text ensures compatibility with IE6, which cannot resize text defined

with pixels (jump back to Chapter 2 for a full overview of the woes and virtues of the various

units of measurement).

In the following example, a new declaration is added to the body to define the size of the

text in that and all child elements:

/* Specify blanket rules for all elements */

 body {

 font-family: "Lucida Grande", Arial, Sans-serif;

 font-size: 12px;

 }

By declaring font-size:12px in combination with the font-family declaration, you will

ensure that all elements will be sized to 12px regardless of any inheritance (unlike ems, which

C H A P T E R 4 ■ T E X T 59

can be influenced heavily through cascading rules), and will of course be rendered in the fonts

you specified earlier.

There are exceptions to this blanket font-size declaration, however. Note that all headings

(<h1>, <h2>, <h3>, and so on) will retain their default font sizes as declared by the browser style

sheet unless you redefine them. In other words, just because you specify a size of 12px in the

body does not mean that level 2 headings will also be 12px, as the browser style sheet has its

own correctly formatted CSS rules such as h1 {font-size:2em}. In any case, why on earth would

anyone want headings to be of equal size to their body text? This is another great example of

the creators of CSS ensuring common sense is not compromised.

Font Shorthand

You probably won’t be surprised to discover that there are some useful methods of shortening

font declarations, pulling several into one simple statement. Later you’ll combine four or five

declarations into one, but for now, let’s collate font-family and font-size.

As mentioned in previous chapters, the most important thing with shorthand is the order

in which declarations are stated. In this case, font-size precedes font-family.

/* Specify blanket rules for all elements */

 body {

 font: 12px "Lucida Grande", Arial, Sans-serif;

 }

With this basic knowledge of the two most important CSS font properties in your arsenal,

you can now begin to experiment with new and interesting font choices. To get you started, in

the following section we’ll plough into the vast array of available web fonts of which there is an

exhaustive and unlimited choice. (I’m joking again.)

Available Fonts
Arguably the most annoying problem designers face with regard to the Web is the poor choice

of fonts available. This boils down to the fact that the only fonts that can be specified are the

ones certain to be installed on every computer used to view the web site. For example, just

because you have Sharktooth Italicized installed on your computer doesn’t mean everyone else

has. Specify it in your style sheet, and the text on your web site, as viewed on your computer, will be

rendered with it, but very few other users will have such an obscure font installed and available

to their browser. The more obscure the font you specify, the more likely it is that you’ll run

into trouble.

Thus, it is important to think about web-safe fonts. These are few, but they can be used

with confidence, as most of your visitors will have them installed.

Web-Safe Fonts

Always, always think about clarity and legibility here. Choose fonts that look good not only on

your chosen platform (most look fabulous on a Mac), but also on others. How legible is your

11-pixel Times text over on a colleague’s PC? What if that colleague has/hasn’t enabled

ClearType font smoothing? What if you need to render some information in italics? Does your

chosen font cope well in such circumstances?

60 C H A P T E R 4 ■ T E X T

Certain fonts give very consistent results in a variety of situations. While some may consider

the likes of Verdana and Georgia as safe bets, this is unfair. Legibility generally overrules whimsy,

and certainly comes well before indulgence. Verdana, for example, is vilified in some circles as

the equivalent of a Queen Greatest Hits album—absolutely everywhere, incredibly familiar, but

not delivering anything new, i.e., boring. Take this raw source though, and give it a little remix,

and who knows what could be drawn from it? My point is that the possibilities with CSS are

endless, and the combination of background images, appropriate font properties, and careful

spacing can give an old font new room in which to shine.

There are, in all facets of web design, rules to be followed. Web standards exist for the

common good, but most rules can be treated as guidelines for good practice. Remember that

nobody is forcing you to do things their way, and the web is an open playing field. Use the font

you want to use, and do not be swayed by ill-considered opinion. Just make sure your visitors

can actually read it.

Let’s look at the web-safe fonts available at the time of writing, illustrated in Figure 4-3,

and consider why some might be more useful than others, and what kind of web sites they

might suit.

Figure 4-3. Standard web fonts

C H A P T E R 4 ■ T E X T 61

Verdana

Verdana is super-legible, and copes with smaller font sizes very well indeed. It is devoid of

extraneous curly bits (technically speaking this means it is a sans serif font—that is, without

serifs), and I’ll bet my laptop that 99.9% of web users will have it installed on their machine,

especially as it comes bundled with Internet Explorer. Use Verdana for a government or blue

chip business web site.

Georgia

Georgia is a serif typeface (so it does have curly bits). It is a web designer’s favorite because

unlike most serif fonts, Georgia has been designed especially for the screen. Its italics, which

are unusually clear and legible on screen, are a major bonus. Use Georgia for a historical infor-

mation site, such as a web site about World War II.

Times New Roman

If a font has Times in the name, you can assume it will give the impression of a newspaper typeface,

although this is not always a good thing on screen. Another serif font, Times New Roman is

intended for PC platforms, and is hinted especially for the screen. That said, many would argue

that Georgia supersedes it if you want a particularly legible serif font for your web site.

Times

Times is the Mac equivalent to Times New Roman, but is not designed specifically for screen.

However, Macs being Macs, it’ll still render pretty well on that platform. Use Times New Roman

or Times for a financial institution’s web site.

Arial

Like Verdana, Arial is another sans serif font that lends a more modern feel to web sites. It is

widely used, but doesn’t work very well at lower font sizes, and there isn’t much default space

between the characters. Use Arial for a pretentious museum’s web site.

Helvetica

The closest web font to Arial for the Mac, Helvetica is another sans serif font regarded as a

superstar typeface in the real world, but faring not so well on screen. Use Helvetica for a new

media company’s web site.

Tahoma

With so little choice for web designers, you’d think there would at least be some variety on the

menu, but sadly there isn’t. Tahoma resides on any computer that has Microsoft Office installed

on it, and is thus available to most of your visitors, but it bears an uncanny resemblance to

Verdana, and is therefore used rarely. Use Tahoma for a business web site, or alternatively just

use Verdana.

62 C H A P T E R 4 ■ T E X T

Comic Sans MS

You want variety? Well, this is pretty wild. I say wild, but really Comic Sans is a bit of a joke. It’s

rare that you’ll come across a design that demands its text be rendered in this very informal

typeface. It is unfortunate that any web sites using Comic Sans tend to have that “my first web

site” feel about them, and it is best reserved for unfunny jokes or printable party invitations.

Use it if you wish, but steer clear if you are looking to present even a tiny amount of profession-

alism. Use Comic Sans for your little sister’s web site about ponies.

Trebuchet

A great screen font, designed originally at a smaller size than most fonts, which usually means

a font that has less unique subtleties. That said, Trebuchet manages to convey a contemporary

feel in a limited space, and is a stylish choice that ships with copies of Internet Explorer. Use

Trebuchet for your personal portfolio.

Courier

Courier is a monospaced font, meaning every character is the same width as you would find on

a traditional typewriter, so they line up vertically as well as horizontally. Courier New is the

most common monospaced font but can appear faint when anti-aliased at smaller sizes. Alter-

natives are Lucida Console (Windows), American Typewriter (Mac), and Monaco (Mac). Use

Courier or its alternatives to display code or simulate typewriter text.

Interesting Alternatives

It’s time to act like the rebellious tutor who throws course books out of the window and encourages

the group to “push the envelope.” In truth though, many designers are simply pursuing unsung

alternatives that can sensibly be added to the accepted list of available web fonts. The gamble

here is lessened thanks to the ability to suggest backup fonts should the preferred one be

unavailable. Learning CSS can be challenging enough without being forced to work within

difficult confines, so I encourage you to flirt with some of the following fonts, be they classic

or well established, or newcomers that have shown their true worth on screen.

We’ll look at the merits of each of the fonts displayed in Figure 4-4, followed by suggested

family names and generic names to ensure your design isn’t compromised when that font is

unavailable.

C H A P T E R 4 ■ T E X T 63

Figure 4-4. Suggested alternative web fonts

Lucida Grande and Lucida Sans Unicode

Lucida Grande comes preinstalled on Mac OS X, and Lucida Sans Unicode comes with

Windows XP, the latter being a very close match to the former. These fonts are a brilliant

Verdana alternative, being supremely legible and extremely refreshing to eyes tired of typical

web fonts. Note that this author has used Lucida Grande on probably 60% of all the sites he

has built!

Suggested declaration: "Lucida Grande", "Lucida Sans Unicode", Verdana, sans-serif

Futura

Futura is a good contemporary-looking font, comes preinstalled on Mac OS X, and is included

with many Adobe applications. It is a great sans serif font that works particularly well at larger

font sizes (so great for headers).

Suggested declaration: Futura, Helvetica, Arial, sans-serif

Helvetica Neue

A redrawn version of Helvetica that has better separation between characters across its various

guises, Helvetica Neue (pronounced “noye-er”) comes preinstalled with most platforms and

software. It’s a very stylish font that looks great in any situation.

Suggested declaration: "Helvetica Neue", Helvetica, Arial, sans-serif

Gill Sans

Gill Sans is classified as a humanist sans serif, making it very legible and readable in text and

display work. The condensed, bold, and display versions are excellent for packaging or posters,

and this description translates very well to the screen. Gill Sans exudes a modern feel due to its

clear, generous, and original characters. It comes preinstalled on Mac OS X.

Suggested declaration: "Gill Sans", "Lucida Grande", "Lucida Sans Unicode", Arial,

sans-serif

64 C H A P T E R 4 ■ T E X T

Palatino

Preinstalled on Mac OS X and many Windows machines, Palatino is a typeface based on clas-

sical Italian Renaissance forms, and is a rather nice serif font. It has become a modern classic

in itself, and is popular among professional graphic designers and amateurs alike. Palatino

works well for both text and display typography, and used carefully it can be a great web font.

Suggestion declaration: Palatino, Georgia, "Times New Roman", serif

Be Careful with Fonts

Remember that the alternative fonts suggested here need to be used with caution. Ensure

sensible alternatives are listed in the font-family sequence, and remember that a font displayed

on a Mac can look significantly different, or even be unavailable, on a PC. It is advisable to edit

your font sequences at the testing stage to see how your alternative fonts work for you. For

example, Georgia may be your second-choice font, but be sure it suits your design should the

first choice be unavailable.

Default Browser Display
Most would agree that a browser’s default style sheet does a pretty good job of making text

legible. Typically, the font size will be a non-squint-inducing 16px, with black text on a white

background. In the following sections, we’ll start with this default styling and apply numerous

CSS properties to the markup (without adding any further elements to it) in order to explore

the multitude of available techniques for creating good-looking web text.

Create a new document called text.html and type the following (X)HTML into it. You

can also grab the complete text.html file from the Chapter 4 folder in the code download at

www.apress.com:

<html>

 <head>

 <title>Chapter 4: Text</title>

 </head>

 <body>

 <h1>Content is King</h1>

 <p>This is a paragraph. Nothing particularly special about it, but the ➥

visitor is going to read it anyway, so it may as well say something useful.</p>

 <h2>True Fact</h2>

 <p>Useful. OK. Did you know that a shrimp's heart is actually in its head? ➥

It's true.</p>

 </body>

</html>

A shrimp’s heart is actually in its head. Bet you didn’t know that, did you? This incredibly

informative text (just two headings and two paragraphs) will be used throughout the rest of this

chapter.

Let’s get down to the serious business and forget about seafood. Firefox will display this

(X)HTML as shown in Figure 4-5 using its default style sheet.

C H A P T E R 4 ■ T E X T 65

Figure 4-5. Default browser display (Firefox)

While this display is very legible, it isn’t very stylish. It is likely that the default style sheet

will specify either Arial or more likely Times New Roman for the font, giving that classic

“unstyled” feel.

Apply Some Style
Through the following section, you will take that existing text in text.html and manipulate it in

a number of ways that make use of some key CSS properties.

Define Your Style Sheet

The first step is to override the browser’s default style sheet with one of your own. In Chapter

1, you learned how to apply an external style sheet, so repeat that process and apply a style

sheet called text.css using the following link element within the head of the document:

<head>

 <title>Chapter 4: Text</title>

 <link rel='stylesheet' media="screen" type='text/css' href='text.css' />

</head>

Reload text.html in your browser. Nothing looks different, but text.css is now higher in

the cascade than the browser style sheet. As there are no rules in text.css to override the

browser style sheet yet, the latter’s rules currently still take precedence.

Body Declarations

The first task with any new web site is to consider what blanket rules can be declared in the

body selector. Remember that every element contained in the body element will inherit its

values unless you specify otherwise. For example, to avoid having to declare the font-family

and font-size for every element, some blanket rules can be applied from the outset.

The first selector to define in text.css is for body. Notice that margin, border, and padding

properties have been declared, but more importantly so have the font-family and font-size

66 C H A P T E R 4 ■ T E X T

properties using shorthand. These are specified for the whole web page, and any others that

take their style from text.css:

/* Specify blanket rules for all elements */

 body {

 margin: 10px;

 border: 1px solid #000;

 padding:10px;

 font: 12px Verdana, Arial, Sans-serif;

 }

Save text.css and then reload text.html in your browser. The display should look some-

thing like Figure 4-6.

Figure 4-6. Now text.html is taking its styling from text.css.

With the font-size reduced to 12px, the display looks a little more professional, and

Verdana makes the text a little easier on the eye. Notice that the declared font-size has no

effect on the headings (<h1> and <h2>), which retain their default font sizes, as discussed earlier.

Please, Please Use line-height!
Adjusting the spacing between lines of text makes a huge difference to the look of your text, and

it is almost always required to enhance legibility. Please, please use it!

The line-height property is easy to understand, simple to implement, but most often

forgotten about. With careful color, size, and font-family properties set, and the text placed

within a beautifully executed section of the page, it is easy to consider the job done. The reve-

lation that something as simple as adjusting line-height can then bring to what is considered

finished is something one never forgets, and once you see this for yourself, you will use it in

every subsequent design.

C H A P T E R 4 ■ T E X T 67

Setting the line-height Using Percentage

It is worth setting line-height in the body selector, as all elements can benefit from inheriting

this value. Headings that wrap to two or more lines, lists, block quotes, and so on can all use

some space for clarity, but it’s the paragraphs where the increased legibility will be most

noticeable. The rule is simple:

line-height:150%;

In this example, the spacing between the lines of text will be the given percentage of the

current font-size. So, a line-height of 100% will make no difference, whereas a line-height of

150% will create a space half the size of the font. A line-height of 200% will create a space equal

to the size of the font, and so on. Here, the line-height declaration is added to the existing

body selector:

/* Specify blanket rules for all elements */

 body {

 margin: 10px;

 border: 1px solid #000;

 padding:10px;

 font: 12px Verdana, Arial, Sans-serif;

 line-height:200%;

 }

In Figure 4-7, this line-height of 200% can be seen on the right, compared with the default

on the left.

Figure 4-7. Default line-height on the left and a line-height of 200% on the right

68 C H A P T E R 4 ■ T E X T

The browser window on the right clearly shows that a line-height of 200% creates spacing

equal in height to the size of the text characters. This is great for the example, but in the real

world, a value of 150% or 160% would probably be more appropriate.

Other line-height Values

As well as the very flexible method of setting line-height using percentage, some other values

can be used.

Normal

Sets what the experts call a “reasonable distance between lines.” In actuality, this setting is

exactly the same as specifying no line-height at all, and it is only useful if you wish to override

inherited line-height for a particular element.

line-height:normal;

Number

Sets a number that will be multiplied with the current font-size to set the distance between

the lines. For example, if the font-size is 12px, then specifying a line-height of 2 will result in

a space of 24 pixels between lines of text.

line-height:2;

Length

Sets a fixed distance between the lines, which is great for precision, but it is important to

remember that when text is resized, the line spaces will not increase or decrease at the same

ratio as the text.

line-height:8px;

To ensure appropriate scaling when text is resized, use a flexible length measurement such as

ems or percentage.

letter-spacing (Kerning)
In the real (print) world, the spacing of characters has the professional name of kerning. Again,

CSS has enabled web designers to emulate this tight text control with the letter-spacing property.

Where line-height creates extra whitespace between lines of text, so letter-spacing is used to

adjust the spacing between characters. Again, normal can be declared to override inherited

letter-spacing, but mostly you will declare letter-spacing in pixels. In the following example,

letter-spacing is declared only for the grouped headings:

C H A P T E R 4 ■ T E X T 69

/* Specify blanket rules for all elements */

body {

 margin: 10px;

 border: 1px solid #000;

 padding:10px

 font: 12px Verdana, Arial, Sans-serif;

 line-height:150%;

 }

h1, h2 {

 letter-spacing:3px;

 }

The result can be seen in Figure 4-8, where the headings have 3 pixels of whitespace between

each character.

Figure 4-8. On the right, the headings benefit from 3 pixels of letter-spacing.

■Note It is worth noting that unlike line-height, here negative values are allowed, so something like

letter-spacing:-0.5em can be used to bunch up the characters if required. Using the em measurement

will ensure that the spacing scales if text sizes are increased. This approach is unlikely to aid legibility, however,

so use negative spacing with caution. Use letter-spacing only when absolutely necessary. Increasing the

whitespace between characters rarely makes text more legible, and only serves to make life more difficult for

those with reading difficulties.

70 C H A P T E R 4 ■ T E X T

Many designers like to ensure many other font properties are set first, and leave line-height

and letter-spacing until last. It can be that final touch that sets a design apart, and shows that

the designer has a good approach to legibility and type design.

Other Key Font Properties
The following properties are often used for tighter control. Most are self-explanatory, so let’s

breeze through them; we’ll combine them all in a sample template at the end of the chapter.

font-weight

The font-weight property sets how thick or thin characters in text should be displayed. Typically,

the declaration will either be normal or bold, although some browsers support numeric values

in increments of 100. These are 100 (lightest), 200, 300, 400 (same as normal), 700 (same as bold),

800, and 900 (even bolder!).

font-style

Again, this property is pretty obvious. The default is normal, but typically you would use this

property to declare any text that needs to be rendered in italics. Values are normal, italic, and

oblique. When you specify an oblique font style, the browser looks for any available font with

“oblique” in its name or, failing that, one with “italic” in its name.

font-variant

The font-variant property is used to display text in a small-caps font, which means that all the

lowercase letters are converted to uppercase letters, but all the letters in the small-caps font

have a smaller font size compared to the rest of the text. This is useful for secondary, less-

important info such as stats, figures, or footer information. Possible values are simply normal or

small-caps.

Note that the browser will use a proper small-caps font if one is available; otherwise the

effect is done computationally. You can see an example of small caps a little later in Figure 4-9.

text-transform

Not strictly a font property, but it controls the font, so it is included here. This property is a

natural antidote to font-variant, where all characters can be rendered uppercase without

reducing font size. The text-transform:uppercase declaration is especially useful for headings,

where it is semantically incorrect to type using uppercase characters in the markup.

C H A P T E R 4 ■ T E X T 71

The other key text-transform value is capitalize, which ensures that the first character of

any word is rendered as an uppercase character, which again is very useful for headings and lists.

Other possible text-transform values are none and lowercase, the latter being very useful

if you need to remove all instances of uppercase characters.

Combining Several Font Properties

Applying all the preceding methods to the template will be interesting, if a little chaotic. Taking

the core template, and mixing up the CSS, you’ll see a myriad of declarations across the selectors.

Note that shared heading declarations are grouped, whereas individual ones are defined

individually:

/* Specify blanket rules for all elements */

body {

 margin: 10px;

 border: 1px solid #000;

 padding:10px;

 font: normal 12px Verdana, Arial, Sans-serif;

 line-height:150%;

}

p {

 font-variant:small-caps

}

h1, h2 {

 letter-spacing:1px;

}

h1 {

 font-family: Georgia, Times, serif;

 text-transform:uppercase;

}

h2 {

 font-family: "Helvetica Neue", Arial, sans-serif;

 text-transform:none;

 font-style:italic;

}

Throwing all of that at the template results in a real markup mash-up. Compare the basic

pane on the left with the resulting pane on the right in Figure 4-9.

As a means of showing how to apply the various font values in one place, that was a good

example, but in the real world it is important to make font decisions for a reason. Italicized text

is considered less legible by many, so ensure you are using it because you have to.

72 C H A P T E R 4 ■ T E X T

Figure 4-9. Basic styling on the left compared with the font styling mash-up on the right

More Font Shorthand

The previous example resulted in the CSS ballooning to 23 lines, which is avoidable with some

font shorthand. While letter-spacing and text-transform cannot be included in the shorthand,

all font properties and also line-height can.

Let’s take all the font properties in the next example and present them in one declaration.

So long as the order of values is correct, the display will be exactly the same.

First, consider the following selector for a paragraph:

p {

 font-style:italic;

 font-variant:small-caps;

 font-weight:bold;

 font-size:12px;

 font-family:verdana,arial,sans-serif;

line-height:150%;

}

Hmm, six lines are used here just to define the basic font styling for the paragraph. Building

upon the basic shorthand you learned when we looked at font-size and font-family, further

values can be combined to bring everything into one declaration. In the following code, note

that after font: the value order is identified by the name of the property. The order is very

important:

p {

 font: style variant weight size/line-height family

}

C H A P T E R 4 ■ T E X T 73

Now, replace each value word with an actual value from the original six lines of CSS:

p {

 font: italic small-caps bold 12px/150% verdana,arial,sans-serif

}

The result sees just one line of shorthand CSS doing the work of six longhand rules. Notice that

font-size and line-height are combined as font-size/line-height, resulting in 12px/150% in

the example. Values can be omitted if need be, so if you wish not to declare the font-variant,

simply leave it out. So long as the order of declared properties doesn’t change, all will be fine.

Getting Clever with Text
Since dinosaurs ruled the earth, web designers have sought ways of breaking free of the restric-

tions forced upon them when it comes to styling text. As a result, numerous cool methods of

bridging the gap between print and web design have materialized. Some of these methods

incorporate existing (X)HTML elements, while others rely on nifty combinations of CSS values

you’ve learned so far.

Quote Me on This

The (X)HTML element <blockquote> is a very useful tool for singling out a quote or creating a

pullquote (a key sentence selected from a body of text and used as a draw for the reader).

Take the existing document called text.html and add the <blockquote> element into it:

<html>

 <head>

 <title>Chapter 4: Text</title>

 </head>

 <body>

 <h1>Content is King</h1>

 <p>This is a paragraph. Nothing particularly special about it, but the ➥

 visitor is going to read it anyway, so it may as well say something ➥

 useful.</p>

 <h2>True Fact</h2>

 <p>Useful. OK. Did you know that a shrimp's heart is actually in its➥

 head? It's true.</p>

 <blockquote>Collison stands by his statement that a shrimp's heart is ➥

 actually in its bottom, and doggedly refuses to believe that he is

 wrong.</blockquote>

 </body>

</html>

Save text.html and reload it in your browser. Now, the rendered page should look as it

does in Figure 4-10. The block quote’s default styling sees it indented by approximately 40 pixels

while inheriting existing font styling from the body selector.

74 C H A P T E R 4 ■ T E X T

Figure 4-10. The additional, unstyled block quote appears underneath the existing text.

By overriding the inherited font styles, the <blockquote> element can be styled to stand out

from the surrounding text, by declaring a different font, size, and style. Also, the default margin

can be overridden to pull the text a little closer to the container’s edge:

/* Style the blockquote */

blockquote {

 margin: 0 0 0 20px;

 line-height:150%;

 font: italic 15px Georgia,Times,serif;

}

The result can be seen in Figure 4-11. The quote is clearly defined to contrast heavily with

the existing page text.

Figure 4-11. Now the block quote is clearly defined against the surrounding text.

C H A P T E R 4 ■ T E X T 75

Indenting Paragraphs

Another device you will be familiar with from the print world is that of indenting the first line

of a paragraph. This acts as a clear hook for the reader, drawing the eye to the beginning of

each paragraph, and is especially useful where line-height is quite narrow. CSS gives us the

text-indent property for this.

/* paragraph styling */

p {

 font: 12px verdana,arial,sans-serif;

 text-indent:15px;

}

The result of this 15px text-indent can be seen in Figure 4-12.

Figure 4-12. A 15-pixel indent is added to the paragraphs.

Ye Olde Drop Caps

Drop caps might be more familiar to you as those wonderfully illustrated opening letters of

paragraphs in spell books and very olde bibles, but it is a device that has been used in probably

every magazine and newspaper since mass printing began. The technique sees the very first

letter of a paragraph singled out and treated differently from the rest of the text, typically many

times larger than the other characters, and possibly bolder and colored differently. The drop

cap may also be boxed inside its own container.

Creating a drop cap requires no extra markup in the (X)HTML, although to avoid applying

this method to every paragraph, it is advisable to single out the paragraph requiring the drop

cap by giving it a class.

<h1>Content is King</h1>

 <p class="dropcap">This is a paragraph. Nothing particularly ➥

 special about it, but the visitor is going to read it anyway, so it may as ➥

 well say something useful.</p>

This dropcap class ensures only this paragraph will be affected, and acts as a hook for the CSS.

76 C H A P T E R 4 ■ T E X T

Introducing the first-letter Pseudo Element

Now for a clever trick. Here, a pseudo element is introduced to the new p selector, separated by

a colon. Pseudo elements are used to add special powers to selectors, and can single out the

first letter of a paragraph or the first line, or be used to insert a CSS rule after an (X)HTML

element. This example uses first-letter to single out the first letter of any paragraphs given

the dropcap class.

/* Create drop cap characters */

p dropcap:first-letter {

 float: left;

 width: 40px;

 font: 60px "Lucida Grande",Arial,sans-serif;

 line-height: 50px;

}

Note that float:left is declared to ensure that the remaining paragraph text “floats”

around the enlarged drop cap. Floats will be discussed in more detail later in the book. The

width is defined to ensure the drop cap has enough space in which to sit, and obviously the

font-size is increased significantly to enlarge the character, as you see in Figure 4-13.

Figure 4-13. The first letter of the paragraph is turned into a drop cap.

The font size and width need to be adjusted depending on the actual font you use. For

example, a 60-pixel Georgia character demands a little more space than one rendered in

Lucida Grande.

This chapter might be doubled in length if we were to fully explore such advanced tricks

as these, but I urge you to investigate further, as these pseudo elements are important cross-

browser problem-solving tools. For more information about pseudo elements, check out the

W3 specifications (www.w3schools.com/css/css_pseudo_elements.asp).

May the Font Be with You
I expect you’ll be aware that the subject of text, like any web subject, is a vast and broad land-

scape that is difficult to map. As new discoveries are made, and explorers find new and amazing

methods of attack, the contours seem to continually shift, and the ground remains unstable.

C H A P T E R 4 ■ T E X T 77

With text being the most important content of most web sites, it is vital that the commu-

nity seeks to redefine methods of approach based on usability testing and new information

about how users with varying abilities use web pages. It pays to define your own constants in

your designs—your own plan of attack with text. With each site you build, experiment with line

height, font size, and scaling. Consider the end user at all times, and pay great attention to

primary and secondary fonts, legibility, and resizing of text.

Right, where are we? Well, it’s the end of Chapter 4, and a lot of ground has been covered,

but surely you are itching to get a little more creative at this stage. Now that you’ve got your text

under control, perhaps it’s time to add a little flair into the mix. It’s time to reward your patience

and studious discipline with some playtime.

79

■ ■ ■

C H A P T E R 5

Color, Backgrounds,
and Images

The beauty of CSS is that it allows us to separate presentation from content. The entire core

content such as text and key images are locked up in the (X)HTML, leaving all the actual styling

kept tidily separated in the style sheet. Therefore, the style sheet is the place to specify all the

creative stuff, including color and placement of decorative images.

Applying color to text and containers is pretty easy using CSS, as is the application of back-

ground images, although it is important to plan ahead and ensure the minimum number of

images are used for maximum effect. That said, background images are the key to realizing the

creative potential of CSS-based web design, and they literally transform your pages into works

of art very quickly if used appropriately.

It should be noted that adding any images to a page, whether inline or with CSS, will increase

its weight, and therefore the time it takes to be fully downloaded by the user. Many designers

do more harm than good here; using CSS to apply unnecessarily large photographic backgrounds

and complicated extraneous whistles and whirligigs that, when combined with (X)HTML, CSS,

and other ingredients such as JavaScript, significantly increase a page’s total size. The trick is to

use background images sparingly, creatively—and to be aware of occasions where they can be

reused and repositioned on a page.

Much advanced CSS deals specifically with incredibly ambitious background image use,

and though the results can be mind-bogglingly engaging, the processes can be equally complex—

even for seasoned professionals. Still, it is possible to do some very interesting things with

images without straying too far from the basics.

In this chapter, you will first learn the correct ways of applying color to your web pages,

and later begin to work with background images in a responsible way.

A Brief History of Color
As a human being, you understand the concept of color. It’s pretty simple really. Red is red, and

blue—well, that’s kind of bluish, isn’t it? Even those less receptive to certain colors among us

(Hi, technical reviewer Rutter) and the completely colorblind can appreciate these differences

through tone and gradient.

As a child, you no doubt learned the rules of the color wheel, and the results of mixing

primary and secondary colors. That’s great, but sadly the web is a different world, and the rules

are somewhat different. Using color on the web is very easy, so long as you take the time to

learn some basic application guidelines first of all.

80 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

Web Safety First?

There are just 216 colors that you may use on your web pages. Or are there? Early web settlers

were bound by many rules that governed what they dare do with their designs. One of the most

widely adopted was the concept of web-safe color. The lords of web use dictated that 216 colors

were guaranteed to be displayed correctly on any platform, and that to use any others might

result in the user’s monitor imploding, or at least rendering the web pages with incorrect color

and therefore resulting in disastrously compromised design. 216 sounds like a large enough

number, but consider that most modern computers use millions of colors, and you begin to see

the problem.

Web-safe palettes, or browser-safe palettes as they are also known, consist of 216 colors

that display solidly, consistently, and without graduation on any monitor capable of displaying

at least 8-bit color (256 colors). The reason why this palette doesn’t contain the maximum

256 colors is that only 216 of this number will display exactly the same on all computers (the

remaining 40 vary somewhat from Mac to PC, for example). Ours is not to reason why, but

merely to curse at yet another line drawn in the sand.

Originally, computers were only capable of displaying a maximum of 256 colors at any

time, due mainly to the amount of RAM available. These colors needed to be described in no

more than 8 bits of computer information, which by no coincidence equals 256 different values

(2 to the power of 8). The basic palette of 256 colors available to computers of that era contains

the 216 we now call the web-safe palette.

Though most modern computers have more than enough available RAM to display infinite

colors on screen at any one time, there are many old computers limited to 256-color displays,

which is why the web-safe palette is still something to consider, depending on the audience.

■Note Your inner geek may be interested to know that web-safe colors are defined in terms of the percent-

ages 0%, 20%, 40%, 60%, 80%, and 100%, and also the RGB values of 0, 51, 102, 153, 204, and 255—

multiples of 51. Why multiples of 51? Well, 51 is 20% of 255, and as 0 is a value, we count the total colors

from 0 to 255, not 1 to 256. If this fascinates you, jump to http://en.wikipedia.org/wiki/Web_colors

for much more detail.

Specifying Color

Colors may be specified in a number of ways. Many specify color as an RGB triplet in hexadec-

imal format (a hex triplet). Others often use their common English names in some cases. It is

also possible to use RGB percentages or decimals. The following examples are all valid for the

color red:

#f00 /* #rgb */

#ff0000 /* #rrggbb */

red /* common English name */

rgb(255,0,0) /* integer range 0 - 255 */

rgb(100%, 0%, 0%) /* float range 0.0% - 100.0% */

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 81

Hexadecimal Triplets

Let’s attempt to understand how the RGB declarations for red actually work. A hexadecimal

triplet is a six-digit, 3-byte hexadecimal number used in (X)HTML and CSS to represent colors.

The bytes represent the red, green, and blue components of the color. One byte represents a

number in the range 00 to FF (in hexadecimal notation), or 0 to 255 in decimal notation. This

represents the least (0) to the most (255) intensity of each of the color components. Concate-

nating 3 bytes in hexadecimal notation, in the following order, forms the hex triplet:

• Byte 1: Red value

• Byte 2: Green value

• Byte 3: Blue value

Shortening the Hex

The “web-safe” colors do not have names, but an RGB triplet can specify each. A three-digit

number is used as a shorthand notation for the six-digit hexadecimal numerals. The digit 3 is

equivalent to the hexadecimal numeral 33; C is equivalent to CC. For example, F63 is equiva-

lent to #FF6633.

Using the 17 Named Colors

CSS language defines the same 16 named colors as the HTML 4 spec, plus CSS 2.1 adds the

“orange” color name to the list. The 17 named colors are listed in Table 5-1 as a handy refer-

ence for your own use through this chapter and beyond.

Table 5-1. CSS 2.1 Named Colors and Corresponding Hexadecimal Values

Color Hexadecimal Reference

black #000000

navy #000080

green #008000

teal #008080

silver #c0c0c0

blue #0000ff

lime #00ff00

aqua #00ffff

maroon #800000

purple #800080

olive #808000

gray #808080

red #ff0000

82 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

The CSS 2.1 specifications also allow web authors to use so-called system colors, which

are color names whose values are taken from the operating system. This enables web authors

to style their content in line with the operating system of the user agent.

The developing CSS3 specification will also introduce Hue, Saturation, Lightness (HSL)

color space values to style sheets (see http://en.wikipedia.org/wiki/HSL_color_space for

more information about this), and we can be certain that as more and more old computers fall

off the end of the world, and new platforms continue to meet high specifications, the days of

web-safe colors will be thankfully numbered.

Must We Be Web Safe?

For anyone without the confidence or color mastery to push their ambition over the 216 mark,

be thankful that at the time of writing the web-safe palette is built into Photoshop, Paint Shop

Pro, Illustrator, Freehand, Fireworks, Dreamweaver, GoLive, and numerous other applications

(see Figure 5-1).

Figure 5-1. The web-safe palette as it appears in Adobe Photoshop

Despite all of this caution, many designers do not limit themselves to the web-safe palette.

It certainly is worth considering the small percentage of web users with very old machines,

fuchsia #ff00ff

yellow #ffff00

orange #ffa500

white #ffffff

Table 5-1. CSS 2.1 Named Colors and Corresponding Hexadecimal Values (Continued)

Color Hexadecimal Reference

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 83

custom color settings, or devices that do not support color at all, but the real world is made up

of considerably more than 216 colors.

Imagine a situation where you need to extend the color of part of an image (let’s assume

it’s a clear blue sky framing a pretty little tree) from its top to the top of its containing div. You

may want to use Photoshop’s eyedropper tool to find the hexadecimal reference of that blue

sky, only to find the nearest web-safe match just isn’t close enough. Here, a non-web-safe color

is needed, and can be used with some confidence. Thus, your toolbox extends from just 216 colors

to literally millions at the flick of an informed choice (see Figure 5-2).

Figure 5-2. Photoshop’s main color palette

Sampling color from images is a must for more intricate or ambitious CSS-based designs,

and (I’ll stick my neck out here) is recommended. Where possible, use a web-safe color, but do

not feel handcuffed by this sense of responsibility. Design moves forward, as does technology,

and nothing would ever have been achieved if everybody placed caution before innovation.

Selecting a Color Palette for Your Design

While it is perfectly acceptable to begin building a web site structure without giving any thought to

color, to begin adding color without any sense of an overall color palette is asking for trouble.

The following web sites are excellent starting points for web palettes. ColorBlender (http://

colorblender.com) allows you to export palettes in lots of formats and is very slick. It is even

possible to upload an image and have a palette created from it using the Color Palette Generator

(www.degraeve.com/color-palette/index.php). Finally, Colour Lovers (www.colourlovers.com)

features hundreds of existing palettes submitted by visitors, and the Color Scheme Generator 2

(wellstyled.com/tools/colorscheme2/) is brilliantly intuitive.

For more in-depth analysis of color on the Web, visit www.web-colors-explained.com/ and

http://en.wikipedia.org/wiki/Web_colors.

84 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

Color for Text
Way back in Chapter 1, you were already applying color to standard (X)HTML elements, turning

specific paragraph text red using a shortened hexadecimal reference, as in this example:

p {

 color: #F00

}

Of course, you can also use any of the 17 named colors from Table 5-1:

p {

 color: red

}

Thus, the method of specifying color should now be perfectly obvious. The color declaration is

all that is required to assign color to any element in any circumstance.

Use web-safe colors for text. The colors will map correctly and will not break up on color-

challenged monitors, so will be easier to read.

■Note Color is an inherited value. Therefore, specifying the color blue on a containing div will result in all

contained text (including headings, lists, block quotes, and so on) being blue, unless a specific element is

given a different value. So, if you specify blue in the body element, your headings will also be blue, unless you

make them green, for instance, with a dedicated value.

Background Color
The background-color property is used to set the background color of an (X)HTML element. It

is the quickest method for transforming your site from plain black text on a white background

into something much more engaging. Without doubt, this property is something you will use

frequently, although it is easily abused, and more mistakes come from not using it at all.

If you decide to give your web site a solid-colored background, make it a web-safe color.

That’s your guarantee the color will not embarrass you when it displays on the other computer

platforms. And on older computers capable of displaying but 256 colors at a time, and there are

still a lot of those relics around, your background will display clean and nondithered.

With this in mind, let’s move through some simple uses of the background-color property,

looking first at how it can transform text.

Adding Background Color to Text

Everyone understands the concept of the highlighter pen, where a word or line of text is high-

lighted using fluorescent ink on paper. CSS can easily emulate this approach using the

background-color property.

In the following example, a yellow background-color is declared alongside black text:

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 85

p {

 color:#000;

 background-color:#FF0;

 line-height:150%

}

This re-creates the effect of the highlighter pen by placing the text over a yellow strip for the

whole length of the paragraph, forming a block of color, as Figure 5-3 demonstrates. Note that

a line-height is declared to apply appropriate space between the wrapping lines.

Figure 5-3. Background color applied to the paragraph text to emulate the highlighter pen approach

Span Text for More Specific Control

A custom element can be used to control a section of the paragraph, rather than the

whole chunk. Although this method demands additional markup, it really is the only way to

affect a designated portion of text contained within a paragraph, unless targeting text already

defined with phrase elements such as or .

Rather than assign the background color to the whole paragraph, a class is created that will

be used to cloak the text that needs a highlight. In the following CSS, background-color is removed

from the paragraph selector, and a new class called highlight is defined:

/* Define basic paragraph style */

 p {

 color:#000;

 line-height:150%

 }

/* Highlight class to pick out key words or phrases */

 .highlight {

 background-color:#FF0;

 }

The class will inherit any styles defined in the parent element, and will therefore

also have a line-height of 150% and have black text. The key difference is obviously the yellow

background color. The class is applied to the (X)HTML as follows:

86 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

<p>Useful. OK. Did you know that a shrimp's heart➥

 is actually in its head? It's true.</p>

As the utilizes a class, it can be used an infinite number of times, so in this example

two sections of the paragraph are emphasized, resulting in the display shown in Figure 5-4.

Figure 5-4. Using a class to single out portions of a paragraph

Obviously, the text inside the element can be treated differently from the style

inherited from the paragraph element, and interesting results can be had by experimenting

with underlines, font-weight, font-style, or a different font color.

Adding Background Color to Headings

The very nature of headings as identifiers for different sections and indications of hierarchy

leads most designers to treat their display differently from other text. By default, of course, the

browser will display headings in larger bold text, but a little background color can really make

a difference.

To begin, start with a simple adjustment—black text on a silver background for the level 2

heading.

h2 {

 color:#000;

 background-color:#808080;

 padding:0.3em;

 }

Taking the hexadecimal reference for silver (#808080) and applying it to the <h2> using the

background-color property is all that’s needed. Of course, the text would push right up against

the edges of the silver strip were it not for the addition of the padding.

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 87

■Note The result in Figure 5-5 shows the “True Fact” heading stretching the full width of the containing

div. This is because headings (<h1>, <h2>, <h3>, etc.) are block-level elements, meaning that if unobstructed

and not limited by a specified width, they will extend for as long as they can, and will also force neighboring

elements to wrap to a new line, as it were. The opposite of block level is inline, meaning any element that

does not demand a new line or dictate its own width. CSS allows any element to be redefined as opposite of

its default state, and this will be covered more in Chapter 6.

Figure 5-5. Background color applied to the heading

It may be wise not to specify line-height or margin in most cases, as a wrapping heading

will result in whitespace between the lines of text in the header, which may not be desired.

Background for Other Elements

By now it should be obvious that you can apply a background color to any element, and it is

very common for designers to apply a background color to a div, whether as part of the final

design, or during the building process, in order to define the work area divisions. Adding simple

background colors at the design stage is a great way of assessing whether the padding and margins

you are applying are working correctly, and generally being aware of what is where and how

one element relates to its neighbor.

To stick with the current example, we can set the background color of the whole page by

declaring a gray background color to the <body> element, which will then be inherited by every

child element unless overridden.

/* Specify blanket rules for all elements */

 body {

 margin:10px;

 padding:10px;

 background-color:#CCC;

 font:normal 12px Verdana, Arial, Sans-serif;

 }

88 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

As a result of the additional background color, the whole page is now light gray (see Figure 5-6).

Figure 5-6. The background-color applied to the body element produces a completely gray page.

Fine, but obviously everything else is inheriting the gray background, except where specified.

Notice that the headings still have the silver backgrounds and the spans from the previous

section still produce yellow backgrounds, as a yellow background is specified in the highlight

class.

It would look a lot better if the content sat on a lighter background, which we can create

using a div. First, the appropriate markup for a new div with the ID container is added to the

template. Here is the entire markup from the <body> of the template:

<body>

 <div id="container">

 <h1>Content is King</h1>

 <p>This is a paragraph. Nothing particularly special about it, but ➥

 the visitor➥

is going to read it anyway, so it may as well say something useful.</p>

 <h2>True Fact</h2>

 <p>Useful. OK. Did you know that a shrimp's heart➥

 is actually in its head? ➥

 It's true.</p>

 </div>

</body>

Next, the CSS selector for that division is added to the style sheet. Here a thin black border, a

padding of 10 pixels all around every side, and most importantly, a white background are declared.

/* Container for all page content */

 #container {

 padding:10px;

 border:1px solid #000;

 background-color:#FFF;

 }

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 89

This results in a neat white container in which all page content is placed, as you see in

Figure 5-7.

Figure 5-7. The container div holds all page content on a white background.

Already, with the introduction of one div and a couple of background colors, this very

simple page is looking considerably different from the default browser display. As a final touch,

let’s bring back the silver background color for the second-level heading, and also add an iden-

tical background color to the top-level heading. No extra markup is needed, just the following

selector used to group shared declarations for both headings:

/* Declare all shared properties for headings */

 h1, h2 {

 color:#000;

 background-color:#808080;

 padding:5px;

 }

Now all elements are very clearly defined using varying grays, as you can see in Figure 5-8.

From a user’s point of view, this design probably looks a little heavy-handed, but from a building

point of view the outlined elements are very useful. If this were a color book, maybe I would

have explained things with pinks and purples, so perhaps count yourselves lucky that it isn’t.

There really is no limit to what you can do with background colors, so maybe experiment

with applying them to lists, phrase elements, and other familiar (X)HTML elements as you

work your way through the book. Some very exciting designs have been created that use pure

background-color and carefully sized and spaced elements, though it’s impossible to deny that

when it comes to really incredible CSS design, it’s the background-image property that stretches

the boundaries.

90 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

Figure 5-8. Background colors for <body>, container, spans, and headings applied to the page

Image Formats for Backgrounds
Before we delve into the toy box that is background images, it is worth taking a few minutes to

consider which kinds of image files to use and why. Nothing compromises a great layout more

than badly formatted background images, and choosing the correct format makes an incredible

difference to the quality, file size, and download time. Basically, this is one of the major factors

that separates a good design from a great design.

Three main formats are acceptable, namely GIF, JPEG, and PNG files. The latter is used

considerably less than the other two, but it is still a very useful card to play when needed. In the

upcoming sections, each is looked at in more detail, with suggestions for when to deploy each

format and why.

GIF

Undoubtedly the ideal format for background images, the GIF (pronounced “gif” to rhyme

with “whiff” by most, and “jif” by a minority of designers) format uses a proprietary compression

scheme to keep the size of the file as small as possible.

The GIF was created a long time ago when color displays were limited to 256 colors and

modems were slow. Instead of describing one pixel at a time in terms of its color, it describes

the boundaries of an area and the single color within that area. In cases where there are large

areas of certain colors, the file size is smaller. When dithering is used, the larger shapes are

broken into much smaller shapes requiring more information to be stored in the file, and the

file size increases.

■Note Dithering creates lots of new transitional pixels, which in turn creates a larger file size. You should

only use dithering if the image contains a transition between colors. When you Save For Web using Photoshop,

for example, you are given the option of saving the image with dithering when saving a file as a GIF.

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 91

Figure 5-9 shows a simple gradient image saved as a GIF with just eight colors to illustrate

the effect of dithering. The image on the left uses no dithering, so color is broken into chunks,

which makes it pretty much unusable. The image on the right is saved with dithering, which

results in a smoother image that uses more colors, but has a larger file size.

Figure 5-9. The image on the left shows how a nondithered image breaks the gradient into simple
chunks of color, while the one on the right has a much smoother transition through the gradient.

You can imagine the detrimental effect lack of dithering would have on a photograph of

your cat. Poor Tiddles would end up looking like he was made out of cardboard. As a rule of

thumb, use the GIF format for images that contain clean blocks of color, such as very simple

logos or simple patterns.

That said, many (including this author) do use GIFs for gradients and background images

that might be considered complex, but the images are often very small, and can thus be saved

with more colors and dithering. Such images are created in order to tile (repeat) across a given

area, which means that the files are much smaller, and the browser only needs to download

one tile, not the whole pattern. Tiling background images will be discussed later in this section.

Transparent GIFs

The best thing about GIFs is that they can carry a certain amount of transparency, which can

be invaluable for web design. Imagine that you wish to have a small arrow icon appear in every

heading, but that headings appear on many different background colors. This is where the

transparent GIF will save the day. So long as that GIF is saved with transparency, it will allow

the background color to come through.

Regrettably, transparent GIFs are not perfect, and rounded or jagged edges will be saved

with a few nontransparent pixels around them, floating on the transparent background (see

the black pixels around my dad’s head in Figure 5-10). The reason for this is when your application

creates the GIF, often it will anti-alias (blend) the edge of the visible image to the background

color. If you use a white background, for example, and your site has a green background, you

may see speckled dots around your image.

Thankfully, Photoshop and some other image editing applications allow you to specify a

matte color for these stray pixels. The goal here is to match the matte color to the background

upon which the transparent image will sit. This is not as restrictive as specifying the very same

color as the target background, but more a case of finding a near match for several possible

backgrounds. For instance, if you specify a white matte, your transparent image will work

pretty well on any very light-colored background. Equally, a dark gray matte will do the job

when the image sits over a dark blue, green, gray, etc.

92 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

Figure 5-10. Adding a black matte around my transparent Dad so that I can sit him against a
dark background

Thus in Figure 5-10, I have opted to apply a black matte around my Dad, so that he can sit

comfortably upon any dark background. The black pixels around his hood will blend into the

dark background and will not be visible, as Figure 5-11 illustrates.

Figure 5-11. The black matte of the transparent GIF image is clearly visible on the white back-
ground, but blends well with the black background.

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 93

Transparent GIFs really extend the limits of image use on the Web, but they certainly do

have limitations, especially where transparent gradients are concerned. If you require a more

complex solution to a transparent image, skip to the “PNG” section later in this chapter.

JPEG

The familiar image format that you will surely be used to using. JPEGs are incredibly flexible,

but an image saved as a JPEG (pronounced “jay-peg”) isn’t analyzed for color in the same way

as a GIF. This is the most commonly used standard method of lossy compression for photo-

graphic images.

■Note A lossy data compression method is one where compressing data and then decompressing it

retrieves data that may well be different from the original, but is “close enough” to be useful in some way.

JPEG files do suffer generational degradation when repeatedly edited and saved, a bit like

photocopies of photocopies. Photographic images are best stored in a lossless non-JPEG format

such as Tagged Image File Format (TIFF) if they will be reedited in future, in order to avoid

nasty rashes across the image.

The JPEG is not as well suited for line drawings or images containing text (that’s where the

GIF comes in), but the format comes into its own when saving photographs for web pages.

Photoshop and most other good image manipulation applications allow you to control exactly

how much of the original image you wish to retain. A key tool here is the quality controller in

Photoshop, allowing you to save JPEGs as low, medium, high, or very high quality, or specify an

exact percentage. In Figure 5-12, you can see the difference in quality. I wanted to save my dad

as a JPEG and upload him to the Internet, where he belongs.

Figure 5-12. In these magnified images, my Dad is first saved with a high JPEG quality, but he’s a
bigger file size. On the left he has a greatly reduced file size, but he’s come out in a rash of squares.

Although the images in Figure 5-12 are magnified somewhat, it is clear that the image on

the left has little noticeable loss of detail or visible artifacts. However, once a certain threshold

of compression is passed, compressed images show increasingly visible defects, such as the

rash of squares across his face in the right image.

94 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

The moral of this tale is that more often than not, you’ll want to retain as much photo-

graphic realism in your inline images as possible, and you’ll forgo a little extra file size for that

privilege, whereas for your background images, you’ll likely need less realism and will be working

with larger blocks of color or small gradient areas, and will therefore need the GIF format.

PNG

The PNG (pronounced “ping”) was developed to improve upon the limitations of the humble

GIF, where machines capable of displaying millions of colors were outgrowing a format limited

to just 256 colors. This is the chief reason why the PNG is growing in popularity among web

designers who desire greater flexibility but maximum image quality retention.

Most will resort to the PNG when a much more complex transparent image is required,

perhaps one containing a very subtle gradient or shadow. The big problem there has been

Internet Explorer’s lack of support for the transparent PNG. Good old IE will flatten your

beautiful transparent PNG and render it as a block, revealing none of the color underneath

(thankfully the forthcoming IE7 does support PNG transparency). There is, however, a fairly

complicated workaround for this issue, beyond the scope of this book. (See www.alistapart.

com/articles/pngopacity/ for more information about PNG use in such circumstances . . . stay

there a while after you’re read that article, as A List Apart is one of the greatest resources out

there for web designers.)

So long as browser support for the PNG remains limited (which can be translated as “until

everyone upgrades to IE7,” which won’t happen overnight), it is unlikely to supersede the GIF

format just yet, but do take some time to consider it in preparation for the day when this superior

image format is the main method of saving images for the Web. That will happen. The alpha

transparency of the PNG ensures that the anti-aliasing always works against any background,

and the amount of transparency can be varied across the image. This makes the PNG format

ideal for drop shadows, fine gradients, and other exciting layering methods. Bet you can’t wait.

Got the Picture?

So, there ends our mini-tour of the available web image formats. To conclude, remember the

following. Use GIFs for images with blocks of color or text, and for images with no graduation

unless it is a very small image. Use JPEGs for anything where a greater photographic quality is

required, but be aware of the quality/file size compromise. Use PNGs for complex transparent

images where you are designing for a specific browser that supports it, or if you are prepared to

use the IE workaround.

These rules are not hard and fast, and assuming every image is different—which it most

likely is—the perfect format for your image will depend on the situation. If you think it should

be a GIF, but it works better as a JPEG, make it a JPEG. It’s a common sense thing.

Background Image
Based on what you have already learned about image formats, I’m going to use the GIF format

throughout the rest of this chapter, as the examples will use a small image that can be tiled

across a given area, and even reused elsewhere, allowing the images to be saved with a little

more quality.

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 95

Sensible Use

Before you start going hellbent-for-leather with background images, it is important to consider

how this will affect the end user. Numerous factors mean that background image use should be

carefully considered and not frivolous.

Although less important than it used to be, it is still a fact that many folks are downloading

web pages using modems made of twigs and tin cans. A typical web page might contain some-

thing like 15KB of text and therefore download pretty quickly. Add 35KB of background images

to that, and you are reducing the speed of their viewing experience significantly. Keep image

use light, and only go overboard when it is really necessary, or you are designing for an audi-

ence you know will be using super-fast broadband.

Do not, under any circumstances, use background images to convey important informa-

tion when no alternative is available should they not display, or be manually disabled by a user.

There are solutions for backing up informative background images with valid (X)HTML, and

you’ll learn about that later. For example, don’t use a background image to show the title of

your web site, any navigation items, or any kind of flattened text content, unless you are providing

this information with standard text should images be turned off (see Chapter 14). Background

images are decorative adornments and certainly not to be considered “content”—which is why

they are kept in the style sheet as separate presentation elements.

Right, that’s the end of the hard-line lecturing. It’s time to delve into the fascinating world

of background images. Power up your image editing software, fill the teapot, and above all,

concentrate.

Prepare Your Template and Style Sheet

To illustrate the flexibility of background images, it is worth your preparing a new template

with which to experiment through the rest of this chapter. Create a new template called

images.html, and add the following markup:

<html>

 <head>

 <title>Chapter 5: Background Images</title>

 <link rel='stylesheet' media="screen" type='text/css' href='images.css' />

 </head>

 <body

 <div id="container">

 </div>

 </body>

</html>

Save the template. Note that the body element contains just one child element—the

container div we used earlier in the chapter. That div will act as the sandbox in which just one

background image will be obeying your every command as it is shunted around, duplicated,

and positioned.

Note that a style sheet called images.css is linked from the head of the new template. Create

that style sheet and paste the following into it:

96 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

/* Specify blanket rules for all elements */

 body {

 margin: 10px;

 background-color:#CCC;

 }

/* Container for all page content */

 #container {

 height:200px;

 border:1px solid #000;

 background-color:#FFF;

 }

Save the new style sheet. All the properties used should now be familiar to you. Notice that

again the body has a gray background and a 10-pixel margin from the edges of the browser

window as with the previous exercise. Again, the container is white, but this time has no padding,

and has a set height of 200 pixels so that it doesn’t collapse due to being empty.

Specifying a Background Image

The basic property and declaration is very similar to that of background-color. Load images.html in

your browser and marvel at how plain it is. Before boredom sets in, quickly get a background

image in there.

The basic GIF image is what is known as a tile. Just like a bathroom or floor tile, tile images

can be repeated infinitely either horizontally, vertically, or sometimes both directions without

causing an eye hazard, unlike my actual bathroom tiles, which are purple.

