
www.it-ebooks.info

http://www.it-ebooks.info/

Apache Hadoop™
YARN

www.it-ebooks.info

http://www.it-ebooks.info/

T he Addison-Wesley Data and Analytics Series provides readers with practical

knowledge for solving problems and answering questions with data. Titles in this series

primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and compelling way

The series aims to tie all three of these areas together to help the reader build end-to-end

systems for fighting spam; making recommendations; building personalization;

detecting trends, patterns, or problems; and gaining insight from the data exhaust of

systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!

informit.com/socialconnect

The Addison-Wesley Data and Analytics Series

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Hadoop™
YARN

Moving beyond MapReduce and

Batch Processing with

Apache Hadoop™ 2

Arun C. Murthy

Vinod Kumar Vavilapalli

Doug Eadline

Joseph Niemiec

Jeff Markham

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was

aware of a trademark claim, the designations have been printed with initial capital letters or in all

capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed

or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of

the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which

may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales depart-

ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Murthy, Arun C.

 Apache Hadoop YARN : moving beyond MapReduce and batch processing with Apache Hadoop 2

/ Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline, Joseph Niemiec, Jeff Markham.

 pages cm

 Includes index.

 ISBN 978-0-321-93450-5 (pbk. : alk. paper)

 1. Apache Hadoop. 2. Electronic data processing—Distributed processing. I. Title.

 QA76.9.D5M97 2014

 004'.36—dc23

2014003391

Copyright © 2014 Hortonworks Inc.

Apache, Apache Hadoop, Hadoop, and the Hadoop elephant logo are trademarks of The Apache

Software Foundation. Used with permission. No endorsement by The Apache Software Foundation

is implied by the use of these marks.

Hortonworks is a trademark of Hortonworks, Inc., registered in the U.S. and other countries.

All rights reserved. Printed in the United States of America. This publication is protected by copy-

right, and permission must be obtained from the publisher prior to any prohibited reproduction,

storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise. To obtain permission to use material from this work, please

submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,

Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-93450-5

ISBN-10: 0-321-93450-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing, March 2014

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Foreword by Raymie Stata xiii

Foreword by Paul Dix xv

Preface xvii

Acknowledgments xxi

About the Authors xxv

1 Apache Hadoop YARN:

A Brief History and Rationale 1

Introduction 1

Apache Hadoop 2

Phase 0: The Era of Ad Hoc Clusters 3

Phase 1: Hadoop on Demand 3

HDFS in the HOD World 5

Features and Advantages of HOD 6

Shortcomings of Hadoop on Demand 7

Phase 2: Dawn of the Shared Compute Clusters 9

Evolution of Shared Clusters 9

Issues with Shared MapReduce Clusters 15

Phase 3: Emergence of YARN 18

Conclusion 20

2 Apache Hadoop YARN Install Quick Start 21

Getting Started 22

Steps to Configure a Single-Node YARN Cluster 22

Step 1: Download Apache Hadoop 22

Step 2: Set JAVA_HOME 23

Step 3: Create Users and Groups 23

Step 4: Make Data and Log Directories 23

Step 5: Configure core-site.xml 24

Step 6: Configure hdfs-site.xml 24

Step 7: Configure mapred-site.xml 25

Step 8: Configure yarn-site.xml 25

Step 9: Modify Java Heap Sizes 26

Step 10: Format HDFS 26

Step 11: Start the HDFS Services 27

www.it-ebooks.info

http://www.it-ebooks.info/

Contentsvi

Step 12: Start YARN Services 28

Step 13: Verify the Running Services Using the

Web Interface 28

Run Sample MapReduce Examples 30

Wrap-up 31

3 Apache Hadoop YARN Core Concepts 33

Beyond MapReduce 33

The MapReduce Paradigm 35

Apache Hadoop MapReduce 35

The Need for Non-MapReduce Workloads 37

Addressing Scalability 37

Improved Utilization 38

User Agility 38

Apache Hadoop YARN 38

YARN Components 39

ResourceManager 39

ApplicationMaster 40

Resource Model 41

ResourceRequests and Containers 41

Container Specification 42

Wrap-up 42

4 Functional Overview of YARN Components 43

Architecture Overview 43

ResourceManager 45

YARN Scheduling Components 46

FIFO Scheduler 46

Capacity Scheduler 47

Fair Scheduler 47

Containers 49

NodeManager 49

ApplicationMaster 50

YARN Resource Model 50

Client Resource Request 51

ApplicationMaster Container Allocation 51

ApplicationMaster–Container

Manager Communication 52

www.it-ebooks.info

http://www.it-ebooks.info/

Contents vii

Managing Application Dependencies 53

LocalResources Definitions 54

LocalResource Timestamps 55

LocalResource Types 55

LocalResource Visibilities 56

Lifetime of LocalResources 57

Wrap-up 57

5 Installing Apache Hadoop YARN 59

The Basics 59

System Preparation 60

Step 1: Install EPEL and pdsh 60

Step 2: Generate and Distribute ssh Keys 61

Script-based Installation of Hadoop 2 62

JDK Options 62

Step 1: Download and Extract the Scripts 63

Step 2: Set the Script Variables 63

Step 3: Provide Node Names 64

Step 4: Run the Script 64

Step 5: Verify the Installation 65

Script-based Uninstall 68

Configuration File Processing 68

Configuration File Settings 68

core-site.xml 68

hdfs-site.xml 69

mapred-site.xml 69

yarn-site.xml 70

Start-up Scripts 71

Installing Hadoop with Apache Ambari 71

Performing an Ambari-based

Hadoop Installation 72

Step 1: Check Requirements 73

Step 2: Install the Ambari Server 73

Step 3: Install and Start Ambari Agents 73

Step 4: Start the Ambari Server 74

Step 5: Install an HDP2.X Cluster 75

Wrap-up 84

www.it-ebooks.info

http://www.it-ebooks.info/

Contentsviii

6 Apache Hadoop YARN Administration 85

Script-based Configuration 85

Monitoring Cluster Health: Nagios 90

Monitoring Basic Hadoop Services 92

Monitoring the JVM 95

Real-time Monitoring: Ganglia 97

Administration with Ambari 99

JVM Analysis 103

Basic YARN Administration 106

YARN Administrative Tools 106

Adding and Decommissioning YARN Nodes 107

Capacity Scheduler Configuration 108

YARN WebProxy 108

Using the JobHistoryServer 108

Refreshing User-to-Groups Mappings 108

Refreshing Superuser Proxy Groups

Mappings 109

Refreshing ACLs for Administration of

ResourceManager 109

Reloading the Service-level Authorization

Policy File 109

Managing YARN Jobs 109

Setting Container Memory 110

Setting Container Cores 110

Setting MapReduce Properties 110

User Log Management 111

Wrap-up 114

7 Apache Hadoop YARN Architecture Guide 115

Overview 115

ResourceManager 117

Overview of the ResourceManager

Components 118

Client Interaction with the

ResourceManager 118

Application Interaction with the

ResourceManager 120

www.it-ebooks.info

http://www.it-ebooks.info/

Contents ix

Interaction of Nodes with the

ResourceManager 121

Core ResourceManager Components 122

Security-related Components in the

ResourceManager 124

NodeManager 127

Overview of the NodeManager Components 128

NodeManager Components 129

NodeManager Security Components 136

Important NodeManager Functions 137

ApplicationMaster 138

Overview 138

Liveliness 139

Resource Requirements 140

Scheduling 140

Scheduling Protocol and Locality 142

Launching Containers 145

Completed Containers 146

ApplicationMaster Failures and Recovery 146

Coordination and Output Commit 146

Information for Clients 147

Security 147

Cleanup on ApplicationMaster Exit 147

YARN Containers 148

Container Environment 148

Communication with the ApplicationMaster 149

Summary for Application-writers 150

Wrap-up 151

8 Capacity Scheduler in YARN 153

Introduction to the Capacity Scheduler 153

Elasticity with Multitenancy 154

Security 154

Resource Awareness 154

Granular Scheduling 154

Locality 155

Scheduling Policies 155

Capacity Scheduler Configuration 155

www.it-ebooks.info

http://www.it-ebooks.info/

Contentsx

Queues 156

Hierarchical Queues 156

Key Characteristics 157

Scheduling Among Queues 157

Defining Hierarchical Queues 158

Queue Access Control 159

Capacity Management with Queues 160

User Limits 163

Reservations 166

State of the Queues 167

Limits on Applications 168

User Interface 169

Wrap-up 169

9 MapReduce with Apache Hadoop YARN 171

Running Hadoop YARN MapReduce Examples 171

Listing Available Examples 171

Running the Pi Example 172

Using the Web GUI to Monitor Examples 174

Running the Terasort Test 180

Run the TestDFSIO Benchmark 180

MapReduce Compatibility 181

The MapReduce ApplicationMaster 181

Enabling Application Master Restarts 182

Enabling Recovery of Completed Tasks 182

The JobHistory Server 182

Calculating the Capacity of a Node 182

Changes to the Shuffle Service 184

Running Existing Hadoop Version 1

Applications 184

Binary Compatibility of org.apache.hadoop.mapred

APIs 184

Source Compatibility of org.apache.hadoop.

mapreduce APIs 185

Compatibility of Command-line Scripts 185

Compatibility Tradeoff Between MRv1 and Early

MRv2 (0.23.x) Applications 185

www.it-ebooks.info

http://www.it-ebooks.info/

Contents xi

Running MapReduce Version 1 Existing Code 187

Running Apache Pig Scripts on YARN 187

Running Apache Hive Queries on YARN 187

Running Apache Oozie Workflows on YARN 188

Advanced Features 188

Uber Jobs 188

Pluggable Shuffle and Sort 188

Wrap-up 190

10 Apache Hadoop YARN Application Example 191

The YARN Client 191

The ApplicationMaster 208

Wrap-up 226

11 Using Apache Hadoop YARN

Distributed-Shell 227

Using the YARN Distributed-Shell 227

A Simple Example 228

Using More Containers 229

Distributed-Shell Examples with Shell

Arguments 230

Internals of the Distributed-Shell 232

Application Constants 232

Client 233

ApplicationMaster 236

Final Containers 240

Wrap-up 240

12 Apache Hadoop YARN Frameworks 241

Distributed-Shell 241

Hadoop MapReduce 241

Apache Tez 242

Apache Giraph 242

Hoya: HBase on YARN 243

Dryad on YARN 243

Apache Spark 244

Apache Storm 244

www.it-ebooks.info

http://www.it-ebooks.info/

Contentsxii

REEF: Retainable Evaluator Execution

Framework 245

Hamster: Hadoop and MPI on the

Same Cluster 245

Wrap-up 245

A Supplemental Content and Code

Downloads 247

Available Downloads 247

B YARN Installation Scripts 249

install-hadoop2.sh 249

uninstall-hadoop2.sh 256

hadoop-xml-conf.sh 258

C YARN Administration Scripts 263

configure-hadoop2.sh 263

D Nagios Modules 269

check_resource_manager.sh 269

check_data_node.sh 271

check_resource_manager_old_space_pct.sh 272

E Resources and Additional Information 277

F HDFS Quick Reference 279

Quick Command Reference 279

Starting HDFS and the HDFS Web GUI 280

Get an HDFS Status Report 280

Perform an FSCK on HDFS 281

General HDFS Commands 281

List Files in HDFS 282

Make a Directory in HDFS 283

Copy Files to HDFS 283

Copy Files from HDFS 284

Copy Files within HDFS 284

Delete a File within HDFS 284

Delete a Directory in HDFS 284

Decommissioning HDFS Nodes 284

Index 287

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword by Raymie Stata

William Gibson was fond of saying: “The future is already here—it’s just not very

evenly distributed.” Those of us who have been in the web search industry have had

the privilege—and the curse—of living in the future of Big Data when it wasn’t dis-

tributed at all. What did we learn? We learned to measure everything. We learned

to experiment. We learned to mine signals out of unstructured data. We learned to

drive business value through data science. And we learned that, to do these things,

we needed a new data-processing platform fundamentally different from the business

intelligence systems being developed at the time.

The future of Big Data is rapidly arriving for almost all industries. This is driven

in part by widespread instrumentation of the physical world—vehicles, buildings, and

even people are spitting out log streams not unlike the weblogs we know and love

in cyberspace. Less obviously, digital records—such as digitized government records,

digitized insurance policies, and digital medical records—are creating a trove of infor-

mation not unlike the webpages crawled and parsed by search engines. It’s no surprise,

then, that the tools and techniques pioneered first in the world of web search are find-

ing currency in more and more industries. And the leading such tool, of course, is

Apache Hadoop.

But Hadoop is close to ten years old. Computing infrastructure has advanced

significantly in this decade. If Hadoop was to maintain its relevance in the modern

Big Data world, it needed to advance as well. YARN represents just the advancement

needed to keep Hadoop relevant.

As described in the historical overview provided in this book, for the majority of

Hadoop’s existence, it supported a single computing paradigm: MapReduce. On the

compute servers we had at the time, horizontal scaling—throwing more server nodes

at a problem—was the only way the web search industry could hope to keep pace with

the growth of the web. The MapReduce paradigm is particularly well suited for hori-

zontal scaling, so it was the natural paradigm to keep investing in.

With faster networks, higher core counts, solid-state storage, and (especially)

larger memories, new paradigms of parallel computing are becoming practical at large

scales. YARN will allow Hadoop users to move beyond MapReduce and adopt these

emerging paradigms. MapReduce will not go away—it’s a good fit for many prob-

lems, and it still scales better than anything else currently developed. But, increasingly,

MapReduce will be just one tool in a much larger tool chest—a tool chest named

“YARN.”

www.it-ebooks.info

http://www.it-ebooks.info/

xiv Foreword by Raymie Stata

In short, the era of Big Data is just starting. Thanks to YARN, Hadoop will

continue to play a pivotal role in Big Data processing across all industries. Given this,

I was pleased to learn that YARN project founder Arun Murthy and project lead

Vinod Kumar Vavilapalli have teamed up with Doug Eadline, Joseph Niemiec, and

Jeff Markham to write a volume sharing the history and goals of the YARN project,

describing how to deploy and operate YARN, and providing a tutorial on how to get

the most out of it at the application level.

This book is a critically needed resource for the newly released Apache Hadoop 2.0,

highlighting YARN as the significant breakthrough that broadens Hadoop beyond the

MapReduce paradigm.

—Raymie Stata, CEO of Altiscale

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword by Paul Dix

No series on data and analytics would be complete without coverage of Hadoop and

the different parts of the Hadoop ecosystem. Hadoop 2 introduced YARN, or “Yet

Another Resource Negotiator,” which represents a major change in the internals of

how data processing works in Hadoop. With YARN, Hadoop has moved beyond the

MapReduce paradigm to expose a framework for building applications for data proc-

essing at scale. MapReduce has become just an application implemented on the YARN

framework. This book provides detailed coverage of how YARN works and explains

how you can take advantage of it to work with data at scale in Hadoop outside of

MapReduce.

No one is more qualified to bring this material to you than the authors of this

book. They’re the team at Hortonworks responsible for the creation and development

of YARN. Arun, a co-founder of Hortonworks, has been working on Hadoop since

its creation in 2006. Vinod has been contributing to the Apache Hadoop project full-

time since mid-2007. Jeff and Joseph are solutions engineers with Hortonworks. Doug

is the trainer for the popular Hadoop Fundamentals LiveLessons and has years of expe-

rience building Hadoop and clustered systems. Together, these authors bring a breadth

of knowledge and experience with Hadoop and YARN that can’t be found elsewhere.

This book provides you with a brief history of Hadoop and MapReduce to set the

stage for why YARN was a necessary next step in the evolution of the platform. You

get a walk-through on installation and administration and then dive into the internals

of YARN and the Capacity scheduler. You see how existing MapReduce applications

now run as an applications framework on top of YARN. Finally, you learn how to

implement your own YARN applications and look at some of the new YARN-based

frameworks. This book gives you a comprehensive dive into the next generation

Hadoop platform.

— Paul Dix, Series Editor

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Apache Hadoop has a rich and long history. It’s come a long way since its birth in

the middle of the first decade of this millennium—from being merely an infrastruc-

ture component for a niche use-case (web search), it’s now morphed into a compelling

part of a modern data architecture for a very wide spectrum of the industry. Apache

Hadoop owes its success to many factors: the community housed at the Apache Soft-

ware Foundation; the timing (solving an important problem at the right time); the

extensive early investment done by Yahoo! in funding its development, hardening, and

large-scale production deployments; and the current state where it’s been adopted by a

broad ecosystem. In hindsight, its success is easy to rationalize.

On a personal level, Vinod and I have been privileged to be part of this journey

from the very beginning. It’s very rare to get an opportunity to make such a wide

impact on the industry, and even rarer to do so in the slipstream of a great wave of a

community developing software in the open—a community that allowed us to share

our efforts, encouraged our good ideas, and weeded out the questionable ones. We are

very proud to be part of an effort that is helping the industry understand, and unlock,

a significant value from data.

YARN is an effort to usher Apache Hadoop into a new era—an era in which its

initial impact is no longer a novelty and expectations are significantly higher, and

growing. At Hortonworks, we strongly believe that at least half the world’s data will

be touched by Apache Hadoop. To those in the engine room, it has been evident,

for at least half a decade now, that Apache Hadoop had to evolve beyond supporting

MapReduce alone. As the industry pours all its data into Apache Hadoop HDFS, there

is a real need to process that data in multiple ways: real-time event processing, human-

interactive SQL queries, batch processing, machine learning, and many others. Apache

Hadoop 1.0 was severely limiting; one could store data in many forms in HDFS, but

MapReduce was the only algorithm you could use to natively process that data.

YARN was our way to begin to solve that multidimensional requirement natively

in Apache Hadoop, thereby transforming the core of Apache Hadoop from a one-trick

“batch store/process” system into a true multiuse platform. The crux was the recogni-

tion that Apache Hadoop MapReduce had two facets: (1) a core resource manager,

which included scheduling, workload management, and fault tolerance; and (2) a user-

facing MapReduce framework that provided a simplified interface to the end-user that

hid the complexity of dealing with a scalable, distributed system. In particular, the

MapReduce framework freed the user from having to deal with gritty details of fault

www.it-ebooks.info

http://www.it-ebooks.info/

xviii Preface

tolerance, scalability, and other issues. YARN is just realization of this simple idea.

With YARN, we have successfully relegated MapReduce to the role of merely one

of the options to process data in Hadoop, and it now sits side-by-side by other frame-

works such as Apache Storm (real-time event processing), Apache Tez (interactive

query backed), Apache Spark (in-memory machine learning), and many more.

Distributed systems are hard; in particular, dealing with their failures is hard. YARN

enables programmers to design and implement distributed frameworks while sharing a

common set of resources and data. While YARN lets application developers focus on

their business logic by automatically taking care of thorny problems like resource arbitra-

tion, isolation, cluster health, and fault monitoring, it also needs applications to act on

the corresponding signals from YARN as they see fit. YARN makes the effort of build-

ing such systems significantly simpler by dealing with many issues with which a frame-

work developer would be confronted; the framework developer, at the same time, still

has to deal with the consequences on the framework in a framework-specific manner.

While the power of YARN is easily comprehensible, the ability to exploit that

power requires the user to understand the intricacies of building such a system in con-

junction with YARN. This book aims to reconcile that dichotomy.

The YARN project and the Apache YARN community have come a long way

since their beginning. Increasingly more applications are moving to run natively under

YARN and, therefore, are helping users process data in myriad ways. We hope that

with the knowledge gleaned from this book, the reader can help feed that cycle of

enablement so that individuals and organizations alike can take full advantage of the

data revolution with the applications of their choice.

—Arun C. Murthy

Focus of the Book

This book is intended to provide detailed coverage of Apache Hadoop YARN’s goals,

its design and architecture and how it expands the Apache Hadoop ecosystem to take

advantage of data at scale beyond MapReduce. It primarily focuses on installation and

administration of YARN clusters, on helping users with YARN application develop-

ment and new frameworks that run on top of YARN beyond MapReduce.

Please note that this book is not intended to be an introduction to Apache Hadoop

itself. We assume that the reader has a working knowledge of Hadoop version 1, writ-

ing applications on top of the Hadoop MapReduce framework, and the architecture

and usage of the Hadoop Distributed FileSystem. Please see the book webpage (http://

yarn-book.com) for a list of introductory resources. In future editions of this book, we

hope to expand our material related to the MapReduce application framework itself

and how users can design and code their own MapReduce applications.

www.it-ebooks.info

http://yarn-book.com
http://yarn-book.com
http://www.it-ebooks.info/

xixPreface

Book Structure

In Chapter 1, “Apache Hadoop YARN: A Brief History and Rationale,” we provide

a historical account of why and how Apache Hadoop YARN came about. Chapter 2,

“Apache Hadoop YARN Install Quick Start,” gives you a quick-start guide for install-

ing and exploring Apache Hadoop YARN on a single node. Chapter 3, “Apache

Hadoop YARN Core Concepts,” introduces YARN and explains how it expands

Hadoop ecosystem. A functional overview of YARN components then appears in

Chapter 4, “Functional Overview of YARN Components,” to get the reader started.

Chapter 5, “Installing Apache Hadoop YARN,” describes methods of install-

ing YARN. It covers both a script-based manual installation as well as a GUI-based

installation using Apache Ambari. We then cover information about administration of

YARN clusters in Chapter 6, “Apache Hadoop YARN Administration.”

A deep dive into YARN’s architecture occurs in Chapter 7, “Apache Hadoop

YARN Architecture Guide,” which should give the reader an idea of the inner work-

ings of YARN. We follow this discussion with an exposition of the Capacity scheduler

in Chapter 8, “Capacity Scheduler in YARN.”

Chapter 9, “MapReduce with Apache Hadoop YARN,” describes how existing

MapReduce-based applications can work on and take advantage of YARN. Chapter 10,

“Apache Hadoop YARN Application Example,” provides a detailed walk-through of

how to build a YARN application by way of illustrating a working YARN applica-

tion that creates a JBoss Application Server cluster. Chapter 11, “Using Apache Hadoop

YARN Distributed-Shell,” describes the usage and innards of distributed shell, the

canonical example application that is built on top of and ships with YARN.

One of the most exciting aspects of YARN is its ability to support multiple pro-

gramming models and application frameworks. We conclude with Chapter 12,

“Apache Hadoop YARN Frameworks,” a brief survey of emerging open-source

frameworks that are being developed to run under YARN.

Appendices include Appendix A, “Supplemental Content and Code Downloads”;

Appendix B, “YARN Installation Scripts”; Appendix C, “YARN Administration

Scripts”; Appendix D, “Nagios Modules”; Appendix E, “Resources and Additional

Information”; and Appendix F, “HDFS Quick Reference.”

Book Conventions

Code is displayed in a monospaced font. Code lines that wrap because they are too

long to fit on one line in this book are denoted with this symbol: ➥.

Additional Content and Accompanying Code

Please see Appendix A, “ Supplemental Content and Code Downloads,” for the loca-

tion of the book webpage (http://yarn-book.com). All code and configuration files

used in this book can be downloaded from this site. Check the website for new and

updated content including “Description of Apache Hadoop YARN Configuration

Properties” and “Apache Hadoop YARN Troubleshooting Tips.”

www.it-ebooks.info

http://yarn-book.com
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

We are very grateful for the following individuals who provided feedback and valu-

able assistance in crafting this book.

 n Ron Lee, Platform Engineering Architect at Hortonworks Inc, for making this

book happen, and without whose involvement this book wouldn’t be where it

is now.

 n Jian He, Apache Hadoop YARN Committer and a member of the Hortonworks

engineering team, for helping with reviews.

 n Zhijie Shen, Apache Hadoop YARN Committer and a member of the Horton-

works engineering team, for helping with reviews.

 n Omkar Vinit Joshi, Apache Hadoop YARN Committer, for some very thorough

reviews of a number of chapters.

 n Xuan Gong, a member of the Hortonworks engineering team, for helping with

reviews.

 n Christopher Gambino, for the target audience testing.

 n David Hoyle at Hortonworks, for reading the draft.

 n Ellis H. Wilson III, storage scientist, Department of Computer Science and

Engineering, the Pennsylvania State University, for reading and reviewing the

entire draft.

Arun C. Murthy

Apache Hadoop is a product of the fruits of the community at the Apache Software

Foundation (ASF). The mantra of the ASF is “Community Over Code,” based on

the insight that successful communities are built to last, much more so than successful

projects or code bases. Apache Hadoop is a shining example of this. Since its incep-

tion, many hundreds of people have contributed their time, interest and expertise—

many are still around while others have moved on; the constant is the community. I’d

like to take this opportunity to thank every one of the contributors; Hadoop wouldn’t

be what it is without your contributions. Contribution is not merely code; it’s a bug

report, an email on the user mailing list helping a journeywoman with a query, an edit

of the Hadoop wiki, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii Acknowledgments

I’d like to thank everyone at Yahoo! who supported Apache Hadoop from the

beginning—there really isn’t a need to elaborate further; it’s crystal clear to everyone

who understands the history and context of the project.

Apache Hadoop YARN began as a mere idea. Ideas are plentiful and transient, and

have questionable value. YARN wouldn’t be real but for the countless hours put in by

hundreds of contributors; nor would it be real but for the initial team who believed in

the idea, weeded out the bad parts, chiseled out the reasonable parts, and took owner-

ship of it. Thank you, you know who you are.

Special thanks to the team behind the curtains at Hortonworks who were so instru-

mental in the production of this book; folks like Ron and Jim are the key architects of

this effort. Also to my co-authors: Vinod, Joe, Doug, and Jeff; you guys are an amaz-

ing bunch. Vinod, in particular, is someone the world should pay even more attention

to—he is a very special young man for a variety of reasons.

Everything in my life germinates from the support, patience, and love emanating

from my family: mom, grandparents, my best friend and amazing wife, Manasa, and

the three-year-old twinkle of my eye, Arjun. Thank you. Gratitude in particular to

my granddad, the best man I have ever known and the moral yardstick I use to mea-

sure myself with—I miss you terribly now.

Cliché alert: last, not least, many thanks to you, the reader. Your time invested in

reading this book and learning about Apache Hadoop and YARN is a very big com-

pliment. Please do not hesitate to point out how we could have provided better return

for your time.

Vinod Kumar Vavilapalli

Apache Hadoop YARN, and at a bigger level, Apache Hadoop itself, continues to be a

healthy, community-driven, open-source project. It owes much of its success and adop-

tion to the Apache Hadoop YARN and MapReduce communities. Many individuals

and organizations spent a lot of time developing, testing, deploying and administering,

supporting, documenting, evangelizing, and most of all, using Apache Hadoop YARN

over the years. Here’s a big thanks to all the volunteer contributors, users, testers, com-

mitters, and PMC members who have helped YARN to progress in every way pos-

sible. Without them, YARN wouldn’t be where it is today, let alone this book. My

involvement with the project is entirely accidental, and I pay my gratitude to lady luck

for bestowing upon me the incredible opportunity of being able to contribute to such a

once-in-a-decade project.

This book wouldn’t have been possible without the herding efforts of Ron Lee,

who pushed and prodded me and the other co-writers of this book at every stage.

Thanks to Jeff Markham for getting the book off the ground and for his efforts in

demonstrating the power of YARN in building a non-trivial YARN application and

making it usable as a guide for instruction. Thanks to Doug Eadline for his persistent

thrust toward a timely and usable release of the content. And thanks to Joseph Nie-

miec for jumping in late in the game but contributing with significant efforts.

Special thanks to my mentor, Hemanth Yamijala, for patiently helping me when

my career had just started and for such great guidance. Thanks to my co-author,

www.it-ebooks.info

http://www.it-ebooks.info/

xxiiiAcknowledgments

mentor, team lead and friend, Arun C. Murthy, for taking me along on the ride that is

Hadoop. Thanks to my beautiful and wonderful wife, Bhavana, for all her love, sup-

port, and not the least for patiently bearing with my single-threaded span of attention

while I was writing the book. And finally, to my parents, who brought me into this

beautiful world and for giving me such a wonderful life.

Doug Eadline

There are many people who have worked behind the scenes to make this book possi-

ble. First, I want to thank Ron Lee of Hortonworks: Without your hand on the tiller,

this book would have surely sailed into some rough seas. Also, Joe Niemiec of Hor-

tonworks, thanks for all the help and the 11th-hour efforts. To Debra Williams Cauley

of Addison-Wesley, you are a good friend who makes the voyage easier; Namaste.

Thanks to the other authors, particularly Vinod for helping me understand the big

and little ideas behind YARN. I also cannot forget my support crew, Emily, Marlee,

Carla, and Taylor—thanks for reminding me when I raise my eyebrows. And, finally,

the biggest thank you to my wonderful wife, Maddy, for her support. Yes, it is done.

Really.

Joseph Niemiec

A big thanks to my father, Jeffery Niemiec, for without him I would have

never developed my passion for computers.

Jeff Markham

From my first introduction to YARN at Hortonworks in 2012 to now, I’ve come to

realize that the only way organizations worldwide can use this game-changing software

is because of the open-source community effort led by Arun Murthy and Vinod

Vavilapalli. To lead the world-class Hortonworks engineers along with corporate and

individual contributors means a lot of sausage making, cat herding, and a heavy dose of

vision. Without all that, there wouldn’t even be YARN. Thanks to both of you for lead-

ing a truly great engineering effort. Special thanks to Ron Lee for shepherding us all

through this process, all outside of his day job. Most importantly, though, I owe a huge

debt of gratitude to my wife, Yong, who wound up doing a lot of the heavy lifting for

our relocation to Seoul while I fulfilled my obligations for this project. 사랑해요!

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Arun C. Murthy has contributed to Apache Hadoop full time since the inception of

the project in early 2006. He is a long-term Hadoop committer and a member of the

Apache Hadoop Project Management Committee. Previously, he was the architect and

lead of the Yahoo! Hadoop MapReduce development team and was ultimately respon-

sible, on a technical level, for providing Hadoop MapReduce as a service for all of

Yahoo!—currently running on nearly 50,000 machines! Arun is the founder and archi-

tect of Hortonworks Inc., a software company that is helping to accelerate the develop-

ment and adoption of Apache Hadoop. Hortonworks was formed by the key architects

and core Hadoop committers from the Yahoo! Hadoop software engineering team in

June 2011. Funded by Yahoo! and Benchmark Capital, one of the preeminent technol-

ogy investors, Hortonworks has as its goal ensuring that Apache Hadoop becomes the

standard platform for storing, processing, managing, and analyzing Big Data. Arun lives

in Silicon Valley.

Vinod Kumar Vavilapalli has been contributing to Apache Hadoop project full

time since mid-2007. At Apache Software Foundation, he is a long-term Hadoop

contributor, Hadoop committer, member of the Apache Hadoop Project Management

Committee, and a Foundation member. Vinod is a MapReduce and YARN go-to guy

at Hortonworks Inc. For more than five years, he has been working on Hadoop and

still has fun doing it. He was involved in Hadoop on Demand, Hadoop 0.20, Capac-

ity scheduler, Hadoop security, and MapReduce, and now is a lead developer and

the project lead for Apache Hadoop YARN. Before joining Hortonworks, he was at

Yahoo! working in the Grid team that made Hadoop what it is today, running at large

scale—up to tens of thousands of nodes. Vinod loves reading books of all kinds, and

is passionate about using computers to change the world for better, bit by bit. He has

a bachelor’s degree in computer science and engineering from the Indian Institute of

Technology Roorkee. He lives in Silicon Valley and is reachable at twitter handle

@tshooter.

Doug Eadline, PhD, began his career as a practitioner and a chronicler of the Linux

cluster HPC revolution and now documents Big Data analytics. Starting with the first

Beowulf how-to document, Doug has written hundreds of articles, white papers, and

instructional documents covering virtually all aspects of HPC. Prior to starting and

editing the popular ClusterMonkey.net website in 2005, he served as editor -in -chief for

ClusterWorld magazine, and was senior HPC editor for Linux Magazine. He has practical

www.it-ebooks.info

http://www.it-ebooks.info/

xxvi About the Authors

hands-on experience in many aspects of HPC, including hardware and software design,

benchmarking, storage, GPU, cloud computing, and parallel computing. Currently, he

is a writer and consultant to the HPC industry and leader of the Limulus Personal Clus-

ter Project (http://limulus.basement-supercomputing.com). He is also author of Hadoop

Fundamentals LiveLessons and Apache Hadoop YARN Fundamentals LiveLessons videos from

Addison-Wesley.

Joseph Niemiec is a Big Data solutions engineer whose focus is on designing Hadoop

solutions for many Fortune 1000 companies. In this position, Joseph has worked with

customers to build multiple YARN applications, providing a unique perspective on

moving customers beyond batch processing, and has worked on YARN development

directly. An avid technologist, Joseph has been focused on technology innovations

since 2001. His interest in data analytics originally started in game score optimization

as a teenager and has shifted to helping customers uptake new technology innovations

such as Hadoop and, most recently, building new data applications using YARN.

Jeff Markham is a solution engineer at Hortonworks Inc., the company promoting

open-source Hadoop. Previously, he was with VMware, Red Hat, and IBM, helping

companies build distributed applications with distributed data. He has written articles

on Java application development and has spoken at several conferences and to Hadoop

user groups. Jeff is a contributor to Apache Pig and Apache HDFS.

www.it-ebooks.info

http://limulus.basement-supercomputing.com
http://www.it-ebooks.info/

1
Apache Hadoop YARN:

A Brief History and Rationale

 In this chapter we provide a historical account of why and how Apache Hadoop

YARN came about. YARN’s requirements emerged and evolved from the practical

needs of long-existing cluster deployments of Hadoop, both small and large, and we

discuss how each of these requirements ultimately shaped YARN.

YARN’s architecture addresses many of these long-standing requirements, based on

experience evolving the MapReduce platform. By understanding this historical con-

text, readers can appreciate most of the design decisions that were made with YARN.

These design decisions will repeatedly appear in Chapter 4, “Functional Overview of

YARN Components,” and Chapter 7, “Apache Hadoop YARN Architecture Guide.”

Introduction

Several different problems need to be tackled when building a shared compute plat-

form. Scalability is the foremost concern, to avoid rewriting software again and again

whenever existing demands can no longer be satisfied with the current version. The

desire to share physical resources brings up issues of multitenancy, isolation, and secu-

rity. Users interacting with a Hadoop cluster serving as a long-running service inside

an organization will come to depend on its reliable and highly available operation. To

continue to manage user workloads in the least disruptive manner, serviceability of the

platform is a principal concern for operators and administrators. Abstracting the intri-

cacies of a distributed system and exposing clean but varied application-level paradigms

are growing necessities for any compute platform.

Hadoop’s compute layer has seen all of this and much more during its continuous

and long progress. It went through multiple evolutionary phases in its architecture. We

highlight the “Big Four” of these phases in the reminder of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 2

 n “Phase 0: The Era of Ad Hoc Clusters” signaled the beginning of Hadoop clus-

ters that were set up in an ad hoc, per-user manner.

 n “Phase 1: Hadoop on Demand” was the next step in the evolution in the form of

a common system for provisioning and managing private Hadoop MapReduce

and HDFS instances on a shared cluster of commodity hardware.

 n “Phase 2: Dawn of the Shared Compute Clusters” began when the majority of

Hadoop installations moved to a model of a shared MapReduce cluster together

with shared HDFS instances.

 n “Phase 3: Emergence of YARN”—the main subject of this book—arose to

address the demands and shortcomings of the previous architectures.

As the reader follows the journey through these various phases, it will be apparent

how the requirements of YARN unfolded over time. As the architecture continued to

evolve, existing problems would be solved and new use-cases would emerge, pushing

forward further stages of advancements.

We’ll now tour through the various stages of evolution one after another, in chron-

ological order. For each phase, we first describe what the architecture looked like and

what its advancements were from its previous generation, and then wind things up

with its limitations—setting the stage for the next phase.

Apache Hadoop

To really comprehend the history of YARN, you have to start by taking a close look

at the evolution of Hadoop itself. Yahoo! adopted Apache Hadoop in 2006 to replace

the existing infrastructure that was then driving its WebMap application—the technol-

ogy that builds a graph of the known web to power its search engine. At that time, the

web-graph contained more than 100 billion nodes with roughly 1 trillion edges. The

previous infrastructure, named “Dreadnaught,” successfully served its purpose and grew

well—starting from a size of just 20 nodes and expanding to 600 cluster nodes—but had

reached the limits of its scalability. The software also didn’t perform perfectly in many

scenarios, including handling of failures in the clusters’ commodity hardware. A signifi-

cant shift in its architecture was required to scale out further to match the ever-growing

size of the web. The distributed applications running under Dreadnought were very sim-

ilar to MapReduce programs and needed to span clusters of machines and work at a large

scale. This highlights the first requirement that would survive throughout early versions

of Hadoop MapReduce, all the way to YARN—[Requirement 1] Scalability.

 n [Requirement 1] Scalability

The next-generation compute platform should scale horizontally to tens of thou-

sands of nodes and concurrent applications.

For Yahoo!, by adopting a more scalable MapReduce framework, significant parts

of the search pipeline could be migrated easily without major refactoring—which, in

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 1: Hadoop on Demand 3

turn, ignited the initial investment in Apache Hadoop. However, although the origi-

nal push for Hadoop was for the sake of search infrastructure, other use-cases started

taking advantage of Hadoop much faster, even before the migration of the web-graph

to Hadoop could be completed. The process of setting up research grids for research

teams, data scientists, and the like had hastened the deployment of larger and larger

Hadoop clusters. Yahoo! scientists who were optimizing advertising analytics, spam

filtering, personalization, and content initially drove Hadoop’s evolution and many of

its early requirements. In line with that evolution, the engineering priorities evolved

over time, and Hadoop went through many intermediate stages of the compute plat-

form, including ad hoc clusters.

Phase 0: The Era of Ad Hoc Clusters

Before the advent of ad hoc clusters, many of Hadoop’s earliest users would use

Hadoop as if it were similar to a desktop application but running on a host of

machines. They would manually bring up a cluster on a handful of nodes, load their

data into the Hadoop Distributed File System (HDFS), obtain the result they were

interested in by writing MapReduce jobs, and then tear down that cluster. This was

partly because there wasn’t an urgent need for persistent data in Hadoop HDFS, and

partly because there was no incentive for sharing common data sets and the results of

the computations. As usage of these private clusters increased and Hadoop’s fault toler-

ance improved, persistent HDFS clusters came into being. Yahoo! Hadoop administra-

tors would install and manage a shared HDFS instance, and load commonly used and

interesting data sets into the shared cluster, attracting scientists interested in deriving

insights from them. HDFS also acquired a POSIX-like permissions model for support-

ing multiuser environments, file and namespace quotas, and other features to improve

its multitenant operation. Tracing the evolution of HDFS is in itself an interesting

endeavor, but we will focus on the compute platform in the remainder of this chapter.

Once shared HDFS instances came into being, issues with the not-yet-shared com-

pute instances came into sharp focus. Unlike with HDFS, simply setting up a shared

MapReduce cluster for multiple users potentially from multiple organizations wasn’t

a trivial step forward. Private compute cluster instances continued to thrive, but con-

tinuous sharing of the common underlying physical resources wasn’t ideal. To address

some of the multitenancy issues with manually deploying and tearing down private

clusters, Yahoo! developed and deployed a platform called Hadoop on Demand.

Phase 1: Hadoop on Demand

The Hadoop on Demand (HOD) project was a system for provisioning and managing

Hadoop MapReduce and HDFS instances on a shared cluster of commodity hardware.

The Hadoop on Demand project predated and directly inf luenced how the developers

eventually arrived at YARN’s architecture. Understanding the HOD architecture and

its eventual limitations is a first step toward comprehending YARN’s motivations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 4

To address the multitenancy woes with the manually shared clusters from the previ-

ous incarnation (Phase 0), HOD used a traditional resource manager—Torque—together

with a cluster scheduler—Maui—to allocate Hadoop clusters on a shared pool of nodes.

Traditional resource managers were already being used elsewhere in high-performance

computing environments to enable effective sharing of pooled cluster resources. By mak-

ing use of such existing systems, HOD handed off the problem of cluster management

to systems outside of Hadoop. On the allocated nodes, HOD would start MapReduce

and HDFS daemons, which in turn would serve the user’s data and application requests.

Thus, the basic system architecture of HOD included these layers:

 n A ResourceManager (RM) together with a scheduler

 n Various HOD components to interact with the RM/scheduler and manage

Hadoop

 n Hadoop MapReduce and HDFS daemons

 n A HOD shell and Hadoop clients

A typical session of HOD involved three major steps: allocate a cluster, run Hadoop

jobs on the allocated cluster, and finally deallocate the cluster. Here is a brief descrip-

tion of a typical HOD-user session:

 n Users would invoke a HOD shell and submit their needs by supplying a descrip-

tion of an appropriately sized compute cluster to Torque. This description

included:

 n The number of nodes needed

 n A description of a special head-process called the RingMaster to be started by

the ResourceManager

 n A specification of the Hadoop deployment desired

 n Torque would enqueue the request until enough nodes become available. Once

the nodes were available, Torque started the head-process called RingMaster on

one of the compute nodes.

 n The RingMaster was a HOD component and used another ResourceManager

interface to run the second HOD component, HODRing—with one HODRing

being present on each of the allocated compute nodes.

 n The HODRings booted up, communicated with the RingMaster to obtain

Hadoop commands, and ran them accordingly. Once the Hadoop daemons were

started, HODRings registered with the RingMaster, giving information about

the daemons.

 n The HOD client kept communicating with the RingMaster to find out the loca-

tion of the JobTracker and HDFS daemons.

 n Once everything was set up and the users learned the JobTracker and HDFS

locations, HOD simply got out the way and allowed the user to perform his or

her data crunching on the corresponding clusters.

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 1: Hadoop on Demand 5

 n The user released a cluster once he or she was done running the data analysis jobs.

Figure 1.1 provides an overview of the HOD architecture.

HDFS in the HOD World

While HOD could also deploy HDFS clusters, most users chose to deploy the com-

pute nodes across a shared HDFS instance. In a typical Hadoop cluster provisioned by

HOD, cluster administrators would set up HDFS statically (without using HOD). This

allowed data to be persisted in HDFS even after the HOD-provisioned clusters were

deallocated. To use a statically configured HDFS, a user simply needed to point to

an external HDFS instance. As HDFS scaled further, more compute clusters could be

allocated through HOD, creating a cycle of increased experimentation by users over

more data sets, leading to a greater return on investment. Because most user-specific

MapReduce clusters were smaller than the largest HOD jobs possible, the JobTracker

running for any single HOD cluster was rarely a bottleneck.

JobTracker

TaskTracker

Map Reduce Map Reduce

TaskTracker

JobTracker

TaskTracker

Map Reduce Map Reduce

TaskTracker

RingMaster
HOD Layer

HOD Cluster

HODRing HODRing

Shared HDFS

Traditional Resource Management Layer

HOD Cluster

Figure 1.1 Hadoop on Demand architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 6

Features and Advantages of HOD

Because HOD sets up a new cluster for every job, users could run older and stable ver-

sions of Hadoop software while developers continued to test new features in isolation.

Since the Hadoop community typically released a major revision every three months,

the f lexibility of HOD was critical to maintaining that software release schedule—we

refer to this decoupling of upgrade dependencies as [Requirement 2] Serviceability.

 n [Requirement 2] Serviceability

The next-generation compute platform should enable evolution of cluster soft-

ware to be completely decoupled from users’ applications.

In addition, HOD made it easy for administrators and users to quickly set up and

use Hadoop on an existing cluster under a traditional resource management system.

Beyond Yahoo!, universities and high-performance computing environments could

run Hadoop on their existing clusters with ease by making use of HOD. It was also

a very useful tool for Hadoop developers and testers who needed to share a physical

cluster for testing their own Hadoop versions.

Log Management

HOD could also be configured to upload users’ job logs and the Hadoop daemon logs

to a configured HDFS location when a cluster was deallocated. The number of log

files uploaded to and retained on HDFS could increase over time in an unbounded

manner. To address this issue, HOD shipped with tools that helped administrators

manage the log retention by removing old log files uploaded to HDFS after a specified

amount of time had elapsed.

Multiple Users and Multiple Clusters per User

As long as nodes were available and organizational policies were not violated, a user

could use HOD to allocate multiple MapReduce clusters simultaneously. HOD pro-

vided the list and the info operations to facilitate the management of multiple concur-

rent clusters. The list operation listed all the clusters allocated so far by a user, and the

info operation showed information about a given cluster—Torque job ID, locations of

the important daemons like the HOD RingMaster process, and the RPC addresses of

the Hadoop JobTracker and NameNode daemons.

The resource management layer had some ways of limiting users from abusing clus-

ter resources, but the user interface for exposing those limits was poor. HOD shipped

with scripts that took care of this integration so that, for instance, if some user limits

were violated, HOD would update a public job attribute that the user could query

against.

HOD also had scripts that integrated with the resource manager to allow a user to

identify the account under which the user’s Hadoop clusters ran. This was necessary

because production systems on traditional resource managers used to manage accounts

separately so that they could charge users for using shared compute resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 1: Hadoop on Demand 7

Ultimately, each node in the cluster could belong to only one user’s Hadoop cluster

at any point of time—a major limitation of HOD. As usage of HOD grew along with

its success, requirements around [Requirement 3] Multitenancy started to take shape.

 n [Requirement 3] Multitenancy

The next-generation compute platform should support multiple tenants to

co exist on the same cluster and enable fine-grained sharing of individual nodes

among different tenants.

Distribution of Hadoop Software

When provisioning Hadoop, HOD could either use a preinstalled Hadoop instance on

the cluster nodes or request HOD to distribute and install a Hadoop tarball as part of

the provisioning operation. This was especially useful in a development environment

where individual developers might have different versions of Hadoop to test on the

same shared cluster.

Configuration

HOD provided a very convenient mechanism to configure both the boot-up HOD

software itself and the Hadoop daemons that it provisioned. It also helped manage the

configuration files that it generated on the client side.

Auto-deallocation of Idle Clusters

HOD used to automatically deallocate clusters that were not running Hadoop jobs for

a predefined period of time. Each HOD allocation included a monitoring facility that

constantly checked for any running Hadoop jobs. If it detected no running Hadoop

jobs for an extended interval, it automatically deallocated its own cluster, freeing up

those nodes for future use.

Shortcomings of Hadoop on Demand

Hadoop on Demand proved itself to be a powerful and very useful platform, but

Yahoo! ultimately had to retire it in favor of directly shared MapReduce clusters due

to many of its shortcomings.

Data Locality

For any given MapReduce job, during the map phase the JobTracker makes every effort

to place tasks close to their input data in HDFS—ideally on a node storing a replica of

that data. Because Torque doesn’t know how blocks are distributed on HDFS, it allocates

nodes without accounting for locality. The subset of nodes granted to a user’s JobTracker

will likely contain only a handful of relevant replicas and, if the user is unlucky, none.

Many Hadoop clusters are characterized by a small number of very big jobs and a large

number of small jobs. For most of the small jobs, most reads will emanate from remote

hosts because of the insufficient information available from Torque.

Efforts were undertaken to mitigate this situation but achieved mixed results. One

solution was to spread TaskTrackers across racks by modifying Torque/Maui itself and

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 8

making them rack-aware. Once this was done, any user’s HOD compute cluster would

be allocated nodes that were spread across racks. This made intra-rack reads of shared

data sets more likely, but introduced other problems. The transfer of records between

map and reduce tasks as part of MapReduce’s shuff le phase would necessarily cross

racks, causing a significant slowdown of users’ workloads.

While such short-term solutions were implemented, ultimately none of them

proved ideal. In addition, they all pointed to the fundamental limitation of the tradi-

tional resource management software—that is, the ability to understand data locality

as a first-class dimension. This aspect of [Requirement 4] Locality Awareness is a key

requirement for YARN.

 n [Requirement 4] Locality Awareness

The next-generation compute platform should support locality awareness—

moving computation to the data is a major win for many applications.

Cluster Utilization

MapReduce jobs consist of multiple stages: a map stage followed by a shuff le and a

reduce stage. Further, high-level frameworks like Apache Pig and Apache Hive often

organize a workf low of MapReduce jobs in a directed-acyclic graph (DAG) of com-

putations. Because clusters were not resizable between stages of a single job or between

jobs when using HOD, most of the time the major share of the capacity in a cluster

would be barren, waiting for the subsequent slimmer stages to be completed. In an

extreme but very common scenario, a single reduce task running on one node could

prevent a cluster of hundreds of nodes from being reclaimed. When all jobs in a colo-

cation were considered, this approach could result in hundreds of nodes being idle in

this state.

In addition, private MapReduce clusters for each user implied that even after a user

was done with his or her workf lows, a HOD cluster could potentially be idle for a

while before being automatically detected and shut down.

While users were fond of many features in HOD, the economics of cluster utiliza-

tion ultimately forced Yahoo! to pack its users’ jobs into shared clusters. [Require-

ment 5] High Cluster Utilization is a top priority for YARN.

 n [Requirement 5] High Cluster Utilization

The next-generation compute platform should enable high utilization of the

underlying physical resources.

Elasticity

In a typical Hadoop workf low, MapReduce jobs have lots of maps with a much

smaller number of reduces, with map tasks being short and quick and reduce tasks

being I/O heavy and longer running. With HOD, users relied on few heuristics when

estimating how many nodes their jobs required—typically allocating their private

HOD clusters based on the required number of map tasks (which in turn depends

on the input size). In the past, this was the best strategy for users because more often

than not, job latency was dominated by the time spent in the queues waiting for the

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 2: Dawn of the Shared Compute Clusters 9

allocation of the cluster. This strategy, although the best option for individual users,

leads to bad scenarios from the overall cluster utilization point of view. Specifically,

sometimes all of the map tasks are finished (resulting in idle nodes in the cluster) while

a few reduce tasks simply chug along for a long while.

Hadoop on Demand did not have the ability to grow and shrink the MapReduce

clusters on demand for a variety of reasons. Most importantly, elasticity wasn’t a first-

class feature in the underlying ResourceManager itself. Even beyond that, as jobs were

run under a Hadoop cluster, growing a cluster on demand by starting TaskTrackers

wasn’t cheap. Shrinking the cluster by shutting down nodes wasn’t straightforward,

either, without potentially massive movement of existing intermediate outputs of map

tasks that had already run and finished on those nodes.

Further, whenever cluster allocation latency was very high, users would often share

long-awaited clusters with colleagues, holding on to nodes for longer than anticipated,

and increasing latencies even further.

Phase 2: Dawn of the Shared Compute Clusters

Ultimately, HOD architecture had too little information to make intelligent decisions

about its allocations, its resource granularity was too coarse, and its API forced users to

provide misleading constraints to the resource management layer. This forced the next

step of evolution—the majority of installations, including Yahoo!, moved to a model

of a shared MapReduce cluster together with shared HDFS instances. The main com-

ponents of this shared compute architecture were as follows:

 n A JobTracker: A central daemon responsible for running all the jobs in the

cluster. This is the same daemon that used to run jobs for a single user in the

HOD world, but with additional functionality.

 n TaskTrackers: The slave in the system, which executes one task at a time under

directions from the JobTracker. This again is the same daemon as in HOD, but

now runs the tasks of jobs from all users.

What follows is an exposition of shared MapReduce compute clusters. Shared

MapReduce clusters working in tandem with shared HDFS instances is the dominant

architecture of Apache Hadoop 1.x release lines. At the point of this writing, many

organizations have moved beyond 1.x to the next-generation architecture, but at the

same time multitudes of Hadoop deployments continue to the JobTracker/TaskTracker

architecture and are looking forward to the migration to YARN-based Apache

Hadoop 2.x release lines. Because of this, in what follows, note that we’ll refer to the

age of shared MapReduce-only shared clusters as both the past and the present.

Evolution of Shared Clusters

Moving to shared clusters from HOD-based architecture was nontrivial, and replace-

ment of HOD was easier said than done. HOD, for all its problems, was originally

designed to specifically address (and thus masked) many of the multitenancy issues

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 10

occurring in shared MapReduce clusters. Adding to that, HOD silently took advan-

tage of some core features of the underlying traditional resource manager, which even-

tually became missing features when the clusters evolved to being native MapReduce

shared clusters. In the remainder of this section, we’ll describe salient characteristics of

shared MapReduce deployments and indicate how the architecture gradually evolved

away from HOD.

HDFS Instances

In line with how a shared HDFS architecture was established during the days of HOD,

shared instances of HDFS continue to advance. During Phase 2, HDFS improved its

scalability, acquired more features such as file-append, the new File Context API for

applications, Kerberos-based security features, high availability, and other performance

features such as local short-circuit to data-node files directly.

Central JobTracker Daemon

The first step in the evolution of the MapReduce subsystem was to start running the

JobTracker daemon as a shared resource across jobs, across users. This started with

putting an abstraction for a cluster scheduler right inside the JobTracker, the details

of which we explore in the next subsection. In addition, and unlike in the phase

in which HOD was the norm, both developer testing and user validation revealed

numerous deadlocks and race conditions in the JobTracker that were earlier neatly

shielded by HOD.

JobTracker Memory Management

Running jobs from multiple users also drew attention to the issue of memory manage-

ment of the JobTracker heap. At large clusters in Yahoo!, we had seen many instances

in which a user, just as he or she used to allocate large clusters in the HOD world,

would submit a job with many thousands of mappers or reducers. The configured

heap of the JobTracker at that time hadn’t yet reached the multiple tens of gigabytes

observed with HDFS’s NameNode. Many times, the JobTracker would expand these

very large jobs in its memory to start scheduling them, only to run into heap issues

and memory thrash and pauses due to Java garbage collection. The only solution at

that time once such a scenario occurred was to restart the JobTracker daemon, effec-

tively causing a downtime for the whole cluster. Thus, the JobTracker heap itself

became a shared resource that needed features to support multitenancy, but smart

scheduling of this scarce resource was hard. The JobTracker heap would store in-mem-

ory representations of jobs and tasks—some of them static and easily accountable, but

other parts dynamic (e.g., job counters, job configuration) and hence not bounded.

To avoid the risks associated with a complex solution, the simplest proposal of lim-

iting the maximum number of tasks per job was first put in place. This simple solution

eventually had to evolve to support more limits—on the number of jobs submitted

per user, on the number of jobs that are initialized and expanded in the JobTracker’s

memory at any time, on the number of tasks that any job might legally request, and on

the number of concurrent tasks that any job can run.

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 2: Dawn of the Shared Compute Clusters 11

Management of Completed Jobs

The JobTracker would also remember completed jobs so that users could learn about

their status once the jobs finished. Initially, completed jobs would have a memory

footprint similar to that of any other running job. Completed jobs are, by definition,

unbounded as time progresses. To address this issue, the JobTracker was modified to

start remembering only partial but critical information about completed jobs, such

as job status and counters, thereby minimizing the heap footprint per completed job.

Even after this, with ever-increasing completed jobs, the JobTracker couldn’t cope after

sufficient time elapsed. To address this issue, the straightforward solution of remem-

bering only the last N jobs per user was deployed. This created still more challenges:

Users with a very high job-churn rate would eventually run into situations where they

could not get information about recently submitted jobs. Further, the solution was

a per-user limit, so given enough users; the JobTracker would eventually exhaust its

heap anyway.

The ultimate state-of-the-art solution for managing this issue was to change the Job-

Tracker to not remember any completed jobs at all, but instead redirect requests about

completed jobs to a special server called the JobHistoryServer. This server off loaded

the responsibility of serving web requests about completed jobs away from the Job-

Tracker. To handle RPC requests in f light about completed jobs, the JobTracker would

also persist some of the completed job information on the local or a remote file system;

this responsibility of RPCs would also eventually transition to the JobHistoryServer in

Hadoop 2.x releases.

Central Scheduler

When HOD was abandoned, the central scheduler that worked in unison with a tradi-

tional resource manager also went away. Trying to integrate existing schedulers with the

newly proposed JobTracker-based architecture was a nonstarter due to the engineering

challenges involved. It was proposed to extend the JobTracker itself to support queues of

jobs. Users would interact with the queues, which are configured appropriately. In the

HOD setting, nodes would be statically assigned to a queue—but that led to utilization

issues across queues. In the newer architecture, nodes are no longer assigned statically.

Instead, slots available on a node are dynamically allocated to jobs in queues, thereby

also increasing the granularity of the scheduling from nodes to slots.

To facilitate innovations in the scheduling algorithm, an abstraction was put in

place. Soon, several implementations came about. Yahoo! implemented and deployed

the Capacity scheduler, which focused on throughput, while an alternative called the

Fair scheduler also emerged, focusing on fairness.

Scheduling was done on every node’s heartbeat: The scheduler would look at the

free capacity on this node, look at the jobs that need resources, and schedule a task

accordingly. Several dimensions were taken into account while making this scheduling

decision—scheduler-specific policies such as capacity, fairness, and, more importantly,

per-job locality preferences. Eventually, this “one task per heartbeat” approach was

changed to start allocating multiple tasks per heartbeat to improve scheduling latencies

and utilization.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 12

The Capacity scheduler is based on allocating capacities to a f lat list of queues and

to users within those queues. Queues are defined following the internal organizational

structure, and each queue is configured with a guaranteed capacity. Excess capaci-

ties from idle queues are distributed to queues that are in demand, even if they have

already made use of their guaranteed capacity. Inside a queue, users can share resources

but there is an overarching emphasis on job throughput, based on a FIFO algorithm.