The tile you see in Figure 5-13 was created by Job Kooi and posted on über-cool design

web site www.k10k.net many moons ago. It is a perfect tile because it is small, symmetrical, and

will tile well in any direction.

Figure 5-13. Job Kooi’s tile image

First, the tile can be made to appear in the container by adding the background-image

property to the container selector.

/* Container for all page content */

 #container {

 height:200px;

 border:1px solid #000;

 background-color:#FFF;

 background-image:url(tile.gif);

 }

However, the result is interesting (see Figure 5-14). The image doesn’t display once, it

displays many, many times. By default, the background-image property will replicate the specified

image as many times as necessary to fill the container.

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 97

Figure 5-14. By default, the tile is repeated as many times as required to fill the container.

So, now you know how to use one very small image to fill a container! This default method

is ideal for applying a tile to the background of the page, by specifying it in the body selector.

Repeat

So what if you need to control the way in which your image is tiled, or perhaps turn off tiling

completely? Thankfully CSS has the answers, in the form of the background-repeat property.

There are four possible values—repeat, repeat-x, repeat-y, and no-repeat—all of which

you will inevitably use—and often. The possible outcomes might already be apparent, but it is

worth going through each in detail, skipping the repeat value, as that is already happening by

default.

Turn Off Tiling

To turn off background image tiling, you will need the no-repeat value (but you’d already

guessed that). Adjust the container properties as follows:

/* Container for all page content */

 #container {

 height:200px;

 border:1px solid #000;

 background-color:#FFF;

 background-image:url(tile.gif);

 background-repeat:no-repeat;

 }

This simple declaration will ensure that the image only displays once, and that it will be placed

immediately inside the container, at top left, as shown in Figure 5-15.

98 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

Figure 5-15. Thanks to no-repeat, tiling is turned off.

More fun can be had by allowing the tile to repeat either horizontally or vertically. This is

an essential technique that lends itself to more adventurous CSS-based design, and allows for

great flexibility. In the CSS, change the background-repeat value.

/* Container for all page content */

 #container {

 height:200px;

 border:1px solid #000;

 background-color:#FFF;

 background-image:url(tile.gif);

 background-repeat:repeat-y;

 }

What a cool result! As Figure 5-16 shows, the tile will only be displayed vertically for the full

height of the container. This method is ideal for creating borders for containing elements, or

for using a wide repeating strip as the main page background.

Figure 5-16. The tile is now repeated vertically using repeat-y.

You are probably aware from the previous example that repeat-x will force the tile to

repeat horizontally. You’d be right of course (see Figure 5-17).

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 99

Figure 5-17. Using repeat-x ensures that the tile repeats horizontally only.

The repeat-x value is great for applying a tiled background image to headings, and both

repeat-x and repeat-y are perfect for any situation where your image is only designed to tile in

one direction (such as a heading background where a drop shadow effect is used at the base of

the image). It is guaranteed that you’ll be making good use of the background-repeat property

not long after you’ve finished reading this chapter.

Position

Remember, by default the background-image property places the image (or starts the tiling

process) at the top left of the container. Luckily, yet more flexibility has been provided with the

background-position property, which allows you to specify exactly where the image should be

placed in relation to its container.

The full list of possible values is extensive, and the basic English values can get you out of

most fixes. Wish for the image to appear just once, and at the right of the container? Simply

specify background-repeat:no-repeat followed by background-position:top right. If you wish

the image to appear on the right, but at equal distance from the top and bottom of the container,

specify background-position: center right. It sounds easy, and it is.

• top left

• top center

• top right

• center left

• center center

• center right

• bottom left

• bottom center

• bottom right

100 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

• x-% y-%

• x-pos y-pos

So what about those last two values? Well, if the general English values are too vague for

your purposes, you can specify exact coordinates in pixels or as percentages instead, or combined

with the English values. Look at the following examples:

background-position: 50px left;

background-position: 10% 50%;

background-position: 10px 20px;

background-position: 20px bottom;

These four values, coupled with background-position:no-repeat, will result in our tile being

positioned in the four ways shown in Figure 5-18, starting from the top left and moving clockwise.

Figure 5-18. Using background-position to reposition the image within the container

It is advisable to not repeat the image here, as tiling would make positioning pointless in

most scenarios. Again, this is a great method to experiment with, and to remember for future

use. There most certainly will be a time when background positioning comes in very handy and

gets you out of a situation that might have required an extra div.

Attachment

The background-attachment property is little used, but very effective. On the web site for top

rock combo Dirty Pretty Things (www.dirtyprettythingsband.com), a fixed background image

was declared in the body selector, ensuring the background image stayed stationary while the

main container and everything inside it scrolled as would be expected (see Figure 5-19).

Two values are available, scroll (the default) and fixed. This method does require a certain

amount of caution and careful preparation of graphics in some situations, but the results can be

spectacular.

CH A P T E R 5 ■ C O L O R , B A C K G R O U N D S , A N D I M A G E S 101

Figure 5-19. The background image is stationary, as the rest of the content is scrolled up and down.

Background Shorthand

Naturally, and with so many background properties available, shorthand is used to combine

several background values into one line of CSS.

Combine Color with Image

In the previous example, rules for background-color and background-image are specified. These

two rules can be combined by specifying the background property, and then the values in the

correct order (color then image).

background:#FFF url(tile.gif);

■Note It is very important to specify a background color when text is to be placed over a background image.

Imagine you have a very dark background image, over which you will place white text. If that background image

fails to load, you could end up with white text on a white background. In this situation, specifying a black

background with the background image would be sensible. Note also that for accessibility reasons a text color

should always be specified for each element to which a background color or image has been applied.

Color, Image, and Position

If the image needs to be displayed to the right, and at the top of the container, the

background-position value can be placed at the end of the list of values.

background:#FFF url(tile.gif) right top;

102 C H A P T E R 5 ■ C O L O R , B A C KG R O U N D S , A N D I M A G E S

As long as the order is correct, the shorthand will work. You now have three lines of CSS

combined into just one.

Color, Image, Position, and Repeat

Let’s say you wish for the image to display just once, calling for no-repeat. The repeat value

comes next in the list.

background:#FFF url(tile.gif) right top no-repeat;

Remember that any of the preceding values can be removed, so long as the order is the same.

Obviously, if you remove the background-image value, the other image values will be worthless.

Ah, the beauty of CSS shorthand. Apply this principle to as many CSS rules as you can to reduce

the file size of your style sheet, and to keep it simple and manageable.

To Conclude...
Now that you have a grasp of the color and background basics, your mind is probably in over-

drive thinking of possible uses for these techniques. So long as you exercise caution when using

background images and consider the contrast of text against background, you’ll be fine.

A great number of potentially brilliant web sites fail to be accessible due to poor color

choices and irresponsible image usage. Be mindful of the end user at all times, and use the

Firefox browser’s Web Developer’s Toolbar to turn images off and run other key tests at every

stage of your site’s development to emulate potential viewing scenarios. It is your responsibility to

ensure that all visitors can use your web site as you intend.

In the next few chapters, you’ll delve into the realm of lists, links, tables, and forms, all

of which benefit greatly from the use of color and background to maximize their impact and

usability. Things are going great, and they’re only getting better.

103

■ ■ ■

C H A P T E R 6

Lists

The humble list informs our everyday lives. Where would civilization be without lists? Lists for

shopping, lists for chores (in my case), lists to tell us where all our lists are—almost everything

is arranged into lists, and this certainly translates to the Web (think lists of bookmarks, blogrolls,

link lists, site maps, file lists, and so on).

The fact is that the list is a very simple but essential tool for organizing data, and it is

incredibly useful for the web designer. View the source of any web site built using web standards,

and you are almost guaranteed to see a list for the navigation, a list for the external links, and

probably a list for any buttons or arrays of data. Utilizing the humble list at an early stage of a

web site project ensures the design will remain flexible, functional, and degrade well in any

viewing scenario.

In this chapter, you’ll quickly remind yourself of the basic markup and assess the different

kind of lists that (X)HTML provides, particularly unordered and ordered lists. You’ll apply ID

and classes to lists to attain greater control, before taking things a bit further with nested lists

controlled first with IDs and classes, and then manipulated with no extra markup, taking their

basic hierarchies as hooks for more complex CSS control.

Why Use Lists?
A list of items can be created in numerous ways using (X)HTML, although not all are semanti-

cally correct. The lazier methods include adding a
 tag after each item, or treating each

item as a paragraph. The correct approach is to use an ordered or unordered list element, using

simple tags to open each item.

The major benefit of this approach is that your list will be displayed as a numbered or

bulleted list without CSS, and is considerably easier to control with CSS. Using semantically

correct list markup also makes it easy to single out items within a list, and also makes nested

lists easier to manage.

The Unordered List
Let’s begin by simplifying the drinks list used in Chapter 2. Create a new template called

lists.html and add the following markup inside the empty body element. Notice that the unor-

dered list is placed inside a container, which will act as a hook for more CSS later in this section.

104 C H A P T E R 6 ■ L I S T S

<div id="container">

 Drinks Menu

 Beer

 Spirits

 Cola

 Lemonade

 Tea

 Coffee

</div>

■Note This list features an initial list item “Drinks menu”. Semantically speaking, this would be better as

a heading (such as <h3>Drinks menu</h3>), but for the purposes of this chapter, it is declared as a list

item so that you can see how it can be treated differently. This approach will make more sense when we look

at nested lists later in the chapter.

Save the template. You now have an unordered list of the most basic kind as shown in

Figure 6-1. The only styling is that inherited from the parent elements, and in this case that is

none at all.

Figure 6-1. A basic, unstyled ordered list

Basic List CSS

Before moving on to anything particularly clever, let’s first work through some of the basic CSS

list properties. By default, the list will be bulleted with small discs, emulating a typical list such

as you might find in Microsoft Word. Note also that even though the container has no internal

padding, the list is still placed well away from the left edge—approximately 30 pixels away. This

padding is actually the distance between the left edge of the unordered list and each item

it contains.

C H A P T E R 6 ■ L I ST S 105

list-style-type

The list-style-type property allows you to specify one of a number of possible markers

instead of the default disc for each list item. There are numerous values available, many of

which you won’t need (Hebrew or Armenian characters, for example), but the following five

values may well be useful:

• none

• disc

• circle

• square

• latin

Other possibly useful list-style-types may be required from time to time. Three useful

examples include upper-alpha, lower-alpha, and upper-roman.

• upper-alpha: A, B, C, D, E, etc.

• lower-alpha: a, b, c, d, e, etc.

• upper-roman: I, II, III, IV, V, etc.

Let’s try some basic list styling. Create a new style sheet called lists.css, and remember

to link to it in the head of lists.html. In lists.css you can try out each of the values by first

adding the following selector for the unordered list element:

/* Styles for all default lists */

 ul {

 list-style-type:circle;

 }

In Figure 6-2, the result of specifying circle can be seen. Specifying disc would have made

no difference as that marker was already used by default. It goes without saying that square

would produce a small squared marker.

Figure 6-2. The result of list-style-type:circle

106 C H A P T E R 6 ■ L I S T S

Of particular use if you wish to get away from any kind of basic marker is the none value,

which of course removes the marker altogether (see Figure 6-3).

list-style-type:none;

You can then either stick with no bullet marker or add a custom marker of your own using an

image, as you’ll discover later in the chapter.

Figure 6-3. List markers removed using list-style-type:none

Margin and Padding

Notice, however, that the actual list items do not shunt to the left despite the lack of marker,

which leaves too much whitespace in front of each item.

Therefore, the default padding applied by the browser can be reduced by specifying your

preferred padding. Earlier I stated that most browsers place the list items 30 pixels away from

the left edge of the unordered list (default padding) and the unordered list itself approximately

10 pixels from the top edge of the container (default margin). Figure 6-4 shows the default

spacing applied to the list and its items by drawing a line around each.

Figure 6-4. The thick line represents the default limits of the unordered list, and the thinner
line represents the default limits of the “Spirits” list item.

C H A P T E R 6 ■ L I ST S 107

Notice also that each list item is block level. Therefore it will expand to fill the width of its

container, and items above and below will wrap to a new line. Each of these defaults can be

overridden with simple CSS declarations.

To remove the default margin from the top and bottom of the unordered list, specify

zero margins:

ul {

 list-style-type:none;

 margin:0;

}

To remove the default padding that pushes the listed items in by 30px, specify zero padding:

ul {

 list-style-type:none;

 margin:0;

 padding:0;

}

To prevent the listed items from extending the full width of the container, set a maximum

width:

ul {

 list-style-type:none;

 margin:0;

 padding:0;

 width:200px;

}

Figure 6-5 shows the results of these changes.

Figure 6-5. With default margin and padding settings removed, the unordered list and its
contents now sit directly against the container edges.

The reason for all of this default padding becomes obvious if you reintroduce the list

markers (see Figure 6-6). Notice that the markers appear outside of the container element.

108 C H A P T E R 6 ■ L I S T S

Figure 6-6. With list markers, you’ll be wishing you hadn’t removed the default padding.

Therefore, if you will be using markers, but wish to override the default 30-pixel padding,

you can specify a custom left padding value. In the following example, 20 pixels are enough to

ensure the markers appear just inside the container. Note that it is specified using padding

shorthand (top, right, bottom, left).

ul {

 list-style-type:none;

 margin:0;

 padding:0 0 0 20px;

 width:200px;

}

Figure 6-7 shows the result of this custom padding. This example demonstrates how to

place your unordered list precisely within a given container. It may be that you also wish to

specify custom margins to further refine the spacing.

Figure 6-7. Custom padding ensures the list markers appear exactly where required.

list-style-position

Anyone who has created a bulleted list using a word processor will be aware that as long lines

of text wrap, they line up exactly to the left, with the bullet placed further left. The bullet is

C H A P T E R 6 ■ L I ST S 109

not treated as a character, and simply indicates where each new list item begins. This is how

(X)HTML lists also work by default.

However, there may be occasions when the bullet needs to be inline with the text, and this

is why the list-style-position property was created. The default value is outside, and though

not specified in the preceding examples, it was already in operation. To override this default,

inside can be specified (note that for this example, the default padding is removed also).

ul {

 list-style-position:inside;

 margin:0;

 padding:0;

 width:200px;

}

As padding is set to zero, this will place the list marker inside the unordered list with not a

pixel of padding, as shown in Figure 6-8.

Figure 6-8. With list-style-position:inside, the markers are placed immediately inside the
unordered list.

There may be cases where this is ideal, but in most situations, a little left padding will make

things neater. Specifying padding-left:5px or padding:0 0 0 5px will be enough to shunt the

markers neatly away from the edge of the unordered list. In the real world, list-style-position is

little used in favor of standard list formatting, but it’s worth being aware of it, just in case.

■Note Remember that with a list-style-position value of inside, long lines of text will wrap and

begin underneath their bullet markers, as though the marker were a normal character.

list-style-image

The typical bullet markers provided by CSS are fine for very simple lists, but in most cases a

custom bullet marker will be more desirable.

110 C H A P T E R 6 ■ L I S T S

Hooray therefore for the list-style-image property, which allows a custom image to be

used in place of the boring disc, circle, square, and other basic bullets. Now that you know how

to space your list items away from the left edge of the unordered list, playing with custom

images of any width shouldn’t be a problem.

For this example, I’m using a smaller version of the tile image from Chapter 5, reduced to

12 pixels square, which I have renamed list.gif.

ul {

 margin:0;

 padding:0 0 0 25px;

 width:200px;

 list-style-image:url(images/list.gif);

}

As list-style-image is declared, there is no need to specify list-style-type. Note also

that the left padding has been increased to compensate for the width of the image. The result

can be seen in Figure 6-9.

Figure 6-9. The list now benefits from a custom bullet marker.

The wider your custom bullet image, the more left padding you may need. The list is

already looking a little more personalized, but could well benefit from some extra whitespace

between the list items. It’s a job for our old friend line-height.

ul {

 margin:0;

 padding:0 0 0 25px;

 width:200px;

 list-style-image:url(images/list.gif);

 line-height:150%;

}

Ah, where would we be without the line-height property? In Figure 6-10, it adds legibility

to the list, making the whole thing much easier on the eye. Note that it also takes care of the

spacing at the top and bottom of the list, removing the need for top or bottom unordered

list margins.

C H A P T E R 6 ■ L I ST S 111

Figure 6-10. Yet again, line-height comes in useful for legibility.

This is only a hint of the possibilities with list styling. Later in the chapter you’ll see how

more properties such as border and background can be used to add more definition to unor-

dered lists and the items they contain.

list-style for Shorthand

Yes, list properties can also be shortened into one declaration, using the list-style property.

The order is list-style-type, list-style-position, list-style-image.

list-style: none inside url(images/list.gif);

However, it is not often that you would need to specify all three properties. In this example,

declaring a custom image with list-style-image:url(images/tile.gif) removes the need to

also turn off the basic list marker, except in the shorthand. Therefore, just specifying a custom

image will be all you need in most scenarios.

Using Background Images for List Bullets

Using the list-style-image property is the easiest method of assigning a custom bullet to your

list items, but the results can be somewhat inconsistent. Some browsers will align the custom

image directly in the middle of the list item text, while others will position it slightly higher.

To beat this problem, a custom background image can be used for each list item. Note that

default bulleting is turned off in the ul selector.

ul {

 list-style:none;

}

li {

 background: transparent url(images/list.gif) no-repeat left center;

 padding:0 0 0 25px;

}

112 C H A P T E R 6 ■ L I S T S

For this example, the background-color is set to transparent in order to ensure that the

white background color of the container does not prevent the custom bullet images from

displaying. Also, by using background-position values left center, the background image is

forced to display the same distance from the top and bottom of the list element. Appropriate

left padding is also declared to allow enough space in front of the list text for the image to fall

into, as shown in Figure 6-11.

Figure 6-11. Nothing looks different, but the list markers are actually background images.

Later in this chapter, you’ll learn how assigning classes to list items can allow for several

different background bullets to be used in one unordered list.

■Note It is important to be aware that should the custom image fail to load or be unavailable for some reason,

your list will have no visual markers. If you were to approach the same design using the list-style-image

property to add your custom bullets, a normal bullet would show until the image was successfully downloaded

or made available. If it’s perfect bullet alignment you want, then background images are still the best bet.

The Inline List

By default, unordered list items will display vertically, with each list item on a new line. This is

because the element is a block-level element. There are, however, many occasions when

you will need your list to display horizontally, for a main navigation bar, for example.

This calls for the default block-level value to be overridden using the display property.

Let’s strip back the styling from the previous examples and examine the basic behavior.

/* Styles for our basic list */

 ul {

 list-style-type:disc;

 }

 li {

 display:inline;

 }

C H A P T E R 6 ■ L I ST S 113

Notice that the unordered list merely specifies the bullet marker type, and that it is the li

selector that is now doing all the work. By giving display a value of inline, the default block

display is overruled, forcing each list item to display on the same line, as Figure 6-12 illustrates.

Figure 6-12. Using display:inline to force list items to appear horizontally

This is a great starting point for a horizontal menu, but what has happened to the bullet

markers? Bizarrely, the bullet will not show when display is set to inline. This brings us back to

using background images with list items.

Background Images and Inline Lists

Earlier you learned how to apply a custom bullet as a background image in order to get around

a few cross-browser display quirks. Using this approach allows you to assign a bullet for inline

lists where default bullets refuse to be displayed.

The CSS is fairly simple. Again, turn default bullets off in the ul selector, and ensure

display:inline is declared in the li selector. Note also that the same background rules

(transparent background and specific positioning) are declared.

ul {

 list-style:none;

}

li {

 display:inline;

 background:transparent url(images/list.gif) no-repeat left center;

 margin:0 0 0 10px;

 padding:0 0 0 15px;

}

As the list is now displaying horizontally, everything appears on the same line and so the

definition between each item is reduced. Therefore the left padding is reduced to just 15 pixels

(just enough room for the 12-pixels-wide image), and 10 pixels of left margin are applied to

space out each list item, as shown in Figure 6-13.

From this starting point, it should be clear how to further control the space between each

item and get this thing to display exactly as you wish. In the next section, you’ll learn how to

take greater control of the list elements using good old IDs and classes.

114 C H A P T E R 6 ■ L I S T S

Figure 6-13. Using background images for list items, with appropriate left margin and left padding
to put space between each

Taking Control with IDs

Remember in Chapter 2 that the drinks list was given its own unique ID? We can revisit this

approach to look at methods for controlling several lists and affecting the items they contain

based on this ID.

In lists.html, add the following ID to the basic list markup, acting as a vital hook for many

of the styles to be added throughout this section. Also, add a second list underneath that list

(but still inside the container) with different list items and the ID food.

<ul id="drinks">

 Drinks Menu

 Beer

 Spirits

 Cola

 Lemonade

 Tea

 Coffee

<ul id="food">

 Food Menu

 Toast

 Cornflakes

 Burgers

 Steak

 Salad

 Fries

So, each unordered list is given a unique ID. Thus, id="drinks" will not be used again on

the page at any time, and allows that particular list to be styled uniquely. Likewise, the second

list is the food menu, also unique. The CSS from the previous inline list example will suffice

here, but if you need it again, use the following two selectors. Note that we are sticking with

inline examples here, mainly to save page space, although everything is applicable to default

vertical lists.

C H A P T E R 6 ■ L I ST S 115

ul {

 list-style:none;

}

li {

 display:inline;

 background:transparent url(images/list.gif) no-repeat left center;

 margin:0 0 0 10px;

 padding:0 0 0 15px;

}

As things stand, the CSS will style both lists in an identical fashion, as it is not targeted to

look for a particular ID (see Figure 6-14).

Figure 6-14. Both lists are styled in the same way, as the CSS is not targeted to affect a
particular ID.

In some cases, this approach might be ideal, such as horizontal sidebar lists where all

items should be rendered in the same way, but need to be separated into different unordered

lists (perhaps to allow headings to be placed above each). However, the additional IDs added

to each list allow you to target each with specific CSS selectors.

For example, let’s assign a different background image bullet for each list. As it is only the

images that need to change, the ul selector is shared across both lists, and can be left unaltered.

Also, all li declarations that are shared are first grouped together, before the targeted declarations

are set separately.

/* Unordered list for drinks and food lists */

 ul {

 list-style:none;

 }

 li {

 display:inline;

 margin:0 0 0 10px;

 padding:0 0 0 15px;

 }

116 C H A P T E R 6 ■ L I S T S

/* Images for drinks list only */

 #drinks li {

 background:transparent url(images/drinks.gif) no-repeat left top;

 }

/* Images for food list only */

 #food li {

 background:transparent url(images/food.gif) no-repeat left center;

 }

As a result, the relevant icons are displayed for the relevant list items, as shown in Figure 6-15.

Naturally, other custom values can be set for each list, such as the color of the text, borders,

padding, and so on.

Figure 6-15. The drinks list and food list have the relevant icons, thanks to targeted declarations.

Grouping Items with Classes

Classes are especially useful when you wish to have control over a number of elements. In our

two lists, there are clearly other groupings that can be defined. Back in Chapter 2, drinks were

grouped into alcohol, mixer, and hot by adding a matching class to each list element.

In this example, the same approach is used to group the food, using breakfast, dinner, and

side classes.

<ul id="drinks">

 Drinks Menu

 <li class="alcohol">Beer

 <li class="alcohol">Spirits

 <li class="mixer">Cola

 <li class="mixer">Lemonade

 <li class="hot">Tea

 <li class="hot">Coffee

<ul id="food">

 Food Menu

 <li class="breakfast">Toast

C H A P T E R 6 ■ L I ST S 117

 <li class="breakfast">Cornflakes

 <li class="dinner">Burgers

 <li class="dinner">Steak

 <li class="side">Salad

 <li class="side">Fries

As before, note that the first list item has no class attribute, yet every other item is assigned a

class. This allows each drinks and food group to be treated individually.

As before, the classes for each drink type are defined with unique shades of gray for font

color, but this time we can also group foods using the same method, by grouping the declarations:

/* Define first food and drink group */

 .alcohol, .breakfast {

 color: #333;

 }

/* Define second food and drink group */

 .mixer, .dinner {

 color: #999;

 }

/* Define third food and drink group */

 .hot, .side {

 color: #CCC;

 }

The result sees the list of items move from black (the basic unordered list color—

“drinks” and “food”) through shades of gray (defined by the classes) as in Figure 6-16. Any

further drinks or food added to the lists can be assigned to a particular drinks or food group,

such as <li class="side">Mashed Potato. Thus a logical color key is established using

simple CSS classes.

Figure 6-16. From black to light gray, the list items are grouped using shades of gray.

The same approach could obviously be used to assign different icons to each food or drink

group, or some other method of differentiation.

118 C H A P T E R 6 ■ L I S T S

Nested Lists

There will be many instances where you need to create a hierarchy in one list, and this is where

nested lists are most useful. Just to recap, (X)HTML allows you to begin an unordered list and

create new lists inside that.

The following markup takes the existing food and drinks menus and nests them inside one

main list. It is very important to get the markup right in such scenarios, as to forget to close a

top-level list item or nested list can cause all sorts of chaos.

 Drinks Menu

 Beer

 Spirits

 Cola

 Lemonade

 Tea

 Coffee

 Food Menu

 Toast

 Cornflakes

 Burgers

 Steak

 Salad

 Fries

Load that in the browser window, and the default browser style sheet will use a disc bullet

for the top level and a circle bullet for the second level (see Figure 6-17).

Because a hierarchy is suggested with the markup, it is possible to make significant style

changes without applying IDs or classes. First, let’s use CSS to change the color of the second-

level list items.

/* Style top-level unordered list and contents */

 ul {

 color:#000;

 }

/* Style second-level unordered list and contents */

 ul li ul {

 color:#666;

 }

C H A P T E R 6 ■ L I ST S 119

Figure 6-17. Unstyled nested lists

Here the CSS selectors target the relevant list based on its relationship with another. Thus the

first selector looks for the all elements it finds in the markup, and ensures the text is black,

unless a declaration for a nested list says differently

Importantly, the second selector looks for any that is contained by one more above it,

using the ul li ul descendant selector. In other words, the browser looks and thinks to itself,

“Uh, OK. So I ignore the first , and I ignore any elements inside it, but when I get to the

next , I get to work and make its contents gray” (see Figure 6-18). Of course, browsers don’t

actually think, which makes your job as web designer that bit harder, but you get the idea of

how the browser works its way through the descendant selectors until it finds its target.

Figure 6-18. The browser works its way through the descendant selector until it finds its target and
turns the secondary list gray.

120 C H A P T E R 6 ■ L I S T S

Therefore, it becomes easy to define other custom values for each level. Building on our

earlier example of assigning custom background images, the CSS can be used to target the

second level of list elements specifically.

/* Style top-level unordered list and contents */

 ul {

 color:#000;

 }

/* Style second-level unordered list and contents */

 ul li ul {

 list-style-type:none;

 color:#666;

 }

 ul li ul li {

 padding:0 0 0 15px;

 background:transparent url(images/list.gif) no-repeat left center;

 }

So now the second-level ul selector (ul li ul) is still ensuring any information within it

will be gray, but also turning off bullets for that list only. Also, the extra descendant selector for

its list elements (ul li ul li) is tasked with applying a custom background image to those

elements only, as you see in Figure 6-19.

Figure 6-19. The second-level lists are assigned custom background images using ul li ul li.

The Possibilities Are Endless

Clearly, this leaves the first ul selector free to have its own custom image declared (using a new

selector for its list elements—ul li) alongside its black text color. The possibilities here are

endless—literally. For complex site maps and never-ending nested lists, descendant selectors

(ul li ul li ul li ul li anyone?) are available for maximum control throughout the hierarchy.

C H A P T E R 6 ■ L I ST S 121

Perhaps a gradually decreasing font size would work for your design, or gradual lightening of

color—all done with CSS and no extra markup.

Combine this approach with specific IDs for unordered lists and classes for groups at any

level, and you begin to see how complicated yet powerful this approach can be. For now though,

we won’t go there, but it is something else to keep in your toolbox.

Lists for Navigation
A common feature of web sites built using web standards are navigation menus constructed

using an unordered list. Using the element in this sense is semantically correct, with each

destination link defined as an individual list item. This approach provides incredible flexibility,

allowing the navigation list to be either horizontal or vertical as defined using CSS, and also allows

for a seemingly unlimited number of styling approaches.

Already in this chapter you have learned how to take the default vertical list and transform

it into a simple horizontal navigation. Now, let’s take things a step further and create a good-

looking vertical navigation list, where each destination link is styled as though a graphic button.

The Vertical Navigation Bar

A very common feature of many, many web sites is the vertical navigation bar created with

simple list markup. The goal here is to turn each list element into a button without using any

images whatsoever.

Let’s jump back to the concept of the simple list. For this task, a simpler unordered list is

useful—just one level of list elements.

 Beer

 Spirits

 Cola

 Lemonade

 Tea

 Coffee

Remove All Default Spacing

This brings us back to the very simple display (to refresh your mind, see Figure 6-20). First, the

list elements need to be pulled to the top and left edges of the container.

ul {

 list-style-type:none;

 margin:0;

 padding:0;

}

li {

 padding:0;

}

122 C H A P T E R 6 ■ L I S T S

This ensures you start with a blank canvas. No default spacing is in play. From this point on, all

spacing is on your terms, avoiding the confusion that often comes with navigation list styling.

Figure 6-20. All default spacing is removed from the list.

Turn List Elements into Buttons

Perfect. Now some styling can be applied to make the list elements look a little more like

buttons. The padding can now be adjusted also to provide enough space around the text.

ul {

 list-style-type:none;

 margin:0;

 padding:0;

}

li {

 background: #DDD;

 margin: 0;

 padding: 2px 10px;

 border-left: 1px solid #fff;

 border-top: 1px solid #fff;

 border-right: 1px solid #666;

 border-bottom: 1px solid #aaa;

}

In this example, shades of gray and white borders are used to give the buttons a slightly

three-dimensional feel. So far, so good, but the buttons are still filling the entire available hori-

zontal space (see Figure 6-21).

Figure 6-21. A little more like buttons, but a touch too wide!

Define the Width of the Buttons

It is necessary to define a set width for the buttons, which can be done with the ul selector.

Here 160px seems appropriate.

C H A P T E R 6 ■ L I ST S 123

ul {

 list-style-type:none;

 margin:0;

 padding:0;

 width:160px;

}

Aha! Now the list is looking a bit more like a real navigation menu as you can see in Figure 6-22.

Figure 6-22. With a set width, the navigation menu is taking shape.

Final Touches

All that remains is to refine the display a little more. Thus font values are added with a short-

hand declaration, and the unordered list is given a border, a margin, and 2 pixels of padding to

create whitespace around the buttons.

ul {

 list-style-type:none;

 margin:5px;

 padding:2px;

 border:1px solid #333;

 width:160px;

 font: bold 12px 'Lucida Grande',Verdana,sans-serif;

}

li {

 background: #DDD;

 margin: 0;

 padding: 2px 10px;

 border-left: 1px solid #fff;

 border-top: 1px solid #fff;

 border-right: 1px solid #666;

 border-bottom: 1px solid #aaa

}

As you can see in Figure 6-23, the finished navigation menu looks pretty good, despite not

actually linking to anything yet (you’ll learn how to create exciting link buttons in Chapter 7).

124 C H A P T E R 6 ■ L I S T S

Figure 6-23. The finished vertical navigation bar

This might be a good point to take what you have learned about navigation lists thus far and

experiment with your own border, background, and margin values to personalize your list and

get a feel for this vital element of CSS-based design. In Chapter 7, you will also see how this

approach can be applied to vertical navigation bars.

The Ordered List
The ordered list is a convenient way to mark up a list of items with each preceded by a number.

(X)HTML makes this possible with the element. As this author’s thirst is clearly not yet

quenched, let’s again take the drinks list and this time place it inside an ordered list.

 Beer

 Spirits

 Cola

 Lemonade

 Tea

 Coffee

The beauty of the ordered list is its flexibility. If it were necessary to add another drink to

the list at any point, the automatic numbering would compensate appropriately, renumbering

all list items that followed. The basic unstyled list can be seen in Figure 6-24.

Figure 6-24. The ordered list without styling

C H A P T E R 6 ■ L I ST S 125

Remember that other list-style-type declarations can be made to replace the autogenerated

numbers with other characters, such as upper-alpha, lower-alpha, and upper-roman.

Controlling the Ordered List

While the default unordered list works like magic, there may be occasions where you wish to

replace the default numerical characters with your own custom numbers. This is relatively

simple, but does involve extra markup. The first thing to do is to identify each list item with its

own unique class.

 <li class="one">Beer

 <li class="two">Spirits

 <li class="three">Cola

 <li class="four">Lemonade

 <li class="five">Tea

 <li class="six">Coffee

It should be noted that by utilizing this method, you are removing the browser’s ability to

automatically number your list items should you wish to insert another item in the middle. The

reason an ordered list is useful here though is that if the style sheet were unavailable, the default

numbers would be returned, and the list would still be ordered, keeping things semantically

correct. The following approach will of course work for unordered lists, too.

Creating Custom Numbers

The next step is to create the images you will use to replace the default text numbers. For this

example, six images were needed, all saved as GIF images (see Figure 6-25). The size is the same

as the custom bullets used earlier in the chapter (12×12 pixels).

Figure 6-25. The six custom images required for the customized ordered list

Declaring the Numbers Using the Unique Classes

Now for the CSS. Notice that list-style-type:none is declared in the ol selector to turn off the

default numbers (remember that this means no numbering will be displayed if the images are

not available). Also, left padding is used to allow enough space for the custom number images.

The padding needs only to be assigned to the li selector, as it is a value that is shared across all

following selectors. Nothing new about that, but what is new is the six new selectors for each

class that has been added to each list item.

126 C H A P T E R 6 ■ L I S T S

ol {

 list-style:none;

}

li {

 padding:0 0 0 25px;

}

.one {

 background: transparent url(images/ol1.gif) no-repeat left center;

}

.two {

 background: transparent url(images/ol2.gif) no-repeat left center;

}

.three {

 background: transparent url(images/ol3.gif) no-repeat left center;

}

.four {

 background: transparent url(images/ol4.gif) no-repeat left center;

}

.five {

 background: transparent url(images/ol5.gif) no-repeat left center;

}

.six {

 background: transparent url(images/ol6.gif) no-repeat left center;

}

So you now have six selectors that correlate with the classes assigned to the ordered list.

Mixing all of this together and loading the page in the browser gives the basic customized list

you see in Figure 6-26.

Figure 6-26. The ordered list now features the smashing custom numbers.

Dressing Up the Ordered List

With the custom icons working, you are now free to add further styling to the ordered list. Many

of the declarations used to create the vertical navigation list earlier are reused here, specifically

the background colors and borders.

C H A P T E R 6 ■ L I ST S 127

Note, however, that the unique classes added to each list item overrule any background-color

declaration in the li selector, so background-color needs to be declared for each class. The

padding is also adjusted to replicate that in the vertical navigation example, allowing the custom

numbers and list item text to be spaced appropriately.

ol {

 list-style-type:none;

 margin:5px;

 padding:2px;

 border:1px solid #333;

 width:160px;

 font: bold 12px 'Lucida Grande',Verdana,sans-serif;

}

li {

 margin: 0;

 padding: 2px 10px 2px 25px;

 border-left: 1px solid #fff;

 border-top: 1px solid #fff;

 border-right: 1px solid #aaa;

 border-bottom: 1px solid #666

}

.one {

 background:#DDDDDD url(images/ol1.gif) no-repeat 3px center;

}

.two {

 background:#DDDDDD url(images/ol2.gif) no-repeat 3px center;

}

.three {

 background:#DDDDDD url(images/ol3.gif) no-repeat 3px center;

}

.four {

 background:#DDDDDD url(images/ol4.gif) no-repeat 3px center;

}

.five {

 background:#DDDDDD url(images/ol5.gif) no-repeat 3px center;

}

.six {

 background:#DDDDDD url(images/ol6.gif) no-repeat 3px center;

}

One further change is made to the shorthand background-position property for each

custom number. Instead of left, a value of 3px is specified to pull the custom image away from

the left border of the list item. The end result looks very similar to the earlier vertical navigation,

except the custom numbers are in place, as shown in Figure 6-27.

128 C H A P T E R 6 ■ L I S T S

Figure 6-27. Custom ordered list numbers combined with further styling

The drawbacks of this technique are obvious, but the benefits are far-reaching. One draw-

back is that this method works well only for ordered lists that are unlikely to grow or be reordered,

as you are now overruling the default browser action of reordering and number adjustment.

A major positive is that you can now see how easy it is to take greater control of any kind of

list, as the method of applying unique classes to list elements will of course work for unordered

lists also. I’ve said it before and I’ll say it again—the possibilities are literally endless.

To Conclude...
The approaches explained in this chapter are incredibly important for any web designer, as the

list is a fundamental ingredient of any build. Get to grips with lists and the many methods of

wrestling them into submission, and you’re well on your way to professional status.

In the next chapter, the subject of links will come to the fore. In that chapter you will take

the vertical navigation list created earlier and turn it into a fully functional navigation bar with

dynamic links that hover and reflect the selected page.

Chapter 8 will place emphasis back on lists, looking at something fancy called the defini-

tion list, and much of what you have learned so far will also be very useful for table and form

styling that follows soon. Your CSS arsenal is growing rapidly, and pretty soon all of these bits

and pieces will be pulled together into a more complex page. Things are going great, so refill

the teapot and grab some biscuits.

129

■ ■ ■

C H A P T E R 7

Links

Rare is the web page that doesn’t link to another. Without links (a.k.a. hyperlinks), nobody

would go anywhere. A Google results page would be pointless, web-based advertising wouldn’t

exist (possibly not such a bad thing), and if somebody managed to reach your home page, they’d be

hard pushed to find their way anywhere else.

As somebody pretty familiar with (X)HTML, it is probably fair to assume that you have

created a link already, but managing to link to another web page is only the beginning. With

CSS, links become magical objects that can be both beautiful and functional. From the humble

rollover color to advanced image maps and complex menus, link styling is a vast and ever-evolving

area of web design that is essential to master.

A fundamental factor with links is accessibility. Whenever you create a link, you have to

consider the end user. Basic concepts such as visited and active links need great care, and any

complex link treatment needs to be considered from all possible standpoints. In a nutshell, a

link has a very important role to play, and its basic functionality should never be compromised

in pursuit of beauty or creativity. That said, there are a million-and-one things to do with links

to enhance the user’s experience, and many of them are out-and-out fun.

Link Markup
Let’s start with an (X)HTML recap. The basic link is a simple beast, whether you are using either

text or an image, and it’s one of the first bits of code that most of us get to grips with. The basic

markup for a text link is as follows:

Google

Or to use an image as the link, you’d use the following, ensuring that the alt attribute is used to

provide relevant link text should the image not be available:

<img src="images/google.gif" ➥

alt="Visit Google" />

Further to this basic link, other attributes are available, such as title, used to provide a tool tip

of additional information when the user hovers over the link:

<a href="http://www.google.com" title="Visit the best search engine ➥

in the world">Google

130 C H A P T E R 7 ■ L I N K S

This basic markup is often all that is needed to provide the perfect hook for simple CSS

rules. Naturally, as links are self-contained elements, they can be combined with parent elements

such as lists, or housed in custom containers in order for more specific descendant selectors to

take effect and treat links in different ways depending upon where they sit in the page.

Default Link Styling
By default, browsers treat links in a particular way. Anyone who has created a link without

applying CSS will be aware that the default browser style sheet will render unvisited links in

dark blue, visited links in purple, and so on, and that these links will be underlined. This convention

was intended as a staple approach to the Web by its early founders—an easily recognizable

method of quickly analyzing which links on a page the user has already visited. A number of

web personalities still believe that this convention is too important to dismiss, but the fact is

that for a number of years designers have dispensed with this law in favor of link styling more

in keeping with their designs. Dark blue is not always the best style for a link, and we’d be foolish

to think it is—what if it doesn’t suit your site theme?

Simple CSS Rules
The first thing many web designers want to do is change the color of the link text, and have that

color change as the visitor places the cursor over that link text. To begin, let’s first set up a new

template with which to work, and then approach some simple CSS link declarations.

Setup

Create a new template called links.html and paste the following markup into it (note that in

the examples the following is placed inside the <body> element, and also inside a container div

as in previous chapters):

<h2>Introducing the band</h2>

 <p>To find out more about members of The Dead Goods, please ➥

 select the appropriate person for a full profile.</p>

 Simon Collison

 John Lennon

 Jimi Hendrix

 Jeff Buckley

 Kurt Cobain

 Janis Joplin

 Keith Moon

If a fictitious rock group featuring mostly dead people isn’t your thing, feel free to create

your own. Be aware though that when word gets around about The Dead Goods, they’ll be

getting a lot of publicity, and nobody will care about your band.

Notice that the link to myself links to the actual template created. This allows a visited link

state to be available at all times—essential for checking the visited link styling to be added

C H A P T E R 7 ■ L I N K S 131

shortly. Notice also that one link is placed in the opening paragraph, and the rest are correctly

defined as list items. Save the template, load links.html in your browser, and it should look

something like Figure 7-1.

Figure 7-1. The basic page template with no link or list styling. Sid Vicious failed the audition.

Notice that all links are the default dark blue, aside for the link to Simon Collison, which of

course links to the page in view—that’s the visited link, displayed in purple (or slightly lighter

in this noncolor book).

Next, link to an external style sheet called links.css. (You should know how to do this by

now. If not, it’s back to Chapter 1 with you!). Add declarations for the body selector, and also for

the container div if you are using one.

Changing Link Color

Now you can add some simple CSS rules to take control of the links. This is done with the

pseudo classes :link, :visited, :active, and :hover.

All Links

First, the pseudo class :link is combined with the a element selector (from the <a href… part

of the link markup), creating the selector a:link.

a:link {

 color:#F00;

 }

This very simple selector targets all instances of the <a> element and turns all unvisited

links to red. Any visited links will still be purple, as thus far you have not created a selector to

override the browser’s default visited link style.

132 C H A P T E R 7 ■ L I N K S

Visited Links

To show visited links, simply create a selector for the <a> element with the :visited pseudo

class.

a:visited {

 color:#999;

 }

Now all unvisited links are red, and all visited links will be light gray (see Figure 7-2). It is

very important to make visited links appear different from unvisited ones. It is an accepted

convention and instantly highlights any links already followed on that machine. The light gray

used in this example is perhaps too big a change, but the book is not in color, so I had to use

something obvious!

Figure 7-2. The a:link selector has transformed all unvisited links to red, and the a:visited selector
has made the visited link gray.

A Lot Less Bovver with a:hover

Imagine you have a vast list of links, or a paragraph chock-full of them. Without some form of

interaction, the user could easily click the wrong link and be taken to the incorrect destination.

The answer to this problem is the powerful :hover pseudo class, which aside from being a great

usability aid is also rather attractive.

Again, the selector first looks for all instances of the <a> element, but will only be performed

when the user mouses over the link text.

a:hover {

 color:#333;

 }

C H A P T E R 7 ■ L I N K S 133

This simple rule will turn any link text dark gray on mouseover without exception, whether the

link is visited or unvisited.

Active

The :active pseudo class takes care of the link styles when the mouse button is actually clicked,

and is another very useful usability aid.

a:active {

 color: #000;

 }

With this example, as the user clicks the link, the text will turn black for as long as the current

page remains in view, acting as an extra clue to show the user where he or she is about to be

taken.

A Note About Order: LoVe HAte

If you have created your pseudo classes in the order shown previously, you will now have the

following selectors in the links.css style sheet:

a:link {

 color:#F00;

 }

a:visited {

 color:#999;

 }

a:hover {

 color:#333;

 }

a:active {

 color:#000;

 }

Notice that the first letter of each pseudo class is in bold, giving us the letters L V H A. This

order is very important of you wish for the links to behave properly, and can be remembered

as LoVe HAte.

For example, if you were to place the a:hover selector above the a:visited selector (giving

you the order L H V A), you would have a situation where the a:hover declaration would have

no effect upon the visited state, due to how the cascade works. The text would remain light gray

even on hover, going against expected behavior. There may be cases where such an approach

is required, but this will be rare and is probably best avoided.

Other Useful Link Properties
Now that you understand the basics of CSS link control and can affect any of the four core link

states, it is worth considering some other very useful properties designed specifically for links,

and some more universal properties that can also be applied.

134 C H A P T E R 7 ■ L I N K S

text-decoration

So far, you may have noticed that all links, regardless of state, are underlined with a color matching

the link text. This is a default style that is very easily removed using the text-decoration property.

Possible values are none, underline (the default value), overline, line-through, and blink.

These values are very self-explanatory, but again be very aware of how usable and intuitive

your links are when custom styles are used. For example, some designers argue that placing a

line through text looks more like a corrected error than anything else, and a blinking link isn’t

going to endear you to your visitors at all. Likewise, the overline value conveys a confusing

message if used on its own, whereas a combination such as text-decoration: overline underline

might make more sense. In most cases, a responsible designer is most likely to simply turn under-

lines on or off, depending on the situation.

The text-decoration property can be applied to any of the four link states, as in this example

for the :hover pseudo class:

a:hover {

 color:#333;

 text-decoration:none;

 }

This is a fairly sensible approach, as on hover, the link color will change to satisfactorily

identify the link, so underlines are not needed. It is generally recommended that all other link

states carry an underline to distinguish them from normal inactive text, and it is not a good

idea to identify links with color alone—spare a thought for those visitors who are colorblind.

Using Borders with Links

If the text-decoration property just doesn’t float your boat, then the good old border property

might do what you need. Turning off the default underlines and replacing them with custom

bottom borders can create some pretty neat effects.

Here, all basic links will be given a thin dotted underline, which is actually a 1-pixel bottom

border:

a:link {

 color:#F00;

 text-decoration:none;

 border-bottom:1px dashed #333;

 line-height:150%;

 }

Note that unlike the text-decoration property, here the border can be a different color from the

link text, so you have red text with dark gray underlines (see Figure 7-3). Also, with a line-height

declared, you ensure that the underline doesn’t encroach upon any text underneath it.

C H A P T E R 7 ■ L I N K S 135

Figure 7-3. Using a bottom border to create a more interesting underline for links

This approach will surely get your mind racing. A rather impractical but fun experiment is

to take the basic :link selector and use it to turn basic links into buttons, using just CSS.

a:link {

 color:#F00;

 text-decoration:none;

 border:1px solid #333;

 background:#CCC;

 padding:2px;

 line-height:150%;

 }

Thus a border surrounds the entire link text, spaced 2 pixels away from the text thanks to

some padding, and all of this happening over a light gray background, as shown in Figure 7-4.

Figure 7-4. More complex styling is used to turn a basic unvisited link into a simple button.

With such an approach, obviously similar treatment for the three other link states would

also be necessary.

136 C H A P T E R 7 ■ L I N K S

Adding Symbols with Background Images

In the previous example, the unvisited links were given a specific background color, so it should

also be obvious that a background image can also be applied to links. The great thing here is

that a different background image can be applied to each of the four link states, further aiding

usability by providing a visual indicator alongside the more traditional text variations.

For this example, the goal is to use an arrow symbol to indicate links not yet visited and a

checkmark to indicate links already visited. For this you will need two small GIF images similar

to those in Figure 7-5, sized approximately 12×12 pixels.

Figure 7-5. The images arrow.gif and checkmark.gif, magnified 500%

As each image is 12 pixels in width, it makes sense to provide enough padding to the right

of the link text for the image to be placed. Here, 15 pixels are declared for the right padding.

Also, the arrow image is assigned to the background property for the :link pseudo class, set to

only appear once, at right center. The checkmark image is assigned in an identical way for the

:visited pseudo link.

a:link {

 color:#F00;

 padding:0 15px 0 0;

 background:url(images/arrow.gif) no-repeat right center;

 }

a:visited {

 color:#999;

 padding:0 15px 0 0;

 background:url(images/checkmark.gif) no-repeat right center;

 }

And so all unvisited links appear with a small arrow symbol to their immediate right, and any

visited links have a neat checkmark in place of the arrow, as you can see in Figure 7-6.

In this example, only two link states have been affected. As things stand, both the active

and hover states will place the arrow symbol to the right of the link text, but there is nothing to

stop you defining a custom symbol for those states also. Adding an angled arrow to the hover

state, for example, would be particularly effective.

C H A P T E R 7 ■ L I N K S 137

Figure 7-6. Using background images, all unvisited links have an arrow symbol, whereas visited
links are checked.

Targeting Links with Descendant Selectors
In the previous section, the four pseudo classes were used to apply CSS rules to all links wher-

ever they appear on the page. There will undoubtedly be situations where you need a specific

link treatment for a specific section of the page (such as the footer, main navigation, or a sidebar).

Thankfully, this is easily achieved with a few more selectors.

In the example template links.html, most of the links are contained in an unordered list,

but one is within the first paragraph. As the latter is contained in a separate parent element, it

can be targeted with a descendant selector and treated differently.

The four pseudo classes can be individually rewritten for any links inside paragraphs, by

again assigning the color for each state, for instance. However, it is likely that some of the

default link styles will still be needed, and that all that is really needed is a few new declarations.

In this example, existing color declarations assigned in the existing pseudo classes (red for

unvisited, gray for visited, and so on) are to be retained. Here are the defaults that control all

links anywhere on the page:

a:link {

 color:#F00;

 }

a:visited {

 color:#999;

 }

a:hover {

 color:#333;

 text-decoration:none;

 }

a:active {

 color: #000;

 }

138 C H A P T E R 7 ■ L I N K S

These default pseudo classes can be left alone; as all that is needed is a new descendant

selector that applies extra declarations to these existing classes.

p a:link, p a:visited, p a:hover, p a:active {

 color:#F00;

 padding:2px;

 border:1px dashed #999;

 text-decoration:none;

 }

Here, the browser will look first for a paragraph, and then any link elements contained

within. If one or more is found, the new declarations will be added to the existing pseudo classes.

So, in addition to the color declaration in the :link pseudo class, the new declarations (padding,

border, and text-decoration) will be applied also, as shown in Figure 7-7.

Figure 7-7. The descendant selector targets only links found within any paragraph elements.

Therefore, the same treatment can be given to links housed within another element, such

as the list of links in the unordered list. To revisit the background images example from earlier

in the chapter, the links in the list could be targeted as follows:

ul a:link {

 color:#F00;

 padding:0 15px 0 0;

 background:url(images/arrow.gif) no-repeat right center;

 }

ul a:visited {

 color:#999;

 padding:0 15px 0 0;

 background:url(images/checkmark.gif) no-repeat right center;

 }

C H A P T E R 7 ■ L I N K S 139

Using this targeted CSS combined with the paragraph pseudo links would ensure that only

links inside paragraphs had padding and dashed borders, and only links in the unordered list

were combined with arrow and check box symbols. Any links outside of these two elements

would simply be styled using the colors defined in the default pseudo classes.

Transforming a Navigation Bar with Links
In the previous chapter, some simple CSS was used to transform a simple unordered list into a

vertical navigation bar. Pretty as that was, it was useless in that it didn’t actually link anywhere,

so as promised back then, it is now time to make that simple list work as a navigation tool.

I assure you that many seasoned web developers still don’t understand what is going on

with their lists, links, and padding in navigation bars, and very often way too many selectors are

used when only a few are needed. Combining the simple walkthrough from Chapter 6 with

what follows might actually give you more understanding of what is going on than some of the

experts have.

Prepare the Template

This example takes the list styling from Chapter 6 and reworks it for a list of links. Create a new

template called linkslist.html. Again, note that in the examples the following is placed inside

the body element, and also inside a container div as in previous chapters. Here, the list markup

is the same as in Chapter 6, except that each item is now a hyperlink. The markup and CSS files

are of course available with the source code for this book (see the Chapter 7 folder).

 Beer

 Spirits

 Cola

 Lemonade

 Tea

 Coffee

Now create the linkslist.css file either by copying the lists.css file from Chapter 6 or

using the version provided in the source code downloads. Remove any existing declarations for

 and elements, and ensure the following declarations are added alongside existing

declarations for <body> and container:

ul {

 list-style-type:none;

 margin:5px;

 padding:2px;

 border:1px solid #333;

 width:160px;

 font: bold 12px 'Lucida Grande',Verdana,sans-serif;

 }

li {

 background: #DDDDDD;

140 C H A P T E R 7 ■ L I N K S

 margin: 0;

 padding: 2px 10px;

 border-left: 1px solid #fff;

 border-top: 1px solid #fff;

 border-right: 1px solid #aaa;

 border-bottom: 1px solid #666

 }

This will display the unordered list almost exactly as it did in the previous chapter, except

that the list items are now links, and as there are no pseudo class declarations in the style sheet,

the links display in the default blue and are underlined (see Figure 7-8).

Figure 7-8. The vertical navigation bar now has links added to the list items, styled blue and
underlined by default.

Define All Shared Link Declarations and Clickable Area

The next step is to define any shared declarations for links within the unordered list. For this

example, let’s turn off all underlines. If you decide that perhaps you’d like underlines on the

hover state, simply remove the ul a:hover selector from the grouping.

Very importantly, the padding declaration must be removed from the li selector and placed

instead in the grouped values for the pseudo classes. This is because the whole list element

needs to be a clickable link, so by adding that padding in the pseudo classes, the active area

is not merely the link text, but is increased to the whole link element.

Finally here, display:block is added. This ensures that the active link area is the whole

width of the link element. This means that one can follow the link by clicking anywhere in the

list element, not just by clicking the link text (see Figure 7-9).

ul a:link, ul a:visited, ul a:hover, ul a:active {

 display:block;

 padding:2px 10px;

 text-decoration:none;

 }

C H A P T E R 7 ■ L I N K S 141

Figure 7-9. By removing padding from the li selector, and instead placing it in the grouped pseudo
classes alongside display:block, the whole list element becomes a clickable link, highlighted here
with the outline.

Next, unique selectors can be added to assign specific declarations for each link state. Note

that again the selector descends through ul and a before the pseudo class is stated, ensuring

the rules are targeted and will not affect links elsewhere in the page.

ul a:link {

 color:#000;

 }

ul a:visited {

 color:#666;

 }

ul a:hover {

 color:#F00;

 }

ul a:active {

 color:#333;

 }

Figure 7-10 shows the resulting navigation bar with the “Spirits” link shown in three different

states. While it is styled just like the linkless list from Chapter 6, now each item is of course a

link, and the links turn red on hover and a midrange gray when visited.

Figure 7-10. The list items are now links, and the link states from left to right are link, visited, hover.

142 C H A P T E R 7 ■ L I N K S

Define Background Colors

So far, the link text is changing depending on the link state, which is smashing, but I bet you

also want to change the color of the whole link background on hover, right?

This is very simply done by declaring a background color in the appropriate pseudo class.

In the following CSS, the hover pseudo class is given a white background:

ul a:hover {

 color:#F00;

 background:#FFF;

 }

As a result, when the mouse is placed over a link, the text turns red, and the whole background

of the list item becomes white, as shown in Figure 7-11.

Figure 7-11. On hover, the whole list element is rendered with a white background and red text.

Obviously, you could also define a background color for visited links or any pseudo classes.

It is a very simple technique when it is boiled down, and one that can transform not just navi-

gation bars, but also any kind of list.

Highlight the Current Page

The final trick is to highlight a link if you are actually viewing that page. For static web pages,

this requires a particular link to be identified by adding a unique ID to the parent list element.

■Note With dynamic systems such as content management systems and languages such as PHP, the

unique ID could be added in a more convenient fashion by testing for the current page based on the URL or

other identifier, and placing the ID accordingly.

C H A P T E R 7 ■ L I N K S 143

Let’s say that for the Lemonade page, you wish to reflect that the user is actually viewing

that page, and therefore make it obvious that clicking that link again would be pointless. All that is

needed is for the unique ID to be added to that particular list element.

 Beer

 Spirits

 Cola

 <li id="current">Lemonade

 Tea

 Coffee

A new CSS selector is required to declare the appropriate styles for the current ID. Because

the ID is combined with the :link pseudo class, any values declared in this selector will over-

ride those specified in the link pseudo classes.

#current a:link {

 color:#FFF;

 background:#333;

 }

The result can be seen in Figure 7-12. For my money, this is a very neat and simple method

of highlighting the current page.

Figure 7-12. By adding a unique ID to the appropriate list element, the current page is highlighted.

To Conclude...
This chapter could have been 300 pages long, so rich is the seam of knowledge spanning links

and how to manipulate them. It should however be more than enough to set you on the road

to link-based fame and fortune. Like most CSS concepts, the foundations are actually very simple

once you take the time to analyze them, and every concept is the starting point for unique and

very creative ideas.

144 C H A P T E R 7 ■ L I N K S

The key to great link styling is awareness of the end user. Make hyperlinks accessible and

intuitive. Don’t confuse people by employing some ridiculous color scheme that has no hierarchy

and is based entirely on the color of your pajamas. Think carefully about the contrast between

color and background, and consider font and font size. Be creative, and by all means be inven-

tive, but above all, be careful. If there is one thing that frustrates a user above all else, it must be

badly thought-out navigation and ill-conceived link treatment.

Links will reappear throughout the rest of the book, so worry not if you haven’t found what

you are looking for in this chapter. In the meantime, refill that teapot and take a breather, because

we are moving on to a more frightening concept over the page—that of tables.

145

■ ■ ■

C H A P T E R 8

Tables and Definition Lists

Certain kinds of information need to be displayed in a certain kind of way—of that there is no

doubt. A train timetable needs rows and columns, whether on the Web or in a pocket pamphlet.

You can try and do it another way, but it is likely that the answer has been staring you in the

face all along—tables are the right tools for the job.

The table has gained a very bad reputation over the last few years, specifically since the

wider adoption of CSS for layout, and the fact that many designers (a number of whom still

wrongly consider themselves to be “cutting edge”) insist on using tables for nontabular data.

The problem is heightened when web standards aficionados refuse outright to use tables even

when they are appropriate or pour scorn on others who make valid use of them. The poor old

table gets stuck in the middle, and I for one feel sorry for it.

The fact is, tables are incredibly useful, and you will need them from time to time. The

major issue with tables is that many designers still don’t know the correct way to mark them

up, never mind make them more attractive and easier to understand with CSS. The trick is to

use tables only when necessary, and then make them wholly accessible and darned good to

look at.

A much less well-known element is the definition list. Similar to a table in that it provides

some semblance of columns and rows, it is a much more limited tool structurally, but combined

with CSS it can be the ideal job for displaying basic tabular data, and much more besides. For

example, you would use a definition list where terms in a left column need corresponding

descriptions in a right column. There is no scope for further columns, and less scope to add

accessibility markup than with tables, but this should not be seen as a limitation, as you will

see. Definition lists are perhaps as misunderstood as tables, and the aim is to make honest

semantic use of them when a table would be too excessive.

This chapter invites both the table and the definition list to stay behind after school and

explain themselves. It can be argued that the bad wrap isn’t their fault at all—they’ve just been

hanging around with the wrong web designers.

Tables

There are something like 4 billion web pages out there, and it seems like 3.9 billion are proffering

advice about how to mark up a table. The area is rather involved and there is much contradic-

tion, due mainly to the ongoing desire to understand how best to deliver data to those with

accessibility issues.

146 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

A Note About Accessibility

Tables are by their very nature complex. The data itself is ordered into rows and columns, and

a specific correlation between both is suggested visually. Sighted users can quickly fathom the

visual relationship between a table header and the cells that follow, as it is something that is

understood from a young age and forms part of our daily lives.

Blind or vision-impaired people can’t use a table so easily, and they rely on a device such

as a screenreader to verbally relay the information held in a table. This can be a very compli-

cated or even entirely pointless process if the table has not been crafted carefully. It is the web

designer’s responsibility to provide the appropriate hooks needed by the screenreader to

successfully order the data and establish the correlations between headings and data items in

a verbal manner. As this book is predominantly about CSS, it can’t cover all of the appropriate

requirements for super-accessible tables, so it might be a good point to brush up on your table

markup before moving on. (Web Accessibility: Web Standards and Regulatory Compliance, by

Jim Thatcher et al. [friends of ED, 2006] contains some great information about accessible tables.)

What Is a Table For?

A table is for eating at, putting plants on, or incorrectly (I’m told) putting your feet on. On a web

page, the table is more likely to be used to assemble data for timetables, calendars, charts,

spreadsheets, and so on. In essence, a table is for tabular data, and tabular data only.

Tabular data could not be organized by CSS layout alone, or would make little sense if you

tried to do so. Many designers have concocted methods of rendering complex tabular data

such as calendars, timetables, and so on with pure CSS layout and positioning. That’s great,

and certainly an achievement of sorts, but remove the style sheet, and everything falls apart.

The beauty of the table is that it presents information semantically, provides numerous elements

for CSS styling, and still makes perfect sense should the style sheet be made unavailable.

Figure 8-1 shows a table with and without CSS styles applied.

Figure 8-1. The benefits of CSS are obvious in this table taken from the Project Facade web site
(www.projectfacade.com). The top table is unstyled, and the bottom has CSS applied.

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 147

The Not Very Occasional Table

Anyone who has built a web page without CSS is probably aware of the basic table elements

that are a common feature of many web pages. Layout using the elements <table>, <tr>, <th>,

and <td> should be familiar to you.

The Basic Table

To recap, <table> defines the parent element, and then the <tr> element denotes a new table

row, with numerous <td> elements creating cells. The <th> element denotes a column or row

heading, and is bold by default. Here’s a basic table detailing two rival teams and their recent

records in the World Cup (that’s soccer, by the way). You can grab all the files for this chapter

from the download area at www.apress.com. Here I’m using table.html and table.css.

<table>

 <tr>

 <th>Team</th>

 <th>1998</th>

 <th>2002</th>

 </tr>

 <tr>

 <th>England</th>

 <td>Second Round</td>

 <td>Quarter Finals</td>

 </tr>

 <tr>

 <th>France</th>

 <td>Winners</td>

 <td>Group stages</td>

 </tr>

</table>

This produces the very basic table in Figure 8-2. By default it is ugly, squashed, and the

rows and columns are undefined.

Figure 8-2. The basic, unstyled table

148 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

How We Used to Style

It is tempting to call on the old faithful attributes cellpadding and cellspacing, adding them to

the opening table tag to produce <table cellpadding="5" cellspacing="5" border="1">.

Figure 8-3 shows how this additional markup can make the table a little more legible.

Figure 8-3. Things improve with some old fashioned presentational markup, but with modern
web development this is unnecessary—and verging on the criminal.

However, these attributes are purely presentational and therefore entirely unnecessary. In

theory, no presentational markup should ever be added to the table element. Less clunky and

more effective control can be had using a few simple CSS selectors.

CSS to the Rescue

Before you go on, ensure that your table element is free of presentational cruft. Removal of any

cellpadding, cellspacing, or border attributes is a must. CSS will take care of all of this, and

with considerably more panache and control.

The <table> Element

The first step is to add a selector for the <table> element in table.css. Here, all that is declared

are the font properties for the table.

table {

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

Already the table is misbehaving. At the time of writing, the latest build of Firefox will create

a simple border around the whole table element by default, as shown in Figure 8-4, but this is

not the case in Safari or Internet Explorer. The first task is to ensure the display is the same for

all browsers, and we’ll start by examining the borders of the table and its cells.

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 149

Figure 8-4. The table selector is defined in the style sheet, and, despite no border declaration,
there is a basic border around the table on Firefox only.

Group Shared Values

So, you now have control of the <table> element, which is a good start. The next job is to add

some definition to the data contained in the table itself. This calls for a selector to control the

individual cells. Later, unique declarations will be made to the <th> and <td> elements, but

there will also be shared values. Here, the two elements are grouped to share the border value.

th, td {

 border:1px solid #333;

 }

Now the individual cells have borders, as you see in Figure 8-5—borders considerably

neater and more precise than those available using the border attribute in (X)HTML. Importantly,

this border declaration will ensure all browsers are showing consistent table styling.

Figure 8-5. The th and td selectors are used to add very basic 1-pixel borders to each cell.

Style the Table Headings

The correlation between rows and headers could still be clearer though, despite the default

bold text of the <th> cells. Also by default, the <th> text is centered. Adding a new selector can

correct this, and also assign custom color and background values to the <th> element.

th {

 text-align:left;

 color:#FFF;

 background-color:#333;

 }

150 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

The headings and actual data are now clearly differentiated with dark gray background and

white text for the <th> cells (see Figure 8-6).

Figure 8-6. The <th> cells are clearly defined.

The <td> Element

Now a new selector is required for the data cells. The td selector can be used to style every

remaining data cell. A similar treatment to that given to the navigation list items in Chapters 6

and 7 seems an appropriate balance to the dark gray <th> cells.

td {

 background-color: #DDDDDD;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

Now the table is looking a little more resolved, as you can see in Figure 8-7. There is, however,

one glaringly obvious problem so far—that of spacing. Everything is still scrunched together.

Figure 8-7. Getting there. Both the <th> and <td> cells are now benefiting from some simple CSS.

This Section Is Just Padding

Earlier the shared <th> and <td> declarations were grouped using the th, td selector. Now, a

padding value that both will share can be added.

td, th {

 border:1px solid #333;

 padding:3px;

 }

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 151

This extra padding does the work of the old cellpadding attribute, but gives you considerably

more control. It will also be easier to adjust padding should you wish to later just by adjusting

the value in the style sheet, potentially for all tables across your web site, which is much easier

than having to trawl through all your (X)HTML templates and adjust all those cellpadding

values. Figure 8-8 shows the progress so far.

Figure 8-8. Considerably more stylish, thanks to a little padding

The Final Touches

The table is nearly finished, and all that remain are a few tweaks to the existing CSS selectors.

The <td> cells have a slightly three-dimensional quality owing to the colors of the borders, and

it would be good to do something similar for the <th> cells.

Adding tonal gray border declarations for the <th> element and removing the basic border

declaration from the grouped th selector leaves the final CSS as follows:

table {

 border: 1px solid #333;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

td, th {

 padding:3px;

 }

th {

 text-align:left;

 color:#FFF;

 background-color:#333;

 border-style:solid;

 border-width:1px;

 border-color:#CCC #666 #000 #CCC;

 }

td {

 background-color:#DDDDDD;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

152 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

The final table is looking pretty tidy (see Figure 8-9), and stylistically this is something that

could not be achieved with basic (X)HTML markup.

Figure 8-9. The finished table

Creating the three-dimensional affect for each cell would not be possible with the outdated

(X)HTML border attribute, so CSS has a greater role to play here. The table markup remains

completely untouched. No extra markup was required to get from the plain black-and-white

and scrunched-up table to the sexy final example in Figure 8-9.

border-collapse

The border-collapse property is a very useful tool used to replace the outdated cellspacing

attribute in HTML, which was used to reduce or remove the default space placed between

each cell.

You may have noticed that earlier in the chapter, the example table had spacing in between

each cell. The CSS used did not add that using margins; it was already there.

Consider the following CSS. The aim is to apply a 1-pixel line at the base of each cell to

create a continuous line right across the table from left to right.

table {

 border:0;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

td, th {

 padding:3px;

 }

th {

 text-align:left;

 border-bottom: 1px solid #000;

 }

td {

 border-bottom: 1px solid #666;

 }

In theory, this should work, but the browser will automatically apply a few pixels of

whitespace between each cell, as shown in Figure 8-10.

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 153

Figure 8-10. The lines below each row should be continuous, but the browser automatically places
whitespace around each.

This is where the life-saving border-collapse property comes into play. In prehistoric

times, designers would declare the attribute cellspacing="0" to collapse this whitespace, but

this is no longer acceptable, as this is purely presentational markup. So, a simple addition to

the table selector is required.

table {

 border:0;

 border-collapse:collapse;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

This simple declaration is all that is needed to remove the default cellspacing in one fell

swoop, as shown in Figure 8-11. It’s a little-known method, but it sure is effective, and again is

proof that the wizards who invented CSS knew what they were doing.

Figure 8-11. The border-collapse property is used to remove all default whitespace between
the cells.

Further Reading

Several other table-specific CSS properties are available, although these involve much more

complex techniques than can be covered in this book. For more information about the various

table models and relevant browser support, view the Tables specifications from the W3C

(www.w3.org/TR/REC-CSS2/tables.html).

154 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

Customizing Elements

As you have seen, many of the properties already discussed through the previous chapters can

be used with the table selectors, such as border, padding, background-color, and so on.

One brilliant way of customizing the usually drab table is by deploying carefully crafted

background images to add emphasis to heading cells, or even transform the entire table.

Background Images

Taking the example from the border-collapse section of this chapter, the following CSS will

produce the table shown previously in Figure 8-11.

table {

 border:0;

 border-collapse:collapse;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

td, th {

 padding:6px;

 }

th {

 text-align:left;

 border-bottom: 1px solid #000;

 }

td {

 border-bottom: 1px solid #666;

 }

This table is a good basis for some heavy customization, but it will be more interesting to add

a few more rows and columns. The <th> cells have also been removed from the left, and a <caption>

element added to give the table context. The <caption> element is an optional table component

that displays a caption/title for the table directly above, below, or to either side of the table.

<table>

 <caption> World Cup record: France</caption>

 <tr>

 <th>1986</th>

 <th>1990</th>

 <th>1994</th>

 <th>1998</th>

 <th>2002</th>

 </tr>

 <tr>

 <td>Don't know</td>

 <td>Don't care</td>

 <td>Not bothered</td>

 <td>Winners</td>

 <td>Group stages</td>

 </tr>

</table>

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 155

That’s better—now there is a bit more data to play with (see Figure 8-12). As you can see, this

author is just a little bitter about how his team’s performance matches up with its Gallic rivals.

Figure 8-12. The table is expanded, and a <caption> element is added.

This table is quite legible as it stands, but there is always room for a little more CSS. For this

example, a background image can be used to spread the full length of the table heading. The

image in Figure 8-13 is a small GIF tile, 25 pixels square.

Figure 8-13. The small tile tablefade.gif

The background-image declaration will be added to the <th> element (as one of several

background properties declared with shorthand). Although there are five separate <th> cells

across the top of the table, the use of border-collapse:collapse will ensure that the GIF

appears to tile seamlessly across the whole row. Note that a selector has been added for the

<caption> element also.

table {

 border:0;

 border-collapse:collapse;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

caption {

 font-weight:bold;

 font-size:15px;

 padding:10px;

 }

td, th {

 padding:6px;

 }

th {

 text-align:left;

 background:#FFF url(images/tablefade.gif) repeat-x;

 border-bottom: 1px solid #000;

 }

156 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

td {

 border-bottom: 1px solid #666;

 }

The background-repeat value repeat-x is used (as part of the shorthand declaration) to tile

the image horizontally, and the result is a neat fade effect that transcends the whole row of <th>

cells, as shown in Figure 8-14.

Figure 8-14. The tablefade.gif image is tiled the length of each <th> cell, and, due to border-collapse,
the lack of whitespace between each cell gives the impression of one seamless background image.

Of course, the use of background images with tables doesn’t stop here. A background

image can be applied to any table element, be it the whole table, all <td> elements, or even indi-

vidual cells, although you’ll need a class for the latter.

Background Images with Classes

In the previous table, you may have noticed that those pesky French actually won the World

Cup in 1998 (on home soil, I might add). This is obviously a great achievement, and one worth

highlighting.

So far in this chapter, selectors have been used to influence all instances of a particular

element, such as making all <th> text align to the left or adding a background image to all <th> cells.

However, it is easy to single out one instance of an element and overrule any existing CSS

applied to it, using our old friend the class. Here, a reusable class called winners has been added to

the appropriate <td> element:

<table>

 <caption>World Cup record: France</caption>

 <tr>

 <th>1986</th>

 <th>1990</th>

 <th>1994</th>

 <th>1998</th>

 <th>2002</th>

 </tr>

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 157

 <tr>

 <td>Don't know</td>

 <td>Don't care</td>

 <td>Not bothered</td>

 <td class="winners">Winners</td>

 <td>Group stages</td>

 </tr>

</table>

Now all that is needed is a simple selector for the winners class. Here, the basic declarations

for table cells are overruled by specifying bold white text on a red background:

.winners {

 font-weight:bold;

 color:#FFF;

 background-color:#F00;

 }

Reloading the page in the browser shows the table cell with a completely red background

and white bold text (which appears shaded in Figure 8-15). All other cells are unaffected.

Figure 8-15. The appropriate cell is given a class attribute in order to deliver unique styling.

Naturally, this method can also be used to give the cell a custom background image. In this

case, rather than tile an image across the whole cell, it will be more fun to use a custom icon to

denote the fact that the team actually won. The custom icon, shown in Figure 8-16, is 25 pixels

square.

Figure 8-16. Custom icon for the “Winners” table cell

The CSS is relatively simple and builds upon the simple list icons used in Chapter 6. It is

important to note that padding equal to the width of the icon is applied to the right of the class.

158 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

.winners {

 font-weight:bold;

 padding-right:25px;

 background:#FFF url(images/star.gif) right center no-repeat;

 }

The <td> cell with the winners class will now compensate for the image by widening

the cell by 25 pixels, and then placing the icon in that space by obeying the declared

background-position values as part of the shorthand background declaration (see

Figure 8-17).

Figure 8-17. The custom icon is in place to the right of the text in the appropriate cell.

This little taster should get the light bulbs flashing in your head. The possibilities here are

endless, and many a drab table has been spruced up remarkably with the addition of a few

symbols and targeted background colors.

Definition Lists

Misunderstood and ignored—that’s the definition list. Put simply, it is a list like any other,

except that it has two parts, not one. In some senses, it bridges the gap between the basic list

and the table, providing an extra method of laying out simple data couplets without the limita-

tions of the unordered list or the complexities of the table.

Definition List Markup

This book is unavoidably about (X)HTML, even though the title is Beginning CSS Web Develop-

ment. It seems appropriate that this section about definition lists begin with a fairly thorough

recap of definition list markup and variations, as so few web designers are making use of this

concept.

All definition lists consist of two main ingredients: a term and a description. A definition

list is built using three essential elements: a container (<dl>), a definition term (<dt>), and a

definition description (<dd>).

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 159

<dl>

 <dt>England</dt>

 <dd>Terrible soccer team</dd>

 <dt>Brazil</dt>

 <dd>Unbelievably good soccer team</dd>

</dl>

Figure 8-18 shows the unstyled result in the browser. Each definition term and definition

description is separated by a line break and a default left margin. The example also proves that

definition lists are often used to also be very blunt with the truth.

Figure 8-18. A basic, unstyled definition list

The inherent flexibility of the definition list means that you can use multiples of <dt> and

<dd> within a definition list. In the next example, two descriptions are owned by one defini-

tion term.

<dl>

 <dt>England</dt>

 <dd>Terriible men's team</dd>

 <dd>Improving women's team</dd>

</dl>

As you can see in Figure 8-19, the result shows that items remain grouped as expected. The

descriptions are placed again with a default left margin, each on a new line.

Figure 8-19. Two definition descriptions for one term

160 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

The next example illustrates how two terms might be needed to inform just one description.

<dl>

 <dt>England (men)</dt>

 <dt>England (women)</dt>

 <dd>Two teams with varying degrees of success</dd>

</dl>

Figure 8-20 shows the resulting browser display.

Figure 8-20. Two terms, one description

Incorporating Other Elements

Definition lists aren’t flexible—they’re very flexible! You can incorporate block-level elements

in the definition description, such as the <p> and elements. In the following example, the

description text is housed inside a paragraph:

<dl>

 <dt>England Soccer team</dt>

 <dd><p>Terrible soccer team. Still, won the World Cup in 1966, which is ➥

 something to cling on to.</p></dd>

</dl>

Here, only one paragraph is used, as Figure 8-21 illustrates, but there is no limit to how

many block-level elements you place within the <dd> element.

Figure 8-21. One term, with a paragraph inside the definition

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 161

■Note While it is brilliant to be able to use block-level elements within the definition description, you sadly

cannot use block-level elements inside the definition term element. Watch out for that!

A List Inside a Definition List

Ah, the power of the unordered list, but enhanced by being placed inside a definition list. Here,

the team name is placed inside the definition term element, and the players are listed inside

the definition description element.

<dl>

 <dt>England Soccer Team</dt>

 <dd>

 David Beckham

 Wayne Rooney

 Michael Owen

 Steven Gerrard

 </dd>

</dl>

This approach clearly adds clarity to the definition, and a very obvious hierarchy is estab-

lished (see Figure 8-22).

Figure 8-22. Now a list is used inside the description.

Sprinkle in a Little CSS

Taking what you learned back in Chapter 6, it should be pretty easy to take control of the unordered

list contained inside the definition description element.

Using the exact same CSS used back then to turn a basic unordered list into a navigation-

style menu, the same effects can be applied in this instance. Here’s the CSS once more:

162 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

ul {

 list-style-type:none;

 margin:5px;

 padding:2px;

 border:1px solid #333;

 width:160px;

 font: bold 12px 'Lucida Grande',Verdana,sans-serif;

 }

li {

 background-color: #DDDDDD;

 margin: 0;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

Figure 8-23 shows the result of this enhancement.

Figure 8-23. With CSS appplied, the unordered list inside the definition description element is
radically transformed.

The dl Selector

Now the whole definition list can be styled to match using simple selectors. Taking the basic

selectors dl, dt, and dd, very similar styles can be applied to bring the whole section together.

First, the main <dl> element is declared.

dl {

 padding:2px;

 border:1px solid #333;

 font: bold 12px 'Lucida Grande',Verdana,sans-serif;

 }

Notice here that up until this point only the unordered list had any declared font values.

To apply font values to the whole definition list element and its children, the font declaration

is moved from the ul selector to the dl selector.

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 163

Also, the default top and bottom margins are removed using margin:0, and border and

padding is applied that directly matches the unordered list styling. Figure 8-24 shows the progress

so far.

Figure 8-24. Progress so far, with basic CSS applied to the outer <dl>element

The dt Selector

Next, the definition term needs to work a bit harder. As block-level elements cannot be used

inside the <dt> element, if the term is to look more like a heading, it needs to be done with CSS.

dt {

 background-color: #DDDDDD;

 padding:2px;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

Again, values very similar to those of the unordered list are declared. The padding, background,

and borders are identical, and things are looking better, as you see in Figure 8-25.

Figure 8-25. With the rules declared in the dt selector, the <dt> and list within the <dd> are
matching, although the <dt> clearly looks like a heading.

164 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

The dd Selector

Next the definition description element is defined. Very simply, all that is needed is to remove

the default margin that pushes it away from the left edge of the containing <dl> element.

dd {

 margin:0;

 }

This ensures everything is aligned to the left, overriding the default margin applied by the

browser, and wrestling complete control back your way.

Rework the Unordered List

Now is a good time to rework the unordered list. The padding of 2px is changed to 0 for the ul

selector so that the default value is still overridden. If the padding remained, the list would be

pushed away from the edges of the <dd> element.

Also, the border is no longer needed to avoid clunkiness, and the set width of 160px is also

no longer required.

ul {

 list-style-type:none;

 margin:5px 0 5px 0;

 padding:0;

 }

li {

 background-color: #DDDDDD;

 margin: 0;

 padding:2px;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

As a result of these tweaks, the various elements are all aligned nicely. The definition term

is positioned exactly over the definition description, and the unordered list sits perfectly inside

that, as shown in Figure 8-26.

Figure 8-26. Everything is nicely aligned, thanks to careful tweaking of margin and padding on
the ul, li, and dd selectors.

C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I ST S 165

Final Adjustments

Finally, all that is required is to define a set width for the whole shebang. This can be done using

the dl selector, as everything else falls inside of it and will therefore contract to fit.

dl {

 width:160px;

 margin:0;

 padding:2px;

 border:1px solid #333;

 font: bold 12px 'Lucida Grande',Verdana,sans-serif;

 }

It also seems that now everything is aligned, the <dt> element isn’t looking so much like a

heading anymore, so a simple background and color tweak can be made to compensate.

dt {

 color:#FFF;

 background-color: #333;

 padding:2px;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

This brings us to a finished, hugely transformed definition list, as shown in Figure 8-27.

Note that if you applied a width of 100% to the definition list, it would be flexible enough to stretch

and fit any container you placed it in, making it an ideal component for sidebar navigation. The

beauty of all of this is that no additional markup is required in the (X)HTML—the CSS takes

care of everything.

Figure 8-27. The finished definition list containing a simple unordered list

Care with Definition Lists

The important thing to note here is the great flexibility of the definition list, and despite its lack

of popularity, these methods are excellent for breaking down smaller pockets of data where

laziness might normally make one reach for a table.

166 C H A P T E R 8 ■ T A B L E S A N D D E F I N I T I O N L I S T S

However, I have seen numerous incidences of definition lists being used to basically emulate

complex column layouts akin to misused tables.

It has also been observed that search engines may not index definition list content in the

expected manner. Just because you style the <dt> element to look like a heading does not mean

Google will treat it as such. It should also be noted that key markup used to enhance table

markup cannot be applied to definition lists, and if this is of concern in a particular instance,

use a table.

Further Reading

A one-stop shop for all things definition lists has to be the excellent article “Definition lists—

misused or misunderstood?” (www.maxdesign.com.au/presentation/definition/) on the hugely

useful Max Design web site. There you will also find many brilliant CSS treatments of definition

lists including simple image galleries and more tailored formatting.

To Conclude...

I’m sure you’ll agree that was a lot of fun! Maybe. It is important to be prepared for any kind of

data formatting, and to know how to display it appropriately. Knowing when to use a table and

when to use a definition list is something that will come with experience.

This chapter merely skims the surface of table styling, and certainly hasn’t enough room

to explore all available table markup. That said, grasping these basic styling concepts should

assist you when it comes to more complex tables. Half the battle is in knowing what CSS

approaches you can exploit, with the other half being the trial and error involved.

Hopefully, this chapter has also made you aware of how similar CSS approaches can be

applicable to different formatting options, such as how the wonderful styles you created for a

table can be modified for a definition list. This is something you’ll see much more of in the next

chapter, with basic chunks of CSS being reused for different approaches. It might be worth

sticking the kettle on and spending a moment or two reflecting on how far you’ve come. You’re

halfway to being a professional!

167

■ ■ ■

C H A P T E R 9

Forms

Without forms, a web site generally works in only one direction. Pages contain information

and images, the user reads this information or looks at the images, and that is that. Forms allow

the user to interact with the web site by exchanging data.

Forms are used for a huge number of purposes, from fairly simple functions such as logging

in to a web application, leaving comments, and providing contact info, right up to enabling

article entry, serving as questionnaires, and allowing résumé uploads, and can exist on one

page or be spread across several. Forms are the only sensible method of collecting data from

your visitors, and they are something we all have to embrace.

Web designers are often scared of building forms for a number of reasons. The general

consensus is that they are difficult to implement successfully, hard to lay out without resorting

to tables, and difficult to make accessible for all visitors.

While this chapter doesn’t deal with making forms actually work (due to space and scope

constraints),1 it will illustrate that forms are actually quite timid beasts that are very easily

tamed with a combination of well-constructed markup and carefully applied CSS. Hopefully,

after working through this chapter, your confidence in form building will be stronger, and the

variety of possible approaches discussed will buoy you up somewhat.

This chapter covers the following areas:

• Basic form markup refresher

• A brief look at markup intended to make forms more accessible

• How to style common form elements and create a reusable block of CSS

• Three possible approaches to form layout—the table, paragraphs, and finally the

definition list

Markup Refresher
The great thing about forms is that a correctly marked-up form provides a large number of

elements upon which to hang the CSS. If all the appropriate (X)HTML elements are in place,

very little or no extra markup is required to successfully apply the CSS you create. If this isn’t an

1. Entire books have been written on the programming languages used to process forms on the Web,

such as PHP, JavaScript, and ASP.NET, so a discussion here is way out of scope for this book. However,

check out the online catalog at www.apress.com for an extensive list of books that do cover these tech-

nologies, and much more besides.

168 C H A P T E R 9 ■ F O R M S

incentive to ensure you are using the appropriate elements in your forms, then I don’t know

what is.

Before we get to the CSS playground, let’s first stop off at the markup service station and

ensure you are familiar with all of the markup that should be commonplace in all forms.

Form Elements

If you consider yourself a master of form markup, feel free to skip to the CSS stuff later in this

chapter, where you’ll come to grips with transforming these humble elements into sexy page

widgets. However, it might be useful to bookmark this section, as it is important that data collection

elements are correctly marked up if the CSS is going to stick. This refresher breezes through the

common form elements, looking at the correct syntax and best-practice approaches for each.

Elements for Data Input

First, let’s run through the most common elements used to submit data through a form interface.

In most cases, the <input> element is specified, and the method of form construct is declared

with the type attribute (such as type="text" or type="checkbox"). The key exception is the

<textarea>, as you’ll see.

text

Unlike HTML, XHTML requires all <input> elements to be self-closed with a forward slash,

so watch out for that. For a basic text <input>, the type attribute is specified as text.

<input type="text" name="email" id="email" />

Note that the element is assigned a unique name (used to identify that piece of data wherever

it is used) and also a unique ID.

maxlength and size

It is common to assign a set character limit for text <input> fields also. The maxlength attribute

provides a simple method of assigning this limit; ensuring users are prevented from entering

more than the specified number of characters.

The size attribute can be used to declare the physical width of the <input> field, measured

in characters. The following example creates a text <input> that will be the length of 20 characters,

but will allow up to 50 characters to be entered.

<input type="text" name="email" id="email" maxlength="50" size="20" />

Later in this chapter, you will see that the size attribute is not always necessary, as the

length of the text <input> can be controlled much more accurately with CSS.

checkbox

The checkbox <input> type is used for optional data, and where more than one answer can be

given. The markup is very similar to that of the text <input>, except that a value is given that will

be passed on through the form if the user checks the check box.

<input type="checkbox" name="checkbox" id="checkbox" value="n" />

C H A P T E R 9 ■ F O R M S 169

Of course, an unlimited number of check boxes can be used within a form, although each

one will require its own unique value.

radio

This <input> type is similar to the check box, except that the radio button is used when only

one answer can be given. You could have 15 radio buttons in a form, but each would share the

same name, and the user could only select one value. Selecting another radio button would

result in the previous selection being turned off.

<input type="radio" name="radio" id="radio" value="n" />

Radio buttons are an awkward <input> type to use in forms currently, as their display is so

different across the browsers. Specifically, they look awful and ragged in Firefox.

submit

Without this vital <input> type, users would be unable to actually send you their data. The

submit button should be placed outside of the form <fieldset>, and be clearly visible.

<input type='submit' value='Send this enquiry' />

The value attribute is used to place the user-friendly text within the submit button. It is

always nice to link this directly to the purpose of the form, so “Request Feedback”, “Log In”,

and “Confirm Payment” are good values here, whereas “Go” and “Submit” can often be too

ambiguous.

<textarea>

Still an <input> type, but not marked up as such, <textarea> is used to create a text <input>

with much more capacity for data, and no limit on how much can be placed into it. If the user

types in more than the visible <textarea> displays, a scrollbar will automatically appear, allowing

the user to navigate up and down through his or her submitted data.

<textarea name="message" id="message" rows='11' cols="30"></textarea>

The familiar name and id attributes are used, as well as rows and columns, which dictate

how wide and how tall the visible area of the <textarea> will be, measured in characters.

Unlike the other <input> types, the <textarea> element is not self-closed and requires a

closing </textarea> tag.

<select>

The <select> element (also known as the drop-down menu) is a brilliant space-saving option

that will be familiar to everyone.

<select name="subject" id="subject">

 <option value="">Select</option>

 <option value="Option 1">Option 1</option>

 <option value="Option 2">Option 2</option>

</select>

170 C H A P T E R 9 ■ F O R M S

Again, name and id are used to identify the inputted data, although again like <textarea>,

the <select> element is closed manually, this time with the corresponding </select> tag. Unlim-

ited option values can be used, so long as each has a unique value. Notice that the first <option>

element has an empty value attribute as it is used merely as a label (Select) to encourage the

user to choose an option.

Accessibility Aids

Just using the basic <input> elements described earlier would make your form work perfectly

well in most cases, but many more useful elements are available, and for good reason.

Any responsible web designer will want his or her forms to be usable by any visitor, including

those with visual impairment, or even totally blind users. Let’s walk through some very impor-

tant elements that should be used for any form in any circumstances. The following elements

help define the structure of your forms (<fieldset> and <legend>) and can add semantic

meaning to the form constructs (<label>), as well as offer alternative methods of navigating

through them (<tabindex>).

<fieldset>

The <fieldset> element brings much to proceedings. Its main purpose is to group <input>

fields into sections.

Imagine a questionnaire with 20 or so inputs. The first three <input> fields are for personal

data such as name, e-mail address, and post code. These three fields could be grouped together

inside one <fieldset> element and the remaining questions grouped inside another <fieldset>.

CSS designers like <fieldset> for it also creates a perfect container where an extra <div>

might have had to be used.

<fieldset>

 form tags go here (form, select, option, etc)

</fieldset>

By default, <fieldset> draws a simple border around its contents, defining that section of

the form. It goes without saying that <fieldset> ends up shouldering a lot of the styling applied

to the form by acting as the main parent element.

<legend>

We are not talking about John Wayne or Marlon Brando here. The descriptive <legend> element

is used to describe the contents of its parent <fieldset>, and most browsers will stylishly place

the <legend> text over the top of the <fieldset>’s top border with a white background to remove

the border directly underneath.

<fieldset>

 <legend>Enquiry Form</legend>

 form tags go here (form, select, option, etc)

</fieldset>

The <legend> element does a similar job to the <caption> element used to identify a table. Yet

again it is another perfect hook upon which some simple CSS can be hung.

C H A P T E R 9 ■ F O R M S 171

<label>

Creating a relationship between the <label> element and the ID of the corresponding <input>

is vital if you want those using a screenreader to successfully navigate through your form. This

means that even if in some cases a <label> appears below its corresponding <input> field, or to

the left, or to the right, or even miles away on the web page, the screenreader can still link the

two for the benefit of the user. It keeps the form focused and organized.

<label for="email">Email</label><input type="text" name="email" id="email" />

The <label> must be linked to the <input> using the for attribute, specifying that <input>

field’s ID exactly.

tabindex

The tabindex attribute allows users to navigate the focus of the form element using just the

keyboard (normally by using the Tab key). The order is typically in numerical order, where each

attribute is given a numerical value. This is an excellent way of ensuring mobility-impaired users

can successfully use your form.

<label for="firstname">First Name</label><input type="text" name="firstname" ➥

id="firstname" tabindex="1" />

<label for="surname">Surname</label><input type="text" name="surname" ➥

id="surname" tabindex="2" />

<label for="email">Email</label><input type="text" name="email"➥

id="email" tabindex="3" />

So in this example, pressing the 1 key would highlight the firstname <input>, pressing the

2 key would highlight the surname <input>, and the email <input> is the third form <input> that

a user would navigate to using the keyboard, by pressing the 3 key. Note that by default, the

browser will assign its own tab order to a form, so using tabindex is your opportunity to specify

the order as you want it, overriding the default.

accesskey

Using the accesskey attribute is another excellent method of ensuring that mobility-impaired

users can navigate through your form.

<label for="email" accesskey="3">Email</label><input type="text" ➥

name="email" id="email" />

Here, when the user presses 3, the focus of the form will shift straight to the <input> field

that correlates with the <label> for email.

Ready-Made IDs

In the previous section, lots of elements were discussed that can of course have specific CSS

applied to them to control the style of the form. You might also have noticed that each <input>

field has its own unique ID. These IDs are not mandatory for the (X)HTML to render the form

constructs, but they are of course key to processing the submitted data once the form is submitted.

172 C H A P T E R 9 ■ F O R M S

You already know that by giving an element a unique ID you are able to target it specifically,

even if many other elements of the same type exist in the same file. Thus, most forms are

pre-prepared for targeted styling by singling elements out according to their ID. Here are two

examples:

<form action="" method="post" id="enquiryform">

An ID attached to the <form> element ensures that any CSS required only for that form

could be declared as a descendant of the enquiryform ID.

#enquiryform input {

 width:100%;

 }

This selector would ensure that all <input> fields belonging to a form identified as enquiryform

will stretch to fit their containing element. An additional selector could then be used to make

any necessary exceptions to this rule by using the unique ID of a particular form field.

<input type="text" name="name" id="name" />

In this example, this particular <input> field could be styled differently from others by

using its ID, name.

#name {

 width:200px;

 }

Now all <input> fields owned by enquiryform would be 100% width, except the one with the

name ID, which would be 200px in length.

Browser Rendering of Form Elements
A major issue that it is very important to be aware of is the variation in how different browsers

render common form elements such as input fields, select menus, check boxes, and so on.

Regrettably, there are huge differences in display, and it is sadly not possible to make form

elements look the same on all browsers using CSS or any other method (except maybe Flash).

This can be a big problem, especially in situations where a form or specific form element

is designed to fit into a very specific holding element. One can spend all day tweaking the style

of an input field, for example, making it look just right in Firefox, only to load up Safari or Opera

and see that it looks completely different and is breaking out of its containing element.

Safari on the Mac is undoubtedly a sexy browser, and by default it displays form elements

in a very desirable way. Unfortunately, these defaults are pretty much all you’ll get from Safari,

no matter how many attractive borders or specific sizes you throw at it. While widths, margins,

and padding values will have an effect in most cases, the swollen bubble look of submit buttons and

select elements will remain (unless you replace buttons with custom images of course), and

you’ll be hard-pressed to do any nifty border styling for input fields.

Equally awkward is the way Firefox displays check boxes and radio buttons. The latter in

particular look awful—all jagged as if they were punched out of the screen with a blunt pencil.

Figure 9-1 shows the sheer variety of outcomes of a select element across the browsers.

They not only look different, but also perform differently. Safari, for example, will show the

C H A P T E R 9 ■ F O R M S 173

whole menu when you click it, whereas most Windows-based browsers will show only the top

few, and a mini-scrollbar is used to view those below.

Figure 9-1. How browsers display the default select element

Likewise, look at all the variations of the humble input field in Figure 9-2. A plethora of

different borders, fonts, and internal padding are used, and even the greatest CSS designer in

the world wouldn’t be able to match them all up for every browser.

Figure 9-2. How browsers display the default text input

The submit button is different in that you could specify an image to replace the default

button styling, as follows:

<input type="image" src="submit.gif" value="submit" />

That said, the variety of button displays across the browsers is exasperatingly varied, as

shown in Figure 9-3. The Mac browsers (Safari, Opera Mac, Camino) do create gorgeous bubble

buttons, but most (even Firefox on a Mac) resort to flat buttons. The good thing about the latter

is that they are at least easily styled with some simple CSS.

Figure 9-3. How browsers display the default submit form type

174 C H A P T E R 9 ■ F O R M S

Caution is always needed when it comes to cross-browser form styling. Do try and get your

form to display how you desire in your favorite browser, but be sure to check the display in all

available browsers before launching your site, just to make sure nothing goes horribly wrong.

For a more in-depth overview of how browsers render these elements, as well as

check boxes, radio buttons, and other form elements, be sure to check out Roger Johansson’s

excellent article “Styling Form Controls” (www.456bereastreet.com/archive/200409/

styling_form_controls/).

Basics of Form Styling
Later in this chapter, three sensible methods of laying out a form will be discussed, but for now,

let’s assume that you have a form laid out using a simple table, as that is the way many of us

begin form layout. The main focus at the moment is on the actual form elements within the table.

The goal here is to produce a block of CSS that can be used specifically for common forms—

a chunk of CSS that can act as a starting point for any form and be tweaked as necessary depending

on the given situation. This base CSS will apply sensible styles to common elements such as

<input>, <textarea>, <fieldset>, <legend>, and so on, regardless of whether the form is laid out

with a table or one of the other methods I’ll cover.

Prepare a File and Style Sheet

Create a file called forms_table.html and paste the table layout (X)HTML into the <body>. In the

head of the file, link to a new style sheet called forms_table.css. Save the template.

<form action="" method="post" id="enquiryform">

 <fieldset>

 <legend>Enquiry Form</legend>

 <table cellpadding="3" cellspacing="3" border="1">

 <tr>

 <td colspan="2">Fields marked * are compulsory.</td>

 </tr>

 <tr>

 <td><label for="subject">Subject *</label></td>

 <td><select name="subject" id="subject" tabindex="1">

 <option value="">Select</option>

 <option value="Option 1">Option 1</option>

 <option value="Option 2">Option 2</option>

 </select></td>

 </tr>

 <tr>

 <td><label for="name">Name *</label></td>

 <td><input type="text" name="name" id="name" tabindex="2" /></td>

 </tr>

 <tr>

 <td><label for="email">Email *</label></td>

 <td><input type="text" name="email" id="email" tabindex="3" /></td>

 </tr>

C H A P T E R 9 ■ F O R M S 175

 <tr>

 <td colspan="2"><label for="message">Message or enquiry below</label></td>

 </tr>

 <tr>

 <td colspan="2"><textarea name="message" id="message" ➥

 rows="11" cols="30" tabindex="4"></textarea></td>

 </tr>

 <tr>

 <td><label for="updates">I would like to receive updates: </label></td>

 <td><input type="checkbox" name="updates" id="updates" value="n" ➥

 tabindex="5"/></td>

 </tr>

 </table>

 </fieldset>

 <input type='submit' value='Send this enquiry' />

</form>

Load forms_table.html in your browser, and it should look something like what appears in

Figure 9-4.

Figure 9-4. Form layout within a table

176 C H A P T E R 9 ■ F O R M S

Create the new style sheet called forms_table.css, and save the file. You should use this

style sheet to examine all the following examples in this section.

Remove Default Form Spacing

You already know that different browsers display form elements in numerous ways. Well, they

also apply their own specific margin and padding values to the <form> element.

To get off to a clean start and begin with a blank canvas, it is a good idea to turn off this

default spacing by adding a selector for the <form> element.

form {

 margin:0;

 padding:0;

 }

There may be no discernable difference in the browser you are using, but at least you know

that there will be consistency in spacing across all browsers before you continue.

Nifty Borders for Text <input> and <textarea>

Some modern browsers will allow you to use a cool value called double to draw a double border

around <input>, <textarea>, and submit form inputs. Specifically, this works effectively for

Firefox, Camino, Opera, and IE Win/Mac. Safari, however, will completely ignore this declaration.

input, textarea {

 border: 3px double #333;

 }

Figure 9-5 shows how this simple approach draws the neat double border around any

input element.

This is a very useful method of further defining the input areas of forms, and can be argued

to be a usability enhancement. It looks especially good when a bold color is used for the actual

border, and by targeting certain input fields by their IDs, different-colored borders could be

assigned to different input fields to suggest correlations between them.

C H A P T E R 9 ■ F O R M S 177

Figure 9-5. The <input> and <textarea> elements now have a stylish border on most modern
browsers (excluding Safari).

Width of <input> and <textarea>

Nothing makes a form look more uncared for than a jumble of varying length input fields. Even

if you specify a value for the size attribute, there will be variation between the lengths of standard

text inputs and <textarea> fields. Thankfully, a little targeted CSS is all that is needed.

Specifying a width of 100% would ensure that all input elements (and <textarea> fields in

this case) would stretch to fit their containing element (a table cell, for example).

input, textarea {

 width:100%;

 border: 3px double #999999;

 }

That’s great, but look at the example in Figure 9-6. As the submit button is also an <input>

element, so it too is stretched the full width of its table cell, which is not desirable.

178 C H A P T E R 9 ■ F O R M S

Figure 9-6. The <input> and <textarea> elements now stretch to fill the available area, but sadly
so does the check box and also the submit button.

A better approach is to target only the input fields that need to be 100% width, and for this

the unique ID of each comes in very handy indeed. Rather than declare a blanket rule for all

input types, the rule is only applied to the inputs with the appropriate IDs.

#name, #email, #message {

 width:100%;

 }

input, textarea {

 border: 3px double #999999;

 }

This is preferable as it is much more controlled, and nothing is better in CSS than a nice

targeted rule. Figure 9-7 shows that the appropriate elements are still stretched the full width

of their table cells, but the submit button is restored to its default length.

The same approach can be applied to the <select> element by finding its unique ID and

adding it to the grouping.

#name, #email, #message, #subject {

 width:100%;

 }

C H A P T E R 9 ■ F O R M S 179

Figure 9-7. By applying border and width to certain input fields using their IDs, elements that
mustn’t fill the whole cell are left unaltered.

As Figure 9-8 shows, the width of the <select> element is now also 100%, perfectly inline

with the text input below it.

Figure 9-8. The <select>element is now also stretching the width of the table cell.

<label>

The great thing about text contained within the <label> element is that it can be treated differ-

ently from any other text inside the <fieldset> or table. Any label text will probably need to be

highlighted, perhaps bold?

label {

 font-weight:bold;

 }

180 C H A P T E R 9 ■ F O R M S

This will produce the clearly defined label text shown in Figure 9-9. Note that all other text

within the <fieldset> remains normal weight.

Figure 9-9. The <label>element is now bold.

Don’t feel that you have to stop there. I have seen some very creative approaches to the

<label> element, with clever use of contrasting color and background to apply focus to particular

elements at a given time.

<fieldset>

As previously mentioned, the <fieldset> element acts as parent to all form elements grouped

within it, and can therefore be a key part of a successfully styled form.

Typically a custom border would be applied to create a visual clue that certain elements

belonged together, such as in this example which overrides the default border of the <fieldset>.

fieldset {

 margin:0 0 10px 0;

 padding:5px;

 border:1px solid #333;

 }

In the example, all form elements are grouped inside one <fieldset>, and the 1-pixel gray

border replaces the default border (see Figure 9-10).

If more than one <fieldset> were to be used in one form, it would be important to group

any shared values for all <fieldset> elements in the style sheet, or perhaps define unique

values to each by attaching a unique ID attribute to each in the (X)HTML.

C H A P T E R 9 ■ F O R M S 181

Figure 9-10. The effect of CSS applied to the <fieldset>element

<legend>

The default formatting of the <legend> element gets us off to a great start, owing to the way the

browser positions it over the top of the <fieldset> border. A few background and border values

are all that are needed to transform the <legend> element into something a little more stylish.

legend {

 background-color: #DDDDDD;

 margin: 0;

 padding:5px;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

Figure 9-11 shows how the preceding CSS creates a three-dimensional affect akin to that

applied to lists in Chapter 6 and links in Chapter 7.

Figure 9-11. With CSS applied, the <legend> element now looks three-dimensional.

182 C H A P T E R 9 ■ F O R M S

The Form CSS Block Is Complete

The result of all that careful CSS tweaking is a set of CSS selectors that can be used again and

again to quickly get your forms off to a good start. The full list of rules is shown just inside the

next section, and is also available to download with the source code for this chapter.

It might be a good idea later to have a fresh go at these rules and define your own reusable

set of styles for your forms. Having such devices at your disposal is key to increased productivity

and fast prototyping—very few web designers start everything from scratch every time. Always

look for blocks of CSS that can be put on one side for a rainy day, essentially building up your

own library of jump-starts.

Three Approaches
There are many, many ways of laying out a form within a web page, and it is fun to look at the

source code of some well-known sites and see how well or how badly they do it. For my money,

there are only three real options, selected specifically because they are accessible, stylish, and

provide a great number of ready-made elements to attach CSS to.

The three options are the table, combined paragraph and break elements, and finally the

definition list. As you read on, see which you think is the best solution. At the end of the chapter

I will impart my thinking on this subject, but rest assured that if any or all of the three were not

acceptable, I wouldn’t be discussing them. It all boils down to having the right approach for the

right form.

About Each Example

Each example first shows you the unstyled version—how it will appear should the style sheet

be unavailable or turned off by the user. This is very important for any section of a web page,

but especially so where forms are concerned. To have the display compromised when CSS is

unavailable could result in dual frustration—for you by losing valuable input (or even a sale if

it’s cash that ticks your buttons), and for the user by being unable to interact properly or purchase

your product.

Also, each example gets off to a fast start by utilizing the form CSS block created in the

previous section. There is no need to go through the styling of input fields and other elements

for each example, as most styles from the form CSS block will fall gracefully into each layout,

aside from a few exceptions that will be dealt with accordingly.

Here’s the full CSS for the form CSS block once more:

form {

 margin:0;

 padding:0;

 }

fieldset {

 margin:0 0 10px 0;

 padding:5px;

 border:1px solid #333;

 }

C H A P T E R 9 ■ F O R M S 183

legend {

 background-color: #DDDDDD;

 margin: 0;

 padding:5px;

border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

label {

 font-weight:bold;

 }

#name, #email, #message, #subject {

 width:100%;

 }

input, textarea {

 border:3px double #333;

 }

Let’s get stuck in then, dealing first with the most common method of laying out a form—

the good old table.

Table-Based Forms

The traditional approach to laying out a form involves a table. Nobody seems totally sure

whether form fields constitute tabular data, but the fact remains that tables are ideally suited

to form layout, and for very complex forms there is no workable alternative.

Let’s revisit the example form held within a table from the “Basics of Form Styling” section

earlier in this chapter.

Prepare

If you haven’t already prepared a file and style sheet for a table-based form (as described in the

section “Basics of Form Styling”), set these up as follows:

Create a file called forms_table.html and paste the table layout (X)HTML from the “Basics

of Form Styling” section into the <body>. In the <head> of the file, link to a new style sheet called

forms_table.css. Save the template.

Create the new style sheet called forms_table.css, and paste the form CSS block (from the

beginning of this section) into it, and save the file. Load forms_table.html in the browser, and

you should see something similar to Figure 9-4.

Take Control of the Table

Taking what you learned about basic table styling in Chapter 8, some simple rules can be declared

to bring the default table styling under control.

Here, the main table borders are turned off, and border-collapse is used to remove the

default padding from between the table cells. The font properties are also set right away.

184 C H A P T E R 9 ■ F O R M S

table {

 border:0;

 border-collapse:collapse;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

td, tr {

 padding:6px;

 }

td {

 border-bottom: 1px solid #666;

 }

Shared padding is declared for both the <tr> and <td> elements, but a bottom-border is

applied only to the <td> cells. Thanks to border-collapse, this will create the effect of a continuous

line separating each row of the form (see Figure 9-12).

Figure 9-12. Table with basic styling applied

Next, a background color is declared for each row. This could also have been declared

for the table selector, but this would have resulted in a larger gray area stretching past the

<tr> borders.

tr {

 background:#DDDDDD;

 }

C H A P T E R 9 ■ F O R M S 185

The Final CSS for the Table-Based Form

The full CSS for the table-based form follows. Now might be a good time to experiment with

background images and colors to further personalize your form.

table {

 border:0;

 border-collapse:collapse;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

td, tr {

 padding:6px;

 }

tr {

 background:#DDDDDD;

 }

td {

 border-bottom: 1px solid #666;

 }

form {

 margin:0;

 padding:0;

 }

fieldset {

 margin:0 0 10px 0;

 padding:5px;

 border:1px solid #333;

 }

legend {

 background: #DDDDDD;

 margin: 0;

 padding:5px;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

}

label {

 font-weight:bold;

 }

#name, #email, #message, #subject {

 width:100%;

 }

input, textarea {

 border:3px double #333;

 }

186 C H A P T E R 9 ■ F O R M S

Figure 9-13 shows the finished form.

Figure 9-13. The finished table-based form layout

Tables certainly assist the building of forms and are good way of ensuring that various

form elements stay where you want them to. Most designers favor having the element on the

left and the input fields on the right, and therefore use tables exclusively. However, the following

two examples are worthy of consideration, and arguably bring a little more panache to the

form layout without seeking to compromise any of this functionality.

Paragraph and Break Element Layout

Right, forget tables now, as we move on to something much simpler and arguably much more

accessible. With this approach, each label and input field is contained within its own para-

graph element, and the break tag is used to provide a little extra control within.

This is a particularly good solution if you care strongly about how your form will look without

a style sheet. The use of the break tags will ensure that the structure remains in place, and the

default margin and padding of the paragraphs will ensure that each <label> and <input> field is

still spaced nicely.

C H A P T E R 9 ■ F O R M S 187

Prepare

Create a file called forms_pbr.html and paste the following markup into the <body>. In the

<head> of the file, link to a new style sheet called forms_pbr.css.