Limits are put in place to avoid single users taking over entire queues or the cluster.

Moving to centralized scheduling and granular resources resulted in massive utiliza-

tion improvements. This brought more users, more growth to the so-called research

clusters, and, in turn, more requirements. The ability to refresh queues at run time to

affect capacity changes or to modify queue Access Control Lists (ACLs) was desired

and subsequently implemented. With node-level isolation (described later), jobs were

required to specify their memory requirements upfront, which warranted intelligent

scheduling of high-memory jobs together with regular jobs; the scheduler accordingly

acquired such functionality. This was done through reservation of slots on nodes for

high-RAM jobs so that they do not become starved while regular jobs come in and

take over capacity.

Recovery and Upgrades

The JobTracker was clearly a single point of failure for the whole cluster. Whenever a

software bug surfaced or a planned upgrade needed to be done, the JobTracker would

bring down the whole cluster. Anytime it needed to be restarted, even though the sub-

mitted job definitions were persistent in HDFS from the clients themselves, the state

of running jobs would be completely lost. A feature was needed to let jobs survive Job-

Tracker restarts. If a job was running at the time when the JobTracker restarted, along

with the ability to not lose running work, the user would expect to get all information

about previously completed tasks of this job transparently. To address this requirement,

the JobTracker had to record and create persistent information about every completed

task for every job onto highly available storage.

This feature was eventually implemented, but proved to be fraught with so many

race conditions and corner cases that it eventually couldn’t be pushed to production

because of its instability. The complexity of the feature partly arose from the fact that

JobTracker had to track and store too much information—first about the cluster state,

and second about the scheduling state of each and every job. Referring to [Require-

ment 2] Serviceability, the shared MapReduce clusters in a way had regressed com-

pared to HOD with respect to serviceability.

Isolation on Individual Nodes

Many times, tasks of user Map/Reduce applications would get extremely memory

intensive. This could occur due to many reasons—for example, due to inadvertent

bugs in the users’ map or reduce code, because of incorrectly configured jobs that

would unnecessarily process huge amounts of data, or because of mappers/reducers

spawning children processes whose memory/CPU utilization couldn’t be controlled by

the task JVM. The last issue was very possible with the Hadoop streaming framework,

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 2: Dawn of the Shared Compute Clusters 13

which enabled users to write their MapReduce code in an arbitrary language that was

then run under separate children processes of task JVMs. When this happened, the

user tasks would start to interfere with the proper execution of other processes on the

node, including tasks of other jobs, even Hadoop daemons like the DataNode and

the TaskTracker. In some instances, runaway user jobs would bring down multiple

DataNodes on the cluster and cause HDFS downtime. Such uncontrolled tasks would

cause nodes to become unusable for all purposes, leading to a need for a way to pre-

vent such tasks from bringing down the node.

Such a situation wouldn’t happen with HOD, as every user would essentially bring

up his or her own Hadoop MapReduce cluster and each node belonged to only one

user at any single point of time. Further, HOD would work with the underlying

resource manager to set resource limits prior to the TaskTracker getting launched.

This made the entire TaskTracker process chain—the daemon itself together, with the

task JVMs and any processes further spawned by the tasks themselves—to be bounded.

Whatever system needed to be designed to throttle runaway tasks had to mimic this

exact functionality.

We considered multiple solutions—for example, the host operating system facilitat-

ing user limits that are both static and dynamic, putting caps on individual tasks, and

setting a cumulative limit on the overall usage across all tasks. We eventually settled

on the ability to control individual tasks by killing any process trees that surpass pre-

determined memory limits. The TaskTracker uses a default admin configuration or a

per-job user-specified configuration, continuously monitors tasks’ memory usage in

regular cycles, and shoots down any process tree that has overrun the memory limits.

Distributed Cache was another feature that was neatly isolated by HOD. With

HOD, any user’s TaskTrackers would download remote files and maintain a local

cache only for that user. With shared clusters, TaskTrackers were forced to maintain

this cache across users. To help manage this distribution, the concepts of a public

cache, private cache, and application cache were introduced. A public cache would

include public files from all users, whereas a private cache would restrict itself to be

per user. An application-level cache included resources that had to be deleted once a

job finished. Further, with the TaskTracker concurrently managing several caches at

once, several locking problems with regard to the Distributed Cache emerged, which

required a minor redesign/reimplementation of this part of the TaskTracker.

Security

Along with enhancing resource isolation on individual nodes, HOD shielded security

issues with multiple users by avoiding sharing of individual nodes altogether. Even for

a single user, HOD would start the TaskTracker, which would then spawn the map

and reduce tasks, resulting in all of them running as the user who had submitted the

HOD job. With shared clusters, however, the tasks needed to be run as the job owner

for security and accounting purposes, rather than as the user running the TaskTracker

daemon itself.

We tried to avoid running the TaskTracker daemon as a privileged user (such as

root) to solve this requirement. The TaskTracker would perform several operations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 14

on behalf of users, and running it as a privileged user would leak a lot of surface area

that was vulnerable to attacks. Ultimately, we solved this problem by creating a setuid

executable called taskcontroller that would be owned by root but runnable only by

the TaskTracker. The TaskTracker would launch this executable with appropriate com-

mands when needed. It would first run as root, do some very basic operations, and

then immediately drop privileges by using setuid POSIX call to run the remaining

operations as the user. Because this was very platform-specific code, we implemented

a TaskController Java abstraction and shipped an implementation for Linux called

LinuxTaskController with all the platform-specific code written in C.

The directories and files used by the task also needed to have appropriate permis-

sions. Many of these directories and files were created by the TaskTracker, but were

used by the task. A few were written by the user code but then used or accessed by

the daemon. For security reasons, the permissions needed to be very strict and read-

able/writable by only the user or the TaskTracker. This step was done by making the

taskcontroller first change the permissions from the TaskTracker to the user, and then

letting the task run. Any files that needed to be read by the TaskTracker after the task

finished had to have been created with appropriate permissions by the tasks.

Authentication and Access Control

As Hadoop managed more tenants, diverse use-cases, and raw data, its requirements

for isolation became more stringent. Unfortunately, the system lacked strong, scalable

authentication and an authorization model—a critical feature for multitenant clusters.

This capability was added and backported to multiple versions of Hadoop.

A user can submit jobs to one or more MapReduce clusters, but he or she should

be authenticated by Kerberos or a delegation mechanism before job submission. A user

can disconnect after job submission and then reconnect to get the job status by using

the same authentication mechanism. Once such an authenticated user sends requests to

the JobTracker, it records all such accesses in an audit log that can be postprocessed for

analyzing over time—thereby creating a kind of audit trail.

Tasks run as the user need credentials to securely talk to HDFS, too. For this to

happen, the user needs to specify the list of HDFS clusters for a job at job submission

either implicitly by input/output paths or explicitly. The job client then uses this list to

reach HDFS and obtain credentials on users’ behalf. Beyond HDFS, communication

with the TaskTracker for both task heartbeats and shuff le by the reduce tasks is also

secured through a JobToken-based authentication mechanism.

A mechanism was needed to control who can submit jobs to a specified queue. Jobs

can be submitted to only those queues the user is authorized to use. For this purpose,

administrators set up Queue ACLs before the cluster is initialized. Administrators can

dynamically change a queue’s ACL to allow a specific user or group to access it at run

time. Specific users and groups, called the cluster administrators and queue administra-

tors, are able to manage the ACL on the queue as well to access or modify any job in

the queue.

On top of queue-level ACLs, users are allowed to access or modify only their own

MapReduce jobs or jobs to which others have given them access via Job ACLs. A Job

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 2: Dawn of the Shared Compute Clusters 15

ACL governs two types of job operations: viewing a job and modifying a job. The

web UI also shows information only about jobs run by the current user or about those

jobs that are explicitly given access to via Job ACLs.

As one can see, MapReduce clusters acquired a lot of security features over time to

manage more tenants on the same shared hardware. This [Requirement 6] Secure and

Auditable Operation must be preserved in YARN.

 n [Requirement 6] Secure and Auditable Operation

The next-generation compute platform should continue to enable secure and

auditable usage of cluster resources.

Miscellaneous Cluster Management Features

So far, we have described in great detail the evolution of the central JobTracker dae-

mon and the individual nodes. In addition to those, HOD made use of a few other

useful features in the underlying resource manager such as addition and decommis-

sioning of nodes that needed to be reimplemented in the JobTracker to facilitate cluster

management. Torque also exposed a functionality to run an arbitrary program that

could dynamically recognize any issues with specific nodes. To replace this functional-

ity, TaskTrackers would run a similar health-check script every so often and figure

out if a node had turned bad. This information would eventually reach the JobTracker,

which would in turn remove this node from scheduling. In addition to taking nodes

off line after observing their (poor) health status, heuristics were implemented to track

task failures on each node over time and to blacklist any nodes that failed to complete

a greater-than-mean number of tasks across jobs.

Evolution of the MapReduce Framework

In addition to the changes in the underlying resource management, the MapReduce

framework itself went through many changes. New MapReduce APIs were introduced

in an attempt to fill some gaps in the old APIs, the algorithm for running specula-

tive duplicate JVMs to work around slow tasks went through several iterations, and

new features like reusing JVMs across tasks for performance were introduced. As the

MapReduce framework was tied to the cluster management layer, this evolution would

eventually prove to be difficult.

Issues with Shared MapReduce Clusters

Issues with the shared MapReduce clusters developed over time.

Scalability Bottlenecks

As mentioned earlier, while HDFS had scaled gradually over years, the JobTracker

had been insulated from those forces by HOD. When that guard was removed, Map-

Reduce clusters suddenly became significantly larger and job throughput increased

dramatically, but issues with memory management and coarse-grained locking to

support many of the features added to the JobTracker became sources of significant

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 16

scalability bottlenecks. Scaling the JobTracker to clusters containing more than about

4000 nodes would prove to be extremely difficult.

Part of the problem arose from the fact that the JobTracker was keeping in memory

data from user jobs that could potentially be unbounded. Despite the innumerable

limits that were put in place, the JobTracker would eventually run into some other

part of the data structure that wasn’t limited. For example, a user job might generate

so many counters (which were then not limited) that TaskTrackers would spend all

their time uploading those counters. The JobTracker’s RPCs would then slow down

to a grinding halt, TaskTrackers would get lost, resulting in a vicious circle that ended

only with a downtime and a long wild goose chase for the offending application.

This problem would eventually lead to one of the bigger design points of YARN—

to not load any user data in the system daemons to the greatest extent possible.

The JobTracker could logically be extended to support larger clusters and heteroge-

neous frameworks, if only with significant engineering investments. Heartbeat latency

could be as high as 200 ms in large clusters, leading to node heartbeat intervals of as

much as 40 seconds due to coarse-grained locking of its internal data structures. This

problem could be improved with carefully designed fine-grained locking. The internal

data structures in the JobTracker were often inefficient but they could be redesigned to

occupy less memory. Many of the functions of the JobTracker could also be off loaded

to separate, multitenant daemons. For example, serving the status of historical jobs

could be—and eventually was—off loaded to the separate service JobHistoryServer. In

other words, evolution could ideally continue by iterating on the existing code.

Although logical in theory, this scheme proved infeasible in practice. Changes to

the JobTracker had become extremely difficult to validate. The continuous push for

ill-thought-out features had produced a working, scalable, but very fragile system. It

was time to go back to the drawing board for a complete overhaul. Scalability targets

also anticipated clusters of 6000 machines running 100,000 concurrent tasks from

10,000 concurrent jobs, and there was no way the JobTracker could support such a

massive scale without a major rewrite.

Reliability and Availability

While the move to shared clusters improved utilization and locality compared to

HOD, it also brought concerns for serviceability and availability into sharp focus.

Instead of losing a single workf low, a JobTracker failure caused an outage that would

lose all of the running jobs in a cluster and require users to manually resubmit and

recover their workf lows. Upgrading a cluster by deploying a new version of Hadoop

in a shared cluster was a rather common event and demanded very careful planning.

To fix a bug in the MapReduce implementation, operators would necessarily sched-

ule a cluster downtime, shut down the cluster, deploy the new binaries, validate the

upgrade, and then admit new jobs. Any downtime created a backlog in the processing

pipelines; when the jobs were eventually resubmitted, they would put a significant

strain on the JobTracker. Restarts sometimes involved manually killing users’ jobs

until the cluster recovered.

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 2: Dawn of the Shared Compute Clusters 17

Operating a large, multitenant Hadoop cluster is hard. While fault tolerance is a

core design principle, the surface exposed to user applications is vast. Given the various

availability issues exposed by the single point of failure, it was critical to continuously

monitor workloads in the cluster for offending jobs. All of these concerns may be

grouped under the need for [Requirement 7] Reliability and Availability.

 n [Requirement 7] Reliability and Availability

The next-generation compute platform should have a very reliable user interac-

tion and support high availability.

Abuse of the MapReduce Programming Model

While MapReduce supports a wide range of use-cases, it is not the ideal model for

all large-scale computations. For example, many machine learning programs require

multiple iterations over a data set to converge to a result. If one composes this f low as

a sequence of MapReduce jobs, the scheduling overhead will significantly delay the

result. Similarly, many graph algorithms are better expressed using a bulk-synchronous

parallel model (BSP) with message passing to communicate between vertices, rather

than the heavy, all-to-all communication barrier in a fault-tolerant, large-scale Map-

Reduce job. This mismatch became an impediment to users’ productivity, but the

MapReduce-centricity in Hadoop allowed no other alternative programming model.

The evolution of the software wired the intricacies of MapReduce so deeply into the

platform that it took a multiple months’ effort to introduce job-level setup and cleanup

tasks, let alone an alternative programming model. Users who were in dire need of such

alternative models would write MapReduce programs that would spawn their custom

implementations—for example, for a farm of web servers. To the central scheduler, they

appeared as a collection of map-only jobs with radically different resource curves, caus-

ing poor utilization, potentially resource deadlocks, and instability. If YARN were to be

the next-generation platform, it must declare a truce with its users and provide explicit

[Requirement 8] Support for Programming Model Diversity.

 n [Requirement 8] Support for Programming Model Diversity

The next-generation compute platform should enable diverse programming

models and evolve beyond just being MapReduce-centric.

Resource Model

Beyond their mismatch with emerging framework requirements, the typed slots on the

TaskTrackers harmed utilization. While the separation between map and reduce capac-

ity on individual nodes (and hence the cluster) prevented cross-task-type deadlocks, it

also caused bottleneck resources.

The overlap between the map and reduce stages is configured by the user for each

submitted job. Starting reduce tasks later increases cluster throughput, while starting

them earlier in a job’s execution reduces its latency. The number of map and reduce

slots are fixed by the cluster administrators, so unused map capacity can’t be used to

spawn reduce tasks, and vice versa. Because the two task types can potentially (and

more often than not do) complete at different rates, no configuration will ever be

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 18

perfectly ideal. When either slot type becomes completely utilized, the JobTracker is

forced to apply back-pressure to job initialization despite the presence of available slots

of the other type. Nonstatic definition of resources on individual nodes complicates

scheduling, but it also empowers the scheduler to pack the cluster more tightly.

Further, the definition of slots was purely based on jobs’ memory requirements,

as memory was the scarcest resource for much of this time. Hardware keeps evolv-

ing, however, and there are now many sites where CPU has become the most scarce

resource, with memory being available in abundance, and the concept of slots doesn’t

easily accommodate this conundrum of scheduling multiple resources. This highlights

the need for a [Requirement 9] Flexible Resource Model.

 n [Requirement 9] Flexible Resource Model

The next-generation compute platform should enable dynamic resource configu-

rations on individual nodes and a f lexible resource model.

Management of User Logs

The handling of user logs generated by applications had been one of the biggest sell-

ing points of HOD, but it turned into a pain point for shared MapReduce installations.

User logs were typically left on individual nodes by the TaskTracker daemon after

they were truncated, but only for a specific amount of time. If individual nodes died

or were taken off line, their logs wouldn’t be available at all. Runaway tasks could also

fill up disks with useless logs, and there was no way to shield other tasks or the system

daemons from such bad tasks.

Agility

By conf lating the platform responsible for arbitrating resource usage with the frame-

work expressing that program, one is forced to evolve both structures simultaneously.

While cluster administrators try to improve the allocation efficiency of the platform, it

is the users’ responsibility to help incorporate framework changes into the new struc-

ture. Thus, upgrading a cluster should not require users to halt, validate, and restore

their pipelines. But the exact opposite thing happened with shared MapReduce clus-

ters: While updates typically required no more than recompilation, users’ assumptions

about internal framework details or developers’ assumptions about users’ programs

occasionally created incompatibilities, wasting more software development cycles.

As stated earlier, HOD was much better at supporting this agility of user applica-

tions. [Requirement 2] Serviceability covered this need for the next-generation com-

pute platform to enable evolution of cluster software completely decoupled from users’

applications.

Phase 3: Emergence of YARN

The JobTracker would ideally require a complete rewrite to fix the majority of the

scaling issues. Even if it were successful, however, this rewrite would not necessarily

www.it-ebooks.info

http://www.it-ebooks.info/

Phase 3: Emergence of YARN 19

resolve the coupling between platform and user code, nor would it address users’

appetite for non-MapReduce programming models or the dependency between care-

ful admission control and JobTracker scalability. Absent a significant redesign, cluster

availability would continue to be tied to the stability of the whole system.

Building on lessons learned by evolving Apache Hadoop MapReduce, YARN was

designed to address the specific requirements stated so far (i.e., Requirement 1 through

Requirement 9). However, the massive installed base of MapReduce applications, the

ecosystem of related projects, the well-worn deployment practice, and a tight schedule

could not tolerate a radical new user interface. Consequently, the new architecture

and the corresponding implementation reused as much code from the existing frame-

work as possible, behaved in familiar patterns, and exposed the same interfaces for the

existing MapReduce users. This led to the final requirement for the YARN redesign:

[Requirement 10] Backward Compatibility.

 n [Requirement 10] Backward Compatibility

The next-generation compute platform should maintain complete backward

compatibility of existing MapReduce applications.

To summarize the requirements for YARN, we need the following features:

 n [Requirement 1] Scalability: The next-generation compute platform should

scale horizontally to tens of thousands of nodes and concurrent applications.

 n [Requirement 2] Serviceability: The next-generation compute platform

should enable evolution of cluster software to be completely decoupled from

users’ applications.

 n [Requirement 3] Multitenancy: The next-generation compute platform

should support multiple tenants to coexist on the same cluster and enable fine-

grained sharing of individual nodes among different tenants.

 n [Requirement 4] Locality Awareness: The next-generation compute plat-

form should support locality awareness—moving computation to the data is a

major win for many applications.

 n [Requirement 5] High Cluster Utilization: The next-generation compute

platform should enable high utilization of the underlying physical resources.

 n [Requirement 6] Secure and Auditable Operation: The next-generation

compute platform should continue to enable secure and auditable usage of cluster

resources.

 n [Requirement 7] Reliability and Availability: The next-generation com-

pute platform should have a very reliable user interaction and support high

availability.

 n [Requirement 8] Support for Programming Model Diversity: The next-

generation compute platform should enable diverse programming models and

evolve beyond just being MapReduce-centric.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Apache Hadoop YARN: A Brief History and Rationale 20

 n [Requirement 9] Flexible Resource Model: The next-generation compute

platform should enable dynamic resource configurations on individual nodes and

a f lexible resource model.

 n [Requirement 10] Backward Compatibility: The next-generation compute

platform should maintain completely backward compatibility of existing Map-

Reduce applications.

Conclusion

That concludes our coverage of the history and rationale for YARN. We hope that it

gives readers a perspective on the various design and architectural decisions that will

appear and reappear in the remainder of this book. It should also give an insight into

the evolutionary process of YARN; every major decision in YARN is backed up by a

sound, if sometimes gory history.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Apache Hadoop YARN Install

Quick Start

Apache Hadoop presents the user with a vast ecosystem of tools and applications. For

those familiar with Hadoop version 1, there are two core components; the Hadoop

Distributed File System and the integrated MapReduce distributed processing engine.

Hadoop YARN is the new replacement for the monolithic MapReduce component

found in version 1. The scheduling and resource management have been separated

from the management of MapReduce pipelines. While Hadoop version 2 with YARN

still provides full MapReduce capability and backwards compatibility with version 1,

it also opens the door to many other “application frameworks” that are not based on

MapReduce processing.

The acronym YARN is short for “Yet Another Resource Negotiator,” which is a

good description of what YARN actually does. Fundamentally, YARN is a resource

scheduler designed to work on existing and new Hadoop clusters. The seemingly

trivial split of resource scheduling from the MapReduce data f low opens up a whole

new range of possibilities for Hadoop and Big Data processing. A separate scheduler

allows for better utilization and scalability of the cluster, while simultaneously provid-

ing a platform for other non-MapReduce applications to take advantage of the Hadoop

Distributed File System and run-time environment. A more detailed discussion of the

new Hadoop YARN capabilities can be found in Chapter 3, “Apache Hadoop YARN

Core Concepts.”

From a larger vantage point, YARN can be viewed as a cluster-wide Operating

System that provides the essential services for applications to take advantage of a large

dynamic and parallel resource infrastructure. Applications written in any language can

now take advantage of the combined Hadoop compute and storage assets within any

size cluster.

Although motivated by the needs of large clusters, YARN is capable of running on

a single cluster node or desktop machine. The instructions in this chapter will allow

you to install and explore Apache Hadoop version 2 with YARN on a single machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 Apache Hadoop YARN Install Quick Start22

Getting Started

A production Apache Hadoop system can take time to set up properly and is not nec-

essary to start experimenting with many of the YARN concepts and attributes. This

chapter provides a quick start guide to installing Hadoop version Hadoop 2.2.0 on a

single machine (workstation, server, or a laptop).

A more complete description of other installation options, such as those required by

a production cluster setup, is given in Chapter 5, “Installing Apache Hadoop YARN.”

Before we begin with the quick start, we will mention a few background details that

will help with installation. These items include rudimentary knowledge of Linux,

package installation, and basic system administration commands.

A basic Apache Hadoop version 2 system has two core components:

 n The Hadoop Distributed File System (HDFS) for storing data

 n Hadoop YARN for implementing applications to process data

Other Apache Hadoop components, such as Pig and Hive, can be added after the

two core components are installed and operating properly.

Steps to Configure a Single-Node YARN Cluster

The following type of installation is often referred to as “pseudo-distributed” because

it mimics some of the functionality of a distributed Hadoop cluster. A single machine

is, of course, not practical for any production use, nor is it parallel. A small-scale

Hadoop installation can provide a simple method for learning Hadoop basics, however.

The recommended minimal installation hardware is a dual-core processor with 2 GB

of RAM and 2 GB of available hard drive space. The system will need a recent Linux

distribution with Java installed (e.g., Red Hat Enterprise Linux or rebuilds, Fedora,

Suse Linux Enterprise, OpenSuse, Ubuntu). Red Hat Enterprise Linux 6.3 is used for

this installation example. A bash shell environment is also assumed. The first step is to

download Apache Hadoop.

Note that the following commands and files are available for download from the

book repository; see Appendix A for details.

Step 1: Download Apache Hadoop

Download the latest distribution from the Hadoop website (http://hadoop.apache.

org/). For example, as root do the following:

cd /root

wget http://mirrors.ibiblio.org/apache/hadoop/common/hadoop-2.2.0/hadoop-

➥2.2.0.tar.gz

Next create and extract the package in /opt/yarn:

www.it-ebooks.info

http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.it-ebooks.info/

Steps to Configure a Single-Node YARN Cluster 23

mkdir –p /opt/yarn

cd /opt/yarn

tar xvzf /root/hadoop-2.2.0.tar.gz

Step 2: Set JAVA_HOME

For Hadoop 2, the recommended version of Java can be found at http://wiki.apache.

org/hadoop/HadoopJavaVersions. In general, a Java Development Kit 1.6 (or greater)

should work. For this install, we will use Open Java 1.6.0_24, which is part of Red

Hat Enterprise Linux 6.3. Make sure you have a working Java JDK installed; in this

case, it is the Java-1.6.0-openjdk RPM. To include JAVA_HOME for all bash users (other

shells must be set in a similar fashion), make an entry in /etc/profile.d as follows:

echo "export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/" > /etc/
➥profile.d/java.sh

To make sure JAVA_HOME is defined for this session, source the new script:

source /etc/profile.d/java.sh

Step 3: Create Users and Groups

It is best to run the various daemons with separate accounts. Three accounts (yarn,

hdfs, mapred) in the group hadoop can be created as follows:

groupadd hadoop

useradd -g hadoop yarn

useradd -g hadoop hdfs

useradd -g hadoop mapred

Step 4: Make Data and Log Directories

Hadoop needs various data and log directories with various permissions. Enter the fol-

lowing lines to create these directories:

mkdir -p /var/data/hadoop/hdfs/nn

mkdir -p /var/data/hadoop/hdfs/snn

mkdir -p /var/data/hadoop/hdfs/dn

chown hdfs:hadoop /var/data/hadoop/hdfs –R

mkdir -p /var/log/hadoop/yarn

chown yarn:hadoop /var/log/hadoop/yarn -R

Next, move to the YARN installation root and create the log directory and set the

owner and group as follows:

cd /opt/yarn/hadoop-2.2.0

mkdir logs

chmod g+w logs

chown yarn:hadoop . -R

www.it-ebooks.info

http://wiki.apache.org/hadoop/HadoopJavaVersions
http://wiki.apache.org/hadoop/HadoopJavaVersions
http://www.it-ebooks.info/

Chapter 2 Apache Hadoop YARN Install Quick Start24

Step 5: Configure core-site.xml

From the base of the Hadoop installation path (e.g., /opt/yarn/hadoop-2.2.0),

edit the etc/hadoop/core-site.xml file. The original installed file will have no

entries other than the <configuration> </configuration> tags. Two properties

need to be set. The first is the fs.default.name property, which sets the host and

request port name for the NameNode (metadata server for HDFS). The second is

hadoop.http.staticuser.user, which will set the default user name to hdfs. Copy

the following lines to the Hadoop etc/hadoop/core-site.xml file and remove the

original empty <configuration> </configuration> tags.

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000</value>

 </property>

 <property>

 <name>hadoop.http.staticuser.user</name>

 <value>hdfs</value>

 </property>

</configuration>

Step 6: Configure hdfs-site.xml

From the base of the Hadoop installation path, edit the etc/hadoop/hdfs-site.xml

file. In the single-node pseudo-distributed mode, we don’t need or want the HDFS to

replicate file blocks. By default, HDFS keeps three copies of each file in the file system

for redundancy. There is no need for replication on a single machine; thus the value of

dfs.replication will be set to 1.

In hdfs-site.xml, we specify the NameNode, Secondary NameNode, and Data-

Node data directories that we created in Step 4. These are the directories used by the

various components of HDFS to store data. Copy the following lines into Hadoop

etc/hadoop/hdfs-site.xml and remove the original empty <configuration>

</configuration> tags.

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>file:/var/data/hadoop/hdfs/nn</value>

 </property>

 <property>

 <name>fs.checkpoint.dir</name>

 <value>file:/var/data/hadoop/hdfs/snn</value>

 </property>

www.it-ebooks.info

http://www.it-ebooks.info/

Steps to Configure a Single-Node YARN Cluster 25

 <property>

 <name>fs.checkpoint.edits.dir</name>

 <value>file:/var/data/hadoop/hdfs/snn</value>

 </property>

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>file:/var/data/hadoop/hdfs/dn</value>

 </property>

</configuration>

Step 7: Configure mapred-site.xml

From the base of the Hadoop installation, edit the etc/hadoop/mapred-site.xml file.

A new configuration option for Hadoop 2 is the capability to specify a framework

name for MapReduce, setting the mapreduce.framework.name property. In this install,

we will use the value of “yarn” to tell MapReduce that it will run as a YARN appli-

cation. First, copy the template file to the mapred-site.xml.

cp mapred-site.xml.template mapred-site.xml

Next, copy the following lines into Hadoop etc/hadoop/mapred-site.xml file and

remove the original empty <configuration> </configuration> tags.

<configuration>

<property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

Step 8: Configure yarn-site.xml

From the base of the Hadoop installation, edit the etc/hadoop/yarn-site.xml file.

The yarn.nodemanager.aux-services property tells NodeManagers that there will

be an auxiliary service called mapreduce.shuffle that they need to implement. After

we tell the NodeManagers to implement that service, we give it a class name as the

means to implement that service. This particular configuration tells MapReduce how

to do its shuff le. Because NodeManagers won’t shuff le data for a non-MapReduce job

by default, we need to configure such a service for MapReduce. Copy the following

lines to the Hadoop etc/hadoop/yarn-site.xml file and remove the original empty

<configuration> </configuration> tags.

<configuration>

<property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

 <property>

 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 Apache Hadoop YARN Install Quick Start26

 <value>org.apache.hadoop.mapred.ShuffleHandler</value>

 </property>

</configuration>

Step 9: Modify Java Heap Sizes

The Hadoop installation uses several environment variables that determine the heap

sizes for each Hadoop process. These are defined in the etc/hadoop/*-env.sh files

used by Hadoop. The default for most of the processes is a 1 GB heap size; because

we’re running on a workstation that will probably have limited resources compared to

a standard server, however, we need to adjust the heap size settings. The values that

follow are adequate for a small workstation or server.

Edit the etc/hadoop/hadoop-env.sh file to ref lect the following (don’t forget to

remove the “#” at the beginning of the line):

HADOOP_HEAPSIZE="500"

HADOOP_NAMENODE_INIT_HEAPSIZE="500"

Next, edit mapred-env.sh to ref lect the following:

HADOOP_JOB_HISTORYSERVER_HEAPSIZE=250

Finally, edit yarn-env.sh to ref lect the following:

JAVA_HEAP_MAX=-Xmx500m

The following line will need to be added to yarn-env.sh:

YARN_HEAPSIZE=500

Step 10: Format HDFS

For the HDFS NameNode to start, it needs to initialize the directory where it

will hold its data. The NameNode service tracks all the metadata for the file sys-

tem. The format process will use the value assigned to dfs.namenode.name.dir in

etc/hadoop/hdfs-site.xml earlier (i.e., /var/data/hadoop/hdfs/nn). Format-

ting destroys everything in the directory and sets up a new file system. Format the

NameNode directory as the HDFS superuser, which is typically the “hdfs” user

account.

From the base of the Hadoop distribution, change directories to the “bin” direc-

tory and execute the following commands:

su - hdfs

$ cd /opt/yarn/hadoop-2.2.0/bin

$./hdfs namenode -format

If the command worked, you should see the following near the end of a long list of

messages:

INFO common.Storage: Storage directory /var/data/hadoop/hdfs/nn has been

➥successfully formatted.

www.it-ebooks.info

http://www.it-ebooks.info/

Steps to Configure a Single-Node YARN Cluster 27

Step 11: Start the HDFS Services

Once formatting is successful, the HDFS services must be started. There is one ser-

vice for the NameNode (metadata server), a single DataNode (where the actual data

is stored), and the SecondaryNameNode (checkpoint data for the NameNode). The

Hadoop distribution includes scripts that set up these commands as well as name other

values such as PID directories, log directories, and other standard process configura-

tions. From the bin directory in Step 10, execute the following as user hdfs:

$ cd ../sbin

$./hadoop-daemon.sh start namenode

The command should show the following:

starting namenode, logging to /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs-namenode-

➥limulus.out

The secondarynamenode and datanode services can be started in the same way:

$./hadoop-daemon.sh start secondarynamenode

starting secondarynamenode, logging to /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs-

➥secondarynamenode-limulus.out

$./hadoop-daemon.sh start datanode

starting datanode, logging to /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs-datanode-

➥limulus.out

If the daemon started successfully, you should see responses that will point to the

log file. (Note that the actual log file is appended with “.log,” not “.out.”). As a sanity

check, issue a jps command to confirm that all the services are running. The actual

PID (Java Process ID) values will be different than shown in this listing:

$ jps

15140 SecondaryNameNode

15015 NameNode

15335 Jps

15214 DataNode

If the process did not start, it may be helpful to inspect the log files. For instance,

examine the log file for the NameNode. (Note that the path is taken from the preced-

ing command.)

vi /opt/yarn/hadoop-2.2.0/logs/hadoop-hdfs-namenode-limulus.log

All Hadoop services can be stopped using the hadoop-daemon.sh script. For

example, to stop the datanode service, enter the following (as user hdfs in the

/opt/yarn/hadoop-2.2.0/sbin directory):

$./hadoop-daemon.sh stop datanode

The same can be done for the NameNode and SecondaryNameNode.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 Apache Hadoop YARN Install Quick Start28

Step 12: Start YARN Services

As with HDFS services, the YARN services need to be started. One Resource Manager

and one NodeManager must be started as user yarn (exiting from user hdfs first):

$ exit

logout

su - yarn

$ cd /opt/yarn/hadoop-2.2.0/sbin

$./yarn-daemon.sh start resourcemanager

starting resourcemanager, logging to /opt/yarn/hadoop-2.2.0/logs/yarn-yarn-

➥resourcemanager-limulus.out

$./yarn-daemon.sh start nodemanager

starting nodemanager, logging to /opt/yarn/hadoop-2.2.0/logs/yarn-yarn-

➥nodemanager-limulus.out

As when the HDFS daemons were started in Step 1, the status of the running dae-

mons is sent to their respective log files. To check whether the services are running,

issue a jps command. The following shows all the services necessary to run YARN

on a single server:

$ jps

15933 Jps

15567 ResourceManager

15785 NodeManager

If there are missing services, check the log file for the specific service. Similar to

the case with HDFS services, the services can be stopped by issuing a stop argument to

the daemon script:

./yarn-daemon.sh stop nodemanager

Step 13: Verify the Running Services Using the Web Interface

Both HDFS and the YARN ResourceManager have a web interface. These interfaces

are a convenient way to browse many of the aspects of your Hadoop installation. To

monitor HDFS, enter the following (or use your favorite web browser):

$ firefox http://localhost:50070

Connecting to port 50070 will bring up a web interface similar to Figure 2.1.

A web interface for the ResourceManager can be viewed by entering the following:

$ firefox http://localhost:8088

A webpage similar to that shown in Figure 2.2 will be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Steps to Configure a Single-Node YARN Cluster 29

Figure 2.2 Webpage for YARN ResourceManager

Figure 2.1 Webpage for HDFS file system

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 Apache Hadoop YARN Install Quick Start30

Run Sample MapReduce Examples

To test your installation, run the sample “pi” program that calculates the value of pi

using a quasi-Monte Carlo method and MapReduce. Change to user hdfs and run the

following:

su - hdfs

$ cd /opt/yarn/hadoop-2.2.0/bin

$ export YARN_EXAMPLES=/opt/yarn/hadoop-2.2.0/share/hadoop/mapreduce

$./yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar pi 16 1000

If the program worked correctly, the following should be displayed at the end of the

program output stream:

Estimated value of Pi is 3.14250000000000000000

This example submits a MapReduce job to YARN from the included samples in

the share/hadoop/mapreduce directory. The master JAR file contains several sample

applications to test your YARN installation. After you submit the job, its progress can

be viewed by updating the ResourceManager webpage shown in Figure 2.2.

You can get a full list of examples by entering the following:

./yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar

To see a list of options for each example, add the example name to this command. The

following is a list of the included jobs in the examples JAR file.

 n aggregatewordcount: An Aggregate-based map/reduce program that counts

the words in the input files.

 n aggregatewordhist: An Aggregate-based map/reduce program that computes

the histogram of the words in the input files.

 n bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute the

exact digits of pi.

 n dbcount: An example job that counts the pageview counts from a database.

 n distbbp: A map/reduce program that uses a BBP-type formula to compute the

exact bits of pi.

 n grep: A map/reduce program that counts the matches to a regex in the input.

 n join: A job that effects a join over sorted, equally partitioned data sets.

 n multifilewc: A job that counts words from several files.

 n pentomino: A map/reduce tile laying program to find solutions to pentomino

problems.

 n pi: A map/reduce program that estimates pi using a quasi-Monte Carlo method.

 n randomtextwriter: A map/reduce program that writes 10 GB of random tex-

tual data per node.

www.it-ebooks.info

http://www.it-ebooks.info/

Wrap-up 31

 n randomwriter: A map/reduce program that writes 10 GB of random data per

node.

 n secondarysort: An example defining a secondary sort to the reduce.

 n sort: A map/reduce program that sorts the data written by the random writer.

 n sudoku: A Sudoku solver.

 n teragen: Generate data for the terasort.

 n terasort: Run the terasort.

 n teravalidate: Check the results of the terasort.

 n wordcount: A map/reduce program that counts the words in the input files.

 n wordmean: A map/reduce program that counts the average length of the words

in the input files.

 n wordmedian: A map/reduce program that counts the median length of the

words in the input files.

 n wordstandarddeviation: A map/reduce program that counts the standard

deviation of the length of the words in the input files.

Some of the examples require files to be copied to or from HDFS. For those unfa-

miliar with basic HDFS operation, an HDFS quick start is provided in Appendix F. If

you were able to complete the preceding steps, you should now have a fully function-

ing Apache Hadoop YARN system running in pseudo-distributed mode.

Wrap-up

With a working installation of YARN, the concepts, examples, and applications found

in this book can be explored further without the need for a large production cluster.

Keep in mind that many aspects of the configuration were simplified for this single-

machine installation. In particular, a single workstation/server install does not have a

true parallel HDFS or parallel MapReduce environment. Additional production instal-

lation scenarios are provided in Chapter 5, “Installing Apache Hadoop YARN.”

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

3
Apache Hadoop YARN

Core Concepts

The new Apache Hadoop YARN resource manager is introduced in this chapter. In

addition to allowing non-MapReduce tasks to work within a Hadoop installation,

YARN (“Yet Another Resource Negotiator”) provides several other advantages over

the previous version of Hadoop, including better scalability, cluster utilization, and

user agility.

YARN also brings with it several new services that separate it from the standard

Hadoop MapReduce model. A new ResourceManager acting purely as a resource

scheduler is the sole arbitrator of cluster resources. User applications, including Map-

Reduce jobs, ask for specific resource requests via the new ApplicationMaster com-

ponent, which in turn negotiates with the ResourceManager to create an application

container within the cluster.

By incorporating MapReduce as a YARN framework, YARN also provides full

backward compatibility with existing MapReduce tasks and applications.

Beyond MapReduce

The Apache Hadoop ecosystem continues to grow beyond the simple MapReduce job.

Although MapReduce remains at the core of many Hadoop 1.0 tasks, the introduction

of YARN has expanded the capability of a Hadoop environment to move beyond the

basic MapReduce process.

The basic structure of Hadoop with Apache Hadoop MapReduce version 1 (MRv1)

can be seen in Figure 3.1. The two core services, Hadoop File System (HDFS) and

MapReduce, form the basis for almost all Hadoop functionality. All other components

are built around these services and must use MapReduce to run Hadoop jobs.

Apache Hadoop provides a basis for large-scale MapReduce processing and has

spawned a Big Data ecosystem of tools, applications, and vendors. While MapReduce

methods enable users to focus on the problem at hand rather than the underlying

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 Apache Hadoop YARN Core Concepts34

Pig
Script

Hive
Query

HCatalog
Metadata Services

MapReduce
Distributed Processing

YARN
Resource Scheduling and Negotiation

HDFS
Distributed Storage

O
th

e
r

Y
A
R

N

F
ra

m
e
w

o
rk

s

H
B

a
s
e

N
o
n
-r
e
la

ti
o
n
a
l
D

a
ta

b
a
s
e

O
th

e
r

P
ro

je
c
ts

A
m

b
a
ri
,
A
vr

o
,
C

a
s
s
a
n
d
ra

,
O

o
zi

e
,

Z
o
o
k
e
e
p
e
r,
 e

tc
.

Figure 3.2 YARN adds a more general interface to run non-MapReduce

jobs within the Hadoop framework

Pig
Script

Hive
Query

HCatalog
Metadata Services

MapReduce
Distributed Processing

HDFS
Distributed Storage

H
B

a
s
e

N
o
n
-r
e
la

ti
o
n
a
l
D

a
ta

b
a
s
e

O
th

e
r

P
ro

je
c
ts

A
m

b
a
ri
,
A
vr

o
,
C

a
s
s
a
n
d
ra

,
O

o
zi

e
,

Z
o
o
k
e
e
p
e
r,
 e

tc
.

Figure 3.1 The Hadoop 1.0 ecosystem. MapReduce and HDFS are the

core components, while other components are built around the core.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Hadoop MapReduce 35

processing mechanism, they do limit some of the problem domains that can run in the

Hadoop framework.

To address these needs, the YARN project was started by the Apache Hadoop com-

munity to give Hadoop the ability to run non-MapReduce jobs within the Hadoop

framework. YARN provides a generic resource management framework for implement-

ing distributed applications. Starting with Apache Hadoop version 2.0, MapReduce has

undergone a complete overhaul; it is now architected as an application on YARN to

be called MapReduce version 2 (MRv2). YARN provides both full compatibility with

existing MapReduce applications and new support for virtually any distributed applica-

tion. Figure 3.2 illustrates how YARN fits into the new Hadoop ecosystem.

The introduction of YARN does not change the ability of Hadoop to run Map-

Reduce jobs. It does, however, position MapReduce as merely one of the application

frameworks within Hadoop, which works the same way as it did in MRv1. The new

capability offered by YARN is the use of new non-MapReduce frameworks that add

many new features to the Hadoop ecosystem.

The MapReduce Paradigm

The MapReduce processing model consists of two separate steps. The first step is an

embarrassingly parallel map phase, in which input data is split into discrete chunks

that can be processed independently. The second step is a reduce phase, in which the

output of the map phase is aggregated to produce the desired result. The simple, and

fairly restricted, nature of the programming model lends itself to very efficient and

extremely large-scale implementations across thousands of low-cost commodity servers

(or nodes). When MapReduce is paired with a distributed file system such as Apache

Hadoop HDFS, which can provide very high aggregate I/O bandwidth across a large

cluster of commodity servers, the economics of the system become extremely compel-

ling—a key factor in the popularity of Hadoop.

One of the keys to Hadoop performance is the lack of data motion, such that compute

tasks are moved to the servers on which the data reside and not the other way around

(i.e., large data movement to compute servers is minimized or eliminated). Specifi-

cally, the MapReduce tasks can be scheduled on the same physical nodes on which

data reside in HDFS, which exposes the underlying storage layout across the cluster.

This design significantly reduces the network I/O patterns and keeps most of the I/O

on the local disk or on a neighboring server within the same server rack.

Apache Hadoop MapReduce

To understand the new YARN process f low, it is helpful to review the original

Apache Hadoop MapReduce design. As part of the Apache Software Foundation,

Apache Hadoop MapReduce has evolved and improved as an open-source project.

This project is an implementation of the MapReduce programming paradigm

described previously. The Apache Hadoop MapReduce project itself can be broken

down into the following major facets:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 Apache Hadoop YARN Core Concepts36

 n The end-user MapReduce API for programming the desired MapReduce

application

 n The MapReduce run-time, which is the implementation of various phases such

as the map phase, the sort/shuff le/merge aggregation, and the reduce phase

 n The MapReduce framework, which is the back-end infrastructure required to

run the user’s MapReduce application, manage cluster resources, and schedule

thousands of concurrent jobs, among other things

This separation of concerns has significant benefits, particularly for end-users where

they can completely focus on their application via the API and let the combination of

the MapReduce run-time and the framework deal with the complex details such as

resource management, fault tolerance, and scheduling.

The current Apache Hadoop MapReduce system is composed of several high-level

elements, as shown in Figure 3.3. The master process is the JobTracker, which serves

as the clearinghouse for all MapReduce jobs on in the cluster. Each node has a Task-

Tracker process that manages tasks on the individual node. The TaskTrackers commu-

nicate with and are controlled by the JobTracker.

Job

Tracker

Task

Tracker

Task Task

Task

Tracker

Task Task

Task

Tracker

Task Task

MapReduce Status

Job Submission

Client

Client

Figure 3.3 Current Hadoop MapReduce control elements

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Hadoop MapReduce 37

The JobTracker is responsible for resource management (managing the worker server

nodes—that is, the TaskTrackers), tracking resource consumption/availability, and job life-

cycle management (e.g., scheduling individual tasks of the job, tracking progress, provid-

ing fault tolerance for tasks).

The TaskTracker has simple responsibilities—launch/tear down tasks on orders

from the JobTracker and provide task status information to the JobTracker periodically.

As described in Chapter 1, the Apache Hadoop MapReduce framework has exhib-

ited some growing pains. In particular, with regard to the JobTracker, several aspects,

including scalability, cluster utilization, ability of users to control upgrades to the stack

(i.e., user agility), and support for workloads other than MapReduce itself, have been

identified as desirable features.

The Need for Non-MapReduce Workloads

MapReduce is great for many applications, but not everything; other programming

models better serve requirements such as graph processing (e.g., Google Pregel/Apache

Giraph) and iterative modeling using the Message Passing Interface (MPI). As is often

the case, much of the enterprise data is already available in Hadoop HDFS, and hav-

ing multiple paths for processing is critical and a clear necessity. Furthermore, given

that MapReduce is essentially batch oriented, support for real-time and near-real-time

processing has become an important issue for the user base. A more robust computing

environment within Hadoop will enable organizations to see an increased return on

their Hadoop investments by lowering operational costs for administrators, reducing

the need to move data between Hadoop HDFS and other storage systems, and provid-

ing other such efficiencies.

Addressing Scalability

The processing power available in data centers continues to increase rapidly. As an

example, consider the additional hardware capability offered by a commodity server

over a three-year period:

 n 2009: 8 cores, 16 GB of RAM, 4 × 1 TB disk

 n 2012: 16+ cores, 72 GB of RAM, 12 × 3 TB of disk

These new servers are often available at the same price point as those of previous

generations. In general, servers are twice as capable today as they were two to three

years ago—on every dimension. Apache Hadoop MapReduce is known to scale to

production deployments of approximately 5000 server nodes of 2009 vintage. Thus,

for the same price, the number of CPU cores, amount of RAM, and local storage

available to the user will put continued pressure on the scalability of new Apache

Hadoop installations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 Apache Hadoop YARN Core Concepts38

Improved Utilization

In the current system, the JobTracker views the cluster as composed of nodes (man-

aged by individual TaskTrackers) with distinct map slots and reduce slots, which are

not fungible. As discussed in Chapter 1, utilization issues occur because maps slots

might be “full,” while reduce slots are empty (and vice versa). Improving this situa-

tion is necessary to ensure the entire system could be used to its maximum capacity for

high utilization and applying resources when needed.

User Agility

In real-world deployments, Hadoop is very commonly offered as a shared, multitenant

system. As a result, changes to the Hadoop software stack affect a large cross-section

of the enterprise, if not the entire enterprise. Against that backdrop, users are very

keen to control upgrades to the software stack, as such upgrades have a direct impact

on their applications. Thus, allowing multiple, if limited, number of versions of the

MapReduce framework is critical for Hadoop.

Apache Hadoop YARN

The fundamental idea of YARN is to split the two major responsibilities of the Job-

Tracker—that is, resource management and job scheduling/monitoring—into separate

daemons: a global ResourceManager and a per-application ApplicationMaster (AM).

The ResourceManager and per-node slave, the NodeManager (NM), form the new,

and generic, operating system for managing applications in a distributed manner.

The ResourceManager is the ultimate authority that arbitrates division of resources

among all the applications in the system. The per-application ApplicationMaster is, in

effect, a framework-specific entity and is tasked with negotiating for resources from the

ResourceManager and working with the NodeManager(s) to execute and monitor the

component tasks.

The ResourceManager has a pluggable scheduler component, which is responsible

for allocating resources to the various running applications subject to the familiar con-

straints of capacity, queues, and other factors. The Scheduler is a pure scheduler in the

sense that it performs no monitoring or tracking of status for the application, offering

no guarantees on restarting tasks that are not carried out due to either application fail-

ure or hardware failure. The scheduler performs its scheduling function based on the

resource requirements of an application by using the abstract notion of a resource container,

which incorporates resource dimensions such as memory, CPU, disk, and network.

The NodeManager is the per-machine slave, which is responsible for launching the

applications’ containers, monitoring their resource usage (CPU, memory, disk, net-

work), and reporting the same to the ResourceManager.

The per-application ApplicationMaster is responsible for negotiating appropriate

resource containers from the Scheduler, tracking their status, and monitoring their

progress. From the system perspective, the ApplicationMaster runs as a normal con-

tainer. An architectural view of YARN is provided in Figure 3.4.

www.it-ebooks.info

http://www.it-ebooks.info/

YARN Components 39

One of the crucial implementation details for MapReduce within the new YARN

system is the reuse of the existing MapReduce framework without any major surgery.

This step was very important to ensure compatibility for existing MapReduce applica-

tions and users.

YARN Components

By adding new functionality, YARN brings new components into the Apache Hadoop

workf low. These components provide finer-grained control for the end-user and

simultaneously offer more advanced capabilities to the Hadoop ecosystem.

ResourceManager

As mentioned earlier, the YARN ResourceManager is primarily a pure scheduler. It is

strictly limited to arbitrating requests for available resources in the system made by

the competing applications. It optimizes for cluster utilization (i.e., keeps all resources

in use all the time) against various constraints such as capacity guarantees, fairness,

Resource
Manager

Node
Manager

Node
Manager

MapReduce Status

Job Submission

Node Status

Resource Request

Client

Client

Node
Manager

App Master

App Master

ContainerContainer

Container

Container

Figure 3.4 New YARN control elements

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 Apache Hadoop YARN Core Concepts40

and service level agreements (SLAs). To allow for different policy constraints, the

ResourceManager has a pluggable scheduler that enables different algorithms such as

those focusing on capacity and fair scheduling to be used as necessary.

ApplicationMaster

An important new concept in YARN is the ApplicationMaster. The ApplicationMaster

is, in effect, an instance of a framework-specific library and is responsible for negotiat-

ing resources from the ResourceManager and working with the NodeManager(s) to

execute and monitor the containers and their resource consumption. It has the respon-

sibility of negotiating for appropriate resource containers from the ResourceManager,

tracking their status, and monitoring progress.

The ApplicationMaster design enables YARN to offer the following important new

features:

 n Scale: The ApplicationMaster provides much of the job-oriented functionality of

the JobTracker so that the entire system can scale more dramatically. Simulations

have shown that jobs may scale to 10,000 node clusters composed of modern

hardware without significant issue. As a pure scheduler, the ResourceManager

does not, for example, have to provide fault tolerance for resources across the

cluster. By shifting fault tolerance to the ApplicationMaster instance, con-

trol becomes local, rather than global. Furthermore, because an instance of an

ApplicationMaster is made available per application, the ApplicationMaster itself

is rarely a bottleneck in the cluster.

 n Openness: Moving all application framework-specific code into the Application-

Master generalizes the system so that it can now support multiple frameworks

such as MapReduce, MPI, and Graph Processing.

These features were the result of some key YARN design decisions:

 n Move all complexity (to the extent possible) to the ApplicationMaster, while

providing sufficient functionality to allow application framework authors suffi-

cient f lexibility and power.

 n Because it is essentially user code, do not trust the ApplicationMaster(s). In other

words, no ApplicationMaster is a privileged service.

 n The YARN system (ResourceManager and NodeManager) has to protect itself

from faulty or malicious ApplicationMaster(s) and resources granted to them at

all costs.

In reality, every application has its own instance of an ApplicationMaster. How-

ever, it’s completely feasible to implement an ApplicationMaster to manage a set of

applications (e.g., ApplicationMaster for Pig or Hive to manage a set of MapReduce

jobs). Furthermore, this concept has been stretched to manage long-running services,

which manage their own applications (e.g., launching HBase in YARN via a special

HBaseAppMaster).

www.it-ebooks.info

http://www.it-ebooks.info/

YARN Components 41

Resource Model

YARN supports a very general resource model for applications. An application (via the

ApplicationMaster) can request resources with highly specific requirements, such as

the following:

 n Resource name (including hostname, rackname, and possibly complex network

topologies)

 n Amount of memory

 n CPUs (number/type of cores)

 n Eventually resources such as disk/network I/O, GPUs, and more

ResourceRequests and Containers

YARN is designed to allow individual applications (via the ApplicationMaster) to

utilize cluster resources in a shared, secure, and multitenant manner. It also remains

aware of cluster topology so that it can efficiently schedule and optimize data access

(i.e., reduce data motion for applications to the extent possible).

To meet those goals, the central Scheduler (in the ResourceManager) maintains

extensive information about an application’s resource needs, which allows it to make

better scheduling decisions across all applications in the cluster. This leads us to the

ResourceRequest and the resulting container.

Essentially, an application can ask for specific resource requests via the Application-

Master to satisfy its resource needs. The Scheduler responds to a resource request by

allocating a container, which satisfies the requirements laid out by the Application-

Master in the initial ResourceRequest.

A ResourceRequest has the following form:

<resource-name, priority, resource-requirement, number-of-containers>

These components are described as follows:

 n resource-name is either hostname, rackname where the resource is desired, or *

to indicate no preference. Future plans may support even more complex topolo-

gies for virtual machines on a host, more complex networks, and other features.

 n priority is intra-application priority for this request (not across multiple appli-

cations). This orders various ResourceRequests within a given application.

 n resource-requirement is the required capabilities such as the amount of mem-

ory or CPU time (currently YARN supports only memory and CPU).

 n number-of-containers is just a multiple of such containers. It limits the total

number of containers as specified in the ResourceRequest.

Essentially, the container is the resource allocation, which is the successful result of

the ResourceManager granting a specific ResourceRequest. A container grants rights

to an application to use a specific amount of resources (e.g., memory, CPU) on a spe-

cific host.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 Apache Hadoop YARN Core Concepts42

The ApplicationMaster must take the container and present it to the NodeManager

managing the host, on which the container was allocated, to use the resources for

launching its tasks. For security reasons, the container allocation is verified, in the

secure mode, to ensure that ApplicationMaster(s) cannot fake allocations in the cluster.

Container Specification

While a container, as described previously, is merely the right to use a specified amount

of resources on a specific machine (NodeManager) in the cluster, the Application-

Master must provide considerably more information to the NodeManager to actually

launch the container. YARN allows applications to launch any process and, unlike

existing Hadoop MapReduce, this ability isn’t limited to Java applications.

The YARN container launch specification API is platform agnostic and contains

the following elements:

 n Command line to launch the process within the container

 n Environment variables

 n Local resources necessary on the machine prior to launch, such as jars, shared-

objects, and auxiliary data files

 n Security-related tokens

This design allows the ApplicationMaster to work with the NodeManager to

launch containers ranging from simple shell scripts to C/Java/Python processes on

UNIX/Windows to full-f ledged virtual machines.

Wrap-up

The release of Apache Hadoop YARN provides many new capabilities to the existing

Hadoop Big Data ecosystem. While the scalable MapReduce paradigm has enabled

previously intractable problems to be efficiently managed on large clustered systems,

YARN provides a framework for managing both MapReduce and non-MapReduce

tasks of greater size and complexity. YARN provides the framework to apply low-cost

commodity hardware to virtually any Big Data problem.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Functional Overview of

YARN Components

YARN relies on three main components for all of its functionality. The first com-

ponent is the ResourceManager (RM), which is the arbitrator of all cluster resources.

It has two parts: a pluggable scheduler and an ApplicationManager that manages user

jobs on the cluster. The second component is the per-node NodeManager (NM),

which manages users’ jobs and workf low on a given node. The central Resource-

Manager and the collection of NodeManagers create the unified computational

infrastructure of the cluster. The third component is the ApplicationMaster, a user

job life-cycle manager. The ApplicationMaster is where the user application resides.

Together, these three components provide a very scalable, f lexible, and efficient envi-

ronment to run virtually any type of large-scale data processing jobs.

Architecture Overview

The central ResourceManager runs as a standalone daemon on a dedicated machine

and acts as the central authority for allocating resources to the various competing

applications in the cluster. The ResourceManager has a central and global view of

all cluster resources and, therefore, can provide fairness, capacity, and locality across

all users. Depending on the application demand, scheduling priorities, and resource

availability, the ResourceManager dynamically allocates resource containers to appli-

cations to run on particular nodes. A container is a logical bundle of resources (e.g.,

memory, cores) bound to a particular cluster node. To enforce and track such assign-

ments, the ResourceManager interacts with a special system daemon running on each

node called the NodeManager. Communications between the ResourceManager

and NodeManagers are heartbeat based for scalability. NodeManagers are responsible

for local monitoring of resource availability, fault reporting, and container life-cycle

management (e.g., starting and killing jobs). The ResourceManager depends on the

NodeManagers for its “global view” of the cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 44

User applications are submitted to the ResourceManager via a public protocol and

go through an admission control phase during which security credentials are validated

and various operational and administrative checks are performed. Those applications

that are accepted pass to the scheduler and are allowed to run. Once the scheduler has

enough resources to satisfy the request, the application is moved from an accepted state

to a running state. Aside from internal bookkeeping, this process involves allocating

a container for the ApplicationMaster and spawning it on a node in the cluster. Often

called “container 0,” the ApplicationMaster does not get any additional resources at

this point and must request and release additional containers.