<form action="" method="post" id="enquiryform">

 <fieldset>

 <legend>Enquiry Form</legend>

 <p>Fields marked * are compulsory.</p>

 <p><label for="subject">Subject *</label>

 <select name="subject" id="subject" tabindex="1">

 <option value="">Select</option>

 <option value="Option 1">Option 1</option>

 <option value="Option 2">Option 2</option>

 </select></p>

 <p><label for="name">Name *</label>

 <input type="text" name="name" id="name" tabindex="2" /></p>

 <p><label for="email">Email *</label>

 <input type="text" name="email" id="email" tabindex="3" /></p>

 <p><label for="message">Message or enquiry below</label>

 <textarea name="message" id="message" rows="11" cols="30" ➥

 tabindex="4"></textarea></p>

 <p><label for="updates">I would like to receive updates: </label>

 <input type="checkbox" name="updates" id="updates" ➥

 value="n" tabindex="5"/></p>

 </fieldset>

 <input type="submit" value="Send this enquiry" tabindex="6" />

</form>

Run tables_pbr.html in the browser and the result should be similar to that in Figure 9-14.

188 C H A P T E R 9 ■ F O R M S

Figure 9-14. Form layout out using paragraph and break elements

Why Not Make the <label> Element Block Level?

This is on the face of things a good idea. Rather than add the much-scorned
 tags after each

element, it’s true that adding display:block to the label selector would result in the input field

wrapping underneath the label, on a new line. This would certainly make the markup cleaner,

as in this example:

<p><label for="name">Name *</label>

<input type="text" name="name" id="name" tabindex="2" /></p>

C H A P T E R 9 ■ F O R M S 189

However, what is going to happen should the style sheet be unavailable? Unfortunately,

the <label> would no longer be block level, which is a real bummer. Figure 9-15 shows what

would happen in such a situation, where the style sheet is unavailable, and no
 tags are in

use to shunt the input fields onto new lines.

Figure 9-15. With the style sheet removed, the <label> elements are no longer block level, and, as a
result, everything looks squashed.

There ends the case for block-level <label> elements. Of course, if the powers that be were

to turn <label> into a block-level element, this debate wouldn’t be necessary; but it is, because

they won’t, and that’s that.

Apply the Form CSS

Create the new style sheet called forms_pbr.css, paste the form CSS block into it, and save the

file. Load forms_pbr.html in the browser, and you should see something similar to Figure 9-16.

190 C H A P T E R 9 ■ F O R M S

Figure 9-16. The layout with the form CSS block appplied

The first thing worth noting is that the <select> element is way too long, stretching as it

does for the full length of the <fieldset>. This is easily remedied by removing the <select>

element’s unique ID (subject) from the grouping that controls input widths.

#name, #email, #message {

 width:100%;

 }

Now the <select> element is defaulting to the width of the longest item it contains (see

Figure 9-17), which is pretty standard, and should suffice.

Figure 9-17. The <select> element is now reduced to its default size.

C H A P T E R 9 ■ F O R M S 191

If you are not happy with this default width, create a new selector for the subject ID and

declare a value in pixels or percentage that suits your design.

<fieldset> Background

There are now two possible ways to color the background of the form. The first is by declaring

a background color for the <fieldset> element.

fieldset {

 margin:0 0 10px 0;

 padding:5px;

 border:1px solid #333;

 background:#DDDDDD;

 }

This is fine if all you need is a block background color (see Figure 9-18). There is, however,

a much better approach using the existing paragraph elements.

Figure 9-18. <fieldset> background

Paragraph Background

So <fieldset> is fine if you need a solid block of color behind your form, but many designers

like to clearly define each <label> and <input> field. Luckily, this can be done by making the

paragraphs work a little harder.

192 C H A P T E R 9 ■ F O R M S

By declaring values only for paragraphs contained within the <fieldset>, the <label> and

<input> fields can be separated easily.

fieldset p {

 margin:3px 0 2px 0;

 padding:5px;

 background:#DDDDDD;

 }

Figure 9-19 shows that each paragraph has a solid gray background, with whitespace

controlled by the margin value in between, clearly defining each <label> and <input>.

Figure 9-19. Paragraph backgrounds clearly define the label and input sets.

Final Adjustments

All that is needed now is to fine-tune the layout. The final CSS follows, with further additions

highlighted with bold text. Note that font values are set on the parent element (<fieldset>),

and minor adjustments to margins in several selectors have been made to further tweak the

spacing of the elements.

C H A P T E R 9 ■ F O R M S 193

form {

 margin:0;

 padding:0;

 }

fieldset {

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 margin:0 0 10px 0;

 padding:5px;

 border:1px solid #333;

 }

fieldset p {

 margin:3px 0 2px 0;

 padding:5px;

 border:1px solid #666;

 background:#DDDDDD;

}

legend {

 background-color: #DDDDDD;

 margin: 0;

 padding:5px;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 }

label {

 font-weight:bold;

 }

#name, #email, #message {

 width:100%;

 }

input, textarea {

 margin:5px 0 5px 0;

 border:3px double #333;

 }

select {

 margin:5px 0 5px 0;

 }

The final result, shown in Figure 9-20, is a very pleasing form, clearly laid out and using

considerably less code than the table version.

194 C H A P T E R 9 ■ F O R M S

Figure 9-20. The finished form laid out with paragraphs and break elements

The only drawback here is that <label> and <input> fields are not aligned on the same line,

as they were with the table layout. If this is something that bothers you, perhaps the next example

might be worth your consideration.

Definition List Layout

Back in Chapter 8, you learned the various uses of the often forgotten definition list, all of which

were perfectly acceptable, and not likely to cause any kind of consternation.

So can a definition list be used to lay out a form? Well, more and more designers are saying,

“Yes,” although no official guidelines suggest that this is what a definition list is for. That said,

it is a perfect structural tool for the job, as you’ll see.

C H A P T E R 9 ■ F O R M S 195

Prepare

Create a file called forms_dl.html and paste the following markup into the body. In the <head>

of the file, link to a new style sheet called forms_dl.css.

<form action="" method="post" id="enquiryform">

 <fieldset>

 <legend>Enquiry Form</legend>

 <p>Fields marked * are compulsory.</p>

 <dl>

 <dt><label for="subject">Subject *</label></dt>

 <dd><select name="subject" id="subject" tabindex="1">

 <option value="">Select</option>

 <option value="Option 1">Option 1</option>

 <option value="Option 2">Option 2</option>

 </select></dd>

 <dt><label for="name">Name *</label></dt>

 <dd><input type="text" name="name" id="name" tabindex="2" /></dd>

 <dt><label for="email">Email *</label></dt>

 <dd><input type="text" name="email" id="email" tabindex="3" /></dd>

 <dt><label for="message">Message or enquiry below</label></dt>

 <dd><textarea name="message" id="message" rows="11" cols="30"➥

 tabindex="4"></textarea></dd>

 <dt><label for="updates">I would like to receive updates: </label></dt>

 <dd><input type="checkbox" name="updates" id="updates" value="n" ➥

 tabindex="5"/></dd>

 </dl>

 </fieldset>

 <input type="submit" value="Send this enquiry" tabindex="6" />

</form>

Save the template, and run it in your browser. The layout is already quite pleasing, with the

labels to the left and the input fields shifted below and indented from the left edge of the defi-

nition list (see Figure 9-21).

196 C H A P T E R 9 ■ F O R M S

Figure 9-21. Form layout with a definition list

It goes without saying, however, that some smashing CSS will make it even more appealing.

Two Stages of CSS

Create a new style sheet called forms_dl.css, and save the file. The CSS approach to this defi-

nition list is in two parts. First, the definition list needs bringing into line.

Remove Default Indenting

In Chapter 8, you learned all about the default margins of the definition list. The first job here

is to again remove the default margin by adding the following selector to the forms_dl.css file:

fieldset dd {

 margin:0;

 }

The result of this tweak, shown in Figure 9-22, brings the display to a similar starting point

as that of the paragraph and break element layout, with <input> fields wrapping directly under

the <label> element. Of course, what is really happening is that the <dd> element is wrapping

underneath the <dt> element.

C H A P T E R 9 ■ F O R M S 197

Figure 9-22. Default indenting removed from the <dd> element

That’s a good start, but the whole point of using a definition list is so that <label> and

<input> elements can be placed on the same line, but be spaced evenly. This is where the float

property comes in.

Float It

First, bring in a dt selector, a descendant of the <fieldset>. Several major adjustments are

made here.

The float property is used to ensure that all <dt> elements float to the left, which results in

all <dd> elements appearing directly to the right of these, bringing each onto the same line, as

it were. Floats are one of the most commonly used things in the brave new world of CSS layouts,

and so will be covered in much more detail in Part 2 of this book.

Note that the <dt> element is given a width of 150px to ensure that each is the same width,

regardless of how much text each contains. This neatens up the form and will make sure all

input fields to the right are aligned equally.

Notice also that light gray borders are temporarily added so that we can see what’s going

on in the browser, and that some simple padding is specified to space things out a little.

198 C H A P T E R 9 ■ F O R M S

fieldset dt {

 float:left;

 width:150px;

 padding:5px;

 border:1px solid #CCC;

 }

fieldset dd {

 margin:0;

 padding:5px;

 border:1px solid #CCC;

 }

Figure 9-23 shows that when this is viewed in the browser, a problem is immediately

evident. Basically, if the container or browser window is too narrow to accommodate the

<textarea>, it will still wrap underneath its corresponding <dt> element.

Figure 9-23. The temporary gray outlines show that without a set width for the <dd> element, the
<textarea> wraps under its corresponding <dt> element.

This is easily fixed by assigning a set width to the <dd> element. Here, 450px is enough to

accommodate a <textarea> defined as 30 characters wide with its columns="30" attribute and

value. Notice also that the temporary gray borders have been removed from the fieldset dt

and fieldset dd selectors.

C H A P T E R 9 ■ F O R M S 199

fieldset dd {

 width:450px;

 margin:0;

 padding:5px;

 }

fieldset dt {

 float:left;

 width:150px;

 padding:5px;

 }

fieldset dd {

 margin:0;

 padding:5px;

 }

As a result of the new width value for the <dd> element, the form is now looking pretty neat

and tidy (see Figure 9-24).

Figure 9-24. The <dd> elements (containing input elements) are floated next to the <dt> elements
(containing <label> elements).

As it stands, this might even be enough for some basic approaches to form layout, but

remember that the pre-prepared form CSS block is sitting there waiting to be thrown into the pot.

200 C H A P T E R 9 ■ F O R M S

Apply the Form CSS Block

Now add the form CSS block you prepared earlier (it should still be hot) into forms_dl.css

below the CSS you have created for this layout. Load forms_dl.html in the browser, and you

should see something similar to Figure 9-25.

Figure 9-25. The input fields are wrapping underneath the <label> elements.

Straight away there is a problem. Once again, the <input> fields are wrapping underneath

the <label> element. As you can see from the gray lines around the elements, it is actually the

width of the input fields (now 100%) causing the <dd> elements to shift underneath the <dt>

elements.

To counter this problem, a new width value is required for the offending <input> elements.

To do this, find the grouping of unique IDs for those elements and replace the 100% value with

one of 280px.

#name, #email, #message, #subject {

 width:280px;

 }

C H A P T E R 9 ■ F O R M S 201

Why 280px, you ask? Well, the outer container is 450 pixels wide. The <dt> element has

already been set to 150px, and we need to compensate for padding applied inside the definition

list. Therefore, 280px is small enough to ensure that the <input> fields will slot back into the

allotted space for the <dd> element. The result can be seen in Figure 9-26.

Figure 9-26. With a simple width adjustment for input fields with specific IDs, everything now
aligns correctly.

Set the Background Color

This time around, there are no paragraphs to apply background-color to, and to apply it to all

the individual <dt> and <dd> elements would result in a less-than-perfect box (look at the gray

outlines of these elements in Figure 9-26 to see why). Therefore, the job falls to the outer defi-

nition list.

fieldset dl {

 border:1px solid #666;

 background:#DDDDDD;

 }

Almost there, but notice that where the <label> text wraps to two lines (the final <label> of

the form) the text breaks out of the definition list element, as shown in Figure 9-27.

202 C H A P T E R 9 ■ F O R M S

Figure 9-27. The whole definition list has a gray background, but the last label’s text is breaking
out of the box.

This quirk is a result of using the float property to align the <dt> elements. All floats need

to be cleared, in order for following elements to compensate for them, and this will be discussed in

much more detail in Part 2 of this book. Thankfully for now, there is a tidy workaround.

Simply assigning 15 pixels of bottom padding to the definition list will ensure that the final

<label> element will have enough space in which to wrap.

fieldset dl {

 padding-bottom:15px;

 border:1px solid #666;

 background:#DDDDDD;

 }

Figure 9-28 shows that this simple method has ensured that there is enough remaining

space inside the definition list for the wrapping <label>.

Figure 9-28. The escaping label text is solved with padding on the definition list.

C H A P T E R 9 ■ F O R M S 203

A Few Final Touches

All that remains now is to make everything gel together. The final CSS for the definition list and

form elements follow. Note that a new selector for the paragraph within the <fieldset> is

added, used to make the paragraph appear as though in a box to match the definition list, and

that font properties have again been set.

fieldset dl {

 padding-bottom:15px;

 border:1px solid #666;

 background:#DDDDDD;

 }

fieldset dt {

 float:left;

 width:150px;

 padding:5px;

 }

fieldset dd {

 width:450px;

 margin:0;

 padding:5px;

 }

form {

 margin:0;

 padding:0;

 }

fieldset {

 margin:0 0 10px 0;

 padding:5px;

 border:1px solid #333;

 font: normal 12px 'Lucida Grande',Verdana,sans-serif;

 }

fieldset p {

 padding:5px;

 border:1px solid #666;

 background:#DDDDDD;

 }

legend {

 background: #DDDDDD;

 margin: 0;

 padding:5px;

 border-style:solid;

 border-width:1px;

 border-color:#FFF #AAA #666 #FFF;

 font-weight:bold;

 }

204 C H A P T E R 9 ■ F O R M S

label {

 font-weight:bold;

 }

#name, #email, #message, #subject {

 width:280px;

 }

input, textarea {

 border:3px double #333;

 }

The final layout can be seen in Figure 9-29. Another very neat solution, matching the capa-

bilities of the table, but without all the extra markup it brings with it.

Figure 9-29. The finished form laid out with a definition list

So Which Approach Is Best?

You’ve just worked through three sensible approaches to form layout—tables, paragraphs and

break elements, and definition lists. So which one is the best?

Well, it’s hard to say. I personally prefer the layout using paragraphs and break elements,

as it produces very lean code and is very accessible for any user. However, when it comes to

very complex forms, this approach becomes limiting, and the desire to align elements to the

right of the label becomes very tempting, especially if working with multiple check boxes,

for example.

C H A P T E R 9 ■ F O R M S 205

The table approach requires that you also include many elements left out in this example,

such as <caption>, <th>, and other accessibility aids. Users not only have to navigate a form but

also a table, so while you shouldn’t be afraid to use a table, think whether a particular form

needs one or whether it is simple enough to just use paragraphs.

The definition list approach is gaining popularity, but nobody is sure whether it is legal or

not. It’s certainly not illegal, and it will still produce valid code, but do consider the alternatives

before you plump for the definition list.

The answer is that no method is correct. Each will be applicable in different scenarios, and

like most aspects of web design, there is no perfect approach.

To Conclude...
This chapter merely skims the scum floating on the surface of the duck pond, and at this stage

this author is delighted that this book is not called Advanced CSS Web Development. What’s

more, interesting things are always happening in the web design industry, and approaches to

building accessible forms are like shifting sand. It pays to pay attention to industry web sites

and blogs for all the latest information and techniques, but especially where forms are concerned.

Also, always be sure to test your forms in a number of situations and get friends (or even usability

testing groups) to rip them apart. You might end up rebuilding them from scratch, but you’ll be

a better web designer as a result.

If the world of styling forms with CSS has tired you out, I strongly suggest you go out and

buy the biggest teapot you can find, come back, and fill it with very strong tea, as Part 2 of this

book gets serious. It’s time to start pulling all the fragments together and begin thinking about

layout. Stage 1 of your learning is complete.

■ ■ ■

P A R T 2

Logical Layouts

Part 1 of this book dealt primarily with the common elements of any design and how to

transform them with CSS. Taking what you learned in Part 1, you could now make a rather

smart-looking web site styled with CSS that has just one drawback—it would be entirely

vertical. Part 2 of this book looks at the numerous methods of pulling everything together

into custom layouts, and how to think horizontally by placing the content into columns.

Layout concerns the placement of text, images, and other elements within your design.

How these elements are arranged, both in relation to each other and in relation to the overall

design scheme, affects how the content is viewed and received by the end user, and can

immediately convey a specific mood or motive and provoke a specific reaction in return.

Semantic markup combined with CSS provides immense power when it comes to

layout, and it is perfectly possible to radically alter the entire layout of a web page with

minimum fuss, thanks to the inherent flexibility of CSS. Even better, you can use a few

simple CSS rules to alter layout depending purely upon the purpose of particular pages.

What if you need three columns for the home page, but just two for article pages? No

problem. One simple change to the <body> element can call the required CSS and adjust

the layout.

Chapter 10, “Layout Basics,” deals with the basic fundamentals of CSS layouts—the

grounding you need before you can really progress.

Chapter 11, “Classic Layouts,” will focus upon the many, many choices to be made

when it comes to layout: two, three, or four columns; fixed, liquid, elastic, or variable fixed

width; floated or positioned layout? We’ll also investigate something called the Box Model,

with specific regard to margin and padding, and how to get your columns to behave when

viewed with older browsers.

Chapter 12, “Layout Manipulation,” will look at smart methods of manipulating layout

depending on the purpose of the page, and how the semantic flow of the document can be

altered with CSS for display purposes.

Chapter 13, “The Journey from Layout to Template,” gets even more pragmatic,

looking closely at the most common elements used in typical web layouts, such as mast-

heads, logo placement, navigation, and footers, evaluating the best approaches to each

and exploring how to overcome common problems that inevitably occur.

Chapter 14, “Usability and Accessibility Enhancements,” moves a step further by

examining numerous methods for improving access to your content using some clever

CSS techniques. Your pages will already be accessible by default, but here the focus shifts

to some cool additions you can make to enhance the user experience further.

Chapter 15, “Tips, Tricks, and Troubles,” is a selection box of some of the cooler

things that can be done with CSS, making clever use of existing CSS properties to control

your content. This chapter also dips its toe into the fascinating world of hacks and filters

that can be used to help serve varying content to varying browsers, and also looks briefly

toward the forthcoming Internet Explorer 7. There are also some top tips for finding out

why things aren’t going as expected, with a super-useful troubleshooting section.

Chapter 16, “Case Study: The Dead Goods,” rounds off the book with a juicy sample

web site built using many of the techniques detailed in this book. It has columns, clever

images, a nifty logo—and dead rock stars!

209

■ ■ ■

C H A P T E R 1 0

Layout Basics

First up in Part 2, this chapter will introduce the fundamental CSS layout tools available to us,

such as floats and positioning, by exploring how they can be applied to basic elements. With a

core understanding of these key concepts, you’ll be armed and ready to face all aspects of CSS

layout.

Specifically, this chapter will cover

• Floats and clearing

• Positioning

Floats and Clearing
The concept of floats is key to layout using CSS. Floats allow you to rebel against the linear

nature of the flow of elements on a page, as the example in Figure 10-1 demonstrates. Without

floats, each element would be placed below the one above, and pages would be very long indeed.

There would be no columns and no inline images, and we’d all still be relying on tables for layout.

When you float an element, it becomes a block-level element that can then be shifted to

the left or right on the current line. A floated box is laid out according to the normal flow of

elements, but it’s then taken out of the flow and shifted to the left or right as far as the containing

element will allow. Content such as text can flow down the right side of a left-floated box and

down the left side of a right-floated box. Floats are a must for placing images in context, creating

columns, and generally allowing designers to think horizontally.

Great, right? Well, yes. However, there are quirks. Elements following a floated element

will wrap around it. If you do not want this to occur, those following elements need to be “cleared,”

essentially reverting back to the natural flow of page elements.

210 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Figure 10-1. More Than Doodles (http://doodles.cssmastery.com) uses floats for the whole layout.
All images and columns are floated to some degree.

Floats are also required to ensure containing elements do their job and actually contain

any floated elements within. Failing to clear those floated elements can result in a container

collapsing long before the end of the child elements it contains (see Figure 10-2). Clearing will

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 211

be covered in more detail later in this chapter and be featured throughout the various exam-

ples in this second part of the book.

Figure 10-2. If a floated element is not cleared correctly, the containing element may not recognize it,
and it will collapse after nonfloated elements.

The float Property

If an element needs to be taken out of the natural flow of elements, it can be floated. Three

possible values are available for the float property:

float:left

float:right

float:none

The first two values are pretty obvious, whereas none might not be. We’ll look at this later in the

chapter. By gaining a core understanding of floats, you will be prepared to go into battle with

floated columns for layout, and it is worth working through a few basic examples before moving

on. Let’s look at a couple of common uses for floats.

Floating Images

The goal here is to align a small image next to a block of corresponding text. This approach is

most commonly used to place a thumbnail image inline with basic introduction text for an article.

To follow these examples, it is worth setting up a new (X)HTML file and corresponding

external style sheet. Let’s jump back to this author’s ridiculous aspirations to be in the world’s

greatest rock ’n’ roll band. Place the following (X)HTML in a new file called floats.html:

<html>

 <head>

 <title>Chapter 10: Layout Basics</title>

 <link rel='stylesheet' media="screen" type='text/css' href='float.css' />

 </head>

 <body

 <div id="container">

 <h2>Introducing the band</h2>

 </div>

 </body>

</html>

212 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Save the file. Note that an external style sheet called float.css is referenced in the <head>

element of the document. Create float.css and paste the following code into it:

/* Specify blanket rules for all elements */

body {

 font-size:80%;

 font-family:'Lucida Grande',Verdana,sans-serif;

 margin:10px;

 background-color:#CCC;

 }

/* Container for all page content */

#container {

 padding:10px;

 border:1px solid #000;

 background-color:#FFF;

 }

/* Rules for headings */

h1 {

 font-size:150%;

 }

h2 {

 font-size:140%;

 }

h3 {

 font-size:120%;

 }

p {

 font-size:100%;

 line-height:150%;

 }

Save float.css and load the (X)HTML file in your browser. So far it is pretty unremarkable—

just a container element and a level 2 heading.

Next, create a small thumbnail image, roughly 80×80 pixels, and place it in your images

directory. Now copy and paste the following (X)HTML for a simple biography into the content

area of the file, being sure to add the appropriate path to your image.

<html>

 <head>

 <title>Chapter 10: Layout Basics</title>

 <link rel='stylesheet' media="screen" type='text/css' href='float.css' />

 </head>

 <body

 <div id="container">

 <h2>Introducing the band</h2>

 <h3>Simon Collison</h3>

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 213

 <p>Can't actually play any instruments, and is just along for the ride, ➥

 supposedly as manager. It's pretty clear to everyone that Collison is no ➥

 musician, and he certainly cannot sing.</p>

 </div>

 </body>

</html>

Save and load the file. It should look something like Figure 10-3. In itself this is not an ugly

layout, but with the image sitting on its own line, it is taking up valuable page real estate.

Figure 10-3. A basic profile featuring a heading, image, and paragraph

It must be time to float the image. First, define the image element by applying a simple

<div> element as its parent.

<h3>Simon Collison</h3>

 <div class="image_float"><img src="/images/collison.gif" alt="Simon ➥

Collison's mugshot" /></div>

 <p>Can't actually play any instruments, and is just along for the ride, ➥

 supposedly as manager. It's pretty clear to everyone that Collison is no ➥

 musician, and he certainly cannot sing.</p>

With this <div> in place, the image can now be easily manipulated using a simple float. Note

that you could also float the image by declaring image_float as a class within the

element.

<h3>Simon Collison</h3>

 <img src="/images/collison.gif" alt="Simon ➥

Collison's mugshot" class="image_float" />

 <p>Can't actually play any instruments, and is just along for the ride, ➥

 supposedly as manager. It's pretty clear to everyone that Collison is no ➥

 musician, and he certainly cannot sing.</p>

The second approach can be considered preferable, as it uses less markup. For this

example, we’ll use the first method, where the element is wrapped with a <div>, as this

provides greater control for us to apply further styling to the element at a later date.

214 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Floating Left

As previously noted, the float property can be given values of left, right, or none (the latter

useful to override any blanket floats where an exception is needed). Let’s first float the image

left.

Add the following chunk of CSS to the float.css style sheet and save the file:

.image_float {

 float:left;

 margin:0 5px 5px 0;

 }

Here, as well as define the float, right and bottom margins have been declared using short-

hand to ensure the text surrounding the image will not sit against its edges. Figure 10-4 shows

the result.

Figure 10-4. The image is successfully floated left, but why isn’t the container stretching vertically
to contain it?

Not bad, but not perfect. The float is working, in that the image is indeed floating to the

left, and the paragraph text is flowing around it to the right, spaced away nicely by the declared

margin. The problem, however, is that the containing <div> (container) doesn’t recognize the

float, and as a result it is not expanding vertically to contain the <image_float> element, only

the now-less-tall paragraph. It must therefore be a good time to look at clearing floats. Might

be worth making a cup of strong tea before you read on.

Clearing Floats

Elements following a floated element will wrap around that floated element. For example, if an

image floats left and is followed by paragraph text, that text will wrap around the image and

continue directly underneath it if long enough. If you do not wish this to happen, you can apply

the clear property to those elements that follow the float.

Four options are available for the clear property:

clear:left

clear:right

clear:both

clear:none

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 215

Usefully, clear:none is available should you need to single out an element that is typically

cleared, but needs to not be cleared for whatever reason. For example, there may be an occasion

where you reuse a cleared element numerous times, but in one instance you’d prefer text to

wrap around it rather than have it appear below. In such an instance, a new class could be

added to that element where clear:none overrules the clear property of the parent element.

Let’s look at the other clear values in more detail.

clear:left

By specifying clear:left, the element is moved below the bottom outer edge of any left-floated

elements.

Consider the following (X)HTML. The wording will change slightly with each example, but

essentially it will not change in structure. We’ll revisit these techniques a little later to help with

the layout of the musician profiles in the Introducing the Band examples, but first let’s look at

each in a more generic sense.

<h2>Clearing left</h2>

 <div class="floatbox"></div>

 <p>This paragraph is being cleared left, so it will be moved below the bottom ➥

 outer edge of the floated gray box.</p>

Some simple CSS selectors are used first to define paragraph properties and second a

simple gray box that will be floated left.

p {

 font-size:100%;

 line-height:150%;

 }

.floatbox {

 float:left;

 width:60px;

 height:60px;

 background-color:#999;

 border:1px solid #000;

 }

This gives us the layout in Figure 10-5.

Figure 10-5. Without clearing the paragraph, the text sits right up against the gray box.

216 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

The text is lying, as the text is blatantly still wrapping around the box. So, we need the para-

graph to clear the floated gray box. To do this, the clear property is added to the paragraph

selector, as follows:

p {

 clear:left;

 font-size:100%;

 line-height:150%;

 }

.floatbox {

 float:left;

 width:60px;

 height:60px;

 background-color:#999;

 border:1px solid #000;

 }

Notice that the box is still floated left, and that the paragraph is now cleared left. This

will force the paragraph to begin on a new line underneath the box (see Figure 10-6).

Figure 10-6. The gray box is floated left, and the paragraph is cleared left.

clear:right

Specifying clear:right will ensure that the element is moved below the bottom outer edge of

any right-floated elements directly above.

Let’s examine another example built upon the previous one. In the CSS, all that is needed

is to change the instances of left to right.

p {

 clear:right;

 font-size:100%;

 line-height:150%;

 }

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 217

.floatbox {

 float:right;

 width:60px;

 height:60px;

 background-color:#999;

 border:1px solid #000;

 }

Figure 10-7 shows that while the box is now floated to the right, the paragraph retains its

position on a new line, as it is cleared right.

Figure 10-7. The gray box is floated to the right, and the paragraph is cleared right to ensure it
appears on a new line, below the box.

Failing to change the paragraph’s clear value from left to right would result in the para-

graph text appearing to the left of the floated box, and on the same line. This can of course be

desired in some circumstances.

clear:both

By specifying clear:both, the element is moved below all floating elements, regardless of whether

they are floated left or right. In this example, the box is floated left, but the clear property for the

paragraph is given the both value.

p {

 clear:both;

 font-size:100%;

 line-height:150%;

 }

In the (X)HTML, a simple level 3 heading is added after the floated box. This heading has

no float or clear properties. As Figure 10-8 shows, the heading will wrap around the floated

box, whereas the paragraph will clear all elements preceding it.

218 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Figure 10-8. The gray box is again floated left. The second heading has no clear value and so wraps
around the box. The paragraph, however, clears both.

Clearing Your Floated Image

So, back to our floated image problem. Remember that although the image is being floated left,

and the text is flowing around it correctly, the containing element is not recognizing the float,

and is ending after the paragraph, and not the taller image (as shown earlier in Figure 10-5).

Clearing the float can now solve this problem, but the solution is less than perfect, in that it

calls for an extraneous element to be applied.

The Extraneous spacer <div>

Were there another element following the paragraph (such as another level 3 heading), the

clear property could be defined for that element, removing the need for a special element to

do the clearing. We’ll do this later, but for now, there is no following element, so the extraneous

spacer <div> is needed.

■Note One of the bugbears of CSS design is that in some cases, to achieve certain effects, we end up going

against the principles we hold most dear. The idea of adding meaningless extra markup to benefit presenta-

tion is a horrible one, but if we want the same results across all platforms, it remains a necessary evil in some

situations. This is definitely true for clearing floats within containing elements.

Immediately after the <p> element, add the spacer <div> element as follows:

<h3>Simon Collison</h3>

 <div class="image_float"><img src="/images/collison.gif" alt="Simon Collison's ➥

 mugshot" /></div>

 <p>Can't actually play any instruments, and is just along for the ride, ➥

 supposedly as manager. It's pretty clear to everyone that Collison is no ➥

 musician, and he certainly cannot sing.</p>

<div class="spacer"></div>

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 219

This horrible element is unquestionably presentational, but unavoidably necessary to

force the container to stretch vertically to hold the image. The next step is to define CSS rules

for the spacer:

.spacer {

 clear:left;

 }

By giving clear a value of left, the spacer is moved below the bottom outer edge of both

the image_float element and the paragraph. Although the spacer is invisible in the final result

(see Figure 10-9), it is now forcing the container to expand vertically to contain it.

Figure 10-9. The container is now forced to stretch vertically to accommodate all the elements within.

Clearing the float is necessary in most similar situations, as it may be unknown as to how

much paragraph text is to flow around the floated element. If more paragraph text were added

so that it extends beyond the height of the floated image, the spacer would not be necessary, as

the container would expand to contain the paragraph (see Figure 10-10). Still, to be on the safe

side, it is worth adding the spacer should the text be decreased at a later date.

Figure 10-10. With or without clearing the float, if the nonfloated element (the paragraph) is
“taller” than the floated element, the container will behave properly.

220 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Handling Multiple Floats

Obviously, there is more than just me in the band, and it is necessary to introduce the other

members, like Mr. Hendrix on lead guitar. It makes sense to add more profiles underneath my

own, within the main container.

As Figure 10-11 demonstrates, without the use of spacer <div>s, things aren’t quite right.

Aside from the fact that the container doesn’t recognize the float and collapses too early, note

also that Mr. Hendrix’s profile begins alongside my image. The level 3 heading is correctly

wrapping around my floated image. Correct, but ugly.

Figure 10-11. The second profile begins too early, correctly wrapping around the floated image
from the previous profile.

The first approach here might be to add a spacer <div> after each profile, as follows:

<h3>Simon Collison</h3>

 <div class="image_float"><img src="/images/collison.gif" alt="Simon ➥

 Collison's mugshot" /></div>

 <p>Can't actually play any instruments, and is just along for the ride, ➥

 supposedly as manager. It's pretty clear to everyone that Collison is no ➥

 musician, and he certainly cannot sing.</p>

 <div class="spacer"></div>

<h3>Jimi Hendrix</h3>

 <div class="image_float"><img src="/images/hendrix.gif" alt="Jimi Hendrix's ➥

 mugshot" /></div>

 <p>Possibly the greatest guitarist who ever walked the earth, Mr. Hendrix ➥

 is thankfully alive once more to play the next Dead Goods tour ➥

 across the North of England.</p>

 <div class="spacer"></div>

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 221

That’s fine, and it works (see Figure 10-12), but now the layout is using two instances of the

extraneous presentational spacer element, adding unnecessary markup bloat. There are seven

people in this band, so that means by the end of the profile section, there will be seven instances of

the spacer element. I don’t know about you, but I’m not very comfortable with that. There has

to be a better way.

Figure 10-12. With spacer <div>s, each profile is clearly distinct, but the design now uses two
instances of the extraneous presentational markup.

Clearing with Existing Elements

So how can the number of spacers be reduced? Earlier I mentioned that if there were another

element following the paragraph (such as another level 3 heading), the clear property could be

defined for that element, avoiding the need for a spacer <div>. Well, as there are now more

profiles, there are now other elements following each block of profile information.

Here, a level 3 heading begins each profile, so this will be the element used to clear the

float above. Focusing on the markup inside the container, let’s add a couple more profiles to

the (X)HTML. Note that all but the very last spacer is removed.

<h2>Introducing the band</h2>

 <h3>Simon Collison</h3>

 <div class="image_float"><img src="/images/collison.gif" alt="Simon ➥

 Collison's mugshot" /></div>

 <p>Can't actually play any instruments, and is just along for the ride, ➥

 supposedly as manager. It's pretty clear to everyone that Collison is no ➥

 musician, and he certainly cannot sing.</p>

222 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

 <h3>Jimi Hendrix</h3>

 <div class="image_float"><img src="/images/hendrix.gif" alt="Jimi Hendrix's ➥

 mugshot" /></div>

 <p>Possibly the greatest guitarist who ever walked the earth, Mr. Hendrix➥

 is thankfully alive once more to play the next Dead Goods tour across➥

 the North of England.</p>

 <h3>Janis Joplin</h3>

 <div class="image_float"><img src="/images/joplin.gif" alt="Joplin's ➥

 mugshot" /></div>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vestibulum in ➥

 lacus. ... Quisque vitae lorem placerat risus posuere congue. ➥

Integer a orci.</p>

 <h3>John Lennon</h3>

 <div class="image_float"><img src="/images/lennon.gif" alt="Lennon's ➥

 mugshot" /></div>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vestibulum in ➥

 lacus. ... Quisque vitae lorem placerat risus posuere congue. ➥

Integer a orci.</p>

 <div class="spacer"></div>

That last spacer will still be required, as the final profile has no elements following it, but still

needs to be cleared to force the container to stretch around it.

Now the level 3 heading can be used to clear the floats that precede it. The same clear value

used in the spacer is applied to the selector for h3:

h3 {

 clear:left;

 padding-top:20px;

 font-size:120%;

 }

Note that padding-top is also declared to create more space between each profile and

make things a bit prettier. Now, the level 3 heading is doing all the work, clearing the preceding

float and ensuring each profile begins on a new line (see Figure 10-13).

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 223

Figure 10-13. Introducing the entire band. The level 3 headings are now clearing the floats
above them, reducing the number of spacer <div>s from seven to just one.

224 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

The major benefit of clearing floats with existing elements should be obvious. The amount

of presentational markup is reduced dramatically, with just one final spacer needed instead of

seven. Markup is leaner, and complete float control is achieved.

Floating Right

It is just as simple to float images to the right, and some designers prefer to use this approach,

as it generally looks neater. The lines of text that wrap unevenly (unless lines of text are given

equal length using text-align:justified, which has very unpredictable results) to create a

jagged right edge can be neatened up nicely by placing the image to the right.

The first step is to simply adjust the value of the float to right, and to define margins to the

left of the image instead of the right.

.image_float {

 float:right;

 margin:0 0 5px 5px;

 }

The result can be seen in Figure 10-14. Images are floating in the right place, but the clearing

is no longer working. The second level 3 heading is wrapping around the first image, and the

container is no longer stretching to accommodate everything.

Figure 10-14. Images are floating right, but without declaring clear:right, the floats are being
ignored by following elements.

Thus, a simple adjustment to the two selectors used to clear floats is required. Where before

we were clearing left, we now need to simply clear right.

h3 {

 clear:right;

 padding-top:20px;

 font-size:120%;

 }

.spacer {

 clear:right;

 }

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 225

The level 3 heading is now moved below the bottom outer edge of the right-floating images,

and we return to the natural flow of elements (see Figure 10-15).

Figure 10-15. The natural flow of elements following floats is achieved by clearing below the
bottom outer edge of the floated images.

These approaches to floats merely skim the surface of possibilities, and by applying floats

to things like dates, icons, and links, some very neat, space-saving effects can be achieved.

Importantly, these basics will also form the crux of our approach to column layout in the next

chapter.

Positioning
Positioning allows designers to place (X)HTML elements with a greater accuracy using some

simple CSS rules. The position property determines the reference point for the positioning of

each element box. All boxes start out being positioned in the normal flow of elements in the docu-

ment. The position property allows us to rebel against this natural placement. Get comfortable

and empty your mind before you delve into this section, for CSS positioning is a difficult beast

to tame. Before CSS2 came along, building web sites bore little resemblance to traditional page

layout principles. Designers are used to being unrestricted when it comes to positioning, layering,

and being very specific about where items belong on a page.

Thankfully, the rules can be (to a certain degree) bent and manipulated to break free from

the restrictions of table-based design and the idea of the Internet as a basic information tool.

With positioning, designers can be truly creative. Regrettably, positioning is a very difficult

subject to understand right off the bat.

This section will only scratch the surface of positioning. The examples that follow are

designed to introduce you to the basic principles of CSS positioning; hence the results aren’t so

stunning at this stage.

In the next chapter, these principles will be adopted and expanded upon to create very

flexible layouts and unique page elements. As key layout tools, these principles need to be in

your mind early, so don’t forget what you pick up here, as you’ll need it in Chapter 11.

226 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Let’s begin by defining the four main types of positioning as quickly and simply as possible,

before looking at each in more detail:

• Static positioning: The easiest to understand, and closest to what you have already been

doing in this book. This term basically describes how elements are placed by default.

The browser takes your (X)HTML and parses it into the individual elements, applying

CSS to each as directed, and finally collating all of this into the visible web page. The final

position an element takes as a result of this is its static position, and as such, it is nothing

particularly special.

• Absolute positioning: Much cooler; absolute positioning allows you to dictate where the

top-left corner, bottom-right corner, or other point of reference of an element will sit in

relation to the nearest parent element that has been positioned out of the flow of the

document. When the web page is scrolled, the elements retain their position against

each other, and all scroll with the page as though glued together.

• Fixed positioning: Even cooler! Fixed positioning allows an element to be placed in rela-

tion to the actual browser window. Therefore, if the page is scrolled, everything moves

with it, except the fixed element, which holds its ground x pixels from the top, left, right,

or bottom of the browser window.

• Relative positioning: A relatively positioned element is relative to where it would normally

be positioned statically. That is, relative to where it would sit by default. For example, if

applied to a heading, you are defining where it should be relative to where the browser

would normally put it.

Basic Position Properties and Values

Opening this can of worms fully, there are many possible properties to be used when positioning

elements. For now, concern yourself only with the following properties:

position

top

left

bottom

right

Other position-related properties will come into play later in the book, especially when

you come to learning about layouts. For now, let’s look at how position and associated properties

affect basic elements.

position

Four values are available for position that reflect the four methods of positioning: static,

absolute, fixed, and relative. This declaration is necessary in order for your positioning to be

applied the way you desire. The static value is the default, as the browser will position elements

statically anyway. The position property will be covered fully when we come to exploring each

value shortly.

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 227

top, left, bottom, right

Once the position of the element is defined, the top, left, bottom, and/or right properties are

used to offset that element by the given values. All values can be defined using length, percentage,

or auto.

As stated, the offset is entirely dependent upon the value of the position property, the

results of which can be as shown in Table 10-1.

Examples

By applying CSS to the (X)HTML example, it is easy to see how each position value works with

the same top and left values.

Note that for our position examples, the following (X)HTML is used, and the aim will be to

control the position of the image () element.

<div id="container">

 <h3>Simon Collison</h3>

 <div class="image_float"><img src="/images/collison.gif" ➥

alt="Simon Collison's mugshot" /></div>

 <p>Can't actually play any instruments, and is just along for the ride, ➥

supposedly as manager. It's pretty clear to everyone that Collison is no ➥

musician, and he certainly cannot sing.</p>

</div>

The container div is given specific width and height values so that the browser window can

be forced to scroll in order to see the effects of all position values.

/* Define the container for positioning examples */

 #container {

 width:400px;

 height:400px;

 margin:10px;

 padding:10px;

 border:1px solid #000;

 background-color: #FFF;

 }

Table 10-1. Offset Outcomes Based Upon position Value

position Offset

static No effect. Browser will place elements in their default positions.

absolute The element is placed to the top, right, bottom, left, or combination thereof of
the nearest parent element that has been placed out of the document flow.

fixed The element is placed to the top, right, bottom, and/or left of the browser window.

relative The element is placed to the top, right, bottom, and/or left of the element’s
default position.

228 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

p {

 font-size:100%;

 line-height:150%;

 }

Now you are ready to play with positioning. Perhaps you should grab a stiff drink first.

static With either no position whatsoever or position:static declared, the paragraph and

image are arranged inside the container in their default (static) positions, as in Figure 10-16.

Figure 10-16. The elements in their static positions

relative OK, now the position value is changed to relative to achieve a result based on the

static position.

/* Define image position */

 img {

 position:relative;

 left:400px;

 }

This time, the image appears 60px above its original position (thanks to the negative top

value) and 400px from the left of the static position (where it would appear by default), as in

Figure 10-17.

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 229

Figure 10-17. The image appears 400px to the right from its static position, using position:relative.

This time, the position relates not to any parent element or to the browser window, but

specifically to the properties of the element itself. Notice that the gap remains between the

heading and the paragraph, where the image would normally sit in its default position.

absolute Let’s move the image again. Here, the position is first defined as absolute, and then the

coordinates are set using top and right.

/* Define image position */

 img {

 position:absolute;

 left:400px;

 }

By declaring left as 400px respectively, and combining this with position:absolute, the

image is moved appropriately in relation to the viewport, as in Figure 10-18.

Note that the paragraph has shifted up, and that there is no gap where the image would be

naturally. Also, while it might appear that the image is positioned in relation to the browser

window, it isn’t fixed, and if scrolled, the elements all move together as if glued into place.

Thus, the image is absolutely positioned.

230 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Figure 10-18. The image is 400px from its static position, now that position:absolute is used.

Now the cool bit. An absolutely positioned element is designed to take its point of reference

from the nearest positioned element. So, let’s see what happens when the parent element (the

container) is positioned relative to where it would normally sit.

/* Container for all page content */

 #container {

 position:relative;

 top:100px;

 width: 400px;

 height: 400px;

 margin: 10px;

 padding:10px;

 border: 1px solid #000;

 background-color:#FFF;

 }

/* Define image position */

 img {

 position:absolute;

 left:400px;

 }

Here, the container is moved 100px from where it would normally sit, using position:relative

and top:100px. So, because the image inside is absolutely positioned, it will take its starting point

not from the viewport, but from its original position within the container. Notice in Figure 10-19

that everything has moved down 100 pixels from where it all appeared in the previous figure.

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 231

Figure 10-19. The container is moved 100 pixels from its default position using position:relative.
As the image is absolutely positioned, it also moves down 100 pixels, because it takes its point of
reference from the nearest positioned element—the container.

fixed This is cool. Here, the position is defined as fixed, but the coordinates remain the same.

Note that the container is reverted back to its default (static) position.

/* Container for all page content */

 #container {

 width: 400px;

 height: 400px;

 margin: 10px;

 padding:10px;

 border: 1px solid #000;

 background-color:#FFF;

 }

/* Define image position */

 img {

 position:fixed;

 left:400px;

 }

As a result of this change, the image’s position will appear to be the same as in the absolutely

positioned example. The real surprise comes when you scroll the page (see Figure 10-20).

232 C H A P T E R 1 0 ■ LA Y O U T B A S I C S

Figure 10-20. The initial position of the image (top). Notice that the image remains in place
despite the page scroll, its position fixed in relation to the viewport.

Using magic (well, position:fixed) the image remains in view always, fixed 400px from the

left of the browser window. This technique has numerous possibilities, and is perfect for navi-

gation elements or forms that need to appear in view no matter how far the user scrolls down

the web page. It should be used with caution, however, due to poor support in much older

browsers such as Netscape 4.7 and below. Netscape 4.7 and below (along with certain other

elderly browsers) suffer from a poor positioning model known affectionately as the “sucks ass”

method. This causes perfectly logical, valid positioning to fail miserably, and thus also causes

users of these browsers to think that the terrible presentation of your completely valid layout is

somehow your fault. This user behavior completely justifies using any and all techniques at

your disposal to hide complex CSS from those browsers.

C H A P T E R 1 0 ■ L A Y O U T B A S I C S 233

Position This in Your Mind

As I mentioned earlier, these examples hint only slightly at the power of CSS positioning, and

there are many more properties that can be embraced to create some stunning page layouts

and content holders that perhaps defy your expectations of the humble browser.

To Conclude...
Good work, soldier. If this chapter was the assault course, the next is the battle. Now that you

have passed out of float and positioning college with flying colors, you are now ready to apply

what you have learned to more complex CSS layout.

Floats and positioning are only as complex as you make them. Simple procedures such as

those covered in this chapter are relatively painless once you get to grips with the quirks. Incred-

ibly adventurous designs can be developed using these techniques, and I urge you to experiment as

much as possible with these concepts.

In the next chapter, you’ll get to grips with column-based layout, one of the most fundamental

steps to becoming a CSS professional. Things are getting a little more exciting.

235

■ ■ ■

C H A P T E R 1 1

Classic Layouts

CSS layout is easy—really easy. At least, it might be in ten years’ time. Right now, and for the

last few years, it’s been an area of web design where cross-browser difficulties and other limi-

tations have caused much disagreement and despair. Most importantly, it is an area where

decisions are not to be made lightly.

A key factor in choosing a layout is audience. As you will be well aware by now, not every

visitor to your web site will have the same browser, and many will not be regularly updating

their browsers. They will not share an identical screen resolution, but will definitely have their

browser windows at varying widths. Some will be using a PC, some a Mac, and some particularly

clever ones might be using homemade machines cobbled together from old washing machine

parts and cornflake boxes. The truth is, your wild aspirations will have to take a backseat as you

begin to design for the lowest common denominator. It’s tough, but you are designing for your

audience, and not for yourself.

This chapter will examine some of the most common approaches to CSS layout with partic-

ular emphasis on flexibility and cross-browser performance. Deciding which layout is best for

your web site is entirely up to you.

We’ll also investigate something called the Box Model, with specific regard to margin and

padding, and how to get your columns to behave when viewed with older browsers.

Specifically, this chapter will cover

• Types of layout

• Liquid floated two-column layout

• Liquid floated three-column layout

• Liquid positioned two-column layout

• Liquid positioned three-column layout

• The Box Model

• Fixed floated layout

• Fixed positioned layout

236 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Types of Layout
Since the dark ages, one of the major topics of discussion for web designers has been layout,

and out of these discussions have come a proliferation of descriptive terms for the various

types of layout: fixed width, liquid, elastic, and variable fixed width, for starters. Then there are

other decisions to be made: should there be two, three, or four columns, and should the columns

be floated or positioned? As you might expect, this section introduces but a few of the possible

options available.

Let’s begin by seeking to define the two most common types of layout that will be covered in

this book, plus a brief explanation of some other approaches as a stepping-stone for the curious.

Fixed

A fixed-width layout has its total width and the widths of its columns defined using static width

measurements, typically pixels. A fixed-width layout does not stretch to fill the browser window,

and remains its set width whatever you do to it (see Figure 11-1).

Figure 11-1. The Shoutout web site (www.shoutout.info) is fixed at 720px width, and the width
remains unchanged whatever the window width.

The benefits of a fixed-width layout are obvious. By having a predetermined width for the

whole layout and its columns, the designer can be certain that window width and screen resolution

will not compromise his or her precious design, specifically with regard to carefully measured

internal elements such as banners, images, and carefully positioned text.

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 237

On the downside, this means that whatever width you declare for your whole design is

served to everyone. A 780-pixel-width design might look great on an 800×600 screen resolution,

but it starts to look a bit dwarfed on a spanking new iMac 17" screen with a 1280×1024 screen

resolution. Also, anyone viewing your site with a viewport of less than 780 pixels is going to get

horizontal scrollbars by default, which nobody really wants.

Liquid

A liquid (or fluid) layout expands and contracts to fill the browser window; Figure 11-2 shows

an example of this type of layout. Typically the columns will have widths declared using

percentage measurements, where the browser window (or possibly an all-encompassing

containing element) is 100%.

Figure 11-2. The One Nottingham web site (www.onenottingham.org) expands and contracts to
fill the browser window, thanks to columns specified using percentages.

An advantage of a liquid layout is that it adapts to suit the available viewing space. This is

a double-edged sword, however: while this is favorable for window widths from, say, 700 pixels

to 1024 pixels, at larger window sizes sentences can become incredibly long and difficult to

follow line by line. It is also more difficult to design images and banner elements to fit liquid

columns, where graphics may need to acknowledge the stretching or expanding containing

element and attempt to fit.

If we lived in an ideal world, all browsers would be as smart as Safari or Firefox for example,

where the deliciously useful max-width CSS property can be applied to stop the expansion of

the layout at a set width. Regrettably, IE6 and below on the PC do not support this, and similar

238 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

results cannot be achieved without some rather complex jiggery-pokery. However, it appears

that this will be fixed with the release of IE7. Hurray.

Elastic

The concept of the elastic layout is an interesting one, but it takes you into a world of browser

bugs and difficulties. While an elastic layout isn’t fixed, it is also stopped from getting too wide,

as you can specify a maximum width and a minimum width in pixels, ems, or percentages (see

Figure 11-3). The great benefit here is how the whole layout can scale when text is resized.

Figure 11-3. The BraemoreGemini web site (www.braemoregemini.com) stops expanding at a
certain browser size (top) and will only contract to a defined width (bottom).

The elastic layout is a more advanced layout option beyond the scope of this book, but

if you are curious, Patrick Griffith’s article “Elastic Design” (www.alistapart.com/articles/

elastic/) is a good place to start.

Variable Fixed Width

Seeing the term variable fixed width, you’re probably thinking, “How can a layout be both vari-

able and fixed?” Certainly this sounds like a contradictory term or oxymoron. The idea is that

the layout changes automatically to best accommodate the user’s window size. For example, if

the browser window is wide enough, the layout may contain three fixed-width columns. If the

window width falls below a particular width, one column is seamlessly placed under another,

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 239

creating a two-column layout with the entire markup still present, just reshuffled, as Figure 11-4

demonstrates.

Figure 11-4. At Colly Logic (www.collylogic.com), if the window is wider than 1020 pixels, the user
sees three columns (top); if it is narrower than 1020 pixels, the third column drops below the
second (bottom).

The most reliable method is to use JavaScript to assess the window width and change the

CSS of the web page as a result. Similar results can be achieved using pure CSS, although not

without a few cross-browser problems.

Richard Rutter collated some of the best methods in his article “Variable Fixed-Width

Layout” (www.clagnut.com/blog/1663/), and at the time of writing, this author’s blog

uses a smidgeon of JavaScript to achieve this affect (www.collylogic.com/?/comments/

redesign-notes-1-width-based-layout/).

Before You Build
Before moving forward, it’s worth preparing a basic (X)HTML file you can use to follow the

examples in this chapter.

The first job is to create a new file called columns.html, containing the following (X)HTML:

240 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

<html>

 <head>

 <title>Chapter 11: Classic Layouts</title>

 <link rel='stylesheet' media="screen" type='text/css' href='columns.css' />

 </head>

 <body

 ...column content goes here...

 </body>

</html>

Save the file. Notice that in the head of the file we are linking to an external style sheet

called columns.css. Create columns.css and place the following rules into it:

/* Specify blanket rules for all elements */

 body {

 font-size:80%;

 font-family:'Lucida Grande',Verdana,sans-serif;

 margin:10px;

 }

/* Rules for headings */

 h1 {

 font-size:150%;

 }

h2 {

 font-size:140%;

 }

h3 {

 font-size:120%;

 }

/* Default paragraph styles */

 p {

 font-size:100%;

 line-height:150%;

 }

Save columns.css. The style sheet contains nothing special at this stage, just a few simple

rules to control the look of the text, and a 10-pixel margin on the body element. With the prep-

aration out of the way, you can now get stuck into some cool layouts. Let’s go.

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 241

SEMANTICALLY CORRECT NAMING CONVENTIONS

Thinking semantically, it is very important to use sensible, explanatory names for the IDs and classes that you

create. Existing (X)HTML elements all have explicitly clear names that never compromise your markup; so

neither should your custom elements.

Imagine for a second that you are building a site that has multicolored text. Opening paragraphs might

be blue, some headings green, and highlighted text yellow. You’ll probably set about creating custom classes

that you’ll apply as spans around specific areas of text. That’s fine.

The trick is to not be too specific with your naming conventions. Defining a class called green might

make sense at the design stage, but once it has been littered throughout many pages of a web site, and it

comes time to redesign, your code is going to be lying when your green class is actually now rendering text

as pink.

It makes more sense to use descriptive names, such as highlight or intro_paragraph. If you are

using a class to turn heading text red only in your “services” section, call that class services_heading or

something similar that retains its integrity no matter how many times you redesign and recolor.

Later in this chapter in the section “Column Swapping Using Only CSS,” you’ll also see good examples

of why your columns need to be named sensibly. What are you going to do when your sidebar_left is

repositioned to the right? You might feel better if you’d called it sidebar_a or secondary_col.

For more thoughts on the wider interpretation and adoption of shared naming conventions, visit Andy Clarke’s

article “What’s in a Name” (www.stuffandnonsense.co.uk/archives/whats_in_a_name.html).

Liquid Floated Two-Column Layout
For the first layout, the goal is to create a simple two-column layout, featuring a main column

and a sidebar that stretches to fit the width of the browser window—totally liquid.

Masthead and Footer

All examples in this chapter also involve two other main sections—masthead and footer. These

are included in each example as they are almost always required in any layout, especially when

first getting to grips with CSS layout.

The masthead stretches the full width of the layout and typically holds a logo and possibly

the main navigation, plus any other important tools such as a search box or accessibility links

(access key information, style switcher, and so on), and serves to tidy up the top of the layout.

The footer tidies the whole thing up at the base of the layout, again stretching the full width of

any columns. The footer is typically used to store important information such as copyright

info, links to legal information (accessibility statement, terms and conditions, etc.), and possibly

a credit for the mighty web designer. In recent months, many designers have been exploiting

the footer as a place to collate the kind of secondary information usually found in a sidebar,

perhaps in conjunction with a basic one-column layout.

The graphic in Figure 11-5 shows a wireframe of the basic two-column layout we are

aiming to replicate using CSS.

242 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Figure 11-5. Simple diagram of the two-column layout with masthead and footer

With the diagram as a guide, we can now think about the structural (X)HTML needed to

divide the page into specific sections. Before beginning any layout, it is always worth “wire-

framing” your intended structure using Photoshop or another trusted application—or maybe

even some old fashioned tools called pens and paper.

■Note Remember that every time you create a new column <div>, you also create a new parent element

for any elements it contains. This means that you can be even more specific with your CSS and how you target

certain elements using contextual selectors.

The Floated Sidebar

Based upon our wireframe, the structural (X)HTML can now be added to the columns.html file.

For this method, it is very important that the sidebar ID appears before the content ID in the

markup, to ensure that the top edges of the two columns will line up. This is not entirely semantic

in approach, as it is likely that you will want your main content to come first, but this is a necessary

evil for this example.

If you are working through this example, be sure to place the following markup inside the

<body> element of columns.html.

<div id="masthead">

 ...masthead content goes here...

</div>

<div id="sidebar">

 ...sidebar content goes here...

</div>

<div id="content">

 ...main content goes here...

</div>

<div id="footer">

 ...footer content goes here...

</div>

Masthead

Footer

Content Sidebar

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 243

We’re on the way. Save the file and load it in the browser. As you can see in Figure 11-6, at

this stage everything is still totally linear. Note that in the screenshot, headings, paragraphs,

and list items have been added in each section, and I advise you do something similar to get

your example working as though it were a real page. The sample file columns.html contains the

markup used for Figure 11-6.

Figure 11-6. The content is divided into four main sections, although no CSS is used to define these
at this stage.

Styling the Masthead and Footer

Before moving on, let’s apply some basic styles to two of our sections—specifically masthead

and footer. All we’re going to do here is add identical rules for each, defining the section with a

black border and gray background, and applying some padding to beef them up a bit.

/* Masthead */

 #masthead {

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

/* Footer */

 #footer {

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

244 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

OK. The result, shown in Figure 11-7, doesn’t look too bad at this stage. The masthead and the

footer are both clearly defined and stretching the full width of the browser window.

Figure 11-7. Two of the four main sections (masthead and footer) are clearly defined with simple
CSS rules.

Time to Float the Sidebar

Now it’s time to think horizontally. The first step is to create the illusion of two columns by

floating the sidebar in much the same way as we floated the images in Chapter 10.

First, the content ID rules are declared, virtually the same as the rules for masthead and

footer except that there is no background color.

Identical rules are declared for the sidebar ID, with the crucial addition of float:right,

which will force sidebar to sit to the right.

/* Masthead */

 #masthead {

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 245

/* Content */

 #content {

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar */

 #sidebar {

 float:right;

 padding:10px;

 border:1px solid #000;

 }

/* Footer */

 #footer {

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

This simple additional CSS creates the suggestion of columns as shown in Figure 11-8.

Note that the sidebar is only as wide as its content, and that the text contained in the content

ID flows neatly around it.

Figure 11-8. By floating the sidebar to the right, the suggestion of two columns is beginning to form.

246 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Real Columns

Our “columns” thus far aren’t really columns at all. The content ID still stretches the full width

of the window, and the sidebar is really just a floated box within it. To achieve real columns, we

need width, and we need margin.

Here, the first decision is to decide upon the width ratio for your columns. As this layout is

liquid, and we are dealing with a layout that is 100% width of the browser window, our two

columns need to be defined using percentages.

First, a percentage width is declared for the sidebar. In this example, I’m going for 36% of

the total available.

The next step is to declare a right margin for the content ID that is just a bit larger than the

sidebar. If the right margin were the same width as the sidebar, the two sections would budge

up against each other, so a slightly larger margin is declared to ensure some space between the

two. Here, I’ve chosen a right margin of 40% of the total available width. Doing this will mean

that the main content area will be 60% width by default (100% – 40% margin = 60%), and we

need not declare this. The result is a space to the right of the content ID in which the sidebar

can comfortably fit, with 4% to spare. This 4% is the gutter between the two columns.

Note as well that a margin value has been declared for masthead, and that bottom margins

for content and sidebar have also been added to allow the content and sidebar IDs a little room

to breathe, and that clear:both has been added to the footer to ensure that it will always

appear below the two columns.

/* Masthead */

 #masthead {

 margin:0 0 10px 0;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

/* Content */

 #content {

 margin-right:40%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar */

 #sidebar {

 float:right;

 width:36%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Footer */

 #footer {

 clear:both;

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 247

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

The result of these simple changes is that the content ID will always have a 40% right margin,

whether there is a sidebar or not. This ensures that the text will no longer wrap around the floated

sidebar, which still isn’t a real column, but it sure as hell looks like one now (see Figure 11-9).

Figure 11-9. Declaring a right margin for the main content area gives the sidebar more room to
breathe, as the two columns have clearly defined boundaries.

As the columns have a thin border around them, it is clear that they are of an uneven

height. Without the borders it wouldn’t matter, but with borders or a background color, it’s

going to look wrong. In Chapter 12, we’ll look at a neat little trick called faux columns, which

makes use of a simple tiled background image to fool us into thinking that columns are of an

equal height.

So, that’s a basic two-column layout using a floated sidebar. As it stands, it is more than

enough to create a typical blog layout or simple web site, and it should be obvious how you

could get to work styling up the main sections and child elements using what you have learned

from Part 1 of this book to get a basic web site together. There are, however, many more layout

options available to you, including alternative methods of creating a liquid two-column layout,

which we’ll look at next.

248 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

WHY MUST EACH COLUMN HAVE A BOTTOM MARGIN?

Good question. In this chapter, each column has a bottom margin of 10 pixels to create a space between them

and the footer. So, instead of having to add this declaration to every column, can it not just be added to the

footer using a top margin?

Sadly not, is the answer. The CSS2 specifications back up this harsh answer (www.w3.org/TR/CSS2/

visuren.html#flow-control). When you clear a float, the top margin of the clearing element (the

footer in this case) is automatically increased so that the top border clears the bottom outer edge of the

floated elements. Therefore, with no top margin on the footer and no bottom margins on the columns, the

minimum clearance is done automatically, and in this case, 10 pixels is the same more or less as the automat-

ically added top margin, so there’s no difference.

So you must use a bottom margin on the floated columns in order to create a visible margin between

them and the cleared footer, Good fun this, isn’t it?

Liquid Float Left, Float Right

The previous method of floating just the sidebar was good, and works. Still, from a semantic

point of view, the main sections were in the wrong order in the markup (sidebar before content).

The beauty of the float:left/float:right approach is that we can return to more semantically

structured markup.

If you are still working through the examples, first switch the order of the content and

sidebar IDs in columns.css, so that the order is as follows:

<div id="masthead">

 ...masthead content goes here...

</div>

<div id="content">

 ...main content goes here...

</div>

<div id="sidebar">

 ...sidebar content goes here...

</div>

<div id="footer">

 ...footer content goes here...

</div>

For this approach, there are no amendments needed for the masthead or footer, and if you

are happy with the width of the sidebar, that too can remain unaltered.

Notice, however, that a couple of changes have been made to the content ID selector.

Here, it is being floated left, the margin has been removed, and in its place a percentage width

is declared.

/* Content */

 #content {

 float:left;

 width:54%;

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 249

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar */

 #sidebar {

 float:right;

 width:36%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

If no padding was set for either ID, the two widths could be larger. You could use, for example,

a content ID of 60% width, and a sidebar ID of 36%, which would give a space in between the

two of 4%. However, with 10 pixels of padding declared for each (totaling 40 pixels in width), the

content ID has a smaller width of 54% to compensate for this.

Figure 11-10 shows that the final layout is virtually identical to the floated sidebar example

we worked through in the previous section, but under the hood the markup makes more sense

semantically.

Figure 11-10. Two-column layout achieved by floating the content ID to the left and the sidebar to
the right

250 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Liquid Floated Three-Column Layout
Let’s jump back to the first floated sidebar example, where to succeed the sidebar element

needs to be placed before the content element. Here’s the (X)HTML again, but notice that the

sidebar ID has now been removed, and instead we have two new sidebars, one called sidebar_a,

and one called sidebar_b, just above it.

<div id="masthead">

 ...masthead content goes here...

</div>

<div id="sidebar_a">

 ...sidebar acontent goes here...

</div>

<div id="sidebar_b">

 ...sidebar b content goes here...

</div>

<div id="content">

 ...main content goes here...

</div>

<div id="footer">

 ...footer content goes here...

</div>

Next a couple of simple changes are needed to the CSS used for the floated sidebar method.

As there will be an extra column in play pretty soon, it is sensible to decrease the width of the

existing sidebar to 25%, and allow less space for it (30%) in the content ID. Importantly, the

sidebar ID used earlier has gone, so a new selector has been added called sidebar_b to match

one of the new (X)HTML elements.

/* Masthead */

 #masthead {

 margin:0 0 10px 0;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

/* Content */

 #content {

 margin-right:30%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar B */

 #sidebar_b {

 float:right;

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 251

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Footer */

 #footer {

 clear:both;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

This reworked CSS combined with the additional markup produces the layout in Figure 11-11.

Notice that as the sidebar_a element appears first in the markup, and as of yet has no matching

selector, it floats above the reworked columns.

Figure 11-11. The additional element appears above the columns that are still floated.

252 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

The next stage is to create a space to the left of the content ID in which the new sidebar can

be floated. This calls for a left margin declaration for the content selector.

/* Content */

 #content {

 margin-left:30%;

 margin-right:30%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Finally, rules for the new sidebar_a ID are declared. The values are identical to those of the

existing sidebar_b, except that in this instance sidebar_a is floated left.

/* Sidebar A */

 #sidebar_a {

 float:left;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Now that one sidebar is being floated left and one floated right, and owing to the adequate

left and right margins of the content ID, all three columns are sitting perfectly, and will stretch

and contract to fit the browser window without collapsing (see Figure 11-12).

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 253

Figure 11-12. The finished three-column layout

Column Swapping Using Only CSS

You are about to witness the true power of CSS layout. Notice in Figure 11-12 that in each

sidebar, the list headings contain either an A or a B, depending upon whether they are in

sidebar_a or sidebar_b. Remember that the two selectors are as follows:

/* Sidebar A */

 #sidebar_a {

 float:left

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

254 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

/* Sidebar B */

 #sidebar_b {

 float:right;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Notice that the float properties are highlighted. Now here’s the clever bit. To switch the

position of the columns from left to right and vice versa, just one simple change to each selector

is required. Basically, just switch the two rules over.

/* Sidebar A */

 #sidebar_a {

 float:right;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar B */

 #sidebar_b {

 float:left;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Simply by swapping the float values over, the columns are moved by magic (well, by good

planning and CSS), resulting in the layout captured in Figure 11-13.

This trickery is made possible due to the symmetrical nature of this layout. Both sidebars

are the same width and have almost identical properties, and the space allotted to each by the

content ID’s margins are identical.

This shuffling of columns further brings home the importance of correctly naming IDs.

What kind of nonsemantic mess would we be in here if the sidebars had words such as left or

right in their names? This method also demonstrates the unbeatable flexibility of a layout built

upon CSS. Can you imagine doing this with a table layout? Thought not.

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 255

Figure 11-13. By switching the float values of the two sidebars, the sidebars switch from left to right
and vice versa.

Liquid Positioned Two-Column Layout
For this approach, you can stick with the markup used in the previous floated two-column

layout example (where content precedes sidebar). Using positioning for layout can be advan-

tageous as there is no correlation between the order of the sections in the markup and their

final positions when styled with CSS positioning. This time, however, there will be changes to

the masthead CSS.

Height Is Important

In this example, a set height is required for the masthead, as this will be used as a reference to

help us position the sidebar in a little while. This set height would typically be informed by the

content of the masthead.

Let’s imagine that a company logo is to be placed in the masthead and that it is 60 pixels in

height. This measurement informs the first step toward a positioned layout.

256 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

/* Masthead */

 #masthead {

 height:60px;

 margin:0 0 10px 0;

 border:1px solid #000;

 background-color:#CCC;

 }

/* Apply padding to heading to avoid Box Model woes */

 h1 {

 padding:0 0 0 10px;

 }

The padding has also been removed from the masthead at this stage to keep things simple,

and instead added to the h1 selector. (To find out why, skip to the section “The Box Model” later

in this chapter.) The next step is to declare a right margin for the content ID as we did in the

floated sidebar method earlier in the chapter. When the sidebar is positioned later, it will be

slotted into the space created by this right margin.

/* Content */

 #content {

 margin-right:40%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Now the cool bit. As mentioned, the sidebar now needs to be positioned into the space to the

right of the content ID.

It is very important when using positioning to be mindful of any extra issues that might

flaw your positioning. In this example, note that there is 10 pixels of padding around the whole

body element, and that there is also a 10-pixel margin directly below the masthead, as illus-

trated in Figure 11-14. There is also a 1-pixel border around each edge.

We need to add these measurements to the height of the masthead (60 pixels) in order to

know exactly how far from the top of the browser window the sidebar needs to be. In this case,

it’s 10 + 1 + 60 + 1 + 10, equaling 82 pixels from the top of the window.

/* Sidebar */

 #sidebar {

 position:absolute;

 top:82px;

 right:10px;

 width:30%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 257

Figure 11-14. Calculating the distance between the top of the browser window and the top of the
sidebar in order to position it perfectly

Note that right:10px is also specified to ensure that the sidebar does not push up against

the right edge of the browser window, and therefore honors the 10 pixels of padding around the

<body> element.

With the sidebar positioned in place, the layout is looking pretty good (see Figure 11-15).

Figure 11-15. The sidebar is positioned exactly 82 pixels from the top of the window and 10 pixels
from the right.

10px (Padding)

10px (Margin)

60px (Masthead)

1px (Border)

1px (Border)

258 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Footer Woes

This approach has a hidden problem that won’t be so hidden once the sidebar contains more

elements. Look at Figure 11-16, and notice how the sidebar overlaps the footer now that I’ve

added three more lists.

Figure 11-16. If the contents of the sidebar grow too far, the sidebar itself will overlap the footer.

Remember that with a floated sidebar, the footer could be cleared to ensure it began after

the columns. With positioning, however, the sidebar has been taken out of the normal flow of

elements, and the footer can’t “see” this.

The best approach here is to make the footer work like the content ID, by giving it a right

margin and thus creating space for the sidebar.

/* Footer */

 #footer {

 margin-right:40%;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 259

This works well, but the footer no longer stretches the full width of the layout (see

Figure 11-17). Another problem is that the greater the difference in amount of content between

content ID and sidebar ID, the more unbalanced the layout will look. Still, it’s an option.

Figure 11-17. By declaring a right margin for the footer, the sidebar is free to grow vertically
without compromising the layout.

Liquid Positioned Three-Column Layout
This is a bit of a jump forward, but moving from two columns to three using the positioning

method isn’t too difficult really. Remember how we adjusted the right margin of the main

content ID to allow space for a sidebar? Well, all we have to do is something similar with the

left margin.

First of all, sidebar is removed, and two new sidebars need to be added to the markup.

They can be placed anywhere, seeing as CSS positioning will be used to place them visually.

To stay semantic, let’s add them after the content ID. Again, these changes can be made to the

columns.html file.

260 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

<div id="masthead">

 ...masthead content goes here...

</div>

<div id="content">

 ...main content goes here...

</div>

<div id="sidebar_a">

 ...main content goes here...

</div>

<div id="sidebar_b">

 ...sidebar content goes here...

</div>

<div id="footer">

 ...footer content goes here...

</div>

Notice that the new ID is called sidebar_a and the previous sidebar is now called sidebar_b.

It is important to use naming conventions that make sense no matter where the columns are

positioned, as using CSS positioning, sidebar_a could be placed on the left or the right, as

could sidebar_b, so names such as sidebar_left and sidebar_right would be semantically

incorrect. If you are working through this example, be sure to amend the CSS selector if you

have changed the name of your sidebar.

First, let’s make some space to the left of the content ID by declaring a left margin wide

enough to accommodate the new sidebar, plus a little space between the two.

/* Content */

 #content {

 margin-left:30%;

 margin-right:30%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Notice that the space allotted by each margin is decreased slightly, as there will be three

columns instead of two, and it therefore makes sense to have slightly narrower sidebars.

Next, a new selector for sidebar_a is required, and sidebar is renamed to sidebar_b.

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 261

/* Sidebar A */

 #sidebar_a {

 position:absolute;

 top:82px;

 left:10px;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar B */

 #sidebar_b {

 position:absolute;

 top:82px;

 right:10px;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

For each sidebar, the widths are a little smaller than in previous examples, as we are of course

allowing less space for each sidebar.

Finally, to prevent sidebar_a from overlapping the footer if there is too much content

within it, a left margin identical to that of the content ID needs to be declared for the footer.

/* Footer */

 #footer {

 margin:0 30% 0 30%;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

These very simple amendments take just a few seconds, but result in a perfect positioned

three-column layout that stretches to fit the width of the browser window (see Figure 11-18).

262 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Figure 11-18. A three-column layout achieved using absolute positioning and a few simple
amendments to the previous two-column version

Swapping the Sidebars

As with the floated three-column layout, it is easy to move the sidebars from left to right and

vice versa. Again, notice in Figure 11-18 that in each sidebar, the list headings contain either an

A or a B, depending upon whether they are in sidebar_a or sidebar_b. The two selectors are

as follows:

/* Sidebar A */

 #sidebar_a {

 position:absolute;

 top:82px;

 left:10px;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 263

/* Sidebar B */

 #sidebar_b {

 position:absolute;

 top:82px;

 right:10px;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Notice that the left and right properties are highlighted. To switch the position of the columns,

just switch the two rules over.

/* Sidebar A */

 #sidebar_a {

 position:absolute;

 top:82px;

 right:10px;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar B */

 #sidebar_b {

 position:absolute;

 top:82px;

 left:10px;

 width:25%;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

This simple amendment sees the sidebars switch position, as shown in Figure 11-19.

As with the floated three-column layout, this is possible due to the symmetrical nature of

this layout. Again, both sidebars are the same width, and have equal space in which to sit.

264 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Figure 11-19. By switching the left and right properties of the two absolutely positioned sidebars,
the sidebars switch from left to right and vice versa.

Fixed-Width Layout
Previous layouts in this chapter have been liquid in their approach, with widths declared using

percentage values. It is of course perfectly possible, and very common, to use set widths declared

using pixels. This approach can provide greater control and is still favored by many web designers.

There is one small problem though—older versions of Internet Explorer are going to take one

look at your code and render it somewhat incorrectly if you so much as think of using padding

and/or borders. With this most troublesome of browsers in mind, let’s look at an absolute

fundamental of CSS layout—the Box Model.

The Box Model

Before you start using fixed widths for your columns, it is imperative that you get to grips with

the Box Model. If you think you might need to apply margins or padding to any of your columns,

you need to be aware of the miscalculations these will cause in IE5 and IE5.5 on a PC. Go get

some tea, because this is a bit of a tough one.

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 265

So What’s the Problem?

In any standards-compliant browser, the total width for a containing element and its padding

and border is calculated as the combined values of that container’s width plus its padding and

border. This means that a 300px container is 300px plus values for padding and border. This is

how it should be.

However, IE5 and IE5.5 get this wrong by subtracting the widths of the border and padding

from the width value. This means that a 300px container ends up being much narrower. If

padding is declared as 20px, then the actual width of the container in these browsers will be

300 – 20 – 20, equaling 260 pixels. Ouch. The container shrinks.

Let’s examine this in more painful detail, using the following simple declaration as

an example:

/* Sidebar_a */

 #sidebar_a {

 width:300px;

 padding:10px;

 border:10px solid #000;

 }

Although the sidebar itself is 300 pixels in width, the space required to accommodate it

needs to be equal or greater than all the widths added together. This will be border-left +

padding-left + width + padding-right + border-right, which equates to 10 + 10 + 300 + 10 + 10,

giving a total width of 340 pixels. Figure 11-20 shows the Box Model as it is on modern browsers.

Figure 11-20. The Box Model as it is intended

However, on good old IE5 and IE5.5, the result is somewhat different. In this case, the

calculation will see the border and padding values subtracted from the width value. Figure 11-21

shows how IE5/Win and IE5.5/Win interpret the Box Model.

300px

10 +10+300+10+10 = 340

10px 10px 10px 10px

266 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Figure 11-21. The Box Model as IE5/Win and IE 5.5/Win understand it

Many people are still using IE5 and IE5.5, especially in offices with backward IT depart-

ments, or at home on Timmy’s old PC rescued out of the garage. This problem might have been

fixed in IE6, but it cannot be ignored. Thankfully, there is a solution.

The Box Model Hack

By exploiting a parsing bug found only in IE5 and IE5.5, two different widths can be declared,

only one of which will be read by these problematic browsers. Let’s take the previous sidebar

declarations as an example.

/* Sidebar_a */

 #sidebar_a {

 width:300px;

 padding:10px;

 border:10px solid #000;

 }

All modern browsers such as Safari, Firefox, and IE6 and above will understand the width

declared. That is still only serving one width though, so the Box Model hack is required. Here’s

the CSS again, but with the extra hack.

/* Sidebar_a */

 #sidebar_a {

 padding:10px;

 border:10px solid #000;

 width:340px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:300px;

 }

So what is happening here? Well, the adjusted width for IE5 and IE5.5 comes first. The

width in this case is the total of the correct width, plus border and padding values. As worked out

in Figure 11-16, that total width is 340 pixels.

Next, voice-family is used, as it is not a visual CSS property and will not affect the final

display, plus some jumbled syntax that fools IE5 and IE5.5 into thinking that the declarations

are over for this selector.

260px

300-10-10-10-10 = 260

10px 10px 10px 10px

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 267

Finally, the correct width (the actual width of the container) is declared for sensible browsers.

And that is the Box Model hack, as invented one dark night in a laboratory by the amazing

Tantek Celik (www.tantek.com).

Extra Caution for the Opera Browser

Sadly, the hack isn’t perfect, as some CSS2-compliant browsers can choke on the parsing bug

and end up delivering the width intended for IE5 and IE 5.5. This is the case for Opera, and if

we are going to “be nice to Opera” (as this little amendment is known), a couple of extra lines

are required in the declaration.

/* Sidebar_a */

 #sidebar_a {

 padding:10px;

 border:10px solid #000;

 width:340px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:300px;

 }

 html>body #sidebar {

 width:200px;

 }

If there were world enough and time, I might seek to explain what is going on there, and

you might even want to know. Thankfully, if you are like every other responsible web designer

out there, you’ll be content simply with the fact that the hack exists and works. Now, let’s get

back to fixed-width layout before your eyes start to bleed.

Fixed and Floated Three-Column Layout

With the Box Model under your belt, you can fix your widths with confidence. For this example,

we’ll take the liquid floated three-column layout created earlier. Here’s the (X)HTML again:

<div id="masthead">

 ...masthead content goes here...

</div>

<div id="sidebar_a">

 ...sidebar content goes here...

</div>

<div id="sidebar_b">

 ...sidebar content goes here...

</div>

<div id="content">

 ...main content goes here...

</div>

<div id="footer">

 ...footer content goes here...

</div>

268 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Next the existing CSS from the liquid floated three-column layout can be reworked for our fixed

version. The first decision to make is how wide the layout should be.

Declare Total Width in the Body

For this example, I decided that the total width for the layout would be 760 pixels. The first step

is to define this width in the body declaration.

/* Specify blanket rules for all elements */

 body {

 width:760px;

 margin:10px;

 font-size:80%;

 font-family:'Lucida Grande',Verdana,sans-serif;

 }

Doing this will ensure that any element floated right will not seek to stick to the right edge of the

browser window.

Fix Masthead and Footer

With the figure of 760 pixels in mind, the properties of both masthead and footer need exam-

ining. Paying consideration to the Box Model, if both masthead and footer are to be 760 pixels

in width, their specified width needs to be 760 pixels minus border and padding. That gives us

760 – 1 – 10 – 10 – 1 = 738. Therefore the declared widths will be 738 pixels.

/* Masthead */

 #masthead {

 width:738px;

 margin:0 0 10px 0;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

/* Footer */

 #footer {

 clear:both;

 width:738px;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 }

Column Widths

Now the columns need to have their set widths declared. With a working area of 760 pixels,

again the properties of each declaration need to be considered.

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 269

Content

Here, the final width value of the content ID is somewhat dictated by the fact that we need

to allow for existing border, padding, and margins. Taking values from left to right we have

200 + 1 + 10 + 338 + 10 + 1 + 200, equaling 760 pixels.

/* Content */

 #content {

 width:338px;

 margin-left:200px;

 margin-right:200px;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

From this, we know that each sidebar has a maximum allowance of 180 pixels. The margins

suggest 200 pixels are allowed, but this includes an extra 20 pixels either side of the content ID

to space the columns apart.

Sidebars

Here we need to get really mathematical. Each sidebar must be no wider than 180 pixels, including

padding and border values. Subtracting the border and padding values from 180 gives us a width

value of 158 pixels for each sidebar (180 – 1 – 10 – 1 – 10 = 158).

/* Sidebar A */

 #sidebar_a {

 float:left;

 width:158px;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

/* Sidebar B */

 #sidebar_b {

 float:right;

 width:158px;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 }

Safe in the knowledge that the combined widths of both sidebars and main content do not

exceed 760 pixels, we can be sure that the layout will look as it does in Figure 11-22 on modern

browsers.

270 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

Figure 11-22. The fixed and floated three-column layout as it appears using Firefox. Everything is
in its right place.

Hacking the Box Model for IE5

Knowing what you know about the Box Model as it is interpreted on IE5 and IE5.5, you’ll be

aware that things won’t look so perfect on those browsers. Time to hack.

For each declaration, the Box Model hack is added, owing to the fact that each makes use

of padding and border values.

/* Masthead */

 #masthead {

 margin:0 0 10px 0;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 width:760px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:738px;

 }

 html>body #masthead {

 width:738px;

 }

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 271

/* Content */

 #content {

 margin-left:200px;

 margin-right:200px;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 width:360px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:338px;

 }

 html>body #content {

 width:338px;

 }

/* Sidebar A */

 #sidebar_a {

 float:left;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:158px;

 }

 html>body #sidebar_a {

 width:158px;

 }

/* Sidebar B */

 #sidebar_b {

 float:right;

 margin-bottom:10px;

 padding:10px;

 border:1px solid #000;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:158px;

 }

 html>body #sidebar_b {

 width:158px;

 }

/* Footer */

272 C H A P T E R 1 1 ■ CL A S S I C L A Y O U T S

 #footer {

 clear:both;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 width:760px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:738px;

 }

 html>body #footer {

 width:738px;

 }

Adding these hacks ensures maximum compatibility across all browsers. It is good to

know that what looks great on your up-to-date copy of Safari or Firefox will also look pretty

good on old versions of Internet Explorer. The final result as viewed using IE5.5 can be seen in

Figure 11-23.

Figure 11-23. Thanks to the Box Model hack, the floated three-column layout behaves correctly on
IE5.5/Win.

C H A P T E R 1 1 ■ C L A SS I C L A Y O U T S 273

To Conclude...
I think you’ll agree that this has been a marathon chapter. Getting under the skin of CSS layout

and the inevitable quirks is a major step in becoming a CSS professional. Many designers know

enough to use CSS layout for modern browsers, but not so many bother to get to grips with the

Box Model and its subtle nuances so they can support older browsers. Just as many might be

comfortable with floats, but feel inadequate when it comes to positioned layouts. Some, dare

I say it, make a living blatantly copying carefully crafted layouts from other web sites, but you’re

already way ahead of them.

As ever, keep experimenting. Having the knowledge is one thing, but regularly building

layouts from scratch is the only way to become fully comfortable with all the methodologies.

This chapter has barely scratched the surface of CSS layout, and you’ll doubtless be aware of

other useful approaches, whether hinted at in this book, or from your time surfing the Internet.

With basic layouts under your belt, the fun begins in earnest. The next chapter deals with

manipulating your layouts for even greater flexibility, and following that we examine the multi-

tudinous methods of bringing core elements such as logos, navigation bars, and images into

your layouts.

275

■ ■ ■

C H A P T E R 1 2

Layout Manipulation

How does your layout perform on the big stage, under the glare of the lights? Importantly,

how easy is it for you—the web designer—to manipulate the layout to suit changing content?

This shorter chapter details two extremely useful concepts that professional web designers

make use of on a regular basis. First, we’ll look at switching layouts using an ID to trigger

specific CSS selectors for a specific situation. This is a simple concept that makes templating

much easier and helps you get the most out of your style sheets.

Later in this chapter, you’ll learn how to overcome a common problem where you’ll want

your columns to be the same height, but can’t specify equal heights in the style sheet without

backing yourself into a corner. Specifically, you’ll see how a background image can be used to

create faux columns, where each column appears to be the same height, regardless of content

(when in reality the heights still differ), allowing the columns to expand to hold any amount of

content.

Let’s dive straight in and get to grips with these super-useful layout methods. There are

just a couple of examples of each approach, but it should be clear how the inherent flexibility

of each can bolster the way you approach layout and save you an immeasurable amount of work.

Switching Layout with Contextual Selectors
Depending on what you want each page of your web site to do, you have the option of changing

the values of CSS rules accordingly using contextual selectors.

By adjusting the ID attribute applied to the <body> element of your (X)HTML file, you can

change the behavior of any child elements—that’s any elements within the whole <body> element.

Remember that a selector such as h2 {color: #333} would render all level 2 headings in a

document dark gray. So let’s say you have an <h2> in your sidebar, which you’d prefer to render

in red. Simply create an h2 selector that is contextual of your sidebar, for example, #sidebar h3

{color: #FF0000}. Thus you have two selectors separated by a combinator—in this case a single

whitespace character, tailored to target a particular instance of an element in your (X)HTML

document. That’s a contextual selector.

So why not use this method for the opening <body> tag of each page? After all, assigning IDs

and classes to the body is the easiest way to control a number of selectors in your CSS, for

everything in your <body> section will be open to its influence if you so desire.

276 C H A P T E R 1 2 ■ LA Y O U T M A N I PU LA T I O N

Setup

Let’s jump straight to the three-column floated layout created in Chapter 11. First, create a new

file called switch.html, or grab the switch.html file from the download area. Either way, you’ll

need the (X)HTML for the floated three-column layout detailed in Chapter 11. Notice that we

are referencing an external style sheet called switch.css.

<html>

 <head>

 <title>Chapter 12: Layout Manipulation</title>

 <link rel='stylesheet' media="screen" type='text/css' href='switch.css' />

 </head>

 <body>

 <div id="masthead">

 <h1>Masthead</h1>

 </div>

 <div id="sidebar_a">

 <h3>Sidebar A One</h3>

 Item One

 Item Two

 Item Three

 Item Four

 Item Five

 </div>

 <div id="sidebar_b">

 <h3>Sidebar B One</h3>

 Item One

 Item Two

 Item Three

 Item Four

 Item Five

 </div>

 <div id="content">

 <h2>Content</h2>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.➥

 Maecenas tempus nunc posuere turpis. Praesent porta. Nulla➥

 turpis leo, eleifendut, varius sit amet, dignissim non, mi.</p>

 <p>Aenean nec est. Nunc auctor purus tempor justo. Aenean➥

 ultrices. Nam urnami, ultricies at, commodo ac, rutrum ac,➥

 arcu. Cras eget mauris eget nibh tincidunt auctor.</p>

 <p>Fusce quam mauris, fermentum id, molestie vitae, convallis➥

 sit amet, magna. Duis sed lacus sit amet purus pretium➥

 varius. Suspendisse luctus hendrerit turpis.</p>

 </div>

C H A P T E R 1 2 ■ L A Y O U T M A N I P U L A T I O N 277

 <div id="footer">

 <p>Footer</p>

 </div>

 </body>

</html>

Next, prepare switch.css, either by creating a new file with the following declarations or

by grabbing the switch.css file from the download area.

/* Specify blanket rules for all elements */

 body {

 width:760px;

 font-size:80%;

 font-family:'Lucida Grande',Verdana,sans-serif;

 margin:10px;

 }

/* Rules for headings */

 h1 {

 font-size:150%;

 }

 h2 {

 font-size:140%;

 }

 h3 {

 font-size:120%;

 }

 p {

 font-size:100%;

 line-height:150%;

 }

/* Masthead */

 #masthead {

 margin:0 0 10px 0;

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 width:760px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:738px;

 }

 html>body #masthead {

 width:738px;

 }

278 C H A P T E R 1 2 ■ LA Y O U T M A N I PU LA T I O N

/* Content */

 #content {

 margin-left:200px;

 margin-right:200px;

 padding:10px;

 border:1px solid #000;

 width:360px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:338px;

 }

 html>body #content {

 width:338px;

 }

/* Sidebar A */

 #sidebar_a {

 float:left;

 padding:10px;

 border:1px solid #000;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:158px;

 }

 html>body #sidebar_a {

 width:158px;

 }

/* Sidebar B */

 #sidebar_b {

 float:right;

 padding:10px;

 border:1px solid #000;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:158px;

 }

 html>body #sidebar_b {

 width:158px;

 }

/* Footer */

 #footer {

 clear:both;

 margin:10px 0 0 0;

C H A P T E R 1 2 ■ L A Y O U T M A N I P U L A T I O N 279

 padding:10px;

 border:1px solid #000;

 background-color:#CCC;

 width:760px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:738px;

 }

 html>body #footer {

 width:738px;

 }

The CSS is at this stage identical to that used in Chapter 11 to create the fixed-width floated

three-column layout, so much of it should be familiar to you. If you have not yet read Chapter 11,

I advise you do so in order to understand all the complicated width declarations. Loading

switch.html in your browser should result in the layout in Figure 12-1.

Figure 12-1. The three-column layout originally created in Chapter 11

The Body

Over the next few sections you will see how adjusting the attribute applied to the <body> element

can trigger specific contextual selectors to radically adjust the layout.

Switching Columns

Let’s begin with a relatively simple change that reflects the way the sidebars were swapped over

in the previous chapter. The difference here is that instead of adjusting the existing declarations

280 C H A P T E R 1 2 ■ LA Y O U T M A N I PU LA T I O N

for sidebar_a and sidebar_b to float them left or right, you’ll create two alternative versions of

those selectors that will be triggered by the ID attribute declared for the <body> element (see

the next section) and in turn override the basic declarations.

Prepare the <body> Element

The first task is to apply an ID attribute to the <body> element in the (X)HTML file. For the purpose

of this walkthrough let’s call it switch, although in the real world the ID might reflect the

purpose of that file, so you might use home, about, article, or similar.

<body id="switch">

This now gives us an ID that can be used to put other elements into context. In other words, our

sidebars (and every other element) are now contained within the switch ID, and can therefore

be controlled with more contextualized CSS.

Add New Contextual Selectors

The existing selectors for sidebar_a and sidebar_b will remain as they are, as these ensure that

in normal circumstances sidebar_a is floated to the left and sidebar_b to the right. These are

the default states. To make the switch, new contextual selectors are required to adjust specific

values.

/* Sidebar A */

 #sidebar_a {

 float:left;

 padding:10px;

 border:1px solid #000;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:158px;

 }

 html>body #sidebar_a {

 width:158px;

 }

/* Adjust sidebar_a in switch context */

 #switch #sidebar_a {

 float:right;

 }

/* Sidebar B */

 #sidebar_b {

 float:right;

 padding:10px;

 border:1px solid #000;

 width:180px;

 voice-family:"\"}\"";

C H A P T E R 1 2 ■ L A Y O U T M A N I P U L A T I O N 281

 voice-family:inherit;

 width:158px;

 }

 html>body #sidebar_b {

 width:158px;

 }

/* Adjust sidebar_b in switch context */

 #switch #sidebar_b {

 float:left;

 }

Notice that each new sidebar selector is preceded with the switch ID, placing it into context.

All that is then required is to declare values specific to that situation. So, in this example, the

float values are switched (see Figure 12-2).

Figure 12-2. The switch ID applied to the <body> element triggers alternative selectors for the
columns and switches them from left to right and vice versa.

How good is that? Simply by adjusting the ID applied to the body element, major changes

can be made on a per-template basis. Let’s take this one step further.

From Three to Two Columns

A common approach to layout is to use a three-column layout for a home page or other heavy

content page, and to revert to a two-column layout for article pages where more focus is required

for the actual information and less extraneous information is required.

282 C H A P T E R 1 2 ■ LA Y O U T M A N I PU LA T I O N

In this example, the right column will be removed and the main column will be extended

to fill the gap it leaves, giving us a simpler two-column layout. Note that by replacing the switch

ID in the <body> element, the sidebars will revert back to their correct positions.

A New <body> ID

The first job is to replace the switch ID with another. This time around, let’s use an ID

called twoCol.

<body id="twoCol">

If the CSS stayed the same, this would make little effect, as there is no selector for twoCol at present.

The layout would be as it was when we started, with the sidebars in their original positions.

Add New Selectors in the Style Sheet

The approach here is similar to that in the previous example, where the new selectors are

placed into context by the preceding twoCol ID. First, the #twoCol #content selector is declared,

and any properties requiring new values are declared—only widths in this example.

/* Content */

 #content {

 margin-left:200px;

 margin-right:200px;

 padding:10px;

 border:1px solid #000;

 width:360px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:338px;

 }

 html>body #content {

 width:338px;

 }

/* Adjust content in twoCol context */

 #twoCol #content {

 margin-right:0;

 width:540px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:536px;

 }

 html>body #twoCol #content {

 width:536px;

 }

C H A P T E R 1 2 ■ L A Y O U T M A N I P U L A T I O N 283

The next step is to hide sidebar_b when a descendant of twoCol. Here, display:none is

used to hide the entire sidebar.

/* Sidebar B */

 #sidebar_b {

 float:right;

 padding:10px;

 border:1px solid #000;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:158px;

 }

 html>body #sidebar_b {

 width:158px;

 }

/* Adjust sidebar_b in switch context */

 #switch #sidebar_b {

 float:left;

 }

/* Adjust sidebar_b in twoCol context */

 #twoCol #sidebar_b {

 display:none;

 }

These simple changes transform the layout into a two-column version with just one switch

of the <body> ID. The result can be seen in Figure 12-3.

Figure 12-3. Using the twoCol ID, the appropriate contextual selectors are used and transform the
layout accordingly, with the second sidebar hidden completely.

284 C H A P T E R 1 2 ■ LA Y O U T M A N I PU LA T I O N

These examples work well as suggestions of how the <body> ID combined with contextual

selectors can create incredible flexibility in your layouts. There is also no reason why you couldn’t

take the same approach with IDs applied to other elements, such as a contextual selector based

upon the ID of one of your columns, where a particular ID was specified to control child elements

within that column. The possibilities are endless.

Note that these examples reuse the same (X)HTML file to get the point across, and we simply

change the <body> ID each time. In practice, you would typically make these ID decisions with

each new template you create. Therefore, when first creating your article pages, there would be

no third column in the markup anyway, so there would be no need to hide that column.

■Caution Remember, use display: none wisely. Leaving unwanted markup in a page only serves to

up the bloat quota. There is also a school of thought that suggests it’s a search engine optimization no-no.

Google may wonder why you are hiding content from the user and may assume you’re up to no good.

Faux Columns
A major problem that CSS gives us is how to make columns an equal height. Elements only

stretch as far as they need to, and a sidebar with only a small amount of information will not

magically expand to match the height of a main column featuring the entire works of Charles

Dickens. In rare situations where the amount of information held in columns is known and is

unlikely to change, fixed heights can be declared for all columns, but in the real world this is

inappropriate, as articles are of indeterminable length in most situations.

This brings us to a neat little trick that gives the impression of equal-height columns even

if in reality their heights are different—faux columns (the term was actually coined by

Dan Cederholm). The effect, shown in Figure 12-4, is achieved by using a background image

tiling vertically behind the columns.

C H A P T E R 1 2 ■ L A Y O U T M A N I P U L A T I O N 285

Figure 12-4. With borders around each column, it is clear that each expands only to contain its
content, and that both have very different heights.

Get Set Up

For this example, you’ll need the faux.html and faux.css files, available from the download

area. These files are simplified versions of the final two-column layout you arrived at through

the previous section, with no <body> ID attribute, and no mention of the third column in the

CSS—a clean start.

Let’s remove the borders around the columns and instead apply background color to each.

Knowing what you now know about the Box Model from Chapter 11, you’ll not be surprised that

the widths have been adjusted by 2px to account for the width of the removed borders.

/* Content */

 #content {

 margin-left:200px;

 margin-right:0;

 background-color:#CCC;

 width:540px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:540px;

 }

 html>body #content {

 width:540px;

 }

286 C H A P T E R 1 2 ■ LA Y O U T M A N I PU LA T I O N

/* Sidebar A */

 #sidebar_a {

 float:left;

 padding:10px;

 background-color:#999;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:160px;

 }

 html>body #sidebar_a {

 width:160px;

 }

With background-color specified for each column, it is clear that the left column is some-

what shorter than the main column, and that color alone cannot help here (see Figure 12-5).

Figure 12-5. Now background color is used to define the column heights, but still the columns
expand only as much as they need to in order to contain the child elements.

Define the Column Area

It must be time for faux columns! First, you will need to add the container div that will surround

the two columns and become the area where the tiled background image will do its stuff. If

there were no masthead or footer, this container would not be necessary, as the tiled image

could be applied to the <body> element. For this example, the effect needs to be limited to a

defined area only.

C H A P T E R 1 2 ■ L A Y O U T M A N I P U L A T I O N 287

<div id="container">

 <div id="sidebar_a">

 <h3>Sidebar A One</h3>

 ...sidebar content goes here...

 </div>

 <div id="content">

 <h2>Content</h2>

 ...main content goes here...

 </div>

</div>

You now have a defined area in which the magic can happen.

Create the Background Image

Before declaring the CSS for the container div, the faux column tile needs to be created. This

image needs to accurately reflect the widths of the two columns. Therefore, the given width

values are used for each gray box. The left, darker, column is 180 pixels in width, and the right,

wider, column is 540 pixels in width, as shown in Figure 12-6. The image can be any height, as

it will tile accordingly, although the shorter the better for decreased file size.

Figure 12-6. The background image that will be tiled vertically

Add the Container Selector

Next, declare values for the container selector. All that is needed here is to declare values for

the background property. This places the faux column tile and ensures it repeats vertically,

thanks to repeat-y.

/* Container that holds all columns */

 #container {

 background:url(/images/faux.gif) repeat-y;

 }

It is also a good idea to remove the background-color declarations for the column selectors.

/* Content */

 #content {

 margin-left:200px;

 margin-right:0;

 padding:10px;

 width:540px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:540px;

 }

288 C H A P T E R 1 2 ■ LA Y O U T M A N I PU LA T I O N

 html>body #content {

 width:540px;

 }

/* Sidebar A */

 #sidebar_a {

 float:left;

 padding:10px;

 width:180px;

 voice-family:"\"}\"";

 voice-family:inherit;

 width:160px;

 }

 html>body #sidebar_a {

 width:160px;

 }

Save the faux.css file and reload faux.html in your browser. If all has gone to plan, both

columns should now appear to be the same height, as in Figure 12-7.

Figure 12-7. Thanks to the tiled background image, both columns appear to be the same height.

What About the Box Model?

That is a very good question. Extra marks for reminding me about that. Previously, the back-

ground image created is based on the preferred widths, and not the widths declared as part of

the Box Model hack. Therefore the widths of 180 pixels and 540 pixels are inaccurate for IE6.

C H A P T E R 1 2 ■ L A Y O U T M A N I P U L A T I O N 289

Even so, the faux column method will still work, as the columns have no borders to suggest

their actual placement horizontally. In other words, they are defined visually only by the back-

ground image. This means that even though the columns are narrower on IE6, everything will

still look right, so long as there is enough padding around the content of each column.

■Note Your best bet is to try and avoid use of padding and borders with columns if possible, as this ensures

equal results across browsers. No borders and padding means that the Box Model hack is not necessary. With

the previous faux columns example, it would be better to apply any required padding to the child elements

inside each column, such as the headings and paragraphs.

Fluid Faux Columns

The faux columns method is not so applicable to a fluid layout, where columns have no set width

and vary based upon the width of the browser window. There are ways to apply faux columns to

fluid layout, however, but it’s a rather complex affair beyond the scope of this book. If it is some-

thing you want to experiment with, it’s worth reading the excellent article “Creating Liquid Faux

Columns” by Zoe Gillenwater (www.communitymx.com/content/article.cfm?cid=AFC58).

To Conclude...
I hope the two approaches we’ve walked through in this chapter get you thinking. In particular,

the idea of switching layouts by triggering specific contextual selectors based on an ID declara-

tion is key to a whole world of possibilities with CSS, and certainly something to bear in mind

when embarking upon a new project. It will just make your life so much easier to adjust selec-

tors for certain layouts, and of course you needn’t stop with the <body> ID, as this method is

useful for redefining any element.

The faux columns trick you will likely need less often, but it’s still a good one for the old

toolbox. You might find it useful to combine ID-based layout switching with faux column

images to create a super-flexible layout that suits any kind of layout. Just remember to be

mindful of how your layouts work cross-browser, especially when it comes to IE6.

In the next chapter, we’ll begin to look at the nuts and bolts of your designs, dealing with

typical page divisions such as mastheads, footers, and navigation, and how to get the most out

of each and also how to approach complex out-of-the-box examples. Buckle in.

291

■ ■ ■

C H A P T E R 1 3

The Journey from Layout
to Template

It’s now time for a fun chapter. You have worked so hard to get this far, that it seems appro-

priate to pull a few of your newfound skills together and walk through some common features

of most web sites to produce a working template. Templates are starting points, where you

begin to think about carving up the content and making it fit into set areas of the web site. This

is the second step toward a completed design, where common page elements are incorporated

into the column layout. These common elements will appear in many of your future designs,

and they are flexible enough to become starting points for any job.

Specifically, we’ll look at four common parts of the template—the masthead, headings

(<h1>, <h2>, etc.), simple navigation, and footer. By the end of the chapter, these four parts—

combined with the basic two-column layout you have already mastered—will form a basic yet

reasonably attractive design. These methods form the basics of most similar approaches, and

they should get the cogs in your head whirring round as you begin to see the potential for each

in your forthcoming designs.

In the final chapter of this book, you can get to grips with the amazing Dead Goods case

study, where some of these approaches will be revisited through more complex applications,

and many more of the skills you have used so far will be incorporated. For now, let’s walk

together through several basic approaches to a page design and skirt a few common problems

as we go.

■Note You can grab the completed files for this chapter from www.apress.com. The initial files

(masthead.html and masthead.css) contain only the base (X)HTML and CSS for the two-column

layout, and it is these files you will need to work through the examples. There are also two completed

versions, with bubble_footer.html and bubble_footer.css featuring the first footer example, and

action_footer.html and action_footer.css featuring the more complex footer example.

Masthead
The masthead is typically that part of the page that identifies the author or owner of the web

site through name, logo, and possibly strapline. Most often, all the impact is created using

graphics such as a logo, or a photographic image with logo or site title placed over the top.

292 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

There are a million and one ways to approach the masthead, but to get the ball rolling, let’s

look at a simple approach that is still implemented incorrectly by many.

Basic Masthead

Open masthead.html and you’ll find the following basic markup for the plain masthead. This

simply defines the section of the page and places the name of the site inside a level 1 heading.

<div id="masthead">

 <h1>Masthead</h1>

</div>

Styling Your Masthead

The simplest way to give your web page an attractive masthead is by applying one big, fat back-

ground image to the masthead div. Note that the white logo text (rendered in the lovely Sharktooth

typeface) is part of the image. The image to be applied here is the full width of the page (760 pixels)

and 150 pixels in height, and therefore the height of the masthead is declared as 150 pixels, and

the background image is declared.

/* Masthead */

 #masthead {

 margin:0 0 10px 0;

 width:760px;

 height:150px;

 background:url(/images/masthead1.gif) no-repeat;

 }

The result can be seen in Figure 13-1. This looks OK, although the <h1> element is on show,

top left of the embedded white logo text.

Figure 13-1. The masthead image is in place, but the logo is not clickable, and the <h1> element is
still visible.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 293

This is not the only problem. As well as the <h1> spoiling things, the logo itself is not a click-

able link. Typically, designers will want the logo to be a link back to the home page of the web

site—good practice as visitors will expect this. As the logo text here is part of the background

image, it cannot be made clickable without some complex advanced CSS using coordinates

and other dark magic.

The Smarter Masthead

Let’s start again. The first job here might be to hide the <h1> element, using a simple selector as

follows.

#masthead h1 {

 display:none;

 }

Using display:none ensures that the <h1> element is hidden. This will do for now, but we’ll

soon revisit this heading.

Now the graphics need to be reworked to make the logo clickable. For this two images are

required. The first is a tile that can be repeated horizontally to fill the masthead div. This has

been made by taking a thin slice of the original masthead background image (see Figure 13-2).

Figure 13-2. Tile for masthead

The next step is to rework the masthead selector to make that tile fill the given width.

/* Masthead */

 #masthead {

 margin:0 0 10px 0;

 width:760px;

 height:150px;

 background:url(/images/mastheadback.gif) repeat-x;

 }

This simple amendment gives us the masthead shown in Figure 13-3.

The final step is to crop the logo from the original masthead image, losing nothing from

the top or left edges to ensure the logo gradient matches that of the tiled masthead background

(see Figure 13-4).

294 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

Figure 13-3. The tiled image gives us just a masthead gradient at this stage.

Figure 13-4. The logo image is cut from the original full masthead image.

It will now be apparent that hiding the <h1> element was premature, as it will now be used

to contain the logo image. Notice that the alt attribute for the image reflects the text of the

image itself. If the image were unavailable, the site would still be put into some context thanks

to this alternative text.

<div id="masthead">

 <h1></h1>

</div>

Now revisit that h1 selector, and remove the display:none rule. You need to ensure that

there is no default or inherited margin or padding. If there were, this could cause the logo to sit

a few pixels away from the top-left corner, resulting in the two gradient backgrounds jarring

against each other.

#masthead h1 {

 margin:0;

 padding:0;

 }

img {

 border:0;

 }

It is important to be aware that by default, any images acting as links will be given a thin

blue line by the default browser style sheet, unless you override this value. Therefore, all

borders for images are given a value of 0.

This reworking of the masthead, shown in Figure 13-5, provides a much more useful

approach, with a clickable logo and two images with a smaller combined file size than the

original one image.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 295

Figure 13-5. The logo is now clickable.

Floated Right Content (Search Tool)

The reworked masthead looks good, and should be a flexible-enough approach for most simple

mastheads. Still, there is a big gaping space to the right of the logo just begging for some useful

addition. Personally, I think this looks like the ideal place for a search box.

Markup First

Within the masthead, the logo markup is untouched, and the search <form> element is placed

inside a new container called searchbox.

<div id="masthead">

 <h1></h1>

 <div class="searchbox">

 <form>

 <fieldset>

 <legend>Search the site</legend>

 <input type="text" name="keywords" size="15" /> <input type="submit" ➥

 value="Go" />

 </fieldset>

 </form>

 </div>

</div>

And a Little More CSS

The trick here is to float the <h1> element to the left, and float searchbox to the right. In previous

chapters, it was often necessary to clear floated elements with ugly extra markup such as a

spacer div, but there is no call for that here, as the masthead has a fixed height and will therefore

not collapse.

Note that the h1 selector now ensures that the element is floated to the left, and that the

new container searchbox is floated right. Inside this new container, basic <form> elements

(covered in Chapter 9) are placed.

296 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

/* Masthead */

 #masthead {

 margin:0 0 10px 0;

 width:760px;

 height:150px;

 background:url(/images/mastheadback.gif) repeat-x;

 }

 #masthead h1 {

 float:left;

 margin:0;

 padding:0;

 }

/* Search box holding the search form */

 .searchbox {

 float:right;

 width:220px;

 margin:15px;

 }

/* form items only inside searchbox */

 .searchbox legend {

 border:1px solid #666;

 padding:3px;

 background-color:#CCC;

 }

 .searchbox input {

 border:3px double #666;

 }

/* Turn off any default image borders */

 img {

 border:0;

 }

Notice also that the <form> element selectors are contextualized by prefixing the searchbox

selector, so as to avoid any future conflict with <form> elements that might appear elsewhere

on the web site.

The result can be seen in Figure 13-6, with the logo retaining its position to the left of the

masthead container, and the new search tools fitting snugly to the right.

This is a very useful approach, as many designers like to fill that big gap in the masthead

with something or other, whether that be search tools, mailing list sign-up tools, user options,

or even one of those zingy starburst splats announcing that the site is “New!” or in “Beta” or

“For Sale!”. Whatever the reason, knowing how to split your masthead in half is a useful method

that you’ll almost certainly use at some point or other. What’s more, it’s the kind of approach

that suits fluid layouts just as well, as left is left and right is right whether you are fluid, fixed,

or otherwise.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 297

Figure 13-6. Search tools added to the space at the right of the masthead

Headings
Earlier in the “Masthead” section of this chapter, the logo image was placed within the <h1>

element, which is perfectly acceptable so long as alternative text is available. To not place

image-based headings in this way would remove the underlying hierarchy that <hn> elements

provide, making your content less attractive to search engine robots, and more importantly

less easy to understand for visitors with images unavailable or turned off.

Very often, you will want (or be forced) to use a typeface for headings that is not web safe

(see Chapter 4 for an overview of web-safe fonts), and often this will require an image. Naturally,

what’s good for the <h1> is good for any other <hn> element, just so long as the alt attribute is used

sensibly.

Figure 13-7 shows an image featuring the same typeface (Sharktooth—I love it) as the logo

image, effectively keeping the design “on brand,” as fancy designers like to say. In other words,

it will match the logo, but will be much smaller, roughly echoing the default scale through the

(X)HTML headings.

Figure 13-7. Sidebar heading image

As with the masthead logo, the image element is placed within the level 3 heading element,

with the matching alt attribute value.