The ApplicationMaster is the “master” user job that manages all life-cycle aspects,

including dynamically increasing and decreasing resources consumption (i.e., contain-

ers), managing the f low of execution (e.g., in case of MapReduce jobs, running reduc-

ers against the output of maps), handling faults and computation skew, and performing

other local optimizations. The ApplicationMaster is designed to run arbitrary user

code that can be written in any programming language, as all communication with

the ResourceManager and NodeManager is encoded using extensible network proto-

cols (i.e., Google Protocol Buffers, http://code.google.com/p/protobuf/).

YARN makes few assumptions about the ApplicationMaster, although in practice

it expects most jobs will use a higher-level programming framework. By delegating

all these functions to ApplicationMasters, YARN’s architecture gains a great deal of

scalability, programming model f lexibility, and improved user agility. For example,

upgrading and testing a new MapReduce framework can be done independently of

other running MapReduce frameworks.

Typically, an ApplicationMaster will need to harness the processing power of multiple

servers to complete a job. To achieve this, the ApplicationMaster issues resource requests

to the ResourceManager. The form of these requests includes specification of local-

ity preferences (e.g., to accommodate HDFS use) and properties of the containers. The

ResourceManager will attempt to satisfy the resource requests coming from each appli-

cation according to availability and scheduling policies. When a resource is scheduled on

behalf of an ApplicationMaster, the ResourceManager generates a lease for the resource,

which is acquired by a subsequent ApplicationMaster heartbeat. A token-based security

mechanism guarantees its authenticity when the ApplicationMaster presents the con-

tainer lease to the NodeManager. In MapReduce, the code running in the container can

be a map or a reduce task. Commonly, running containers will communicate with the

ApplicationMaster through an application-specific protocol to report status and health

information and to receive framework-specific commands. In this way, YARN provides

a basic infrastructure for monitoring and life-cycle management of containers, while

application-specific semantics are managed independently by each framework. This

design is in sharp contrast to the original Hadoop version 1 design, in which scheduling

was designed and integrated around managing only MapReduce tasks.

Figure 4.1 illustrates the relationship between the application and YARN compo-

nents. The YARN components appear as the large outer boxes (ResourceManager and

NodeManagers), and the two applications appear as smaller boxes (Containers), one

www.it-ebooks.info

http://code.google.com/p/protobuf/
http://www.it-ebooks.info/

ResourceManager 45

dark and one light. Each application uses a different ApplicationMaster; the darker cli-

ent is running a Message Passing Interface (MPI) application and the lighter client is

running a MapReduce application.

ResourceManager

As previously described, the ResourceManager is the master that arbitrates all the

available cluster resources, thereby helping manage the distributed applications running

on the YARN system. It works together with the per-node NodeManagers and the

per-application ApplicationMasters.

In YARN, the ResourceManager is primarily limited to scheduling—that is, it

allocates available resources in the system among the competing applications but does

not concern itself with per-application state management. The scheduler handles only

an overall resource profile for each application, ignoring local optimizations and inter-

nal application f low. In fact, YARN completely departs from the static assignment of

map and reduce slots because it treats the cluster as a resource pool. Because of this

clear separation of responsibilities coupled with the modularity described previously,

the ResourceManager is able to address the important design requirements of scalabil-

ity and support for alternative programming paradigms.

NodeManagerNodeManager

NodeManager NodeManager

NodeManager

NodeManager

NodeManagerNodeManager NodeManager

NodeManager

NodeManager

NodeManager

ResourceManager

Scheduler

ApplicationManager

Map Reduce Client

MPI Client

MR AM1 Container1.2

Container1.3

Container1.1

Container2.1

Container2.2

Container2.3

Container2.4

MPI AM2

Figure 4.1 YARN architecture with two clients (MapReduce and MPI).

The client MPI AM
2
 is running an MPI application and the client MR AM

1
 is

running a MapReduce application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 46

In contrast to many other workf low schedulers, the ResourceManager also has the

ability to symmetrically request back resources from a running application. This situa-

tion typically happens when cluster resources become scarce and the scheduler decides

to reclaim some (but not all) of the resources that were given to an application.

In YARN, ResourceRequests can be strict or negotiable. This feature provides

ApplicationMasters with a great deal of f lexibility on how to fulfill the reclamation

requests—for example, by picking containers to reclaim that are less crucial for the

computation, by checkpointing the state of a task, or by migrating the computation to

other running containers. Overall, this scheme allows applications to preserve work, in

contrast to platforms that kill containers to satisfy resource constraints. If the applica-

tion is noncollaborative, the ResourceManager can, after waiting a certain amount of

time, obtain the needed resources by instructing the NodeManagers to forcibly termi-

nate containers.

ResourceManager failures remain significant events affecting cluster availability.

As of this writing, the ResourceManager will restart running ApplicationMasters as it

recovers its state. If the framework supports restart capabilities—and most will for rou-

tine fault tolerance—the platform will automatically restore users’ pipelines.

In contrast to the Hadoop 1.0 JobTracker, it is important to mention the tasks

for which the ResourceManager is not responsible. Other than tracking application

execution f low and task fault tolerance, the ResourceManager will not provide access

to the application status (servlet; now part of the ApplicationMaster) or track previ-

ously executed jobs, a responsibility that is now delegated to the JobHistoryService

(a daemon running on a separated node). This is consistent with the view that the

ResourceManager should handle only live resource scheduling, and helps YARN cen-

tral components scale better than Hadoop 1.0 JobTracker.

YARN Scheduling Components

YARN has a pluggable scheduling component. Depending on the use case and user

needs, administrators may select either a simple FIFO (first in, first out), capacity, or

fair share scheduler. The scheduler class is set in yarn-default.xml. Information about

the currently running scheduler can be found by opening the ResourceManager web

UI and selecting the Scheduler option under the Cluster menu on the left (e.g., http://

your_cluster:8088/cluster/scheduler). The various scheduler options are described

brief ly in this section.

FIFO Scheduler

The original scheduling algorithm that was integrated within the Hadoop version 1

JobTracker was called the FIFO scheduler, meaning “first in, first out.” The FIFO

scheduler is basically a simple “first come, first served” scheduler in which the Job-

Tracker pulls jobs from a work queue, oldest job first. Typically, FIFO schedules have

www.it-ebooks.info

http://your_cluster:8088/cluster/scheduler
http://your_cluster:8088/cluster/scheduler
http://www.it-ebooks.info/

YARN Scheduling Components 47

no sense of job priority or scope. The FIFO schedule is practical for small workloads,

but is feature-poor and can cause issues when large shared clusters are used.

Capacity Scheduler

The Capacity scheduler is another pluggable scheduler for YARN that allows for

multiple groups to securely share a large Hadoop cluster. Developed by the original

Hadoop team at Yahoo!, the Capacity scheduler has successfully been running many

of the largest Hadoop clusters.

To use the Capacity scheduler, an administrator configures one or more queues

with a predetermined fraction of the total slot (or processor) capacity. This assign-

ment guarantees a minimum amount of resources for each queue. Administrators can

configure soft limits and optional hard limits on the capacity allocated to each queue.

Each queue has strict ACLs (Access Control Lists) that control which users can submit

applications to individual queues. Also, safeguards are in place to ensure that users

cannot view or modify applications from other users.

The Capacity scheduler permits sharing a cluster while giving each user or group cer-

tain minimum capacity guarantees. These minimums are not given away in the absence

of demand. Excess capacity is given to the most starved queues, as assessed by a measure

of running or used capacity divided by the queue capacity. Thus, the fullest queues as

defined by their initial minimum capacity guarantee get the most needed resources. Idle

capacity can be assigned and provides elasticity for the users in a cost-effective manner.

Queue definitions and properties such as capacity and ACLs can be changed, at run

time, by administrators in a secure manner to minimize disruption to users. Admin-

istrators can add additional queues at run time, but queues cannot be deleted at run

time. In addition, administrators can stop queues at run time to ensure that while

existing applications run to completion, no new applications can be submitted.

The Capacity scheduler currently supports memory-intensive applications, where

an application can optionally specify higher memory resource requirements than the

default. Using information from the NodeManagers, the Capacity scheduler can then

place containers on the best-suited nodes.

The Capacity scheduler works best when the workloads are well known, which

helps in assigning the minimum capacity. For this scheduler to work most effec-

tively, each queue should be assigned a minimal capacity that is less than the maximal

expected workload. Within each queue, multiple applications are scheduled using hier-

archical FIFO queues similar to the approach used with the stand-alone FIFO sched-

uler. Capacity Scheduler is covered in more detail in Chapter 8, “Capacity Scheduler

in YARN.”

Fair Scheduler

The Fair scheduler is a third pluggable scheduler for Hadoop that provides another way

to share large clusters. Fair scheduling is a method of assigning resources to applica-

tions such that all applications get, on average, an equal share of resources over time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 48

Note

In Hadoop version 1, the Fair scheduler uses the term “pool” to refer to a queue. Start-

ing with the YARN Fair scheduler, the term “queue” will be used instead of “pool.” To

provide backward compatibility with the original Fair scheduler, “queue” elements can be

named as “pool” elements.

In the Fair scheduler model, every application belongs to a queue. YARN con-

tainers are given to the queue with the least amount of allocated resources. Within

the queue, the application that has the fewest resources is assigned the container. By

default, all users share a single queue, called “default.” If an application specifically

lists a queue in a container resource request, the request is submitted to that queue. It

is also possible to configure the Fair scheduler to assign queues based on the user name

included with the request. The Fair scheduler supports a number of features such as

weights on queues (heavier queues get more containers), minimum shares, maximum

shares, and FIFO policy within queues, but the basic idea is to share the resources as

uniformly as possible.

Under the Fair scheduler, when a single application is running, that application may

request the entire cluster (if needed). If additional applications are submitted, resources

that are free are assigned “fairly” to the new applications so that each application gets

roughly the same amount of resources. The Fair scheduler also applies the notion of

preemption, whereby containers can be requested back from the ApplicationMaster.

Depending on the configuration and application design, preemption and subsequent

assignment can be either friendly or forceful.

In addition to providing fair sharing, the Fair scheduler allows guaranteed mini-

mum shares to be assigned to queues, which is useful for ensuring that certain users,

groups, or production applications always get sufficient resources. When a queue

contains waiting applications, it gets at least its minimum share; in contrast, when the

queue does not need its full guaranteed share, the excess is split between other run-

ning applications. To avoid a single user f looding the clusters with hundreds of jobs,

the Fair scheduler can limit the number of running applications per user and per queue

through the configurations file. Using this limit, user applications will wait in the

queue until previously submitted jobs finish.

The YARN Fair scheduler allows containers to request variable amounts of

memory and schedules based on those requirements. Support for other resource speci-

fications, such as type of CPU, is under development. To prevent multiple smaller

memory applications from starving a single large memory application, a “reserved

container” has been introduced. If an application is given a container that it cannot use

immediately due to a shortage of memory, it can reserve that container, and no other

application can use it until the container is released. The reserved container will wait

until other local containers are released and then use this additional capacity (i.e., extra

www.it-ebooks.info

http://www.it-ebooks.info/

NodeManager 49

RAM) to complete the job. One reserved container is allowed per node, and each

node may have only one reserved container. The total reserved memory amount is

reported in the ResourceManager UI. A larger number means that it may take longer

for new jobs to get space.

A new feature in the YARN Fair scheduler is support for hierarchical queues.

Queues may now be nested inside other queues, with each queue splitting the

resources allotted to it among its subqueues in a fair scheduling fashion. One use of

hierarchical queues is to represent organizational boundaries and hierarchies. For

example, Marketing and Engineering departments may now arrange a queue structure

to ref lect their own organization. A queue can also be divided into subqueues by job

characteristics, such as short, medium, and long run times.

The Fair scheduler works best when there is a lot of variability between queues.

Unlike with the Capacity scheduler, all jobs make progress rather than proceeding in a

FIFO fashion in their respective queues.

Containers

At the fundamental level, a container is a collection of physical resources such as

RAM, CPU cores, and disks on a single node. There can be multiple containers on a

single node (or a single large one). Every node in the system is considered to be com-

posed of multiple containers of minimum size of memory (e.g., 512 MB or 1 GB) and

CPU. The ApplicationMaster can request any container so as to occupy a multiple of

the minimum size.

A container thus represents a resource (memory, CPU) on a single node in a

given cluster. A container is supervised by the NodeManager and scheduled by the

ResourceManager.

Each application starts out as an ApplicationMaster, which is itself a container (often

referred to as container 0). Once started, the ApplicationMaster must negotiate with

the ResourceManager for more containers. Container requests (and releases) can take

place in a dynamic fashion at run time. For instance, a MapReduce job may request

a certain amount of mapper containers; as they finish their tasks, it may release them

and request more reducer containers to be started.

NodeManager

The NodeManager is YARN’s per-node “worker” agent, taking care of the individual

compute nodes in a Hadoop cluster. Its duties include keeping up-to-date with the

ResourceManager, overseeing application containers’ life-cycle management, monitoring

resource usage (memory, CPU) of individual containers, tracking node health, log man-

agement, and auxiliary services that may be exploited by different YARN applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 50

On start-up, the NodeManager registers with the ResourceManager; it then sends

heartbeats with its status and waits for instructions. Its primary goal is to manage

application containers assigned to it by the ResourceManager.

YARN containers are described by a container launch context (CLC). This record

includes a map of environment variables, dependencies stored in remotely accessible

storage, security tokens, payloads for NodeManager services, and the command neces-

sary to create the process. After validating the authenticity of the container lease, the

NodeManager configures the environment for the container, including initializing its

monitoring subsystem with the resource constraints’ specified application. The Node-

Manager also kills containers as directed by the ResourceManager.

ApplicationMaster

The ApplicationMaster is the process that coordinates an application’s execution in

the cluster. Each application has its own unique ApplicationMaster, which is tasked

with negotiating resources (containers) from the ResourceManager and working with

the NodeManager(s) to execute and monitor the tasks. In the YARN design, Map-

Reduce is just one application framework; this design permits building and deploying

distributed applications using other frameworks. For example, YARN ships with a

Distributed-Shell application that allows a shell script to be run on multiple nodes on

the YARN cluster.

Once the ApplicationMaster is started (as a container), it will periodically send

heartbeats to the ResourceManager to affirm its health and to update the record of its

resource demands. After building a model of its requirements, the ApplicationMaster

encodes its preferences and constraints in a heartbeat message to the Resource-

Manager. In response to subsequent heartbeats, the ApplicationMaster will receive

a lease on containers bound to an allocation of resources at a particular node in the

cluster. Depending on the containers it receives from the ResourceManager, the

ApplicationMaster may update its execution plan to accommodate the excess or lack of

resources. Container allocation/deallocation can take place in a dynamic fashion as the

application progresses.

YARN Resource Model

In earlier Hadoop versions, each node in the cluster was statically assigned the capabil-

ity of running a predefined number of map slots and a predefined number of reduce

slots. The slots could not be shared between maps and reduces. This static allocation of

slots wasn’t optimal because slot requirements vary during the MapReduce application

life cycle. Typically, there is a demand for map slots when the job starts, as opposed to

the need for reduce slots toward the end of the job.

The resource allocation model in YARN addresses the inefficiencies of static allo-

cations by providing for greater f lexibility. As described previously, resources are

requested in the form of containers, where each container has a number of nonstatic

www.it-ebooks.info

http://www.it-ebooks.info/

YARN Resource Model 51

attributes. YARN currently has attribute support for memory and CPU. The general-

ized attribute model can also support things like bandwidth or GPUs. In the future

resource management model, only a minimum and a maximum for each attribute are

defined, and ApplicationManagers can request containers with attribute values as mul-

tiples of the minimum.

Client Resource Request

A YARN application starts with a client resource request. Figure 4.2 illustrates the

initial step in which a client communicates with the ApplicationManager compo-

nent of the ResourceManager to initiate this process. The client must first notify

the ResourceManager that it wants to submit an application. The ResourceManager

responds with an ApplicationID and information about the capabilities of the cluster

that will aid the client in requesting resources. This process is shown in Steps 1 and 2

in Figure 4.2.

ApplicationMaster Container Allocation

Next the client responds with a “Application Submission Context” in Step 3. The

Application Submission context contains the ApplicationID, user, queue, and other

information needed to start the ApplicationMaster. In addition a “Container Launch

NodeManagerNodeManager

Client

NodeManager

ApplicationMaster

ApplicationManager

ResourceManager

Scheduler

Step 1: Client Application Request

Step 2: Response with ApplicationID

Step 3: Application Submission Context

ApplicationID, user, queue, etc., and Container

Launch Context with resource requirements,

job files, security tokens, etc.

Step 4: Start Client

ApplicationMaster

and Send

Registration Request

Step 5: Resource

Capabilities

Step 6: Requested

Containers

Step 7: Assigned

Containers

Figure 4.2 Example client resource request to ResourceManager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 52

Context” (CLC) is sent to the ResourceManager. The CLC provides resource require-

ments (memory/CPU), job files, security tokens, and other information needed to

launch an ApplicationMaster on a node. Once the application has been submitted, the

client can also request that the ResourceManager kill the application or provide status

reports about the application.

When the ResourceManager receives the application submission context from a

client, it schedules an available container for the ApplicationMaster. This container

is often called “container 0” because it is the ApplicationMaster, which must request

additional containers. If there are no applicable containers, the request must wait. If a

suitable container can be found, then the ResourceManager contacts the appropriate

NodeManager and starts the ApplicationMaster (Step 4 in Figure 4.2). As part of this

step, the ApplicationMaster RPC port and tracking URL for monitoring the applica-

tion’s status will be established.

In response to the registration request, the ResourceManager will send information

about the minimum and maximum capabilities of the cluster (Step 5 in Figure 4.2). At

this point the ApplicationMaster must decide how to use the capabilities that are cur-

rently available. Unlike some resource schedulers in which clients request hard limits,

YARN allows applications to adapt (if possible) to the current cluster environment.

Based on the available capabilities reported from the ResourceManager, the

ApplicationMaster will request a number of containers (Step 6 in Figure 4.2). This

request can be very specific, including containers with multiples of the resource mini-

mum values (e.g., extra memory). The ResourceManager will respond, as best as

possible based on scheduling policies, to this request with container resources that are

assigned to the ApplicationMaster (Step 7 in Figure 4.2).

As a job progresses, heartbeat and progress information is sent from the Application-

Master to the ResourceManager (shown in Figure 4.3). Within these heartbeats, it is

possible for the ApplicationMaster to request and release containers. When the job fin-

ishes, the ApplicationMaster sends a Finish message to the ResourceManager and exits.

ApplicationMaster–Container Manager Communication

At this point, the ResourceManager has handed off control of assigned NodeManagers

to the ApplicationMaster. The ApplicationMaster will independently contact its

assigned node managers and provide them with a Container Launch Context that

includes environment variables, dependencies located in remote storage, security

tokens, and commands needed to start the actual process (refer to Figure 4.3). When

the container starts, all data files, executables, and necessary dependencies are copied

to local storage on the node. Dependencies can potentially be shared between contain-

ers running the application.

Once all containers have started, their status can be checked by the Application-

Master. The ResourceManager is absent from the application progress and is free

to schedule and monitor other resources. The ResourceManager can direct the

NodeManagers to kill containers. Expected kill events can happen when the

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Application Dependencies 53

ApplicationMaster informs the ResourceManager of its completion, or the Resource-

Manager needs nodes for another applications, or the container has exceeded its limits.

When a container is killed, the NodeManager cleans up the local working directory.

When a job is finished, the ApplicationMaster informs the ResourceManager that the

job completed successfully. The ResourceManager then informs the NodeManager

to aggregate logs and clean up container-specific files. The NodeManagers are also

instructed to kill any remaining containers (including the ApplicationMaster) if they

have not already exited.

Managing Application Dependencies

In YARN, applications perform their work by running containers that map to pro-

cesses on the underlying operating system. Containers have dependencies on files for

execution, and these files are either required at start-up or may be needed one or more

times during application execution. For example, to launch a simple Java program as a

container, we need a collection of classes and/or a file and potentially more jar files as

dependencies. Instead of forcing every application to either access (mostly for reading)

these files remotely every time or manage the files themselves, YARN gives the appli-

cations the ability to localize these files.

When starting a container, an ApplicationMaster can specify all the files that

a container will require and, therefore, that should be localized. Once these files

NodeManager

NodeManager

ApplicationMaster

NodeManager

Container

NodeManager

Container

NodeManager

Container

ApplicationManager

ResourceManager

Scheduler

Continuous

Heartbeat

Finished

Start Containers

by Sending CLC

Request

Container

Status

Status

Response

Container

Kill Option

Figure 4.3 ApplicationMaster NodeManager interaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 54

are specified, YARN takes care of the localization and hides all the complications

involved in securely copying, managing, and later deleting these files.

In the remainder of this section, we’ll explain the basic concepts underlying this

functionality.

LocalResources Definitions

We will begin with some definitions that will aid in the discussion of application

dependencies.

 n Localization: The process of copying or downloading remote resources

onto the local file system. Instead of always accessing a resource remotely, that

resource is copied to the local machine, so it can then be accessed locally from

that point of time.

 n LocalResource: The file or library required to run a container. The Node-

Manager is responsible for localizing the resource prior to launching the con-

tainer. For each LocalResource, applications can specify the following:

 n URL: A remote location from where a LocalResource must be downloaded.

 n Size: The size in bytes of the LocalResource.

 n TimeStamp: The last modification of the resource on the remote file system

before container start.

 n LocalResourceType: A specific type of a resource localized by the Node-

Manager—FILE, ARCHIVE, or PATTERN.

 n Pattern: The pattern that should be used to extract entries from the archive

(used only when the type is PATTERN).

 n LocalResourceVisibility: The specific visibility of a resource localized by

the NodeManager. The visibility can be either PUBLIC, PRIVATE, or

APPLICATION.

A container can request and use any kind of files for localization, provided they

are used as read-only by the containers. Typical examples of LocalResources

include the following:

 n Libraries required for starting the container, such as a jar file.

 n Configuration files required to configure the container once started (e.g.,

remote service URLs, application default configurations).

 n A static dictionary file.

The following are some examples of bad candidates for LocalResources:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Application Dependencies 55

 n Shared files that external components may potentially update in the future

and for which current containers wish to track these changes.

 n Files that applications themselves directly want to update.

 n Files through which an application plans to share the updated information

with external services.

 n LocalCache: The NodeManager maintains and manages several local caches

of all the files downloaded. The resources are uniquely identified based on the

remote URL originally used while copying that file.

LocalResource Timestamps

As mentioned earlier, NodeManager tracks the last-modification timestamp of each

LocalResource before a container starts. Before downloading them, the NodeManager

checks that the files haven’t changed in the interim. This check ensures a consistent

view at the LocalResources—an application can use the very same file contents all the

time it runs without worrying about data corruption issues due to concurrent writers

to the same file.

Once the file is copied from its remote location to one of the NodeManager’s local

disks, it loses any connection to the original file other than the URL (used while

copying). Any future modifications to the remote file are not tracked; hence, if an

external system has to update the remote resource, it should be done via versioning.

YARN will cause containers that depend on modified remote resources to fail, in an

effort to prevent inconsistencies.

Note that the ApplicationMaster specifies the resource timestamps to a Node-

Manager while starting any container on that node. Similarly, for the container run-

ning the ApplicationMaster itself, the client must populate the timestamps for all the

resources that ApplicationMaster needs.

In case of a MapReduce application, the MapReduce JobClient determines the

modification timestamps of the resources needed by the MapReduce Application-

Master. The ApplicationMaster itself then sets the timestamps for the resources needed

by the MapReduce tasks.

LocalResource Types

Each LocalResource can be of one of the following types:

 n FILE: A regular file, either textual or binary.

 n ARCHIVE: An archive, which is automatically unarchived by the Node-

Manager. As of now, NodeManager recognizes jar, tar, tar.gz, and .zip files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 56

 n PATTERN: A hybrid of ARCHIVE and FILE types. The original file is

retained, and at the same time (only) part of the file is unarchived on the local

file system during localization. Both the original file and the extracted files

are put in the same directory. Which contents have to be extracted from the

ARCHIVE and which shouldn’t be are determined by the pattern field in

the LocalResource specification. Currently, only jar files are supported under

PATTERN type; all others are treated as a regular ARCHIVE.

LocalResource Visibilities

LocalResources can be of three types depending on their specified LocalResource-

Visibility—that is, depending on how visible/accessible they are on the original stor-

age/file system.

PUBLIC

All the LocalResources (remote URLs) that are marked PUBLIC are accessible for

containers of any user. Typically PUBLIC resources are those that can be accessed by

anyone on the remote file system and, following the same ACLs, are copied into a

public LocalCache. If in the future a container belonging to this or any other applica-

tion (of this or any user) requests the same LocalResource, it is served from the Local-

Cache and, therefore, not copied or downloaded again if it hasn’t been evicted from

the LocalCache by then. All files in the public cache will be owned by “yarn-user”

(the user that NodeManager runs as) with world-readable permissions, so that they can

be shared by containers from all users whose containers are running on that node.

PRIVATE

LocalResources that are marked PRIVATE are shared among all applications of the

same user on the node. These LocalResources are copied into the specific user’s (the

user who started the container—that is, the application submitter) private cache.

These files are accessible to all the containers belonging to different applications, but

all started by the same user. These files on the local file system are owned by the user

and are not accessible by any other user. Similar to the public LocalCache, even for

the application submitters, there aren’t any write permissions; the user cannot modify

these files once localized. This feature is intended to avoid accidental write operations

to these files by one container that might potentially harm other containers. All con-

tainers expect each LocalResource to be in the same state as originally specified (mir-

roring the original timestamp and/or version number).

APPLICATION

All the resources that are marked as having the APPLICATION scope are shared only

among containers of the same application on the node. They are copied into the appli-

cation-specific LocalCache that is owned by the user who started the container (appli-

cation submitter). All of these files are owned by the user with read-only permissions.

www.it-ebooks.info

http://www.it-ebooks.info/

Wrap-up 57

Specifying LocalResource Visibilities

The ApplicationMaster specifies the visibility of a LocalResource to a NodeManager

while starting the container; the NodeManager itself doesn’t make any decisions or

classify resources. Similarly, for the container running the ApplicationMaster itself, the

client has to specify visibilities for all the resources that the ApplicationMaster needs.

In case of a MapReduce application, the MapReduce JobClient decides the resource

type which the corresponding ApplicationMaster then forwards to a NodeManager.

Lifetime of LocalResources

As mentioned previously, different types of LocalResources have different life cycles:

 n PUBLIC LocalResources are not deleted once the container or application

finishes, but rather are deleted only when there is pressure on each local direc-

tory for disk capacity. The threshold for local files is dictated by the configura-

tion property __yarn.nodemanager.localizer.cache.target-size-mb__, as

described later in this section.

 n PRIVATE LocalResources follow the same life cycle as PUBLIC resources.

 n APPLICATION-scoped LocalResources are deleted immediately after the appli-

cation finishes.

For any given application, we may have multiple ApplicationAttempts, and each

attempt may start zero or more containers on a given NodeManager. When the first

container belonging to an ApplicationAttempt starts, NodeManager localizes files for

that application as requested in the container’s launch context. If future containers

request more such resources, then all of them will be localized. If one Application-

Attempt finishes or fails and another is started, ResourceLocalizationService doesn’t

do anything with respect to the previously localized resources. However, when

the application finishes, the ResourceManager communicates that information to

NodeManagers which in turn clear the application LocalCache. In summary, APPLI-

CATION LocalResources are truly application scoped and not Application Attempt

scoped.

Wrap-up

The three main yarn components work together to deliver a new level of functional-

ity to Apache Hadoop. The ResourceManager acts as a pure scheduler controlling the

use of cluster resources in the form of resource containers (e.g., CPUs, memory). User

applications are under the control of an application-specific ApplicationMaster (itself

a container) that must negotiate the use of additional containers with the Resource-

Manager at run time. Once the ApplicationMaster has been given resources, it works

with the per-node NodeManagers to start and monitor containers on the cluster nodes.

Containers are f lexible and can be released and requested as the application progresses.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Functional Overview of YARN Components 58

To ensure best utilization of the cluster, administrators have three scheduling

options: FIFO, capacity, and fair share. These schedulers are used by the Resource-

Manager to best match the user needs with the available cluster resources.

LocalResources are new and are a very useful feature that application writers can

exploit to declare their start-up and run-time dependencies.

In this new YARN environment, MapReduce does not hold a special place in the

workf low because it is “ just an application framework” directed by an Application-

Master. Other frameworks are available or under development for use in the YARN

environment.

www.it-ebooks.info

http://www.it-ebooks.info/

5
Installing Apache
Hadoop YARN

A cluster-wide installation of Hadoop 2 YARN is necessary to harness the paral-

lel processing capability of the Hadoop ecosystem. HDFS and YARN form the core

components of Hadoop version 2. The familiar MapReduce process is still part of

YARN, but it has become its own application framework. The installation methods

described in this chapter enable you to fully install the base components needed for

YARN functionality. Recall that in YARN, the JobTracker has been replaced by the

ResourceManager and the per-node TaskTrackers have been replaced by the Node-

Manager. The basic HDFS installation using a NameNode and DataNodes remains

unchanged.

We describe two methods of installation here: a script-based install and a GUI-

based install using Apache Ambari. In both cases, a certain minimum amount of user

is input required for successful installation.

The Basics

Of all the many ways to install Hadoop version 2, one of the more involved ways is

to simply download the distribution from the Apache Software Foundation (ASF) site.

This process requires the creation of a few directories, possibly creation and editing of

the configuration files, and maybe even creation of your own scripts. Such a process

is a great way to learn the basics of Hadoop administration, but for those wanting a

fast and f lexible route to Hadoop installation, we present two methods of automated

installation in this chapter.

The system requirements for a Hadoop installation are somewhat basic. The instal-

lation of the ASF distribution still relies on a Linux file system such as ext3, ext4,

or xfs. A Java Development Kit 1.6 (or greater) is required as well. The OpenJDK

that comes with most popular Linux distributions should work for most installation

procedures. Production systems should have processors, memory, disk, and network

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN60

sufficient for the production use cases of each organization. To just get started, how-

ever, all we need are Linux servers and the right version of Java.

Hadoop 2 offers significant improvements beyond YARN—namely, improve-

ments in the HDFS (Hadoop File System) that can inf luence infrastructure decisions.

Whether to use NameNode federation and NameNode HA (high availability) are the

two important decisions that must be made by most organizations. NameNode fed-

eration significantly improves the scalability and performance of HDFS by introduc-

ing the ability to deploy multiple NameNodes for a single cluster. In addition, HDFS

introduces built-in high availability for the NameNode via a new feature called the

Quorum Journal Manager (QJM). QJM-based HA features an active NameNode and

a standby NameNode. The standby NameNode can become active either by a manual

process or automatically. Automatic failover works in coordination with ZooKeeper.

Hadoop 2 HDFS introduces the ZKFailoverController, which uses ZooKeeper’s elec-

tion functionality to determine the active NameNode. Other features are also avail-

able in HDFS, but a complete description of HDFS installation and configuration is

beyond the scope of this book. More information on HDFS options can be found at

http://hadoop.apache.org/docs/stable/hdfs_user_guide.html.

For the purposes of describing the YARN installation process, a simple HDFS

installation familiar to Hadoop 1 users will be used. It consists of a single NameNode,

a SecondaryNameNode, and multiple DataNodes.

System Preparation

Once your system requirements are confirmed and you have downloaded the lat-

est version of Hadoop 2, you will need some information that will make the scripted

installation easier. The workhorse of this method is the open-source tool Parallel Dis-

tributed Shell (http://sourceforge.net/projects/pdsh), commonly referred to as simply

pdsh, which describes itself as “an efficient, multithreaded remote shell client which

executes commands on multiple remote hosts in parallel.” In simple terms, pdsh will

execute commands remotely on hosts specified either on the command line or in a

file. As Hadoop is a distributed system that potentially spans thousands of hosts, pdsh

can be a very valuable tool for managing systems. Also included in the pdsh distribu-

tion is the pdcp command, which performs distributed copying of files. We’ll use both

the pdsh and pdcp commands to install Hadoop 2.

Note

The following procedure describes an RPM (Red Hat) -based installation. The scripts

described here are available for download from the book repository (see Appendix A),

along with instructions for Ubuntu installation.

Step 1: Install EPEL and pdsh

The pdsh tool is easily installed using an existing RPM package. It is also possible to

install pdsh by downloading prebuilt binaries or by compiling the tool from its source

www.it-ebooks.info

http://hadoop.apache.org/docs/stable/hdfs_user_guide.html
http://sourceforge.net/projects/pdsh
http://www.it-ebooks.info/

System Preparation 61

files. In most cases, this tool will be available through your system’s existing software

installation or update mechanism. For Red Hat–based systems, this is the yum RPM

repository; for SUSE systems, it is the zypper RPM repository.

For the purposes of this installation, we will use Red Hat RPM-based system. A

version of the pdsh package is distributed in the Extra Packages for Enterprise Linux

(EPEL) repository. EPEL has extra packages not in the standard RPM repositories for

distributions based on Red Hat Linux. The following steps, performed as root, are

needed to install the EPEL repository the pdsh RPM.

rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-

➥8.noarch.rpm

…

yum install pdsh

Step 2: Generate and Distribute ssh Keys

For pdsh to work effectively, we need to configure “password-less” ssh (secure shell).

When pdsh executes remote commands, it will attempt to do so without the need for

a password, similar to a user executing an ssh command. The first step is to generate

the public and private keys for any user executing pdsh commands (at a minimum,

for the root user). On Linux, the OpenSSH package is generally used for this task.

This package includes the ssh-keygen command shown later in this subsection. For

the easiest installation, as root we execute the ssh-keygen command and accept all

the defaults, making sure not to enter a passphrase. If we did specify a passphrase, we

would need to enter this passphrase every time we used pdsh or any other tool that

accessed the private key.

After generating the keys, we need to copy the public key to the hosts to which we

want to log in via ssh without a password. While this might seem like a painstaking

task, OpenSSH has the tools to make things easier. The OpenSSH clients package,

which is usually installed by default, provides ssh-copy-id, a command that copies

a public key to another host and adds the host to the ssh known_hosts file. During

an installation using pdsh, we’ll want to use the host’s fully qualified domain name

(FQDN), as this is also the hostname we’ll use in Hadoop configuration files.

ssh-keygen -t rsa

…

ssh-copy-id -i /root/.ssh/id_rsa.pub my.fqdn.tld

…

Once pdsh is installed and password-less ssh is working, the following type of

command should be possible. See the pdsh man page for more information.

pdsh –w my.fqdn.tld hostname

One feature of pdsh that will be useful to us is the ability to use host lists. For

example, if we create a file called all_hosts and include the FQDNs of all the nodes

in the cluster, then pshd can use this list as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN62

pdsh -w ^all_hosts uptime

This feature will be used extensively in the installation script.

Script-based Installation of Hadoop 2

To simplify the installation process, we will use an installation script to perform the

series of tasks required for a typical Hadoop 2 installation. The script is available

for review in Appendix B, and can serve as a guide to the steps necessary to install

Hadoop 2. The script and all other files are also available from the book repository;

see Appendix A for details. The installation script is designed to be f lexible and cus-

tomizable to your needs. Modification for your specific needs is encouraged.

Before we begin, there are some assumptions and some prerequisites that you will

need to provide. First, we assume that all nodes have a current Red Hat distribution

installed (or Red Hat–like distribution). Second, we assume that adequate memory,

cores, network, and disk space are available to meet your needs. Best practices for

selecting hardware can be found on the web: http://hortonworks.com/blog/best-

practices-for-selecting-apache-hadoop-hardware. Finally, we assume that pdsh is

working across the cluster.

You will need to choose a version of Hadoop. As of this book’s writing, version

2.2.0 was the most current version available from Apache Hadoop’s website. To obtain

the current version, go to http://hadoop.apache.org/releases.html and follow the links

to the current version. For this install, we downloaded hadoop-2.2.0.tar.gz (there is

no need to use the “src” version).

JDK Options

There are two options for installing a Java JDK. The first is to install the OpenJDK

that is part of the distribution. You can test whether the OpenJDK is installed by issu-

ing the following command. If the OpenJDK is installed, the packages will be listed.

rpm -qa|grep jdk

java-1.6.0-openjdk-devel-1.6.0.0-1.62.1.11.11.90.el6_4.x86_64

java-1.6.0-openjdk-1.6.0.0-1.62.1.11.11.90.el6_4.x86_64

Both the base and devel versions should be installed. The other recommended JVM

is jdk-6u31-linux-x64-rpm.bin from Oracle. This version can be downloaded from

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-

downloads-javase6-419409.html.

If you choose to use the Oracle version, make sure you have removed the OpenJDK

from all your systems using the following command:

rpm –e java-1.6.0-openjdk-devel java-1.6.0-openjdk-devel

You may need to add the “--nodeps” option to remove the packages. Keep in mind

that if there are dependencies on the OpenJDK, you may need to change some settings

to use the Oracle JDK.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://hortonworks.com/blog/best-practices-for-selecting-apache-hadoop-hardware
http://hortonworks.com/blog/best-practices-for-selecting-apache-hadoop-hardware
http://hadoop.apache.org/releases.html
http://www.it-ebooks.info/

Script-based Installation of Hadoop 2 63

Step 1: Download and Extract the Scripts

The install scripts and supporting files are available from the book reposi-

tory (see Appendix A). You can simply use wget to pull down the

hadoop2-install-scripts.tgz file.

As root, extract the file move to the hadoop2-install-scripts working directory:

tar xvzf hadoop2-install-scripts.tgz

cd hadoop2-install-scripts

If you have not done so already, download your Hadoop version and place it in this

directory (do not extract it). Also, if you are using the Oracle SDK, place it in this

directory as well.

Step 2: Set the Script Variables

The main script is called install-hadoop2.sh. The following is a list of the user-

defined variables that appear at the beginning of this script. You will want to make

sure your version matches the HADOOP_VERSION variable. You can also change the

install path by changing HADOOP_HOME (in this case, the path is /opt). Next, there

are various directories that are used by the various services. The following example

assumes that /var has sufficient capacity to hold all the Hadoop 2 data and log files.

These paths can also be changed to suit your hardware. It is a good idea to keep

the default values for HTTP_STATIC_USER and YARN_PROXY_PORT. Finally, JAVA_HOME

needs to be defined. If you are using the OpenJDK, make sure this definition cor-

responds to the OpenJDK path. If you are using the Oracle JDK, then download

jdk-6u31-linux-x64-rpm.bin to this directly and define JAVA_HOME as empty:

JAVA_HOME="".

Basic environment variables. Edit as necessary

HADOOP_VERSION=2.2.0

HADOOP_HOME="/opt/hadoop-${HADOOP_VERSION}"

NN_DATA_DIR=/var/data/hadoop/hdfs/nn

SNN_DATA_DIR=/var/data/hadoop/hdfs/snn

DN_DATA_DIR=/var/data/hadoop/hdfs/dn

YARN_LOG_DIR=/var/log/hadoop/yarn

HADOOP_LOG_DIR=/var/log/hadoop/hdfs

HADOOP_MAPRED_LOG_DIR=/var/log/hadoop/mapred

YARN_PID_DIR=/var/run/hadoop/yarn

HADOOP_PID_DIR=/var/run/hadoop/hdfs

HADOOP_MAPRED_PID_DIR=/var/run/hadoop/mapred

HTTP_STATIC_USER=hdfs

YARN_PROXY_PORT=8081

If using local OpenJDK, it must be installed on all nodes.

If using jdk-6u31-linux-x64-rpm.bin, then

set JAVA_HOME="" and place jdk-6u31-linux-x64-rpm.bin in this directory

JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN64

Step 3: Provide Node Names

Once you have set the options, it is time to perform the installation. Keep in mind

that the script relies heavily on pdsh and pdcp. If these two commands are not work-

ing across the cluster, then the installation procedure will not work. You can get help

for the script by running

./install-hadoop2.sh -h

The script offers two options: file based or interactive. In file-based mode, the

script needs the following list of files with the appropriate node names for your cluster:

 n nn_host: HDFS NameNode hostname

 n rm_host: YARN ResourceManager hostname

 n snn_host: HDFS SecondaryNameNode hostname

 n mr_history_host: MapReduce Job History server hostname

 n yarn_proxy_host: YARN Web Proxy hostname

 n nm_hosts: YARN NodeManager hostnames

 n dn_hosts: HDFS DataNode hostnames, separated by a space

If you use the interactive method, the files will be created automatically. If you

choose the file-based method, you can edit the files yourself. With exception of

nm_hosts and dn_hosts, all of the files require one hostname. Depending on your

installation, some of these hosts may be the same physical machine. The nm_hosts and

dn_hosts files take a space-delimited list of hostnames, which will identify HDFS data

nodes and/or YARN worker nodes.

Step 4: Run the Script

After you have checked over everything, you can run the script as follows, using tee

to keep a record of the install:

./install-hadoop2.sh –f |tee install-hadoop2-results

Some steps may take longer than others. If everything worked correctly, a Map-

Reduce job (the classic “calculate pi” example) will be run. If it is successful, the

installation process is complete. You may wish to install other tools like Pig, Hive, or

HBase as well. For your reference, the script does the following:

1. Copies the Hadoop tar file to all hosts.

2. Optionally copies and installs Oracle JDK 1.6.0_31 to all hosts.

3. Sets the JAVA_HOME and HADOOP_HOME environment variables on all hosts.

4. Extracts the Hadoop distribution on all hosts.

5. Creates system accounts and groups on all hosts (Group: hadoop, Users: yarn,

hdfs, and mapred).

6. Creates HDFS data directories on the NameNode host, SecondaryNameNode

host, and DataNode hosts.

www.it-ebooks.info

http://www.it-ebooks.info/

Script-based Installation of Hadoop 2 65

7. Creates log directories on all hosts.

8. Creates pid directories on all hosts.

9. Edits Hadoop environment scripts for log directories on all hosts.

10. Edits Hadoop environment scripts for pid directories on all hosts.

11. Creates the base Hadoop XML config files (core-site.XML, hdfs-site.XML,

mapred-site.XML, yarn-site.XML).

12. Copies the base Hadoop XML config files to all hosts.

13. Creates configuration, command, and script links on all hosts.

14. Formats the NameNode.

15. Copies start-up scripts to all hosts (hadoop-datanode, hadoop-historyserver,

hadoop-namenode, hadoop-nodemanager, hadoop-proxyserver, hadoop-

resourcemanager, and hadoop-secondarynamenode).

16. Starts Hadoop services on all hosts.

17. Creates MapReduce Job History directories.

18. Runs the YARN pi MapReduce job.

Step 5: Verify the Installation

There are a few points in the script-based installation process where problems may

occur. One important step is formatting the NameNode (Step 14 in the preceding

list). The results of this command will show up in the script output. Make sure there

were no errors with this command.

If you note other errors, such as when starting the Hadoop daemons, check the log

files located under $HADOOP_HOME/logs. The final part of the script runs the following

example “pi” MapReduce job command.

hadoop jar \

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-$HADOOP_VERSION.jar \

pi -Dmapreduce.clientfactory.class.name=org.apache.hadoop.mapred.YarnClientFactory \

-libjars $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-
➥$HADOOP_VERSION.jar \

16 10000

If this test is successful, you should see the following at the end of the output. (Your

run-time time will vary.)

Job Finished in 25.854 seconds

Estimated value of Pi is 3.14127500000000000000

You can also examine the HDFS file system using the following command:

hdfs dfs -ls /

Found 6 items

drwxr-xr-x - hdfs hdfs 0 2013-02-06 21:17 /apps

drwxr-xr-x - hdfs hadoop 0 2013-02-06 22:26 /benchmarks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN66

drwx------ - mapred hdfs 0 2013-04-25 16:20 /mapred

drwxr-xr-x - hdfs hdfs 0 2013-05-16 11:53 /system

drwxrwxr-- - hdfs hadoop 0 2013-05-14 14:54 /tmp

drwxrwxr-x - hdfs hadoop 0 2013-04-26 02:00 /user

Similar to Hadoop version 1, many aspects of Hadoop version 2 are available via

the built-in web UI. The web UI can be accessed by directly accessing the following

URL in your favorite browser or by issuing the following command as the user hdfs

(using your local hostname):

$ firefox http://hostname:8088/cluster

An example of the UI is shown in Figure 5.1.

The test job should be listed in the UI window. You can find out about the job his-

tory by clicking the History link on the right side of the job summary. When you do

so, the window shown in Figure 5.2 should be displayed.

To check the status of the your parallel file system, enter hostname:50070 into the

browser. A page similar to Figure 5.3 should be displayed.

Note

The output with Hadoop version 2.2.0 may look slightly different than it does in Figures

5.1, 5.2, and 5.3.

Figure 5.1 YARN web UI

www.it-ebooks.info

http://www.it-ebooks.info/

Script-based Installation of Hadoop 2 67

Figure 5.3 HDFS NameNode web UI

Figure 5.2 YARN pi example job history

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN68

If the HDFS file system looks fine and there are no dead nodes, then your Hadoop

cluster should be fully functional. You can investigate other aspects of your Hadoop 2

cluster by exploring some of the links on both the HDFS and YARN UI pages.

Script-based Uninstall

To uninstall the Hadoop2 installation, use the uninstall-hadoop2.sh script. Make

sure any changes you made to the install-hadoop2.sh script, such as the Hadoop

version number (HADOOP_VERSION), are copied to the uninstall script.

Configuration File Processing

The install script provides some commands that you will find useful for processing

Hadoop XML files. If you examine the install-hadoop2.sh script, you should notice

that several commands are used to create the Hadoop XML configuration files:

create_config() --file filename

put_config --file filename --property-property pname --value pvalue

del_config()--file filename --property-property pname

where filename is the name of the XML file, pname is the property to be defined,

and pvalue is the actual value. The functions are defined in hadoop-xml-conf.sh,

which is part of the hadoop2-install-scripts.tgz archive. See the book repository

(Appendix A) for download instructions. Basically, these scripts facilitate the creation

of Hadoop XML configuration files. If you want to customize the installation or make

changes to the XML files, these scripts may be useful.

Configuration File Settings

The following is a brief description of the settings specified in the Hadoop

configuration files by the installation script. These files are located in

$HADOOP_HOME/etc/hadoop.

core-site.xml

In this file, we define two essential properties for the entire system.

hdfs://$nn:9000 --> fs.default.name

$HTTP_STATIC_USER --> hadoop.http.staticuser.user

First, we define the name of the default file system we wish to use. Because we

are using HDFS, we will set this value to hdfs://$nn:9000 ($nn is the NameNode

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration File Settings 69

we specified in the script and 9000 is the standard HDFS port). Next we add the

hadoop.http.staticuser.user (hdfs) that we defined in the install script. This login

is used as the default user for the built-in web user interfaces.

hdfs-site.xml

The hdfs-site.xml file holds information about the Hadoop HDFS file system. Most

of these values were set at the beginning of the script. They are copied as follows:

$NN_DATA_DIR --> dfs.namenode.name.dir

$SNN_DATA_DIR --> fs.checkpoint.dir

$SNN_DATA_DIR --> fs.checkpoint.edits.dir

$DN_DATA_DIR --> dfs.datanode.data.dir

The remaining two values are set to the standard default port numbers ($nn is the

NameNode and $snn is the SecondaryNameNode we input to the script):

$nn:50070 --> dfs.namenode.http-address

$snn:50090 --> dfs.namenode.secondary.http-address

mapred-site.xml

Users who are familiar with Hadoop version 1 may notice that this is a known con-

figuration file. Given that MapReduce is just another YARN framework, it needs its

own configuration file. The script specifies the following settings:

yarn --> mapreduce.framework.name

$mr_hist:10020 --> mapreduce.jobhistory.address

$mr_hist:19888 --> mapreduce.jobhistory.webapp.address

/mapred --> yarn.app.mapreduce.am.staging-dir

The first property is mapreduce.framework.name. For this property, there are three

valid values: local (default), classic, or yarn. Specifying “local” for this value means

that the MapReduce Application is run locally in a process on the client machine,

without using any cluster resources. This local process will execute the map and

reduce tasks for a given job; because it is local, it doesn’t need to shuff le data from map

task output on one server to reduce task input on another server. Typically, this means

that there will be one map task and one reduce task.

Specifying “classic” for the mapreduce.framework.name property is appropriate

when there is a Hadoop 1.x JobTracker running in your cluster where Hadoop can

submit the job. This property exists to accommodate unforeseen situations where there

are backward-compatibility problems with users’ MapReduce jobs and the need for a

classic job submission process to a JobTracker is unavoidable.

As we are interested in using yarn, we will set mapreduce.framework.name to

“yarn” and use the new MapReduce framework provided by YARN.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN70

The next two properties, mapreduce.jobhistory.address and mapreduce

.jobhistory.webapp.address, may seem similar but have some subtle differ-

ences. The mapreduce.jobhistory.address property is the host and port where

the MapReduce application will send job history via its own internal protocol. The

mapreduce.jobhistory.webapp.address is where an administrator or a user can view

the details of MapReduce jobs that have completed.

Finally, we specify a property for a MapReduce staging directory. When a Map-

Reduce job is submitted to YARN, the MapReduce ApplicationMaster will create

temporary data in HDFS for the job and will need a staging area for this data. The

property yarn.app.mapreduce.am.staging-dir is where we designate such a direc-

tory in HDFS (i.e., /mapred).

This staging area will also be used by the job history server. The installation

script will make sure that the proper permissions and subdirectories are created (i.e.,

/mapred/history/done_intermediate).

yarn-site.xml

The final configuration file is yarn-site.xml. The script sets the following values:

mapreduce.shuffle --> yarn.nodemanager.aux-services

org.apache.hadoop.mapred.ShuffleHandler --> yarn.nodemanager.aux-
➥services.mapreduce.shuffle.class

$yarn_proxy:$YARN_PROXY_PORT --> yarn.web-proxy.address

$rmgr:8030 --> yarn.resourcemanager.scheduler.address

$rmgr:8031 --> yarn.resourcemanager.resource-tracker.address

$rmgr:8032 --> yarn.resourcemanager.address

$rmgr:8033 --> yarn.resourcemanager.admin.address

$rmgr:8088 --> yarn.resourcemanager.webapp.address

The yarn.nodemanager.aux-services property tells the NodeManager that a

MapReduce container will have to do a shuff le from the map tasks to the reduce tasks.

Previously, the shuff le step was part of the monolithic MapReduce TaskTracker. With

YARN, the shuff le is an auxiliary service and must be set in the configuration file.

In addition, the yarn.nodemanager.aux-services.mapreduce.shuffle.class prop-

erty tells YARN which class to use to do the actual shuff le. The class we use for the

shuff le handler is org.apache.hadoop.mapred.ShuffleHandler. Although it’s possible

to write your own shuff le handler by extending this class, it is recommended that the

default class be used.

The next property is the yarn.web-proxy.address. This property is part of the

installation process because we decided to run the YARN Proxy Server as a separate

process. If we didn’t configure it this way, the Proxy Server would run as part of the

ResourceManager process. The Proxy Server aims to lessen the possibility of security

issues. An ApplicationMaster will send to the ResourceManager a link for the applica-

tion’s web UI but, in reality, this link can point anywhere. The YARN Proxy Server

lessens the risk associated with this link, but it doesn’t eliminate it.

The remaining settings are the default ResourceManager port addresses.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Hadoop with Apache Ambari 71

Start-up Scripts

The Hadoop distribution includes a lot of convenient scripts to start and stop services

such as the ResourceManager and NodeManagers. In a production cluster, however,

we want the ability to integrate our scripts with the system’s services management. On

most Linux systems today, that means integrating with the init system.

Instead of relying on the built-in scripts that ship with Hadoop, we provide a set of

init scripts that can be placed in /etc/init.d and used to start, stop, and monitor the

Hadoop services. The files are as follows, with each service being identified by name:

hadoop-namenode

hadoop-datanode

hadoop-secondarynamenode

hadoop-resourcemanager

hadoop-nodemanager

hadoop-proxyserver

hadoop-historyserver

Of course, not all services run on all nodes; thus the installation script places the

correct files on the requisite nodes. Before starting the service, the script also registers

each service with chkconfig. Once these services are installed, they can be easily man-

aged with commands like the following:

service hadoop-namenode start

hadoop-resourcemanager status

hadoop-proxyserver restart

hadoop-historyserver stop

Installing Hadoop with Apache Ambari

A script-based manual Hadoop installation can turn out to be a challenging process

as it scales out from tens of nodes to thousands of nodes. Because of this complexity,

a tool with the ability to manage installation, configuration, and monitoring of the

Hadoop cluster became a much-needed addition to the Hadoop ecosystem. Apache

Ambari provides the means to handle these simple, yet highly valuable tasks by utiliz-

ing an agent on each node to install required components, change configuration files,

and monitor performance or failures of nodes either individually or as an aggregate.

Both administrators and developers will find many of the Ambari features useful.

Installation with Ambari is faster, easier, and less error prone than manually setting

up each service’s configuration file. As an example, a 12-node cluster install of Hor-

tonworks HDP2.X services (HDFS, MRv2, YARN, Hive, Sqoop, ZooKeeper, HCat-

alog, Oozie, HBase, and Pig) was accomplished in less than one hour with this tool.

Ambari can dramatically cut down on the number of people required to install large

clusters and increase the speed with which development environments can be created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN72

Configuration files are maintained by an Ambari server acting as the primary inter-

face to make changes to the cluster. Ambari guarantees that the configuration files on

all nodes are the same by automatically redistributing them to the nodes every time a

service’s configuration changes. From an operational perspective, this approach pro-

vides peace of mind; you know that the entire cluster—from 10 to 4000-plus nodes—

is always in sync. For developers, it allows for rapid performance tuning because the

configuration files can be easily manipulated.

Monitoring encompasses the starting and stopping of services, along with reporting

on whether a service is up or down, network usage, HDFS, YARN, and a multitude

of other load metrics. Ganglia and Nagios report back to the Ambari server monitor-

ing cluster health on issues ranging from utilization of services such as HDFS storage

to failures of stack components or entire nodes. Users can also take advantage of the

ability to monitor a number of YARN metrics such as cluster memory, total contain-

ers, NodeManagers, garbage collection, and JVM metrics. An example of the Ambari

dashboard is shown in Figure 5.4.

Performing an Ambari-based Hadoop Installation

Compared to a manual installation of Hadoop 2, when using Ambari there are signifi-

cantly fewer software requirements and operating system tasks like creating users or

Figure 5.4 YARN metrics dashboard

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Hadoop with Apache Ambari 73

groups and directory structures to perform. To manage the cluster with Ambari, we

install two components:

1. The Ambari-Server, which should be its own node separate from the rest of the

cluster

2. An Ambari-Agent on each node of the rest of the cluster that requires managing

For the purposes of this installation, we will reference the HDP 2.0 (Hortonworks

Data Platform) documentation for the Ambari Automated Install (see http://docs.

hortonworks.com/#2.0 for additional information). In addition, although Ambari may

eventually work with other Hadoop installations, we will use the freely available HDP

version to ensure a successful installation.

Step 1: Check Requirements

As of this writing, RHEL 5 and 6, CentOS 5 and 6, OEL (Oracle Enterprise Linux) 5

and 6, and SLS 11 are supported by HDP 2, however Ubuntu is not supported at this

time. Ensure that each node has yum, rpm, scp, curl, and wget. Additionally, ntpd

should be running. Hive/HCatalog, Oozie, and Ambari all require their own internal

databases; we can control these databases during installation, but they will need to

be installed. If your cluster nodes do not have access to the Internet, you will have to

mirror the HDP repository and set up your own local repositories.

Step 2: Install the Ambari Server

Perform the following actions to download the Ambari repository, add it to your

existing yum.repos.d on the server node, and install the packages:

wget http://public-repo-1.hortonworks.com/ambari-beta/centos6/1.x/beta/ambari.repo

cp ambari.repo /etc/yum.repos.d

yum -y install ambari-server

Next we set up the server. At this point, you can decide whether you want to

customize the Ambari-Server database; the default is PostgreSQL. You will also be

prompted to accept the JDK license unless you specify the --java-home option with

the path of the JDK on all nodes in the cluster. For this installation, we will use the

default values as signified by the silent install option. If the following command is suc-

cessful, you should see “Ambari Server ‘setup’ completed successfully.”

ambari-server setup --silent

Step 3: Install and Start Ambari Agents

Most of today’s current enterprise security divisions have a hard time accepting some

of Hadoop’s more unusual requirements, such as root password-less ssh between all

nodes in the cluster. Root password-less ssh is used only to automate installation of

the Ambari agents and is not required for day-to-day operation. To stay within many

www.it-ebooks.info

http://docs.hortonworks.com/#2.0
http://docs.hortonworks.com/#2.0
http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN74

security guidelines, we will be performing a manual install of the Ambari-Agent

on each node in the cluster. Be sure to set up the repository files on each node as

described in Step 2. Optionally, you can use pdsh and pdcp with password-less root to

help automate the installation of Ambari agents across the cluster. To install the agent,

enter the following for each node:

yum -y install ambari-agent

Next, configure the Ambari-Agent ini file with the FQDN of the Ambari-Server.

By default, this value is localhost. This task can be done using sed.

sed -i 's/hostname=localhost/hostname=yourAmbariServerFQDNhere/g' /etc/ambari-
➥agent/conf/ambari-agent.ini

On all nodes, start Ambari with the following command:

ambari-agent start

Step 4: Start the Ambari Server

To start the Ambari-Server, enter

ambari-server start

Log into the Ambari-Server web console using http://AmbariServerFQDN:8080. If

everything is working properly, you should see the login screen shown in Figure 5.5.

The default login is username = admin and password = admin.

Figure 5.5 Ambari sign-in screen

www.it-ebooks.info

http://AmbariServerFQDN:8080
http://www.it-ebooks.info/

Installing Hadoop with Apache Ambari 75

Step 5: Install an HDP2.X Cluster

The first task is to name your cluster.

1. Enter a name for your cluster and click the green “Next” button (see Figure 5.6).

Figure 5.6 Enter a cluster name

2. The next option is to select the version of the HDP software stack. Currently the

options include only the recent version of HDP. Select the 2.X stack option and

click Next as shown in Figure 5.7.

Figure 5.7 Select a Hadoop 2.X software stack

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN76

3. Next, Ambari will ask for your list of nodes, one per line, and ask you to select

manual or private key registration. In this installation, we are using the manual

method (see Figure 5.8).

Figure 5.8 Hadoop install options

The installed Ambari-Agents should register with the Ambari-Server at this point.

Any install warnings will also be displayed here, such as ntpd not running on the

nodes. If there are issues or warnings, the registration window will indicate these

as shown in Figure 5.9. Note that the example is installing a “cluster” of one node.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Hadoop with Apache Ambari 77

Figure 5.9 Ambari host registration screen

If everything is set correctly, your window should look like Figure 5.10.

Figure 5.10 Successful Ambari host registration screen

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN78

4. The next step is to select which components of the HDP2.X stack you want

to install. At the very least, you will want to install HDFS, YARN, and

MapReduceV2. In Figure 5.11, we will install everything.

Figure 5.11 Ambari services selection

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Hadoop with Apache Ambari 79

5. The next step is to assign functions to the various nodes in your cluster (see

Figure 5.12). The Assign Masters window allows for the selection of master

nodes—that is, NameNode, ResourceManager, HBaseMaster, Hive Server,

Oozie Server, etc. All nodes that have registered with the Ambari-Server will be

available in the drop-down selection box. Remember that the ResourceManager

has replaced the JobTracker from Hadoop version 1 and in a multi-node installa-

tion should always be given its own dedicated node.

Figure 5.12 Ambari host assignment

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN80

6. In this step, you assign NodeManagers (which run YARN containers), Region-

Servers, and DataNodes (HDFS). Remember that the NodeManager has replaced

the TaskTracker from Hadoop version 1, so you should always co-locate one of

these node managers with a DataNode to ensure that local data is available for

YARN containers. The selection window is shown in Figure 5.13. Again, this

example has only a single node.

Figure 5.13 Ambari slave and client component assignment

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Hadoop with Apache Ambari 81

7. The next set of screens allows you to define any initial parameter changes and

usernames for the services selected for installation (i.e., Hive, Oozie, and Nag-

ios). Users are required to set up the database passwords and alert reporting

email before continuing. The Hive database setup is pictured in Figure 5.14.

Figure 5.14 Ambari customized services window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN82

8. The final step before installing Hadoop is a review of your configuration. Fig-

ure 5.15 summarizes the actions that are about to take place. Be sure to double-

check all settings before you commit to an install.

Figure 5.15 Ambari final review window

9. During the installation step shown in Figure 5.16, the cluster is actually provi-

sioned with the various software packages. By clicking on the node name, you

can drill down into the installation status of every component. Should the instal-

lation encounter any errors on specific nodes, these errors will be highlighted on

this screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Hadoop with Apache Ambari 83

Figure 5.16 Ambari deployment process

10. Once the installation of the nodes is complete, a summary window similar to

Figure 5.17 will be displayed. The screen indicates which tasks were completed and

identifies any preliminary testing of cluster services.

Figure 5.17 Ambari summary window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Installing Apache Hadoop YARN84

Congratulations! You have just completed installing HDP2.X with Ambari. Con-

sult the online Ambari documentation (http://docs.hortonworks.com/#2) for further

details on the installation process.

If you are using Hive and have a FQDN longer than 60 characters (as is common in

some cloud deployments), please note that this can cause authentication issues with the

MySQL database that Hive installs by default with Ambari. To work around this issue,

start the MySQL database with the “--skip-name-resolve” option to disable FQDN

resolution and authenticate based only on IP number.

Wrap-up

It is possible to perform an automated script-based install of moderate to very large

clusters. The use of parallel distributed shell and copy commands (pdsh and pdcp,

respectively) makes a fully remote installation on any number of nodes possible. The

script-based install process is designed to be f lexible, and users can easily modify it for

their specific needs on Red Hat (and derivative)–based distributions.

In addition to the install script, some useful functions for creating and changing the

Hadoop XML property files are made available to users. To aid with start-up and shut-

down of Hadoop services, the scripted install also provides SysV init scripts for Red Hat–

based systems.

Finally, a graphical install process using Apache Ambari was described in this

chapter. With Ambari, the entire Hadoop installation process can be automated with

a powerful point-and-click interface. As we will see in Chapter 6, “Apache Hadoop

YARN Administration,” Ambari can also be used for administration purposes.

Installing Hadoop 2 YARN from scratch is also easy. The single-machine installa-

tion outlined in Chapter 2, “Apache Hadoop YARN Install Quick Start,” can be used

as a guide. Again, in custom scenarios, pdsh and pdcp can be very valuable.

www.it-ebooks.info

http://docs.hortonworks.com/#2
http://www.it-ebooks.info/

6

Apache Hadoop YARN
Administration

Administering a YARN cluster involves many things. Those familiar with Hadoop 1

may know that there are many configuration properties and that their values are listed

in the Hadoop documentation. Instead of repeating that information here and coming

up with different explanations of each property, what we’ll do here is to give practical

examples of how you can use open-source tools to manage and understand a complex

environment like a YARN cluster.

To effectively administer YARN, we will use the bash scripts and init system

scripts developed in Chapter 5, “Installing Apache Hadoop YARN.” Also, YARN and

Hadoop in general comprise a distributed data platform written in Java. Naturally, this

means that there will be many Java processes running on your servers, so it’s a good

idea to know some of the basics concerning those processes and the process for analyz-

ing them should the need arise.

We will not cover Hadoop File System (HDFS) administration in this chapter. It is

assumed that most readers are familiar with HDFS operations and can navigate the file

system. For those unfamiliar with HDFS, see Appendix F for a short introduction. In

addition, further information on HDFS can be found on the Apache Hadoop website:

http://hadoop.apache.org/docs/stable/hdfs_user_guide.html. In this chapter, we cover

some basic YARN administration scenarios, introduce both Nagios and Ganglia for

cluster monitoring, discuss JVM monitoring, and introduce the Ambari management

interface.

Script-based Configuration

In Chapter 5, “Installing Apache Hadoop YARN,” we presented some bash scripts to

help us install and configure Hadoop. If you haven’t read that chapter, we suggest you

examine it to get an idea of how we’ll reuse the scripts to manage our cluster once

it’s up and running. If you’ve already read Chapter 5, you’ll recall that we use a script

www.it-ebooks.info

http://hadoop.apache.org/docs/stable/hdfs_user_guide.html
http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration86

called hadoop-xml-conf.sh to do XML file processing. We can reuse these commands

to create an administration script that assists us in creating and pushing out Hadoop

configuration changes to our cluster. This script, called configure-hadoop2.sh, is part

of the hadoop2-install-scripts.tgz tar file from the book’s repository (see Appen-

dix A). A listing of the administration script is also available in Appendix C.

The configure-hadoop2.sh script is designed to push (and possibly delete) con-

figuration properties to the cluster and optionally restart various services within the

cluster. Since the bulk of our work for these scripts was presented in Chapter 5, we

will use these scripts as a starting point. You will need to set your version of Hadoop

in the beginning of the script.

HADOOP_VERSION=2.2.0

HADOOP_HOME="/opt/hadoop-${HADOOP_VERSION}"

The script also sources hadoop-xml-conf.sh, which contains the basic file manipu-

lation commands. We also need to decide whether we want to restart and refresh the

Hadoop cluster. The default is refresh=false.

We can reuse our scripts to create a function that adds or overwrites a configura-

tion property.

put()

{

 put_config --file $file --property $property --value $value

}

The put_config function from hadoop-xml-conf.sh can be used in the same way

as was shown in Chapter 5. In a similar fashion, we can add a function to delete a

property.

delete()

{

 del_config --file $file --property $property

}

Next, we enlist the help of pdcp to push the file out to the cluster in a single com-

mand. We’ve kept the all_hosts file on our machine from the installation process,

but in the event you deleted this file, just create a new one with the fully qualified

domain names of every host on which you want the configuration file to reside.

deploy()

{

 echo "Deploying $file to the cluster..."

pdcp -w ^all_hosts "$file" $HADOOP_HOME/etc/hadoop/

}

We’ve gotten good use out of our existing scripts to modify configuration files,

so all we need is a way to restart Hadoop. We need to be careful as to how we bring

down the services on each node, because the order in which the services are brought

www.it-ebooks.info

http://www.it-ebooks.info/

Script-based Configuration 87

down and the order in which they’re brought back up makes a difference. The follow-

ing code will accomplish this task.

restart_hadoop()

{

 echo "Restarting Hadoop 2..."

 pdsh -w ^dn_hosts "service hadoop-datanode stop"

 pdsh -w ^snn_host "service hadoop-secondarynamenode stop"

 pdsh -w ^nn_host "service hadoop-namenode stop"

 pdsh -w ^mr_history_host "service hadoop-historyserver stop"

 pdsh -w ^yarn_proxy_host "service hadoop-proxyserver stop"

 pdsh -w ^nm_hosts "service hadoop-nodemanager stop"

 pdsh -w ^rm_host "service hadoop-resourcemanager stop"

 pdsh -w ^nn_host "service hadoop-namenode start"

 pdsh -w ^snn_host "service hadoop-secondarynamenode start"

 pdsh -w ^dn_hosts "service hadoop-datanode start"

 pdsh -w ^rm_host "service hadoop-resourcemanager start"

 pdsh -w ^nm_hosts "service hadoop-nodemanager start"

 pdsh -w ^yarn_proxy_host "service hadoop-proxyserver start"

 pdsh -w ^mr_history_host "service hadoop-historyserver start"

}

As you can see, we use the init scripts we introduced in Chapter 5 to make restart-

ing Hadoop easier. While each of the scripts has a restart function, Hadoop must be

restarted across the cluster in an orderly fashion. The correct order is given in the

restart_hadoop() function shown above.

The complete script is listed in the Appendix C and is available in the book reposi-

tory. The possible script arguments, shown in the following listing, can be found by

using the –h argument.

configure-hadoop2.sh [options]

OPTIONS:

 -o, --operation Valid values are 'put' and 'delete'. A 'put'

 operation writes the property and value if it

 doesn't exist and overwrites it if it does.

 exist. A 'delete' operation removes the property

 -f, --file The name of the configuration file.

 -p, --property The name of the Hadoop configuration property.

 -v, --value The value of the Hadoop configuration property.

 Required for a 'put' operation; ignored for a

 'delete' operation.

 -r, --restart Flag to restart Hadoop. Configuration files are

 deployed to the cluster automatically to

 $HADOOP_HOME/etc/hadoop.

 -h, --help Show this message.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration88

As an example, let’s pick a configuration property that would be a good test candi-

date. Recall that in Chapter 5 we tested the freshly installed Hadoop cluster by run-

ning a simple job. If we wanted to navigate in the YARN web user interface (UI) to

obtain the test job details, we would be able to view the details of the job through the

MapReduce History server we configured in Chapter 5.

In Figure 6.1, we see the summary information for the test in the YARN web UI.

We can look at some of the details of this job by clicking on the link for the one suc-

cessful reduce task, which should result in Figure 6.2.

Figure 6.1 MapReduce job history

Figure 6.2 MapReduce reduce task information

www.it-ebooks.info

http://www.it-ebooks.info/

Script-based Configuration 89

So far, the information looks normal, but let’s see what happens if we drill down

further into the task clicking on the “logs” link in the “Logs” column. The result

appears in Figure 6.3.

We don’t see the log file contents, but we do see a message that “Aggrega-

tion is not enabled.” If we check the Hadoop 2 documentation (see the dis-

cussion of user log aggregation later in this chapter), we see a property called

yarn.log-aggregation-enable in the yarn-site.xml file, which has a default value

of “false.” We also note the property called yarn.nodemanager.remote-app-log-dir,

which has a default value of /tmp/logs. Additionally, the directory we designate for

log aggregation must reside in HDFS, which is then accessible to all NodeManagers.

Depending on the aggregation directory, we need to either check the permissions for

that directory if it exists or create a new directory with appropriate permissions. These

steps are accomplished as follows:

su - hdfs -c "hadoop fs -mkdir -p /yarn/logs"

su - hdfs -c "hadoop fs -chown -R yarn:hadoop /yarn/logs"

su - hdfs -c "hadoop fs -chmod -R g+rw /yarn/logs

To complete the setting, we will use the configure-hadoop2.sh script described pre-

viously. First we set the location of the logs (yarn.nodemanager.remote-app-log-dir)

to /yarn/logs; next we enable the log aggregation (yarn.log-aggregation-enable).

Also note the –r option, which will restart the Hadoop installation with the new setting.

./configure-hadoop2.sh -o put -f yarn-site.xml \

-p yarn.nodemanager.remote-app-log-dir \

-v /yarn/logs –f

./configure-hadoop2.sh -o put -f yarn-site.xml \

-p yarn.log-aggregation-enable -v true –r

Figure 6.3 Viewing logs without log aggregation enabled

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration90

Once Hadoop has restarted, we can resubmit the test job and consult the web UI to

see if the logs are now available. If the setting worked, you should see something simi-

lar to Figure 6.4.

Other Hadoop properties can be changed in a similar fashion. The

configure-hadoop2.sh script provides a simple method to change Hadoop XML files

across the entire cluster without the repetitive need to log into individual nodes. It also

helps with an orderly restart of the whole cluster.

Monitoring Cluster Health: Nagios

A popular open-source monitoring tool is Nagios (http://www.nagios.org). Nagios

monitors your infrastructure with a number of built-in and community-developed

plug-ins. It is also possible to write your own plug-ins using a number of differ-

ent methods, in different languages like C, Python, and shell scripts. We’ve been

using bash shell scripts to show installation and configuration, so we’ll stick with that

method to show you how to begin to monitor your Hadoop cluster using Nagios. In

our example, we’ll use a small, three-node cluster.

The first step is to choose a server in your cluster that will be the Nagios server. This

server will act as the hub in our monitoring system. On the machine you choose to be

the Nagios server, we recommend you install Nagios using your native package manage-

ment system. For Red Hat–based systems, this would be done as follows. (Note: This

step assumes you have enabled the EPEL repository as explained in Chapter 5.)

yum install nagios

Figure 6.4 Example of aggregated log output

www.it-ebooks.info

http://www.nagios.org
http://www.it-ebooks.info/

Monitoring Cluster Health: Nagios 91

Other distributions may use different tools (e.g., apt for Debian-based systems).

Once the Nagios RPM is installed, there are a few configuration steps. First, you

may want to add your email address to the /etc/nagios/objects/contacts.cfg file.

If you want to remotely view the Nagios web UI, you may need to modify the “Allow

from” line in the /etc/httpd/conf.d/nagios.conf. Also, check your iptables, in case

your firewall is blocking access. It is also a good idea to set a Nagios password by issu-

ing the following command:

htpasswd –c /etc/nagios/passwd nagiosadmin

Finally, make sure that both the httpd and nagios services are running. Use chk-

config to ensure they start on the next reboot. At this point, you should be able to

bring up the Nagios web UI by pointing your local browser to http://localhost/nagios.

Once you have the Nagios server installed, you’ll be able to define a large number

of objects—such as hosts, host groups, and services—that can be monitored. Although

there are other things worth monitoring in the cluster, we will focus on installing and

configuring Nagios for monitoring YARN.

Since we will add our own entry for the local host, edit the file /etc/nagios/

nagios.cfg and comment out (add # in front of the line) the following line:

cfg_file=/etc/nagios/objects/localhost.cfg

To set up our Hadoop 2 cluster monitoring, we first tell Nagios about our servers by

creating a file in /etc/nagios/conf.d called hadoop-cluster.cfg. By default, Nag-

ios is configured to look in this directory for files with the *.cfg extension. Listing 6.1

shows us how to define a host so that it becomes available to Nagios.

Listing 6.1 Nagios host definition

define host{

 use linux-server

 host_name yarn1.apps.hdp

 alias yarn1.apps.hdp

 address 192.168.207.231

 }

Nagios uses templates that allow the administrator to set up a configuration quickly.

One such template is linux-server, as shown in Listing 6.1. It is assigned to the “use”

directive and instructs Nagios to use the standard Linux monitoring template. The rest

of the directives are obvious and include host_name, alias, and address. The alias is

used by the Nagios web UI. We also need a host entry for the other two nodes in our

cluster (yarn2.apps.hdp and yarn3.apps.hdp).

Once we have all our hosts defined with a define host block, it is very convenient

to define a host group for similar nodes in the hadoop-cluster.cfg file. Our host

group will look like the definition in Listing 6.2, where we add all the nodes in our

Hadoop cluster.

www.it-ebooks.info

http://localhost/nagios
http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration92

Listing 6.2 Nagios host group definition

define hostgroup{

 hostgroup_name hadoop-cluster

 alias Hadoop

 members yarn1.apps.hdp,yarn2.apps.hdp,yarn3.apps.hdp

 }

Monitoring Basic Hadoop Services

In Chapter 5, we deployed scripts to start and stop all of the Hadoop services on the clus-

ter. Nagios can easily monitor these services and display the results of that monitoring

on a convenient web interface. The first step is to create a script that will do the service

monitoring. According to the Nagios documentation, the following return codes are

expected as the result of each command or script that’s run to determine a service state:

OK = 0

Warning = 1

Critical = 2

Unknown = 3

As an example, we will write a plug-in to monitor the state of the Resource-

Manager. The full listing for the plug-in appears in Appendix D and can be found

in the book repository. For this plug-in, we’ll keep things simple and reuse the init

scripts that we created in Chapter 5. First, because the ResourceManager is running or

stopped, we will use only two return codes.

Exit codes

STATE_OK=0

STATE_CRITICAL=2

As with the other scripts we’ve created, we need code to parse the arguments passed

to the script as well as the arguments passed to the help and usage output functions.

This code can be found in the full script in Appendix D. The heart of the script is as

follows:

status=$(/sbin/service hadoop-resourcemanager status)

if echo "$status" | grep --quiet running ; then

 echo "ResourceManager OK - $status"

 exit $STATE_OK

else

 echo "ResourceManager CRITICAL - $status"

 exit $STATE_CRITICAL

fi

The script is fairly simple. We are using the init scripts from Chapter 5 that return

one of two responses to the “status” requests (running or stopped).

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Cluster Health: Nagios 93

service hadoop-resourcemanager status

Hadoop YARN ResourceManager daemon (pid 36772) is running...

service hadoop-resourcemanager status

Hadoop YARN ResourceManager daemon is stopped

We can use grep to confirm the “running” response or assume the service is stopped

otherwise. Once we’re satisfied with the script, we name it check_resource_manager.sh

and put it in the Nagios plug-in directory (e.g., /usr/lib64/nagios/plugins). We tell

Nagios about this plug-in by adding the following lines to our hadoop-cluster.cfg file:

define command{

 command_name check_resource_manager

 command_line /usr/lib64/nagios/plugins/check_resource_manager.sh

 }

Defining the command is pretty simple: We give the fully qualified path and file

names for the actual command and give the command a name that will be used else-

where in our configuration file.

The next step is to define a Nagios service that uses our new command in the

hadoop-cluster.cfg file.

define service{

 use local-service

 host_name yarn1.apps.hdp

 service_description ResourceManager

 check_command check_resource_manager

 }

The service definition uses a template like the block we used earlier to define a

host. This template is called local-service and, as the name suggests, it defines a

service local to the Nagios server. The host_name and service_description are self-

explanatory. We run this service only on the node that runs the ResourceManager.

The check_command is where we see the command_name in the define command block

created previously (these names must match).

The next step is to define a service and command entry for each of the other ser-

vices. To save time, these are provided in Appendix D and online.

To use the new configuration, we need to restart Nagios as follows:

service nagios restart

If everything is working correctly, the new service should be available on the Nag-

ios web UI for yarn1.apps.hdp.

The assumption so far has been that Nagios will monitor local services on the same

machine as the Nagios server. Obviously, Hadoop is a distributed system that requires

cluster-wide monitoring. Nagios has a few methods available for providing cluster-

wide functionality, but the easiest way is with the Nagios Remote Plugin Executor

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration94

(NRPE). Assuming that the NodeManagers and DataNodes are on remote servers, we

need to install the Nagios NRPE on each of these remote servers as follows. (Note:

pdsh can be helpful here.)

yum install nrpe nagios-plug-ins

The default configuration for NRPE is to trust only communication from the local

host. Thus the first thing to do in an NRPE installation is to tell it where the Nagios

server is by specifying its IP address in the /etc/nagios/nrpe.cfg file on the cluster

nodes. (Your IP address may be different.)

allowed_hosts=127.0.0.1,192.168.207.231

We can use the Nagios script plug-ins found in Appendix D to check the Node-

Manager and DataNode state. These scripts should be placed in the plug-in directories

of the remote machines (/usr/lib64/nagios/plug-ins). When this step is complete,

we define the command in the nrpe.cfg file.

command[check_node_manager]=/usr/lib64/nagios/plugins/check_node_manager.sh

command[check_data_node]=/usr/lib64/nagios/plugins/check_data_node.sh

Once we’ve set up the remote servers via NRPE, we can go back to our

hadoop-cluster.cfg file on the Nagios server and add the following commands and

services:

define command{

 command_name check_nrpe

 command_line /usr/lib64/nagios/plugins/check_nrpe -H $HOSTNAME$ -c $ARG1$

 }

define service{

 use local-service

 host_name yarn2.apps.hdp,yarn3.apps.hdp

 service_description NodeManager

 check_command check_nrpe!check_node_manager

 }

define service{

 use local-service

 host_name yarn2.apps.hdp,yarn3.apps.hdp

 service_description DataNode

 check_command check_nrpe!check_data_node

 }

The NRPE command uses command variable substitution in Nagios. In the define

command block, we see several variables that, in Nagios terms, are called macros. The

$HOSTNAME$ macro is expanded by Nagios with the host_name value in the service

definition. If more than one host is defined, Nagios executes the command remotely on

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring Cluster Health: Nagios 95

each host specified. The $ARG1$ macro is expanded with the values delimited by the

“!” character in the check_command line, which is also found in the service definition.

You may wish to add other services from the Nagios plug-ins (e.g.,

check_local_load) for all nodes by using the hostgroup_name. In this case, add the

service block to the hadoop-cluster.cfg as follows:

define service {

 use generic-service

 hostgroup_name hadoop-cluster

 service_description Current Load

 check_command check_local_load!5.0,4.0,3.0!10.0,6.0,4.0

 }

Monitoring the JVM

So far, we have defined some basic services that simply monitor the started/stopped

state of the various Hadoop daemons. An example of a slightly more complex service

is one that monitors a specific portion of the Java Virtual Machine heap space for the

ResourceManager process. To create this monitor, we will utilize the command-line

tool that ships with the Java Development Kit we installed in Chapter 5.

To write this service, we will take advantage of a tool called jstat. The jstat

tool is found in the JDK’s bin directory and displays a large number of JVM statistics.

Almost all JDKs provide the jstat tool as part of their installation; for instance, it is

available in both the Linux OpenJDK and the Oracle JDK packages. As an example,

we will monitor the JVM’s old space utilization as a percentage of the old space’s

capacity. The command to do this and its output are shown here:

$JAVA_HOME/bin/jstat -gcutil $(cat /var/run/hadoop/yarn/yarn-yarn-

➥resourcemanager.pid)

 S0 S1 E O P YGC YGCT FGC FGCT GCT

 0.00 100.00 40.85 11.19 99.35 9 0.044 0 0.000 0.044

According to the jstat documentation, the column with the heading “O” identi-

fies the percentage of old space used in the JVM based on the old space’s capacity (in

this case, 11.19% of capacity). We use the following lines to create the desired monitor:

pct=$("$JAVA_HOME"/bin/jstat -gcutil $(cat "$PIDFILE") | awk 'FNR == 2 {print $4}')

if ["$pct" > "$critical"] ; then

 printf "ResourceManager Heap Old Space %% used %s - %g" CRITICAL "$pct"

 exit $STATE_CRITICAL

elif ["$pct" > "$warn"]; then

 printf "ResourceManager Heap Old Space %% used %s - %g" WARN "$pct"

 exit $STATE_WARNING

else

 printf "ResourceManager Heap Old Space %g%% used is %s" "$pct" OK

 exit $STATE_OK

fi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration96

In the previous code snippet, the awk command is used to parse the tabular output

of the jstat command. In defining the bash “pct” variable, we simply pipe the out-

put of the jstat command to awk, and then tell awk to get the fourth column in the

second row of the output. The script snippet assumes the appropriate files have been

included via the “source” function so that we have access to the JAVA_HOME vari-

able. You can find the complete script in Appendix D.

Unlike in the previous examples, we may have situations that can pass with a warn-

ing instead of meeting a critical threshold. If the “Old Space Percentage Used” passes

these thresholds, then Nagios can send the appropriate message.

To use the service, we need to add the following command and service definitions

in our hadoop-cluster.cfg file:

define command{

 command_name check_resource_manager_old_space_pct

 command_line /usr/lib64/nagios/plugins/check_resource_manager_old_space_pct.
➥sh -w $ARG1$ -c $ARG2$

 }

define service{

 use local-service

 host_name yarn1.apps.hdp

 service_description ResourceManager Old Space Pct Used

 check_command check_resource_manager_old_space_pct!50!75

 }

In the define command section, the option values of –w and –c are used to signify

the warning and critical levels and are reserved for use by Nagios. In our example,

we’re using 50% as a warning value and 75% as a critical value; these values are

appended to the check_resource_manager_old_space_pct command we created

earlier.

Nagios also has many publicly available plug-ins that are found in

/usr/lib64/nagios/plug-ins (assuming a 64-bit server platform). If you are using

a Red Hat–based system, you can issue the following command to see which plug-ins

are available:

yum search nagios

One widely used tool is ping. As the name implies, it pings servers in your infra-

structure to see if they can respond to a basic ping. If you install the ping plug-in

(e.g., #yum install nagios-plug-ins-ping), you’ll find it in the plug-in directory

as a command called check_ping.

Putting it all together, when we have our monitoring scripts written, and our

Hadoop cluster hosts, commands, and services defined in a configuration file available

to Nagios, we are able to monitor our cluster as shown in Figure 6.5.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-time Monitoring: Ganglia 97

Real-time Monitoring: Ganglia

Nagios is great for monitoring and sending out alerts for events, but it does not pro-

vide real-time monitoring of the cluster. To get a real-time view of the cluster, the

Ganglia monitoring system can be used. Ganglia’s strength is that it ships with a large

number of metrics for which it is able to generate real-time graphs. For the more visu-

ally inclined system administrator, this is the tool for you.

The Ganglia monitoring daemon is called gmond and must be installed on all

servers you wish to monitor. On your main monitoring node, install the following

packages:

yum install ganglia ganglia-web ganglia-gmetad ganglia-gmond

All other nodes need only the monitoring daemon, which can be installed using

pdsh.

pdsh -w ^all_hosts yum install ganglia-gmond

You will need to add the multicast route to the monitoring node as follows:

route add -host 239.2.11.71 dev eth0

Change eth0 to the cluster-wide Ethernet port (i.e., eth0, eth1, eth2, …). This

command can be made automatic on the next boot by adding it to the /etc/rc.local

file on the monitoring node.

Figure 6.5 Nagios monitoring a Hadoop cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration98

On the main monitoring node, edit the /etc/ganglia/gmetad.conf and make sure

the following line is present in the file. This line tells the gmetad collection daemon to

get all cluster data from the local gmond monitoring daemon.

data_source "my cluster" localhost

On all cluster nodes (including the monitoring node), edit the file

/etc/ganglia/gmond.conf and enter a value for the cluster name by replacing the

“unspecified” value in the cluster block shown in the following listing. Other values

are optional but all values must be the same on all nodes in the cluster.

cluster {

 name = "unspecified"

 owner = "unspecified"

 latlong = "unspecified"

 url = "unspecified"

}

On the main monitoring node, start the data collection daemon and all monitoring

daemons as follows:

service gmetad start

pdsh -w ^all_hosts service gmond start

Both gmond and gmetad can be set to start automatically by using chkconfig. The

ganglia webpage can be viewed by opening a web browser on the monitoring node

using the local Ganglia URL: http://localhost/ganglia. An example Ganglia page is

shown in Figure 6.6.

Figure 6.6 Ganglia monitoring a Hadoop cluster

www.it-ebooks.info

http://localhost/ganglia
http://www.it-ebooks.info/

Administration with Ambari 99

Administration with Ambari

Apache Ambari was used in Chapter 5 to install Hadoop 2 and related packages across

a cluster. In addition, Ambari can be used as a centralized point of administration for

a Hadoop cluster. Using Ambari, administrators can configure cluster services, moni-

tor the status of nodes or services, visualize hotspots using service metrics, start or stop

services, and add new nodes to the cluster. All of these features provide a high level of

agility to the processes of managing and monitoring your distributed environment.

After completing the initial installation and logging into Ambari, you will be

presented with a dashboard. The dashboard provides a number of high-level metrics

around HDFS, YARN, HBase, and the rest of the Hadoop stack components. The top

navigation menu, shown in Figure 6.7, provides interfaces to access the Dashboard,

Heatmaps, Services, Hosts, and Admin features. The status (up/down) of various

Hadoop services is displayed on the left using green/red dots. Note that two of the

services managed by Ambari are Nagios and Ganglia; these services are installed by

Ambari and there is no need to reinstall them as described previously.

The Heatmaps section allows you to visualize all the nodes in the cluster. Visual

indicators include Host metrics, YARN metrics, HDFS metrics, and HBase metrics.

Host metrics show memory usage, CPU wait on I/O, and storage used. YARN met-

rics include JVM garbage collection times, JVM heap size, and percentage of container

Figure 6.7 Ambari main control panel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration100

node memory used. HDFS visuals show HDFS bytes read or written, JVM garbage

collection, and JVM heap size. HBase metrics show read and write counts, compaction

queue size, regions and memory store sizes. Figures 6.8 and 6.9 are examples of these

types of heatmaps.

The Services page allows users to modify cluster-wide Hadoop configuration files

and displays metrics for all the Hadoop services running on the cluster (e.g., HDFS,

YARN, Hive, HBase). This window, shown in Figure 6.10, also provides the ability

to start and stop some or all services on the cluster. A user can individually stop, start,

or test a service, respectively, with the Stop, Start, and Maintenance buttons near the

top right of the screen.

Figure 6.8 Ambari dashboard showing host CPU wait heatmap

Figure 6.9 Ambari dashboard showing YARN garbage collection time heatmap

www.it-ebooks.info

http://www.it-ebooks.info/

Administration with Ambari 101

Figure 6.11 is an example of the MapReduce2 properties available in the Services

window. Administrators can easily change these parameters without the need to

change Hadoop configuration files by hand.

The Hosts tab provides the status for every node in the cluster. This window,

shown in Figure 6.12, will warn users if a master or slave is down. It also shows when

a node stops sending heartbeats, in addition to providing alerts about events such as the

Hive Metastore MySQL database being down. Clicking the Add New Hosts button

on the right allows you to grow your cluster and automatically install required services

onto it, such as HDFS, YARN, and client tools. The light blue Components button

produces a drop-down selection of installed service components (e.g., DataNodes,

NodeManagers); by selecting a component here, you can filter out nodes lacking the

selected component.

Figure 6.10 Ambari dashboard Services window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration102

Figure 6.11 Ambari MapReduce2 options window

Figure 6.12 Ambari Hosts status window

www.it-ebooks.info

http://www.it-ebooks.info/

JVM Analysis 103

The Admin tab provides information about users, HA, security, cluster stack ver-

sions, and other miscellaneous topics. The “User” section allows an administrator to

create new users and grant them permissions ranging from complete control of the

cluster to only viewing cluster metrics. NameNode High Availability can be enabled

in the “High Availability” section, and Kerberos security can be enabled in the “Secu-

rity” section. Details on the installed software stack versions can be found in the

“Cluster” section, shown in Figure 6.13. Finally, the “Misc” section lists the usernames

for specific services and their respective groups.

Ambari provides a single control panel for the entire Hadoop cluster. This control

panel is a project with stable releases with more features planned for future versions.

Currently, it is a highly usable and useful tool for installation and administration of

Hadoop 2 clusters.

JVM Analysis

Because Hadoop is written almost entirely in Java, it may be helpful to understand

some basic Java-related troubleshooting methods available to administrators.

A Java Virtual Machine (JVM) process is separated into three segments called

generations—specifically, the young, old, and permanent generations. The young

generation is sometimes referred to as the new generation, and the old generation is

Figure 6.13 Ambari Admin window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration104

sometimes referred to as the tenured generation. The young and old generations can

be given hints as to how big each is, but the exact size is calculated by the JVM. A

young generation size can be initialized with the –XX:NewSize argument and a ratio

given to calculate the old generation with –XX:NewRatio. If the –XX:NewRatio was

given a value of 2, this means the old generation is twice as large as the new genera-

tion. Both the old and young generations are given an initial size by the JVM process

with the –Xms option and can grow to the size specified by the –Xmx option.

The new generation is broken down into three subsegments: Eden, Survivor Space

I, and Survivor Space II. When an object is created in the JVM, it’s created first in

Eden, then moved to Survivor Space I, then moved to Survivor Space II, and finally

moved to the old generation. The JVM moves the objects to each subsegment in the

young generation during minor garbage collection. When there is no more room in

the old generation for objects during a garbage collection process, the JVM triggers a

major garbage collection process that can have a negative performance impact on all

Java applications, which, in our case, are the YARN applications.

One method to analyze memory usage on a running application is to use the jmap

tool provided with most Java installations. The jmap tool can handle a number of dif-

ferent tasks, but one that is highly useful is attaching itself to a running Java process

through the process ID. For example, a heap dump from a YARN container (like the

container spawned in the Chapter 5 installation tests) can be obtained as follows. Here

we tell jmap to dump the heap for process 21341 to file mr-container.hprof.

jmap -dump:format=b,file=~/mr-container.hprof -F 21341

Attaching to process ID 21341, please wait...

Debugger attached successfully.

Server compiler detected.

JVM version is 20.6-b01

Dumping heap to /opt/rm.hprof ...

Finding object size using Printezis bits and skipping over...

Finding object size using Printezis bits and skipping over...

Heap dump file created

The heap dump can be read with the jhat utility, but a much better visual tool

is the Eclipse Memory Analyzer (http://www.eclipse.org/mat/). Once installed, the

mr-container.hprof generated with jmap can opened in the Eclipse Memory Ana-

lyzer, as shown in Figure 6.14.

From the main page, a number of reports can be run on the heap dump, showing

things like the largest memory objects. For example, Figure 6.15 shows a histogram

indicating which objects take up the most heap space in the JVM process.

When the Eclipse Memory Analyzer initially opens a heap dump file, it creates sup-

plemental index files so that the dump file can be opened much more quickly during

subsequent sessions. There is also an Object Query Language (OQL) window where

we can query the heap dump for specific objects with specific values.

Analyzing JVM heap dumps is usually the last resort when you are trying to trou-

bleshoot problematic Java processes; nevertheless, it’s a valuable skill for the advanced

www.it-ebooks.info

http://www.eclipse.org/mat/
http://www.it-ebooks.info/

JVM Analysis 105

Hadoop and YARN administrator. It’s likely that you will want to monitor YARN

container processes through Nagios and Ganglia with advanced scripting or program-

ming, but when those methods fail to find answers, the ability to sift through a JVM

heap dump can prove to be an invaluable skill.

Figure 6.14 JVM heap dump displayed with Eclipse Memory Analyzer

Figure 6.15 Eclipse Memory Analyzer histogram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration106

Basic YARN Administration

As with Hadoop version 1, there are a multitude of configuration properties available

to the administrators in Hadoop version 2. YARN has introduced and changed some

configuration properties. The basic files are as follows:

 n core-default.xml: System-wide properties

 n hdfs-default.xml: Hadoop Distributed File System properties

 n mapred-default.xml: Properties for the YARN MapReduce framework

 n yarn-default.xml: YARN properties.

You can find a complete list of properties for all these files at http://hadoop.apache.

org/docs/current/ (look at the lower-left side of the page under “Configuration”). A

full discussion of all options is beyond the scope of this book, but you can find com-

ments and defaults for each of the properties on the Apache Hadoop site. There are,

however, some important administrative tasks worth mentioning.

YARN Administrative Tools

YARN has several built-in administrative features. These can be found by examining

the yarn rmadmin command-line utility’s description as shown in the following listing.

Some of these options will be illustrated later.

yarn rmadmin -help

rmadmin is the command to execute Map-Reduce administrative commands.

The full syntax is:

hadoop rmadmin [-refreshQueues] [-refreshNodes]

[-refreshSuperUserGroupsConfiguration] [-refreshUserToGroupsMappings]

[-refreshAdminAcls] [-refreshServiceAcl] [-getGroup [username]]

[-help [cmd]]

-refreshQueues: Reload the queues' acls, states, and scheduler-specific

 properties. ResourceManager will reload the mapred-queues

 configuration file.

-refreshNodes: Refresh the hosts information at the ResourceManager.

-refreshUserToGroupsMappings: Refresh user-to-groups mappings.

-refreshSuperUserGroupsConfiguration: Refresh superuser proxy groups

 mappings.

-refreshAdminAcls: Refresh acls for administration of ResourceManager.

-refreshServiceAcl: Reload the service-level authorization policy file.

 ResourceManager will reload the authorization

 policy file.

www.it-ebooks.info

http://hadoop.apache.org/docs/current/
http://hadoop.apache.org/docs/current/
http://www.it-ebooks.info/

Basic YARN Administration 107

-getGroups [username]: Get the groups which given user belongs to

-help [cmd]: Displays help for the given command or all commands

 if none is specified.

Generic options supported are

-conf <configuration file> specify an application configuration file

-D <property=value> use value for given property

-fs <local|namenode:port> specify a namenode

-jt <local|jobtracker:port> specify a job tracker

-files <comma separated list of files> specify comma separated files to

 be copied to the mapreduce

 cluster

-libjars <comma separated list of jars> specify comma separated jar

 files to include in the

 class path.

-archives <comma separated list of archives> specify comma separated

 archives to be unarchived

 on the compute machines.

The general commandline syntax is:

bin/hadoop command [genericOptions] [commandOptions]

Adding and Decommissioning YARN Nodes

In typical installations, nodes play the roles of both HDFS data node and YARN

worker node. The procedures for adding and decommissioning HDFS nodes can be

found in Appendix F. The following discussion is limited to YARN worker nodes,

which can be managed by running the ResourceManager admin client.

Adding new nodes requires that all the necessary software and configuration

be loaded on the new node. The following technique can be used for both add-

ing and decommissioning nodes. Two files dictate which nodes are to be accepted

and which are not to be used: yarn.resourcemanager.nodes.include-path and

yarn.resourcemanager.exclude-path. The first property points to a file with a list

of nodes that are accepted by the ResourceManager, and the second property points

to a file with a list of nodes that are explicitly deemed as either not acceptable by the

ResourceManager or possibly running but removed/decommissioned from Resource-

Manager use. Both properties point to a local file system path on the Resource-

Manager node. They can have hostnames or IP addresses separated by a newline,

space, or tab. Lines that start with the “#” character are treated as comments. Once

the files are modified by the administrator (only administrators should have write per-

mission to these files on the ResourceManager local file system for security reasons),

the administrator can then run the following command to inform ResourceManager

about the change in the nodes list:

yarn rmadmin -refreshNodes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration108

Only administrators can perform this task. Administrators are defined as

users restricted by the admin-acl that is dictated by the configuration property

yarn.admin.acl on the ResourceManager.

Capacity Scheduler Configuration

Detailed information on configuration of the Capacity scheduler can be found in

Chapter 8, “Capacity Scheduler in YARN.” Queues can be reconfigured and added as

described here.

Changing queue properties and adding new queues are very simple processes. You

can use the configure-hadoop2.sh script, described previously, for this purpose, or

you can directly edit $HADOOP_CONF_DIR/etc/hadoop/capacity-scheduler.xml file.

yarn rmadmin -refreshQueues

Queues cannot be deleted at this point of time. Only addition of new queues is

supported, and the updated queue configuration should be a valid one (i.e., the queue

capacity at each level should be equal to 100%).

YARN WebProxy

The Web Application Proxy is a separate proxy server in YARN for managing security

with the cluster web interface on ApplicationMasters. By default, the proxy is run as part

of the Resource Manager itself, but it can be configured to run in a stand-alone mode

by changing the configuration property yarn.web-proxy.address. Also by default, it

is set to an empty string, which means it runs in the Resource Master. In a stand-alone

mode, yarn.web-proxy.principal and yarn.web-proxy.keytab control the Kerberos

principal name and the corresponding keytab for use in secure mode.

Using the JobHistoryServer

The removal of the JobTracker and migration of MapReduce from a system to an

application-level framework necessitated creation of a place to store MapReduce job

history. The JobHistoryServer allows all YARN MapReduce applications with a cen-

tral location to aggregate completed jobs for historical reference and debugging. The

settings for the JobHistoryServer can be found in the mapred-default.xml file.

Refreshing User-to-Groups Mappings

The hadoop.security.group.mapping property determines the user-to-group map-

pings that the ResourceManager uses. Such a class needs to implement the interface

org.apache.hadoop.security.GroupMappingServiceProvider. The default value is

org.apache.hadoop.security.ShellBasedUnixGroupsMapping. This refresh opera-

tion needs to happen whenever a user is added to the system and whenever a user’s list

of groups changes. Only cluster administrators can invoke this refresh:

rmadmin -refreshUserToGroupsMapping

www.it-ebooks.info

http://www.it-ebooks.info/

Basic YARN Administration 109

Refreshing Superuser Proxy Groups Mappings

The hadoop.proxyuser.<proxy-user-name>.groups property needs to be con-

figured to allow the user $proxy-user-name to be treated as a special privi-

leged user who can impersonate any other users who are members of the value of

this property. The value can be a comma-separated list of groups. The value of

hadoop.proxyuser.<proxy-user-name>.hosts can be a comma-separated list of hosts

from which $proxy-user-name can be restricted to do the previously mentioned user

impersonation. Once either of these configurations is changed, administrators will

have to refresh the ResourceManager:

yarn rmadmin -refreshSuperUserGroupsConfiguration

The $proxy-user-name noted previously can, therefore, perform the impersonation

only to specific users (who are members of the previous groups) and only from specific

hosts. This super-user itself also must be authenticated using Kerberos at the time of

such impersonation.

Refreshing ACLs for Administration of ResourceManager

The yarn.admin.acl property specifies the Access Control Lists (ACLs) indicating

who can be an administrator of the YARN cluster. A cluster administrator has special

privileges to refresh queues, node lists, user-group mappings, the admin list itself, and

service-level ACLs. This administrator can also view any user’s applications, access all

web interfaces, invoke any web services, and kill any application in any queue. The

value of this configuration property is a comma-separated list of users and groups.

The user list comes first (comma separated) and is separated by a space, followed by

the list of groups—for example, “user1,user2 group1,group2”. Whenever this property

changes, administrators must refresh the ResourceManager as follows:

yarn rmadmin -refreshAdminAcls

Reloading the Service-level Authorization Policy File

The administrator may also have to reload the authorization policy file using the fol-

lowing command:

yarn rmadmin -refreshServiceAcl

Managing YARN Jobs

YARN jobs can be managed using the “yarn application” command. The follow-

ing options, including -kill, -list, and -status are available to the administrator

with this command. MapReduce jobs can also be controlled with the “mapred job”

command.

usage: application

 -appTypes <Comma-separated list of application types> Works with

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration110

 --list to filter applications based on

 their type.

 -help Displays help for all commands.

 -kill <Application ID> Kills the application.

 -list Lists applications from the RM. Supports optional

 use of –appTypes to filter applications based

 on application type.

 -status <Application ID> Prints the status of the application.

Setting Container Memory

Controlling container memory takes place through three important values in the

yarn-site.xml file:

 n yarn.nodemanager.resource.memory-mb is the amount of memory the Node-

Manager can use for containers.

 n yarn.scheduler.minimum-allocation-mb is the smallest container allowed by

the ResourceManager. A requested container smaller than this value will result

in an allocated container of this size (default 1024 MB).

 n yarn.scheduler.maximum-allocation-mb is the largest container allowed by the

ResourceManager (default 8192 MB).

Setting Container Cores

It is possible to set the number of cores for containers using the following properties in

the yarn-stie.xml:

 n yarn.scheduler.minimum-allocation-vcores is the minimum number of cores

a container can be requested to have.

 n yarn.scheduler.maximum-allocation-vcores is the maximum number of

cores a container can be requested to have.

 n yarn.nodemanager.resource.cpu-vcores is the number of cores that containers

can request from this node.

Setting MapReduce Properties

Since MapReduce now runs as a YARN application, it may be necessary to adjust

some of the mapred-site.xml properties as they relate to the map and reduce contain-

ers. The following properties are used to set some Java arguments and memory size for

both the map and reduce containers:

 n mapred.child.java.opts provides a larger or smaller heap size for child JVMs

of maps (e.g., --Xmx2048m).

www.it-ebooks.info

http://www.it-ebooks.info/

Basic YARN Administration 111

 n mapreduce.map.memory.mb provides a larger or smaller resource limit for maps

(default = 1536 MB)

 n mapreduce.reduce.memory.mb provides a resource-limit for child JVMs of maps

(default = 3072 MB)

 n mapreduce.reduce.java.opts provides a larger or smaller heap size for child

reducers.

User Log Management

User logs of Hadoop jobs serve multiple purposes. First and foremost, they can be used

to debug issues that occur while running a MapReduce application, including correct-

ness problems with the application itself, race conditions when running on a cluster,

and debugging task/job failures due to hardware or platform bugs. Second, one can do

historical analyses of the logs to see how individual tasks in jobs or workf lows perform

over time. One can even analyze the Hadoop MapReduce user logs with Hadoop

MapReduce to determine any performance issues.

Handling of user logs generated by applications has been one of the biggest pain

points for Hadoop installations in the past. In Hadoop version 1, user logs are left on

individual nodes by the TaskTracker, and the management of the log files on local

nodes is both insufficient for longer-term analyses and non-deterministic for user access.

YARN tackles this log management issue by having the NodeManagers provide the

option of moving these logs securely onto HDFS after the application completes.

Log Aggregation in YARN

With YARN, logs for all the containers that belong to a single application and that ran

on a given NodeManager are aggregated and written out to a single (possibly com-

pressed) log file at a configured location in the designated file system. In the current

implementation, once an application finishes, one will have an application-level log

directory and a per-node log file that consists of logs for all the containers of the appli-

cation that ran on this node.

With Hadoop version 2, users can gain access to these logs via YARN command-

line tools, through the web UI, or directly from the file system. These logs potentially

can be stored for much longer times than was possible in Hadoop version 1 because

they reside within a large distributed file system. Hadoop version 2 does not need

to truncate logs to very small lengths (as long as the log sizes are reasonable) and

can afford to store the entire logs for longer periods of time. In addition, while the

containers are running, the logs are written to multiple directories on each node for

effective load balancing and improved fault tolerance. In addition, an AggregatedLog-

DeletionService service periodically deletes aggregated logs; currently, it runs only

inside the MapReduce JobHistoryServer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration112

Web User Interface

On the web interfaces, log aggregation is completely hidden from the user. While a

MapReduce application is running, users can see the logs from the ApplicationMaster

UI, which redirects the user to the NodeManager UI. Once an application finishes,

the completed information is owned by the MapReduce JobHistoryServer, which

again serves user logs transparently.

Command-Line Access

In addition to the web UI, a command-line utility can be used to interact with logs.

The usage option can be listed by running the following:

$ yarn logs

Retrieve logs for completed YARN applications.

usage: yarn logs -applicationId <application ID> [OPTIONS]

general options are:

-appOwner <Application Owner> AppOwner (assumed to be current user if

 not specified)

-containerId <Container ID> ContainerId (must be specified if node

 address is specified)

-nodeAddress <Node Address> NodeAddress in the format nodename:port

 (must be specified if container ID is specified)

For example, to print all the logs for a given application, one can simply enter the

following line:

$ yarn logs -applicationId <application ID>

Logs of only one specific container can be printed using the following command:

yarn logs -applicationId <application ID> -containerId <Container ID> \

-nodeAddress <Node Address>

The obvious advantage with the command-line utility is that now you can use the

regular shell utilities to help process files.

Log Administration and Configuration

The general log-related configuration properties are yarn.nodemanager.log-dirs and

yarn.log-aggregation-enable. The function of each is described next.

The yarn.nodemanager.log-dirs property determines where the con-

tainer logs are stored on the node when the containers are running. Its default

value is ${yarn.log.dir}/userlogs. An application’s localized log directory

will be found in {yarn.nodemanager.log-dirs}/application_${appid}. Indi-

vidual containers’ log directories will be below this level, in subdirectories named

container_{$containerId}.

For MapReduce applications, each container directory will contain the files stderr,

stdin, and syslog generated by that container. Other frameworks can choose to write

more or fewer files—YARN doesn’t dictate the file names and number of files.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic YARN Administration 113

The yarn.log-aggregation-enable property specifies whether to enable or disable

log aggregation. If this function is disabled, NodeManagers will keep the logs locally

(as in Hadoop version 1) and not aggregate them.

The following properties are in force when log aggregation is enabled:

 n yarn.nodemanager.remote-app-log-dir: This location is found on the default

file system (usually HDFS) and indicates where the NodeManagers should

aggregate logs. It should not be the local file system, because otherwise serving

daemons such as the history server will not able to serve the aggregated logs.

The default value is /tmp/logs.

 n yarn.nodemanager.remote-app-log-dir-suffix: The remote log directory will

be created at {yarn.nodemanager.remote-app-log-dir}/${user}/{suffix}.

The default suffix value is “logs”.

 n yarn.log-aggregation.retain-seconds: This property defines how long to

wait before deleting aggregated logs; –1 or another negative number disables the

deletion of aggregated logs. Be careful not to set this property to a too-small

value so as to not burden the distributed file system.

 n yarn.log-aggregation.retain-check-interval-seconds: This property deter-

mines how long to wait between aggregated log retention checks. If its value

is set to 0 or a negative value, then the value is computed as one-tenth of the

aggregated log retention time. As with the previous configuration property, be

careful not to set it to an inordinately low value. The default is –1.

 n yarn.log.server.url: Once an application is done, NodeManagers redirect the

web UI users to this URL, where aggregated logs are served. Today it points to

the MapReduce-specific JobHistory.

The following properties are used when log aggregation is disabled:

 n yarn.nodemanager.log.retain-seconds: The time in seconds to retain user

logs on the individual nodes if log aggregation is disabled. The default is 10800.

 n yarn.nodemanager.log.deletion-threads-count: The number of threads used

by the NodeManagers to clean up logs once the log retention time is hit for local

log files when aggregation is disabled.

Log Permissions

The remote root log directory is expected to have the permissions 1777 with

${NMUser} as owner and to be directory- and group-owned by ${NMGroup} (i.e., the

group to which NMUser belongs).

Each application-level directory will be created with permission 770, but will be

user-owned by the application submitter and group-owned by ${NMGroup}. This

feature allows application submitters to access aggregated logs for their own use;

${NMUser} can access or modify the files for log management. Also, ${NMGroup}*

should be a limited-access group so that there are no access leaks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Apache Hadoop YARN Administration114

Wrap-up

Administering YARN is not that different from administering a Hadoop 1 installation

where many of the parameters are set in the system-wide Hadoop XML files. Both

bash scripts and the Ambari interface can be used to easily modify and (if necessary)

restart the entire Hadoop system.

Cluster-wide monitoring is important, and Nagios alerts and Ganglia real-time

metrics can be important tools for the Hadoop administrator. The fully integrated

Ambari tool provides a single interface to manage the entire cluster. As it develops fur-

ther, Ambari should become the standard method for Hadoop administration.

To truly understand YARN cluster administration, it’s helpful to have not only

a basic understanding of the configuration properties for YARN itself, but also an

understanding of the JVM processes on your servers. Several open-source tools exist

that can provide insights into Hadoop Java processes.

www.it-ebooks.info

http://www.it-ebooks.info/

7
Apache Hadoop YARN

Architecture Guide

Chapter 4 provided a functional overview of YARN components and a brief

description of how a YARN application f lows through the system. In this chapter, we

will delve deeper into the inner workings of YARN and describe how the system is

implemented from the ground up.

YARN separates all of its functionality into two layers: a platform layer responsible

for resource management and what is called first-level scheduling, and a framework

layer that coordinates application execution and second-level scheduling. Specifically,

a per-cluster ResourceManager tracks usage of resources, monitors the health of various

nodes in the cluster, enforces resource-allocation invariants, and arbitrates conf licts

among users. By separating these multiple duties that were previously shouldered by a

single daemon, the JobTracker, in Hadoop version 1, the ResourceManager can simply

allocate resources centrally based on a specification of an application’s requirements,

but ignore how the application makes use of those resources. That responsibility is

delegated to an ApplicationMaster, which coordinates the logical execution of a single

application by requesting resources from the ResourceManager, generating a physical

plan of its work, making use of the resources it receives, and coordinating the execu-

tion of such a physical plan.

Overview

The ResourceManager and NodeManagers running on individual nodes come

together to form the core of YARN and constitute the platform. ApplicationMasters

and the corresponding containers come together to form a YARN application. This

separation of concerns is shown in Figure 7.1. From YARN’s point of view, all users

interact with it by submitting applications that then make use of the resources offered

by the platform. From end-users’ perspective, they may either (1) directly interact

with YARN by running applications directly on the platform or (2) interact with a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide116

framework, which in turn runs as an application on top of YARN. Frameworks may

expose a higher-level functionality to the end-users. As an example, the MapReduce

code that comes bundled with Apache Hadoop can be looked at as a framework running

on top of YARN. On the one hand, MapReduce gives to the users a map and reduce

abstraction that they can code against, with the framework taking care of the gritty

details of running smoothly on a distributed system—failure handling, reliability,

resource allocation, and so. On the other hand, MapReduce uses the underlying plat-

form’s APIs to implement such functionality.

The overall architecture is described in Figure 7.2. The ResourceManager provides

scheduling of applications. Each application is managed by an ApplicationMaster (per-

task manager) that requests per-task computation resources in the form of containers.

Containers are scheduled by the ResourceManager and locally managed by the per-

node NodeManager.

A detailed description of the responsibilities and components of the Resource-

Manager, NodeManager, and ApplicationMaster follows.

Platform

Application Framework

Platform + Application

Framework

Hadoop 2 YARNHadoop 1

ResourceManager

Resource

Scheduling
TaskTracker

Task
Computation

JobTracker

Resource
Scheduling

Job & Task
Management

NodeManager

Resource

Monitoring &

Enforcement

Application Master

Job & Task

Management

Figure 7.1 Hadoop version 1 with integrated platform and applications framework

versus Hadoop version 2 with separate platform and application framework

www.it-ebooks.info

http://www.it-ebooks.info/

ResourceManager 117

ResourceManager

As previously described, the ResourceManager is the master that arbitrates all the

available cluster resources, thereby helping manage the distributed applications running

on the YARN platform. It works together with the following components:

 n The per-node NodeManagers, which take instructions from the Resource-

Manager, manage resources available on a single node, and accept container

requests from ApplicationMasters

 n The per-application ApplicationMasters, which are responsible for negotiating

resources with the ResourceManager and for working with the NodeManagers

to start, monitor, and stop the containers

Slave Node

NodeManager

Resource
Monitoring &
Enforcement

Slave Node

NodeManager

Resource
Monitoring &
Enforcement

Master Node

ResourceManager

Resource
Scheduling

Container

Task
Computation

NodeManager

Resource
Monitoring &
Enforcement

Slave Node

Container

Task
Computation

NodeManager

Resource
Monitoring &
Enforcement

Slave Node

Application Master

Task
Management

NodeManager

Resource
Monitoring &
Enforcement

Slave Node

Container

Task
Computation

NodeManager

Resource
Monitoring &
Enforcement

Slave Node

Figure 7.2 YARN architectural overview

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide118

Overview of the ResourceManager Components

The ResourceManager components are illustrated in Figure 7.3. To better describe the

workings of each component, they will be introduced separately by grouping them

corresponding to each external entity for which they provide services: clients, the

NodeManagers, the ApplicationMasters, or other internal core components.

Client Interaction with the ResourceManager

The first interaction point of a user with the platform comes in the form of a client to

the ResourceManager. The following components in ResourceManager interact with

the client.