<div id="sidebar_a">

 <h3></h3>

 Item One

 Item Two

 Item Three

 Item Four

 Item Five

</div>

The same process is used to place the image for the level 2 heading (“Content”), except

that the image text is roughly midway in scale between the <h1> and <h3> images to ensure that

a visual hierarchy is obvious. As Figure 13-8 shows, the logo (<h1>) is clearly largest in scale,

with the “Content” heading (<h2>) a little smaller, but still quite bold, and finally the “Sidebar”

heading (<h3>) the smallest.

298 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

Figure 13-8. Custom headings still suggest a hierarchy of information, mirroring the headings
structure of the (X)HTML.

Free from the restraints of real text, it is easy to get carried away and misuse images in such

situations. Nobody should tell you that images within such important structural elements are

a no-no, but that doesn’t mean they aren’t open to abuse. Remember to retain a sense of hier-

archy when using images within heading elements, and only use them if you are determined to

use a specific typeface or visual effect that cannot be had with real text or CSS treatment.

Navigation
As you work your way through this book, you’ll probably be noticing lots of short, sharp snip-

pets of code that you’ll want to shunt into your layouts as you begin to experiment. This seems

like a good point to liberate a simple list from Chapter 6, as this will fulfill a common page

requirement (navigation) and help pull this template together quickly.

All of the files available for this chapter will feature a simple unordered list () in the

sidebar column. By applying the following CSS, any elements found in the sidebar will be

rendered with three-dimensional list items as detailed in Chapter 6.

#sidebar_a ul {

 width:160px;

 padding:0;

 list-style-type:none;

 font:bold 12px 'Lucida Grande',Verdana,sans-serif;

 }

#sidebar_a li {

 background-color:#DDD;

 margin:0;

 padding:2px 10px;

 border-width:1px;

 border-style:solid;

 border-color:#fff #666 #aaa #fff;

 }

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 299

Figure 13-9 shows the result thus far. This super-quick approach is already transforming

this simple template into a respectable design—albeit rather gray.

Figure 13-9. Now that the unordered list in the sidebar has been styled, the page design is
beginning to look a little more professional.

Now all that is needed is a stylish footer to round off the design. The next section doesn’t

have one though—it has two. Grab a quick cup of tea, and we’ll move on.

Cool Footers
So far, the layouts in this book have featured a section designated as a footer. Typically, the

footer will run the full length of the layout, and it is usually used to display information at the

bottom of the content hierarchy, such as copyright information, accessibility or validation

information, and possibly contact details or company legal information.

However, 2006 has seen the birth of the action-packed footer. An action-packed footer

does a bit more than just display the “less important stuff.” It will be bigger, bolder, and uncut,

acting as an extra smorgasbord of navigation items such as links to archived articles, music or

book recommendations, or even an author or company profile. Gone are the days when a footer

merely ended the page. Now it is just as likely to be an all-encompassing launchpad to other

areas of the web site. Of course, nothing is really that new, and big feet have been around for a

long time, but at the time of writing, action-packed footers are cool, and it is worth knowing

how to create one.

First, we’ll look at a quirky footer, where a simple background image is used to create an

amusing page finale. After that, we’ll detail the ins and outs of an action-packed version.

Quirky Footer

For the quirky footer, the aim is to use a large background image that blurs the boundary

between column area and footer, by acknowledging the background color of the page and

having it influence the footer. In this case, the white background of the page becomes the

bubble coming out of my mouth.

300 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

Let’s go through this idea step by step, but consider how you could use an equally inventive

image to make your footers that bit quirkier. Armed with a correctly sized image and some

well-styled text, the dull footer can be consigned to history.

Prepare the Footer Markup

The first task is to add the information that you want to show in the footer. At this stage, you

should not be thinking about the presentation, only the important stuff—the content. Here, it

is important to show copyright information and other site acknowledgments, so these go into

the markup inside paragraphs.

<div id="footer">

 <p>Copyright Simon Collison 2006</p>

 <p>Made with the finest XHTML and CSS.</p>

 <p>Content protected with a Creative Commons license. Some➥

 rights reserved.</p>

</div>

The idea is that whatever madness you use to make the footer seem all wacky and zany, the

actual markup is never compromised. Basically, I know I’m going to place the information in a

comedy bubble, but at no point should I limit the amount of information because I fear it might

not fit the graphic. Content is always more important than presentation—but you already

know that.

Apply the Background Image

The aim here is to make it look as if I’m speaking the information, so a speech bubble graphic

is created. This graphic is exactly the same width as the layout (760 pixels), and has ended up

being 128 pixels in height. As you’ll see in Figure 13-10, the author needs a shave.

Figure 13-10. Customized background image for the footer. Simon says . . .

Now the CSS. The first task is to ensure that there is no internal padding for the footer, or

left or right margins. This ensures that the image will sit perfectly, and that any element to be

placed within can be positioned using its own CSS rules to avoid confusion.

Next, the background image is declared and set to no-repeat. Sure, it’s the same size as the

container, but it is worth ensuring there will be no hint of tiling. Finally, the height of the footer

is adjusted to match the height of the image.

/* Footer */

 #footer {

 clear:both;

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 301

 margin:10px 0 0 0;

 background:url(/images/bubble_footer.jpg) no-repeat;

 height:128px;

 width:760px;

 }

Figure 13-11 shows the result in the browser. Note that the juxtaposition of image and text

is OK, but not quite right. Longer paragraphs extend beyond the boundary of the speech bubble.

Figure 13-11. The paragraphs are too long, extending outside of the bubble.

Fine-Tune the Paragraphs

This exact placement of the paragraphs can be controlled by first using 15 pixels of padding at

the top of the footer to shunt the first paragraph down further into the bubble, and then by

defining properties for all paragraphs that appear inside the footer. The key values are for the

paragraph margins, and these can be tweaked until the exact effect is achieved.

Most importantly, the paragraphs are given a width, which is just a bit shorter than the

average distance between the left side of the footer and the curve of the bubble. This width

declaration will force the text to wrap way before it reaches the curve.

/* Footer */

 #footer {

 clear:both;

 margin:10px 0 0 0;

 padding-top:15px;

 background:url(/images/bubble_footer.jpg) no-repeat;

 height:128px;

 width:760px;

 }

 #footer p {

 margin:0 0 6px 35px;

 padding:0;

 width:330px;

 font:13px/120% normal Verdana,Arial,sans-serif;

 }

The final result is shown in Figure 13-12, as it would appear in the base of the browser

window. It is possible that if more text were used, the paragraph margins and width might need

adjusting as the curve sharpens, but it is fine for this example, and the quirky footer is achieved

with minimal effort.

302 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

Figure 13-12. Simon says, “Touch this code, and I’ll find you . . .”

The Action-Packed Footer

With a quirky footer out of the way, it is time to put that to one side and explore the action-

packed footer. One of the first to make a big impact with this approach in 2006 was Derek Powazek

(www.powazek.com), who uses the action-packed footer to detail who he is, what he’s written

recently, and what books he is currently recommending (see Figure 13-13).

Figure 13-13. Derek Powazek’s action-packed footer, over at www.powazek.com

It is this kind of super-useful footer that is gaining favor at the time of writing, and it can

certainly be a reward for those who manage to make it to the bottom of a long web page. Let’s

take Derek’s example and attempt something similar.

More Action Means More Markup

Yes, it goes without saying that a footer like this cannot be achieved without an increase in

markup. For this example, we first think top-to-bottom, and not left-to-right, so although the

footer will need four “columns,” again content comes first. Therefore, the (X)HTML elements

go in first, long before any thought for divisions, columns or otherwise.

Notice that level 4 headings (<h4>) are used, as for this layout this is a logical transition of

hierarchy from the level 3 heading used in the sidebar earlier.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 303

<div id="footer">

 <h4>Small print</h4>

 <p>Copyright Simon Collison 2006</p>

 <p>Made with the finest XHTML and➥

 CSS.</p>

 <p>Content protected with a Creative Commons➥

 license. Some rights reserved.</p>

 <h4>Recent articles</h4>

 Interesting waffle

 Some amazing news

 Bad news everyone...

 I've won the lottery!

 New website launched

 <h4>Archives</h4>

 <form action="#">

 <fieldset>

 <select name="select1">

 <option selected value="/">Select Month:</option>

 </select>

 </fieldset>

 </form>

 <form action="#">

 <fieldset>

 <select name="select2">

 <option selected value="/">Select Year:</option>

 </select>

 </fieldset>

 </form>

 <form action="#">

 <fieldset>

 <select name="select3">

 <option selected value="/">Select category:</option>

 </select>

 </fieldset>

 </form>

 <h4>Recently launched</h4>

 <p>Dirty Pretty Things</p>

 <p>The Libertines</p>

 <p>Jon Burgerman</p>

 <p>Poptones</p>

</div>

304 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

This gives us the unstyled, lengthy footer shown in Figure 13-14. Still, all the information is

legible without CSS, so at least we know that all will be well should the CSS be unavailable later.

Figure 13-14. The content is held within the footer, but as yet untickled by CSS.

Divide the Footer into Sections

Before moving on to the style sheet, the footer content needs to be divided into sections so that

the “column” effect can be created later. Here, it seems logical that each section will be the

same width, so a class seems appropriate, as it can be reused. In this example, the class is called

footerCol, and it defines each block of content we wish to separate.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 305

<div id="footer">

 <div class="footerCol">

 <h4>Small print</h4>

 <p>Copyright Simon Collison 2006</p>

 <p>Made with the finest XHTML and➥

 CSS.</p>

 <p>Content protected with a Creative Commons➥

 license. Some rights reserved.</p>

 </div>

 <div class="footerCol">

 <h4>Recent articles</h4>

 Interesting waffle

 Some amazing news

 Bad news everyone...

 I've won the lottery!

 New website launched

 </div>

 <div class="footerCol">

 <h4>Archives</h4>

 <form action="#">

 <fieldset>

 <select name="select1">

 <option selected value="/">Select Month:</option>

 </select>

 </fieldset>

 </form>

 <form action="#">

 <fieldset>

 <select name="select2">

 <option selected value="/">Select Year:</option>

 </select>

 </fieldset>

 </form>

 <form action="#">

 <fieldset>

 <select name="select3">

 <option selected value="/">Select category:</option>

 </select>

 </fieldset>

 </form>

 </div>

 <div class="footerCol">

 <h4>Recently launched</h4>

 <p>Dirty Pretty Things</p>

306 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

 <p>The Libertines</p>

 <p>Jon Burgerman</p>

 <p>Poptones</p>

 </div>

 <div class="spacer"></div>

</div>

Note that just before the existing </div> that closes the footer, a meaningless spacer div is

added. As the footer will be of an unknown height (dictated by its variable content), and we’ll

be floating the footerCol sections, this is necessary to clear the floats and ensure the footer

does not collapse (see Chapter 10 for a refresher about clearing floats).

Float the Sections with CSS

Ah, the good bit. Just below the existing footer selector, the rules for the reusable footerCol

class are declared. The footer is 760 pixels in width, so each section needs to be a little less than

a quarter of that width, as the content does not need to fill the footer exactly. Here, 170 pixels

seems to work well, as it allows a little room for 15-pixel margins in between each section.

For now, a thin gray border is added so that it is easy to see how the sections are placed.

This border will be removed later. Oh, and of course, the sections are floated so that they line

up left to right.

/* Footer */

 #footer {

 clear:both;

 margin:10px 0 0 0;

 width:760px;

 border:1px solid #000;

 }

/* Reusable class for columns in the footer */

 .footerCol {

 float:left;

 width:170px;

 margin-left:15px;

 border:1px solid #999;

 }

/* Spacer div to follow multiple floated items */

 .spacer {

 clear:both;

 }

You will also notice that the spacer div is set to clear:both, ensuring that the footer recog-

nizes when the action is over, and doesn’t therefore collapse prematurely. Adding this CSS

gives us the neater layout in Figure 13-15.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 307

Figure 13-15. With a reusable class, the footer is split into four floated sections.

Take Control of the Content

With the sections neatly floated, the focus can now shift to the content within each. The first

section is easy to style, as it is nothing more than paragraphs and links. By now, you should be

comfortable with targeting these paragraphs using either your default paragraph rules or a

contextual selector to target only paragraphs found in the footer.

The second section, containing an unordered list, can also be targeted with a contextual

selector. Here, the CSS targets only lists found within the footer, so as to avoid conflict with any

other lists in the layout. This CSS is pulled directly from Chapter 6, where list-style-image

was first used to place a custom bullet alongside each list item.

#footer ul {

 margin:0;padding:0 0 0 25px;

 list-style-image:url(/images/list.gif);

 line-height:150%;

 }

#footer fieldset {

 margin:0;

 border:0;

 padding:0;

 }

Notice also that all default or inherited margin, border, and padding values are turned off

for the <fieldset> elements in the third section. This ensures that each <select> element is

aligned with the heading above. Figure 13-16 shows the progress thus far.

308 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

Figure 13-16. Paragraphs, lists, and fieldsets are all sorted out with CSS.

The fourth column is a little more difficult, as the goal is to align the images with the corre-

sponding paragraph element. By default, this simply doesn’t work. Therefore, the best option

is to revisit the markup and add the spacer div underneath each pairing to force separation

between each, as we did back in Chapter 10.

<div class="footerCol">

 <h4>Recently launched</h4>

 <p>Dirty Pretty Things</p>

 <div class="spacer"></div>

 <p>The Libertines</p>

 <div class="spacer"></div>

 <p>Jon Burgerman</p>

 <div class="spacer"></div>

 <p>Poptones</p>

 <div class="spacer"></div>

</div>

There are advanced methods of achieving the same separation without all this excessive

markup, but these are beyond the scope of this book. If you want to try my favorite example,

look at “How To Clear Floats Without Structural Markup” (http://positioniseverything.net/

easyclearing.html) by Big John and Holly Bergevin.

Now the images can be floated left and given a simple margin to ensure the paragraph text

has room to breathe. Also, a thin gray border is added around these images. Note again that the

rules only apply to images within the footer.

.footerCol img {

 float:left;

 border:2px solid #999;

 margin:0 5px 10px 0;

 }

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 309

The story so far, with all four sections of the action-packed footer treated with CSS, can be

seen in Figure 13-17.

Figure 13-17. All footer content is tidied with CSS.

Time for the Fun Bit

Now that all the preparation is out of the way, we can think about how to make a visual distinc-

tion between the footer and all of the content above it. For this, a long background image will

be used to give the impression of a cut-out-and-keep footer.

First, remove the gray borders added earlier to footerCol (which were used to see how

elements were aligning). Also, we increase padding at the top of the footer, creating a space in

which to drop the divider image.

/* Footer */

 #footer {

 clear:both;

 margin:30px 0 0 0;

 padding:40px 0 15px 0;

 width:760px;

 }

/* Reusable class for columns in the footer */

 .footerCol {

 float:left;

 width:170px;

 margin-left:15px;

 }

These adjustments result in the plainer footer shown in Figure 13-18.

310 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

Figure 13-18. The gray guide borders have been removed, and the footer is in need of a
dividing image.

So, at the top of the footer, before the four sections, there is now a space 40-pixels high,

created by increasing the padding on the footer. Into this space, the image shown in Figure 13-19

will be placed.

Figure 13-19. The dividing image (cutout.gif) will separate the footer from the rest of the content.

This is achieved simply by declaring the image as the value of the background-image property

for the footer, again using background-repeat:no-repeat to avoid tiling the image. Note that

these two properties are declared using background shorthand.

/* Footer */

 #footer {

 clear:both;

 margin:30px 0 0 0;

 padding:40px 0 15px 0;

 width:760px;

 background:#FFF url(/images/cutout.gif) no-repeat;

 }

It has taken a fair few steps, but finally the all-conquering action-packed footer is completed

(see Figure 13-20). Hopefully, you will see that the method used is flexible enough to be tweaked to

accommodate your own images and number of sections.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 311

Figure 13-20. The finished, action-packed footer. They’ll come from miles around to scroll to the
bottom of your pages.

Footer-Note

Remember that by adding more and more action to your footer, you increase the amount of

work that your file needs to do every time it is viewed. Some seasoned professionals argue that

this is a backward step, placing important content out of reach of the casual visitor, and that it

plays havoc with the expected hierarchy of a web page.

I disagree, as do many, and find the action-packed footer to be a great reward for scrollers

like myself. To not need to return to the top of the page to find another destination is a positive

step, so long as the markup remains lean, the information is well presented, and the tempta-

tion to overload the footer is avoided.

To Conclude...
Over the course of just a few pages, and with focus on just four key sections of a web page, a

simple template has been created. Depending upon which footer you used, and whether or not

you got all excited and ended up experimenting with your own graphics and colors, you could

have a page that looks a little like the one in Figure 13-21.

312 C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E

Figure 13-21. This template adds masthead, headings, and footer styling on top of a basic floated
two-column layout.

The whole point here is that you have worked through several basic template elements

that you will reuse again and again. This is a real strength, and it is very useful to build a small

library of reusable chunks of code that can get future web sites off to a quick start. Templates

save you time and money.

C H A P T E R 1 3 ■ T H E J O U R N E Y F R O M L A Y O U T T O T E M P L A T E 313

At this stage, it is important to acknowledge how far you have come. To be able to take

control of lean and mean (X)HTML and transform it—section by section—into a living, breathing

design is no small achievement. Well done, you! Have a cookie.

Over the remaining chapters, you will learn how to make your markup accessible and use CSS

to provide further tools to aid usability, such as print style sheets and better skip links. You will also

pick up a barrow-full of tips and recommendations for better CSS, before moving on to the

finale—the Dead Goods case study. Wipe those cookie crumbs from your keyboard, and get set

for the home straight.

315

■ ■ ■

C H A P T E R 1 4

Usability and Accessibility
Enhancements

Let’s begin with a law. Anyone and everyone should be able to read your content and use your

web site, regardless of ability or platform used. Simple. With regard to the Web, the term

usability denotes not only the elegance and clarity with which the user interface of a computer

program or a web site is designed, but also how easy it is for the target audience to accomplish

the appropriate tasks. For example, errors need to be minimized and dealt with, and the user’s

intended speed and approach should not be compromised. A web site’s usability is now consid-

ered just as important as performance and robustness.

This in turn brings us to accessibility, which, broadly defined in this context, means a web

site should be usable by as many people as possible without further modification or parallel

versions. It has come to mean the practice of making web pages accessible to people using

a wide range of devices, and not just browsers. This is especially important for people with

disabilities who require such devices to access the Web.

This book does not discuss all the accessibility requirements of (X)HTML, since our focus

here is on CSS. You should, for example, already be dividing large blocks of content into more

manageable groups; using heading tags to mark up headings; clearly identifying the target of

each link; providing metadata to add semantic information to pages and sites; providing infor-

mation about the general layout of your site (such as a site map or table of contents); and

navigation mechanisms should be used in a consistent manner. For more of these guidelines,

be sure to visit the W3C’s checklist (www.w3.org/TR/WCAG10/full-checklist.html). In this chapter,

we’ll look purely at how the application of simple CSS can enhance usability and accessibility,

with barely any additional markup.

The fact is, working through this book, you have already had your finger on the accessibility

pulse, so a big “well done” for that. You now know all about form labeling, scalable content,

visible hierarchy, link treatment, and the use of small file sizes using CSS. You feel good.

This chapter doesn’t get too advanced, merely skimming the surface of the accessibility

pudding. There are a million methods to enhance accessibility, and these are the edited highlights.

Guidelines and Legalities
The Internet has grown at an incredible pace. The original vision that its content should be

accessible to all became overlooked as more and more exciting design approaches became

possible. Web design became (for the most part) about how good something looked, and not

316 C H A P T E R 1 4 ■ U S AB I L I T Y A N D A C C E S S I B I L I T Y E N H A N C E M E N T S

how well it functioned. Thankfully, over recent years the focus has shifted back toward acces-

sibility, and responsible designers and clients realize that in reality, a balance between good

looks and functionality is a perfectly viable way forward.

It’s all about users being able to access your content and services, regardless of any disabilities

they may have. This is yet another reason why the separation of content, behavior, and style is

a good thing—if readers can’t use CSS or JavaScript, they should still be able to read the actual

content.

The law is woolly though, and designers are bombarded with guidelines that often contra-

dict one another, and it is difficult to make informed decisions about the law here. The Internet

is a global tool, with a site’s users coming from numerous countries. With this in mind, who is

to say that USA guidelines are more important than those from the UK, Germany, or Iceland?

The Disability Rights Commission (DRC) estimates that there are around 6.8 million disabled

people in the UK alone (that’s 19% of the population)—a huge number of which might want to

access your web site. If it is not accessible to them, they are going to either be turned off by it

immediately or persevere, become frustrated, and then be turned off.

To explain the ins and outs of the guidelines and legalities regarding web design would

require a whole book, and probably a book that can rewrite itself monthly. Still, it is important

to be aware of the legislation in your country. Following these guidelines will undoubtedly

make your web site more accessible, and rarely will this compromise your intentions. For

further information, be sure to visit the Accessify web site (www.accessify.com) or pick up a

copy of Web Accessibility: Web Standards and Regulatory Compliance by Michael R. Burks et al.

(friends of ED, 2006, ISBN: 1-59059-638-2).

Without wishing to scare you away from this subject, there is enough space to discuss a

couple of high-profile guidelines that garner much debate among responsible folks who work

with web sites.

Web Content Accessibility Guidelines

In 1999, the Web Accessibility Initiative (WAI) published the Web Content Accessibility Guidelines

(WCAG) 1.0. These are generally accepted as the definitive guidelines for creating accessible

web sites. Over the last few years, the WAI has been working on the second edition of these

guidelines: the WCAG 2.0, currently at the draft stage, but gaining much interest in the web

community, not least for the indecipherable and impenetrable details across 700 pages.

In a nutshell, the WCAG 2.0 draft encourages web developers, media departments, public

bodies, companies, and so on to establish their own baseline for progression. This is achieved

by first wading through the latest WCAG draft, and then deciding what is applicable to each

web project to form one’s own baseline (supported technologies, for example), before finally

implementing the appropriate technology according to that baseline. It can be a bit daunting

at first, but one day it may well be law. For more information (and I mean lots of information),

visit www.w3.org/TR/WCAG20/. Good luck with that.

Section 508

Section 508 (an amendment to the 1973 Rehabilitation Act in the US) requires that electronic

information such as that found on the Web be accessible to absolutely anyone with disabilities,

and that they have equal use of such technologies as federal employees and members of the

public who do not have disabilities. Initially intended for the US, Section 508 has become an

CH A P T E R 1 4 ■ U S A B I L I T Y A N D A CC E S S I B I L I T Y E N H A N C E M E N T S 317

adopted standard around the world, not always enforceable, but a recognized benchmark

nonetheless.

Where Section 508 differs from WCAG is that Section 508 is law—under Section 508, covered

parties alleging discrimination may institute civil suits based on alleged damages and, if successful,

receive monetary awards. In other words, disregard this law, and you may end up in court. For

more information, visit http://en.wikipedia.org/wiki/Section_508.

User Style Sheets
Just to prove that CSS is not only a great tool for web designers, it also allows web users a broad

degree of control over how they see your designs. This is particularly important for users who,

for example, have trouble reading your chosen fonts or need to up the color contrasts a little.

By specifying his or her own CSS, a user can transform the way web pages are presented. Note

that if a user style sheet is employed, it will become the top of the cascade.

For example, a visually impaired user might look to increase the page’s contrast by defining

bold colors in his or her own style sheet.

body {

 color: orange;

 background: black;

 }

By specifying orange text on a black background from the outset, the user ensures that text

for the web page is more legible for him or her individually. This simple introduction to user

style sheets is an idea that doesn’t always work. This is CSS, and therefore there are conflicts.

!important

To avoid conflict between the author and user style sheets, users can add a bit more power to

their own by utilizing the !important operator. If a user’s style sheet uses !important, it takes

precedence over any similar author rule. Here, for example, the following rule will ensure that

all paragraph text will be very large indeed.

 p {

 font-size:40pt !important;

 }

You can also use !important in your own style sheets, but it will always be overridden by a

user style sheet (except in IE, in which case the user must override this by also using !important).

Some web designers have been known to use !important alongside other declarations to send

different values to Internet Explorer, but a hack such as this is not what !important was intended

for. This author has certainly never committed such a heinous crime. Ahem. In Chapter 15, you

will learn more about hacks, and why they are best avoided. Don’t be slack—avoid the hack.

Inherit

By using inherit with !important styles, the user’s style sheet gains greater precedence, making all

such declarations applicable to any elements that inherit the values. Consider the following

syntax:

318 C H A P T E R 1 4 ■ U S AB I L I T Y A N D A C C E S S I B I L I T Y E N H A N C E M E N T S

body {

 color: black ! important ;

 background: white ! important ;

 }

* {

 color: inherit ! important ;

 background: inherit ! important ;

 }

Here, the first rule sets the colors of the <body>, and the second rule uses the * selector to

target all elements on the page and the inherit property to inherit the colors from the <body>.

For more information about user style sheets, read the comprehensive “User Stylesheets

in CSS” (http://dbaron.org/css/user/), or get more familiar with the user side of things by

trying one of several provided by the W3C site (www.w3.org/StyleSheets/Core/).

Being Helpful
As a designer, you long to create beautiful, functional things. The thrill of making something

that looks good, and works, is what you do. In a world where time is short and clients can be

very demanding, there is a tendency for many designers to brush over many of the hidden

enhancements, as the visible web site won’t really benefit from all that extra work. The client

is happy, so that is all that matters, right?

This is where designers let people down. A user with blindness or low vision, deafness or

hearing loss, learning difficulties, cognitive limitations, limited movement, speech difficulties,

or photosensitivity will be praying that your very important site has all sorts of useful hooks to

enable them to navigate quickly and simply, and perhaps using their keyboard alone (that is,

without a mouse). Failing to think about these users compromises your otherwise good work,

and decreases audience. Think of it this way: an Aston Martin looks good, but isn’t it crap unless

it has a good engine in it? As usual, the responsibility lies with you.

Styling Abbreviations and Acronyms

Any abbreviations, acronyms, and initials that appear in your (X)HTML should always be

contained within the <abbr> element, although some still use the <acronym> element, which

does a similar job.

Most browsers render text enclosed within an <abbr> element with a dotted border below

or surrounding it. Also, when the mouse hovers over the element, the description is displayed

as a tooltip. The exception is, unsurprisingly, IE6 and below, although these browsers will

display the tooltip using the outdated <acronym> element. Small wonder people get confused.

Note also that most screenreaders support the <abbr> element and can be set to speak the

title attribute when these elements are encountered.

Figure 14-1 shows the typical use of the <abbr> element, as used on the Regional Action

West Midlands (RAWM) web site (www.rawm.net).

Notice that the abbreviation is underlined with a dotted line, and on hover, a tooltip appears

expanding the abbreviation. As stated, this is a default for all but IE6 and below. It is therefore

necessary to add CSS to ensure cross-browser results.

CH A P T E R 1 4 ■ U S A B I L I T Y A N D A CC E S S I B I L I T Y E N H A N C E M E N T S 319

Figure 14-1. The RAWM web site uses numerous abbreviations, all of which can be expanded
thanks to the <abbr> element.

The (X)HTML

For all instances of the abbreviation, the text needs to be enclosed within the <abbr> element,

with the full description added using the title attribute. The sample file abbr.html is available

from the downloads pages of www.apress.com.

<abbr title="Regional Action West Midlands">RAWM</abbr>

This simple element can now be targeted using a corresponding CSS rule.

The CSS

If the title attribute has been used within the <abbr> element, the following CSS can be used to

suggest its existence by applying styling to the browser display. Here, both abbr and acronym are

used for the selector, just in case any old <acronym> elements are used or added by an adminis-

trator. First, a gray dotted border-bottom is declared to underline the element. Note also that

the cursor property is used to transform the cursor into a question mark on hover. The CSS file

abbr.css is also available from www.apress.com.

/* Style acronymns and abbreviations and change cursor */

 abbr, acronym {

 border-bottom:1px dotted #666;

 cursor:help;

 }

This simple rule ensures that IE6 and below will also underline any abbreviations and acronyms.

Naturally, by adding a selector for the <abbr> element, you have the freedom to move away

from the default display and get really creative, so long as the user perception of the element

isn’t compromised.

Abbreviated Table Headings

Don’t forget to provide descriptions for any abbreviations used in your tables also. For the

Dirty Pretty Things web site (www.dirtyprettythingsband.com), lots of information is pulled

320 C H A P T E R 1 4 ■ U S AB I L I T Y A N D A C C E S S I B I L I T Y E N H A N C E M E N T S

into the Discography table (see Figure 14-2). There is not enough space to fully label each

column, and therefore a simple key is provided using the <caption> element.

This key alone should not be considered as enough explanation, and the corresponding

letters in the <th> cells have been enclosed within <abbr> elements.

Figure 14-2. The Dirty Pretty Things discography uses abbreviations to save space within the
Discography table.

Sighted users can obviously use the key or the <abbr> explanations. Importantly, for users

navigating with screenreaders, each column can now be understood, and the column informa-

tion has proper context. These additions take just a few minutes to code, but make a world of

difference for users with disabilities.

Specialized Style Sheets
In the “Importing and Combining Styles” section of Chapter 1, we looked at sensible manage-

ment of multiple style sheets and how to serve specific style sheets for specific viewing platforms.

A key accessibility method, this approach ensures the most appropriate display of your pages

within the confines of the end device. Now it is time to look at the best usage of CSS for these

style sheets, and the best approaches for controlling the display and functionality for printing

and handheld devices.

Note that no changes to the markup within the whole <body> element will be required for

either print or handheld style sheets. How’s that for CSS power?

Print Style Sheets

How many times have you found an article on the Internet that you wish to print, only to find

that when you click Print, it takes half a day to print owing to all the advertising banners, useless

sidebars full of links, and the jet black background that is sapping your expensive ink cartridge?

Often, I imagine.

Take a look at the article from the Science City web site (www.science-city.co.uk) in

Figure 14-3. The design has been approached to ensure that the black-with-white-text approach

to the overall brand has been carried over to the web site. This is great for the screen, but that

black background is going to kill the printer. Also, does anyone really need to print the login

tools or unrelated image? And what about the links in the article? They’ll be pretty useless on a

piece of paper, right?

CH A P T E R 1 4 ■ U S A B I L I T Y A N D A CC E S S I B I L I T Y E N H A N C E M E N T S 321

Figure 14-3. The Science City web site features a jet black background, which is not ideal
for printing.

All of these questions can be answered with a custom print style sheet. For the Science City

example, users can click a “Print version” link to view the print version in their browser using a

stripped down (X)HTML file, with much of the extraneous markup removed, and only the print

style sheet referenced. This approach isn’t necessary if you wish users only to witness the effects of

the print style sheet when they grab the paper from the printer. The following steps simply tell

the printer to use the print style sheet, ensuring it reworks the design without the need for a

new (X)HTML file or any changes to the existing markup.

Prepare the (X)HTML File

Although we covered this in Chapter 1, let’s ensure that a print style sheet is specified in the

<head> of the (X)HTML file, using the media attribute to describe the role of each style sheet.

<link rel="stylesheet" media="screen" type="text/css" href="screen.css" />

<link rel="stylesheet" media="print" type="text/css" href="print.css" />

The next step of course is to create the print.css file you have referenced in the <link>

element. It is this style sheet where all the work will happen. Some designers copy all of their

existing CSS from the screen style sheet into the new print style sheet and edit this down for the

simpler print design. However, so long as you use the CSS from the next few steps, you will

ensure that the printed version of your page is sleek, simple, and printable.

322 C H A P T E R 1 4 ■ U S AB I L I T Y A N D A C C E S S I B I L I T Y E N H A N C E M E N T S

Think “Headed Paper”

Never lose sight of the fact that your beautifully designed web page will end up on a sheet of

office paper. With this in mind, it pays to imagine the end result looking like an office memo or

letter—simple margins, black text on headed paper.

First, ensure the background is white by declaring so in the body selector. Also set text to

black here, and remove margins.

body {

 background-color:#fff;

 color:#000;

 margin:0;

 padding:40px;

 font: normal 14pt/160% verdana,arial,sans-serif;

 }

Note also that the font-size is turned up to 14pt (always use point sizes for more accurate

printing). Often, what seems like a large font-size on screen will be printed much smaller, so

aim for a large font-size, and test the results with your own printer.

Serve an Appropriate Logo

Keeping the headed paper example in mind, if your site’s logo is white text on a black back-

ground or might look a bit odd sat on a white background, you might want to invert or amend

this using image-editing software. Ideally, dark text on a white background will suit the print

layout and keep ink use down to a minimum, as you will see shortly in Figure 14-4.

Hide Unwanted Page Areas

Typically, the only part of the page you wish to print is the main column holding the article.

Any other columns or elements you do not wish to print can be grouped in one selector and set

to display:none.

/* Hide the following items */

 #sidebar_a, #sidebar_b, #footer {

 display:none;

 }

Normally, it is not advisable to use display:none to hide whole areas of a page, as search

engines might see this as suspicious behavior, and these areas will not be hidden if your style

sheet is unavailable or removed. However, you can think of the printer as a dumb animal

that sits in the corner, seeing as it is not used for viewing web pages, only printing them.

Use display:none with confidence for print style sheets.

Change Headings

The next step is to tweak any headings used. Again, it is likely that these will work better with

black text. Also, remember that you have increased the default font-size to 14pt; so heading

font sizes will need to be increased accordingly, again using point sizes.

CH A P T E R 1 4 ■ U S A B I L I T Y A N D A CC E S S I B I L I T Y E N H A N C E M E N T S 323

h2, h3, h4 {

 font-family:Arial,Verdana,sans-serif;

 font-weight:normal;

 line-height:135%;

 color:#000;

 }

h2 {

 font-size:22pt;

 }

h3 {

 font-size:18pt;

 }

h4 {

 font-size:16pt;

 }

h4 a:link, h4 a:visited {

 color:#000;

 text-decoration:none;

 }

Note that any headings containing links will also use black text as the :link and :visited

pseudo elements are also given black text. There is no need to distinguish links from normal

text on a printout, as it is hardly likely that anyone will want to click them!

Links Black

As with links within headings, all other links may as well be black too. Again, the :link and

:visited pseudo elements are set to black, and underlines are removed.

/* Links black */

 a:link, a:visited, a:active {

 color:#000;

 text-decoration:none;

 }

Show URLs

While links need not be shown with color, a user is going to be pretty frustrated if a web site is

mentioned in a printed article, but there is no clue given of how to find that site on the Web. It

is therefore useful to actually print the URLs alongside mentioned web sites in certain sections

of the page.

Earlier we looked at how CSS can generate content before and after an element using CSS

pseudo elements (except for IE6 and below, and not initially in IE7). Here, the :after pseudo

element is used to perform a specific function after each hyperlink.

The CSS here might look a little alien at first, but it is actually quite simple. Looking at the

selector, notice first that we are targeting the main column, ensuring links outside of this column

are not printed. Next, the selector seeks any links in this column as the <a> element is declared.

Finally, the :after pseudo element is declared, informing the browser that any links within the

main column are where this action should happen.

324 C H A P T E R 1 4 ■ U S AB I L I T Y A N D A C C E S S I B I L I T Y E N H A N C E M E N T S

/* Show URLs only inside the article container */

 #main a:after {

 content: " (" attr(href) ")";

 font-size:11pt;

 }

The value declared for the content property is a little more complex, but it basically tells

the browser to perform the action immediately after the content, which is the attribute href,

and to place the generated content within brackets (which have to be surrounded with quotes).

Finally, a smaller font-size is set for the URLs using point size so that they do not detract

too much from the main text on the printed page.

The Resulting Printed Page

These simple steps ensure that the printed version of the web page is quick and affordable to

print, as well as being focused and stripped of anything unrelated. Figure 14-4 shows how these

rules transform the Science City article originally shown in Figure 14-3. The difference is huge,

and it’s a small triumph for accessibility.

Figure 14-4. Thanks to the print style sheet, the Science City web site is simplified and much easier
to print.

CH A P T E R 1 4 ■ U S A B I L I T Y A N D A CC E S S I B I L I T Y E N H A N C E M E N T S 325

Mobile/Handheld Style Sheets

Also mentioned first in Chapter 1 were handheld style sheets. Although not supported by all

mobile devices, the handheld media type is still in common use as browsers will ignore its

content, allowing many cell phone or PDA users to access a stripped-down version of your

styling depending upon support.

Delivering web content to handheld media devices is becoming more and more impor-

tant, as browser-enabled cell phones become popular, and more of us want to stay updated

while on the move.

Before we start, note that the technology is not standardized, and what works for one

device may not work for another.

Prepare the (X)HTML File

The phone’s browser will try its best to make use of your main style sheet. If you specify a hand-

held style sheet, it should use this instead. Use the <link> element since some handhelds don’t

recognize @import or @media. Some current handheld devices apply screen styles as well as

handheld styles, while others ignore both.

<link rel="stylesheet" media="screen" type="text/css" href="screen.css" />

<link rel="stylesheet" media="print" type="text/css" href="print.css" />

<link rel="stylesheet" media="handheld" type="text/css" href="mobile.css" />

Remove Margin and Padding

Widths and margins can be detrimental to good handheld display. If a screen is only 176 pixels

wide, you don’t need a 10-pixel margin around your content. Set margin and padding to 0 straight

away.

/* Remove all default margins and padding */

 div {

 margin:0;

 padding:0;

 }

Also, remove all width references from the CSS. Let content wrap the way it wants to. That

way your site is better prepared to make sense on PDAs, large phone browsers, and so on.

Serve Up a Header Graphic

Take a look at the BBC site (www.bbc.co.uk) on your cell phone, and see how perfect the header

is. This is the only graphic embellishment I’m suggesting, as it makes a great welcome for the

user, and doesn’t seem to affect download time or compromise page space. My header (see

Figure 14-5) is 176 pixels in width by 20 pixels in height, and features my favicon and the name

of the site. Simple. Note that the image looks smaller on the mobile device.

Figure 14-5. Simple header image to be served for those browsing with a handheld device

326 C H A P T E R 1 4 ■ U S AB I L I T Y A N D A C C E S S I B I L I T Y E N H A N C E M E N T S

Serving this image requires no extra markup. The header selector in the screen style sheet

might be used to create a large masthead with all sorts of child elements contained. For the

handheld style sheet, however, the same selector simply serves up the mobile image.

#header {

 width:100%;

 height:20px;

 background:transparent url(/images/mobile.jpg) no-repeat;

 }

As a result, this image will only come into play when the site is viewed using a handheld

device with support for the handheld media type.

Add Skip Links

Honestly, even if you don’t usually use them (and you should, you know), “skip to content” and

“back to top” anchor links are vital when using a mobile device, as scrolling can be a laborious

process, and life is too short. Give users the opportunity to jump directly to your main content

by linking to the ID of that element, bypassing the navigation menu.

Skip to content

And here, the same process is used, except that this link would target an ID nearer the top

of the page, such as the main navigation.

Back to top

Remove Extraneous Styling Information

Less is definitely more here. Go through all of your normal styles (which you may have copied

into your handheld style sheet) and remove anything hazardous. For example, you could

remove all font properties, all background images, all link styling, and many embellishments

such as borders and floats (you aren’t going to be floating your columns on a 176-pixel-wide

screen, are you?). Also, get rid of any navigation list styling. A bulleted unordered list is exactly

what the user wants to see on a mobile device.

Make Decisions About Your Images

Don’t ban images outright. Instead use CSS to decide which sections should have images

removed. Most blogs have 300- to 400-pixel images in entries, which will download on a phone,

but you’ll only see the left side of them (although some mobile browsers such as Opera Mini

will shrink images to fit the window). Images can be removed from certain sections using

display:none.

#main img {

 display:none;

 }

Thus, you can decide in which IDs or classes you want to show images. I guess it’s a matter

of context. If you are discussing an image in an article, it makes sense to show it, even if it’s only

part of it. Apply a bit of common sense here, and do what’s best for you.

CH A P T E R 1 4 ■ U S A B I L I T Y A N D A CC E S S I B I L I T Y E N H A N C E M E N T S 327

display:none Is Your Friend

Finally, decide whether or not to hide more content from mobile users. Using display:none in

your sidebar selector might be useful. Think about how much scrolling is required once your

sidebar is sitting under your main content, and how navigation can become laborious. You

could keep the sidebar and use anchors to help the users jump to it and back easily. This will

obviously mean amendments to markup, so why not just get rid of the sidebar entirely?

/* Remove unwanted columns */

 #sidebar {

 display:none;

 }

Test with Opera

The Opera browser has a very useful feature—the Small Screen view. By enabling Small Screen,

the browser will attempt to display your web site as it would appear when the handheld style

sheet is used.

This can be an easier and more affordable way of testing your handheld style sheet. In

Figure 14-6, the window has been narrowed to suggest the approximate width of the average

cell phone. Notice that with the handheld style sheet in play, the header graphic appears first,

and navigating is going to be a more difficult process owing to the increased height of the page.

This is the time when “skip” links really come into their own.

Figure 14-6. Using the Opera browser’s Small Screen mode to simulate how Colly Logic looks on a
handheld machine

The Opera browser people have made a strong commitment to browsing the Web with

small screens. While the main Opera browser still has a tiny share of the market, the Opera

Mini browser (www.opera.com/products/mobile/operamini/), which can be downloaded to cell

phones and other handheld devices, is growing in popularity. Always better than whatever default

328 C H A P T E R 1 4 ■ U S AB I L I T Y A N D A C C E S S I B I L I T Y E N H A N C E M E N T S

browser your device has, Opera Mini makes browsing the Internet while on the move a much more

enjoyable process, and gives us all cause to be optimistic for the future of mobile browsing. There

is also a simulation of this browsing experience you can check out (www.opera.com/products/

mobile/operamini/demo.dml).

Handheld Compromises

Serving content for handheld devices is all about compromise. Until connections are faster, all

users have the same browsers and screen size, and there is better support for CSS and other

markup, we’ll have to make sacrifices.

Look at your web pages as they appear on a computer. Think about which sections are

important to you, and identify the parts you are most likely to want to access while on a train,

in the pub, or skiing. Chances are another user’s views would correlate with yours. Be ruthless,

and chuck out the extraneous stuff. Serve up latest posts, comments, an archives list, and basic

background information. The ability to check your comments on the move is liberating.

To Conclude...
As mentioned at the beginning, this chapter could have been enormous. It is worth remembering

that without any CSS whatsoever, you can create a perfectly accessible web site. In fact, the

misuse of CSS is often the ingredient that causes a site to be inaccessible. For example, the text

might have been black on a white background, but you had to go and make it purple on pink.

With every move you make, stop to think. Is what you are about to introduce going to

compromise accessibility? Will everything still make sense without images, CSS, or JavaScript?

Just because your young eyes enjoy reading 9-pixel Copperplate text, will your grandmother

agree as she accesses your site using her Blueberry?

Still, CSS can be employed to enhance the accessibility of every element of a web site, whether

it be a form, an image, navigation—anything. Never feel discouraged from experimenting and

keep pushing those boundaries. So long as you remember that you are one of 6 billion people,

and that no two people are the same, you’ll be fine.

329

■ ■ ■

C H A P T E R 1 5

Tips, Tricks, and Troubles

Were there world enough and time, this chapter—like the others that preceded it—would

remain focused around a particular topic. Unfortunately, there are 3.73 million topics related

to CSS tips and tricks, and covering them all would demand a rather large and expensive book.

Therefore, this chapter is a bit of a smorgasbord, aiming to draw together the most common

tips, tricks, and troubles. Over the next few pages, you’ll find ideas for maximizing page space

by manipulating overflowing content and learn to create incredibly simple CSS rollover images.

Later, you’ll enter the crazy world of hacks and filters, finding out how to serve separate style

sheets to different browsers, before a final delve into common problems and quirks that you

need to be aware of.

This chapter will cover

• Rollover images

• Overflow trickery

• Hacks and filters

• Troubleshooting

Rollover Images
A rollover image adds a simple bit of interaction for the user. Place the cursor over a rollover

image, and another replaces it. For years, web designers preloaded on-state (i.e., on mouseover—

when the mouse is rolled over the image) images to assist the browser in its rollover presenta-

tion. Preloading increases the weight of the initial download, but adds to usability by decreasing the

wait time for an on-state image to appear. Basically, the browser would only start downloading the

on-state image upon rollover, which was why preloading was so important.

In the Old Days

Before widespread adoption of CSS to achieve rollover images, this technique was done the

hard way. Following is a typical example of the markup that was required for each and every

rollover image. Please note that this chunk is not available as a code download!

330 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

<IMG SRC="/images/home.gif" NAME="home" ALT="Home Page" BORDER="0" ➥

HEIGHT=130 WIDTH=115 >

<SCRIPT TYPE="text/javascript">

<!--

setrollover("/images/home_over.gif");

//-->

</SCRIPT>

And this would be linked to a mammoth JavaScript file needed to perform the actual roll-

over function. Laborious and painful, there is thankfully a much better and easier way using CSS.

The (X)HTML

How is this for reduced markup? All that is required in the (X)HTML is the addition of a class to

the <a> element.

Big Lee Hickman

This unobtrusive additional markup allows you to take control of this particular link in any

way you see fit using your style sheet.

The Image

Yes, image, not images. Just one image is required for this technique. To get around the preloading

problem, both image states are combined as one image. This means that when the user rolls

over the image, the on-state image is already available. The trick is to place the two versions

side by side as one image, making very sure that each half is of an identical size (see Figure 15-1).

Figure 15-1. The rollover image is a combination of the two image states. Only one half will be
visible at any time.

With this dual-purpose image prepared, we can now think about the CSS that will be used

to slide the image backward and forward depending on the link state.

157 Pixels

420 Pixels

210 Pixels

157 Pixels

420 Pixels

210 Pixels

157 Pixels

420 Pixels

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 331

The CSS

First, the rollover class is declared. All that is required is to assign the width and height of the

visible area of the dual image and set the display to block (to ensure the dimensions are respected).

Note that the dimensions match the measurements in Figure 15-1. Also, the image itself is added

using the background property, set to no-repeat.

/* Rollover class */

 .rollover {

 display:block;

 width:210px;

 height:157px;

 background:url(/images/rollover.jpg) no-repeat;

 text-indent:-9999px;

 }

Note also that the text is indented using a huge negative value (text-indent:-9999px). This

ensures that the link text does not show, unless the style sheet is turned off or unavailable. In

that situation, the user would not see the image, but would still have a clickable text link.

One gotcha to be aware of is that Firefox will currently outline links when they are clicked,

placing a thin line around them. While not usually a problem for standard links, if a link has a

huge negative value, this is going to look rather ugly, especially with links appearing to the right

of your layout. Thankfully, there is a very useful bit of CSS that can be employed to turn such

outlines off for all link states, by utilizing the outline property as follows:

/* Turn off all browser link outlines */

 a {

 outline:none;

 }

The next step is to make the magic happen. Remember that in Chapter 7 you learned

about the various pseudo link states? Well, these will now be used to create the rollover effect.

The three states :link, :visited, and :active are grouped, as they share the same values. For

each of these states, the first half of the dual image will be visible.

 a.rollover:link, a.rollover:visited, a.rollover:active {

 background:url(/images/rollover.jpg) no-repeat;

 }

The most important step is to use the :hover state to reposition the dual image so that the

second half (the rollover state) is in view. To do this, the image is repositioned 210 pixels to the

left using a negative position value.

 a.rollover:hover {

 background-position:-210px 0;

 }

This simple method slides the first half of the dual image out of view, bringing the second

half into the available space. This happens instantly upon rollover, creating a seamless, simple

rollover effect (see Figure 15-2).

332 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

Figure 15-2. On rollover, the second half of the dual image appears automatically.

It should go without saying that this technique is invaluable for all kinds of interactive

images, especially buttons and navigation items. Just make sure that the link still makes sense

should the dual image be unavailable.

The Overflow Property
The overflow property defines the way that a child element is displayed when it exceeds its

containing element. In other words, if there is too much content, the overflow value will dictate

how or whether it should be displayed.

Overflow Values

There are four possible values for the overflow property, as detailed in Table 15-1.

Let’s look at two values in particular: auto and hidden.

overflow:auto

I love overflow:auto trickery (whereby specifying the height of a <div> and applying

overflow:auto creates a mock <iframe> without all the accessibility headaches of <iframe>s).

Take a look at the Style Company web site in Figure 15-3. For this job, all pages needed to be

the same height all the way across, regardless of how much content was used.

Table 15-1. Overflow Values

Value Description

visible The content is not clipped. It renders outside the element.

hidden The content is clipped, but the browser does not display a scrollbar to see the
rest of the content.

scroll The browser displays a scrollbar even if there is enough room to display the
entire content.

auto If there is too much content, the browser will display a scrollbar to see
the remainder.

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 333

Figure 15-3. The Style Company web site (www.stylecompany.co.uk) uses overflow management
to ensure all pages are the same height, regardless of content.

This was achieved by using a container with overflow:auto applied and a set height, ensuring

that no matter how much information appears in the container, the total height of the page

does not increase. Let’s look at creating our own example—a simple news stream using CSS.

The (X)HTML

There is nothing special about the markup. All that is needed is a simple container. Here, it is

given a class of stream to denote that it carries all the streamed news items.

<div class="stream">

 <p>All the stuff you wanna scroll goes in here.</p>

</div>

Note that for this example, you will need to paste plenty of content into this container to

see the effect of the overflow, such as masses of Lorem Ipsum text. With that taken care of, we

can move on to the nifty styling.

334 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

The CSS

Now define the stream selector. First, the size of the box is declared (here it is a square

300×300 pixels), and some padding is declared to ensure the content does not touch the border.

Most importantly, the overflow property is given the auto value.

.stream {

 width:300px;

 height:300px;

 padding:10px;

 border:1px solid #999;

 background-color:#FFF;

 overflow:auto;

 }

By giving the box a set height, you ensure that it does not expand or contract based on the

content it holds. If there is more content than the box can hold, the scrollbar will automatically

appear, allowing you to scroll through the whole text, as you see in Figure 15-4. Brilliant.

Figure 15-4. Using overflow:auto to have a scrollbar appear when there is more content than
the box can show

The possibilities here are endless, but be wary of using multiple overflow boxes on your

pages. A web page that features umpteen scrollbars can confuse users and look horrible! Still,

this is a superb technique that shows great foresight from the creators of CSS.

overflow:hidden

There are occasions when you don’t want the overflowing content to show, or you only wish it

to appear in certain circumstances. This is where overflow:hidden comes in handy.

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 335

For example, you might have a beautiful photograph of some mountains that you wish to

use as a banner image. This image is 796 pixels wide, and you know that if you add it to the page, it

will always force the site to be at least that wide, and would force horizontal scrollbars if the

window was decreased below that width. This is where overflow:hidden can come to your rescue.

Let’s do it!

The (X)HTML

For this example, I have an image that is 796 pixels in width by 320 pixels in height. The image

needs to be placed into the (X)HTML page as follows:

<div id="masthead"><img src="images/mountains.jpg" ➥

alt="Mountain banner" width="796" height="320" /></div>

Note that the width and height of the image is declared to prevent the browser from waiting

until after the image loads to render the rest of the layout (it will know how much space to use

for the image and get on with implementing the CSS). This is of course totally optional.

The CSS

Here, the container div is also shown, so that you can see the context into which the banner

will be placed. Following that, the CSS for the masthead ID is shown. Note that the width is a

percentage value (100%) ensuring the masthead always fills the available space. The height is

equal to that of the image it will hold. Finally, overflow:hidden is specified.

/* Container for all page content */

 #container {

 border:1px solid #000;

 padding:20px;

 background-color:#FFF;

 }

/* Masthead */

 #masthead {

 width:100%;

 height:320px;

 border:2px solid #999;

 background:#CCC;

 overflow:hidden;

 }

That is all you need to do. Figure 15-5 shows how the browser deals with the image at

three different widths. Under normal circumstances, the thinnest window would force a

horizontal scrollbar due to the larger width of the image. Thanks to hiding the overflow, this

is skillfully avoided.

336 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

Figure 15-5. Thanks to overflow:hidden, the containing element only reveals as much of the image
as the window dictates.

Combining Classes
It is possible to combine classes. This functionality provides real power when it comes to

reusing elements. For example, you can use a containing element as often as you want, but you

may not always want the elements it contains to be displayed in the same way. So, you could

make several versions of the containing element and set the unique properties for each, but

why would you want to repeat the margin, padding, and background styles for each and end up

with more class names to worry about? This is where combined classes are really useful, as

used on the Poptones web site (see Figure 15-6).

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 337

Figure 15-6. The Poptones web site (www.poptones.co.uk) makes heavy use of combined classes to
apply heading background colors that are in line with those of their containing boxes.

Now, if you wanted an <h3> inside a particular container to have a red background, you

might create the following styles:

h3 {

 font-size:110%;

 margin:10px 5px 10px 5px;

 padding:5px;

 }

.custom_background {

 background-color:#F00;

 }

338 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

You might then call that as follows:

<div class="container">

 <h2>Latest News</h2>

 <h3 class="custom_background">Man found in vase</h3>

 content

</div>

No! This is extra markup—forced to use a class attribute with each heading to define its

color. Instead, create unique selectors for each section, keeping the existing <h3> declaration,

and then creating a set of background styles with semantically meaningful names:

.news h3{

 background:#F00;

 }

.entertainment h3{

 background:#666;

 }

.sport h3{

 font-size:110%;

 background:#CCC;

 }

.music h3{

 background:#999;

 }

Then, all you need to decide is the purpose for each container. Let’s say you add a container

to house articles about sport. Add the sport attribute to the existing container class, separating

the two class names with a whitespace character:

<div class="container sport">

 <h2>Sports News</h2>

 <h3>England win 26-0</h3>

 content

</div>

Suddenly, all instances of a <h3> heading inside this container take on the light gray

background color. Exchange the word “sport” for “music” and now all headings in that

container have a darker gray background. Remove the heading rule entirely, and headings

have no background color at all.

Hacks and Filters
Hacks and filters are always lumped together it seems. Few talk of one without mentioning the

other. However, the two are distinctly different.

Hacks use invalid CSS or parsing bugs—that is, methods of having the CSS work even

though the syntax used is not correct (not opening and closing with a curly brace, for example).

Filters on the other hand use valid CSS that the targeted browser just doesn’t support.

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 339

CSS hacks and filters can help you selectively apply CSS (or not apply it as the case may be)

to various elements. Always remember, though, that instead of using them any time you hit a

snag, try finding a more standard cross-browser way to achieve the effect you’re after first

before resorting to them.