Client Service

This service implements ApplicationClientProtocol, the basic client interface to the

ResourceManager. This component handles all the remote procedure call (RPC)

communications to the ResourceManager from the clients, including operations such

as the following:

 n Application submission

 n Application termination

 n Exposing information about applications, queues, cluster statistics, user ACLs,

and more

ResourceManager

Context
W

e
b
 S

e
rv

e
r

C
li
e
n
t

S
e
rv

ic
e

A
p
li
c
a
ti
o
n
A
C

L
s

M
a
n
a
g
e
r

A
p
li
c
a
ti
o
n
s

M
a
n
a
g
e
r

N
M

L
iv

e
li
n
e
s
s
M

o
n
it
o
r

R
e
s
o
u
rc

e
T
ra

c
k
e
rS

e
rv

ic
e

N
o
d
e
s
L
is

tM
a
n
a
g
e
r

A
d
m

in
 S

e
rv

ic
e

Security

AMRMTokens

ContainerTokens

NMTokens

DelegationTokens

SecretManagers

DelegationToken

Renewer

Yarn Scheduler

ApplicationMaster

Launcher

AMLivelinessMonitor ContainerAllocationExpirer

ApplicationMasterService

Figure 7.3 ResourceManager components

www.it-ebooks.info

http://www.it-ebooks.info/

ResourceManager 119

Client Service provides additional protection to the ResourceManager depending

on whether the administrator configured YARN to run in secure or nonsecure mode.

In secure mode, the Client Service makes sure that all incoming requests from users

are authenticated (for example, by Kerberos) and then authorizes each user by looking

up application-level Access Control Lists (ACLs) and subsequently queue-level ALCs.

For all clients that cannot be authenticated with Kerberos directly, this service also

exposes APIs to obtain what are known as the ResourceManager delegation tokens.

Delegation tokens are special objects that a Kerberos-authenticated client can first

obtain by securely communicating with the ResourceManager and then pass along to

its nonauthenticated processes. Any client process that has a handle to these delegation

tokens can communicate with ResourceManager securely without separately authenti-

cating with Kerberos first.

Administration Service

While Client Service is responsible for typical user invocations like application submis-

sion and termination, there is a list of activities that administrators of a YARN cluster

have to perform from time to time. To make sure that administration requests don’t

get starved by the regular users’ requests and to give the operators’ commands a higher

priority, all of the administrative operations are served via a separate interface called

Administration Service. ResourceManagerAdministrationProtocol is the communica-

tion protocol that is implemented by this component. Some of the important adminis-

trative operations are highlighted here:

 n Refreshing queues: for example, adding new queues, stopping existing queues,

and reconfiguring queues to change some of their properties like capacities, lim-

its, and more

 n Refreshing the list of nodes handled by the ResourceManager: for example, add-

ing newly installed nodes or decommissioning existing nodes for various reasons

 n Adding new user-to-group mappings, adding/updating administrator ACLs,

modifying the list of superusers, and so on

Both Client Service and Administration Service work closely with Application-

Manager for ACL enforcement.

Application ACLs Manager

The ResourceManager needs to gate the user-facing APIs like the client and admin-

istrative requests so that they are accessible only to authorized users. This compo-

nent maintains the ACLs per application and enforces them. Application ACLs are

enabled on the ResourceManager by setting to true the configuration property

yarn.acl.enable. There are two types of application accesses: (1) viewing and (2)

modifying an application. ACLs against the view access determine who can “view”

some or all of the application-related details on the RPC interfaces, web UI, and web

services. The modify-application ACLs determine who can “modify” the application

(e.g., kill the application).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide120

An ACL is a list of users and groups who can perform a specific operation. Users

can specify the ACLs for their submitted application as part of the ApplicationSubmis-

sionContext. These ACLs are tracked per application by the ACLsManager and used

for access control whenever a request comes in. Note that irrespective of the ACLs, all

administrators (determined by the configuration property yarn.admin.acl) can per-

form any operation.

The same ACLs are transferred over to the ApplicationMaster so that the

ApplicationMaster itself can use them for users accessing various services running

inside the ApplicationMaster. The NodeManager also receives the same ACLs as

part of ContainerLaunchContext (discussed later in this chapter) when a container is

launched which then uses them for access control to serve requests about the applica-

tions/containers, mainly about their status, application logs, etc.

ResourceManager Web Application and Web Services

The ResourceManager has a web application that exposes information about the state

of the cluster; metrics; lists of active, healthy, and unhealthy nodes; lists of applications,

their state and status; hyper-references to the ApplicationMaster web interfaces; and a

scheduler-specific interface.

Application Interaction with the ResourceManager

Once an application goes past the client-facing services in the ResourceManager and

is accepted into the system, it travels through the internal machinery of the Resource-

Manager that is responsible for launching the ApplicationMaster. The following

describes how the ApplicationMasters interact with the ResourceManager once they

have started.

ApplicationMasters Service

This component responds to requests from all the ApplicationMasters. It implements

ApplicationMasterProtocol, which is the one and only protocol that Application-

Masters use to communicate with the ResourceManager. It is responsible for the fol-

lowing tasks:

 n Registration of new ApplicationMasters

 n Termination/unregistering of requests from any finishing ApplicationMasters

 n Authorizing all requests from various ApplicationMasters to make sure that only

valid ApplicationMasters are sending requests to the corresponding Application

entity residing in the ResourceManager

 n Obtaining container allocation and deallocation requests from all running

ApplicationMasters and forwarding them asynchronously to the YarnScheduler

The ApplicationMasterService has additional logic to make sure that—at any point

in time—only one thread in any ApplicationMaster can send requests to the Resource-

Manager. All the RPCs from ApplicationMasters are serialized on the ResourceManager,

so it is expected that only one thread in the ApplicationMaster will make these requests.

www.it-ebooks.info

http://www.it-ebooks.info/

ResourceManager 121

This component works closely with ApplicationMaster liveliness monitor described

next.

ApplicationMaster Liveliness Monitor

To help manage the list of live ApplicationMasters and dead/non-responding

ApplicationMasters, this monitor keeps track of each ApplicationMaster and its last

heartbeat time. Any ApplicationMaster that does not produce a heartbeat within a con-

figured interval of time—by default, 10 minutes—is deemed dead and is expired by the

ResourceManager. All containers currently running/allocated to an expired Application-

Master are marked as dead. The ResourceManager reschedules the same application to

run a new Application Attempt on a new container, allowing up to a maximum of two

such attempts by default.

Interaction of Nodes with the ResourceManager

The following components in the ResourceManager interact with the NodeManagers

running on cluster nodes.

Resource Tracker Service

NodeManagers periodically send heartbeats to the ResourceManager, and this compo-

nent of the ResourceManager is responsible for responding to such RPCs from all the

nodes. It implements the ResourceTracker interface to which all NodeManagers com-

municate. Specifically, it is responsible for the following tasks:

 n Registering new nodes

 n Accepting node heartbeats from previously registered nodes

 n Ensuring that only “valid” nodes can interact with the ResourceManager and

rejecting any other nodes

Before and during the registration of a new node to the system, lots of things hap-

pen. The administrators are supposed to install YARN on the node along with any

other dependencies, and configure the node to communicate to its ResourceManager

by setting up configuration similar to other existing nodes. If needed, this node should

be removed from the excluded nodes list of the ResourceManager.

The ResourceManager will reject requests from any invalid or decommissioned

nodes. Nodes that don’t respect the ResourceManager’s configuration for minimum

resource requirements will also be rejected.

Following a successful registration, in its registration response the Resource-

Manager will send security-related master keys needed by NodeManagers to authen-

ticate container-related requests from the ApplicationMasters. NodeManagers need to

be able to validate NodeManager tokens and container tokens that are submitted by

ApplicationMasters as part of container-launch requests. The underlying master keys

are rolled over every so often for security purposes; thus, on further heartbeats, Node-

Managers will be notified of such updates whenever they happen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide122

The Resource Tracker Service forwards a valid node-heartbeat to the YarnSched-

uler, which then makes scheduling decisions based on freely available resources on that

node and the resource requirements from various applications.

In addition, the Resource Tracker Service works closely with the NodeManager

liveliness monitor and nodes-list manager, described next.

NodeManagers Liveliness Monitor

To keep track of live nodes and specifically identify any dead nodes, this component

keeps track of each node’s identifier (ID) and its last heartbeat time. Any node that

doesn’t send a heartbeat within a configured interval of time—by default, 10 min-

utes—is deemed dead and is expired by the ResourceManager. All the containers

currently running on an expired node are marked as dead, and no new containers are

scheduled on such node. Once such a node restarts (either automatically or by admin-

istrators’ intervention) and reregisters, it will again be considered for scheduling.

Nodes-List Manager

The nodes-list manager is a collection in the ResourceManager’s memory of

both valid and excluded nodes. It is responsible for reading the host configura-

tion f iles specif ied via the yarn.resourcemanager.nodes.include-path and

yarn.resourcemanager.nodes.exclude-path configuration properties and seed-

ing the initial list of nodes based on those f iles. It also keeps track of nodes that are

explicitly decommissioned by administrators as time progresses.

Core ResourceManager Components

So far, we have described various components of the ResourceManager that interact

with the outside world—namely, clients, ApplicationMasters, and NodeManagers. In

this section, we’ll present the core ResourceManager components that bind all of them

together.

ApplicationsManager

The ApplicationsManager is responsible for maintaining a collection of submit-

ted applications. After application submission, it first validates the application’s

specifications and rejects any application that requests unsatisfiable resources for its

ApplicationMaster (i.e., there is no node in the cluster that has enough resources to

run the ApplicationMaster itself). It then ensures that no other application was already

submitted with the same application ID—a scenario that can be caused by an errone-

ous or a malicious client. Finally, it forwards the admitted application to the scheduler.

This component is also responsible for recording and managing finished applica-

tions for a while before they are completely evacuated from the ResourceManager’s

memory. When an application finishes, it places an ApplicationSummary in the daemon’s

log file. The ApplicationSummary is a compact representation of application information

at the time of completion.

www.it-ebooks.info

http://www.it-ebooks.info/

ResourceManager 123

Finally, the ApplicationsManager keeps a cache of completed applications long after

applications finish to support users’ requests for application data (via web UI or command

line). The configuration property yarn.resourcemanager.max-completed-applications

controls the maximum number of such finished applications that the ResourceManager

remembers at any point of time. The cache is a first-in, first-out list, with the oldest appli-

cations being moved out to accommodate freshly finished applications.

ApplicationMaster Launcher

In YARN, while every other container’s launch is initiated by an ApplicationMaster,

the ApplicationMaster itself is allocated and prepared for launch on a NodeManager

by the ResourceManager itself. The ApplicationMaster Launcher is responsible for this

job. This component maintains a thread pool to set up the environment and to com-

municate with NodeManagers so as to launch ApplicationMasters of newly submit-

ted applications as well as applications for which previous ApplicationMaster attempts

failed for some reason. It is also responsible for talking to NodeManagers about clean-

ing up the ApplicationMaster—mainly killing the process by signaling the correspond-

ing NodeManager when an application finishes normally or is forcefully terminated.

YarnScheduler

The YarnScheduler is responsible for allocating resources to the various running appli-

cations subject to constraints of capacities, queues, and so on. It performs its schedul-

ing function based on the resource requirements of the applications, such as memory,

CPU, disk, and network needs. Currently, memory and CPU cores are supported

resources. We already gave a brief coverage of various YARN scheduling options in

Chapter 4, “Functional Overview of YARN Components.” The default scheduler that

is packaged with YARN, the Capacity scheduler, is discussed in Chapter 8.

ContainerAllocationExpirer

This component is in charge of ensuring that all allocated containers are eventu-

ally used by ApplicationMasters and subsequently launched on the corresponding

NodeManagers. ApplicationMasters run as untrusted user code and may potentially

hold on to allocations without using them; as such, they can lead to under-utilization

and abuse of a cluster’s resources. To address this, the ContainerAllocationExpirer

maintains a list of containers that are allocated but still not used on the corresponding

NodeManagers. For any container, if the corresponding NodeManager doesn’t report

to the ResourceManager that the container has started running within a configured

interval of time (by default, 10 minutes), the container is deemed dead and is expired

by the ResourceManager.

In addition, independently NodeManagers look at this expiry time, which is

encoded in the ContainerToken tied to a container, and reject containers that are sub-

mitted for launch after the expiry time elapses. Obviously, this feature depends on the

system clocks being synchronized across the ResourceManager and all NodeManagers

in the system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide124

Security-related Components in the ResourceManager

The ResourceManager has a collection of components called SecretManagers that are

charged with managing the tokens and secret keys that are used to authenticate/

authorize requests on various RPC interfaces. A brief summary of the tokens, secret

keys, and the secret managers follows.

ContainerToken SecretManager

This SecretManager is responsible for managing ContainerTokens—a special set of

tokens issued by the ResourceManager to an ApplicationMaster so that it can use an

allocated container on a specific node. This ResourceManager-specific component keeps

track of the underlying secret keys and rolls the keys over every so often.

ContainerTokens are a security tool used by the ResourceManager to send vital

information related to starting a container to NodeManagers through the Application-

Master. This information cannot be sent directly to a NodeManager without causing

significant latencies. The ResourceManager can construct ContainerTokens only after

a container is allocated, and the information to be encoded in a ContainerToken is

available only after this allocation. Waiting for NodeManagers to acknowledge the

token before ApplicationMasters can get the allocated container is a nonstarter. For

this reason, they are routed to the NodeManagers through the ApplicationMasters.

From a security point of view, we cannot trust the ApplicationMaster to pass along

correct information to the NodeManagers before starting a container. For example,

it may just fabricate the amount of memory or cores before passing along this infor-

mation to the NodeManager. To avoid this problem, the ResourceManager encrypts

vital container-related information into a container token before sending it to the

ApplicationMaster. A container token consists of the following fields:

 n Container ID: This uniquely identifies a container. The NodeManager uses

this information to bind it to a specific application or application attempt. This

binding is important because any user may have multiple applications running

concurrently and one ApplicationMaster should not start containers for another

application.

 n NodeManager address: The container token encodes the target Node-

Manager’s address so as to avoid abusive ApplicationMasters using container

tokens corresponding to containers allocated on one NodeManager to start con-

tainers on another unrelated NodeManager.

 n Application submitter: This is the name of the user who submitted the applica-

tion to the ResourceManager. It is important because the NodeManager needs to

perform all container-related activities, such as localizing resources, starting a proc-

ess for the container, and creating log directories, as the user for security reasons.

 n Resource: This informs the NodeManager about the amount of each resource

(e.g., memory, virtual cores) that the ResourceManager has authorized an

ApplicationMaster to start. The NodeManager uses this information both to

account for used resources and to monitor containers to not use resources beyond

the corresponding limits.

www.it-ebooks.info

http://www.it-ebooks.info/

ResourceManager 125

 n Expiry timestamp: NodeManagers look at this timestamp to determine if

the container token passed is still valid. Any containers that are not used by the

ApplicationMasters until after this expiry time is reached will be automatically

cancelled by YARN.

 n For this feature to work, the clocks on the nodes running the Resource-

Manager and the NodeManagers must be in sync.

 n When the ResourceManager allocates a container, it also determines and sets

its expiry time based on a cluster configuration, defaulting to 10 minutes.

 n When administrators set the expiry interval configuration, it should not be

set (1) to a very low value, because ApplicationMasters may not have enough

time to start containers before they are expired, or (2) to a very high value,

because doing so permits rogue ApplicationMasters to allocate containers but

not use them, which hurts cluster utilization.

 n If a container is not used before it expires, then the NodeManager will simply

reject any start-container requests using this token. The NodeManager also

has a cache of recently started containers to prevent ApplicationMasters from

using the same token in a rapid manner on very short-lived containers.

 n Master key identifier: This is used by NodeManagers to validate container

tokens that are sent across them.

 n The ResourceManager generates a secret key and assigns a key ID to uniquely

identify this key. This secret key, along with its ID, is shared with every

NodeManager, first as a part of each node’s registration and then during sub-

sequent heartbeats whenever the ResourceManager rolls over the keys for

security reasons. The key rollover period is a ResourceManager configurable

value, but defaults to a day.

 n Whenever the ResourceManager rolls over the underlying keys, they aren’t

immediately used to generate new tokens; thus there is enough time for

all the NodeManagers in the cluster to learn about the rollover. As Node-

Managers emit heartbeats and learn about the new key, or once the activation

period expires, the ResourceManager replaces its older key with a newly cre-

ated key. Thereafter, it uses the new key only for generating container tokens.

This activation period is set to be 1.5 times the node-expiry interval.

 n As you can see, there will be times before key activation when Node-

Managers may receive tokens generated using different keys. In such a case,

even when the ResourceManager instructs NodeManagers that a key has

rolled over, NodeManagers continue to remember both the current (new) key

and the previous (old) key, and use the correct key based on the master key

ID present in the token.

 n ResourceManager identifier: It is possible that the ResourceManager might

restart after allocating a container but before the ApplicationMaster can reach the

NodeManager to start the container. To ensure both the new ResourceManager

and the NodeManagers are able to recognize containers from the old instance of

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide126

ResourceManager separately from the ones allocated by the new instance, the

ResourceManager identifier is encoded into the container token. At the time of

this writing, the ResourceManager on restart will kill all of the previously run-

ning containers; in a similar vein, NodeManagers simply reject containers issued

by the older ResourceManager.

AMRMToken SecretManager

Only ApplicationMasters can initiate requests for resources in the form of containers.

To avoid the possibility of arbitrary processes maliciously imitating a real Application-

Master and sending scheduling requests to the ResourceManager, the Resource-

Manager uses per-ApplicationAttempt tokens called AMRMTokens. This secret

manager saves each token locally in memory until an ApplicationMaster finishes and

uses it to authenticate any request coming from a valid ApplicationMaster process.

ApplicationMasters can obtain this token by loading a credentials file localized by YARN.

The location of this file is determined by the public constant ApplicationConstants.

CONTAINER_TOKEN_FILE_ENV_NAME.

Unlike the container tokens, the underlying master key for AMRMTokens doesn’t

need to be shared with any other entity in the system. Like the container tokens, the

keys are rolled every so often for security reasons, but there are no corresponding acti-

vation periods.

NMToken SecretManager

Container tokens are in a way used for authorization of start-container requests from

the ApplicationMasters. They are valid only during the connection to the NodeManager

that is created for starting the container. Further, if there is no other authentication

mechanism, a connection created using a container token cannot be used to start other

containers. The whole point of a container token is to prevent resource abuse, which

would be possible with shared connections.

Besides starting a container, NodeManagers allow ApplicationMasters to stop a

container or get the status of a container. These requests can be submitted long after

containers are allocated, so mandating the ApplicationMasters to create a persistent but

separate connection per container with each NodeManager is not practical.

NMTokens serve this purpose. ApplicationMasters use NMTokens to manage one

connection per NodeManager and use it to send all requests to that node.

 n The ResourceManager generates one NMToken per application attempt per

NodeManager.

 n Whenever a new container is created, ResourceManager issues the Application-

Master an NMToken corresponding to that node. ApplicationMasters will get

NMTokens only for those NodeManagers on which they started containers.

 n As a network optimization, NMTokens are not sent to the ApplicationMasters

for each and every allocated container, but only for the first time or if NMTo-

kens have to be invalidated due to the rollover of the underlying master key.

www.it-ebooks.info

http://www.it-ebooks.info/

NodeManager 127

 n Whenever an ApplicationMaster receives a new NMToken, it should replace

the existing token, if present, for that NodeManager with the newer token. A

library, NMTokenCache, is available for the token management.

 n ApplicationMasters are always expected to use the latest NMToken, and each

NodeManager accepts only one NMToken from any ApplicationMaster. If a new

NMToken is received from the ResourceManager, then older connections for

corresponding NodeManagers should be closed and a new connection should be

created with the latest NMToken. If connections created with older NMTokens

are then used for launching newly assigned containers, the NodeManagers sim-

ply reject them.

 n As with container tokens, NMTokens issued for one ApplicationMaster cannot

be used by another. To make this happen, the application attempt ID is encoded

into the NMTokens.

RMDelegationToken SecretManager

This component is a ResourceManager-specific delegation token secret manager. It

is responsible for generating delegation tokens to clients, which can be passed on to

processes that wish to be able to talk to the ResourceManager but are not Kerberos

authenticated.

DelegationToken Renewer

In secure mode, the ResourceManager is Kerberos authenticated and so provides the

service of renewing file system tokens on behalf of the applications. This component

renews tokens of submitted applications as long as the application runs and until the

tokens can no longer be renewed.

NodeManager

A NodeManager is YARN’s per-node agent that takes care of the individual compute

nodes in a Hadoop YARN cluster and uses the physical resources on the nodes to run

containers as requested by YARN applications. It is essentially the “worker” daemon

in YARN. Its responsibilities include the following tasks:

 n Keeping up-to-date with the ResourceManager

 n Tracking node health

 n Overseeing containers’ life-cycle management; monitoring resource usage (e.g.,

memory, CPU) of individual containers

 n Managing the distributed cache (a local file system cache of files such as jars and

libraries that are used by containers)

 n Managing the logs generated by containers

 n Auxiliary services that may be exploited by different YARN applications

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide128

We’ll now give a brief overview of NodeManagers’ functionality before describing

the components in more detail.

Overview of the NodeManager Components

Among the previously listed responsibilities, container management is the core respon-

sibility of a NodeManager. From this point of view, the NodeManager accepts requests

from ApplicationMasters to start and stop containers, authenticates container tokens (a

security mechanism to make sure applications can appropriately use resources as given

out by the ResourceManager), manages libraries that containers depend on for execu-

tion, and monitors containers’ execution. Operators configure each NodeManager

with a certain amount of memory, number of CPUs, and other resources available at

the node by way of configuration files (yarn-default.xml and/or yarn-site.xml).

After registering with the ResourceManager, the NodeManager periodically sends a

heartbeat with its current status and receives instructions, if any, from the Resource-

Manager. When the scheduler gets to process the node’s heartbeat (which can hap-

pen after a delay follows a node’s heartbeat), containers are allocated against that

NodeManager and then are subsequently returned to the ApplicationMasters when the

ApplicationMasters themselves send a heartbeat to the ResourceManager.

All containers in YARN—including ApplicationMasters—are described by a Con-

tainer Launch Context (CLC). This request object includes environment variables, library

dependencies (which may be present on remotely accessible storage), security tokens that

are needed both for downloading libraries required to start a container and for usage by

the container itself, container-specific payloads for NodeManager auxiliary services, and

the command necessary to create the process. After validating the authenticity of a start-

container request, the NodeManager configures the environment for the container, forc-

ing any administrator-provided settings that may be configured.

Before actually launching a container, the NodeManager copies all the necessary

libraries—data files, executables, tarballs, jar files, shell scripts, and so on—to the local

file system. The downloaded libraries may be shared between containers of a specific

application via a local application-level cache, between containers launched by the

same user via a local user-level cache, and even between users via a public cache, as

can be specified in the CLC. The NodeManager eventually garbage-collects libraries

that are not in use by any running containers.

The NodeManager may also kill containers as directed by the ResourceManager.

Containers may be killed in the following situations:

 n The ResourceManager sends a signal that an application has completed.

 n The scheduler decides to preempt it for another application or user.

 n The NodeManager detects that the container exceeded the resource limits as

specified by its ContainerToken.

Whenever a container exits, the NodeManager will clean up its working directory

in local storage. When an application completes, all resources owned by its containers

are cleaned up.

www.it-ebooks.info

http://www.it-ebooks.info/

NodeManager 129

In addition to starting and stopping containers, cleaning up after exited containers,

and managing local resources, the NodeManager offers other local services to contain-

ers running on the node. For example, the log aggregation service uploads all the logs

written by the application’s containers to stdout and stderr to a file system once the

application completes.

As described in the ResourceManager section, when any NodeManager fails (which

may occur for various reasons), the ResourceManager detects this failure using a time-

out, and reports the failure to all running applications. If the fault or condition causing

the timeout is transient, the NodeManager will resynchronize with the Resource-

Manager, clean up its local state, and continue. Similarly, when a new NodeManager

joins the cluster, the ResourceManager notifies all ApplicationMasters about the avail-

ability of new resources for spawning containers.

NodeManager Components

Similar to the ResourceManager, the NodeManager is divided internally into a host of

nested components, each of which has a clear responsibility. Figure 7.4 gives an over-

view of the NodeManager components.

NodeStatusUpdater

On start-up, this component registers with the ResourceManager, sends informa-

tion about the resources available on this node, and identifies the ports at which the

NodeManager

W
e
b
 S

e
rv

e
r

R
P
C

 S
e
rv

e
r

ResourceLocalizationService

NodeStatusUpdater WebServer

DeletionService

Context

LocalDirsHandlerService

NodeHealthScriptRunner

ContainerToken SecretManager

NMtoken SecretManager

Security

NodeHealthCheckerService

ContainerManager

ContainerExecutor

ContainersLauncher

AuxServices

ContainersMonitor

LogHandler

Figure 7.4 NodeManager components

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide130

NodeManager’s web server and the RPC server are listening. As part of the registra-

tion, the ResourceManager sends the NodeManager security-related keys needed by the

NodeManager to authenticate future container requests from the ApplicationMasters.

Subsequent NodeManager–ResourceManager communication provides the Resource-

Manager with any updates on existing containers’ status, new containers started on the

node by the ApplicationMasters, containers that have completed, and so on.

In addition, the ResourceManager may signal the NodeManager via this com-

ponent to potentially kill currently running containers because of, say, a scheduling

policy that shuts down the NodeManager in situations such as explicit decommission-

ing by the operator or resynchronizing of the NodeManager in case of network issues.

Finally, when any application finishes on the ResourceManager, the ResourceManager

signals the NodeManager to clean up various application-specific entities on the

NodeManager—for example, internal per-application data structures and application-

level local resources—and then initiate and finish the per-application logs’ aggregation

onto a file system.

ContainerManager

This component is the core of the NodeManager. It is composed of the following

subcomponents, each of which performs a subset of the functionality that is needed to

manage the containers running on the node.

RPC Server

ContainerManager accepts requests from ApplicationMasters to start new containers,

or to stop running ones. It works with NMToken SecretManager and Container Token

SecretManager (described later) to authenticate and authorize all requests. All the

operations performed on containers running on this node are recorded in an audit log,

which can be postprocessed by security tools.

Resource Localization Service

Resource localization is one of the important services offered by NodeManagers to

user applications. Overall, the resource localization service is responsible for securely

downloading and organizing various file resources needed by containers. It tries its

best to distribute the files across all the available disks. It also enforces access con-

trol restrictions on the downloaded files and puts appropriate usage limits on them.

To understand how localization happens inside NodeManager, a brief recap of some

definitions related to resource localization from Chapter 4, “Functional Overview of

YARN Components,” follows.

 n Localization: Localization is the process of copying/downloading remote

resources onto the local file system. Instead of always accessing a resource

remotely, that resource is copied to the local machine, which can then be

accessed locally.

www.it-ebooks.info

http://www.it-ebooks.info/

NodeManager 131

 n LocalResource: LocalResource represents a file/library required to run a con-

tainer. The localization service is responsible for localizing the resource prior to

launching the container. For each LocalResource, applications can specify the

following information:

 n URL: Remote location from where a LocalResource has to be downloaded.

 n Size: Size in bytes of the LocalResource.

 n Creation timestamp: Resource creation time on the remote file system.

 n LocalResourceType: The type of a resource localized by the NodeManager

—FILE, ARCHIVE, or PATTERN.

 n Pattern: The pattern that should be used to extract entries from the archive

(used only when the type is PATTERN).

 n LocalResourceVisibility: Specifies the visibility of a resource localized

by the NodeManager. The visibility can be either PUBLIC, PRIVATE, or

APPLICATION.

 n DeletionService: A service that runs inside the NodeManager and deletes local

paths as and when instructed to do so.

 n Localizer: The actual thread or process that does localization. There are two

types of localizers: PublicLocalizer for PUBLIC resources and ContainerLocal-

izers for PRIVATE and APPLICATION resources.

 n LocalCache: NodeManager maintains and manages several local caches of all

the files downloaded. The resources are uniquely identified based on the remote

URL originally used while copying that file.

The Localization Process

As you will recall from Chapter 4, “Functional Overview of YARN Components,”

there are three types of LocalResources: PUBLIC, PRIVATE, and APPLICATION.

For security reasons, the NodeManager localizes PRIVATE/APPLICATION Local-

Resources in a completely different manner than PUBLIC LocalResources. Figure 7.5

gives an overview of where and how resource localization happens.

Localization of PUBLIC Resources

Localization of PUBLIC resources is taken care of by a pool of threads called Public-

Localizers. PublicLocalizers run inside the address space of the NodeManager itself.

The number of PublicLocalizer threads is controlled by the configuration property

yarn.nodemanager.localizer.fetch.thread-count, which sets the maximum

parallelism during downloading of PUBLIC resources to this thread count. While

localizing PUBLIC resources, the localizer validates that all the requested resources

are, indeed, PUBLIC by checking their permissions on the remote file system. Any

LocalResource that doesn’t match that condition is rejected for localization. Each

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide132

PublicLocalizer uses credentials passed as part of ContainerLaunchContext (discussed

later) to securely copy the resources from the remote file system.

Localization of PRIVATE/APPLICATON Resources

Localization of PRIVATE/APPLICATION resources is not done inside the Node-

Manager and, therefore, is not centralized. The process is a little involved and is out-

lined here.

 n Localization of these resources happen in a separate process called

ContainerLocalizer.

 n Every ContainerLocalizer process is managed by a single thread in Node-

Manager called LocalizerRunner. Every container will trigger one Localizer-

Runner if it has any resources that are not yet downloaded.

 n LocalResourcesTracker is a per-user or per-application object that tracks all the

LocalResources for a given user or an application.

 n When a container first requests a PRIVATE/APPLICATION LocalResource,

if it is not found in LocalResourcesTracker (or is found but is in the INITIAL-

IZED state), it is added to pending resources list.

 n A LocalizerRunner may (or may not) be created depending on the need for

downloading something new.

HDFS

AM

Public

Localizer

Public
cache
(NM)

Private

cache (User)
Cache

Private

Localizer

User2

A2 A1

R1

R1R1 & R2

AM requests 2 resources
while starting container

R1: Public

R2: Application

R2

R2

User1

App
cache

NM

Figure 7.5 Resource-localization process inside the NodeManager

www.it-ebooks.info

http://www.it-ebooks.info/

NodeManager 133

 n The LocalResource is added to its LocalizerRunner’s pending resources list.

 n One requirement for the NodeManager in secure mode is to download/copy

these resources as the application submitter, rather than as a yarn-user (privileged

user). Therefore, the LocalizerRunner starts a LinuxContainerExecutor (LCE).

The LCE is a process running as application submitter, which then executes a

ContainerLocalizer. The ContainerLocalizer works as follows:

 n Once started, the ContainerLocalizer starts a heartbeat with the Node-

Manager process.

 n On each heartbeat, the LocalizerRunner either assigns one resource at a time

to a ContainerLocalizer or asks it to die. The ContainerLocalizer informs the

LocalizerRunner about the status of the download.

 n If it fails to download a resource, then that particular resource is removed

from LocalResourcesTracker and the container eventually is marked as failed.

When this happens, the LocalizerRunner stops the running ContainerLocal-

izers and exits.

 n If it is a successful download, then the LocalizerRunner gives a Container-

Localizer another resource again and again, continuing to do so until all

pending resources are successfully downloaded.

 n As of this writing, each ContainerLocalizer doesn’t support parallel download-

ing of multiple PRIVATE/APPLICATION resources. In addition, the maxi-

mum parallelism is the number of containers requested for the same user on the

same NodeManager at that point of time. The worst case for this process occurs

when an ApplicationMaster itself is starting. If the ApplicationMaster needs any

resources to be localized then, they will be downloaded serially before its con-

tainer starts.

Target Locations of LocalResources

On each of the NodeManager machines, LocalResources are ultimately localized in

the following target directories, under each local directory:

 n PUBLIC: <local-dir>/filecache

 n PRIVATE: <local-dir>/usercache/<username>/filecache

 n APPLICATION: <local-dir>/usercache/<username>/appcache/<app-id>/

Irrespective of the application type, once the resources are downloaded and the con-

tainers are running, the containers can access these resources locally by making use of

the symbolic links created by the NodeManager in each container’s working directory.

Resource Localization Configuration

Administrators can control various aspects of resource localization by setting or changing

certain configuration parameters in yarn-site.xml when starting a NodeManager:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide134

 n yarn.nodemanager.local-dirs: A comma-separated list of local directories

that one can configure to be used for copying files during localization. The idea

behind allowing multiple directories is to use multiple disks for localization so as

to provide both fail-over (one or a few disks going bad doesn’t affect all containers)

and load balancing (no single disk is bottlenecked with writes) capabilities. Thus,

individual directories should be configured if possible on different local disks.

 n yarn.nodemanager.local-cache.max-files-per-directory: Limits the maxi-

mum number of files that will be localized in each of the localization directories

(separately for PUBLIC, PRIVATE, and APPLICATION resources). The default

value is 8192 and this parameter should, in general, not be assigned a large value

(configure a value that is sufficiently less than the per-directory maximum file

limit of the underlying file system, such as ext3).

 n yarn.nodemanager.localizer.address: The network address where Resource-

LocalizationService listens for requests from various localizers.

 n yarn.nodemanager.localizer.client.thread-count: Limits the number of

RPC threads in ResourceLocalizationService that are used for handling localiza-

tion requests from localizers. The default is 5, which means that at any point of

time, only five localizers will be processed while others wait in the RPC queues.

 n yarn.nodemanager.localizer.fetch.thread-count: Configures the number

of threads used for localizing PUBLIC resources. Recall that localization of

PUBLIC resources happens inside the NodeManager address space; thus this

property limits how many threads will be spawned inside the NodeManager for

localization of PUBLIC resources. The default is 4.

 n yarn.nodemanager.delete.thread-count: Controls the number of threads used

by DeletionService for deleting files. This DeletionService is used all over the

NodeManager for deleting log files as well as local cache files. The default is 4.

 n yarn.nodemanager.localizer.cache.target-size-mb: This property decides

the maximum disk space to be used for localizing resources. (As of this book’s

writing, there was no individual limit for PRIVATE, APPLICATION, or PUB-

LIC caches.) Once the total disk size of the cache exceeds this value, the Dele-

tionService will try to remove files that are not used by any running containers.

This limit is applicable to all the disks and is not used on a per-disk basis.

 n yarn.nodemanager.localizer.cache.cleanup.interval-ms: After the interval

specified by this configuration property elapses, ResourceLocalizationService

will try to delete any unused resources if the total cache size exceeds the con-

figured maximum cache size. Unused resources are those resources that are not

referred to by any running container. Every time a container requests a resource,

that container is added to the resource’s reference list. It will remain there until

the container finishes, thereby preventing accidental deletion of this resource. As

a part of container resource cleanup (when the container finishes), the container

will be removed from the resource’s reference list. When the reference count

drops to zero, it is an ideal candidate for deletion. The resources will be deleted

www.it-ebooks.info

http://www.it-ebooks.info/

NodeManager 135

on a least recently used (LRU) basis until the current cache size drops below the

target size.

Containers Launcher

The Containers Launcher maintains a pool of threads to prepare and launch containers

as quickly as possible. It also cleans up the containers’ processes when the Resource-

Manager sends such a request through the NodeStatusUpdater or when the Application-

Masters send requests via the RPC server. The launch or cleanup of a container happens

in one thread of the thread pool, which will return only when the corresponding opera-

tion finishes. Consequently, launch or cleanup of one container doesn’t affect any other

operations and all container operations are isolated inside the NodeManager process.

Auxiliary Services

An administrator may configure the NodeManager with a set of pluggable, auxiliary ser-

vices. The NodeManager provides a framework for extending its functionality by configur-

ing these services. This feature allows per-node custom services that specific frameworks

may require, yet places them in a local “sandbox” separate from the rest of the Node-

Manager. These services must be configured before the NodeManager starts. Auxiliary

services are notified when an application’s first container starts on the node, whenever a

container starts or finishes, and finally when the application is considered to be complete.

While a container’s local storage will be cleaned up after it exits, it can promote

some output so that it will be preserved until the application finishes. In this way, a

container may produce data that persists beyond the life of the container, to be man-

aged by the node. This property of output persistence, together with auxiliary ser-

vices, enables a powerful feature. One important use-case that takes advantage of this

feature is Hadoop MapReduce. For Hadoop MapReduce applications, the intermedi-

ate data are transferred between the map and reduce tasks using an auxiliary service

called Shuff leHandler. As mentioned earlier, the CLC allows ApplicationMasters to

address a payload to auxiliary services. MapReduce applications use this channel to

pass tokens that authenticate reduce tasks to the shuff le service.

When a container starts, the service information for auxiliary services is returned to

the ApplicationMaster so that the ApplicationMaster can use this information to take

advantage of any available auxiliary services. As an example, the MapReduce frame-

work gets the Shuff leHandler’s port information, which it then passes on to the reduce

tasks for shuff ling map outputs.

Containers Monitor

After a container is launched, this component starts observing its resource utilization

while the container is running. To enforce isolation and fair sharing of resources like

memory, each container is allocated some amount of such a resource by the Resource-

Manager. The ContainersMonitor monitors each container’s usage continuously. If a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide136

container exceeds its allocation, this component signals the container to be killed. This

check is done to prevent any runaway container from adversely affecting other well-

behaved containers running on the same node.

Log Handler

The LogHandler is a pluggable component that offers the option of either keeping

the containers’ logs on the local disks or zipping them together and uploading them

onto a file system. We describe this feature in Chapter 6 under the heading “User Log

Management.”

Container Executor

This NodeManager component interacts with the underlying operating system to

securely place files and directories needed by containers and subsequently to launch

and clean up processes corresponding to containers in a secure manner.

Node Health Checker Service

The NodeHealthCheckerService provides for checking the health of a node by run-

ning a configured script frequently. It also monitors the health of the disks by creating

temporary files on the disks every so often. Any changes in the health of the system

are sent to NodeStatusUpdater (described earlier), which in turn passes the informa-

tion to the ResourceManager.

NodeManager Security Components

This section outlines the NodeManager security components.

Application ACLs Manager in the NodeManager

The NodeManager needs to gate the user-facing APIs to allow specific users to access

them. For instance, container logs can be displayed on the web interface. This compo-

nent maintains the ACL for each application and enforces the access permissions when-

ever such a request is received.

ContainerToken SecretManager in the NodeManager

In the NodeManager, this component mirrors the corresponding functionality in the

ResourceManager. It verifies various incoming requests to ensure that all of the start-

container requests are properly authorized by the ResourceManager.

NMToken SecretManager in the NodeManager

This component also mirrors the corresponding functionality in the Resource-

Manager. It verifies all incoming API calls to ensure that the requests are properly

authenticated using NMTokens.

Web Server

This component exposes the list of applications, containers running on the node at a

given point of time, node-health-related information, and the logs produced by the

containers.

www.it-ebooks.info

http://www.it-ebooks.info/

NodeManager 137

Important NodeManager Functions

The f low of a few important NodeManager functions with respect to running a YARN

application are summarized next.

Container Launch

To facilitate container launch, the NodeManager expects to receive detailed informa-

tion about a container’s run time, as part of the total container specification. This

includes the container’s command line, environment variables, a list of (file) resources

required by the container, and any security tokens.

On receiving a container-launch request, the NodeManager first verifies this

request and determines if security is enabled, so as to authorize the user, correct

resources assignment, and other aspects of the request. The NodeManager then per-

forms the following set of steps to launch the container.

1. A local copy of all the specified resources is created (distributed cache).

2. Isolated work directories are created for the container, and the local resources are

made available in these directories by way of symbolic links to the downloaded

resources.

3. The launch environment and command line are used to start the actual

container.

User Log Management and Aggregation

Hadoop version 2 has much improved user log management, including log aggrega-

tion in HDFS. A full discussion of user log management can be found in Chapter 6,

“Apache Hadoop YARN Administration.”

MapReduce Shuffle Auxiliary Service

The shuff le functionality required to run a MapReduce application is implemented

as an auxiliary service. This service starts up a Netty web server, and knows how

to handle MapReduce-specific shuff le requests from reduce tasks. The MapReduce

ApplicationMaster specifies the service ID for the shuff le service, along with security

tokens that may be required. The NodeManager provides the ApplicationMaster with

the port on which the shuff le service is running; this information is then passed to the

reduce tasks.

In YARN, the NodeManager is primarily limited to managing abstract contain-

ers (i.e., only processes corresponding to a container) and does not concern itself with

per-application state management like MapReduce tasks. It also does away with the

notion of named slots, such as map and reduce slots. Because of this clear separation of

responsibilities coupled with the modular architecture described previously, the Node-

Manager can scale much more easily and its code is much more maintainable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide138

ApplicationMaster

The per-application ApplicationMaster is the bootstrap process that kicks off every-

thing for a YARN application once it gets past the application submission and achieves

its own launch. If one compares this approach to the Hadoop 1 architecture, the

ApplicationMaster is in essence the per-application JobTracker. We start with a brief

overview of the ApplicationMaster and then describe each of its chief responsibilities

in detail.

Overview

Once an application is submitted, the application’s representation in the Resource-

Manager negotiates for a container to spawn this bootstrap process. Once such a

container is allocated, as described in the ResourceManager section, the Appli-

cationMaster’s launcher directly communicates with the ApplicationMaster con-

tainer’s NodeManager to set up and launch the container. Thus begins the life of an

ApplicationMaster. A brief overview of its overall interaction with the rest of YARN

is shown in Figure 7.6.

The process starts when (1) an application submits a request to the ResourceManager.

Next, the ApplicationMaster is started and registers with the ResourceManager (2). The

Master Node

ResourceManager

Container

Task
Computation

NodeManager

Slave Node

Container

Task
Computation

NodeManager

Slave Node

Application Master

Task
Management

NodeManager

Slave Node

Submit Application

Request and Receive
Containers

3

4

Container Heartbeats
Status to AM

5

Complete and
Unregister Application

6Create Application Master
Register Application with RM

2

1

Present Container to NM
for Deployment

Figure 7.6 Application Master interactions with YARN

www.it-ebooks.info

http://www.it-ebooks.info/

ApplicationMaster 139

ApplicationMaster then requests containers (3) from the ResourceManager to perform

actual work. The assigned containers are presented to the NodeManager for use by the

ApplicationMaster (4). Computation takes place in the containers, which keep in contact

(5) with the ApplicationMaster (not the ResourceManager) as the job progresses. When

the application is complete, containers are stopped and the ApplicationMaster is unregis-

tered (6) from the ResourceManager.

Once successfully launched, the ApplicationMaster is responsible for the following

tasks:

 n Initializing the process of reporting liveliness to the ResourceManager

 n Computing the resource requirements of the application

 n Translating the requirements into ResourceRequests that are understood by the

YARN scheduler

 n Negotiating those resource requests with the scheduler

 n Using allocated containers by working with the NodeManagers

 n Tracking the status of running containers and monitoring their progress

 n Reacting to container or node failures by requesting alternative resources from

the scheduler if needed

In the remainder of this section, we’ll describe these individual responsibilities in

greater detail.

Liveliness

The first operation that any ApplicationMaster has to perform is to register with the

ResourceManager. As part of the registration, ApplicationMasters can inform the

ResourceManager about an IPC address and/or a web URL. The IPC address refers

to a client-facing service address—a location that the application’s client can visit to

obtain nongeneric information about the running application. The communication

on the IPC server is application specific: It can be RPC, a simple socket connection,

or something else. ApplicationMasters can also report an HTTP tracking URL that

points to either an embedded web application running inside the ApplicationMas-

ter’s address space or an external web server. This feature enables the clients to obtain

application status and information via HTTP.

In the registration response, the ResourceManager returns information that the

ApplicationMaster can use, such as the minimum and maximum sizes of resources that

YARN accepts, and the ACLs associated with the application that are set by the user

during application submission. The ApplicationMaster can use these ACLs for autho-

rizing user requests on its own client-facing service.

Once registered, an ApplicationMaster periodically needs to send heartbeats to

the ResourceManager to affirm its liveliness and health. Any ApplicationMaster that

fails to report the status for the yarn.am.liveness-monitor.expiry-interval-ms

property (a configuration property of the ResourceManager, whose default is

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide140

10 minutes) will be deemed to be a dead ApplicationMaster and will be killed

by the platform. This configuration is controlled by administrators and should

always be less than the value of the nodes’ expiry interval governed by the

yarn.nm.liveness-monitor.expiry-interval-ms property. Otherwise, in situ-

ations involving network partitions, nodes may be marked as dead long before

ApplicationMasters are marked as such, which may lead to correctness issues on the

ResourceManager.

Resource Requirements

Once the liveliness reports with the ResourceManager are taken care of, the applica-

tion/framework needs to figure out its own resource requirements. It may need either

a static definition of resources or a dynamic one.

Resource requirements are referred to as static when they are decided at the time of

application submission (in most cases, by the client) and when, once the Application-

Master starts running, there is no change in that specification. For example, in the

case of Hadoop MapReduce, the number of maps is based on the input splits for

MapReduce applications and the number of reducers on user input; thus this number

depends on a static set of resources selected before the application’s submission.

Even if the requirements are static, there is another differentiating characteristic in

terms of how the scheduling of those resources happens:

 n All of the allocated containers may be required to run together—a kind of gang

scheduling where resource usage follows a static all-or-nothing model.

 n Alternatively, resource usage may change elastically, such that containers can

proceed with their work as they are allocated independently of the availability of

resources for the remaining containers.

When dynamic resource requirements are applied, the ApplicationMaster may

choose how many resources to request at run time based on criteria such as user hints,

availability of cluster resources, and business logic.

In either case, once a set of resource requirements is clearly defined, the

ApplicationMaster can begin sending the requests across to the scheduler and then

schedule the allocated containers to do the desired work.

Scheduling

When an ApplicationMaster accumulates enough resource requests or a timer

expires, it can send the requests in a heartbeat message, via the allocate API, to the

ResourceManager. The allocate call is the single most important API between the

ApplicationMaster and the scheduler. It is used by the ApplicationMaster to inform the

ResourceManager about its requests; it is also used as the liveliness signal. At any point

in time, only one thread in the ApplicationMaster can invoke the allocate API; all such

calls are serialized on the ResourceManager per ApplicationAttempt. Because of this, if

www.it-ebooks.info

http://www.it-ebooks.info/

ApplicationMaster 141

multiple threads ask for resources via the allocate API, each thread may get an inconsis-

tent view of the overall resource requests.

The ApplicationMaster asks for specific resources via a list of ResourceRequests of

resourceAsks, and a list of container IDs or containersToBeReleased. The containers-

ToBeReleased are any containers that were allocated by the scheduler in earlier cycles

but are no longer needed. The response contains a list of newly allocated containers,

the statuses of application-specific containers that completed since the previous inter-

action between the ApplicationMaster and the ResourceManager, and an indicator

(availResources) to the application about available headroom for cluster resources.

The ApplicationMaster can use the container statuses to glean information about

completed containers and, for example, react to failure. The headroom can be used

by the ApplicationMaster to tune its future requests for resources. For example, the

MapReduce ApplicationMaster can use this information to schedule map and reduce

tasks appropriately so as to avoid deadlocks (e.g., to prevent using up all its headroom

for reduce tasks).

After the initial request, in response to subsequent heartbeats, the Application-

Master will receive allocated resources at a particular node in the cluster in the form

of a container. Based on the containers it receives from the ResourceManager, the

ApplicationMaster can do a second level of scheduling and assign its container to

whichever task that is part of its execution plan. Note that, depending on the avail-

ability of resources, the timing of node heartbeats, and the scheduling algorithm,

some of the subsequent calls may not return any containers even though there are out-

standing requests. ApplicationMasters are supposed to keep making more allocate calls

with unchanged requests until they get the containers that they need. If the requests

set needs to change, the next allocate API can send the modified set of requests, and

can potentially get containers for previous requests that were already submitted. The

ApplicationMaster will also need to update its resource requests to the Resource-

Manager as the containers it receives start fulfilling requirements.

In contrast to other resource management systems, resource allocations in YARN

to an application are late binding; that is, the ApplicationMaster is obligated only

to use resources as provided by the container; it does not have to apply them to the

logical task for which it originally requested the resources. There are two ways the

ApplicationMaster can request and schedule resources:

 n Inform ResourceManager of all the resource requests upfront and let the global

scheduler make all the decisions.

 n Interact dynamically with ResourceManager to let the scheduler take care of the

global scheduling and, depending on the availability of resources and the applica-

tion’s business logic, do a second scheduling pass on the allocated containers.

As an example, the MapReduce ApplicationMaster takes advantage of the dynamic

two-level scheduling. When the MapReduce ApplicationMaster receives a container,

it matches that container against the set of pending map tasks, selecting a task with

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide142

input data closest to the container, first trying data local tasks, and then falling back to

rack locality. If the ApplicationMaster decides to run a map task in the container, the

ApplicationMaster will update its request so that the requests on other nodes where

this map task was originally needed are adjusted accordingly.

Scheduling Protocol and Locality

In YARN, an application (via the ApplicationMaster) can ask for containers of varying

sizes, ranging from a minimum size all the way to the maximum size stipulated by the

scheduler. It can also ask for different numbers of container types.

Resource Requests

The ResourceRequest object is used by the ApplicationMaster for resource requests.

As use-cases evolve, this API is expected to change. At this time, it includes the fol-

lowing elements:

 n Priority of the request.

 n The name of the resource location on which the allocation is desired. It cur-

rently accepts a machine or a rack name. A special value of “*” (asterisk) signi-

fies that any host/rack is acceptable to the application.

 n Resource capability, which is the amount or size of each container required

for that request.

 n Number of containers, with respect to the specifications of priority and

resource location, that are required by the application.

 n A Boolean relaxLocality f lag (defaults to true), which tells the Resource-

Manager if the application wants locality to be loose (i.e., allow fall-through to

rack or “*” in case of no local containers) or strict (i.e., specify hard constraints

on container placement).

The ApplicationMaster is responsible for computing the resource requirements of

the application (e.g., input splits for MapReduce applications) and translating them

into the ResourceRequest objects understood by the scheduler.

The main advantage of such a specification for the ResourceRequest is that it is

extremely compact in terms of the amount of state necessary per application. It is also

not stressful on the ResourceManager in terms of scheduling demands, and it lessens the

amount of information exchanged between the ApplicationMaster and the Resource-

Manager. This design is crucial for scaling the ResourceManager. The size of the requests

per application in this model is bounded by the cluster size (number of nodes + number of

racks) and by the number of priorities and resource capabilities that are acceptable.

There is an apparent limitation to this model because there is a loss of information

in the translation from the application’s affinity to the hosts/racks. This translation is

one-way and irreversible; hence the ResourceManager has no concept of relationships

in between the resource requests. For example, an application might need only one con-

tainer on a specific rack, but specify that it wants one container each on the two hosts on

www.it-ebooks.info

http://www.it-ebooks.info/

ApplicationMaster 143

the rack. The moment a container is allocated on one of the nodes, the request on the

other node can be automatically cancelled. Currently, the existing grammar doesn’t let

applications specify such complex relationships. YARN stipulates that the second-level

scheduling pass that happens in the ApplicationMaster handles such relationships, which

may be very specific to the application in question.

Scheduling Example

Assume there are four racks—rackA, rackB, rackC, and rackD—in the cluster. Also

assume that each rack has only four machines each, named host-rackName-12[3-6].

domain.com. Imagine an application whose data consists of a total of four files, which

are physically located on host-A-123.domain.com, host-A-124.domain.com, host-

B-123.domain.com, and host-B-124.domain.com, respectively. For efficient operation,

this application expects YARN to allocate containers of 1 GB memory, one container

each on each node. But depending on the cluster status and other users’ applica-

tions, YARN may or may not be able to allocate containers exactly in that manner.

The application decides that it can live with rack-local containers in case node-local

resources are not available, so it specifies a requirement of two containers each on the

racks rackA and rackB. It doesn’t care about containers being allocated on the remain-

ing hosts or racks, so it doesn’t specify anything for them. Overall, it has a requirement

of getting four containers, so it specifies that “*” matches to a total of four containers.

The entire ResourceRequest can be expressed as shown in Table 7.1.

Note that the number of required containers at a rack doesn’t necessarily need to be

the aggregate across all nodes on that rack. For example, if the application definitely

prefers one container each on host-A-123 and host-A-124 for doing a specific piece of

computation and needs one more container on rackA in addition to do some kind of

rack-level aggregation, it can make the request shown in Table 7.2.

Similarly, the sum total of requirements across all racks doesn’t necessarily need to

match the value against “*”. Unlike the host- and rack-level specifications, the number

of containers specified against “*” denotes the total number of containers absolutely

required by the application.

Table 7.1 Example ResourceRequest

Priority Resource Location

Resource Capability

(Memory)

Number of

Containers

1 host-A-123.domain.com 1 GB 1

1 host-A-124.domain.com 1 GB 1

1 host-B-123.domain.com 1 GB 1

1 host-B-124.domain.com 1 GB 1

1 rackA 1 GB 2

1 rackB 1 GB 2

1 * 1 GB 4

2 * 2 GB 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide144

Table 7.2 Example Resource Request for Two Specific Hosts and Rack

Priority Resource Location

Resource Capability

(Memory)

Number of

Containers

1 host-A-123.domain.com 1 GB 1

1 host-A-124.domain.com 1 GB 1

1 rackA 1 GB 3

1 * 1 GB 3

Table 7.3 Example Change in Resource Request

Priority Resource Location

Resource Capability

(Memory)

Number of

Containers

1 host-A-123.domain.com 1 GB 1

1 rackA 1 GB 2 (was 3)

1 * 1 GB 2 (was 3)

Now assume that the application no longer needs the container on host-A-124 any-

more. It then needs to update the ResourceRequest as shown in Table 7.3.

By the time this newly updated request is sent out, the ResourceManager may

have already allocated a container on host-A-124. When such conditions arise, the

ApplicationMaster is responsible for resolving any allocations in f light, with the local

changes taking place in its resource requirements.

Locality Constraints

All the locality constraints for the application can be specified using the resource loca-

tions as described in the preceding example. In addition, the application can specify

whether locality should be loose or strict using the relaxLocality f lag against each

request. If it is set to true, which is the default, the ResourceManager will wait for

a while to allocate local containers; if this effort fails, it will fall through to the next

level of resource location, from node to rack or from rack to “*”. In the case where the

relaxLocality f lag is set to false, the ResourceManager will not serve such request

until such a resource-location has enough free capacity to satisfy the request.

Priorities

Priorities are used for ordering the importance of resource requests. Higher-priority

requests of an application are served first by the ResourceManager before the lower-

priority requests of the same application are handled. There is no cross-application

implication of priorities. Potentially, resources of different capabilities can be requested

at the same priority, in which case the ResourceManager may order them arbitrarily.

www.it-ebooks.info

http://www.it-ebooks.info/

ApplicationMaster 145

Launching Containers

Once the ApplicationMaster obtains containers from the ResourceManager, it can

then proceed to actual launch of the containers. Before launching a container, it first

has to construct the ContainerLaunchContext object according to its needs, which can

include allocated resource capability, security tokens (if enabled), the command to be

executed to start the container, an environment for the process, necessary binaries/

jar/shared objects, and more. It can either launch containers one by one by commu-

nicating to a NodeManager, or it can batch all containers on a single node together

and launch them in a single call by providing a list of StartContainerRequests to the

NodeManager.

The NodeManager sends a response via StartContainerResponse that includes a list

of successfully launched containers, a container ID-to-exception map for each failed

StartContainerRequest in which the exception indicates errors per container, and an

allServicesMetaData map from the names of auxiliary services and their corresponding

metadata.

The ApplicationMaster can also get updated statuses for submitted but still to be

launched containers as well as already launched containers.

Figure 7.7 illustrates the interaction of the ApplicationMaster with the NodeManagers

to start/stop containers and get container status. Note that the ApplicationMaster does

not communicate with the ResourceManager at this point.

The ApplicationMaster can also request a NodeManager to stop a list of containers

running on that node by sending a StopContainersRequest that includes the container

IDs of the containers that should be stopped. The NodeManager sends a response via

StopContainersResponse, which includes a list of container IDs of successfully stopped

containers as well as a container ID-to-exception map for each failed request in which

the exception indicates errors from the particular container.

Container

Task
Computation

NodeManager

Slave Node

NodeManager

Slave Node

Start or Stop Containers

Get Container Status

Application Master

Job & Task
Management

Figure 7.7 ApplicationMaster interacting with NodeManager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide146

When an ApplicationMaster exits, depending on its submission context, the

ResourceManager may choose to kill all the running containers that are not explicitly

terminated by the ApplicationMaster itself.

Completed Containers

As previously described, when containers finish, the ApplicationMasters are informed

by the ResourceManager about the event. Because the ResourceManager does not

interpret (or care about) the container status, the ApplicationMaster determines the

semantics of the success or failure of the container exit status reported through the

ResourceManager.

Handling of container failures is the responsibility of the applications/frameworks.

YARN is responsible only for providing information to the applications/framework.

The ResourceManager collects information about all the finished containers as part

of the allocate API’s response, and it returns this information to the corresponding

ApplicationMaster. It is up to the ApplicationMaster to look at information such as the

container status, exit code, and diagnostics information and act on it appropriately. For

example, when the MapReduce ApplicationMaster learns about container failures, it

retries map or reduce tasks by requesting new containers from the ResourceManager

until a configured number of attempts fail for a single task.