Let’s look at hacks in more detail. You have already worked through a hack—The Box Model

hack (Chapter 11). You now know that hacks use either naughty CSS or incorrect syntax to

make their mark. Hacks exploit the broken bits of browsers—the bits that prevent a browser

from being considered “modern” or “standards-compliant,” for example. It is very important

to consider that these browser manufacturers may or will eventually fix these errors, which

might not only render your hacks useless, but also mean your style sheet malfunctions totally.

Safe Hacks

There are some hacks that can be considered as safe. Netscape 4 and IE5/Mac are not being

developed any more. What we have now are, for better or (usually) worse, the definitive, final

versions of these browsers. There will never be a next version that could make a mess of your

pages, and therefore it could be considered OK to let these hacks live in your CSS for all time.

Let’s look at a couple of example hacks.

@import

Early browsers are notorious for malfunctioning when presented with CSS rules they don’t

understand (Netscape 4 will crash at the sight of certain rules). The @import hack allows you to

hide entire style sheets from Netscape 4 and older browsers because they don’t understand it—

as you learned way back in Chapter 1, the @import rule links to an external style sheet from

within another style sheet (be it external or in a <style> element within the <head> of the (X)HTML

document). Interestingly, early browsers do not understand this approach and simply ignore it

and therefore also the style sheet it refers to.

Using @import

Here is a simple guide to using the @import hack. First, you will begin with two style sheets:

• basic.css (only simple rules for early browsers)

• modern.css (advanced CSS2, rules to override rules in basic.css)

Next, create a third style sheet called import.css that contains only the following:

@import "modern.css";

Then, link the basic.css and import.css in the <head> of the (X)HTML document.

<link rel="stylesheet" type="text/css" href="basic.css" />

<link rel="stylesheet" type="text/css" href="import.css" />

Note that the basic.css style sheet must be linked first.

340 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

The Effect

Here’s what happens. All older browsers (compliant with the original CSS1 specification) will

load basic.css and import.css. However, only modern browsers will understand the @import

rule and therefore only they will see modern.css. As modern.css is linked after basic.css, its

rules will override those in the latter style sheet.

Caio Hack

The Caio hack is named after a bloke called Caio Chassot who invented it. This hack is used to

hide certain rules from Netscape 4 (rather than the whole style sheet as with the @import

hack).

How Do We Say “Caio”?

This hack makes use of a comment like this to begin hiding from Netscape 4:

/*/*/

This is almost identical to a correct comment, the same as those discussed in Chapter 1; however,

there is a forward slash inserted where spaces and words would normally be placed. The poor

old browser thinks the comment didn’t close, and will therefore ignore all following CSS. To

stop the ignorance, just add another standard comment, and Netscape 4 will jump back to life

and start reading your CSS again.

Example Caio

Take a look at the following CSS. Note the use of traditional comments within the list of rules,

and the single use of the Caio hack (comments highlighted in bold).

body {

 color:#000;

 background:#FFF;

 }

/* Netscape 4 is looking the other way */

/*/*/

 body {

 background-image:url(images/we_hate_netscape_banner.jpg);

 }

/* Bring Netscape 4 back into the room */

 ...remaining CSS follows

With this example, all browsers (including Netscape 4) will see the first body selector and

render black text on a white background. After the hack, however, a background image is specified

that shouts “We Hate Netscape!” As this comes after the Caio hack and before the comment that

brings Netscape’s focus back, this offensive image will not show on that browser. As Netscape 4

is not being developed further, you can use this hack safe in the knowledge that no sudden

updates will expose your hatred.

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 341

Hide Style Sheets from All but IE/Mac

This super-useful hack is a method of serving style sheets to IE5/Mac only. It validates, and also

appears to work for, IE 4.5/Mac, although that version is now extremely rare.

The IE/Mac sheet is linked as follows.

<style type="text/css">

 @import("ie-mac.css");

</style>

Be very careful not to leave a space between @import and (", otherwise the hack will not

work as intended. IE/Mac was once the most standards-compliant browser in existence, but

soon its shortcomings with CSS became obvious as better browsers came into being. By serving

IE5/Mac-specific styles, dealing with this browser can be a little less problematic. Also, the fact

that Microsoft will never, ever upgrade it means that this hack is perfectly safe. Ideally, all Mac

users would be browsing with Safari, Camino, or Firefox, but we can’t take this for granted (yet).

IE7 Is Coming

Looming over the horizon, like a potentially troubling but nonetheless welcome new friend, is

Internet Explorer 7, expected to ship—annoyingly—around about the same time as this book.

As such, this author hasn’t explored it fully, but so far so good, in that many of IE6’s failings

have been corrected, and a number of those trusty old hacks will no longer be necessary. As the

public beta shows, most of the really annoying CSS bugs from IE6 are now fixed. What’s more,

there is finally support for a range of CSS2 (and even CSS3) selectors. Let’s have a street party!

Well, after we’ve updated all our web sites to make sure they still work in IE7, given that the IE

hacks we’ve used now break our sites in IE7!

The IE7 team have dropped support for the Star HTML hack, which targets problems

in IE5 and IE6 that are pretty much removed from IE7. I heartily recommend you read Dave

Shea’s article “Stop Hacking, Or Be Stopped” (www.thinkvitamin.com/features/css/

stop-css-hacking) if you demand more enquiry into IE7 and what it means for CSS hacks.

There are one or two hacks and filters that may be worth readying for IE7, however, espe-

cially during the initial evaluation period. Let’s look at a couple.

Conditional Commenting

Your old hacks won’t work—mostly. The IE team has publicly moaned about hacks—kind of like

kids who made a cool exhibit at the science fair, only to have some bullies come along and tell them

that while it’s great that they invented a money machine, it’s too bad that it’s held together with

duct tape. The IE boys are in favor of an IE-proprietary method known as conditional comments.

Let’s look at what this means.

Out with the Star HTML Hack

Since IE5/Win, web designers have used code like this to filter a rule to IE/Win:

* html #selector {

 width:100px;

 }

342 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

This is known as the Star HTML hack, again exploiting a parsing bug to send different

values only to IE5 and upwards. As it is a hack, the best thing to do is avoid it.

The New Way

We should instead be using valid conditional comment syntax to serve up a link to an external

CSS file that will contain the IE-specific CSS. Here’s an example of the conditional comment

that would be placed in the (X)HTML document’s <head>, above or below the link to the main

style sheet used for other browsers.

<!--[if IE]>

 <link rel="stylesheet" href="ie-specific.css" />

<![endif]-->

And then in the IE-specific CSS file, the rule that was once the essence of the hack can now

be placed neatly in the style sheet.

#selector {

 width:100px;

 }

This is much better. Conditional comments are authorized, and the IE team won’t ever

send the FBI to your house for using them. They validate, and even though they’re proprietary,

when used with discretion, they allow us to accomplish exactly the same thing as CSS hacks.

A Hack Specifically for IE7? If You Must...

At the time of writing, IE7-specific hacks are materializing, such as the Triple-X hack. A targeted

CSS filter for IE7, this hack applies or excludes CSS specifically from the newcomer. I’m not one

to condone hacks, but then again I never use a ratchet, yet I have one in the tool shed just in

case. If you need to know more, go forth to Brothercake’s site (www.brothercake.com/site/

resources/reference/xxx/) for further instruction.

Troubleshooting
Here is a section that could easily have spanned 426 pages. Every day, vocal CSS users publish

more and more findings about quirks, problems, and bugs. Likewise, each designer has his or

her own recommendations for more productive CSS.

This is a list of perhaps the most common problems those new to CSS might encounter.

If these tips don’t help you, don’t be downhearted. The CSS community is big, sharing, and

search-engine optimized, so get with the Google for a quick answer to your problem if it isn’t

covered here.

Common Problems

I recommend reading through these problems even if you are currently content. It pays to be

aware of the kind of issues that may well crop up, some of which apply to more general CSS use

too. Let’s begin with a fairly detailed overview of one of the most annoying issues—margin

collapsing.

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 343

Margin Collapsing

If we’re on the subject of mysterious quirks, it makes sense to start with margin collapsing,

which will hurt you at some point. The problem can manifest itself in one of two ways when

two elements meet: either extra whitespace appears that just can’t be removed or you suddenly

are unable to add whitespace using margin values. Believe it or not, this is actually supposed to

happen!

Example One

In the example shown in Figure 15-7, both paragraph elements have been given a 20-pixel margin.

However, because the bottom margin of the first paragraph touches the top margin of the

second paragraph, the margins collapse, making the space between both paragraphs 20 pixels

instead of 40.

Figure 15-7. Margin collapse sees only one of the 20-pixel margins having effect.

Example Two

This doesn’t just happen when one block-level element follows another; it also happens when

the second element (the light gray paragraph) is the child of the first (the darker gray container)

as in Figure 15-8. The top and bottom margins of the paragraph collapse into the margins of

the div, leaving just a 20-pixel vertical margin around both elements. Crumbs.

Figure 15-8. Even with child elements, one of the specified margins has no effect.

The Solution

There are a number of ways to get around margin collapsing. The easiest is to add a border

or 1px of padding around the elements so that the margins no longer touch and therefore no

longer collapse (see Figure 15-9).

Figure 15-9. Adding a border or padding value separates the margins and prevents the collapse.

344 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

If relevant, you can also stop margins collapsing by changing the position property of the

element. Margins of absolutely and relatively positioned boxes don’t collapse. Also, if you float

an element, its margins should no longer collapse. This may or may not be possible, of course.

Perfect Percentage Values Still Break Your Layout

As if life weren’t difficult enough as it is, sometimes 50% + 50% does not add up to 100%—not

with browsers anyway. The actual value could be 100.1%, which will force some layouts to

break in some browsers. To find out if this is happening to you, try changing 50% to 49%, and

then retest your layout. Always worth a try.

Flash of Unstyled Content

If for some reason you rely on @import alone to import your style sheet(s), you may notice that

Internet Explorer will show unformatted (X)HTML for a second or two before applying the CSS.

This can be avoided by adding just one <link> element or <script> element inside the document’s

<head>. For further investigation, take a look at “Flash of Unstyled Content (FOUC)”over at the

Blue Robot site (www.bluerobot.com/web/css/fouc.asp).

The Selector Has a Matching Element, but Nothing Happens

This is all down to case sensitivity. To cut a short story shorter, if you have a CSS selector called

leftColumn (note the uppercase C), the value in the (X)HTML must also use identical case. This

problem typically occurs with Mozilla-based browsers.

The Background Image Will Not Display

The image is on the server, but it will not show as a background image. You load it via its direct

URL in the browser, and there it is, so why not via CSS? Chances are that you have specified the

image with quotation marks (background:url("image.gif");), which is wrong, but oh so easy

to do. Remove the quotations, and the image should appear. The main culprit here is IE5/Mac,

as most other browsers will spot your stupidity and work around it.

Recommendations

Here follows several of this author’s own favorite tips for fitter, happier, more productive CSS

management. None of these are rules or regulations, but they have certainly helped me.

Use a Modern, Standards-Compliant Browser

This will ensure your (X)HTML and CSS will be more on the button from the start, and you

won’t have to hack as much to support other browsers. Ideally, you should use a Mozilla

browser (such as Firefox), Safari, or Opera—and not IE. Working within an outdated browser

can have you relying on its inaccurate rendering. Always start with what you know is right and

then amend if necessary for elderly browsers. This will also ensure that the whole experience is

infinitely more pleasurable.

C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S 345

Avoid Reliance on the Box Model Hack

Earlier in this chapter you learned of the care needed when using hacks of any kind. Remember

that as current browsers are updated and bugs are fixed, your hacks might come back to haunt

you. You can avoid reliance on the Box Model hack (see Chapter 11 for a recap) by applying

padding to the parent element instead of the child that has a fixed width specified.

Track Down Errors by Commenting Out Areas of the Style Sheet

This is a top, top tip, especially useful when your familiarity with a style sheet has waned, or you

are working with one created by another person. Often you will find an error in the rendered

design, or need to track down a particular problem. The best initial approach is to comment

out half of the style sheet and reload the page. If the problem persists, remove the commenting

and apply it to the other half. Once you know which half the problem lives in, you can use similar

mass commenting to delve in further until you find the culprit. This method is particularly

helpful when trying to understand a particular inheritance woe.

Avoid Aggressive Style Sheet Caching During Development

If (like this author’s ISP) your Internet service provider caches your style sheets on site, you are

going to have a hard time seeing all those little tweaks and changes—until probably Thursday,

when they flush it out.

To get around this problem, forget external style sheets while developing. Embed your CSS

in the <head> of your test page, forcing it to reload each time you view the page. When it is time

to launch, or create further pages, then you can move the CSS from the document into its own

external style sheet. This approach isn’t always possible, but that is why recommendations are

not laws.

Stopped Using a Style? Remove It

I do it. My grandmother does it, and so will you. During development, you will try out styles,

use them for a while, and then move on, doing things another way. That is fine, but you end up

with lots of unused styles littering your style sheet.

This isn’t a major problem, although any unwanted code adds to overall page weight. The

main issue is how these unwanted styles might affect those in use. Knowing what you learned

about inheritance and the cascade in Chapter 2, you’ll be aware that these harmless extraneous

styles might be influencing others, causing the oddities on your rendered page. Play safe and

either comment them out or remove them altogether.

Validate Your Code

Your CSS looks right. You know it’s right, so why isn’t it doing what you think it should? Obviously

there could be several negative factors, but often it is nothing more than badly formed (X)HTML.

Validated code isn’t necessarily accessible code, but it’s at least well formed. Run your

(X)HTML through the validator to find any unclosed elements or other oversights. Think of

your CSS as being like a really expensive Prada coat. It looks much better on Kate Moss than on

a bicycle.

346 C H A P T E R 1 5 ■ T I P S , T R I C K S , A N D T R O U B L E S

To Conclude...
This chapter has hopefully . . . hey, hang on! This is the penultimate chapter. Quickly, put the

kettle on and break out the Christmas biscuits—you are a CSS professional!

Over the last 15 chapters, you’ve blossomed from a mere seed planted in slightly damp

cotton wool into a glorious tree full of early springtime flowers. Sure, you have plenty more

growing to do, but already people are impressed by your development. Is that a squirrel on

your shoulder?

The final chapter of this book is the glorious Dead Goods case study—just over the page.

This case study will tie together much of what we have been through, drawing examples from

each chapter to produce a living, breathing, CSS-based web site. The proof of the pudding is in

its standards compliance, as they say.

347

■ ■ ■

C H A P T E R 1 6

Case Study: The Dead Goods

Yes, it’s true. On the morning of 12 May 2006, six supposedly dead rock stars walked into the

offices of Colly Logic Records and announced their intentions to bring their music to the world

once more. The six—Jimi Hendrix, John Lennon, Kurt Cobain, Jeff Buckley, Janis Joplin, and

Keith Moon—have actually been on a small island called Flatey just off the coast of Iceland all

along, piecing together the songs for their comeback album Six Feet Over. Regrettably, founder

member Elvis Presley backed out at the eleventh hour, citing ongoing commitments with his

cod farm as the reason for his withdrawal.

Anyway, the world awaits, and The Dead Goods are going to blow every mind on the planet.

In the ’60s, ’70s, ’80s, and ’90s, these guys spread the word with peace, love, and good will—but

this is 2006, and the band needs a web site. Get the kettle on, kid—you got the job!

The Case Study
The Dead Goods case study errs on the side of complex, but never strays past what you have

learned in this book. Basically, it shows you what you can achieve using simple CSS, a large pot

of tea, and a sprinkling of ambition.

The layout is reusable in that it is robust enough to cope with most things you can throw at it.

The use of images will hopefully get your brain ticking and allow you to think outside of the box

by suggesting methods for combining background images that join up to break the boxy nature

of much CSS-based design.

The techniques used are bulletproof in that they are simple enough not to break no matter

how users scale or manipulate your layout as they browse. All in all, it’s a contradiction of serious-

ness and playfulness, and I think you’ll enjoy it.

The Process
This case study loosely attempts to emulate the role of the humble CSS designer and his or her

position as part of a production line. For example, a design agency might have one person

producing mock-ups, another creating the (X)HTML content, and then poor old you at the end

tasked with fighting browser inconsistencies, cascades, inheritance, and the limits of CSS as a

design tool in comparison with Photoshop’s ability to make dreams come true. No worries

though—you’ll show ’em!

Let’s look at three key stages of a typical web build: design, content, and presentation.

348 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

Design

Figure 16-1 shows the Photoshop template as it might be delivered from the Photoshop kid.

This is what we have to transform into a working CSS design.

Figure 16-1. The Dead Goods design as mocked up using Photoshop. No code at this stage.

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 349

The mock-up is the result of numerous attempts to emulate the imaginary album artwork

and branding supplied by the imaginary record company. During this part of the process, the

Photoshop kid may have little or no consideration for the limitations of CSS, although occasion-

ally the CSS designer might provide an underlying grid and a few ground rules. The benefit

of this approach is freedom from thinking about boxes and the limits of the web, hence such

mock-ups often have images that stretch beyond containers, weird layering, and awkward

transparencies among other idealistic treatments.

Guides and Layers

Typically, a mock-up created in Photoshop might use guides (thin horizontal and vertical

markers you can drag) to emphasize the underlying grid and also make it easier for the CSS

designer to carve up the images (see Figure 16-2).

Figure 16-2. Photoshop guides are used to define the grid and ensure items are aligned.

Layers (often grouped into folders such as Text, Link States, or similar) allow the designer

to hide or reveal areas of the mock-up either individually or many at a time, making the CSS

designer’s job easier by removing text and images to reveal backgrounds, for example.

Using guides and layers smooths the transition from Photoshopper to coder and can help

each side understand a little more about the other’s role and approach.

■Note The Dead Goods mock-up is available to download as a layered Photoshop (PSD) file with guides

and further information at www.csswebdevelopment.com/casestudy. The PSD file is also available at

www.apress.com.

350 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

Content

The content is pure (X)HTML, possibly with a little JavaScript, PHP, or other technology thrown in.

Basically, it has no CSS—at all. The only nod toward CSS might be the dividing of the content

into page regions, such as <div> elements that the CSS designer can utilize for layout. The

beauty of getting the content done first is that you know it is separate from presentation. It will

make sense without CSS (see Figure 16-3), and apart from additional markup added at the CSS

designer’s discretion for more intricate styling, the content should remain uncompromised

and clean.

Figure 16-3. Pure (X)HTML content created with little thought for CSS at this stage

Presentation

The final part of the process lies with the CSS wizard. With a visual mock-up loaded in Photoshop

and a working (X)HTML template loaded in the browser, the CSS work can begin in earnest. It

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 351

is at this stage that the CSS designer has to make crucial decisions about how to approach the

styling, with heavy choices about layout, background images, and usability making it less than

easy to jump in with both feet.

Setting Up
As well as the PSD files mentioned earlier, two other files are available to download at

www.csswebdevelopment.com/casestudy, plus a zip file of the images used. The deadgoods.html

and deadgoods.css files are complete, and feature all of the examples in this case study. It is up

to you to choose whether you follow this chapter and use these files as reference or empty the

style sheet and rebuild it as you go along.

All images (including background images) are placed in a directory called images, one step

up from the root directory.

Wireframing the Layout
OK, let’s get started. Back in Chapter 3 you learned about applying borders to divs and other

elements to create wireframes, which help you understand how one element relates to another,

and also identify problems with alignment and juxtaposition. This case study, being based

upon a mock-up that uses Photoshop guides, can be easier to relate to the intentions of the

mock-up by applying wireframes.

In deadgoods.css, wireframes are created by applying a 1px border to all <div> elements. In

the style sheet the border for the div selector is set to 0. To see the red wireframes, just change

this to 1px.

/* Wireframing - place borders around all div elements during development */

 div {

 margin:0;

 padding:0;

 border:1px solid #F00;

 }

■Note If you decide to use wireframes, you will need to set the sidebar to 306px rather than 310px to

compensate for the four vertical borders of the two main columns. God bless the Box Model.

A useful alternative for wireframing is the outline property. Outlines do not affect the width of

an element in the same way that borders do, but are only supported in Firefox and Safari.

/* Wireframing - place borders around all div elements during development */

 div {

 margin:0;

 padding:0;

 outline:1px solid red;

 }

352 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

Bodywork

The main action is going to be centered in the browser window. Looking back at the cross-

browser method covered in Chapter 3, let’s make use of the text-align property in the <body>

to center the container element. By doing this, all child elements within container will inherit

that value and center all their content, so we need to use text-align:left for the columns and

footer later.

/* Declare body first of all */

 body {

 text-align:center

 }

Container

The container, although the parent of every other element in the layout, isn’t actually essential.

The width value that defines the total width of the content could have been added to the body

selector, as could the margin values.

The reason for using container is the background color. Later on, two columns of uneven

length will be used. As you will remember from Chapter 12, we often need to use faux columns

to suggest columns of equal height. As the two columns in this case will both be the same color,

we can just use a flat color, sampled from the mock-up. As all other elements will be placed on

top of the container, it will fill in any gaps left by uneven columns, preventing the page back-

ground from showing through the gaps.

/* Container */

 #container {

 width:760px;

 margin:20px auto;

 background:#211E0E;

 }

With the container centered in the browser window, it is now time to start carving up the

content area into typical regions, similar to those used in Chapter 11.

Masthead

The masthead is very simple at this stage. By grabbing the dimensions of the masthead image

from the mock-up, we can see that it is the full width of the container by a height of 263 pixels.

As the masthead is block level by default, it will stretch to fit the container horizontally, so we

only need to define the height.

/* Masthead and descendants */

 #masthead {

 height:263px;

 }

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 353

Columns

Here we hit the first big decision of the build. How are we going to create the two columns? In

this case, from looking at the (X)HTML content, it is clear that although the main content comes

before the less important Member Login form, it will need to appear on the right of the Member

Login form in the design.

The easiest method is to use floats here. If we float the main column (mainCol) to the right,

we can then float the second column (sidebar) right also. As the main content comes first in the

(X)HTML, the document flow will place this farthest right, with the next chunk (sidebar) floated

just before it.

The Main Column

So, we first define styles for mainCol, and float it to the right. Note that a set width of 450 pixels

is declared (exactly the same as the mock-up), and due to the text-align:center declaration in

the container, we must also set the content to align left.

/* The main column and descendants */

 #mainCol {

 float:right;

 width:450px;

 text-align:left;

 }

The Sidebar

The total width of the container is 760 pixels. The main column is 450 pixels wide, which means

the sidebar needs to be 310 pixels. The column is floated to the right, and again we must over-

ride the text-align value of the container.

/* The left column and descendants */

 #sidebar {

 float:right;

 width:310px;

 text-align:left;

 }

Footer

The final main division is the footer. In Chapter 10, you looked at methods for clearing floated

elements, and this is something we need to do here. If the floats are not cleared, the footer

won’t acknowledge the end of both columns, only the shortest. As the footer contains child

elements, it too needs to override the center alignment it inherits from container.

/* The footer and descendants */

 #footer {

 clear:both;

 text-align:left;

 }

354 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

Organized Layout

With the container, masthead, both columns, and the footer mapped out, what was previously

a linear (X)HTML template is now an organized layout, as you see in Figure 16-4.

Figure 16-4. The styling begins. Wireframed div elements are used to organize the content and
define a basic layout.

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 355

■Note Figure 16-4 shows the layout with the background color removed from container and wireframe

borders added to describe the divisions more clearly.

Background Work
The next stage involves some coloring-in using background images cut from the mock-up, and

the work done at this stage pulls the design together very quickly. Although the design includes

several large background images, each uses as much flat color as possible, making them ideal

to be saved as GIFs, creating smaller file sizes than more complex images. Let’s look at the four

main page regions and the background images for each in turn.

Masthead Background

The masthead background image fills the region exactly. The masthead.gif image, which you

see in Figure 16-5, is 760×263 pixels, saved with 32 colors, and (according to Photoshop) will

take approximately 5 seconds to download on a 56K modem.

Figure 16-5. The masthead.gif image

Returning to the masthead selector in deadgoods.css, the image is declared using the

background shortcut property. Note that the background-repeat value no-repeat is used. This is

not necessary, but is good practice should the dimensions of the masthead area be altered slightly.

/* Masthead and descendants */

 #masthead {

 height:263px;

 background:url(masthead.gif) no-repeat;

 }

Sidebar Background

For the sidebar (leftCol), the leaf motif is used as a strong feature. For this, an image called

back_leftcol.gif (see Figure 16-6) is used, again saved with 32 colors, and takes approximately

356 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

4 seconds to download on an old modem. Note that the first part of the black curve appears in

this image. This curve will need to meet with the curve in the main column image later on.

Figure 16-6. The back_leftcol.gif image

The trick here is to combine this image with a matching background color (Hex 211E0E)

sampled using Photoshop’s eyedropper tool. This color is declared alongside the image path as

part of the background shorthand property. Notably, this image is also set to show only once

using no-repeat.

/* The left column and descendants */

 #sidebar {

 float:right;

 width:310px;

 background:#211E0E url(back_leftcol.gif) no-repeat;

 text-align:left;

 }

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 357

Main Column Background

For the main column (mainCol), the image back_rightcol.gif, shown in Figure 16-7, is used.

The main role of this image is to extend the curve started in the sidebar’s background image.

Figure 16-7. The back_rightcol.gif image

Again, this image will only show once and is also combined with a matching background

color.

/* The main column and descendants */

 #mainCol {

 float:right;

 width:450px;

 background:#211E0E url(back_rightcol.gif) no-repeat;

 text-align:left;

 }

Remember that these columns are children of the container element. As container uses

the same background color as the columns, one can always be shorter than the other without

the main page background showing through.

Footer Background

Finally, the leaf motif is again used at the far right of the footer. The image is back_footer.gif

(see Figure 16-8), saved in the same way as the previous background images.

Figure 16-8. The back_footer.gif image

358 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

The same background color and background-repeat values are used, but this time around

background-position values are used to position the image at the far right bottom of the footer

region.

/* The footer and descendants */

 #footer {

 clear:both;

 background:#211E0E url(back_footer.gif) right bottom no-repeat;

 text-align:left;

 }

Before we move on to child elements of the main page regions, there is just one more back-

ground job to be done.

Page Background

As the container is 760 pixels wide and centered in the browser window, the default white page

background shows almost all the time. Therefore, we return to the body selector and declare a

mid-gray sampled from the mock-up.

/* Declare body first of all */

 body {

 background-color:#666;

 text-align:center;

 }

Background Work Completed

With these four key background images in place, the template is beginning to resemble the

mock-up, as shown in Figure 16-9. Obviously, no consideration has been placed on any of the

text as yet, but that’ll come next.

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 359

Figure 16-9. Background images and background color applied to the page regions

360 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

Text Treatment
With the bulk of the layout and coloring-in completed, it is time to think about content—

specifically the text. When dealing with existing content, it is actually quite fun to get to the

text-tweaking stage. This is where all that knowledge of line-height, text sizes, and color can

allow you to experiment and find a sensible balance for the template.

Back to Body

The first job here is to take control of the text by declaring some defaults. Way back in Chapter 2

you learned about basing em sizes upon an initial percentage declaration, where all em values

can be related to an actual pixel size. This method uses the default value of the font size in the

browser style sheet, which cascades into deadgoods.css as a starting point.

As with Chapter 2’s example, we’ll use a percentage value of 62.5% of the default font size.

Also rolled into the font shorthand is the preferred typeface and secondary choices.

/* Declare body first of all */

 body {

 background:#666;

 font:normal 62.5% 'Lucida Grande',Verdana,sans-serif;

 text-align:center;

 }

This will make an instant difference to the look of the template, but there is more to be done.

Headings

The next task is to wrestle back some control of the headings used in the template. Where values are

the same for two or more headings, the declarations are grouped, as with the color values for h2

and h3 selectors. Otherwise, declarations vary, so font sizes based upon the initial percentage

value in the body selector and unique margins are declared with individual selectors.

The margin values (used to space headlines away from elements above them) are not given

as shorthand, so that we only overrule a specific margin, inheriting the default browser style

sheet values for the others. The h4 (used for the Member Login heading) is given an orange

color sampled from the orange rays of the masthead image.

/* All headings and versions of */

 h2, h3 {

 color:#FFF;

 }

 h2 {

 margin-top:40px;

 font-size:1.6em;

 }

 h3 {

 margin-top:30px;

 font-size:1.5em;

 }

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 361

 h4 {

 font-size:1.3em;

 color:#FFE86C;

 }

The (X)HTML content uses <h2> and <h3> elements for article headlines, and these act as

links to the full articles. Unless overridden, these links will be the default blue as specified by

the browser style sheet. Therefore, the link states within <h2> and <h3> elements are targeted

using the following grouped selectors:

h2 a:link, h2 a:visited, h3 a:link, h3 a:visited {

 color:#FFF;

 }

h2 a:hover, h3 a:hover {

 color:#FFE86C;

 }

Column Text

Next the actual article text needs to be considered, by adding declarations to the mainCol

selector. Again, the font-size value is based upon the original percentage value in the body,

and the color is declared as light gray (CCC)—much easier to read than pure white on dark

backgrounds. Note also that line-height is used (as if I wouldn’t!) to allow the lines some

breathing space and make things more legible.

/* The main column and descendants */

 #mainCol {

 float:right;

 width:450px;

 font-size:1.1em;

 line-height:150%;

 color:#CCC;

 background:#211E0E url(back_rightcol.gif) no-repeat;

 text-align:left;

 }

Similar declarations are also added to the footer selector, albeit a smaller font-size

(0.9em) and a different color (the orange used earlier).

Paragraphs

This layout does not use padding for major page regions, specifically to avoid Box Model woes. This

is great, but it does mean that some elements don’t know when to stop, such as paragraphs in

the main column.

There are several ways to create space between the paragraph text and the right edge of the

column. You could use a right margin or padding, for example. For this template, I decided to

specify a width for the text. Using a contextual selector, I ensure that this declaration only

affects paragraphs within mainCol.

362 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

#mainCol p {

 width:400px;

 }

The Final Touches
This is the home stretch now. At this point in the process, it’s time to deal with a few rounding

off details. By working through the final key areas of the design, everything will suddenly seem

to gel together, and pride will come flowing through your veins. Let’s get down and dirty with

the main logo, navigation, login form, and footer content, with a couple of cool tricks thrown

in for free. This is the pretty icing on the finely crafted cake.

Logo As Home Link

The logo, supposedly an attempt to emulate the hip and swing of the ’60s and ’70s, uses a

typeface called Groovy Happening JNL from the Jeff Levine Font Family, available from

www.myfonts.com. Note that an Outer Glow layer treatment has been added using Photoshop.

For the web site, the logo needs to be a clickable link back to the home page (as you looked

at in Chapter 13). For this reason, it couldn’t be embedded into the masthead background image.

So, the logo needs to be placed on top of the masthead image. The problem is, the mast-

head image is not flat—it uses alternating tones of orange. This suggests the logo be cut out and

pasted onto a transparent background. Figure 16-10 shows the cut-out logo with a matte edging (as

described in Chapter 5), sampled to make a near match for the alternating masthead colors.

Figure 16-10. Logo saved as a transparency with brown matte around edges

This requires the element to be added to the (X)HTML document, inside the mast-

head’s <h1> element.

<div id="masthead">

 <h1><img src="dg_logo.gif" ~CCC

 alt="The Dead Goods" /></h1>

</div>

Now we can get back to the CSS. The img forms part of a contextual selector, ensuring this

rule only applies to images found within the masthead. The only key point here is that the left

margin is given a value of 310px to align the left edge of the image with the left edge of the main

column.

/* Main Dead Goods logo */

 #masthead img {

 margin:0 0 0 310px;

 }

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 363

Turn Off Image Borders

On the subject of images, it is worth noting that many browsers (Internet Explorer, Camino,

Firefox, etc.) look at image links a little differently from Safari, for example. Specifically, those

browsers will place a blue border around the image to denote its link status. This is great for

usability, but pretty awful for your design. A small chunk of CSS is all that is needed to remove

these default borders, where the border value is simply set to 0.

/* Turn off borders on image links */

 img {

 border:0;

 }

In order to preserve usability, it is worth ensuring that alternative obvious links or descriptive

text accompanies images that might not be assumed to be a link. For this template, a prominent

“Home” link is always visible in the main navigation bar.

Main Navigation

The main navigation is a simple unordered list (see Chapter 6 for a recap on list treatment).

Here, we emulate the approach used for inline lists, with a few adjustments to margin, padding,

and font-size as required. The key factor here is that the list must wrap to a new line if text size

is increased. If this were not so, the list items would be laid over each other, or shunted outside

of the container.

The key to a wrapping inline list is to specify a large line-height (200% worked here) for the

li selector, and to avoid the temptation to set the height of the unordered list. A set height

would allow no room for the list items to wrap under each other.

#mainCol ul {

 list-style:none;

 margin:10px 0 10px 0;

 padding:0;

 }

#mainCol li {

 display:inline;

 margin:0 10px 0 0;

 padding:0;

 line-height:200%;

 }

#mainCol li a:link, #mainCol li a:visited {

 text-decoration:none;

 font-size:1.3em;

 font-weight:bold;

 color:#FFE86C;

 }

364 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

#mainCol li a:hover {

 color:#FFF;

 }

Highlighting the Current Page

Another list trick is to use CSS to highlight the active page in the navigation list. In Chapter 12,

you looked at the control gained by specifying a unique ID attribute to the <body> element. This

technique, although quite complex to “get” at first glance, is very easy to employ.

For this template, the <body> element is given the ID home. This means that all other elements

are children of this ID. If you look at the (X)HTML for the navigation list, you’ll see that each list

item has a unique class. The “Home” link has a home class, for example.

The contextual selector looks for any instances where this home class is a child of the home

ID. If a match is found, the CSS is applied. In this case, it results in the “Home” link being given

a thick orange bottom border.

/* Highlighting the current page */

 #home #mainCol a.home {

 border-bottom:3px solid #FFE86C;

 }

In theory, all other pages will have IDs such as band, news, tour, and so on added to the

<body> element, so they will not be underlined unless you are on that page. These IDs will then

be paired with the other class names for the other list items. The preceding CSS only shows the

contextual selector for the home page, so other contextual selectors for the remaining sections

of the site will need to be grouped with it at a later stage.

Bulletproof Navigation

Figure 16-11 shows the results of all the work done with the navigation list. Note that however

much the text size is increased, the links are still perfectly clear, even if they wrap to a new line.

Also, the home link is underlined with a thick orange bottom border.

Figure 16-11. The text size can be resized without compromising usability, and the current page
is highlighted.

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 365

Login Form

Based on your comprehensive knowledge of styling forms (Chapter 9), this section should be a

breeze. The first task is to take control of the <h4> element. By specifying a top margin value

of 550px, you ensure that the login content is placed just below the leaf motif of the sidebar’s

background image. A 56-pixel left margin ensures that the heading is indented the same distance

from the left edge as defined in the mock-up.

h4 {

 margin:550px 0 10px 56px;

 font-size:1.3em;

 color:#FFE86C;

 }

The actual form elements are fairly straightforward. Default margins, padding, and borders

are tweaked or turned off, and the <fieldset> is spaced 56 pixels away from the left edge of the

sidebar using a left margin value. Note also that the submit button is spaced 56 pixels from the

left edge in the same manner, made possible thanks to the submit class given to the <input>

element in the (X)HTML and the matching selector (input.submit).

form {

 margin:0;

 padding:0;

 }

fieldset {

 border:0;

 margin:10px 0 10px 56px;

 padding:0;

 }

label {

 font-weight:bold;

 color:#FFE86C;

 }

input.submit {

 margin:0 0 30px 56px;

 }

Figure 16-12 shows the resulting Member Login form content. Note that it appears just

below the last part of the leaf motif, thanks to that top margin.

366 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

Figure 16-12. The Member Login form styled using CSS to emulate the mock-up

Footer Content

It is tempting to divide the footer into two columns, seeing as we have two halves of content—

a logo on the left and some text on the right. There is a better way though.

Left-Side Logo

The Colly Logic Records logo (see Figure 16-13) has already been placed in the (X)HTML, as it

is an image link.

Figure 16-13. Colly Logic Records—the collyrecords.gif image

The aim is to emulate a left column by floating the logo and applying enough margin on all

sides to prevent the text on the other side from being too close and wrapping under the image.

To do this, alongside the float, left and right margin values combined with the width of the image

give us 310 pixels—the width of the sidebar. Also, a large bottom margin is declared (60px) to

ensure the image element fills the left side of the footer, keeping the text well to the right.

#footer img {

 float:left;

 margin:10px 112px 60px 56px;

 }

Right-Side Nav and Paragraphs

And so to the right. Things are simpler here, as all we do is copy the CSS for the main naviga-

tion, place it in the context of the footer, and tweak it until it mirrors the text on the mock-up.

Specifically, the font-size and line-height is reduced.

#footer ul {

 list-style:none;

 margin:10px 0 0 0;

 padding:0;

 }

#footer li {

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 367

 display:inline;

 margin:0 10px 0 0;

 padding:0;

 line-height:160%;

 }

#footer li a:link, #footer li a:visited {

 text-decoration:none;

 font-weight:bold;

 color:#FFE86C;

 font-size:1em;

 }

#footer li a:hover {

 color:#FFF;

 }

Finally, the paragraphs in the footer have their default margins reduced to decrease the

distance between themselves and also the navigation just above.

#footer p {

 margin:0 0 3px 0;

 }

A Clear Problem

There is a small problem however. As the total height of the navigation and paragraphs is less

than that of the logo on the left, the footer collapses too early (see Figure 16-14). Unless there

is enough text on the right, the bottom margin under the logo will not be recognized.

Figure 16-14. Despite best intentions, the footer collapses and the logo pushes beyond the boundary.

The fix is simple, but not bulletproof. Defining a height for the footer will provide space

underneath the content, allowing the logo’s bottom margin to come into play and still prevent

the paragraphs from wrapping under it.

/* The footer and descendants */

 #footer {

 clear:both;

 height:10em;

 min-height:110px;

 font-size:0.9em;

 line-height:150%;

 color:#FFE86C;

 background:#211E0E url(back_footer.gif) right bottom no-repeat;

 }

368 C H A P T E R 1 6 ■ CA S E S T U D Y : T H E D E A D G O O D S

Figure 16-15 shows the improved footer. Note that by specifying height in ems, and also

declaring a min-height value, the footer can expand if text is resized or more content is added,

preventing the contents from bursting out of the boundary.

Figure 16-15. With a set height for the footer, both left and right elements behave themselves.

Finished!
Congratulations! Mr. Hendrix himself has called to say that he is incredibly impressed with

what “you cats did.” Loading the site in his browser, Jimi sees the result shown in Figure 16-16.

Yes, Jimi Hendrix uses a Mac. What did you expect? He types with his teeth you know.

Figure 16-16. Final screenshot of the finished Dead Goods web site. It rocks!

Like Jimi, you too can view the full web site with further sections completed by following

the link at www.csswebdevelopment.com/casestudy.

C H A P T E R 1 6 ■ C AS E S T U D Y : T H E D E A D G O O D S 369

It’s the End of the Book!
Our journey has concluded. Sometimes a journey can take you to places not found on any maps,

and I hope this has been one of those self-discovery, finding one’s self kind of things. I hope

this book has been your Marrakech, your Tibet, or your Glastonbury. If you are unlucky, it may

have been your reason to give up web design and become a fisherman. If it is the latter, then

you are wrong! Read it again!

Thank you for picking up this book and for being responsible enough to bring web standards

into your life. You did the right thing. Now then, stuff the tea—let’s go get a beer!

371

■ ■ ■

A P P E N D I X

CSS Reference

The following tables detail the majority of CSS 2.1 properties, many (but not all) of which have

been covered in the preceding chapters. The tables are intended to provide a quick reference,

specifically designed to help you avoid misspelling properties and values.

At the time of writing (July 2006), browser support notes are correct, although a final list of

supported properties for IE7 is not yet confirmed.

This appendix ends with an overview of CSS shorthand methods and alternative approaches,

aimed at making style sheets more manageable and condensed.

Background

Property Description Values

background A shorthand property for setting all
background properties in one declaration

background-color
background-image
background-repeat
background-attachment
background-position

background-attachment Sets whether a background image is
fixed or scrolls with the rest of the page

scroll
fixed

background-color Sets the background color of an element color-rgb
color-hex
color-name
transparent

background-image Sets an image as the background url
none

372 A P P E N D I X ■ C S S R E F E R E N CE

Border

background-position Sets the starting position of a
background image

top left
top center
top right
center left
center center
center right
bottom left
bottom center
bottom right
x-% y-%
x-pos y-pos

background-repeat Sets if/how a background image will
be repeated

repeat
repeat-x
repeat-y
no-repeat

Property Description Values

border A shorthand property for setting all of
the properties for the four borders in
one declaration

border-width
border-style
border-color

border-bottom A shorthand property for setting all of the
properties for the bottom border in one
declaration

border-bottom-width
border-style
border-color

border-bottom-color Sets the color of the bottom border border-color

border-bottom-style Sets the style of the bottom border border-style

border-bottom-width Sets the width of the bottom border border-width

border-color Sets the color of the four borders—
can have one to four colors

color

border-left A shorthand property for setting all of
the properties for the left border in one
declaration

border-left-width
border-style
border-color

border-left-color Sets the color of the left border border-color

border-left-style Sets the style of the left border border-style

border-left-width Sets the width of the left border border-width

border-right A shorthand property for setting all of
the properties for the right border in
one declaration

border-right-width
border-style
border-color

border-right-color Sets the color of the right border border-color

border-right-style Sets the style of the right border border-style

border-right-width Sets the width of the right border border-width

Property Description Values

A P P E N D I X ■ C S S R E F E R E N C E 373

Margin

border-style Sets the style of the four borders—
can have one to four styles

none
hidden
dotted
dashed
solid
double
groove
ridge
inset
outset

border-top A shorthand property for setting all of
the properties for the top border in
one declaration

border-top-width
border-style
border-color

border-top-color Sets the color of the top border border-color

border-top-style Sets the style of the top border border-style

border-top-width Sets the width of the top border border-width

border-width A shorthand property for setting the width
of the four borders in one declaration—
can have from one to four values

thin
medium
thick
length

Property Description Values

margin A shorthand property for setting the
margin properties in one declaration

margin-top
margin-right
margin-bottom
margin-left

margin-bottom Sets the bottom margin of an element auto
length
%

margin-left Sets the left margin of an element auto
length
%

margin-right Sets the right margin of an element auto
length
%

margin-top Sets the top margin of an element auto
length
%

Property Description Values

374 A P P E N D I X ■ C S S R E F E R E N CE

Padding

Dimension
The max-height, max-width, min-height, and min-width properties are not currently supported

by IE, although full support will arrive with IE7.

Property Description Values

padding A shorthand property for setting the
padding properties in one declaration

padding-top
padding-right
padding-bottom
padding-left

padding-bottom Sets the bottom padding of an element length
%

padding-left Sets the left padding of an element length
%

padding-right Sets the right padding of an element length
%

padding-top Sets the top padding of an element length
%

Property Description Values

height Sets the height of an element auto
length
%

line-height Sets the distance between lines normal
number
length
%

max-height Sets the maximum height of an element none
length
%

max-width Sets the maximum width of an element none
length
%

min-height Sets the minimum height of an element length
%

min-width Sets the minimum width of an element length
%

width Sets the width of an element auto
length
%

A P P E N D I X ■ C S S R E F E R E N C E 375

Text

Property Description Values

color Sets the color of text color

direction Sets the text direction ltr
rtl

letter-spacing Increases or decreases the space
between characters

normal
length

text-align Aligns the text in an element left
right
center
justify

text-decoration Adds decoration to text none
underline
overline
line-through
blink

text-indent Indents the first line of text in an element length
%

text-shadow Applies a drop shadow to normal text none
color
length

text-transform Controls the case in an element none
capitalize
uppercase
lowercase

white-space Sets how whitespace inside an element
is handled

normal
pre
nowrap

word-spacing Increases or decreases the space
between words

normal
length

376 A P P E N D I X ■ C S S R E F E R E N CE

Font
The font-size-adjust and font-stretch properties are not currently supported by IE, Netscape,

or Firefox.

Property Description Values

font A shorthand property for setting all of the
properties for a font in one declaration

font-style
font-variant
font-weight
font-size/line-height
font-family
caption
icon
menu
message-box
small-caption
status bar

font-family A prioritized list of font family names and/or
generic family names for an element

family-name
generic-family

font-size Sets the size of a font xx-small
x-small
small
medium
large
x-large
xx-large
smaller
larger
length
%

font-size-adjust Specifies an aspect value for an element
that will preserve the x-height of the first-
choice font

none
number

font-stretch Condenses or expands the current
font family

normal
wider
narrower
ultra-condensed
extra-condensed
condensed
semi-condensed
semi-expanded
expanded
extra-expanded
ultra-expanded

font-style Sets the style of the font normal
italic
oblique

font-variant Displays text in a small-caps font or
a normal font

normal
small-caps

A P P E N D I X ■ C S S R E F E R E N C E 377

List and Marker
The marker-offset property is not currently supported by IE.

font-weight Sets the weight of a font normal
bold
bolder
lighter
100
200
300
400
500
600
700
800
900

Property Description Values

list-style A shorthand property for setting the
properties for a list in one declaration

list-style-type
list-style-position
list-style-image

list-style-image Sets an image as the list item marker none
url

list-style-position Sets where the list item marker is placed in
the list

inside
outside

list-style-type Sets the type of the list item marker none
disc
circle
square
decimal
decimal-leading-zero
lower-roman
upper-roman
lower-alpha
upper-alpha
lower-greek
lower-latin
upper-latin
hebrew
armenian
georgian
cjk-ideographoc
hiragana
katakana
hiragana-iroha
katakana-iroha

marker-offset Offsets the list marker auto
length

Property Description Values

378 A P P E N D I X ■ C S S R E F E R E N CE

Positioning

Property Description Values

bottom Sets how far the bottom edge of an element is
above/below the bottom edge of the parent element.

auto
length
%

clip Sets the shape of an element. The element is
clipped into this shape and displayed.

shape
auto

left Sets how far the left edge of an element is to the
right/left of the left edge of the parent element.

auto
length
%

overflow Sets what happens if the content of an element
overflows its area.

visible
hidden
scroll
auto

position Places an element in a static, relative, absolute,
or fixed position.

static
relative
absolute
fixed

right Sets how far the right edge of an element is to the
left/right of the right edge of the parent element.

auto
length
%

top Sets how far the top edge of an element is
above/below the top edge of the parent element.

auto
length
%

vertical-align Sets the vertical alignment of an element. baseline
sub
super
top
text-top
middle
bottom
text-bottom
length
%

z-index Sets the stack order of an element. auto
number

A P P E N D I X ■ C S S R E F E R E N C E 379

Classification

Property Description Values

clear Sets the sides of an element where other floating
elements are not allowed

left
right
both
none

cursor Specifies the type of cursor to be displayed url
auto
crosshair
default
pointer
move
e-resize
ne-resize
nw-resize
n-resize
se-resize
sw-resize
s-resize
w-resize
text
wait
help

display Sets how/if an element is displayed none
inline
block
list-item
run-in
compact
marker
table
inline-table
table-row-group
table-header-group
table-footer-group
table-row
table-column-group
table-column
table-cell
table-caption

float Sets where a child element, image, or text will
appear in another element

left
right
none

visibility Sets whether an element should be visible
or invisible

visible
hidden
collapse

380 A P P E N D I X ■ C S S R E F E R E N CE

Table
The border-spacing, caption-side, and empty-cells properties are not currently supported

by IE.

Pseudo Classes
The :focus, :first-child, and :lang properties are not currently supported by IE. Also, IE6 and

below only support :hover when used with <a> tags (this will be fixed in IE7). The :focus prop-

erty is not currently supported in Firefox or Netscape.

Property Description Values

border-collapse Sets the border model of a table collapse
separate

border-spacing Sets the distance between the borders of adjacent
cells (only for the “separated borders” model)

length length

caption-side Sets the position of the caption according to
the table

top
bottom
left
right

empty-cells Sets whether cells with no visible content
should have borders or not (only for the
“separated borders” model)

show
hide

table-layout Sets the algorithm used to lay out the table auto
fixed

Property Description

:active Adds style to an activated element, such as a link

:focus Adds style to an element while the element has focus

:hover Adds style to an element when you mouse over it

:link Adds style to an unvisited link

:visited Adds style to a visited link

:first-child Adds style to an element that is the first child of a parent element

:lang Allows the author to specify a language to use in a specified element

A P P E N D I X ■ C S S R E F E R E N C E 381

Pseudo Elements
The :before and :after properties are not currently supported by IE or Netscape, but they are

supported in Firefox 1.5 and above.

Outline
None of these properties are currently supported by IE or Netscape, but they are supported in

Firefox 1.5 and above.

Property Description

:first-letter Adds style to the first letter of the text

:first-line Adds style to the first line of text

:before Inserts content before an element

:after Inserts content after an element

Property Description Values

outline A shorthand property for setting all the outline
properties in one declaration

outline-color
outline-style
outline-width

outline-color Sets the color of the outline around an element color
invert

outline-style Sets the style of the outline around an element none
dotted
dashed
solid
double
groove
ridge
inset
outset

outline-width Sets the width of the outline around an element thin
medium
thick
length

382 A P P E N D I X ■ C S S R E F E R E N CE

Shorthand
The following CSS shorthand properties can be used to reduce the size of your style sheet

dramatically.

Font Shorthand

Long version, with each property and value listed separately:

 font-size:1em;

 line-height:160%;

 font-weight:bold;

 font-style:italic;

 font-family:Verdana,Arial,sans-serif;

Shorthand:

 font:1em/160% bold italic Verdana,Arial,sans-serif

■Note This only works if you specify both the font-size and the font-family—omit either and the

rule will be ignored. Also, if you don’t specify the font-weight, font-style, or font-variant, then

these values will default to a value of normal.

Background Shorthand

Long version, with each property and value listed separately:

 background-color:#CCC;

 background-image:url(image.gif);

 background-repeat:no-repeat;

 background-position:top left;

Shorthand:

 background:#CCC url(image.gif) no-repeat top left

■Note Omit any of the values from the background shorthand, and the browser will use the default

values. If you leave out the background-repeat value, then any background image will be repeated both

horizontally and vertically.

A P P E N D I X ■ C S S R E F E R E N C E 383

List Shorthand

Long version, with each property and value listed separately:

 list-style-type:disc;

 list-style-position:inside;

 list-style-image:url(image.gif)

Shorthand:

 list-style:disc inside url(image.gif)

■Note Leave out any of the CSS values from the shorthand rule, and the browser will use the default values

for each, which are disc, outside, and none, respectively.

Margin and Padding Shorthand

There are four different CSS shorthand commands for margin and padding, depending on how

many margin or padding values are equal.

Four Different Values

Long version, with each property and value listed separately:

 margin-top:1px;

 margin-right:2px;

 margin-bottom:3px;

 margin-left:4px;

Shorthand:

 margin: 1px 2px 3px 4px;

Three Different Values

Long version, with each property and value listed separately:

 margin-top:5px;

 margin-right:10px;

 margin-bottom:3px;

 margin-left:10px;

Shorthand:

 margin:5px 10px 3px;

384 A P P E N D I X ■ C S S R E F E R E N CE

Two Different Values

Long version, with each property and value listed separately:

 margin-top:5px;

 margin-right:10px;

 margin-bottom:5px;

 margin-left:10px;

Shorthand:

 margin:5px 10px;

One Value

Long version, with each property and value listed separately:

 margin-top:10px;

 margin-right:10px;

 margin-bottom:10px;

 margin-left:10px;

Shorthand:

 margin:10px;

■Note The four shorthand methods can also be applied to padding and border.

Border Shorthand

Long version, with each property and value listed separately:

 border-width:1px;

 border-color:#CCC;

 border-style:dashed;

Shorthand:

 border:1px #CCC dashed;

Long version, with each property and value listed separately:

 border-right-width:1px;

 border-right-color:#CCC;

 border-right-style:dashed;

Shorthand:

 border-right:1px #CCC dashed;

A P P E N D I X ■ C S S R E F E R E N C E 385

■Note You can substitute right in the preceding examples with top, bottom, or left.