ApplicationMaster Failures and Recovery

The ApplicationMaster is also tasked with recovering the application after a restart

that was due to the ApplicationMaster’s own failure. When an ApplicationMaster fails,

the ResourceManager simply restarts an application by launching a new Application-

Master (or, more precisely, the container running the ApplicationMaster) for a new

Application Attempt; it is the responsibility of the new ApplicationMaster to recover

the application’s previous state This goal can be achieved by having the current Appli-

cationAttempts persist their current state to external storage for use by future attempts.

Any ApplicationMaster can obviously just run the application from scratch all over

again instead of recovering the past state. For example, as of this book’s writing, the

Hadoop MapReduce framework’s ApplicationMaster recovered its completed tasks, but

running tasks as well as the tasks that completed during ApplicationMaster recovery

would be killed and rerun.

Coordination and Output Commit

The ApplicationMaster is also tasked with any coordination needed by contain-

ers. If a framework supports multiple containers contending for a resource or an

output commit, ApplicationMaster should provide synchronization primitives for

them, so that only one of those containers can access the shared resource, or it should

promote the output of one while the other is ordered to wait or abort. The Map-

Reduce ApplicationMaster defines the number of multiple attempts per task that can

www.it-ebooks.info

http://www.it-ebooks.info/

ApplicationMaster 147

potentially run concurrently; it also provides APIs for tasks so that the output-commit

operation demonstrates consistency.

There is another dimension of application-level coordination or output commit

with YARN. Even though one can control the number of application attempts, for

any given application the platform will try its best to make sure that there is only one

valid ApplicationMaster running in the cluster at any point in time. However, YARN

cannot guarantee this. Thus there may be a presently running valid ApplicationMaster

and another ApplicationMaster from a previous attempt that is marked as either failed

or killed but is actually still running. There are several situations where this can hap-

pen. One of the most common cases involves a network partition: The node running

the ApplicationMaster may be cut off from ResourceManager, so YARN cannot really

enforce the one-ApplicationMaster-at-a-time restriction. Application writers must be

aware of this possibility, and should code their applications and frameworks to handle

the potential multiple-writer problems. Such a multiple-writer problem has the biggest

impact on the application-level commit, when two ApplicationAttempts of the same

application race to a shared resource, and the output commit, where one may run into

issues like data corruption.

Information for Clients

Some services previously offered by the Hadoop JobTracker—such as returning job

progress over RPC, a web interface to find job status, and tracking finished jobs

via JobHistory—are no longer part of YARN. They are provided either by the

ApplicationMasters or by custom-built framework daemons. At the time of this writ-

ing, a generic solution to server framework-specific data with reasonable abstractions

was a work in progress.

Security

If the application exposes a web service or an HTTP/socket/RPC interface, it is

also responsible for all aspects of its secure operation. YARN merely secures its

deployment.

Cleanup on ApplicationMaster Exit

When an ApplicationMaster is done with all its work, it should explicitly unregister

with the ResourceManager by sending a FinishApplicationRequest. Similar to reg-

istration, as part of this request ApplicationMasters can report IPC and web URLs

where clients can go once the application finishes and the ApplicationMaster is no lon-

ger running.

Once an ApplicationMaster’s finish API causes the application to finish, the

ApplicationMaster (i.e., the ApplicationMaster’s container) will not immediately be

killed until either the ApplicationMaster exits on its own or the ApplicationMaster

liveliness interval is reached. This is done so as to enable ApplicationMasters to do

some cleanup after the finish API is successfully recorded on the ResourceManager.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide148

YARN Containers

As described earlier, a container in YARN represents a unit of work in an application.

A container runs on a node, managed by a NodeManager; makes use of some resources

on a node (e.g., memory, disk, CPU); depends on some libraries that are represented as

local resources; and performs the needed work. While we have discussed most of how

a container comes into existence, we have not talked about what constitutes the run-

ning responsibilities of a container. Note that because containers in YARN are directly

mapped to a process in the underlying operation system, we may be using these terms

interchangeably.

Container Environment

Once a container starts, for it to be able to perform its duties, it may depend on the

availability of various pieces of information. Some of this information may be static,

and some may be dynamic—that is, resolvable only at run time.

Static information may include libraries, input and output paths, and specifications

of external systems like database or file system URLs. The following list highlights

some of this information and explains how a container can obtain it:

 n The ApplicationMaster should describe all libraries and other dependencies

needed by a container for its start-up as part of its ContainerLaunchContext.

That way, at the time of the container launch, such dependencies will already be

downloaded by the localization in the NodeManager and be ready for linking

directly.

 n Input/output paths and file-system URLs are a part of the configuration that is

beyond the control of YARN. Applications are required to propagate this infor-

mation themselves. There are multiple ways one can do this:

 n Environment variables

 n Command-line parameters

 n Separate configuration files that are themselves passed as local resources

 n Local directories where containers can write some outputs are determined by the

environment variable ApplicationConstants.Environment.LOCAL_DIRS.

 n Containers that need to log output or error statements to files need to make use

of the log directory functionality. The NodeManager decide the location of log

directories at run time. Because of this, a container’s command line or its envi-

ronment variables should point to the log directory by using a specialized marker

defined by ApplicationConstants.LOG_DIR_EXPANSION_VAR (i.e., <LOG_DIR>).

This marker will be automatically replaced with the correct log directory on the

local file system when a container is launched.

 n The user name, home directory, container ID, and some other environment-

specific information are exposed as environment variables by the NodeManager;

www.it-ebooks.info

http://www.it-ebooks.info/

YARN Containers 149

containers can simply look them up in their environment. All such environment

variables are documented by the ApplicationConstants.Environment API.

 n Security-related tokens are all available on the local file system in a file

whose name is provided in the container’s environment, keyed by the name

ApplicationConstants.CONTAINER_TOKEN_FILE_ENV_NAME. Containers can sim-

ply read this file and load all the credentials into memory.

Dynamic information includes settings that can potentially change during the

lifetime of a container. It is composed of things like the location of the parent

ApplicationMaster and the location of map outputs for a reduce task. Most of this

information is the responsibility of the application-specific implementation. Some of

the options include the following:

 n The ApplicationMaster’s URL can be passed to the container via environment

variables, a command-line argument, or the configuration, but any dynamic

changes to it during fail-over can be found by directly communicating to the

ResourceManager as a client.

 n The ApplicationMaster can coordinate the locations of the container’s output

and the corresponding auxiliary services, making this information available to

other containers.

 n The location of the HDFS NameNode (in case of a fail-over scenario) may be

obtained from a dynamic plug-in that performs a configuration-based lookup of

where an active NameNode is running.

Communication with the ApplicationMaster

Unlike with Hadoop version 1 MapReduce, there is no communication from a

container to the parent NodeManager in YARN. Once a container starts, it is not

required to report anything to the NodeManager. The code that runs the container

is completely user written and, as such, all the NodeManager really enforces is the

proper utilization of resources so that container runs within its limits.

It is also not required that containers report to their parent ApplicationMasters. In

many cases, containers may just run in isolation, perform their work, and go away.

On their exit, ApplicationMasters will eventually learn about their completion status,

either directly from the NodeManager or via the NodeManager–ResourceManager–

ApplicationMaster channel for status of completed containers. If an application needs

its container to be in communication with its ApplicationMaster, however, it is

entirely up to the application/framework to implement such a protocol. YARN nei-

ther enforces this type of communication nor supports it. Consequently, an application

that needs to monitor the application-specific progress, counters, or status should have

its container configured to report such status directly to the ApplicationMaster via

some interprocess communication. Figure 7.8 shows an overview of the interaction of

containers with the NodeManager and the ApplicationMaster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 Apache Hadoop YARN Architecture Guide150

Summary for Application-writers

The following is a quick summary of the responsibilities for application writers. Con-

sult Chapter 10, “Apache Hadoop YARN Application Example,” and Chapter 11,

“Using Apache Hadoop YARN Distributed-Shell,” for actual application examples.

 n Submit the application by passing a ContainerLaunchContext for the

ApplicationMaster to the ResourceManager.

 n After the ResourceManager starts the ApplicationMaster, the ApplicationMaster

should register with the ResourceManager and periodically report its liveliness

and resource requirements over the wire.

 n Once the ResourceManager allocates a container, the ApplicationMaster can

construct a ContainerLaunchContext to launch the container on the correspond-

ing NodeManager. It may also monitor the status of the running container and

stop it when the work is done. Monitoring the progress of work done inside the

container is strictly the ApplicationMaster’s responsibility.

 n Once the ApplicationMaster is done with its overall work, it should unregister

from the ResourceManager and exit cleanly.

 n Optionally, frameworks may add control f low between their containers and the

ApplicationMaster as well as between their own clients and the Application-

Master to report status information.

Container

Task
Computation

NodeManager

Slave Node

NodeManager

Slave Node

Launch

Monitor Usage

Stop

Get Work

Send Status

Application Master

Job & Task
Management

Figure 7.8 Container’s interaction with

ApplicationMaster and NodeManager

www.it-ebooks.info

http://www.it-ebooks.info/

Wrap-up 151

In general, an ApplicationMaster that is hardened against faults, including its own,

is nontrivial. The client libraries that ship with YARN—YarnClient, NMClient, and

AMRMClient—expose a higher-level API and are strongly recommended over using

low-level protocols.

Wrap-up

In YARN, the ResourceManager is fundamentally limited to scheduling and does not

manage user applications. This design addresses the issues of better scalability and sup-

port for alternative (non-MapReduce) programming paradigms.

The YARN NodeManager has more responsibility than the Hadoop version 1

TaskTracker and is designed to tightly manage node resources in the form of applica-

tion containers. It also supports better log management and provides a f lexible method

for multiple-container interaction by providing the auxiliary services capability.

Finally, some of the responsibility for managing resources has been pushed to the

user with the introduction of the ApplicationMaster. This responsibility also offers

great f lexibility, such that applications can now manage their containers and applica-

tion resources requirements dynamically at run time.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

8
Capacity Scheduler in YARN

Typically organizations start Apache Hadoop deployments as single-user environments

and/or just for a single team. As organizations start deriving more value from data pro-

cessing and move toward mature cluster deployments, there are significant drivers to

consolidate Hadoop clusters into a small number of scaled, shared clusters. This need is

driven by the desire to minimize data fragmentation on multiple systems. Such concen-

tration of data on a few HDFS clusters liberates data for organization-wide access, avoids

data silos, and allows all-accommodating data-processing workf lows. In addition, the

operational costs and complexity of managing multiple small clusters are reduced.

Once the deployment architecture in an organization evolves toward centralized data

repositories, shared compute clusters should follow suit for the same reasons. A successful

model for this is for multiple teams, suborganizations, or business units within a single

parent organization to come together to pool compute resources and share resources

for efficiency. Apache Hadoop started supporting such shared clusters beginning with

Hadoop version 0.20 (the version predated, and eventually evolved into, Apache Hadoop

version 1.x). Initially, Hadoop supported a simple first-in, first-out (FIFO) job sched-

uler that allowed scheduling for shared clusters but was insufficient to address various

emerging use-cases. This situation eventually led to the implementation of the Capacity

scheduler. YARN and Hadoop version 2 inherit most of the same Capacity scheduler

functionality, along with lots of improvements and enhancements required to take full

advantage of the new capabilities unlocked in YARN.

Introduction to the Capacity Scheduler

As we discussed in Chapter 1, “Apache Hadoop YARN: A Brief History and Ratio-

nale,” the Capacity scheduler originally came about in Hadoop version 1 to address

some of the issues with Hadoop on Demand (HOD)–based architecture. It is designed

to run applications in a shared cluster supporting multitenancy, while maximizing

application throughput and enabling high utilization of the cluster. Given the new sup-

port in YARN for applications of arbitrary frameworks and workload characteristics,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN154

the Capacity scheduler in Hadoop version 2 with YARN has been enhanced with

other features to support these new use-cases.

In the HOD architecture, each user or team would have its own private compute

cluster allocated dynamically but with constricted elasticity. This would lead to poor

cluster utilization and poor locality of data. Sharing clusters between organizations is a

cost-effective way to run multitenant Hadoop installations that leads to improvements

in utilization, better performance, and the potential for more intelligent scheduling.

However, resource sharing also brings up concerns about application isolation, secu-

rity, and the issue of resource contention.

The Capacity scheduler is built to address all these concerns. It is designed around

the following ideas.

Elasticity with Multitenancy

Organizations prefer to share resources between individuals, teams, and suborganiza-

tions in an elastic fashion. Free resources should be allocated to any entity as long as

those resources remain underutilized otherwise. When there is an emergent demand

for these resources, they should be pulled back with minimal impact to service level

agreements (SLAs) of the originally entitled entities.

The Capacity scheduler supports these features with queue capacities, minimum

user percentages, and limits. It is designed to enable sharing of a single YARN cluster

while simultaneously giving each organization guarantees on the allocated capacities. To

improve utilization, organizations can make use of idle capacities “belonging” to other

organizations. The Capacity scheduler also enforces stringent limits to avoid a single

application, user, or queue from overwhelming the cluster and impacting co-tenants.

Security

Multitenant clusters also raise concerns about security even within an umbrella orga-

nization. The Capacity scheduler provides tools like queue-level Access Control Lists

(ACLs) for the administrators so that there are enough safeguards to address cross-

organization security-related compliance.

Resource Awareness

Organizations should be able to use YARN to orchestrate applications with differing

resource requirements and to arbitrate resources of all kinds, including memory, CPU,

disks, or other cluster-wide shared resources. The current version of the Capacity sched-

uler supports CPU and memory resources, and support for other resources is expected.

Scheduling policies exist to take into account the memory and CPU requirements of

submitted applications and support the dynamic needs of ApplicationMasters.

Granular Scheduling

Organizations should be able to share individual nodes in a fine-grained manner as

opposed to loaning full nodes to tenants. Assigning complete nodes hurts utilization

and should be avoided.

www.it-ebooks.info

http://www.it-ebooks.info/

Capacity Scheduler Configuration 155

Compared to the other traditional resource managers with which HOD worked,

YARN deals with resources in a different manner—namely, by not partitioning nodes

in a static way and assigning them to queues. The unit of scheduling in YARN is much

more granular and dynamic. Queues in YARN are simply a logical view of resources on

physical nodes. This design enables finer-grained sharing of individual nodes by various

applications, users, and organizations and, therefore, facilitates high utilization.

Locality

Following one of YARN’s core goals, the Capacity scheduler supports specifying the

locality of computation as well as node or rack affinity by applications. Furthermore,

the Capacity scheduler itself is locality aware, and is very good at automatically allocat-

ing resources on not only preferred nodes/racks, but also nodes/racks that are close to

the preferred ones. In doing so, it ensures that the framework developer does not have

to worry about locality. This feature is one of the key differences between YARN and

other, traditional, resource managers.

Scheduling Policies

Organizations may need to control various aspects of scheduling depending on their

anticipated workloads. For example, there may be a need to balance data processing

through batch workf lows with applications driving interactive analysis. In addition,

there may be requirements for support of an all-or-nothing kind of gang scheduling,

or there may be a need for executing long-running services alongside applications

vying for sustained throughput.

The Capacity scheduler offers support for churning through applications to attain

high throughput. Given its historical roots of scheduling MapReduce applications

in Hadoop version 1, the Capacity scheduler understands that even though contain-

ers may not be running, they can still consume resources in the cluster. Consider the

output of MapReduce map tasks: Even after a map task completes, it still consumes

resources to store its map outputs. The first-in, first-out (FIFO) scheduling policy of

the Capacity scheduler strives for maximum throughput, thereby enabling efficient use

of cluster resources.

At the time of this book’s writing, the YARN community was working on several

innovations to support emerging use-cases like long-running services and special needs

of interactive data analysis.

Capacity Scheduler Configuration

The Capacity scheduler is the default scheduler that ships with Hadoop YARN. In

the event that it becomes necessary to explicitly set the scheduler in the configuration,

one should set the following values in the configuration file yarn-site.xml on the

ResourceManager node:

 n Property: yarn.resourcemanager.scheduler.class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN156

 n Value: org.apache.hadoop.yarn.server.resourcemanager.scheduler.

capacity.CapacityScheduler

The Capacity scheduler itself depends on a special configuration file called

capacity-scheduler.xml to be present in the ResourceManager’s class path for its

settings. This location is typically in a conf directory. The scheduler reads this file

both when it is starting and when an administrator modifies it and issues a special sig-

nal for reloading it.

Changing various configuration settings in the Capacity scheduler (e.g., queue

properties, application limits) is very straightforward and can be done at run time.

This task can be accomplished by editing capacity-scheduler.xml with the desired

modifications and then running the following admin command:

$ yarn rmadmin -refreshQueues

This command can be run only by cluster administrators, and is configured using a

list at the ResourceManager via the yarn.admin.acl property.

Queues

The fundamental unit of scheduling in YARN is a queue. A queue is either a logical

collection of applications submitted by various users or a composition of more queues.

Every queue in the Capacity scheduler has the following properties:

 n A short queue name

 n A full queue path name

 n A list of child queues and applications associated with them

 n Guaranteed capacity of the queue

 n Maximum capacity to which a queue can grow

 n A list of active users and the corresponding limits of sharing between users.

 n State of the queue

 n ACLs governing the access to the queue

The following discussion describes what these properties are, how the Capacity

scheduler uses them for making various scheduling decisions, and how they can be

configured to meet specific needs.

Hierarchical Queues

In the Capacity scheduler, each queue typically represents an organization, while the

capacity of the queue represents the capacity (of the cluster) that the organization is

entitled to use. In Hadoop version 1, the Capacity scheduler supported only a f lat list

www.it-ebooks.info

http://www.it-ebooks.info/

Hierarchical Queues 157

of queues, which was eventually found to be limiting. Most organizations are large

and need to further share their queues among users from different suborganizations in

a fine-grained manner. This desire to divide capacity further and share it among sub-

organizations is also accentuated by the existence of various categories of users within

a given queue. For example, within an organization, some applications may belong to

different categories, such as interactive and batch workloads, production and ad hoc

research applications, and so on. The Capacity scheduler in YARN supports hierarchi-

cal queues to address this gap.

Key Characteristics

Some important characteristics of hierarchical queues are highlighted here:

 n Queues are of two types: parent queues and leaf queues.

 n Parent queues enable the management of resources across organizations and

suborganizations. They can contain more parent queues or leaf queues. They

do not themselves accept any application submissions directly.

 n Leaf queues denote the queues that live under a parent queue and accept

applications. Leaf queues do not have any more child queues.

 n The top-level parent queue called ROOT queue doesn’t belong to any organiza-

tion and denotes the cluster itself.

 n Using parent and leaf queues, administrators can do capacity allocations to vari-

ous organizations and suborganizations.

Scheduling Among Queues

Hierarchical queues ensure that guaranteed resources are first shared among the sub-

queues of an organization before queues belonging to other organizations are allowed

to use free resources from this queue. This design enables each organization to have

more control over how resources guaranteed to them are predictably utilized. The

scheduling algorithm works as follows:

 n At every level in the hierarchy, every parent queue keeps the list of its child

queues in a sorted manner based on demand. The sorting of the queues is deter-

mined by the currently used fraction of each queue’s capacity (or the queue

names [i.e., full path names] if the utilization of any two queues is equal) at any

point in time.

 n The ROOT queue understands how the cluster capacity has to be distributed

among the first level of parent queues and invokes scheduling on each of its child

queues.

 n Every parent queue also tries to follow the same capacity constraints for all of its

child queues and schedules them accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN158

 n Leaf queues hold the list of active applications, potentially from multiple users,

and schedule resources in a FIFO manner while simultaneously respecting the

limits on how much a single user can take within that queue.

Defining Hierarchical Queues

Queues have evolved from a f lat list to a hierarchy, and as a result their naming has

also needed to change. The Capacity scheduler uses queue paths to refer to any

queue in the hierarchy. The queue path names each queue in its ancestral hierarchy

starting with the ROOT queue, with each name separated by a dot (“.”). As of this

book’s writing, the configuration of hierarchical queues was still driven by a f lat list of

configuration properties. The Capacity scheduler uses the same queue paths to specify

its configuration in capacity-scheduler.xml, as described earlier.

Let’s look at an example that will be used in the rest of the chapter to explain the

concepts associated with the Capacity scheduler. Assume that in a company named

YARNRollers, there are three organizations called grumpy-engineers, finance-

wizards, and marketing-moguls. In addition, assume the grumpy-engineers organi-

zation has two subteams: infinite-monkeys and pesky-testers. The finance-wizards

organization has two suborganizations: meticulous-accountants and thrifty-treasurers.

Finally, the marketing-moguls are divided into brand-exploders and social-savants.

The overall hierarchy of queues in this example is shown in Figure 8.1.

YARNRollers organization

ROOT

finance-wizards grumpy-engineers marketing-moguls

meticulous-

accountants

thrifty-treasurers

infinite-monkeys

pesky-testers

brand-exploders

social-savants

Figure 8.1 Example hierarchies for use by Capacity scheduler

www.it-ebooks.info

http://www.it-ebooks.info/

Queue Access Control 159

Child queues are tied to their parent queue by defining the configuration property

yarn.scheduler.capacity.<queue-path>.queues. For example, the top-level queues

(grumpy-engineers, finance-wizards, and marketing-moguls) should be tied to the

ROOT queue. Thus the queue hierarchy is configured as follows:

 n Property: yarn.scheduler.capacity.root.queues

 n Value: grumpy-engineers,finance-wizards,marketing-moguls

Similarly, the children of the parent queue finance-wizards are defined as follows:

 n Property: yarn.scheduler.capacity.finance-wizards.queues

 n Value: meticulous-accountants,thrifty-treasurers

Leaf queues have no further children, so they should not have any corresponding

configuration property that ends with the .queues suffix.

There are limitations on how one can name the queues. To avoid confusion, the

Capacity scheduler doesn’t allow two leaf queues to have the same name across the

whole hierarchy.

As of this book’s writing, queues could not be deleted completely at run time, but

they could be stopped (as will be described later in this chapter). New queues can be

added dynamically at run time by simply defining a new queue, attaching it to its par-

ent, and refreshing the configuration using the yarn rmadmin utility mentioned ear-

lier. Note that newly added queues cannot invalidate constraints, such as the constraint

that queue capacity at each level be no more than 100%. Further, one cannot (for

obvious reasons) change what was previously a leaf-level queue to be a parent queue

by adding a new child queue to it.

Queue Access Control

The point of having queues is to enable sharing and at the same time to give control

back to the organization, limiting who can submit applications to any given queue and

who can administer a queue.

Queues can be configured to restrict submission to queues at various levels.

Although application submission can really happen only at the leaf queue level, an

ACL on a parent queue can be set to control admittance to all the descendant queues.

Access Control Lists in Hadoop are configured by specifying the list of users and/

or groups as a string property. For specifying a list of users and groups, the format

is “user1,user2 group1,group” (a comma-separated list of users, followed by a space

separator, followed by a comma-separated list of groups). If it is set to “*” (asterisk),

all users and groups are allowed to perform the operation guarded by the ACL in

question. If it is set to “ ” (i.e., space), no users or groups are allowed to perform the

operation. With that specification of ACLs, for example, to restrict access to any queue

originating under the finance-wizards queue to only sherlock, pacioli, and a special

group called cfo-group, one can make the following assignments:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN160

 n Property: yarn.scheduler.capacity.root.finance-wizards.acl_submit_

applications

 n Value: sherlock,pacioli cfo-group

A separate ACL can be used to control administration of queues at various levels.

Queue administrators have permission to submit applications without an explicit sub-

mit ACL, kill any application in the queue, and obtain information about any appli-

cation in the queue; by comparison, regular users are restricted from viewing all the

details of other users’ applications. Administrators’ ACLs can be configured similar to

submit ACLs, for example, to make the special group cfo-group the sole administrators

of the finance-wizards queues:

 n Property: yarn.scheduler.capacity.root.finance-wizards.acl_

administer_queue

 n Value: " cfo-group"

 n Description: A space character followed by cfo-group, unquoted

With YARN’s Capacity scheduler supporting a hierarchy of queues, delegation of

the administration is possible. Queue administrators of a suborganization can take con-

trol of monitoring queues for irregularities. Ideally, administrators of suborganizations

should be able to add new queues, stop queues, and perform other queue-related tasks;

these abilities are expected to be available in future versions of YARN.

Capacity Management with Queues

The Capacity scheduler is designed to allow organizations to share compute clusters

using the very familiar notion of first-in, first-out queues. YARN doesn’t assign whole

nodes to queues. Instead, queues own a fraction of the capacity of the cluster, which

can be fulfilled from any number of nodes in a dynamic fashion. Scheduling is the

process of matching the resource requirements of multiple applications from various

users, each submitted to different queues at multiple levels in the queue hierarchy, with

free capacity available at any point in time on the nodes in the cluster.

Queues are configured by the administrators to be allocated as a fraction of the

capacity of the whole cluster. In our example, assuming that the administrators decide

to share the cluster resources between the grumpy-engineers, finance-wizards, and

marketing-moguls in a 6:1:3 ratio, the corresponding queue configuration will be as

follows:

 n Property: yarn.scheduler.capacity.root.grumpy-engineers.capacity

 n Value: 60

 n Property: yarn.scheduler.capacity.root.finance-wizards.capacity

 n Value: 10

www.it-ebooks.info

http://www.it-ebooks.info/

Capacity Management with Queues 161

 n Property: yarn.scheduler.capacity.root.marketing-moguls.capacity

 n Value: 30

YARN is built around the fundamental requirements of fault tolerance and elastic-

ity. In a YARN cluster built out of commodity hardware, subcomponents of a node

like disks or even whole nodes can go down for any of several reasons. In addition,

depending on workloads and historical cluster usage, administrators may choose to

either add new physical machines or take away existing nodes to account for under-

utilization. Any of these changes will cause corresponding variations in cluster capac-

ity, as seen by the Capacity scheduler for the sake of scheduling. Queue capacity

configuration is indicated in terms of percentages for this reason; this scheme ensures

that organizations and suborganizations can reason well about their shares and guaran-

tees irrespective of small variations in the total cluster capacity.

As discussed in the section dealing with hierarchical queues, there is a capac-

ity planning problem at a suborganization level. Continuing with our example, let’s

assume the grumpy-engineers decide to share their capacity between the infinite-

monkeys and the pesky-testers in a 1:4 ratio (so that testing of YARN gets as much

resources as possible). The corresponding configuration should be as follows, again

given in terms of percentages:

 n Property: yarn.scheduler.capacity.root.grumpy-engineers.infinite-

monkeys.capacity

 n Value: 20

 n Property: yarn.scheduler.capacity.root.grumpy-engineers.pesky-

testers.capacity

 n Value: 80

Note that the sum of capacities at any level in the hierarchy should be no more than

100% (for obvious reasons).

As described earlier, during scheduling, queues at any level in the hierarchy are

sorted in the order of their current used capacity and available resources are distributed

among them, starting with those queues that are the most under-served at that point

in time. With respect to just capacities, the resource scheduling has the following f low:

 n The more under-served the queues, the higher the priority that is given to them

during resource allocation. The most under-served queue is the queue with the

smallest ratio of used capacity to the total cluster capacity.

 n The used capacity of any parent queue is defined as the aggregate sum of used

capacity of all the descendant queues recursively.

 n The used capacity of a leaf queue is the amount of resources that is used by

allocated containers of all applications running in that queue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN162

 n Once it is decided to give a parent queue the freely available resources, further

similar scheduling is done to decide recursively as to which child queue gets to

use the resources based on the same concept of used capacities.

 n Scheduling inside a leaf queue further happens to allocate resources to applica-

tions arriving in a FIFO order.

 n Such scheduling also depends on locality, user level limits, and application

limits (to be described soon).

 n Once an application within a leaf queue is chosen, scheduling happens within

an application, too. Applications may have different resource requests at dif-

ferent priorities.

 n To ensure elasticity, capacity that is configured but not utilized by any queue

due to lack of demand is automatically assigned to the queues that are in need of

resources.

To get a better understanding of how the cluster is divided and how scheduling

happens, consider how available memory in the cluster is scheduled. Assuming a clus-

ter of 100 nodes, each with 10 GB of memory allocated for YARN containers, we

have a total cluster capacity of 1000 GB (one 1 TB). Now according to the previously

described configuration, the grumpy-engineers organization is assigned a capacity of

60% of cluster capacity (i.e., an absolute capacity of 600 GB). Similarly, the finance-

wizards are assigned 100 GB and the marketing-moguls suborganization gets 300 GB.

Under the grumpy-engineers organization, capacity needs to be distributed

between the infinite-monkeys team and the pesky-testers in the ratio 1:4. Thus the

infinite-monkeys get 120 GB, and 480 GB is assigned to the pesky-testers.

Consider the following timeline of events happening in the cluster:

 n In the beginning, the entire grumpy-engineers queue is free, with no application

in any queues or from any users in a running state. Other queues at that level

used by the finance-wizards and the marketing-moguls are completely utilizing

their capacities.

 n The users sid and hitesh first submit applications to the leaf queue infinite-

monkeys. Their applications are elastic and can run with either all the resources

available in the cluster or a subset depending on the state of the resource usage.

 n As the first set of users in the system, even though each of them may be con-

trolled to be within the queue (120 GB, because of user-limit factor described

later), together they can occupy 240 GB (two users controlled to queue

capacity each).

 n This situation can occur despite the fact that infinite-monkeys are config-

ured to be run with only 120 GB. The Capacity scheduler lets this happen to

ensure elastic sharing of cluster resources and for high utilization.

 n Assume the users jian, zhijie, and xuan submit more applications to the leaf

queue infinite-monkeys, such that even though each leaf queue is restricted to

www.it-ebooks.info

http://www.it-ebooks.info/

User Limits 163

120 GB, the overall used capacity in the queue becomes 600 GB—essentially

taking over all the capacity to which the pesky-testers are entitled.

 n Next the user gupta submits his own application to the queue pesky-testers, so as

to start running an analysis of historical testing of his software project. With no

free resources in the cluster, his application will wait.

 n Given that the infinite-monkeys queue has now taken over the whole cluster,

the user gupta may or may not be able to get back the guaranteed capacity of

his queue immediately depending on whether preemption is enabled.

 n As resources start being freed up from the applications of sid, hitesh, jian, zhijie,

and xuan in the infinite-monkeys queue, the freed-up containers will start being

allocated to gupta’s applications. This will continue until the cluster stabilizes at

the intended 1:4 ratio of resource allocation between the two queues.

As one can see, this setup leaves the door open for abusive users to submit applica-

tions continuously and lock out other queues from resource allocation until the abusive

users’ containers finish or get preempted. To avoid this problem, the Capacity sched-

uler supports limits on the elastic growth of any queue. For example, to restrict the

infinite-monkeys from monopolizing the queue capacity and to box them into their

capacity, administrators can set the following limit:

 n Property: yarn.scheduler.capacity.root.grumpy-engineers.infinite-

monkeys.maximum-capacity

 n Value: 40

Once this limit is set, the infinite-monkeys can still go beyond their capacity of

120 GB, but they cannot get resources allocated to them that exceed 40% of the parent

queue grumpy-engineers’ capacity (i.e., 40% of 600 GB = 240 GB).

The capacity and maximum capacity configuration come together to provide the

basic control over sharing and elasticity across organizations or suborganizations on

a YARN cluster. Administrators need to balance the elasticity with the limits so that

there isn’t a loss of utilization due to too-strict limits and, conversely, there isn’t any

cross-organization impact due to excessive sharing.

Capacities and maximum capacities can be dynamically changed at run time using

the rmadmin “refresh queues” functionality. It is a good practice for administrators to

audit queue usage and grow or shrink user limits at various levels to find the desired

balance.

User Limits

Leaf queues have the additional responsibility of ensuring fairness with regard to

scheduling applications submitted by various users in that queue. The Capacity sched-

uler places various limits on users to enforce this fairness. Recall that applications can

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN164

only be submitted to leaf queues in the Capacity scheduler; thus, parent queues do not

have any role in enforcing user limits.

When configuring the user limits of a queue, administrators have to decide upfront

the amount of user sharing that they would like to enable at run time. Let’s start with

an example of an administrator who decides to configure user limits for the finance-

wizards suborganization. As mentioned, user limits need to be set for every leaf queue.

Let’s focus on the leaf queue called root.finance-wizards.thrifty-treasurers.

All user limits are based on the queue’s capacity. As mentioned earlier, queue capac-

ity is a dynamically changing entity, so user limits are also dynamically adjusted in

every scheduling cycle based on capacity changes.

Assume the queue capacity needs to be shared among not more than five users

in the thrifty-treasurers queue. When you account for fairness, this results in

each of those five users being given an equal share (20%) of the capacity of the

root.finance-wizards.thrifty-treasurers queue. The following configuration for

the finance-wizards queue applies this limit:

 n Property: yarn.scheduler.capacity.root.finance-wizards.thrifty-

treasurers.minimum-user-limit-percent

 n Value: 20

This configuration property is named minimum-user-limit-percent to ref lect

the fact that it determines only the minimum to which any user’s share of the queue

capacity can shrink. In other words, irrespective of this limit, any user can come into

the queue and take more than his or her fair share if there are idle resources. Let’s look

at an example to see how this situation can occur.

 n Assume the queue started out being empty. Only user hillegas submits an appli-

cation, which occupies the entire queue’s capacity.

 n Now when another user meredith submits an application, hillegas and meredith

are both “assigned” 50% of the capacity of the queue. By “assigned,” we mean

that from that point onward, all scheduling decisions are based on the assump-

tion that each of those users deserves a 50% share of the queue.

 n Whether the containers of user hillegas are immediately killed to satisfy the

requests from user meredith is a function of whether preemption is enabled

in the Capacity scheduler. If hillegas’s containers are preempted in due time,

meredith’s application will start getting those containers until the 50% bal-

ance is reached. Otherwise, as containers from hillegas gradually finish in

their usual manner after completing their work, they will be assigned to

meredith.

 n Once the balance of 50% share for each user is reached, any freshly freed-up

capacity is alternately allocated to the applications of each user.

www.it-ebooks.info

http://www.it-ebooks.info/

User Limits 165

 n If either of the users doesn’t require the entire queue capacity to run his or

her application(s), the Capacity scheduler will automatically assign the extra

idle capacity to the other user who needs it, all in an elastic manner—even if

the current capacity assignments are 50% each. Thus, the sharing is based on

both the number of existing users and the outstanding demands of a specific

user. If a user has a 50% share but doesn’t have enough resource requirements

to make use of that share, the idle capacity is automatically allocated to the

other user, even if the other user is already meeting his or her 50% minimum

requirement.

 n As long as there are outstanding resource requests from existing as well as

newly submitted applications from the same set of users, the capacity assign-

ments to these users will not change.

 n Now if user tucker begins to submit applications to the same queue, the share of

each and every user currently present in the queue—that is, hillegas, meredith,

and tucker—becomes 33.3% of the queue capacity (again, assuming there is suf-

ficient demand from each user’s applications). The same rules of allocation and

reassignment apply as before.

 n This trend continues until five users are admitted into the queue and each of

them is assigned a 20% share as dictated by the minimum-user-limit-percent

configuration property for this queue.

 n If a sixth user selden now enters the queue, the behavior changes to respect the

administrator’s desire set via the configuration. Instead of continuing to further

divide the capacity among six users, the Capacity scheduler halts the sharing to

satisfy the minimum user limit percentage for each of the existing five users (i.e.,

20%). User selden will be put on a wait list until the applications of one or more

of the existing users finish.

 n Just as a growing number of users is managed, so a shrinking number of users

is also handled. As any users’ applications finish, other existing users with out-

standing requirements begin to reclaim the share. For example, in an alterna-

tive scenario, if hillegas, meredith, and tucker are each using 33% of the queue

capacity and user meredith’s applications complete, hillegas and tucker can now

each get 50% of the queue capacity, ref lecting the fact that there are only two

users in the queue now.

 n Despite this sharing among users, the fundamental nature of the Capacity

scheduler to schedule applications based on a FIFO order doesn’t change! This

guarantees that users cannot monopolize queues by submitting new applications

continuously: Applications (and thus the corresponding users) that are submitted

earlier always get a higher priority than applications that are submitted later.

Overall, user limits are put in place to enable fair sharing of queue resources, but

only up to a certain amount. A balance is sought between not spreading resources too

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN166

thin among users and avoiding the case in which one or a few users overwhelm the

queue with a continuous barrage of resource requests.

In addition to being governed by the configuration that controls sharing among users,

the Capacity scheduler’s leaf queues have the ability to restrict or expand a user’s share

within and beyond the queue’s capacity through the per-leaf-queue user-limit-factor

configuration. It denotes the fraction of queue capacity that any single user can grow, up

to a maximum, irrespective of whether there are idle resources in the cluster. This same

configuration also dictates various other application limits, as we will see later.

 n Property: yarn.scheduler.capacity.root.finance-wizards.user-limit-factor

 n Value: 1

The default value of 1 means that any single user in that queue can, at a maximum,

occupy only the queue’s configured capacity. This value avoids the case in which users

in a single queue monopolize resources across all queues in a cluster. By extension, set-

ting the value to 2 allows the queue to grow to a maximum of twice the size of the

queue’s configured capacity. Similarly, setting it to 0.5 restricts any user from growing

his or her share beyond half of the queue capacity.

Note that, like everything else, these limits can be dynamically changed at run

time using the refresh-queues functionality.

Reservations

The Capacity scheduler’s responsibility is to match free resources in the cluster with

the resource requirements of an application. Many times, however, a scheduling cycle

occurs in such a way that even though there are free resources on a node, they are not

large enough in size to satisfy the application that is at the head of the queue. This

situation typically happens with large-memory applications whose resource demand

for each of their containers is much larger than the typical application running in the

cluster. When such applications run in the cluster, anytime a regular application’s con-

tainers finish, thereby releasing previously used resources for new cycles of scheduling,

nodes will have freely available resources but the large-memory applications cannot

take advantage of them because the resources are still too small. If left unchecked, this

mismatch can cause starving of resource-intensive applications.

The Capacity scheduler solves this problem with a feature called reservations. The

scheduling f low for reservations resembles the following:

 n When a node reports in with a finished container and thus a certain amount of

freely available resources, the scheduler chooses the right queue based on capaci-

ties and maximum capacities.

 n Within that queue, the scheduler looks at the application in a FIFO order

together with the user limits. Once a needy application is found, it tries to see if

the requirements of that application can be met by this node’s free capacity.

www.it-ebooks.info

http://www.it-ebooks.info/

State of the Queues 167

 n If there is a size mismatch, the Capacity scheduler immediately creates a reserva-

tion for this application’s container on this node.

 n Once a reservation is made for an application on a node, those resources are not

used by the scheduler for any other queue, application, or container until the

original application for which the reservation was made is served.

 n The node on which a reservation was made can eventually report back that

enough containers have finished such that the total free capacity on the node

now matches the reservation size. When that happens, the Capacity scheduler

marks the reservation as fulfilled, removes it, and allocates a container on that

node.

 n Meanwhile, some other node may fulfill the resource needs of the application

such that the application no longer needs the reserved capacity. In such a situa-

tion, when the reserved node eventually comes back, the reservation is simply

cancelled.

To limit the number of reservations from growing in an unbounded manner, and to

prevent any potential scheduling deadlocks, the Capacity scheduler simplifies the prob-

lem drastically by maintaining only one active reservation per node.

State of the Queues

Queues in YARN can be in one of two states: RUNNING and STOPPED. These

states are not specific to the Capacity scheduler. As should already be obvious, the

RUNNING state indicates that a queue can accept application submissions, while a

STOPPED queue doesn’t accept any such requests. The default state of any configured

queue is RUNNING.

In the Capacity scheduler, both leaf queues and parent queues can be stopped. This

state includes the root queue as well. For an application to be accepted at any leaf

queue, all of the queues in the ancestry—all the way to the root queue—need to be

running. This requirement means that once a parent queue is stopped, all the descen-

dant queues in that hierarchy are inactive even if their own state is RUNNING.

In our example, the following configuration dictates the state of the finance-

wizards queue:

 n Property: yarn.scheduler.capacity.root.finance-wizards.state

 n Value: RUNNING

The rationale for enabling the ability to stop queues is that in various scenarios,

administrators wish to drain applications in a queue for many reasons. Decommission-

ing a queue to migrate users to other queues is one such example. Administrators can

stop queues at run time so that while currently present applications run to comple-

tion, no new applications are admitted. Existing applications can continue until they

complete, allowing the queue to be drained gracefully without any end-user impact.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN168

Administrators can also restart the stopped queues by modifying the same configura-

tion property and refreshing the queue using the rmadmin utility as described earlier.

Limits on Applications

To avoid system thrash due to an unmanageable load, created either by accident or

by malicious users, the Capacity scheduler puts a static configurable limit on the total

number of concurrently active (both running and pending) applications at any single

point in time. The default is 10,000. The following configuration property controls

this value.

 n Property: yarn.scheduler.capacity.maximum-applications

 n Value: 10000

The limit on any specific queue is a fraction of this total limit proportional to its

capacity. This setting is a hard limit, which means that once this limit is reached for

a queue, any new applications to that queue will be rejected and clients will have to

retry their requests after a while.

This limit can be explicitly overridden on a per-queue basis by the following con-

figuration property:

 n Property: yarn.scheduler.capacity.<queue-path>.maximum-applications

 n Value: absolute-capacity * yarn.scheduler.capacity.maximum-

applications

There is also a limit on the maximum percentage of resources in the cluster that

can be used by the ApplicationMasters. This limit defaults to 10%. It exists to avoid

cross-application deadlocks where significant resources in the cluster are occupied

entirely by the containers running ApplicationMasters that are waiting for other appli-

cations to release containers to proceed with their own work. This configuration indi-

rectly controls the number of concurrent running applications in the cluster, with each

queue limited to a number of applications proportional to its capacity.

 n Property: yarn.scheduler.capacity.maximum-am-resource-percent

 n Value: 0.1

Similar to the maximum number of applications, this limit can be overridden on a

per-queue basis as follows.

 n Property: yarn.scheduler.capacity.<queue-path>.maximum-am-resource-

percent

 n Value: 0.1

www.it-ebooks.info

http://www.it-ebooks.info/

Wrap-up 169

All of these limits ensure that a single application, user, or queue cannot cause cata-

strophic failures or monopolize the cluster and cause unreasonable degradation of clus-

ter performance or utilization.

User Interface

When the ResourceManager is started with Capacity scheduler, a scheduler webpage

is available on the main YARN web interface (http://localhost:8080). The scheduler

webpage is available by clicking the scheduler link in the left-hand column. As shown

in Figure 8.2, the interface shows the queue hierarchy and information about indi-

vidual queues.

Wrap-up

The Capacity scheduler has been successfully managing large-scale systems for several

years. Many of its concepts are directly inherited from the incarnation of CapacityTask-

Scheduler in Hadoop version 1. Thanks to knowledge garnered from the YARN com-

munity’s experience of running the Capacity scheduler on very large, shared clusters, it

Figure 8.2 Example YARN scheduler GUI

www.it-ebooks.info

http://localhost:8080
http://www.it-ebooks.info/

Chapter 8 Capacity Scheduler in YARN170

has been continuously enhanced to improve upon its original design goals of providing

elasticity in computing, a f lexible resource model, isolation using appropriate limits, sup-

port for multitenancy, and the ability to manage new scheduling policies.

The continuous growth of Hadoop clusters and new users has helped refine the

Capacity scheduler to its present form. It has become a useful tool to help manage the

operational complexity (at run time) of hierarchical queues, Access Control Lists, and

user and application limits; to set reservations; and to manage queue states.

www.it-ebooks.info

http://www.it-ebooks.info/

9
MapReduce with

Apache Hadoop YARN

The introduction of Hadoop version 2 has changed much of how MapReduce applica-

tions run on a cluster. Unlike the monolithic MapReduce–Schedule in Hadoop Version

1, Hadoop YARN has generalized the cluster resources available to users. To keep com-

patibility with Hadoop version 1, the YARN team has written a MapReduce framework

that works on top of YARN. The framework is highly compatible with Hadoop version

1, with only a small number of issues to consider. As with Hadoop version 1, Hadoop

YARN comes with virtually the same MapReduce examples and benchmarks that help

demonstrate how Hadoop YARN functions.

Running Hadoop YARN MapReduce Examples

Running the existing MapReduce examples is a straightforward process. The examples

are located in hadoop-[VERSION]/share/hadoop/mapreduce. Depending on where

you installed Hadoop, this path may vary. For the purposes of this example, let’s define

this path:

export YARN_EXAMPLES=$YARN_HOME/share/hadoop/mapreduce

$YARN_HOME should be defined as part of your installation. Also, the examples given

in this section have a version tag—in this case, “2.2.0.” Your installation may have

a different version tag. The following discussion provides some examples of Hadoop

YARN-based MapReduce programs and benchmarks.

Listing Available Examples

Using our $YARN_HOME environment variable, we can get a list of possible

examples by running

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 172

The possible examples are as follows:

An example program must be given as the first argument.

Valid program names are:

 aggregatewordcount: An Aggregate based map/reduce program that counts
 the words in the input files.

 aggregatewordhist: An Aggregate based map/reduce program that computes
 the histogram of the words in the input files.

 bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute
 exact digits of Pi.

 dbcount: An example job that counts the pageview counts from a database.

 distbbp: A map/reduce program that uses a BBP-type formula to compute
 exact bits of Pi.

 grep: A map/reduce program that counts the matches of a regex in the
 input.

 join: A job that effects a join over sorted, equally partitioned
 data sets

 multifilewc: A job that counts words from several files.

 pentomino: A map/reduce tile laying program to find solutions to
 pentomino problems.

 pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo
 method.

 randomtextwriter: A map/reduce program that writes 10GB of random
 textual data per node.

 randomwriter: A map/reduce program that writes 10GB of random data per
 node.

 secondarysort: An example defining a secondary sort to the reduce.

 sort: A map/reduce program that sorts the data written by the random
 writer.

 sudoku: A sudoku solver.

 teragen: Generate data for the terasort.

 terasort: Run the terasort.

 teravalidate: Checking results of terasort

 wordcount: A map/reduce program that counts the words in the input
 files.

 wordmean: A map/reduce program that counts the average length of the
 words in the input files.

 wordmedian: A map/reduce program that counts the median length of the
 words in the input files.

 wordstandarddeviation: A map/reduce program that counts the standard
 deviation of the length of the words in the input files.

To illustrate several capabilities of Hadoop YARN, we will show how to run the pi

benchmark, the terasort examples, and the TestDFSIO benchmark.

Running the Pi Example

To run the pi example with 16 maps and 100,000 samples, enter the following:

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar pi 16 100000

If the program runs correctly, you should see the following (after the log messages):

www.it-ebooks.info

http://www.it-ebooks.info/

Running Hadoop YARN MapReduce Examples 173

13/10/14 20:10:01 INFO mapreduce.Job: map 0% reduce 0%

13/10/14 20:10:08 INFO mapreduce.Job: map 25% reduce 0%

13/10/14 20:10:16 INFO mapreduce.Job: map 56% reduce 0%

13/10/14 20:10:17 INFO mapreduce.Job: map 100% reduce 0%

13/10/14 20:10:17 INFO mapreduce.Job: map 100% reduce 100%

13/10/14 20:10:17 INFO mapreduce.Job: Job job_1381790835497_0003 completed
successfully

13/10/14 20:10:17 INFO mapreduce.Job: Counters: 44

 File System Counters

 FILE: Number of bytes read=358

 FILE: Number of bytes written=1365080

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=4214

 HDFS: Number of bytes written=215

 HDFS: Number of read operations=67

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=3

 Job Counters

 Launched map tasks=16

 Launched reduce tasks=1

 Data-local map tasks=14

 Rack-local map tasks=2

 Total time spent by all maps in occupied slots (ms)=174725

 Total time spent by all reduces in occupied slots
 (ms)=7294

 Map-Reduce Framework

 Map input records=16

 Map output records=32

 Map output bytes=288

 Map output materialized bytes=448

 Input split bytes=2326

 Combine input records=0

 Combine output records=0

 Reduce input groups=2

 Reduce shuffle bytes=448

 Reduce input records=32

 Reduce output records=0

 Spilled Records=64

 Shuffled Maps =16

 Failed Shuffles=0

 Merged Map outputs=16

 GC time elapsed (ms)=195

 CPU time spent (ms)=7740

 Physical memory (bytes) snapshot=6143696896

 Virtual memory (bytes) snapshot=23140454400

 Total committed heap usage (bytes)=4240769024

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 174

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=1888

 File Output Format Counters

 Bytes Written=97

Job Finished in 20.854 seconds

Estimated value of Pi is 3.14127500000000000000

Notice that the MapReduce progress is shown in the same way as in MapReduce

version 1, but the application statistics are different. Most of the statistics are self-

explanatory. The one important item to note is that the YARN “Map-Reduce Frame-

work” is used to run the program. The use of this framework, which is designed to be

compatible with Hadoop version 1, will be discussed further later in this chapter.

Using the Web GUI to Monitor Examples

The Hadoop YARN web GUI differs from the web GUI found in Hadoop version

1. This section provides an illustration of how to use the web GUI to monitor and

find information about YARN jobs. Figure 9.1 shows the main YARN web interface

(http://hostname:8088). For this example, we use the pi application, which can run

quickly and finish before you have explored the GUI. A longer-running application,

like terasort, may be helpful when exploring all the various links in the GUI.

Figure 9.1 Hadoop YARN running applications web GUI for pi example

www.it-ebooks.info

http://hostname:8088
http://www.it-ebooks.info/

Running Hadoop YARN MapReduce Examples 175

Figure 9.2 Hadoop YARN nodes status window

If you look at the Cluster Metrics table, you will see some new information. First,

you will notice that rather than Hadoop version 1 “Map/Reduce Task Capacity,”

there is now information on the number of running containers. If YARN is running a

MapReduce job, these containers will be used for both map and reduce tasks. Unlike

in Hadoop version 1, the number of mappers and reducers is not fixed. There are also

memory metrics and links to node status. If you click on the nodes link, you can get a

summary of the node activity. For example, Figure 9.2 is a snapshot of the node activ-

ity while the pi application is running. Note again the number of containers, which

are used by the MapReduce framework as either mappers or reducers.

Going back to the main Applications/Running window, if you click on the

application_138… link, the Application status window in Figure 9.3 will be pre-

sented. This window provides similar information as the Running Applications win-

dow, but only for the selected job.

Clicking on the ApplicationMaster link in Figure 9.3 takes us to the window

shown in Figure 9.4. Note that the link to the application’s ApplicationMaster is also

found on the main Running Applications screen in the last column.

In the MapReduce Application window, the details of the MapReduce job can be

observed. Clicking on the job_138… brings up the window shown in Figure 9.5. (Your

job number will be different.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 176

Figure 9.3 Hadoop YARN application status for pi example

Figure 9.4 Hadoop YARN ApplicationMaster for MapReduce application

www.it-ebooks.info

http://www.it-ebooks.info/

Running Hadoop YARN MapReduce Examples 177

The status of the job is now presented in more detail. When the job is finished, the

window is updated to that shown in Figure 9.6.

Figure 9.5 Hadoop YARN MapReduce job progress

Figure 9.6 Hadoop YARN completed MapReduce job summary

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 178

If you click on the node used to run the ApplicationMaster (n0:8042 in our

example), the window in Figure 9.7 opens and provides a summary from the Node-

Manager. Again, the NodeManager tracks only containers; the actual tasks that the

containers run are determined by the ApplicationMaster.

Figure 9.7 Hadoop YARN NodeManager job summary

Figure 9.8 Hadoop YARN NodeManager logs available for browsing

www.it-ebooks.info

http://www.it-ebooks.info/

Running Hadoop YARN MapReduce Examples 179

Figure 9.9 Hadoop YARN application summary page

Going back to the job summary page, you can also examine the logs for the

ApplicationMaster by clicking the “logs” link. In the resulting window, shown in

Figure 9.8, stdout, stderr, and the syslog can all be browsed.

If we return to the main cluster window, choose Applications/Finished, and then

select our job, we will see the summary page shown in Figure 9.9.

There are a few things to notice as we moved through the windows as described

previously. First, because YARN manages applications, all input from YARN refers to

an application. YARN has no data about the actual application. Data from the Map-

Reduce job are provided by the MapReduce framework. Thus there are two clearly

different data streams that are combined in the web GUI: YARN applications and

MapReduce framework jobs. If the framework does not provide job information, then

certain parts of the web GUI will have nothing to display.

Another interesting aspect to note is the dynamic nature of the mapper and reducer

tasks. These are executed as YARN containers, and their number will change as

the application runs. This feature provides much better cluster utilization due to the

absence of static slots.

Finally, other links in the windows can be explored (e.g., the History link in

Figure 9.9). With the MapReduce framework, it is possible to drill down to the indi-

vidual map and reduce tasks. If log aggregation is enabled (see Chapter 6, “Apache

Hadoop YARN Administration”), then the individual logs for each map and reduce

task can be viewed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 180

Running the Terasort Test

To run the terasort benchmark, three separate steps are required. In general, the rows

are 100 bytes long; thus the total amount of data written is 100 times the number of

rows (i.e., to write 100 GB of data, use 1,000,000,000 rows). You will also need to

specify input and output directories in HDFS.

1. Run teragen to generate rows of random data to sort.

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar teragen
➥<number of 100-byte rows> <output dir>

2. Run terasort to sort the database.

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar terasort

➥<input dir> <output dir>

3. Run teravalidate to validate the sort teragen.

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.2.0.jar teravalidate

➥<terasort output dir> <teravalidate output dir>

Run the TestDFSIO Benchmark

YARN also includes an HDFS benchmark application called TestDFSIO. Similar to

terasort, it has several steps. We will write and read ten 1 GB files.

1. Run TestDFSIO in write mode and create data.

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-client-jobclient-2.2.0-tests.jar

➥TestDFSIO -write -nrFiles 10 -fileSize 1000

Example results are as follows (date and time removed):

fs.TestDFSIO: ----- TestDFSIO ----- : write

fs.TestDFSIO: Date & time: Wed Oct 16 10:58:20 EDT 2013

fs.TestDFSIO: Number of files: 10

fs.TestDFSIO: Total MBytes processed: 10000.0

fs.TestDFSIO: Throughput mb/sec: 10.124306231915458

fs.TestDFSIO: Average IO rate mb/sec: 10.125661849975586

fs.TestDFSIO: IO rate std deviation: 0.11729341192174683

fs.TestDFSIO: Test exec time sec: 120.45

fs.TestDFSIO:

2. Run TestDFSIO in read mode.

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-client-jobclient-2.2.0-tests.jar

➥TestDFSIO -read -nrFiles 10 -fileSize 1000

Example results are as follows (date and time removed):

fs.TestDFSIO: ----- TestDFSIO ----- : read

fs.TestDFSIO: Date & time: Wed Oct 16 11:09:00 EDT 2013

fs.TestDFSIO: Number of files: 10

www.it-ebooks.info

http://www.it-ebooks.info/

The MapReduce ApplicationMaster 181

fs.TestDFSIO: Total MBytes processed: 10000.0

fs.TestDFSIO: Throughput mb/sec: 40.946519750553804

fs.TestDFSIO: Average IO rate mb/sec: 45.240928649902344

fs.TestDFSIO: IO rate std deviation: 18.27387874605978

fs.TestDFSIO: Test exec time sec: 47.937

fs.TestDFSIO:

3. Clean up the TestDFSIO data.

$ yarn jar $YARN_EXAMPLES/hadoop-mapreduce-client-jobclient-2.2.0-tests.jar
➥TestDFSIO -clean

MapReduce Compatibility

MapReduce was the original use-case for which Hadoop was developed. To graph the

World Wide Web and illustrate how it changes over time, MapReduce was developed

to process this graph and its billions of nodes and trillions of edges. Moving this tech-

nology to YARN made it a complex application to build due to the requirements for

data locality, fault tolerance, and application priorities.

To provide data locality, the MapReduce ApplicationMaster is required to locate

blocks for processing and then request containers on these blocks. To implement fault

tolerance, the ability to handle failed map or reduce tasks and request them again on

other nodes was needed. Fault tolerance moved hand-in-hand with the complex intra-

application priorities.

The logic to handle complex intra-application priorities for map and reduce tasks

had to be built into the ApplicationMaster. There is no need to start idle reducers

before mappers finish processing enough data. Reducers are now under control of the

ApplicationMaster and are not fixed, as they had been in Hadoop version 1.

One rather unique failure mode occurs when a node fails after all the maps have

finished. When this happens, the map task must be repeated because the results are

unavailable. In many cases, all available containers are being used by the reducer tasks,

preventing the spawning of another mapper task to process the missing data. Logi-

cally, this would create a deadlock with reducers waiting for missing mapper data. The

MapReduce ApplicationMaster has been designed to detect this situation and, while

the solution is not ideal, will kill enough reducers to free up sufficient resources for

mappers to finish processing the missing data. The killed reducer will then start again,

allowing the job to complete.

The MapReduce ApplicationMaster

The MapReduce ApplicationMaster is implemented as a composition of loosely

coupled services. The services interact with one another via events. Each component

acts on the received events and sends out any required events to other components.

This design keeps it highly concurrent, with no or minimal synchronization needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 182

The events are dispatched by a central Dispatch mechanism. All components register

with the Dispatcher, and this information is shared across different components using

AppContext.

In Hadoop version 1, the death of the JobTracker would result in the loss of all jobs,

both running and queued. With YARN, the ApplicationMaster is a MapReduce job

that serves as the equivalent to the JobTracker. The ApplicationMaster will now run

on compute nodes, which can lead to an increase in failure scenarios. To combat the

threat of MapReduce ApplicationMaster failures, YARN has the capability to restart the

ApplicationMaster a specified number of times and the capability to recover completed

tasks. Additionally, much like the JobTracker, the ApplicationMaster keeps metrics for

jobs that are currently running. Typically, the ApplicationMaster tracking URL makes

these metrics available and can be found as part of the YARN web GUI (discussed in the

earlier pi example). The following setting can enable MapReduce recovery in YARN.

Enabling Application Master Restarts

To enable ApplicationMaster restarts, do the following:

1. Inside yarn-site.xml, you can tune the property

yarn.resourcemanager.am.max-retries. The default is 2.

2. Inside mapred-site.xml, you can more directly tune how many times

a MapReduce ApplicationMaster should restart with the property

mapreduce.am.max-attempts. The default is 2.

Enabling Recovery of Completed Tasks

To enable recovery of completed tasks, look inside the mapred-site.xml file. The

property yarn.app.mapreduce.am.job.recovery.enable enables the recovery of

tasks. By default, it is true.

The JobHistory Server

With the ApplicationMaster now taking the place of the JobTracker, a centralized

location for the history of all MapReduce jobs was required. The JobHistory server

helps fill the void left by the transitory ApplicationMaster by hosting these completed

job metrics and logs. This new history daemon is unrelated to the services provided by

YARN and is directly tied to the MapReduce application framework.

Calculating the Capacity of a Node

Since YARN has now removed the hard-partitioned mapper and reducer slots of

Hadoop version 1, new capacity calculations are required. There are eight important

parameters for calculating a node’s capacity; they are found in the mapred-site.xml

and yarn-site.xml files.

www.it-ebooks.info

http://www.it-ebooks.info/

Calculating the Capacity of a Node 183

 n mapred-site.xml

 n mapreduce.map.memory.mb

mapreduce.reduce.memory.mb

The hard limit enforced by Hadoop on the mapper or reducer task.

 n mapreduce.map.java.opts

mapreduce.reduce.java.opts

The heap size of the jvm –Xmx for the mapper or reducer task. Remember to

leave room for the JVM Perm Gen and Native Libs used. This value should

always be smaller than mapreduce.[map|reduce].memory.mb.

 n yarn-site.xml

 n yarn.scheduler.minimum-allocation-mb

The smallest container YARN will allow.

 n yarn.scheduler.maximum-allocation-mb

The largest container YARN will allow.

 n yarn.nodemanager.resource.memory-mb

The amount of physical memory (RAM) on the compute node for containers.

It is important that this value isn’t the total RAM on the node, as other Hadoop

services also require RAM.

 n yarn.nodemanager.vmem-pmem-ratio

The amount of virtual memory each container is allowed. This is calculated

by the following formula: containerMemoryRequest*vmem-pmem-ratio.

As an example, consider a configuration with the settings in Table 9.1.

Using these settings, we have given each map and reduce task a generous 512

MB of overhead for the container, as seen with the difference between the

mapreduce.[map|reduce].memory.mb and the mapreduce.[map|reduce].java.opts.

Table 9.1 Example YARN MapReduce Settings

Property Value

mapreduce.map.memory.mb 1536

mapreduce.reduce.memory.mb 2560

mapreduce.map.java.opts -Xmx1024m

mapreduce.reduce.java.opts -Xmx2048m

yarn.scheduler.minimum-allocation-mb 512

yarn.scheduler.maximum-allocation-mb 4096

yarn.nodemanager.resource.memory-mb 36864

yarn.nodemanager.vmem-pmem-ratio 2.1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 184

Next YARN has been configured to allow a container no smaller than 512 MB and

no larger than 4 GB; the compute nodes have 36 GB of RAM available for containers.

With a virtual memory ratio of 2.1 (the default value), each map can have as much as

3225.6 MB and a reducer can have 5376 MB of virtual memory. Thus our compute

node configured for 36 GB of container space can support up to 24 maps or 14 reduc-

ers, or any combination of mappers and reducers allowed by the available resources on

the node.

Changes to the Shuffle Service

As in Hadoop version 1, the shuff le functionality is required for parallel MapReduce

job operation. Reducers fetch the outputs from all the maps by “shuff ling” map output

data from the corresponding nodes where map tasks have run. The MapReduce shuf-

f le functionality is implemented as an auxiliary service in the NodeManager. This ser-

vice starts up a Netty web server in the NodeManager address space and knows how

to handle MapReduce-specific shuff le requests from reduce tasks. The MapReduce

ApplicationMaster specifies the service ID for the shuff le service, along with security

tokens that may be required when the ApplicationMaster starts any container. In the

returning response, the NodeManager provides the ApplicationMaster with the port

on which the shuff le service is running, which is then passed on to the reduce tasks.

Hadoop version 2 also provides the option for encrypted shuff le. With encrypted

shuff le functionality, the ability to use HTTPS with optional client authentication is

possible. The feature is implemented with a toggle for HTTP or HTTPS, keystore/

truststore properties, and the distribution of these stores to new and existing nodes.

For details of the multistep configuration of encrypted shuff le, it is recommended that

users read the most current documentation for this feature on the Apache Hadoop

website.

Running Existing Hadoop Version 1 Applications

To ease the transition from Hadoop version 1 to YARN, a major goal of YARN and

the MapReduce framework implementation on top of YARN is to ensure that exist-

ing MapReduce applications that were programmed and compiled against previous

MapReduce APIs (we’ll call these MRv1 applications) can continue to run with little

work on top of YARN (we’ll call these MRv2 applications).

Binary Compatibility of org.apache.hadoop.mapred APIs

For the vast majority of users who use the org.apache.hadoop.mapred APIs, Map-

Reduce on YARN ensures full binary compatibility. These existing applications can run

on YARN directly without recompilation. You can use jar files of your existing applica-

tion that code against MapReduce APIs, and use bin/hadoop to submit them directly to

YARN.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Existing Hadoop Version 1 Applications 185

Source Compatibility of org.apache.hadoop.mapreduce APIs

Unfortunately, it has proved difficult to ensure full binary compatibility of applica-

tions that were originally compiled against MRv1 org.apache.hadoop.mapreduce

APIs. These APIs have gone through lots of changes. For example, a bunch of classes

stopped being abstract classes and changed to interfaces. The YARN community even-

tually reached a compromise on this issue, supporting source compatibility only for

org.apache.hadoop.mapreduce APIs. Existing applications using MapReduce APIs are

source compatible and can run on YARN either with no changes, with simple recom-

pilation against MRv2 jar files that are shipped with Hadoop version 2, or with minor

updates.

Compatibility of Command-line Scripts

Most of the command-line scripts from Hadoop 1.x should just work, without any

tweaking. The only exception is MRAdmin, whose functionality was removed from

MRv2 because JobTracker and TaskTracker no longer exist. The MRAdmin function-

ality has been replaced with RMAdmin. The suggested method to invoke MRAdmin

(as well as RMAdmin) is through the command line, even though one can directly

invoke the APIs. In YARN, when mradmin commands are executed, warning messages

will appear, reminding users to use YARN commands (i.e., rmadmin commands). Con-

versely, if the user’s applications programmatically invoke MRAdmin, those applications

will break when running on top of YARN. There is no support for either binary or

source compatibility under YARN.

Compatibility Tradeoff Between MRv1 and

Early MRv2 (0.23.x) Applications

Unfortunately, there are some APIs that may be compatible either with MRv1 applica-

tions or with early MRv2 applications (in particular, the applications compiled against

Hadoop 0.23), but not both. Some of these APIs were exactly the same in both MRv1

and MRv2, except for the return type change in their method signatures. Therefore,

we were forced to trade off the compatibility between the two.

 n We decided to make MapReduce APIs be compatible with MRv1 applications,

which have a larger user base.

 n If MapReduce APIs don’t significantly break Hadoop 0.23 applications, we made

the same decision of making them compatible with version 0.23 but only source

compatible with 1.x versions.

Table 9.2 lists the APIs that are incompatible with Hadoop 0.23. If early Hadoop

2 adopters using 0.23.x versions included the following methods in their custom rou-

tines, they must modify the code accordingly. For some problematic methods, we pro-

vided an alternative method with the same functionality and similar method signature

to MRv2 applications.

www.it-ebooks.info

http://www.it-ebooks.info/

C
h
a
p
te

r 9
M

a
p
R

e
d
u
c
e
 w

ith
 A

p
a
c
h
e
 H

a
d
o
o
p
 Y

A
R

N

1
8

6

Table 9.2 MRv2 Incompatible APIs

Problematic Method: org.apache.hadoop

Incompatible Return

Type Change Alternative Method

util.ProgramDriver#drive void -> int run

mapred.jobcontrol.Job#getMapredJobID String -> JobID getMapredJobId

mapred.TaskReport#getTaskId String -> TaskID getTaskID

mapred.ClusterStatus

➥#UNINITIALIZED_MEMORY_VALUE

long -> int N/A

mapreduce.filecache.DistributedCache

➥#getArchiveTimestamps

long[] -> String[] N/A

mapreduce.filecache.DistributedCache

➥#getFileTimestamps

long[] -> String[] N/A

mapreduce.Job#failTask void -> boolean killTask(TaskAttemptID, boolean)

mapreduce.Job#killTask void -> boolean killTask(TaskAttemptID, boolean)

mapreduce.Job#getTaskCompletionEvents mapred.TaskCompletionEvent[]

➥-> mapreduce.TaskCompletionEvent[]

N/A

www.it-ebooks.info

http://www.it-ebooks.info/

Running MapReduce Version 1 Existing Code 187

Running MapReduce Version 1 Existing Code

Most of the MRv1 examples continue to work on YARN, except that they are now

present in a newly versioned jar file. One exception worth mentioning is that the sleep

example, which was originally found in hadoop-examples-1.x.x.jar, is no longer

in hadoop-mapreduce-examples-2.x.x.jar but rather was moved into the test jar

hadoop-mapreduce-client-jobclient-2.x.x-tests.jar.

That exception aside, users may want to directly try hadoop-examples-1.x.x.jar on

YARN. Running hadoop -jar hadoop-examples-1.x.x.jar will still pick the classes

in hadoop-mapreduce-examples-2.x.x.jar. This behavior is due to Java first search-

ing the desired class in the system jar files; if the class is not found there, it will go on

to search in the user jar files in classpath.hadoop-mapreduce-examples-2.x.x.jar,

which is installed together with other MRv2 jar files in the Hadoop class path. Thus the

desired class (e.g., WordCount) will be picked from this 2.x.x jar file instead of the 1.x.x

jar file. However, it is possible to let Java pick the classes from the jar file that is specified

after -jar option. Users have two options:

 n Add HADOOP_USER_CLASSPATH_FIRST=true and

HADOOP_CLASSPATH=...:hadoop-examples-1.x.x.jar as environment

variables, and add mapreduce.job.user.classpath.first = true in

mapred-site.xml.

 n Remove the 2.x.x jar from the class path. If it is a multiple-node cluster, the jar

file needs to be removed from the class path on all the nodes.

Running Apache Pig Scripts on YARN

Pig is one of the two major data process applications in the Hadoop ecosystem, with

the other being Hive. Because of significant efforts from the Pig community, Pig

scripts of existing users don’t need any modifications. Pig on YARN in Hadoop 0.23

has been supported since version 0.10.0 and Pig working with Hadoop 2.x has been

supported since version 0.10.1.

Existing Pig scripts that work with Pig 0.10.1 and beyond will work just fine on top

of YARN. In contrast, versions earlier than Pig 0.10.x may not run directly on YARN

due to some of the incompatible MapReduce APIs and configuration.

Running Apache Hive Queries on YARN

Hive queries of existing users don’t need any change to work on top of YARN, start-

ing with Hive 0.10.0, thanks to the work done by Hive community. Support for Hive

to work on YARN in the Hadoop 0.23 and 2.x releases has been in place since version

0.10.0. Queries that work in Hive 0.10.0 and beyond will work without changes on

top of YARN. However, as with Pig, earlier versions of Hive may not run directly on

YARN, as those Hive releases don’t support Hadoop 0.23 and 2.x.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 188

Running Apache Oozie Workflows on YARN

Like the Pig and Hive communities, the Apache Oozie community worked to make

sure existing Oozie workf lows would run in a completely backward-compatible man-

ner on Hadoop version 2. Support for Hadoop 0.23 and 2.x is available starting with

Oozie release 3.2.0. Existing Oozie workf lows can start taking advantage of YARN in

versions 0.23 and 2.x with Oozie 3.2.0 and above.

Advanced Features

The following features are included in Hadoop version 2 but have not been extensively

tested. The user community is encouraged to play with these features and provide

feedback to the Apache Hadoop community.

Uber Jobs

An Uber Job occurs when multiple mapper and reducers are combined to use a single

container. There are four core settings around the configuration of Uber Jobs found in

the mapred-site.xml options presented in Table 9.3.

Pluggable Shuffle and Sort

This plug-in allows users to replace built-in shuff le and sort logic with alternative

paradigms but is currently considered unstable. These properties can be set on a per-

job basis, as shown in Table 9.4, or as a site-wide property, as shown in Table 9.5. The

properties identified in Table 9.4 can also be set in mapred-site.xml to change the

default values for all jobs. Use-cases include protocol changes between mappers and

reducers as well as the use of custom algorithms enabling new types of sorting. While

the NodeManagers handle all shuff le services for the default shuff le, any pluggable

shuff le and sort configurations will run in the job tasks themselves.

Important

If you are setting an auxiliary service in addition to the default mapreduce_shuffle

service, then you should add a new service key to the yarn.nodemanager.aux-

services property—for example, mapreduce_shufflex. Then the property defining the cor-

responding class must be yarn.nodemanager.aux-services.mapreduce_shufflex.class.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Features 189

Table 9.3 Configuration Options for Uber Jobs

Property Explanation

mapreduce.job.ubertask.enable Whether to enable the small-jobs “ubertask” optimi-

zation, which runs “sufficiently small” jobs sequen-

tially within a single JVM. “Small” is defined by the

maxmaps, maxreduces, and maxbytes settings. Users

may override this value.

Default = false.

mapreduce.job.ubertask.maxmaps Threshold for the number of maps beyond which

the job is considered too big for the ubertasking

optimization. Users may override this value, but only

downward.

Default = 9.

mapreduce.job.ubertask.maxreduces Threshold for the number of reduces beyond which

the job is considered too big for the ubertasking

optimization. Currently the code cannot support more

than one reduce and will ignore larger values. (Zero is

a valid maximum, however.) Users may override this

value, but only downward.

Default = 1.

mapreduce.job.ubertask.maxbytes Threshold for the number of input bytes beyond

which the job is considered too big for the uber-

tasking optimization. If no value is specified,

dfs.block.size is used as a default. Be sure to

specify a default value in mapred-site.xml if the

underlying file system is not HDFS. Users may over-

ride this value, but only downward.

Default = HDFS block size.

Table 9.4 Job Configuration Properties (on a Per-Job Basis)

Property Default Value

mapreduce.job.reduce.shuffle

➥.consumer.plugin.class

org.apache.hadoop.mapreduce.task.reduce.Shuffle

mapreduce.job.map.output.collector

➥.class

org.apache.hadoop.mapred.MapTask$MapOutputBuffer

Table 9.5 NodeManager Configuration Properties (yarn-site.xml on All Nodes)

Property Default Value

yarn.nodemanager.aux-services mapreduce.shuffle

yarn.nodemanager.aux-services.mapreduce

➥.shuffle.class

org.apache.hadoop.mapred.ShuffleHandler

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 MapReduce with Apache Hadoop YARN 190

Wrap-up

Running Hadoop version 1 MapReduce applications on Hadoop YARN has been

made as simple and as compatible as possible. Because MapReduce is now a YARN

framework, the execution life cycle is different than that found in Hadoop version 1.

The results are the same, however.

The shift from discrete mappers and reducers to containers can be seen by running

and monitoring the example MapReduce programs with the web GUI. The distinc-

tion between YARN containers and MapReduce mappers and reducers is clearly evi-

dent in these examples.

In most cases, Hadoop YARN version 2 provides source code compatibility with

all Hadoop version 1 MapReduce code. There is also a fair amount of binary compat-

ibility with many applications, such as Pig and Hive.

www.it-ebooks.info

http://www.it-ebooks.info/

10
Apache Hadoop YARN

Application Example

 In describing how to write a YARN application, it can be helpful to review a bit of

YARN’s architecture. YARN is a platform for allowing distributed applications to

take full advantage of the resources that YARN has deployed. Currently, resources

can be things like CPU, memory, and data. Many developers coming from a server-

side application development background or from a classic MapReduce developer

background may be accustomed to a certain f low in the development and deploy-

ment cycle. In this chapter, the application development life cycle in YARN will be

described and the unique requirements of a YARN application will be demonstrated.

YARN applications can launch containers encapsulating virtually any application writ-

ten in any language; however, for the initial releases of YARN, application clients and

ApplicationMasters are only demonstrated in Java. Toward this end, we assume famil-

iarity with basic Java programming methods.

To illustrate writing a working YARN application, we’ll walk through the process

of writing an application that creates a cluster of JBoss Application Servers (JBoss AS).

JBoss AS is an open-source Java EE server that is itself a Java application. It can oper-

ate in what it calls “domain mode,” meaning there is a defined cluster of JBoss AS

instances. To run in this mode, we not only need to deploy and run JBoss AS, but we

also need to configure each JBoss AS instance. In YARN terminology, a JBoss AS

instance is under the control of a single YARN container.

As depicted in Figure 10.1, the JBoss client requests resources from the Resource-

Manager, by providing a container request in the form of an ApplicationSubmission-

Context, starting the application on the cluster.

The YARN Client

We’ll also need to write a YARN client. First, however, let’s discuss what a YARN cli-

ent actually does. The YARN client is a plain Java object that does not extend any class or

implement any interface. It is a main-method runnable class that learns about the YARN

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 192

environment by instantiating an org.apache.hadoop.yarn.conf.YarnConfiguration

object. The YarnConfiguration object depends on finding the yarn-default.xml and

yarn-site.xml files in its class path. If these requirements are met, there should be no

problems with running your YARN client.

Once a YarnConfiguration object is created in your client, you’ll use that object to

create an org.apache.hadoop.client.api.YarnClient. This YarnClient object will

do much of the heavy lifting in your YARN application’s client, as suggested by some

of its tasks:

 n Instantiate a YarnClient object

 n Initialize itself with the YarnConfiguration object

 n Start a YarnClient

 n Get YARN cluster metrics

 n Get YARN node reports

 n Get queue information

 n Get ACL information for the user running the client

 n Create the client application

 n Submit the application to the YARN ResourceManager

 n Get application reports after submitting the application

In addition to providing this core functionality, a YARN client will prepare your

application for the YARN cluster by propagating environment variables and whatever

resources your application needs—resources like dependent libraries and archive files

that can be automatically unarchived by YARN. The YARN client will also create

contexts for application submission and for AM container’s launch.

As a runnable Java object, the YARN client generally takes command-line argu-

ments or, at the very least, parse a configuration file that the client users can supply. A

number of options are available for parsing command-line options with Java, ranging

from using the java.util.Scanner class as a foundation to build your own parser to

Master Node

ResourceManager

Client

Create Application

Submit

ApplicationSubmissionContext

Figure 10.1 Communication pathways between the client submitting the

application and the ResourceManager

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 193

using a library specifically built for this use-case. In this chapter’s example, we’ll use

the Apache Commons CLI library.

Let’s start to see what a client looks like by examining the first part of the code

example, shown in Listing 10.1.

Listing 10.1 YARN client main method

public class JBossClient {

 private static final Logger LOG =

 Logger.getLogger(JBossClient.class.getName());

 private Configuration conf;

 private YarnClient yarnClient;

 private String appName;

 private int amPriority;

 private String amQueue = "";

 private int amMemory;

 private String appJar = "";

 private final String appMasterMainClass =

 JBossApplicationMaster.class

 .getName();

 private int priority;

 private int containerMemory;

 private int numContainers;

 private String adminUser;

 private String adminPassword;

 private String jbossAppUri;

 private String log4jPropFile = "";

 boolean debugFlag = false;

 private Options opts;

 public static void main(String[] args) {

 boolean result = false;

 try {

 JBossClient client = new JBossClient();

 try {

 boolean doRun = client.init(args);

 if (!doRun) {

 System.exit(0);

 }

 } catch (IllegalArgumentException e) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 194

 client.printUsage();

 System.exit(-1);

 }

 result = client.run();

 } catch (Throwable t) {

 System.exit(1);

 }

 if (result) {

 System.exit(0);

 }

 System.exit(2);

 }

. . . .

}

The package and import statements are omitted for brevity, as are the logging

statements. We’ll focus on building key pieces of the application, with the entire

example available in the book repository (see Appendix A). In Listing 10.1, we see

a standard main-method class structure with global variables, most of which will be

assigned values from command-line arguments. The conf variable is the object that

will have its values populated from the YarnConfiguration object instantiation men-

tioned earlier. The yarnClient variable is, as its name suggests, the variable that ref-

erences the YarnClient object also discussed earlier. The opts variable references an

org.apache.commons.cli.Options object, which is the object we will use to hold the

command-line argument names and their values.

After creating the client object that will represent our JBossClient, we initialize

the object with the command-line arguments and then run the client with the method

named run(). Let’s take a look at each of these steps in greater detail by adding to the

class we’re building. When we create the JBossClient object, we’re using the default

constructor. In the constructor, we instantiate a YarnClient, as shown in Listing 10.2.

Listing 10.2 YARN client constructor

public JBossClient() throws Exception {

 this.conf = new YarnConfiguration();

 yarnClient = YarnClient.createYarnClient();

 yarnClient.init(conf);

 opts = new Options();

 opts.addOption("appname", true,

 "Application Name. Default value - JBoss on YARN");

 opts.addOption("priority", true, "Application Priority. Default 0");

 opts.addOption("queue", true,

 "RM Queue in which this application is to be submitted");

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 195

 opts.addOption("timeout", true, "Application timeout in milliseconds");

 opts.addOption("master_memory", true,

 "Amount of memory in MB to be requested to run the application master");

 opts.addOption("jar", true,

 "JAR file containing the applicationmaster");

 opts.addOption("container_memory", true,

 "Amount of memory in MB to be requested to run the shell command");

 opts.addOption("num_containers", true,

 "No. of containers on which the shell command needs to be executed");

 opts.addOption("admin_user", true,

 "User id for initial administrator user");

 opts.addOption("admin_password", true,

 "Password for initial administrator user");

 opts.addOption("debug", false, "Dump out debug information");

 opts.addOption("help", false, "Print usage");

}

In the constructor, the first step is to make sure that the environment for

YARN is available to our client. The YarnConfiguration class is a subclass of the

org.apache.hadoop.conf.Configuration class. The Configuration class should be

familiar to MapReduce programmers: It is the class used in MapReduce version 1 as

an argument in creating the org.apache.hadoop.mapreduce.Job object. Similarly,

the YarnConfiguration object is used during the creation of the YarnClient object.

Creating a YarnConfiguration object successfully and without unexpected results

requires you to ensure the appropriate XML configuration files are correctly config-

ured and in the client’s class path, particularly yarn-site.xml and yarn-default.xml.

You can avoid a lot of wasted time by making sure duplicate and conf licting con-

figuration files aren’t in your class path. The yarn-site.xml file is typically found

in the standard configuration directory for Hadoop installations: ~/etc/hadoop.

The yarn-default.xml file will provide default values for any property not explic-

itly configured in yarn-site.xml. The yarn-default.xml file is found in the

hadoop-yarn-common-<version>.jar file, which normally resides in a directory that

is in the default Hadoop class path.

Once a YarnConfiguration object is successfully created, it’s a simple process to cre-

ate a YarnClient object. The YarnClient object is created through a factory method of

the YarnClient class itself. Once the YarnClient is instantiated, it’s initialized with the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 196

YarnConfiguration object. The YarnClient needs the configuration because a Yarn Client

is one of many so-called YARN services. YARN has built into its core architecture the

notion of services. For instance, the log aggregation service, node status and health ser-

vices, and the MapReduce version 2 shuff le handler are all examples of services shipped

with YARN. Services have as their functionality life-cycle methods like init, start, and

stop, as well as methods to determine the service state and, in the case of a service fail-

ure, to determine the cause of the failure. Services also have the capability of registering

listeners that will receive callbacks from YARN on certain events.

The initialization of the YarnClient first determines the ResourceManager’s IP

address and port. These values are taken from the yarn-site.xml or yarn-default.xml

file mentioned earlier. They are specified by the yarn.resourcemanager.address prop-

erty. Next, the YarnClient looks for the interval in which it should poll for the appli-

cation’s state. The property yarn.client.app-submission.poll-interval is used to

determine this value in milliseconds; the default value is 1000.

Once the YarnClient is initialized, it creates a ResourceManager client proxy that

is internal to the YarnClient object. This proxy is intended to be abstracted from the

YARN application developer. A YarnClient method is the preferred means for the

developer to code YARN client operations.

After the YARN client objects have been properly created, we use the Options

class to add command-line options. For each option, we must add has three arguments

that are passed to the Options.addOption method: (1) the argument name, (2) an

indicator whether the argument is required, and (3) a description of the argument that

we can have as console output when the user requests help or when we want to display

the usage of the command after detecting bad command-line input.

The command-line options we will create for our sample application are basic in

nature. We can specify the application’s name, a priority, the queue in the scheduler,

and the memory we’ll request for the ApplicationMaster as well as the containers. Most

of the arguments are specific to the YARN environment. A few options we specify are

specific to the JBoss AS instances we set up—namely, the user ID and password of the

initial JBoss AS admin user.

Next, we will create the initialization process by adding a method to our class, as

shown in Listing 10.3. This init method is where we’ll parse the command-line argu-

ments entered by the user.

Listing 10.3 YARN client initialization

public boolean init(String[] args) throws ParseException {

 CommandLine cliParser =

 new GnuParser().parse(opts, args);

 if (args.length == 0) {

 throw new IllegalArgumentException(

 "No args specified for client to initialize");

 }

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 197

 if (cliParser.hasOption("help")) {

 printUsage();

 return false;

 }

 if (cliParser.hasOption("debug")) {

 debugFlag = true;

 }

 appName = cliParser.getOptionValue(

 "appname", "JBoss on YARN");

 amPriority = Integer

 .parseInt(cliParser.getOptionValue("priority",

 "0"));

 amQueue = cliParser.getOptionValue(

 "queue", "default");

 amMemory = Integer.parseInt(

 cliParser.getOptionValue("master_memory",

 "1024"));

 if (amMemory < 0) {

 throw new IllegalArgumentException(

 "Invalid memory specified for application

 master exiting." + " Specified memory=" +

 amMemory);

 }

 if (!cliParser.hasOption("jar")) {

 throw new IllegalArgumentException(

 "No jar file specified for application master");

 }

 appJar = cliParser.getOptionValue("jar");

 containerMemory = Integer.parseInt(

 cliParser.getOptionValue(

 "container_memory", "1024"));

 numContainers = Integer.parseInt(

 cliParser.getOptionValue("num_containers", "2"));

 adminUser = cliParser.getOptionValue(

 "admin_user", "yarn");

 adminPassword = cliParser.getOptionValue(

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 198

 "admin_password", "yarn");

 if (containerMemory < 0 || numContainers < 1) {

 throw new IllegalArgumentException(

 "Invalid no. of containers or container memory

 specified, exiting." + " Specified

 containerMemory=" + containerMemory

 + ", numContainer=" + numContainers);

 }

 return true;

}

The creation of an org.apache.commons.cli.CommandLine object is fairly simple

and a good reason to use this library to handle command-line input. It takes the

options we created in our constructor and the entire input from the command line and

does the parsing for us. To assign values to the global variables we created in Listing

10.1, we get the values from the CommandLine object; in the event the user forgot

or didn’t specify a required argument, we can identify a default value. As with any

command-line application, here is where we’ll do our validation to make sure that the

user has not entered any values that would cause problems (e.g., problems like specify-

ing the number of containers to run on as 0 or less). After the initialization, we need

to actually submit the application to YARN (Listing 10.4).

Listing 10.4 Submit an application to YARN

public boolean run() throws IOException, YarnException {

 yarnClient.start();

 YarnClientApplication app =

 yarnClient.createApplication();

 GetNewApplicationResponse appResponse =

 app.getNewApplicationResponse();

 int maxMem =

 appResponse.getMaximumResourceCapability()

 .getMemory();

 if (amMemory > maxMem) {

 amMemory = maxMem;

 }

 ApplicationSubmissionContext appContext =

 app.getApplicationSubmissionContext();

 ApplicationId appId =

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 199

 appContext.getApplicationId();

 appContext.setApplicationName(appName);

 ContainerLaunchContext amContainer =

 Records.newRecord(ContainerLaunchContext.class);

 Map<String, LocalResource> localResources =

 new HashMap<String, LocalResource>();

 FileSystem fs = FileSystem.get(conf);

 Path src = new Path(appJar);

 String pathSuffix = appName + File.separator +

 appId.getId() + File.separator + "JBossApp.jar";

 Path dst = new Path(fs.getHomeDirectory(),

 pathSuffix);

 jbossAppUri = dst.toUri().toString();

 fs.copyFromLocalFile(false, true, src, dst);

 FileStatus destStatus = fs.getFileStatus(dst);

 LocalResource amJarRsrc =

 Records.newRecord(LocalResource.class);

 amJarRsrc.setType(LocalResourceType.FILE);

 amJarRsrc.setVisibility(

 LocalResourceVisibility.APPLICATION);

 amJarRsrc.setResource(

 ConverterUtils.getYarnUrlFromPath(dst));

 amJarRsrc.setTimestamp(

 destStatus.getModificationTime());

 amJarRsrc.setSize(destStatus.getLen());

 localResources.put("JBossApp.jar", amJarRsrc);

 amContainer.setLocalResources(localResources);

 Map<String, String> env =

 new HashMap<String, String>();

 StringBuilder classPathEnv = new StringBuilder(

 Environment.CLASSPATH.$()).append(

 File.pathSeparatorChar).append("./*");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 200

 for (String c : conf.getStrings(

 YarnConfiguration.YARN_APPLICATION_CLASSPATH,

 YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH))

 {

 classPathEnv.append(File.pathSeparatorChar);

 classPathEnv.append(c.trim());

 }

 env.put("CLASSPATH", classPathEnv.toString());

 amContainer.setEnvironment(env);

 Vector<CharSequence> vargs = new

 Vector<CharSequence>(30);

 vargs.add(Environment.JAVA_HOME.$() + "/bin/java");

 vargs.add("-Xmx" + amMemory + "m");

 vargs.add(appMasterMainClass);

 vargs.add("--container_memory " +

 String.valueOf(containerMemory));

 vargs.add("--num_containers " +

 String.valueOf(numContainers));

 vargs.add("--priority " + String.valueOf(priority));

 vargs.add("--admin_user " + adminUser);

 vargs.add("--admin_password " + adminPassword);

 vargs.add("--jar " + jbossAppUri);

 if (debugFlag) {

 vargs.add("--debug");

 }

 vargs.add("1>" +

 JBossConstants.JBOSS_CONTAINER_LOG_DIR

 + "/JBossApplicationMaster.stdout");

 vargs.add("2>" +

 JBossConstants.JBOSS_CONTAINER_LOG_DIR

 + "/JBossApplicationMaster.stderr");

 StringBuilder command = new StringBuilder();

 for (CharSequence str : vargs) {

 command.append(str).append(" ");

 }

 List<String> commands = new ArrayList<String>();

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 201

 commands.add(command.toString());

 amContainer.setCommands(commands);

 Resource capability =

 Records.newRecord(Resource.class);

 capability.setMemory(amMemory);

 appContext.setResource(capability);

 appContext.setAMContainerSpec(amContainer);

 Priority pri = Records.newRecord(Priority.class);

 pri.setPriority(amPriority);

 appContext.setPriority(pri);

 appContext.setQueue(amQueue);

 yarnClient.submitApplication(appContext);

 return monitorApplication(appId);

}

The run method shown in Listing 10.4 is rather long, but we show the functionality

in a single method to keep the example client’s steps of client creation, initialization,

and execution easy to follow. Let’s take the code in Listing 10.4 and break it down. As

we described earlier, a YarnClient is a YARN service that has life-cycle methods. We

called the init method in our client’s constructor, so now we’ll call the start method in

the run method.

Once the YarnClient is started, we use the object to create an org.apache.hadoop

.yarn.client.api.YarnClientApplication. This YarnClient Application object will

be populated for us with a couple of key objects—namely, org.apache.hadoop.yarn

.api.protocolrecords.GetNewApplicationResponse and org.apache.hadoop.yarn

.api.records.ApplicationSubmissionContext. The GetNewApplicationResponse

will let us get the maximum resources available, such as the maximum memory and

maximum virtual cores. The ApplicationSubmissionContext will give us a unique

application ID for the YARN cluster; in addition, it will be the object where we will

define the specification for the application’s ApplicationMaster. The code that follows

illustrates the beginning of this f low in our run method.

yarnClient.start();

YarnClientApplication app =

 yarnClient.createApplication();

GetNewApplicationResponse appResponse =

 app.getNewApplicationResponse();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 202

The first thing we’ll use from the YarnClientApplication is the GetNewApplication-

Response object, which we’ll use to determine the maximum memory available on any

given node in the cluster. One of the command-line options we gave the user was to

specify how much memory to give the ApplicationMaster through the master_memory

option. If the user specifies more memory than the amount available, we simply give the

ApplicationMaster the maximum amount available instead of the requested amount.

Next, we’ll use the ApplicationSubmissionContext to get the application ID that

we’ll use a little later. The first value we give the ApplicationSubmissionContext is the

application’s name. This name is used in a few places, including in the built-in YARN

web application, where we can see it displayed. The following snippet from the run

method shows what we’ve described.

int maxMem =

 appResponse.getMaximumResourceCapability()

 .getMemory();

if (amMemory > maxMem) {

 amMemory = maxMem;

}

ApplicationSubmissionContext appContext =

 app.getApplicationSubmissionContext();

ApplicationId appId =

 appContext.getApplicationId();

appContext.setApplicationName(appName);

The next value we give to the ApplicationSubmissionContext is the Container-

LaunchContext. The ApplicationMaster is itself a YARN container, albeit a special

kind of container, often referred to as “container 0.” So that the ApplicationMaster

container can launch, we create an object of type org.apache.hadoop.yarn.api

.records.ContainerLaunchContext. The ContainerLaunchContext for an

ApplicationMaster typically has resources it needs for its run time, with the most obvi-

ous one being the jar file with the ApplicationMaster class. The ContainerLaunch-

Context takes a map of resources with a java.lang.String as the key and an

org.apache.hadoop.yarn.api.records.LocalResource as the value. The map key

is translated into a symbolic link in the file system visible to the container. More

details on this aspect will follow, but for now, let’s describe the code in Listing 10.4

that builds the map of LocalResources for the ApplicationMaster ContainerLaunch-

Context. First, we create the ContainerLaunchContext as a YARN record.

ContainerLaunchContext amContainer =

 Records.newRecord(ContainerLaunchContext.class);

Map<String, LocalResource> localResources =

 new HashMap<String, LocalResource>();

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 203

One of the command-line options allows the user to give a path on the local

file system where the ApplicationMaster jar file is located. This path is on the

local file system where the user invokes the client. The problem we immediately

face is that a YARN cluster doesn’t have visibility to the client’s local file system;

thus we have to put the jar file in a location where each container has access. The

best way to do so is to use HDFS. The first thing we do after creating the map of

LocalResources is to have our client copy the jar file from the local file system to

HDFS. The Local Resource object for the ApplicationMaster jar file is defined as

LocalResourceType.FILE so that it will be copied to a container’s file system without

being unarchived.

After defining the resource type, we define the resource visibility by exposing the

resource as LocalResourceVisibility.APPLICATION, which means only the applica-

tion will have access to this resource. We could define other visibility settings to make

the resource available to all the applications on the container’s node or to all the appli-

cations of the same user on the node, but in our example, we’ll take the most secure

approach and limit the use of the jar file to our own application.

After defining resource visibility, for verification purposes, we let YARN know

the timestamp of the file as well as the file size. The resource is then added to the

LocalResource map, with the map subsequently being added to the ContainerLaunch-

Context. The section of Listing 10.4 that handles these tasks is shown next.

FileSystem fs = FileSystem.get(conf);

Path src = new Path(appJar);

String pathSuffix = appName + File.separator +

 appId.getId() + File.separator + "JBossApp.jar";

Path dst = new Path(fs.getHomeDirectory(),

 pathSuffix);

jbossAppUri = dst.toUri().toString();

fs.copyFromLocalFile(false, true, src, dst);

FileStatus destStatus = fs.getFileStatus(dst);

LocalResource amJarRsrc =

Records.newRecord(LocalResource.class);

amJarRsrc.setType(LocalResourceType.FILE);

amJarRsrc.setVisibility(

 LocalResourceVisibility.APPLICATION);

amJarRsrc.setResource(

 ConverterUtils.getYarnUrlFromPath(dst));

amJarRsrc.setTimestamp(

 destStatus.getModificationTime());

amJarRsrc.setSize(destStatus.getLen());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 204

localResources.put("JBossApp.jar", amJarRsrc);

amContainer.setLocalResources(localResources);

After adding the local resources to the ContainerLaunchContext, we add optional

environment settings and the command to launch the ApplicationMaster. In setting

the environment for the ApplicationMaster, we get the class path of the client, get

the class path of the client’s YARN environment, and build the class path string from

those values. The environment variables to set consist of a map of java.lang.Strings

to which we add the class path we just built with the key of CLASSPATH.

Map<String, String> env =

 new HashMap<String, String>();

StringBuilder classPathEnv = new StringBuilder(

 Environment.CLASSPATH.$()).append(

 File.pathSeparatorChar).append("./*");

for (String c : conf.getStrings(

 YarnConfiguration.YARN_APPLICATION_CLASSPATH,

 YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH))

{

 classPathEnv.append(File.pathSeparatorChar);

 classPathEnv.append(c.trim());

}

env.put("CLASSPATH", classPathEnv.toString());

amContainer.setEnvironment(env);

Next, we build the command to launch the ApplicationMaster; many of the

options we pass to that command are the options the user specified on the cli-

ent’s command line. As you can see from the example, we build a standard

Java command. In doing so, YARN provides a convenience method with the

org.apache.hadoop.yarn.api.ApplicationConstants.Environment class. Through

the use of Environment.JAVA_HOME.$(), YARN formats the environment vari-

able appropriately for a Windows environment by using the “%” character before

and after the environment variable; it uses the “$” character before the variable in

a Linux environment. The rest of the parameters for the Java command are what

we would expect. The command is appended with log files to which we redirect

stdout and stderr. Here we can define any directory and file to which the YARN

application has write permissions. Using our example, we hard-code a directory

but we could use the YarnConfiguration object to get the yarn.log.dir value with

conf.get("yarn.log.dir");.

A ContainerLaunchContext can take a java.util.List of commands from which

YARN will build the shell script to launch the container. For the ApplicationMaster,

we need only a single command. Thus, after adding the Java command we just built

to the list, we use the list to specify the ContainerLaunchContext commands. The

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 205

following code segment from Listing 10.4 builds the ApplicationMaster launch com-

mand and adds the command to the ContainerLaunchContext.

Vector<CharSequence> vargs = new

 Vector<CharSequence>(30);

vargs.add(Environment.JAVA_HOME.$() + "/bin/java");

vargs.add("-Xmx" + amMemory + "m");

vargs.add(appMasterMainClass);

vargs.add("--container_memory " +

 String.valueOf(containerMemory));

vargs.add("--num_containers " +

 String.valueOf(numContainers));

vargs.add("--priority " + String.valueOf(priority));

vargs.add("--admin_user " + adminUser);

vargs.add("--admin_password " + adminPassword);

vargs.add("--jar " + jbossAppUri);

if (debugFlag) {

 vargs.add("--debug");

}

vargs.add("1>" +

 JBossConstants.JBOSS_CONTAINER_LOG_DIR

 + "/JBossApplicationMaster.stdout");

vargs.add("2>" +

 JBossConstants.JBOSS_CONTAINER_LOG_DIR

 + "/JBossApplicationMaster.stderr");

StringBuilder command = new StringBuilder();

for (CharSequence str : vargs) {

 command.append(str).append(" ");

}

List<String> commands = new ArrayList<String>();

commands.add(command.toString());

amContainer.setCommands(commands);

After we set the commands on the ContainerLaunchContext, we’re ready to let the

ApplicationSubmissionContext know that the ContainerLaunchContext we just built

is the ApplicationMaster container. Recall that the ApplicationMaster is launched as a

container. Because there is only one, however, YARN has a specific method for defin-

ing this ContainerLaunchContext as the ApplicationMaster.

appContext.setAMContainerSpec(amContainer);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 206

After defining the ContainerLaunchContext and adding it to the ApplicationSub-

missionContext, we’re ready to turn our attention back to the remaining configura-

tion of the ApplicationSubmissionContext. One of the important tasks in building the

ApplicationSubmissionContext is to specify the resource capability of the application.

Typically, one of the most important resources in a YARN application is memory.

The example illustrates the standard way to define a memory resource and to add that

resource to the ApplicationSubmissionContext. Other important parts of the Applica-

tionSubmissionContext are the queue and priority for the application. These values go

somewhat hand-in-hand. YARN, like MapReduce version 1, supports the concept of

schedulers—for example, the Capacity scheduler. Schedulers are pluggable and defin-

able in yarn-site.xml and help to manage the concurrent job environment of a typi-

cal YARN cluster. If your YARN cluster is a typical cluster, you’ll have many YARN

applications running simultaneously, which in turn means managing those jobs above

and beyond assigning resources will be an administrative concern. Schedulers help

with this management by providing queues to which YARN applications are submit-

ted and priority values that the queue will assign the application. Chapter 8, “Capacity

Scheduler in YARN,” addresses this functionality in greater detail. The code to make

these settings is shown in the following snippet.

Resource capability =

 Records.newRecord(Resource.class);

 capability.setMemory(amMemory);

 appContext.setResource(capability);

Priority pri = Records.newRecord(Priority.class);

 pri.setPriority(amPriority);

 appContext.setPriority(pri);

 appContext.setQueue(amQueue);

After we finish defining the scheduler queue and priority of the application, we’re

ready for the YarnClient to actually submit the application. In the client code, the

method call to submit the application blocks until the ResourceManager returns an

application state of ACCEPTED.

yarnClient.submitApplication(appContext);

The last thing we show in the sample application is how to monitor the application

from a client perspective (Listing 10.5).

Listing 10.5 Monitoring a YARN application

private boolean monitorApplication(ApplicationId appId)

 throws YarnException, IOException {

 while (true) {

 try {

www.it-ebooks.info

http://www.it-ebooks.info/

The YARN Client 207

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 }

 ApplicationReport report =

 yarnClient.getApplicationReport(appId);

 LOG.info("Got application report from ASM for" + ",

 appId=" + appId.getId() + ", clientToAMToken=" +

 report.getClientToAMToken() + ", appDiagnostics="

 + report.getDiagnostics() + ", appMasterHost="

 + report.getHost() + ", appQueue=" +

 report.getQueue() + ", appMasterRpcPort=" +

 report.getRpcPort() + ", appStartTime=" +

 report.getStartTime() + ", yarnAppState="

 + report.getYarnApplicationState().toString()

 + ", distributedFinalState="

 + report.getFinalApplicationStatus().toString()

 + ", appTrackingUrl=" + report.getTrackingUrl()

 + ", appUser=" + report.getUser());

 YarnApplicationState state =

 report.getYarnApplicationState();

 FinalApplicationStatus jbossStatus = report

 .getFinalApplicationStatus();

 if (YarnApplicationState.FINISHED == state) {

 if (FinalApplicationStatus.SUCCEEDED ==

 jbossStatus) {

 LOG.info("Application has completed successfully. Breaking monitoring

➥loop");

 return true;

 } else {

 LOG.info("Application did finished

 unsuccessfully."

 + " YarnState=" + state.toString()

 + ", JBASFinalStatus="

 + jbossStatus.toString()

 + ". Breaking monitoring loop");

 return false;

 }

 } else if (YarnApplicationState.KILLED ==

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 208

 state || YarnApplicationState.FAILED == state)

 {

 LOG.info("Application did not finish." + "

 YarnState=" + state.toString() + ",

 JBASFinalStatus=" + jbossStatus.toString() +

 ". Breaking monitoring loop");

 return false;

 }

 }

}

In the monitoring method, shown in Listing 10.5, we simply get the metadata of

the application through the YarnClient. The application metadata is encapsulated in an

object of type ApplicationReport that we get every second. The ApplicationReport

has various convenience methods to get metadata like the application ID, but also more

interesting data like the application’s state and final status. These metadata values are

logged to the console until the application either finishes successfully or is killed by the

ResourceManager.

The ApplicationMaster

After creating the client to manage the YARN application submission and applica-

tion monitoring, we can turn our attention to writing the ApplicationMaster. A newly

created application registers itself with the ResourceManager. The ApplicationMaster

then performs data processing by requesting resources that are issued as containers

from the ResourceManager. The ApplicationMaster then communicates with the

NodeManager to start the containers and then to monitor running containers that

were previously requested for data processing. This process is described in Figure 10.2.

Like the client, our ApplicationMaster is a Java main method class. Almost identical

to the way we set up the YARN application client, we can specify global variables and a

main method to kick off the ApplicationMaster, as shown in Listing 10.6.

Listing 10.6 Developing a YARN ApplicationMaster

public class JBossApplicationMaster {

 private static final Logger LOG =

 Logger.getLogger(

 JBossApplicationMaster.class.getName());

 private Configuration conf;

 private AMRMClientAsync resourceManager;

 private NMClientAsync nmClientAsync;

 private NMCallbackHandler containerListener;

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 209

 private ApplicationAttemptId appAttemptID;

 private String appMasterHostname = "";

 private int appMasterRpcPort = 0;

 private String appMasterTrackingUrl = "";

 private int numTotalContainers;

 private int containerMemory;

 private int requestPriority;

 private String adminUser;

 private String adminPassword;

 private AtomicInteger numCompletedContainers =

 new AtomicInteger();

 private AtomicInteger numAllocatedContainers =

 new AtomicInteger();

 private AtomicInteger numFailedContainers =

 new AtomicInteger();

Master Node

ResourceManager

Logical Node

Application Master

U
nregister Application

Request Resources

G
et Containers

Register Application

Logical Node

Node Manager

Container

Receive Container

Status

Figure 10.2 ApplicationMaster communication pathways between the

ResourceManager and the NodeManagers

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 210

 private AtomicInteger numRequestedContainers =

 new AtomicInteger();

 private Map<String, String> shellEnv =

 new HashMap<String, String>();

 private String jbossHome;

 private String appJar;

 private String domainController;

 private volatile boolean done;

 private volatile boolean success;

 private List<Thread> launchThreads =

 new ArrayList<Thread>();

 private Options opts;

 public static void main(String[] args) {

 boolean result = false;

 try {

 JBossApplicationMaster appMaster =

 new JBossApplicationMaster();

 boolean doRun = appMaster.init(args);

 if (!doRun) {

 System.exit(0);

 }

 result = appMaster.run();

 } catch (Throwable t) {

 LOG.log(Level.SEVERE, "Error running

 JBossApplicationMaster", t);

 System.exit(1);

 }

 if (result) {

 LOG.info("Application Master completed

 successfully. exiting");

 System.exit(0);

 } else {

 LOG.info("Application Master failed.

 exiting");

 System.exit(2);

 }

 }

. . .

}

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 211

As was the case with the client, we have a default constructor for our JBossApplica-

tionMaster that we use in the main method (Listing 10.7). Also, as was the case with

the client constructor, we do some ApplicationMaster setup in the constructor.

Listing 10.7 YARN ApplicationMaster constructor

public JBossApplicationMaster() throws Exception {

 conf = new YarnConfiguration();

 opts = new Options();

 opts.addOption("admin_user", true,

 "User id for initial administrator user");

 opts.addOption("admin_password", true,

 "Password for initial administrator user");

 opts.addOption("container_memory", true,

 "Amount of memory in MB to be requested to run

 the shell command");

 opts.addOption("num_containers", true,

 "No. of containers on which the shell command

 needs to be executed");

 opts.addOption("jar", true,

 "JAR file containing the application");

 opts.addOption("priority", true,

 "Application Priority. Default 0");

 opts.addOption("debug", false,

 "Dump out debug information");

 opts.addOption("help", false, "Print usage");

}

Like the development f low in the client, the ApplicationMaster f low follows a

constructor, initialization, and run sequence. We show the similarity with the cli-

ent constructor by creating a YarnConfiguration object that encapsulates the YARN

environment where the ApplicationMaster container is launched, and by defining

command-line options. As with the client, after the constructor, we add a method to

do some initialization (Listing 10.8).

Listing 10.8 YARN ApplicationMaster initialization

public boolean init(String[] args) throws ParseException, IOException {

 CommandLine cliParser =

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 212

 new GnuParser().parse(opts, args);

 if (args.length == 0) {

 printUsage(opts);

 throw new IllegalArgumentException(

 "No args specified for application master to

 initialize");

 }

 if (cliParser.hasOption("help")) {

 printUsage(opts);

 return false;

 }

 if (cliParser.hasOption("debug")) {

 dumpOutDebugInfo();

 }

 containerMemory =

 Integer.parseInt(cliParser.getOptionValue(

 "container_memory", "1024"));

 numTotalContainers = Integer.parseInt(

 cliParser.getOptionValue("num_containers", "2"));

 adminUser = cliParser.getOptionValue(

 "admin_user", "yarn");

 adminPassword = cliParser.getOptionValue(

 "admin_password", "yarn");

 appJar = cliParser.getOptionValue("jar");

 if (numTotalContainers == 0) {

 throw new IllegalArgumentException(

 "Cannot run JBoss Application Master with no

 containers");

 }

 requestPriority = Integer.parseInt(

 cliParser.getOptionValue("priority", "0"));

 return true;

}

Thus far, the pattern follows much of what we did with the client. In the init

method shown in Listing 10.8, we code the same type of logic as was used in the client

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 213

to parse the command-line options. Remember, these are the command-line options

for the command you built in the client. Accordingly, you can include some error

checking and other validation for the command in the ApplicationMaster code. It’s

probably best to do the bulk of that validation in the client, because your client code

should be the only thing to invoke the ApplicationMaster’s command, any command

line errors should be caught prior to this step.

The code to run the ApplicationMaster has some significant differences from the

code to run the client and introduces a few key concepts of YARN application devel-

opment. To start, the following code is the run method we’ll add to our Application-

Master in Listing 10.7.

Listing 10.9 Running a YARN ApplicationMaster

public boolean run() throws YarnException, IOException {

 AMRMClientAsync.CallbackHandler allocListener =

 new RMCallbackHandler();

 resourceManager =

 AMRMClientAsync.createAMRMClientAsync(

 1000, allocListener);

 resourceManager.init(conf);

 resourceManager.start();

 containerListener = new NMCallbackHandler();

 nmClientAsync =

 new NMClientAsyncImpl(containerListener);

 nmClientAsync.init(conf);

 nmClientAsync.start();

 RegisterApplicationMasterResponse response =

 resourceManager.registerApplicationMaster(

 appMasterHostname, appMasterRpcPort,

 appMasterTrackingUrl);

 int maxMem = response.getMaximumResourceCapability()

 .getMemory();

 if (containerMemory > maxMem) {

 containerMemory = maxMem;

 }

 for (int i = 0; i < numTotalContainers; ++i) {

 ContainerRequest containerAsk =

 setupContainerAskForRM();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 214

 resourceManager.addContainerRequest(containerAsk);

 }

 numRequestedContainers.set(numTotalContainers);

 while (!done) {

 try {

 Thread.sleep(200);

 } catch (InterruptedException ex) {

 }

 }

 finish();

 return success;

}

Let’s break down the f low of the run logic into some easily digested steps.

Here’s what needs to happen in your application code to have a fully functional

ApplicationMaster:

 n Develop a callback handler to listen for ResourceManager events

 n Create an object using the YARN APIs that will encapsulate the YARN

ResourceManager client in the ApplicationMaster

 n Develop a callback handler to listen for NodeManager events

 n Create an object using the YARN APIs that will encapsulate the YARN Node-

Manager client in the ApplicationMaster

 n Develop a class to launch a container

In Listing 10.9, we see references to the objects that we need to either instantiate or

develop on our own. The code snippet that follows instantiates our ResourceManager

callback handler and then uses that object to create a client object that is a YARN

library for asynchronous communication between the ApplicationMaster and the

ResourceManager. The class to launch the container will be used by our Resource-

Manager callback handler. Thus, when we review the steps we need to develop that

functionality, we’ll show how to develop that class.

AMRMClientAsync.CallbackHandler allocListener = new RMCallbackHandler();

resourceManager = AMRMClientAsync.createAMRMClientAsync(1000, allocListener);

resourceManager.init(conf);

resourceManager.start();

We saw the same YARN service life cycle in developing the client—that is, call

an init method using a YarnConfiguration object as the argument followed by the

start method call. Likewise, the code snippet from Listing 10.9 that follows shows the

instantiation of a NodeManager callback handler. This object will be used to cre-

ate the client object for asynchronous communication between the NodeManagers of

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 215

the application and the ApplicationMaster. Again, note the YARN service life-cycle

method invocation.

containerListener = new NMCallbackHandler();

nmClientAsync = new NMClientAsyncImpl(containerListener);

nmClientAsync.init(conf);

nmClientAsync.start();

After setting up the callback handlers and the asynchronous clients, it’s time to reg-

ister the ApplicationMaster with the ResourceManager.

RegisterApplicationMasterResponse response =

➥resourceManager.registerApplicationMaster(appMasterHostname, appMasterRpcPort,

➥appMasterTrackingUrl);

When you register your ApplicationMaster with the ResourceManager, you supply

it with basic information such as the ApplicationMaster hostname, the RPC port, and

a tracking URL. The tracking URL can be defined by the programmer and is used in

several places—most notably the built-in YARN web user interface that will display

a link to this URL. After a successful registration, the heartbeat thread between the

ResourceManager and the ApplicationManager begins.

The rest of the code in Listing 10.9 should look familiar, as we needed to put simi-

lar logic in our client (e.g., code to validate the requested memory for the containers

and code to set up the container resource requests).

In the beginning of the run thread, we introduced the callback handlers and the

container launch code. One of the first callbacks in the ApplicationMaster’s run

method is a reference to RMCallbackHandler. Listing 10.10 shows the code we need

to create such a handler. We have added this class as a private class to the Application-

Master we’re building, but it could just as easily be a standard external class.

Listing 10.10 ResourceManager callback handler

private class RMCallbackHandler implements

AMRMClientAsync.CallbackHandler {

 public void onContainersCompleted(

 List<ContainerStatus> completedContainers) {

 for (ContainerStatus containerStatus :

 completedContainers) {

 assert (containerStatus.getState() ==

 ContainerState.COMPLETE);

 int exitStatus =

 containerStatus.getExitStatus();

 if (0 != exitStatus) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 216

 if (ContainerExitStatus.ABORTED

 != exitStatus) {

 numCompletedContainers.incrementAndGet();

 numFailedContainers.incrementAndGet();

 } else {

 numAllocatedContainers.decrementAndGet();

 numRequestedContainers.decrementAndGet();

 }

 } else {

 numCompletedContainers.incrementAndGet();

 }

 }

 int askCount = numTotalContainers –

 numRequestedContainers.get();

 numRequestedContainers.addAndGet(askCount);

 if (askCount > 0) {

 for (int i = 0; i < askCount; ++i) {

 ContainerRequest containerAsk =

 setupContainerAskForRM();

 resourceManager.

 addContainerRequest(containerAsk);

 }

 }

 if (numCompletedContainers.get() ==

 numTotalContainers) {

 done = true;

 }

 }

 public void onContainersAllocated(

 List<Container> allocatedContainers) {

 numAllocatedContainers.addAndGet(

 allocatedContainers.size());

 for (Container allocatedContainer :

 allocatedContainers) {

 LaunchContainerRunnable

 runnableLaunchContainer =

 new LaunchContainerRunnable(

 allocatedContainer, containerListener);

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 217

 Thread launchThread = new

 Thread(runnableLaunchContainer);

 launchThreads.add(launchThread);

 launchThread.start();

 }

 }

 public void onShutdownRequest() {

 done = true;

 }

 public void onNodesUpdated(

 List<NodeReport> updatedNodes) {

 }

 public void onError(Throwable e) {

 done = true;

 resourceManager.stop();

 }

}

The methods that we use here are all specified in the AMRMClientAsync

.CallbackHandler interface that the RMCallbackHandler implements. The methods

are easy enough to follow, but let’s focus on the onContainersAllocated method.

Once a container has been allocated by the ResourceManager, we’ll start that con-

tainer with the LaunchContainerRunnable class that we develop as a thread by imple-

menting java.lang.Runnable. This class is shown in Listing 10.11.