Two Approaches, Same Result

Example of combining border values to achieve the same result:

 border:10px solid #CCC;

 border-left:5px solid #666;

 border-top:5px solid #666;

Equivalent version:

 border:10px solid #CCC;

 border-width:5px 10px 10px 5px;

 border-color:#666 #CCC #CCC #666;

387

Index

■Numbers and symbols
% unit

relative CSS measurements, 32

8-bit color, 80

17 named colors

hexadecimal values, 81

using, 81, 82

■A
a element selector

active pseudo class, 133

hover pseudo class, 132

link pseudo class, 131

visited pseudo class, 132

abbr element

styling abbreviations and acronyms,

318–320

absolute CSS measurements, 31

absolute positioning, 226

how position values works, 229

offset outcomes based on position

values, 227

accessibility

accessibility aids, forms, 170–171

Accessify web site, 316

disabilities and, 316

styling abbreviations and acronyms,

318–320

tables, 146

user style sheets, 317–318

!important operator, 317

Web Content Accessibility Guidelines, 316

web sites, 315

accesskey attribute

label element, forms, 171

acronym element

styling abbreviations and acronyms,

318–320

action-packed footer, 299, 302–311

active pseudo class, 133, 380

pseudo class precedence, 133

targeting links with descendant selectors,

137, 138

transforming navigation bar with links, 141

active state

rollover images, 331

Adobe Photoshop

web-safe palette, 82

after pseudo element, 381

print style sheets, 323

alignment

text-align property, 375

vertical-align property, 378

alt attribute, a tag

link markup, 129

alt attribute, img tag

making logo clickable in masthead, 294

sidebar heading image, 297

anti-aliasing

ClearType font smoothing, 56–57

Arial font, 61

attachments

background-attachment property, 100, 371

aural value, media attribute

link element, 9

auto value, margin property

centering elements with CSS, 47

auto value, overflow property, 332–334

■B
back_footer.gif image

Dead Goods footer, 357

back_leftcol.gif image

Dead Goods sidebar, 356

back_rightcol.gif image

Dead Goods main column, 357

background-attachment property, 100, 371

388 ■I N D E X

background color, 84–89

adding to body, 87

adding to headings, 86–87

adding to ordered lists, 127

adding to other elements, 87–89

adding to text, 84–86

adding to unordered lists, 112

Dead Goods case study, 359

wireframing Dead Goods layout, 352

definition list based form layout, 201

faux columns, 285, 286

print style sheets, 322

using span element for control, 85–86

background-color property, 84–89, 371

shorthand, 101–102, 382

background-image property, 96, 371

shorthand, 101–102, 382

background images, 94–102

customizing table elements, 154–158

adding a caption, 154

applying to any table element, 156

modifying single instances of

elements, 156

seamless tiling, 155

Dead Goods case study, 355–359

footer, 357

main column, 357

masthead, 355

page, 358

sidebar, 355

faux columns, 287

elongating sidebars with, 284–288

identifying links using, 136

image formats for, 90–94

perfect alignment of bullets, 112

positioning background images, 99–100

preparing style sheet, 95–96

preparing template, 95–96

repeating, 97–99

specifying background image, 96–97

tiles/tiling, 96, 97–99

turning off tiling, 97

troubleshooting, 344

using but not overusing, 95

using for inline lists, 113

using for list bullets, 111–112

using in footer, 299–301

visual distinction between footer and

content, 310

background position

Dead Goods footer, 358

using for list bullets, 112

background-position property, 99–100, 372

shorthand, 101–102, 382

background properties, 371

adding id selector for faux columns,

287–288

adding styling to ordered lists, 127

CSS property reference, 371

declaring numbers using unique

classes, 125

hover pseudo class, 142

identifying links using background

images, 136

identifying links using borders, 135

link pseudo class, 136

paragraph and break element layout, 191

shorthand for, 101–102, 382

transforming navigation bar with links, 142

turning list elements into buttons, 122

using for list bullets, 112, 113

visited pseudo class, 136

background-repeat property, 97–99, 372

tiling images horizontally, 156

shorthand, 102, 382

base (X)HTML template

preparing, 3–5

base selectors, 17

combining id selectors with, 18

overriding with class selectors, 21

before pseudo element, 381

block-level elements, 41, 87

dt element, 163

floated elements, 209

paragraph and break element layout, 188

blockquote element, XHTML, 73–74

body element

adding background color to, 87

changing layout with contextual selectors,

275, 279–284

from 3 to 2 columns, 281–284

switching columns, 279–281

389■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

Dead Goods text, 360

ems and, 35–36

wireframing Dead Goods layout, 352

XHTML element inheritance, 28

body selector

background images, Dead Goods, 358

blanket declarations, 65

resetting margin/padding defaults, 49

border attribute, table element

when CSS used, 148

border-bottom property, 53, 372

border-collapse property, 152–153, 380

collapse value giving seamless tiling,

155, 156

table-based form layout, 183

border-color property, 52–53, 372

border-left property, 53, 372

border property, 53–54, 372–373

adding styling to ordered lists, 127

list of properties, 50

refining display of vertical navigation

bar, 123

shorthand declaration, 384

td/th selectors, 151

turning list elements into buttons, 122

border property, pseudo classes

identifying links using, 134, 135

border-right property, 53, 372

border-spacing property, 380

border-style property, 50–51, 373

shorthand, 51

border-top property, 53, 373

border-width property, 51–52, 373

borders

CSS used with different browsers, 148

identifying links using, 135

omitting to avoid Box Model hack, 289

replacing using faux columns, 284–288

styling form borders, 176

turning off image borders, Dead Goods, 363

wire frames, 54

both value, clear property, 217–218

floated sidebar with real columns, 246

floating footer sections, 306

bottom border

border-bottom property, 372

bottom margin

margin-bottom property, 373

why columns need bottom margin, 248

bottom padding

padding-bottom property, 374

bottom property, 378

positioning, 227

box class

applying simple CSS to divs, 40

Box Model, 264–266

floated three-column fixed-width layout,

267–272

problem explained, 265

using faux columns, 288

Box Model hack, 266–267

avoiding padding and borders with

columns, 289

floated three-column fixed-width layout,

270–272

Opera browser adjustment, 267

troubleshooting, 345

boxes

normal layout of floated box, 209

BraemoreGemini web site, 238

braille value, media attribute, 9

break and paragraph element based forms

laying out forms within web pages,

186–194

browsers

@import hack, 339–340

borders when CSS used with different

browsers, 148

Caio hack, 340

cross-browser problem-solving tools, 76

default style sheet precedence in

cascade, 25

default style sheet text display, 64

filling available area, 178

ignoring CSS in older browsers, 7

Opera Mini browser, 327

overriding browser default style sheet, 65

rendering of form elements, 172–174

resetting margin/padding defaults, 49

styling form borders, 176

troubleshooting, 344

browser-safe palettes, 80

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

390 ■I N D E X

bulletproof navigation

Dead Goods case study, 364

bullets

see also markers

background images and inline lists, 113

perfect alignment of, 112

using background images for list bullets,

111–112

buttons

browser rendering of form elements, 173

■C
Caio hack, 340

capitalization

drop caps, 75–76

capitalize declaration

text-transform property, 71

caption element, tables, 154, 155

styling abbreviations and acronyms, 320

caption selector

table background images, 155

caption-side property, 380

Cascading Style Sheets

see CSS

case sensitivity of selectors, 344

case study

Dead Goods case study, 347–368

Celik, Tantek, 267

cellpadding attribute, table element

old way of styling tables, 148

padding property replacing, 151

when CSS used, 148

cells

empty-cells property, 380

cellspacing attribute, table element

old way of styling tables, 148

when CSS used, 148

Chassot, Caio, 340

checkbox type

input element, forms, 168

child (X)HTML elements

first-child pseudo class, 380

overflow property, 332–336

XHTML element inheritance, 27

circle value

list-style-type property, ul selector, 105

class attribute

applying class selectors, 19

combining classes, 336–338

controlling ordered lists, 125

using span element for background color

control, 85

class selectors, 19–22

adding search box to masthead, 295

aligning images with paragraph elements

in footer, 308

applying, 19

applying simple CSS to child divs, 40

background images with, 156–158

combining with id selectors, 20–21

declaring numbers using unique

classes, 125

dividing footer into sections, 304

grouping items in unordered lists, 116–117

introduction, 17, 18

linking directly to elements, 22

naming conventions, 241

overriding base selectors, 21

using span element for background color

control, 85

when to avoid, 22

when to use, 22

classes

pseudo classes, 380

classification properties

CSS property reference, 379

clear property, 379

both value, 217–218

floated sidebar with real columns, 246

floating footer sections, 306

left value, 215–216

none value, 215

right value, 216–217

values, 214

clearing floats, 214–225

clear property values, 214

floating right, 224

not clearing floated elements, 210

ClearType font

smoothing, 56–57

clip property, 378

391■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

cm unit

absolute CSS measurements, 31

collapse value, border-collapse property, 380

seamless tiling, 155, 156

Colly Logic web site, 239

collyrecords.gif image

left-side logo, 366

color

background-color property, 371

border-color property, 52–53, 372

inheritance, 84

outline-color property, 381

Color Palette Generator

selecting color palette for designs, 83

color property, 375

color for text, 84

Color Scheme Generator 2

selecting color palette for designs, 83

ColorBlender

selecting color palette for designs, 83

colors, 79–89

8-bit color, 80

17 named colors, 81

analysis of color on the web, 83

background color, 84–89

background to web use of, 79–83

browser-safe palettes, 80

color for text, 84

hexadecimal (hex) triplets, 81

HSL color space values, 82

RGB declarations, 81

selecting color palette for designs, 83

specifying color, 80–81

system colors, 82

web-safe color, 80

web-safe palettes, 80

Adobe Photoshop, 82

with image background properties, 101

Colour Lovers

selecting color palette for designs, 83

columns

background images, Dead Goods, 357

changing layout with contextual selectors

from 3 to 2 columns, 281–284

switching columns, 279–281

Dead Goods text, 361

expanding only to contain child

elements, 286

expanding to appear same height, 288

faux columns, 284–289

adding id selector, 287–288

creating background image, 287

defining column area, 286

floated elements, 209

floated three-column fixed-width layout,

267–272

Box Model hack for IE5, 270–272

liquid floated three-column layout,

250–254

column swapping, 253–254

column switching, 279–281

from 3 to 2 columns, 281–284

liquid floated two-column layout, 241–249

floated sidebar with real columns,

246–248

liquid positioned three-column layout,

259–263

swapping sidebars, 262–263

liquid positioned two-column layout,

255–259

footers, 258–259

masthead height, 255–257

print style sheets, 322

why columns need bottom margin, 248

wireframing Dead Goods layout, 353

columns attribute

textarea element, forms, 169

columns.css, 240

columns.html, 239

combining classes, 336–338

Comic Sans MS font, 62

comments

Caio hack, 340

conditional comments, 341–342

CSS syntax, 13–14

flagging rules, 14

conditional comments, 341–342

containers

auto value, overflow property, 333

combining classes, 337

hidden value, overflow property, 335

wireframing Dead Goods layout, 352

392 ■I N D E X

content

changing column layout with contextual

selectors

from 3 to 2 columns, 281–284

switching columns, 279–281

Dead Goods case study, 350

elongating sidebars with faux columns,

284–288

floated three-column fixed-width

layout, 269

layout manipulation to accommodate,

275–289

making visual distinction between footer

and, 309–311

overflow property, 332–336

using images for heading typeface, 297

content property

print style sheets, 324

contextual selectors, 30–31

changing layout with contextual selectors,

275–284

from 3 to 2 columns, 281–284

switching columns, 279–281

divs and, 41–44

taking control of footer content, 307

Courier font, 62

CSS

applying to (X)HTML, 3–7

preparing a base (X)HTML template, 3–5

benefits of using, 3

building blocks, 39–54

div elements, XHTML, 39–44

cascade hierarchy, 22–25

changing layout with contextual

selectors, 275

core concepts, 17–37

design process for Dead Goods, 350

exploiting flexibility of, 3

ignoring CSS in older browsers, 7

measurements, 31–37

modular CSS, 10–11

properties

see properties, CSS

selectors

base selectors, 17

class selectors, 17, 19–22

contextual selectors, 30–31

custom selectors, 18

grouping, 26–27

id selectors, 17, 18–19

style sheets

maintaining and organizing style sheets,

9–12

specialized style sheets, 320–328

styles

embedded styles, 6

external styles, 6–7

importing and combining styles, 7–9

inline styles, 5

styling abbreviations and acronyms, 319

syntax

comments, 13–14

components of, 12

defining styles, 12–13

effective use of, 12–15

flagging rules, 14–15

indentation, 15

text control, 55

CSS properties

see properties, CSS

cursor property, 379

custom numbers, 125

declaring using unique classes, 125–126

custom selectors, 18

cutout.gif

making visual distinction between footer

and content, 310

■D
data compression

lossy data compression method, 93

data exchange

forms, 167–205

data formatting

definition lists, 158–166

tables, 145–158

dd element

adding form CSS block into

forms_dl.css, 200

definition list markup, 158, 159, 160

incorporating ul element in, 161–165

393■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

dd selector

definition list based form layout, 196

unordered lists inside definition lists, 164

Dead Goods case study, 347–368

background images, 355–359

body selector, 358

columns, 357

container, 358

footers, 357

masthead, 355

sidebars, 355

footers, 366–368

footer collapse problem, 367

introduction, 347

login form, 365–366

logo as home link, 362–363

navigation, 363–364

bulletproof navigation, 364

highlighting current page, 364

Photoshop template, 348

setting up, 351

text, 360–361

body element, 360

column text, 361

headings, 360

paragraphs, 361

turning off image borders, 363

web build process, 347–351

content, 350

design, 348–349

presentation, 350

wireframing layout, 351–355

body element, 352

columns, 353

container, 352

div elements, 354

footer, 353

masthead, 352

sidebar, 353

Dead Goods web site

final screenshot, 368

link for, 368

declarations

components of CSS syntax, 12

decoration

text-decoration property, 375

default rules

modular CSS, 10

definition lists, 158–166

care using, 165

dd selector, 164

dl selector, 162, 165

dt selector, 163, 165

further reading about, 166

incorporating other elements, 160

incorporating unordered lists in, 161–165

laying out forms within web pages,

194–204

markup, 158–161

search engine indexing of, 166

unstyled definition list, 159

when to use, 145

descendant selectors

nested lists, 119

targeting links with, 137–139

transforming navigation bar with links, 141

design

Dead Goods case study, 348–349

devices

mobile devices; 8

utilizing screen style sheets for other

devices, 11–12

dimension properties, 374

direction property, 375

directories

maintaining and organizing style sheets,

9–10

Dirty Pretty Things discography

styling abbreviations and acronyms, 320

disabilities

guidelines and legalities, 315–317

section 508, 316

Web Content Accessibility

Guidelines, 316

styling abbreviations and acronyms,

318–320

disc value

list-style-type property, ul selector, 105

Discography table

styling abbreviations and acronyms, 320

394 ■I N D E X

display property, 379

li selector, 112, 113

background images and inline lists, 113

making logo clickable in masthead,

293–295

transforming navigation bar with links, 140

using display: none

caution using, 284

mobile/handheld style sheets, 326, 327

print style sheets, 322

dithering, 90, 91

div elements, 39–44

adding, 39, 40

adding background color to body

element, 88

adding child divs, 40–41

applying simple CSS to, 40

block elements, 41

contextual selectors, 41–44

spacer <div> clearing floated images,

218–219

wireframing Dead Goods layout, 354

dl element

definition list markup, 158

dl selector

unordered lists inside definition lists,

162, 165

dropcap class, 75–76

first-letter pseudo element, 76

drop-down menu, forms, 169

see also select element, forms

dt element

adding form CSS block into

forms_dl.css, 200

block-level elements, 163

definition list markup, 158, 159, 160

dt selector

definition list based form layout, 197

unordered lists inside definition lists,

163, 165

■E
elastic layout, 238

elements

abbr element, 318–320

acronym element, 318–320

after pseudo element, 381

before pseudo element, 381

block-level elements, 41, 87

blockquote element, 73–74

body element, 28, 35–36, 87

caption element, 154, 155

child (X)HTML elements, 27

clearing floated elements, 214–225

dd element, 158, 159, 160

default positioning, 226

div element, 39–44

dl element, 158

dt element, 158, 159, 160

floated elements, 209–225

fieldset element, forms, 170

first-letter pseudo element, 76, 381

first-line pseudo element, 381

floated elements, 209–225

form elements, 168–170

iframe element, 332

img element, 294

inheritance, 27–30

inline elements, 87

input element, forms, 168–169

label element, forms, 171

legend element, forms, 170

li element, 112

link element, 8

link pseudo element, 323

linking class selectors directly to, 22

ol element, 125

option element, forms, 170

p element, 160

parent (X)HTML elements, 27

placing with more accuracy, 225

pseudo elements, 381

reusing elements, 336

select element, forms, 169

span element, XHTML, 85

table element, 147

td element, tables, 147

textarea element, forms, 169

th element, tables, 147

tr element, tables, 147

ul element, 118, 121

395■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

unique identifier, 18

visited pseudo element, 323

em unit

basing em sizes on initial percentage

declaration, 37

body element and, 35–36

em measurement, 34–37

how do ems scale, 34

relative CSS measurements, 32

embedded styles, 6

advantages of, 6

cascade hierarchy, 23

disadvantages of, 6

empty-cells property, 380

errors

commenting out areas of style sheet to

find, 345

ex unit

relative CSS measurements, 32

external styles, 6–7

advantages of, 7

cascade hierarchy, 23

multiple external style sheets, 23

conditional comments, 342

disadvantages of, 7

external style sheets during

development, 345

■F
family

font-family property, 376

faux columns, 284–289

adding id selector, 287–288

Box Model, 288

creating background image, 287

defining column area, 286

fluid faux columns, 289

wireframing Dead Goods layout, 352

faux.css file, 285

faux.html file, 285

fieldset element

border default, 50

forms, 170, 191

legend, 170

taking control of footer content, 307, 308

fieldset selector

form styling, 180

filters, 338

Star HTML hack, 341

Firefox browser

default browser text display, 64

outlining links, 331

rendering of form elements, 172

first-child pseudo class, 380

first-letter pseudo element, 76, 381

first-line pseudo element, 381

fixed positioning, 226

how position values works, 231

offset outcomes based on position

values, 227

fixed-width layout, 236–237, 264–272

Box Model, 264–266

floated three-column layout, 267–272

Box Model hack for IE5, 270–272

variable fixed-width layout, 238–239

flagging rules, 14–15

flash of unstyled content, 344

float property, 379

adding search box to masthead, 295

definition list based form layout, 197, 202

floated sidebar, 244

floating footer sections, 306–307

floating left, 214

floating right, 224–225

left value, 214

liquid floated two-column layout, 248–249

none value, 214

right value, 224–225

switching columns, 280–281

using with first-letter pseudo element, 76

values, 211

float.css

floating images, 212

floated box

normal layout, 209

floated elements, 209–225

block-level elements, 209

clear property

clear:both, 217

clear:left, 215

clear:right, 216

396 ■I N D E X

clearing floated images, 220–221

clearing floats, 214–225

elements following, 209

fixed-width layout, 264–272

Box Model, 264–266

floated box, 209

floating left, 214

floating right, 224–225

handling multiple floats, 220–221

images, 211–214

liquid floated three-column layout,

250–254

column swapping, 253–254

column switching, 279–281

from 3 to 2 columns, 281–284

liquid floated two-column layout, 241–249

three-column fixed-width layout, 267–272

Box Model hack for IE5, 270–272

floated sidebar

float:right, 244

liquid floated three-column layout,

250–254

column swapping, 253–254

column switching, 279–281

from 3 to 2 columns, 281–284

liquid floated two-column layout,

242–243, 244–245

real columns, 246–248

floated two-column layout

template adding masthead, headings, and

footer styling, 312

floating images, 211–214

clearing floated images, 214–225

clearing with existing elements, 221–224

extraneous spacer <div>, 218–219

handling multiple floats, 220–221

div not recognizing float, 214

floating left, 214

floating right, 224–225

floating left, 214

floating right, 224–225

clearing floats, 224

floats

wireframing Dead Goods layout, 353

floats.html

floating images, 211

fluid faux columns, 289

fluid layouts

see liquid layouts

focus pseudo class, 380

folders

maintaining and organizing style sheets, 9

font-family property, 57–58, 376

font properties, 57–59, 376

adding styling to ordered lists, 127

combining, 71

refining display of vertical navigation

bar, 123

shorthand, 59, 72–73, 382

font-size property, 58–59, 376

Dead Goods column text, 361

print style sheets, 322, 324

font-size-adjust property, 376

font smoothing

ClearType font smoothing, 56–57

font-stretch property, 376

font-style property, 70, 376

font-variant property, 70, 376

font-weight property, 70, 377

fonts

alternative fonts, 62–64

caution using, 64

Arial, 61

available fonts, 59–64

ClearType font smoothing, 56–57

Comic Sans MS, 62

conveying mood with font selection, 56

Courier, 62

Dead Goods text, 360

Futura, 63

Georgia, 61

Gill Sans, 63

Helvetica, 61

Helvetica Neue, 63

Lucida Grande, 63

Lucida Sans Unicode, 63

Palatino, 64

Tahoma, 61

Times, 61

397■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

Times New Roman, 61

Trebuchet, 62

Verdana, 61

web safe fonts, 59–62

font-size

basing em sizes on initial percentage

declaration, 37

how do ems scale, 34

footers, 241, 299–311

action-packed footer, 302–311

dividing footer into sections, 304–306

floating footer sections, 306–307

making visual distinction with content,

309–311

taking control of content, 307–309

aligning images with paragraph elements

in, 308

background images

Dead Goods case study, 357

Dead Goods case study, 366–368

footer collapse problem, 367

left-side logo, 366

right-side navigation, 366

ensuring appearance below columns, 246

floated three-column fixed-width

layout, 268

liquid floated two-column layout, 241–242

liquid layouts, 241–242

adding styling to footers, 243–244

liquid positioned two-column layout,

258–259

overloading footers, 311

quirky footer, 299–301

standard use of, 299

template of floated two-column layout, 312

wireframing Dead Goods layout, 353

for attribute

label element, forms, 171

form CSS block, 174–182

adding into forms_dl.css, 200

full CSS for, 182

form elements, 168–170

browser rendering of, 172–174

data input, 168–170

fieldset element, 170

id attribute, 172

input element, 168–169

label element, 171

legend element, 170

select element, 169

textarea element, 169

form selector

removing default form spacing, 176

form styling, 174–182

fieldset selector, 180

form layout within a table, 175

form selector, 176

input selector, 176, 177

label selector, 179

legend selector, 181

textarea selector, 176, 177

forms, 167–205

accessibility aids, 170–171

laying out forms within web pages,

182–205

best approach, 204–205

definition list based forms, 194–204

paragraph and break element layout,

186–194

table-based forms, 183–186

login form, Dead Goods, 365–366

markup, 167–172

reluctance to use, 167

uses of, 167

forms_dl.css

adding form CSS block into, 200

definition list based form layout, 203

forms_dl.html, 195

forms_pbr.css, 189

forms_pbr.html, 187

forms_table.css

preparing file and style sheet, 176

table-based form layout, 183, 185

forms_table.html

preparing file and style sheet, 174

table-based form layout, 183

full stop (.) character

applying class selectors, 20

Futura font, 63

398 ■I N D E X

■G
Georgia font, 61

GIF image format, 90–93

transparent GIFs, 91–93

when to use, 94

Gill Sans font, 63

Gillenwater, Zoe, 289

Groovy Happening JNL typeface, 362

grouping selectors, 26–27

unordered lists, 116–117

guides

Dead Goods case study, 349

Photoshop guides illustrated, 349

wireframing Dead Goods layout, 351

■H
h1 element

making logo clickable in masthead,

293–295

hacks, 338–342

@import hack, 339–340

Caio hack, 340

hiding style sheets hack, 341

IE7, 342

safe hacks, 339–341

Star HTML hack, 341

handheld style sheets, 325–328

handheld value, media attribute, 8

hash (#) character

id selectors, 18

header selector

mobile/handheld style sheets, 326

headers

mobile/handheld style sheets, 325

headings, 297–298

adding background color to headings,

86–87

Dead Goods text, 360

print style sheets, 322

template of floated two-column layout, 312

using images for typeface, 297

height

line-height property, 374

max-height property, 374

min-height property, 374

height property, 44, 374

auto value, overflow property, 332,

333, 334

hidden value, overflow property, 335

liquid positioned two-column layout

masthead height, 255–257

Helvetica font, 61

Helvetica Neue font, 63

hexadecimal (hex) triplets

shortening the hex, 81

specifying color, 80, 81

hexadecimal values

17 named colors, 81

hidden value, overflow property, 332, 334–336

hierarchy

style sheet cascade hierarchy, 22–25

XHTML element inheritance, 27

home link

logo as home link, Dead Goods, 362–363

hooks

adding divs, 39

div elements, XHTML, 39

horizontal displays

displaying lists horizontally, 112

hover pseudo class, 132, 380

identifying links using text decoration, 134

pseudo class precedence, 133

targeting links with descendant selectors,

137, 138

transforming navigation bar with links,

141, 142

hover state

identifying links using background

images, 136

rollover images, 331

href attribute, a tag

link markup, 129

HSL (Hue, Saturation, Lightness)

HSL color space values, 82

HTML

applying CSS to, 3–7

HTML files

see XHTML files

hue, 82

hyperlinks

see links

399■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

■I
id attribute

adding background color to body

element, 88

changing layout with contextual selectors,

275, 279–284

from 3 to 2 columns, 281–284

switching columns, 279–281

form element, 172

input element, forms, 171–172

select element, forms, 170

textarea element, forms, 169

transforming navigation bar with links, 143

id selectors, 18–19

adding for faux columns, 287–288

applying, 18

applying simple CSS to divs, 39

combining id with base selectors, 18

combining with class selectors, 20–21

defining column area using faux

columns, 286

filling available browser area, 178

floated sidebar, 244

form element, 172

highlighting current page, 143

input element, forms, 172

introduction, 17, 18

naming conventions, 241

taking control with, 114–116

unordered lists, 114–116

when to avoid/use, 19

IE

media declarations supported by, 9

IE4

ignoring CSS in older browsers, 7

IE5 and IE5.5

Box Model hack, 266

floated three-column fixed-width

layout, 270–272

Box Model problem explained, 265

IE5/Mac

hiding style sheets hack, 341

safe hacks, 339–341

IE7, 341

hacks, 342

IE/Win

Star HTML hack, 341

iframe element

auto value, overflow property, 332

image formats, 90–94

background images, 94–102

GIF, 90–93

JPEG, 93–94

PNG, 94

images

see also logos

aligning with paragraph elements in

footer, 308

background images, 94–102

Dead Goods case study, 355–359

background images and inline lists, 113

background-image property, 371

combining color with image background

properties, 101

creating custom numbers, 125

dithering, 90

floated elements, 209

floating images, 211–214

defining image element, 213

floating left, 214

floating right, 224–225

identifying links using background

images, 136

link markup, 129

list-style-image property, 109–111

making visual distinction between footer

and content, 310

mobile/handheld style sheets, 326

rollover images, 329–332

transparent GIFs, 91–93

turning off image borders, Dead Goods, 363

using background images for list bullets,

111–112

using background images in

footer, 299–301

using but not overusing, 95

img element

logo as home link, Dead Goods, 362

making logo clickable in masthead, 294

400 ■I N D E X

@import rule

@import hack, 339–340

cascade hierarchy, 24

flash of unstyled content, 344

ignoring CSS in older browsers, 7

importing and combining styles, 7–9

mobile/handheld style sheets, 325

modular CSS, 10, 11

!important operator, 317

in unit, 31

indentation

CSS syntax, 15

definition list based form layout, 196

text-indent property, 375

indexes

z-index property, 378

inherit property

using with !important operator, 317

inheritance

color, 84

XHTML elements, 27–30

body element, 28

illustrated, 27–28

parents and children, 27

word of warning, 29

inline elements, 87

inline lists

background images, 113

Dead Goods navigation, 363

displaying lists horizontally, 112

unordered lists, 112–113

wrapping, 363

inline styles, 5

advantages of, 5

cascade hierarchy, 23

disadvantages of, 5

inline value

display property, li selector, 112

background images and inline lists, 113

input element, forms, 168–169

adding form CSS block into

forms_dl.css, 200

grouping input fields, 170

id attribute, 171–172

label element linking to, 171

maxlength attribute, 168

name attribute, 168

size attribute, 168

type attribute, 168

checkbox type, 168

radio type, 169

submit type, 169

text type, 168

value attribute, 169

input selector

styling form borders, 176

width property, 177

inside value

list-style-position property, 109

■J
JPEG image format, 93–94

when to use, 94

■K
kerning, 68

Kooi, Job, 96

■L
label element, forms, 171

accesskey attribute, 171

adding form CSS block into

forms_dl.css, 200

for attribute, 171

linking to input element, 171

paragraph and break element layout, 188

tabindex attribute, 171

label selector

form styling, 179

lang pseudo class, 380

layers

Dead Goods case study, 349

layout manipulation, 275–289

changing layout with contextual selectors,

275–284

from 3 to 2 columns, 281–284

switching columns, 279–281

faux columns, 284–289

layouts, 235–273

elastic layout, 238

fixed-width layout, 236–237, 264–272

Box Model, 264–266

401■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

floated three-column fixed-width layout,

267–272

Box Model hack for IE5, 270–272

fluid layout, 237–238

footers, 299–311

headings, 297–298

liquid floated three-column layout,

250–254

column swapping, 253–254

column switching, 279–281

from 3 to 2 columns, 281–284

liquid floated two-column layout, 241–249

liquid layout, 237–238

liquid positioned three-column layout,

259–263

swapping sidebars, 262–263

liquid positioned two-column layout,

255–259

footers, 258–259

masthead height, 255–257

masthead, 291–296

navigation, 298–299

positioning, 225–233

table-layout property, 380

types, 236–239

variable fixed width layout, 238–239

wireframing layout, Dead Goods, 351–355

left

border-left property, 372

margin-left property, 373

left padding

padding-bottom property, 374

left property, 378

positioning, 227

left-side logo

Dead Goods footer content, 366

left value, clear property, 215–216

left value, float property, 214

liquid floated two-column layout, 248–249

legend element, forms, 170

legend selector

form styling, 181

letter-spacing property, 68–70, 375

negative values, 69

li element, 112

controlling ordered lists, 125

nested lists, 118

transforming navigation bar with links, 139

vertical navigation bar, 121

li selector

background property, 112, 113

background-color property, 112

background-position property, 112

display property, 112, 113

nested lists, 118, 120, 121

transforming navigation bar with

links, 141

unordered lists inside definition lists,

161, 164

lightness, 82

line-height property, 66–68, 374

adding background color to headings, 87

Dead Goods column text, 361

Dead Goods navigation, 363

identifying links using borders, 134

setting normal/no line-height, 68

setting using length, 68

setting using number, 68

setting using percentage, 67

unordered lists, 110, 111

link element

media attributes, 8

mobile/handheld style sheets, 325

link pseudo class, 131, 380

background property, 135

border property, 134, 135

identifying links using background

images, 136

identifying links using borders, 135

line-height property, 134

padding property, 135

pseudo class precedence, 133

targeting links with descendant selectors,

137, 138

transforming navigation bar with links, 141

link pseudo element

print style sheets, 323

link state

rollover images, 331

402 ■I N D E X

links

active pseudo class, 133

changing link color, 131–133

CSS rules, 130

default link styling, 130, 131

highlighting current page, 142

hover pseudo class, 132

hovering over links, 132

identifying links, 134

using background image, 136

using borders, 134–135

link pseudo class, 131

logo as home link, Dead Goods, 362–363

markup, 129–130

mobile/handheld style sheets, 326

print style sheets, 323

properties, 133–136

border property, 134

text-decoration property, 134

pseudo class precedence, 133

pseudo classes, 131–133

selected/clicked links, 133

targeting links with descendant selectors,

137–139

transforming navigation bar with links,

139–143

unvisited links, 131

user accessibility, 129

visited links, 132

visited pseudo class, 132

liquid floated two-column layout

footers, 241–242

mastheads, 241–242

liquid layout, 237–238

fluid faux columns, 289

liquid layouts

floated three-column fixed-width layout,

267–272

Box Model hack for IE5, 270–272

fluid layouts using left and right of

masthead, 295–296

footers, 241–242

adding styling to footers, 243–244

liquid floated three-column layout,

250–254

column swapping, 253–254

column switching, 279–281

from 3 to 2 columns, 281–284

liquid floated two-column layout, 241–249

floated sidebar, 242–243, 244–245

floated sidebar with real columns,

246–248

floating left and right, 248–249

liquid positioned three-column layout,

259–263

swapping sidebars, 262–263

liquid positioned two-column layout,

255–259

footers, 258–259

masthead height, 255–257

mastheads, 241–242

adding styling to masthead, 243

list-style property, 377

shorthand, 111, 383

list-style-image property, 109–111, 377

perfect alignment of bullets, 112

using background images for list bullets,

111–112

list-style-position property, 108–109, 377

list-style-type property, 105–108, 377

declaring numbers using unique

classes, 125

list-style-image declared, 110

lists, 103–128

definition lists, 158–166

displaying horizontally, 112

navigation menus, 121–124

nested lists, 118–121

ordered lists, 124–128

reasons for using, 103

taking control of footer content, 308

unordered lists, 103–121

unordered lists inside definition lists,

161–165

using background images for bullets,

111–112

login form, Dead Goods, 365–366

403■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

logos

see also images

Dead Goods footer content, 366

logo as home link, Dead Goods, 362–363

making logo clickable in masthead,

293–295

not clickable in masthead, 292

print style sheets, 322

standard linkage for, 293

styling mastheads, 292

lossy data compression method, 93

LoVe HAte link pseudo classes

pseudo class precedence, 133

lower-alpha value

list-style-type property, 105

lowercase declaration

text-transform property, 71

Lucida Grande font, 63

Lucida Sans Unicode font, 63

■M
main navigation

Dead Goods case study, 363–364

margin collapsing, 343–344

margin property, 45–47, 373

adding styling to ordered lists, 127

centering with margin: auto, 47

floated sidebar with real columns, 246

floated sidebars, three-column layout, 252

margin declarations, 45–47

shorthand declarations, 46

mobile/handheld style sheets, 325

refining display of vertical navigation

bar, 123

removing default form spacing, 176

removing default margin, 107

removing default spacing in vertical

navigation bar, 121

resetting margin/padding defaults, 49

unordered lists, 106, 108

shorthand, 383

turning list elements into buttons on

vertical navigation bar, 122

why columns need bottom margin, 248

margins

Dead Goods login form, 365

Dead Goods text, 360

left-side logo, 366

marker-offset property, 377

markers

see also bullets

list-style-image property, 109–111

list-style-position property, 108–109

list-style-type property, 105–108

markup

definition lists, 158–161

forms, 167–172

links, 129–130

masthead.gif image

Dead Goods case study, 355

masthead.html, 292

mastheads, 241, 291–296

adding search box to masthead, 295–296

background images, Dead Goods, 355

floated three-column fixed-width

layout, 268

fluid layouts using left and right, 295–296

liquid floated two-column layout, 241–242

liquid layouts, 241–242

adding styling to masthead, 243

liquid positioned two-column layout

masthead height, 255–257

logo not clickable in, 292

making logo clickable in masthead,

293–295

standard use of, 291

styling mastheads, 292–293

template of floated two-column

layout, 312

wireframing Dead Goods layout, 352

max-height property, 374

max-width declaration, 44

max-width property, 374

liquid layout, 237

maxlength attribute

input element, forms, 168

404 ■I N D E X

measurements, 31–37

absolute CSS measurements, 31

em unit, 34–37

basing on initial percentage

declaration, 37

percentage values, 33–34

pixel measurements, 32–33

relative CSS measurements, 32

media attribute

print style sheets, 321

media attribute, link element

declarations supported by IE, 9

targeting specific style sheets, 8

utilizing screen style sheets for other

devices, 11

@media rule

mobile/handheld style sheets, 325

min-height property, 374

min-width declaration, 44

min-width property, 374

mm unit, 31

mobile browsers

applying suitable styles for, 8

mobile/handheld style sheets, 326

mobile/handheld style sheets, 325–328

modular CSS, 10–11

multiple directories

maintaining and organizing style sheets,

9–10

multiple style sheets

maintaining and organizing style sheets,

10–11

■N
name attribute

input element, forms, 168

select element, forms, 170

textarea element, forms, 169

naming conventions

IDs and classes, 241

using descriptive names, 241

navigation, 298–299

bulletproof navigation, 364

Dead Goods case study, 363–364

highlighting current page, 364

Dead Goods footer content

right-side navigation, 366

navigation bars/menus, 121–124

transforming navigation bar with links,

139–143

unordered lists and, 121

vertical navigation bar, 121–124

defining width of buttons, 122

refining display of, 123

removing default spacing, 121

turning list elements into buttons, 122

nesting

unordered lists, 118–121

unstyled nested lists, 119

Netscape 4.x

@import hack, 339–340

Caio hack, 340

ignoring CSS in older browsers, 7

safe hacks, 339–341

none value

clear property, 215

display property, 293

float property, 214

list-style-type property, 106

no-repeat value, background-repeat

property

applying background image to footer, 300

Dead Goods footer, 358

Dead Goods masthead, 355

Dead Goods sidebar, 356

turning off tiling, 97

■O
offsets

marker-offset property, 377

offset outcomes based on position

values, 227

ol element

see ordered lists

on-state image

rollover images, 330

One Nottingham web site, 237

Opera browser

Box Model hack adjusted, 267

mobile/handheld style sheets, 327

405■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

Opera Mini browser, 327

mobile/handheld style sheets, 326

option element, forms

select element, 170

value attribute, 170

ordered lists, 124–128

adding styling to, 126–128

controlling, 125

creating custom numbers, 125

declaring numbers using unique classes,

125–126

list-style-type property, 125

other devices

utilizing screen style sheets for, 11–12

outline property, 381

Dead Goods case study, 351

rollover images, 331

outside value

list-style-position property, 109

overflow property, 332–336, 378

auto value, 332–334

hidden value, 334–336

values, 332

overline value, text-decoration property

identifying links using text decoration, 134

■P
p element

incorporating in definition lists, 160

padding

Dead Goods text, 361

mobile/handheld style sheets, 325

omitting to avoid Box Model hack, 289

padding property, 48–49, 374

adding styling to ordered lists, 127

declaring numbers using unique

classes, 125

identifying links using background

images, 136

identifying links using borders, 135

padding declarations, 48–49

refining display of vertical navigation

bar, 123

removing default form spacing, 176

removing default padding, 107

removing default spacing in vertical

navigation bar, 121

resetting margin/padding defaults, 49

shorthand, 49, 383, 384

td/th selectors, 150

transforming navigation bar with

links, 140

turning list elements into buttons on

vertical navigation bar, 122

unordered lists, 106, 108

pages

Dead Goods page background, 358

highlighting current page, 142, 364

Palatino font, 64

palettes

browser-safe palettes, 80

Photoshop’s main color palette, 83

selecting color palette for designs, 83

web sites for web palettes, 83

web-safe palettes, 80

paragraph and break element layout,

186–194

paragraphs

aligning images with paragraph elements

in footer, 308

Dead Goods text, 361

fine-tuning in footer, 301

indenting paragraphs, 75

taking control of footer content, 308

parent (X)HTML elements, 27

pc unit, 31

percentage values

measurements, CSS, 33–34

relative CSS measurements, 32

troubleshooting, 344

period (.) character

applying class selectors, 20

Photoshop guides, 349

Photoshop template

Dead Goods case study, 348

Photoshop’s main color palette, 83

pixel measurements, 32–33

pixels

dithering, 90

PNG image format, 94

406 ■I N D E X

Poptones web site, 337

position property, 225, 378

absolute position, 227, 229

fixed position, 227, 231

offset outcomes based on values of, 227

relative position, 227, 228

static position, 227, 228

values, 226

positioning, 225–233

absolute positioning, 226

background-position property, 372

bottom property, 227

default positioning, 226

fixed positioning, 226

left property, 227

liquid positioned three-column layout,

259–263

swapping sidebars, 262–263

liquid positioned two-column layout,

255–259

footers, 258–259

masthead height, 255–257

position property, 226

properties and values, 226–232

relative positioning, 226

right property, 227

static positioning, 226

top property, 227

Powazek, Derek, 302

precedence

style sheet cascade hierarchy, 22–25

preloading

rollover images, 329

presentation

Dead Goods case study, 350

presentational information

@import rule, 7

benefits of removing from (X)HTML file, 3

disadvantages of inline styles, 5

ignoring CSS in older browsers, 7

print style sheets, 320–324

XHTML file, 321

print value, media attribute, 8

Print version link

see print style sheets

printing

avoiding unsuitable styles for, 8

using media attribute of link element, 8

problems

see troubleshooting

projection value, media attribute, 9

properties, CSS reference, 371–385

for more page locators see properties by

name

background, 371–372

shorthand, 382

border, 372–373

shorthand, 384

border-collapse, 380

border-spacing, 380

bottom, 378

caption-side, 380

clear, 379

clip, 378

color, 375

components of CSS syntax, 12

cursor, 379

direction, 375

display, 379

empty-cells, 380

float, 379

font, 376–377

shorthand, 382

height, 374

left property, 378

letter-spacing, 375

line-height, 374

list-style, 377

shorthand, 383

margin, 373

shorthand, 383

marker-offset, 377

min/max-height/width properties, 374

outline, 381

overflow, 378

padding, 374

shorthand, 383

position, 378

pseudo classes, 380

pseudo elements, 381

407■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

right, 378

shorthand properties, 382–385

table-layout, 380

text, 375

top, 378

vertical-align, 378

visibility, 379

white-space property, 375

width, 374

word-spacing, 375

z-index, 378

pseudo classes

active pseudo class, 133

background property, 135

border property, 134, 135

hover pseudo class, 132

identifying links using borders, 135

identifying links using text decoration, 134

line-height property, 134

link pseudo class, 131

padding property, 135

targeting links with descendant

selectors, 137

text-decoration property, 134

transforming navigation bar with links,

140, 142

visited pseudo class, 132

pseudo elements

cross-browser problem-solving tools, 76

CSS property reference, 381

first-letter, 76

print style sheets, 323

pt unit, 31

pullquote

blockquote element creating, 73–74

px unit, 32

■Q
quirky footer, 299–301

■R
radio type

input element, forms, 169

RAWM web site

styling abbreviations and acronyms, 319

relative CSS measurements, 32

relative positioning, 226

how position values works, 228

offset outcomes based on position

values, 227

repeat-x value, background-repeat property

repeating tiling horizontally, 98

tiling images horizontally, 156

repeat-y value, background-repeat property

adding id selector for faux columns, 287

repeating tiling vertically, 98

repeating background images, 97–99

background-repeat property, 372

shorthand for background properties, 102

RGB declarations

shortening the hex, 81

specifying color, 80, 81

right

border-right property, 372

margin-right property, 373

padding-right property, 374

right property, 378

floated sidebar, 244

positioning, 227

right-side navigation

Dead Goods footer content, 366

right value, clear property, 216–217

right value, float property, 224–225

liquid floated two-column layout, 248–249

rollover images, 329–332

Firefox outlining links, 331

on-state image, 330

preloading, 329

rollover class, 331

XHTML file, 330

rows attribute

textarea element, forms, 169

rules

flagging rules, 14–15

using default rules in modular CSS, 10

Rutter, Richard, xxi, 37

■S
Safari

rendering of form elements, 172

styling form borders, 176

saturation, 82

408 ■I N D E X

Science City web site, 321

print style sheets, 324

screen style sheets

utilizing for other devices, 11–12

screen value, media attribute, 8

scroll value, overflow property, 332

scrollbars

auto value, overflow property, 334

search box

adding search box to masthead, 295–296

search engine

indexing of definition lists, 166

Section 508

disabilities and accessibility, 316

select element

taking control of footer content, 307

select element, forms, 169

id attribute, 170

name attribute, 170

option element, 170

paragraph and break element layout, 190

width of input and textarea, 178

selectors

base selectors, 17

case sensitivity, 344

changing layout with contextual selectors,

275–284

class selectors, 17, 19–22

combining id and base selectors, 18

combining id and class selectors, 20–21

components of CSS syntax, 12

contextual selectors, 30–31, 41–44

custom selectors, 18

descendant selectors, 119

targeting links with, 137–139

grouping, 26–27

id selectors, 17, 18–19

linking class selectors directly to

elements, 22

overriding base selectors with class

selectors, 21

transforming navigation bar with links, 141

XHTML element inheritance, 29

setting up

Dead Goods case study, 351

shadows

text-shadow property, 375

shorthand properties, 382–385

background property, 382

border property, 384

font property, 382

list property, 383

margin property, 383

padding property, 383, 384

Shoutout web site, 236

sidebars

background images, Dead Goods, 355

changing column layout with contextual

selectors

from 3 to 2 columns, 281–284

switching columns, 279–281

elongating with faux columns, 284–288

floated three-column fixed-width

layout, 269

floated three-column layout, 250–254

column swapping, 253–254

column switching, 279–281

from 3 to 2 columns, 281–284

floated two-column layout, 242–243,

244–248

positioned three-column layout, 259–263

swapping sidebars, 262–263

print style sheets, 322

sidebar heading image, 297

unordered lists, 299

using images for heading typeface, 297

wireframing Dead Goods layout, 353

size

font-size property, 376

font-size-adjust property, 376

size attribute

input element, forms, 168

skip links

mobile/handheld style sheets, 326

Small Screen mode, Opera browser

mobile/handheld style sheets, 327

spacing

see also whitespace

border-spacing property, 380

letter-spacing property, 375

removing default form spacing, 176

409■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

spacer <div> clearing floated images,

218–219

white-space property, 375

word-spacing property, 375

span element, XHTML

adding background color to text, 85–86

adding background color to body

element, 88

square value

list-style-type property, 105

src attribute, img tag, 129

stack order

z-index property, 378

Star HTML hack, 341

static positioning, 226

how position values works, 228

offset outcomes based on position

values, 227

stretch

font-stretch property, 376

style

border-style property, 373

font-style property, 70, 376

list-style property, 377

outline-style property, 381

style attribute

inline styles, 5

Style Company web site, 333

style sheets

aggressive caching, 345

body selector declarations, 65

cascade hierarchy, 22–25

being careful with the cascade, 25

default browser style sheet precedence

in cascade, 25

embedded styles, 23

external styles, 23–24

imported styles, 24

inline styles, 23

commenting out areas to find errors, 345

CSS measurements, 31–37

default browser text display, 64

grouping selectors, 26–27

hiding style sheets hack, 341

HSL color space values, 82

maintaining and organizing style

sheets, 9–12

multiple directories, 9–10

multiple style sheets, 10–11

using folders, 9

utilizing screen style sheets for other

devices, 11–12

mobile/handheld style sheets, 325–328

modular CSS, 10–11

overriding browser default style sheet, 65

preparing for background images, 95–96

print style sheets, 320–324

scalability and ems, 34

specialized style sheets, 320–328

user style sheets, 317–318

!important operator, 317

XHTML element inheritance, 27–30

style switcher

pixel measurements, 33

styles

applying suitable styles for mobiles, 8

avoiding unsuitable styles for printing, 8

border-style property, 50–51

defining styles, 12–13

embedded styles, 6

external styles, 6–7

form styling, 174–182

importing and combining styles, 7–9

inline styles, 5

link styling, 130

mobile/handheld style sheets, 326

unused styles, 345

submit button

browser rendering of form elements, 173

submit type

input element, forms, 169

switch.css file, 277

switch.html file, 276

syntax

effective use of CSS syntax, 12–15

system colors, 82

410 ■I N D E X

■T
tabindex attribute

label element, forms, 171

table-based forms

laying out forms within web pages, 183–186

table element, tables, 147

caption element, 154, 155

cellpadding attribute, 148

cellspacing attribute, 148

table headings

styling, 149

styling abbreviations and acronyms, 319

table-layout property, 380

table properties, 380

table selector

border-collapse property, 152–153

borders when CSS used with different

browsers, 149

tables, 145–158

accessibility of, 146

background images, 154–158

background images with class selectors,

156–158

bad reputation discussed, 145

borders when CSS used with different

browsers, 148

browser support for tables, 153

elements, 147

customizing elements, 154–158

form layout within a table, 175

old way of styling, 148

purpose of, 146

table models, 153

unstyled table, without CSS, 147

W3C further information on, 153

when to use, 145

without benefit of CSS, 146

Tahoma font, 61

td element, tables, 147

td selector

border values, 149

borders, 151

padding property, 150

styling table cells, 150

templates

common parts of, 291

footers, 299–311

on floated two-column layout, 312

headings, 297–298

on floated two-column layout, 312

masthead, 291–296

on floated two-column layout, 312

navigation, 298–299

preparing a base (X)HTML template, 3–5

preparing for background images, 95–96

text

adding background color to text, 84–86

ClearType font smoothing, 56–57

color for text, 84

Dead Goods case study, 360–361

default browser text display, 64

drop caps, 75–76

font properties, 57–59

indenting paragraphs, 75

key sentence selection, 73–74

why text is important, 55–57

text-align property, 375

centering elements with margin: auto, 47

wireframing Dead Goods layout, 352, 353

text-decoration property, 375

identifying links using, 134

text-indent property, 75, 375

text-shadow property, 375

text-transform property, 70, 375

text type

input element, forms, 168

textarea element, forms, 169

textarea selector

styling form borders, 176

width property, 177

th element, tables, 147

th selector

border values, 149

borders, 151

padding property, 150

styling table headings, 149

The Dead Goods case study

see Dead Goods case study

411■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

thumbnails

floating images, 211, 212

tiles

background-image property, 96

Job Kooi’s tile image, 96

tiling background images, 97–99

repeating tiling horizontally/vertically, 98

seamless tiling, 155, 156

turning off tiling, 97

Times font, 61

Times New Roman font, 61

title attribute, a tag

link markup, 129

top

border-top property, 373

margin-top property, 373

padding-top property, 374

top property, 378

positioning, 227

tr element, tables, 147

transforms

text-transform property, 375

transparent background

logo as home link, Dead Goods, 362

transparent GIFs, 91–93

Trebuchet font, 62

Triple-X hack

IE7 hacks, 342

troubleshooting, 342–345

aggressive style sheet caching, 345

background images, 344

Box Model hack, 345

browsers, 344

case sensitivity of selectors, 344

commenting out areas of style sheet, 345

external style sheets during

development, 345

flash of unstyled content, 344

margin collapsing, 343–344

percentage values, 344

unused styles, 345

validating code, 345

type attribute

input element, forms, 168

checkbox type, 168

radio type, 169

submit type, 169

text type, 168

■U
ul element

see unordered lists

ul selector

see also unordered lists

list-style property, 111

list-style-image property, 109–111

list-style-position property, 108–109

list-style-type property, 105–108

margin property, 107

nested lists, 118, 120, 121

padding property, 107

unordered lists inside definition lists,

161, 164

using background images for list

bullets, 111

width property, 107

unique identifier

id selectors, 18

unordered lists, 103–121

see also ul selector

CSS list properties, 104–111

displaying horizontally, 112

grouping items with class selectors,

116–117

id selectors, 114–116

incorporating in definition lists, 161–165

inline lists, 112–113

line-height property, 110, 111

list-style-image property, 109–111

list-style-position property, 108–109

list-style-type property, 105–108

margin property, 106–108

navigation, 298

navigation menus, 121–124

nested lists, 118–121

412 ■I N D E X

padding property, 106–108

removing default margin, 107

sidebars, 299

transforming navigation bar with

links, 139

using background images for list bullets,

111–112

vertical navigation bar, 121–124

width property, 107

unstyled content, flash of, 344

upper-alpha value

list-style-type property, 105

uppercase declaration

text-transform property, 70

upper-roman value

list-style-type property, 105

URLs

print style sheets, 323

usability

mobile/handheld style sheets, 325–328

print style sheets, 320–324

styling abbreviations and acronyms,

318–320

web sites, 315

user style sheets, 317–318

!important operator, 317

■V
value attribute

input element, forms, 169

option element, forms, 170

values

components of CSS syntax, 12

variable fixed width layout, 238–239

variant

font-variant property, 70, 376

Verdana font, 61

vertical-align property, 378

vertical navigation bar, 121–124

defining width of buttons, 122

refining display of, 123

removing default spacing, 121

transforming navigation bar with

 links, 140

turning list elements into buttons, 122

visibility property, 379

visible value, overflow property, 332

visited pseudo class, 132, 380

identifying links using background

images, 136

pseudo class precedence, 133

targeting links with descendant selectors,

137, 138

transforming navigation bar with

links, 141

visited pseudo element

print style sheets, 323

visited state

rollover images, 331

■W
WCAG (Web Content Accessibility

Guidelines), 316

web build process

Dead Goods case study, 347–351

web design

guidelines and legalities, 315–317

web image formats, 90–94

web pages

changing layout with contextual selectors,

275–284

from 3 to 2 columns, 281–284

switching columns, 279–281

faux columns, 284–289

footers, 299–311

headings, 297–298

laying out forms within web pages,

182–205

best approach, 204–205

definition list based forms, 194–204

paragraph and break element layout,

186–194

table-based forms, 183–186

layout manipulation, 275–289

masthead, 291–296

navigation, 298–299

positioning elements, 225–233

resetting margin/padding defaults, 49

web-safe color, 80

413■I N D E X

F
in

d
 it fa

ste
r a

t h
ttp

://su
p

e
rin

d
e
x.a

p
re

ss.co
m

web-safe fonts, 59–62

web-safe palettes, 80

Adobe Photoshop, 82

applications built into, 82

Photoshop’s main color palette, 83

web sites for web palettes, 83

web sites

accessibility, 315

guidelines and legalities, 315–317

section 508, 316

resetting margin/padding defaults, 49

usability, 315

weight

font-weight property, 70, 377

white-space property, 375

whitespace

see also spacing

border-collapse property removing, 153

width

border-width property, 51–52, 373

fixed-width layout, 236, 264–272

max-width property, 374

min-width property, 374

outline-width property, 381

variable fixed width layout, 238

width property, 44, 374

adding styling to ordered lists, 127

centering elements with margin: auto, 47

defining width of buttons on vertical

navigation bar, 122

filling available area, 178

fine-tuning paragraphs in footer, 301

floated sidebar with real columns, 246

floated three-column fixed-width

layout, 268

hidden value, overflow property, 335

input selector, 177

textarea selector, 177

unordered lists, 107

wireframes

basic two-column layout, 241

borders for, 54

wireframing layout, Dead Goods, 351–355

word-spacing property, 375

■X
x value

repeat-x value, background-repeat

property, 98, 156

XHTML

accessibility requirements, 315

applying CSS to, 3–7

auto value, overflow property, 333

definition list markup, 158–161

form elements, 168–170

forms markup, 167–172

hidden value, overflow property, 335

li element, 112

link markup, 129–130

lists, 103–128

ordered lists, 124–128

reasons for using, 103

unordered lists, 103–121

nested lists, 118–121

styling abbreviations and acronyms, 319

validating code, 345

XHTML content

Dead Goods case study, 350

XHTML elements

see elements

XHTML files

benefits of extracting presentational

information, 3

element inheritance, 27–30

embedded styles, 6

external styles, 6–7

grouping selectors, 26–27

importing and combining styles, 7–9

inline styles, 5

mobile/handheld style sheets, 325

preparing a base (X)HTML template, 3–5

print style sheets, 321

rollover images, 330

■Y
y value

repeat-y value, background-repeat

property, 98, 287

■Z
z-index property, 378

	Beginning CSS Web Development: From Novice to Professional
	Table of Content
	PART 1 Get to Know CSS
	Chapter 1 Getting Started
	Chapter 2 Core Concepts of CSS
	Chapter 3 CSS Building Blocks
	Chapter 4 Text
	Chapter 5 Color, Backgrounds, and Images
	Chapter 6 Lists
	Chapter 7 Links
	Chapter 8 Tables and Definition Lists
	Chapter 9 Forms

	PART 2 Logical Layouts
	Chapter 10 Layout Basics
	Chapter 11 Classic Layouts
	Chapter 12 Layout Manipulation
	Chapter 13 The Journey from Layout to Template
	Chapter 14 Usability and Accessibility Enhancements
	Chapter 15 Tips, Tricks, and Troubles
	Chapter 16 Case Study: The Dead Goods

	Appendix CSS Reference
	Index