Listing 10.11 Launching a container

private class LaunchContainerRunnable implements Runnable {

 Container container;

 NMCallbackHandler containerListener;

 public LaunchContainerRunnable(Container lcontainer, NMCallbackHandler

➥containerListener) {

 this.container = lcontainer;

 this.containerListener = containerListener;

 }

 public void run() {

 String containerId = container.getId().toString();

 ContainerLaunchContext ctx =

 Records.newRecord(ContainerLaunchContext.class);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 218

 Map<String, LocalResource> localResources = new HashMap<String,

➥LocalResource>();

 String applicationId =

➥container.getId().getApplicationAttemptId().getApplicationId().toString();

 try {

 FileSystem fs = FileSystem.get(conf);

 LocalResource jbossDist =

 Records.newRecord(LocalResource.class);

 jbossDist.setType(LocalResourceType.ARCHIVE);

 jbossDist.setVisibility(

 LocalResourceVisibility.APPLICATION);

 Path jbossDistPath = new Path(new URI(

 JBossConstants.JBOSS_DIST_PATH));

 jbossDist.setResource(ConverterUtils

 .getYarnUrlFromPath(jbossDistPath));

 jbossDist.setTimestamp(

 fs.getFileStatus(jbossDistPath)

 .getModificationTime());

 jbossDist.setSize(

 fs.getFileStatus(jbossDistPath).getLen());

 localResources.put(JBossConstants.JBOSS_SYMLINK,

 jbossDist);

 LocalResource jbossConf =

 Records.newRecord(LocalResource.class);

 jbossConf.setType(LocalResourceType.FILE);

 jbossConf.setVisibility(

 LocalResourceVisibility.APPLICATION);

 Path jbossConfPath = new Path(new URI(appJar));

 jbossConf.setResource(

 ConverterUtils.getYarnUrlFromPath(

 jbossConfPath));

 jbossConf.setTimestamp(

 fs.getFileStatus(jbossConfPath).

 getModificationTime());

 jbossConf.setSize(

 fs.getFileStatus(jbossConfPath).getLen());

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 219

 localResources.put(

 JBossConstants.JBOSS_ON_YARN_APP, jbossConf);

 } catch (Exception e) {

 LOG.log(Level.SEVERE,

 "Problem setting local resources", e);

 numCompletedContainers.incrementAndGet();

 numFailedContainers.incrementAndGet();

 return;

 }

 ctx.setLocalResources(localResources);

 List<String> commands = new ArrayList<String>();

 String host = container.getNodeId().getHost();

 String containerHome =

 conf.get("yarn.nodemanager.local-dirs")

 + File.separator + ContainerLocalizer.USERCACHE

 + File.separator +

 System.getenv().get(Environment.USER.toString())

 + File.separator + ContainerLocalizer.APPCACHE

 + File.separator + applicationId + File.separator

 + containerId;

 jbossHome = containerHome + File.separator

 + JBossConstants.JBOSS_SYMLINK + File.separator

 + JBossConstants.JBOSS_VERSION;

 String jbossPermissionsCommand =

 String.format("chmod -R 777 %s", jbossHome);

 int portOffset = 0;

 int containerCount =

 containerListener.getContainerCount();

 if (containerCount > 1) {

 portOffset = containerCount * 150;

 }

 String domainControllerValue;

 if (domainController == null) {

 domainControllerValue = host;

 } else {

 domainControllerValue = domainController;

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 220

 String jbossConfigurationCommand =

 String.format("%s/bin/java -cp %s %s --home %s --server_group %s

➥--server %s --port_offset %s --admin_user %s --admin_password %s

➥--domain_controller %s --host %s",

 Environment.JAVA_HOME.$(),

 "/opt/hadoop-2.2.0/share/hadoop/common/lib/*" + File.pathSeparator

 + containerHome + File.separator +

 JBossConstants.JBOSS_ON_YARN_APP,

 JBossConfiguration.class.getName(),

 jbossHome,

 applicationId, containerId,

 portOffset, adminUser,

 adminPassword, domainControllerValue, host);

 String jbossCommand =

 String.format("%s%sbin%sdomain.sh

 -Djboss.bind.address=%s

 -Djboss.bind.address.management=%s

 -Djboss.bind.address.unsecure=%s",

 jbossHome, File.separator, File.separator,

 host, host, host);

 commands.add(jbossPermissionsCommand);

 commands.add(JBossConstants.COMMAND_CHAIN);

 commands.add(jbossConfigurationCommand);

 commands.add(JBossConstants.COMMAND_CHAIN);

 commands.add(jbossCommand);

 ctx.setCommands(commands);

 containerListener.addContainer(

 container.getId(), container);

 nmClientAsync.startContainerAsync(

 container, ctx);

 }

 }

In general, the ApplicationMaster sets up the containers environment, commands,

and local resources before submitting it as a ContainerLaunchContext to the Node-

Manager. Once these steps are complete, the NodeManager then launches the pro-

vided container, as shown in Figure 10.3.

The container launcher contains many steps. The following is a list of the actions

that take place when we start our JBoss application:

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 221

 n We create a map of LocalResources in the same way we did with the client.

 n The LocalResource map has two resources added to it: the JBoss AS distribution

and the jar file that contains our entire YARN application.

 n We create commands to change the permissions of the unarchived JBoss AS

file, do some editing of the JBoss AS configuration files, and run the JBoss AS

instance.

 n We start the container.

Each of these steps will now be discussed in greater detail. The map of Local-

Resources has the JBoss AS distribution as a tar.gz file. This file is automatically

unarchived by YARN and given the symbolic link as the string specified as the map

key. Using our example, the JBoss AS distribution can be found in HDFS at the fol-

lowing location: hdfs://yarn1.apps.hdp:9000/apps/jboss/dist/jboss-as-7.1.1.Final.tar.gz.

If the file is in HDFS, we can create a LocalResource with the convenience method

ConverterUtils.getYarnUrlFromPath. The code from Listing 10.11 to accomplish all

this is shown in the following snippet.

LocalResource jbossDist =

 Records.newRecord(LocalResource.class);

jbossDist.setType(LocalResourceType.ARCHIVE);

jbossDist.setVisibility(

 LocalResourceVisibility.APPLICATION);

Path jbossDistPath = new Path(

 new URI("hdfs://yarn1.apps.hdp:9000/apps/jboss/dist/jboss-as-7.1.1.Final.tar.

➥gz"));

Logical Node Logical Node

Node Manager

Start Container

Node Manager

Starts ContainerLaunchContext

Application Master
Container

JBoss AS

Figure 10.3 ApplicationManager communication with the NodeManager

starting a container for data processing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 222

jbossDist.setResource(ConverterUtils

 .getYarnUrlFromPath(jbossDistPath));

jbossDist.setTimestamp(fs.getFileStatus(jbossDistPath)

 .getModificationTime());

jbossDist.setSize(

 fs.getFileStatus(jbossDistPath).getLen());

localResources.put("jboss", jbossDist);

We also add the application jar file to the container’s LocalResource map and then

begin building our commands to work with the container. To accomplish this, we

need to define the location of our unarchived JBoss AS distribution.

The root of each container’s local file system is defined by the property

yarn.nodemanager.local-dirs, which is specified in yarn-site.xml. In our example,

we’ve given this property the value of /var/data/yarn. From this base directory, the

NodeManager will create subdirectories where each container will have its own file

system. Notably, this directory structure will be deleted once the container is stopped,

which can make application development difficult. Fortunately, YARN lets us config-

ure how long a container’s local directory structure can live before it is deleted by the

NodeManager. By specifying the yarn.nodemanager.delete.debug-delay-sec prop-

erty in yarn-site.xml, we can give a value in seconds defining how long the con-

tainer’s directory will live before being deleted. For debugging YARN applications,

it’s best to set this property to a suitably high value so you monitor your container’s

file system.

Next we need the command to start the JBoss AS instances. The code includes

some logic to do a couple of things specific to JBoss AS. Although a complete descrip-

tion of JBoss AS configuration is beyond the scope of this book, we note that we need

to configure port numbers and a domain mode. JBoss AS is a server process that will

open specific sockets on a number of ports. With YARN, we always have the pos-

sibility of running more than one instance of an application container on the same

host. Thus, if your application launches a container that might conf lict with another

running container on the same host, some tweaks are needed. In our case, we need

to increment port numbers in the JBoss AS instance if another container is launched

by the same NodeManager. Fortunately, JBoss AS offers a quick and easy way to do

this—simply specify the value by which to increment all ports in a configuration file.

Also, JBoss AS supports the concept of a domain mode, which means that all server

instances in the same domain can be managed by a single UI instance. Since YARN

is by nature a clustered application platform, we will take advantage of JBoss AS’s

domain mode and configure each instance of JBoss AS accordingly. In domain mode,

one server instance acts as the domain controller; the remaining instances are slave

nodes that communicate to the domain controller with configurable RPC and secu-

rity settings. All of this configuration takes place before the actual JBoss AS server

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 223

instance is launched, and all of the source code for this configuration can be found at

this book’s repository (see Appendix A).

The first command added to the ContainerLaunchContext is easy to understand. It

changes the permissions in the container’s file system so we can easily write the con-

figuration. The next commands are shown in the following snippet.

String jbossConfigurationCommand =

 String.format("%s/bin/java -cp %s %s --home %s --server_group %s --server %s --
➥port_offset %s --admin_user %s --admin_password %s --domain_controller %s --

➥host %s",

 Environment.JAVA_HOME.$(),

 "/opt/hadoop-2.2.0/share/hadoop/common/lib/*"

 + File.pathSeparator + containerHome

 + File.separator + JBossConstants.JBOSS_ON_YARN_APP,

 JBossConfiguration.class.getName(), jbossHome,

 applicationId, containerId, portOffset, adminUser,

 adminPassword, domainControllerValue, host);

String jbossCommand =

 String.format("%s%sbin%sdomain.sh

 -Djboss.bind.address=%s

 -Djboss.bind.address.management=%s

 -Djboss.bind.address.unsecure=%s",

 jbossHome, File.separator, File.separator,

 host, host, host);

These commands configure and launch JBoss AS, respectively. When they are

added to the ContainerLaunchContext, the only thing left for our container launch

class to do is to start the container. Let’s start the container by wrapping everything

we’ve created into a single jar file and enter command-line options so that we can

parse with the client and propagate to the ApplicationMaster.

java -cp $(hadoop classpath):/etc/hadoop/*:/opt/jboss-on-yarn-0.0.1-SNAPSHOT.jar

➥org.yarnbook.JBossClient -jar /opt/jboss-on-yarn-0.0.1-SNAPSHOT.jar

➥-admin_user yarn -admin_password yarn -num_containers 2

When we enter this command, the steps described previously begin execution.

Communication with the ResourceManager begins, our jar file is copied to the appro-

priate location, a certain number of containers are allocated and prepared, and a con-

tainer directory structure is created on the local file system as shown in Figure 10.4.

Notice the symbolic links representing the LocalResource map that we created for

the container and the directory naming convention that we created as the variable

containerHome in the LaunchContainerRunnable.run method. If we list the directory

contents of the jboss symbolic link, we can see the unarchived contents of the JBoss

AS tar.gz file distribution as well as the directory and file permission change we per-

formed with the first command added to the ContainerLaunchContext. An example is

given in Figure 10.5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 224

Continuing to examine Figure 10.4, we also see a script called

launch_containter.sh. A listing of this script is provided in Figure 10.6.

The launch_container.sh file sets environment variables and the commands that we

propagate to the containers. YARN generates and places the commands into this shell

script and, after the container successfully transitions to a state called LOCALIZED, exe-

cutes the shell script to start the container. In our case, we have a container that launches

JBoss AS server instances. The use of a run script illustrates that YARN can manage vir-

tually any application written in any language. Figure 10.7 shows what our application,

JBoss on YARN, looks like in the YARN web user interface.

Figure 10.4 Application container directory structure

Figure 10.5 Unarchived resource directory structure

www.it-ebooks.info

http://www.it-ebooks.info/

The ApplicationMaster 225

Next, let’s take a look at the JBoss AS domain controller user interface (Figure 10.8)

and make sure we have the two instances of JBoss AS up and running—the two

instances we specified with the num_containers argument to our client. We should have

one master and one slave.

We can see from the JBoss AS UI that we have a master and a slave, and by virtue

of their visibility in the management console, we know that we’ve configured the

Figure 10.6 Contents of launch_container.sh script

Figure 10.7 JBoss AS YARN application in the YARN web user interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 Apache Hadoop YARN Application Example 226

communication between the two instances correctly. Note that we used the YARN

application ID as the JBoss AS server group name and the container ID as the JBoss

AS server name.

Wrap-up

YARN application development involves creating both a client and an Application-

Master. As illustrated in this chapter, creating a non-MapReduce application takes

some coding, but much of the code can be reused for other applications. The example

developed in this chapter can be easily expanded to a larger number of containers by

adjusting the command-line arguments. A full code listing is available from the book

code repository mentioned in Appendix A.

Figure 10.8 JBoss AS domain controller user interface

www.it-ebooks.info

http://www.it-ebooks.info/

11
Using Apache Hadoop YARN

Distributed-Shell

The Hadoop YARN project includes the Distributed-Shell application, which is an

example of a non-MapReduce application built on top of YARN. Distributed-Shell is

a simple mechanism for running shell commands and scripts in containers on multiple

nodes in a Hadoop cluster. There are multiple existing implementations of a distributed

shell that administrators typically use to manage a cluster of machines, and this applica-

tion is a way to demonstrate how such a utility can be implemented on top of YARN.

More than just providing a parallel execution application, Distributed-Shell can be

used as a starting point for exploring and building Hadoop YARN applications. This

chapter is intended to be a guide to how one can use the Distributed-Shell application

and, more than that, play with it so as to understand more about how a YARN appli-

cation can be written as well as how it interacts with YARN for its execution.

Using the YARN Distributed-Shell

For the purpose of examples in the remainder of this chapter, we assume the following

installation path of the Distributed-Shell application:

$ export YARN_DS=$YARN_HOME/share/hadoop/yarn

$YARN_HOME should point to the installation directory of YARN. In addition, the

Distributed-Shell examples that follow have a version tag defined using the environ-

ment variable “$YARN_VERSION.” Change this value to match your installation.

$ export YARN_VERSION=2.2.0

Distributed-Shell exposes various options that can be found by running the

following:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client –jar \

$YARN_DS/hadoop-yarn-applications-distributedshell-$YARN_VERSION.jar -help

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Using Apache Hadoop YARN Distributed-Shell228

The output of this command follows; we will explore some of these options in the

examples illustrated in this chapter.

usage: Client

 -appname <arg> Application Name. Default value -

 DistributedShell

 -container_memory <arg> Amount of memory in MB to be requested to run

 the shell command

 -debug Dump out debug information

 -help Print usage

 -jar <arg> Jar file containing the application master

 -log_properties <arg> log4j.properties file

 -master_memory <arg> Amount of memory in MB to be requested to run

 the application master

 -num_containers <arg> No. of containers on which the shell command

 needs to be executed

 -priority <arg> Application Priority. Default 0

 -queue <arg> RM Queue in which this application is to be

 submitted

 -shell_args <arg> Command line args for the shell script

 -shell_cmd_priority <arg> Priority for the shell command containers

 -shell_command <arg> Shell command to be executed by the

 Application Master

 -shell_env <arg> Environment for shell script. Specified as

 env_key=env_val pairs

 -shell_script <arg> Location of the shell script to be executed

 -timeout <arg> Application timeout in milliseconds

A Simple Example

The simplest use-case for the Distributed-Shell application is to run an arbitrary shell

command in a container. We will demonstrate the use of the uptime command as an

example. This command can be run on the cluster using Distributed-Shell as follows:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client –jar \

$YARN_DS/hadoop-yarn-applications-distributedshell-$YARN_VERSION.jar \

-shell_command uptime

By default, Distributed-Shell spawns only one instance of a given shell command.

When this command is run, one can see log messages on the screen. If the shell com-

mand succeeds, the following should appear at the end of the output:

13/10/16 19:34:23 INFO distributedshell.Client: Application completed successfully

If the shell command did not work for whatever reason, the following message will

be displayed:

13/10/16 19:36:15 ERROR distributedshell.Client: Application failed to

➥complete successfully

www.it-ebooks.info

http://www.it-ebooks.info/

Using the YARN Distributed-Shell 229

The next step is to examine the output for the application. Distributed-Shell redi-

rects the output of the individual shell commands run on the cluster nodes into the

log files, which are found either on the individual nodes or aggregated on to HDFS

depending on whether log aggregation is enabled.

Assuming log aggregation is not enabled, the results for each instance of the com-

mand are listed by container under an application-id directory. For example, if the con-

tents of the application-id directory are listed, two containers’ directories can be seen:

$ ls $YARN_HOME/logs/userlogs/application_1381961205352_0005

container_1381961205352_0005_01_000001 container_1381961205352_0005_01_000002

Recall that the first container (.._000001) is the ApplicationMaster (the head proc-

ess). The second container (.._000002) is where the actual command output resides.

Within each directory, there are two files, stdout and stderr. For example,

$ ls $YARN_HOME/logs/userlogs/application_1381961205352_0005/

➥container_1381961205352_0005_01_000002/

stderr stdout

If we print the contents of the stdout file, we find the expected result for the

uptime command.

19:44:30 up 1 day, 6:53, 6 users, load average: 0.00, 0.00, 0.00

Similarly, one can look for the following output if log aggregation is enabled:

$ yarn logs -applicationId application_1388537987294_0001

This command will show the output for all containers in a single output stream.

Using More Containers

Distributed-Shell can run commands to be executed on any number of containers

by way of the -num_containers argument. For example, to see on which nodes the

Distributed-Shell command was run, we can use the following:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client –jar \
$YARN_DS/hadoop-yarn-applications-distributedshell-$YARN_VERSION.jar \
 -shell_command hostname -num_containers 4

If we now examine the results for this job, there will be five containers’ log direc-

tories, each containing its own stdout and stderr files.

$ ls $YARN_HOME/logs/userlogs/application_1381961205352_0006/

container_1381961205352_0006_01_000001

container_1381961205352_0006_01_000002

container_1381961205352_0006_01_000003

container_1381961205352_0006_01_000004

container_1381961205352_0006_01_000005

Containers with IDs ranging from 2 to 5 will have in their stdout file the host-

name of the machine where the job was run.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Using Apache Hadoop YARN Distributed-Shell230

Distributed-Shell Examples with Shell Arguments

Arguments can be added to the shell command using the -shell_args option. For

example, to do a ls –l in the directory from where the shell command was run, we

can use the following commands:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client –jar \

$YARN_DS/hadoop-yarn-applications-distributedshell-$YARN_VERSION.jar \

 -shell_command ls -shell_args -l

The resulting output is as follows:

total 16

-rw-r--r-- 1 hdfs hadoop 7 Oct 16 20:17 container_tokens

-rwx------ 1 hdfs hadoop 382 Oct 16 20:17 default_container_executor.sh

-rwx------ 1 hdfs hadoop 1303 Oct 16 20:17 launch_container.sh

drwx--x--- 2 hdfs hadoop 4096 Oct 16 20:17 tmp

As you can see, the resulting files are new and not located anywhere in our hdfs or

local file system. If we explore a little more using a Distributed-Shell pwd command,

we find that these files are in directories of the kind

/hdfs/tmp/usercache/doug/appcache/application_1381961205352_0008/container_1381961

➥205352_0008_01_000002

on the node that executed the shell command.

However, once the application finishes, if we log into the node and search for these

files, they may not exist. These transient files are used by YARN to run the Distributed-

Shell application and are removed once the application finishes. You can preserve these

files for a specific interval by adding the following to the yarn-site.xml configuration

file and restarting YARN. You can choose the delay in seconds to suit your needs—

these files will be retained on the individual nodes only for the duration of the specified

delay.

<property>

 <name>yarn.nodemanager.delete.debug-delay-sec</name>

 <value>10000000</value>

</property>

These files—in particular, launch_container.sh—are important when debugging

YARN applications. Let’s use the Distributed-Shell itself to dig into what this file is

about. We can examine the launch_container.sh file with the following command:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client –jar \

$YARN_DS/hadoop-yarn-applications-distributedshell-$YARN_VERSION.jar \

 -shell_command cat -shell_args launch_container.sh

www.it-ebooks.info

http://www.it-ebooks.info/

Using the YARN Distributed-Shell 231

This command outputs the launch_container.sh file that is created and run by

YARN before executing the user-supplied shell utility. The contents of the file are

shown in Listing 11.1. The file basically exports some important YARN variables and

then, at the end, “execs” the command directly and sends the output to the stdout

and stderr files mentioned earlier.

Listing 11.1 Distributed-Shell launch_container.sh file

#!/bin/bash

export NM_HTTP_PORT="8042"

export LOCAL_DIRS="/hdfs/tmp/usercache/doug/appcache/application_1381856870533_0040"

export HADOOP_COMMON_HOME="/opt/yarn/hadoop-$YARN_VERSION"

export JAVA_HOME="/usr/lib/jvm/java-1.6.0-openjdk.x86_64"

export HADOOP_YARN_HOME="/opt/yarn/hadoop-$YARN_VERSION"

export

➥HADOOP_TOKEN_FILE_LOCATION="/hdfs/tmp/usercache/doug/appcache/application_138185687

➥0533_0040/container_1381856870533_0040_01_000002/container_tokens"

export NM_HOST="n2"

export JVM_PID="$$"

export USER="doug"

export HADOOP_HDFS_HOME="/opt/yarn/hadoop-$YARN_VERSION"

export

➥PWD="/hdfs/tmp/usercache/doug/appcache/application_1381856870533_0040/container_138

➥1856870533_0040_01_000002"

export CONTAINER_ID="container_1381856870533_0040_01_000002"

export NM_PORT="45176"

export HOME="/home/"

export LOGNAME="doug"

export HADOOP_CONF_DIR="/opt/yarn/hadoop-$YARN_VERSION/etc/hadoop"

export MALLOC_ARENA_MAX="4"

export LOG_DIRS="/opt/yarn/hadoop-

➥$YARN_VERSION/logs/userlogs/application_1381856870533_0040/container_1381856870533_

➥0040_01_000002"

exec /bin/bash -c "cat launch_container.sh 1>/opt/yarn/hadoop-

➥$YARN_VERSION/logs/userlogs/application_1381856870533_0040/container_1381856870533_

➥0040_01_000002/stdout 2>/opt/yarn/hadoop-

➥$YARN_VERSION/logs/userlogs/application_1381856870533_0040/container_1381856870533_

➥0040_01_000002/stderr "

There are more options for the Distributed-Shell that you can play with. However,

as we mentioned earlier, some other existing utilities (such as the pdsh utility) provide

easy and feature-rich tools for running simple commands and scripts across the cluster.

The real value of the Distributed-Shell application is its showcasing of applications that

can run within the Hadoop YARN infrastructure.

We will now delve a little more into the internal details of how Distributed-Shell

itself works and how you can modify it, enhance it, or even use it as a scaffolding to

write your own YARN applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Using Apache Hadoop YARN Distributed-Shell232

Internals of the Distributed-Shell

The Distributed-Shell is the “hello-world.c” for Hadoop 2. That is, it demonstrates the

basic functionality of a YARN application. Once its internal workings are understood,

it can be used as a starting point for writing new YARN applications. The source code

for the Distributed-Shell can be found in $YARN_HOME/share/hadoop/yarn/sources.

These source files can be extracted by running

jar –xf hadoop-yarn-applications-distributedshell-$YARN_VERSION-sources.jar

Three main classes make up (and so can be changed to use it as a template for your

own YARN application) the main package of Distributed-Shell—that is, the org.

apache.hadoop.yarn.applications.distributedshell package. These classes are:

1. Client

2. ApplicationMaster

3. DSConstants

In addition to making changes to the existing Distributed-Shell application, you

may want to write more complex logic than just invoking shell commands. A large

share of the code can be reused with minimal changes, allowing for quick prototyping

of bare-bones YARN applications. To help you in getting started with understanding

the internals as well as to provide templates that you can use with subsequent modifi-

cation, selective fragments of code will be highlighted here. The goals of this approach

are twofold: to explain the workings of the application and to allow simple modifica-

tion or duplication of existing code so that you can quickly get a prototype application

running.

Application Constants

The DSConstants class offers a simple way to keep track of information as environ-

ment keys that will be used in containers later. In its native form, it is designed to be

a shell script run as part of Distributed-Shell. To reuse the code in Listing 11.2, sim-

ply make copies of the three string variables for each file (local resource) you plan on

using in your containers.

Listing 11.2 Metadata for the DistributedShellScript public class DSConstants

public class DSConstants {

 /**

 * Environment key name pointing to the shell script's location

 */

 public static final String DISTRIBUTEDSHELLSCRIPTLOCATION =

➥"DISTRIBUTEDSHELLSCRIPTLOCATION";

 /**

 * Environment key name denoting the file timestamp for the shell script.

www.it-ebooks.info

http://www.it-ebooks.info/

Internals of the Distributed-Shell 233

 * Used to validate the local resource.

 */

 public static final String DISTRIBUTEDSHELLSCRIPTTIMESTAMP =

➥"DISTRIBUTEDSHELLSCRIPTTIMESTAMP";

 /**

 * Environment key name denoting the file content length for the shell script.

 * Used to validate the local resource.

 */

 public static final String DISTRIBUTEDSHELLSCRIPTLEN =

➥"DISTRIBUTEDSHELLSCRIPTLEN";

}

Strictly speaking, these environment variables are just a simple way of passing static

information like file timestamps and file lengths to the ApplicationMaster so that it

can, in turn, set the same information as part of launching containers. A more complex

application may have more static data as well as dynamic information that needs to be

passed. Using environment variables is one way of achieving this outcome. Other pos-

sibilities are to use configuration files that are distributed as local resources and shared

services (like HDFS) that the client and ApplicationMaster can access.

Client

The Client class is fundamentally responsible for launching the ApplicationMaster,

which will then schedule and run the shell commands in each container. The Client

class performs three major tasks to get user-supplied executables to run in their own

containers:

1. Launch the Client CLI (command-line interface)

2. Manage additional local resources

3. Set up the ApplicationMaster environment

The Client CLI obtains the application jar file, the location of a user shell script,

a custom log-configuration file, and other information from the user. Listing 11.3

checks whether a jar file was passed to the CLI and adds its results to a variable.

Listing 11.3 Adding the appMasterJar to the CLI

 if (!cliParser.hasOption("jar")) {

 throw new IllegalArgumentException("No jar file specified for application

➥master");

 }

 appMasterJar = cliParser.getOptionValue("jar");

The CLI parsing code can be modified if necessary to add more libraries for

execution as containers. By duplicating how the ApplicationMaster jar f ile is added

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Using Apache Hadoop YARN Distributed-Shell234

from the command-line parser, you can quickly add new configuration features to

the Client class.

After checking for valid input from the CLI, the client needs to connect to the

ResourceManager for application submission. At this point, the client can request

additional cluster information like the maximum container size, together with a new

ApplicationId. In the Distributed-Shell application, the YarnClient library is used to

create an instance of YarnClientApplication that encompasses this information.

The client then creates an ApplicationSubmissionContext that specifies the applica-

tion details such as ApplicationId, an application name, the priority assigned to the

application, and the submission queue’s name. The ApplicationSubmissionContext

record also requires a ContainerLaunchContext that describes the container under

which the ApplicationMaster itself is launched. Inside the ContainerLaunchContext,

we define the resource requirements for the ApplicationMaster container; the local

resources (jar files, configuration files), the execution environment for the container,

and the commands that must be executed to start the ApplicationMaster container.

Because the ApplicationMaster does not make use of the libraries required by the

containers that run the user scripts, there is no need to make them available to the

ApplicationMaster container itself; they need only be uploaded to HDFS. An exam-

ple is the way Distributed-Shell makes a shell script available to the actual contain-

ers. Listing 11.4 is a simple snippet that shows how to upload your container libraries

into HDFS.

Listing 11.4 Code to upload your container libraries to HDFS

 String hdfsShellScriptLocation = "";

 long hdfsShellScriptLen = 0;

 long hdfsShellScriptTimestamp = 0;

 if (!shellScriptPath.isEmpty()) {

 Path shellSrc = new Path(shellScriptPath);

 String shellPathSuffix =

 appName + "/" + appId.getId() + "/"

 + (Shell.WINDOWS ? windowBatPath : linuxShellPath);

 Path shellDst =

 new Path(fs.getHomeDirectory(), shellPathSuffix);

 // Copy the file to DFS

 fs.copyFromLocalFile(false, true, shellSrc, shellDst);

 // Record its metadata

 hdfsShellScriptLocation = shellDst.toUri().toString();

 FileStatus shellFileStatus = fs.getFileStatus(shellDst);

 hdfsShellScriptLen = shellFileStatus.getLen();

 hdfsShellScriptTimestamp = shellFileStatus.getModificationTime();

 }

Although the ApplicationMaster does not use the libraries itself, it will be launch-

ing the final containers that use these libraries. Because of this, the ApplicationMaster

needs to know the metadata—that is, where the libraries are on HDFS, the last

www.it-ebooks.info

http://www.it-ebooks.info/

Internals of the Distributed-Shell 235

modification time of the file, and the file content length. After the Client uploads the

libraries, this metadata can be collected and made available as environmental proper-

ties in the ApplicationMaster’s container (or via separate configuration files, as we

hinted earlier). The DSConstants class is used to manage these environment proper-

ties. Listing 11.5 shows how the shell script’s metadata is stored into the container

environment.

Listing 11.5 Code for storing the shell script’s metadata into the container

environment

Map<String, String> env = new HashMap<String, String>();

 // put location of shell script into env

 // using the env info, the application master will create the correct local

➥resource for the

 // eventual containers that will be launched to execute the shell scripts

 env.put(DSConstants.DISTRIBUTEDSHELLSCRIPTLOCATION, hdfsShellScriptLocation);

 env.put(DSConstants.DISTRIBUTEDSHELLSCRIPTTIMESTAMP,

Long.toString(hdfsShellScriptTimestamp));

 env.put(DSConstants.DISTRIBUTEDSHELLSCRIPTLEN,

Long.toString(hdfsShellScriptLen));

The resources needed by the AM container itself can be added to the local resources

in the ApplicationSubmissionContext as shown in Listing 11.6.

Listing 11.6 Adding local resources to the AM container

 if (!shellCommand.isEmpty()) {

 addToLocalResources(fs, null, shellCommandPath, appId.getId(),

 localResources, shellCommand);

 }

 private void addToLocalResources(FileSystem fs, String fileSrcPath,

 String fileDstPath, int appId, Map<String, LocalResource> localResources,

 String resources) throws IOException {

 [. . . .]

 FileStatus scFileStatus = fs.getFileStatus(dst);

 LocalResource scRsrc =

 LocalResource.newInstance(

 ConverterUtils.getYarnUrlFromURI(dst.toUri()),

 LocalResourceType.FILE, LocalResourceVisibility.APPLICATION,

 scFileStatus.getLen(), scFileStatus.getModificationTime());

 localResources.put(fileDstPath, scRsrc);

 }

Finally, the ApplicationSubmissionContext is submitted to the ResourceManager

and the client then monitors the application by requesting a periodic ApplicationRe-

port from the ResourceManager (Listing 11.7).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Using Apache Hadoop YARN Distributed-Shell236

Listing 11.7 Monitoring the progress of the application

 private boolean monitorApplication(ApplicationId appId)

 throws YarnException, IOException {

 while (true) {

 // Check app status every 1 second

 Thread.sleep(1000);

 // Get application report for the appId we are interested in

 ApplicationReport report = yarnClient.getApplicationReport(appId);

 YarnApplicationState state = report.getYarnApplicationState();

 if (YarnApplicationState.FINISHED == state) {

 LOG.info("Application has completed successfully. Breaking monitoring loop");

 return true;

 }

 [. . .]

 }

 }

Mimicking existing distributed-shell utilities, if the application is taking an exces-

sive amount of time to execute, the client kills the application.

Note

If you want to create a long-running application that is not killed via the built-in distributed

shell timeout, comment out the code in Listing 11.8 in the client.

Listing 11.8 Application Timeout code block

 if (System.currentTimeMillis() > (clientStartTime + clientTimeout)) {

 LOG.info("Reached client specified timeout for application. Killing

➥application");

 forceKillApplication(appId);

 return false;

 }

ApplicationMaster

The ApplicationMaster begins by registering itself with the ResourceManager (List-

ing 11.9), and then sends a heartbeat to the ResourceManager at regular intervals

to indicate that it is up and alive. When you are writing your own application, it is

important that the ApplicationMaster register itself immediately so that the Resource-

Manager does not think it has failed to start and, therefore, kill the AM container.

www.it-ebooks.info

http://www.it-ebooks.info/

Internals of the Distributed-Shell 237

Listing 11.9 Registration with the ResourceManager

 AMRMClientAsync.CallbackHandler allocListener = new RMCallbackHandler();

 amRMClient = AMRMClientAsync.createAMRMClientAsync(1000, allocListener);

 amRMClient.init(conf);

 amRMClient.start();

 RegisterApplicationMasterResponse response = amRMClient

 .registerApplicationMaster(appMasterHostname, appMasterRpcPort,

 appMasterTrackingUrl);

The ApplicationMaster’s init method initializes the DistributedShellScript vari-

ables by accessing the parameters set in its own environment by the Client class. These

parameters are then later used in creating LocalResources for the final containers that

are launched by the ApplicationMaster. The code in Listing 11.10 initializes metadata

for LocalResources used in the final containers.

Listing 11.10 Initializing metadata for LocalResources used in the final containers

if (envs.containsKey(DSConstants.DISTRIBUTEDSHELLSCRIPTLOCATION)) {

 shellScriptPath = envs.get(DSConstants.DISTRIBUTEDSHELLSCRIPTLOCATION);

 if (envs.containsKey(DSConstants.DISTRIBUTEDSHELLSCRIPTTIMESTAMP)) {

 shellScriptPathTimestamp = Long.valueOf(envs

 .get(DSConstants.DISTRIBUTEDSHELLSCRIPTTIMESTAMP));

 }

 if (envs.containsKey(DSConstants.DISTRIBUTEDSHELLSCRIPTLEN)) {

 shellScriptPathLen = Long.valueOf(envs

 .get(DSConstants.DISTRIBUTEDSHELLSCRIPTLEN));

 }

 }

To perform the requisite processing, the ApplicationMaster must request contain-

ers from the ResourceManager. This request is made using a ResourceRequest with

specific entries for each resource—the node location, memory, or CPU needs of

the container. Most of this information is user input that already exists as part of the

Distributed-Shell Client CLI parameters that eventually get passed to the Application-

Master. The ResourceManager responds with a set of newly allocated containers, as

well as current state of freely available resources.

For each allocated container, the ApplicationMaster then sets up the necessary

launch context via ContainerLaunchContext to specify the allocated container ID,

local resources required by the executable, the environment to be set up for the exe-

cutable, commands to execute, and so on.

Inside the run() method of the ApplicationMaster, the ContainerLaunchContext

sets up its Environment and LocalResources for the final containers. One can modify

the code used for the DistributedShellScript and adjust it so that it points to the librar-

ies’ metadata that was populated from the DSConstants environmental variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Using Apache Hadoop YARN Distributed-Shell238

You can also easily add new environment parameters (e.g., the ApplicationMaster

hostname) by creating an instance of HashMap<String, String>, populating it with

key-value pairs, and finally calling setEnvironment(HashMapObj), thereby adding the

parameters to the final containers’ environment. If you are using jar, zip, or tar files

that require expansion inside the container, changing the LocalResourceType.FILE to

ARCHIVE will automatically decompress the archive into a folder named after the file.

The code in Listing 11.11 adds environment and file data to the final container.

Listing 11.11 Adding environment and file data to the final container resources

// Set the environment

 ctx.setEnvironment(shellEnv);

// Set the local resources

 Map<String, LocalResource> localResources = new HashMap<String,

➥LocalResource>();

 // The container for the eventual shell commands needs its own local

 // resources too.

 // In this scenario, if a shell script is specified, we need to have it

 // copied and made available to the container.

 if (!shellScriptPath.isEmpty()) {

 LocalResource shellRsrc = Records.newRecord(LocalResource.class);

 shellRsrc.setType(LocalResourceType.FILE);

 shellRsrc.setVisibility(LocalResourceVisibility.APPLICATION);

 try {

 shellRsrc.setResource(ConverterUtils.getYarnUrlFromURI(new URI(

 shellScriptPath)));

 } catch (URISyntaxException e) {

 LOG.error("Error when trying to use shell script path specified"

 + " in env, path=" + shellScriptPath);

 e.printStackTrace();

 // A failure scenario on bad input such as invalid shell script path

 // We know we cannot continue launching the container

 // so we should release it.

 numCompletedContainers.incrementAndGet();

 numFailedContainers.incrementAndGet();

 return;

 }

 shellRsrc.setTimestamp(shellScriptPathTimestamp);

 shellRsrc.setSize(shellScriptPathLen);

 localResources.put(Shell.WINDOWS ? ExecBatScripStringtPath :

 ExecShellStringPath, shellRsrc);

 shellCommand = Shell.WINDOWS ? windows_command : linux_bash_command;

 }

 ctx.setLocalResources(localResources);

www.it-ebooks.info

http://www.it-ebooks.info/

Internals of the Distributed-Shell 239

The last potential area for modification of the ApplicationMaster code lies in the

container launch commands. It is here that setting up particular class libraries, run-

ning code, and performing other actions can be taken inside the containers. Anything

that can be run from the Linux or Windows command line can be run as a command

in the containers. If, for example, you wanted to run a Runnable.jar that you have

uploaded as a library up to this point, you can do so with the following code:

vargs.add(Environment.JAVA_HOME.$() + "/bin/java -jar Runnable.jar");

Note

Multiple commands can be stacked for execution when the container starts. To run mul-

tiple commands in sequence, run the commands by making use of semicolons. Other

shell syntax will work as well. For example, this multistep command can be set up to run

at container launch:

'cd UnTarDirectory; mkdir testDir; mv cmd1.sh testDir/; cd testDir; sh cmd1.sh'

Listing 11.12 adds the actual application commands to the launch containers.

Listing 11.12 Adding commands to the launch containers

 // Set the necessary command to execute on the allocated container

 Vector<CharSequence> vargs = new Vector<CharSequence>(5);

 // Set executable command

 vargs.add(shellCommand);

 // Set shell script path

 if (!shellScriptPath.isEmpty()) {

 vargs.add(Shell.WINDOWS ? ExecBatScripStringtPath

 : ExecShellStringPath);

 }

 // Set args for the shell command if any

 vargs.add(shellArgs);

 // Add log redirect params

 vargs.add("1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout");

 vargs.add("2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr");

 // Get final command

 StringBuilder command = new StringBuilder();

 for (CharSequence str : vargs) {

 command.append(str).append(" ");

 }

 List<String> commands = new ArrayList<String>();

 commands.add(command.toString());

 ctx.setCommands(commands);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Using Apache Hadoop YARN Distributed-Shell240

The ApplicationMaster finally talks to the appropriate NodeManager to launch the

container (Listing 11.13). It uses the NMClient library to do so.

Listing 11.13 Launching the container

 containerListener = createNMCallbackHandler();

 nmClientAsync = new NMClientAsyncImpl(containerListener);

 nmClientAsync.init(conf);

 nmClientAsync.start();

 [. . .]

 containerListener.addContainer(container.getId(), container);

 nmClientAsync.startContainerAsync(container, ctx);

The ApplicationMaster can monitor the launched container by either querying the

ResourceManager using ApplicationMasterProtocol.allocate() API to get updates on

completed containers or using the ContainerManagementProtocol.getContainerSta-

tus() API to query for the status of the allocated container’s ContainerId. Most applica-

tions, including Distributed-Shell, do the former.

After its work is completed, similar to application registration, the AM container

sends a FinishApplicationMasterRequest to the ResourceManager to inform it about

the container’s status.

Final Containers

The final containers launched by the ApplicationMaster can be anything that the

Container start-up commands can execute—for example, Python programs, Perl, Java,

C++, shell commands, and more. Often, the real challenge is not launching the con-

tainers to execute the code, but rather coordinating the distributed nature of the con-

tainers. Numerous applications can be made to operate in a distributed parallel fashion

with minimal changes. This aspect promotes reuse of existing codebases to run as

YARN applications. In many cases, only the parallelism logic needs to be created and

added to the main application code.

Wrap-up

The Distributed-Shell represents one of the first YARN application frameworks that

does not run as a MapReduce application. Although it might not add a lot of real-

world utility to existing parallel-shell utilities, it serves as an excellent starting point

for building new Hadoop YARN applications. Using the code examples provided in

this chapter, you can easily modify the Distributed-Shell application and explore writ-

ing your own YARN applications. In addition, using Distributed-Shell to probe the

YARN execution process itself helps provide insight into how YARN runs distributed

applications.

www.it-ebooks.info

http://www.it-ebooks.info/

12
Apache Hadoop YARN

Frameworks

One of the most exciting aspects of YARN is its ability to support multiple pro-

gramming models and application frameworks. In Hadoop version 1, the only proc-

essing model available to users is MapReduce. In Hadoop version 2, MapReduce is

separated from the resource management layer of Hadoop and placed into its own

application framework. YARN forms a resource management platform, which pro-

vides services such as scheduling, fault monitoring, data locality, and more to Map-

Reduce and other frameworks.

The following is a brief survey of emerging open-source frameworks that are being

developed to run under YARN. As of this writing, there are many YARN frame-

works under active development and the framework landscape is expected to change

rapidly. Commercial vendors are also taking advantage of the YARN platform. Each

of the following frameworks is under various stages of development and deployment;

please consult the Framework webpage for full details.

Distributed-Shell

Distributed-Shell is an example application that demonstrates how to write applica-

tions on top of YARN. It is covered in detail in Chapter 11, “Using Apache Hadoop

YARN Distributed-Shell,” and represents a simple method for running shell com-

mands and scripts in containers in parallel on a Hadoop YARN cluster.

Hadoop MapReduce

As mentioned earlier, MapReduce was the first YARN framework and drove many

of YARN’s requirements. As described in previous chapters, MapReduce works well,

is of production quality, has almost the same feature set as before, and provides full

compatibility, with a few minor exceptions, with Hadoop version 1. In addition, it has

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 Apache Hadoop YARN Frameworks 242

been thoroughly tested on a large scale, and is integrated tightly with the rest of the

Hadoop ecosystem projects, such as Apache Pig, Apache Hive, and Apache Oozie.

One important aspect of the YARN design is the increased “user agility” in choos-

ing different versions of MapReduce to use on a cluster. Indeed, with YARN it is

possible to have production jobs using a stable MapReduce algorithm, even as test ver-

sions of MapReduce are running concurrently. These test versions allow developers

to fix issues, develop new features, and fully test new versions of MapReduce on the

same cluster.

Apache Tez

One great example of a new YARN framework that exploits its power is Apache

Tez. Many Hadoop jobs consist of executing a complex directed acyclic graph (DAG)

of tasks using separate MapReduce stages. Apache Tez generalizes this process and

allows these tasks spread across stages to be run as a single, all-encompassing job. For

example, a reduce task of a traditional MapReduce job can feed directly into another

reduce task without an intermediate (pass-through) map task. The end result is faster

processing of jobs and the promotion of what was previously a batch-oriented job to

an interactive query.

Tez can be used as a MapReduce replacement for projects such as Apache Hive and

Apache Pig. It provides them with a more natural model for their execution plans,

together with faster response times and extreme throughput at a petabyte scale. The

Apache Tez project is part of the Stinger Initiative, a broad, community-based effort to

drive the future of Apache Hive, delivering 100-times performance improvements at a

petabyte scale with familiar SQL semantics.

Recently, Tez released a technical preview as part of the Stinger Initiative Phase 3

release. Hortonworks reported that besides Apache Hive, Apache Pig and Cascading

are moving toward using Tez. Users are able to run jobs with and without Tez to get

an understanding of how much performance gain is possible. The Tez preview can

be run in the Hortonworks Sandbox VM or with a full Hortonworks Data Platform-

based Apache Hadoop cluster.

For more information, see http://tez.incubator.apache.org/, http://hortonworks.

com/hadoop/tez/, and http://hortonworks.com/labs/stinger/.

Apache Giraph

Apache Giraph is an iterative graph processing system built for high scalability. This

open-source implementation is based on Google’s Pregel, which is used to calculate

page rank (pages are vertices connected by edges that represent hyperlinks). It is used

by Facebook, Twitter, and LinkedIn to create social graphs of users. Both Giraph and

Pregel are based on the Bulk Synchronous Parallel (BSP) model of distributed com-

putation, which was introduced by Leslie Valiant. Giraph adds several features beyond

www.it-ebooks.info

http://tez.incubator.apache.org/
http://hortonworks.com/hadoop/tez/
http://hortonworks.com/hadoop/tez/
http://hortonworks.com/labs/stinger/
http://www.it-ebooks.info/

Dryad on YARN 243

the basic Pregel model, including master computation, shared aggregators, edge-

oriented input, out-of-core computation, and more.

Giraph was originally written to run on standard Hadoop version 1, using the

MapReduce framework, but is inefficient and totally unnatural for various reasons.

It runs as a map-only job where each map is special (breaking typical MapReduce

assumptions) and interacts with other maps (vertices). The native Giraph implementa-

tion under YARN provides the user with an iterative processing model not directly

available with MapReduce.

Support for YARN has been present in Giraph since its own version 1.0 release.

Giraph’s YARN-related abstraction is easy to extend or use as a template for new proj-

ects. Giraph takes advantage of the ApplicationMaster to perform a more natural job

control, which includes the ability to spawn and retire tasks as part of each BSP step.

In addition, using the f lexibility of YARN, Giraph plans on implementing its own

web interface to monitor job progress.

For more information, see http://giraph.apache.org/.

Hoya: HBase on YARN

The Hoya project creates dynamic and elastic Apache HBase clusters on top of

YARN. It does so with a client application that creates the persistent configura-

tion files, sets up the HBase cluster XML files, and then asks YARN to create an

ApplicationMaster. YARN copies all files listed in the client’s application-launch

request from HDFS into the local file system of the chosen server, and then executes

the command to start the ApplicationMaster.

When the Hoya ApplicationMaster starts, it starts an HBase Master on the local

machine, which is the sole HBase Master that Hoya currently manages. In parallel

with the Master start-up, Hoya asks YARN for a number of containers matching the

number of HBase region servers it needs. For each of these containers, Hoya provides

the commands to start the region server and does not run any Hoya-specific code on

the worker nodes. The Hoya ApplicationMaster points YARN at those files that need

to be on the worker nodes and the necessary commands. YARN then does the rest

of the work. Because HBase clusters use Apache ZooKeeper to find each other, as do

HBase clients, the HBase services locate each other automatically with neither Hoya

nor YARN getting involved.

For more information, see http://hortonworks.com/blog/introducing-hoya-

hbase-on-yarn/.

Dryad on YARN

Similar to Apache Tez, Microsoft’s Dryad provides a DAG as the abstraction of execu-

tion f low. It is ported to run natively on YARN. Dryad on YARN is fully compatible

with its non-YARN version.

www.it-ebooks.info

http://giraph.apache.org/
http://hortonworks.com/blog/introducing-hoya-hbase-on-yarn/
http://hortonworks.com/blog/introducing-hoya-hbase-on-yarn/
http://www.it-ebooks.info/

Chapter 12 Apache Hadoop YARN Frameworks 244

The ported code is written completely in native C++ and C# for worker nodes.

The ApplicationMaster leverages a thin layer of Java interfacing with the Resource-

Manager for the native Dryad graph manager to schedule work. Eventually, the Java

layer will be substituted by direct interaction with protocol-buffer interfaces. Overall,

this project demonstrates, as-an-aside, YARN’s enablement of writing applications in

programming languages of choice.

For more information, see http://research.microsoft.com/en-us/projects/dryad/.

Apache Spark

Spark was initially developed for applications where keeping data in memory helps

performance, such as iterative algorithms, which are common in machine learning,

and interactive data mining.

Spark is often compared to MapReduce because it provides parallel processing over

HDFS and other Hadoop input sources. Spark differs from MapReduce in two impor-

tant ways, however. First, Spark holds intermediate results in memory, rather than

writing them to disk—an approach that drastically decreases query response times.

Second, Spark supports more than just MapReduce functions, greatly expanding the

set of possible analyses that can be executed over HDFS data stores. Spark offers a

general execution model that can optimize arbitrary operator graphs, and it supports

in-memory computing, which lets it query data faster than disk-based engines like

MapReduce. It also provides clean, concise APIs in Scala, Java, and Python. Users can

also use Spark interactively from the Scala and Python shells to rapidly query big data

sets.

Since 2013, Spark has been running on production YARN clusters at Yahoo!. The

advantage of porting and running Spark on top of YARN is the common resource

management and a single underlying data fabric. Spark users can continue to use

the same data for building models and share the same physical resources with other

Hadoop frameworks.

For more information, see http://spark.incubator.apache.org.

Apache Storm

Apache Storm allows processing of unbounded streams of data in real time. It is

designed to be used in any programming language. The basic Storm use cases are real-

time analytics, online machine learning, continuous computation, distributed RPC

(remote procedure call), ETL (extract, transform, load), and more. Storm provides fast

performance, is scalable, is fault tolerant, and gives processing guarantees.

Traditional MapReduce jobs are expected to eventually finish, but Storm continu-

ously processes messages until it is stopped. This behavior makes it ideal for a YARN

cluster. There are two kinds of nodes on a Storm cluster: the master node and the

worker nodes, which can be fully implemented with an ApplicationMaster. The master

node runs a daemon called “Nimbus” that is responsible for distributing code around

the cluster, assigning tasks to machines, and monitoring for failures. Each worker node

www.it-ebooks.info

http://research.microsoft.com/en-us/projects/dryad/
http://spark.incubator.apache.org
http://www.it-ebooks.info/

Wrap-up 245

runs a daemon called the “Supervisor,” which listens for work assigned to its machine

and starts and stops worker processes as necessary based on what Nimbus has assigned

to it. Each worker process executes a subset of a topology; a running topology consists

of many worker processes spread across many machines.

Efforts are under way to run Storm directly under YARN and take advantage of

the common resource management substrate.

For more information, see http://storm-project.net/documentation.html.

REEF: Retainable Evaluator Execution Framework

YARN’s f lexibility sometimes requires significant effort on the part of application

implementers. Writing a custom application on YARN includes building one’s own

ApplicationMaster, performing client and container management, and handling aspects

of fault tolerance, execution f low, coordination, and other concerns. The REEF project

by Microsoft recognizes this challenge and factors out several components that are com-

mon to many applications, such as storage management, data caching, fault detection,

and checkpoints. Framework designers can build on top of REEF more easily than they

can build directly on YARN, and can reuse these common services/libraries. REEF’s

design makes it suitable for both MapReduce and DAG-like executions as well as itera-

tive and interactive computations.

Hamster: Hadoop and MPI on the Same Cluster

The Message Passing Interface (MPI) is widely used in high-performance comput-

ing (HPC). MPI is primarily a set of optimized message-passing library calls for C,

C++, and Fortran that operate over popular server interconnects such as Ethernet

and InfiniBand. Because users have full control of their YARN containers, there is

no reason why MPI applications cannot run within a Hadoop cluster. The Hamster

effort is a work-in-progress that provides a good discussion of the issues involved

in mapping MPI to a YARN cluster (see https://issues.apache.org/jira/browse/

MAPREDUCE-2911). Currently, an alpha version of MPICH2 is available for YARN

that can be used to run MPI applications.

For more information, see https://github.com/clarkyzl/mpich2-yarn.

Wrap-up

Application frameworks for Apache Hadoop YARN are emerging and evolving at a

rapid pace. This area is expected to see large amounts of growth as developers cre-

ate more applications that move beyond MapReduce and take full advantage of the

data services and capabilities offered by a shared Hadoop YARN cluster. Indeed, like

many successful data processing platforms in use today, Apache Hadoop YARN will

eventually migrate to be a behind-the-scenes layer and allow users to move away from

execution management and closer to their big data applications and the subsequent dis-

coveries they provide.

www.it-ebooks.info

http://storm-project.net/documentation.html
https://issues.apache.org/jira/browse/MAPREDUCE-2911
https://issues.apache.org/jira/browse/MAPREDUCE-2911
https://github.com/clarkyzl/mpich2-yarn
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

A
Supplemental Content and

Code Downloads

Available Downloads

Supplemental content and all of the code and examples mentioned in this book can be

downloaded from http:yarn-book.com.

Please see the README available on that site file for a full description of the files.

www.it-ebooks.info

http:yarn-book.com
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

B
YARN Installation Scripts

The following is a listing of the installation scripts discussed in Chapter 5, “Installing

Apache Hadoop YARN.” They can be used to help follow the installation discussion.

All of the scripts are available from the download page listed in Appendix A.

install-hadoop2.sh

#!/bin/bash

#

Install Hadoop 2 using pdsh/pdcp where possible.

Command can be interactive or file-based. This script sets up

a Hadoop 2 cluster with basic configuration. Modify data, log, and pid

directories as desired. Further configure your cluster with ./conf-hadoop2.sh

after running this installation script.

#

Basic environment variables. Edit as necessary

HADOOP_VERSION=2.2.0

HADOOP_HOME="/opt/hadoop-${HADOOP_VERSION}"

NN_DATA_DIR=/var/data/hadoop/hdfs/nn

SNN_DATA_DIR=/var/data/hadoop/hdfs/snn

DN_DATA_DIR=/var/data/hadoop/hdfs/dn

YARN_LOG_DIR=/var/log/hadoop/yarn

HADOOP_LOG_DIR=/var/log/hadoop/hdfs

HADOOP_MAPRED_LOG_DIR=/var/log/hadoop/mapred

YARN_PID_DIR=/var/run/hadoop/yarn

HADOOP_PID_DIR=/var/run/hadoop/hdfs

HADOOP_MAPRED_PID_DIR=/var/run/hadoop/mapred

HTTP_STATIC_USER=hdfs

YARN_PROXY_PORT=8081

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B YARN Installation Scripts250

source hadoop-xml-conf.sh

CMD_OPTIONS=$(getopt -n "$0" -o hif --long "help,interactive,file" -- "$@")

Take care of bad options in the command

if [$? -ne 0];

then

 exit 1

fi

eval set -- "$CMD_OPTIONS"

all_hosts="all_hosts"

nn_host="nn_host"

snn_host="snn_host"

dn_hosts="dn_hosts"

rm_host="rm_host"

nm_hosts="nm_hosts"

mr_history_host="mr_history_host"

yarn_proxy_host="yarn_proxy_host"

install()

{

 echo "Copying Hadoop $HADOOP_VERSION to all hosts..."

 pdcp -w ^all_hosts hadoop-"$HADOOP_VERSION".tar.gz /opt

 echo "Copying JDK 1.6.0_31 to all hosts..."

 pdcp -w ^all_hosts jdk-6u31-linux-x64-rpm.bin /opt

 echo "Installing JDK 1.6.0_31 on all hosts..."

 pdsh -w ^all_hosts chmod a+x /opt/jdk-6u31-linux-x64-rpm.bin

 pdsh -w ^all_hosts /opt/jdk-6u31-linux-x64-rpm.bin -noregister 1>&- 2>&-

 echo "Setting JAVA_HOME and HADOOP_HOME environment
➥variables on all hosts..."

 pdsh -w ^all_hosts 'echo export JAVA_HOME=/usr/java/jdk1.6.0_31 >
➥/etc/profile.d/java.sh'

 pdsh -w ^all_hosts "source /etc/profile.d/java.sh"

 pdsh -w ^all_hosts "echo export HADOOP_HOME=$HADOOP_HOME >
➥/etc/profile.d/hadoop.sh"

 pdsh -w ^all_hosts 'echo export HADOOP_PREFIX=$HADOOP_HOME >>
➥/etc/profile.d/hadoop.sh'

 pdsh -w ^all_hosts "source /etc/profile.d/hadoop.sh"

 echo "Extracting Hadoop $HADOOP_VERSION distribution on all hosts..."

 pdsh -w ^all_hosts tar -zxf /opt/hadoop-"$HADOOP_VERSION".tar.gz -C /opt

 echo "Creating system accounts and groups on all hosts..."

 pdsh -w ^all_hosts groupadd hadoop

 pdsh -w ^all_hosts useradd -g hadoop yarn

www.it-ebooks.info

http://www.it-ebooks.info/

251install-hadoop2.sh

 pdsh -w ^all_hosts useradd -g hadoop hdfs

 pdsh -w ^all_hosts useradd -g hadoop mapred

 echo "Creating HDFS data directories on NameNode host,
➥Secondary NameNode host, and DataNode hosts..."

 pdsh -w ^nn_host "mkdir -p $NN_DATA_DIR && chown hdfs:hadoop $NN_DATA_DIR"

 pdsh -w ^snn_host "mkdir -p $SNN_DATA_DIR && chown hdfs:hadoop
➥$SNN_DATA_DIR"

 pdsh -w ^dn_hosts "mkdir -p $DN_DATA_DIR && chown hdfs:hadoop
➥$DN_DATA_DIR"

 echo "Creating log directories on all hosts..."

 pdsh -w ^all_hosts "mkdir -p $YARN_LOG_DIR && chown yarn:hadoop
➥$YARN_LOG_DIR"

 pdsh -w ^all_hosts "mkdir -p $HADOOP_LOG_DIR && chown hdfs:hadoop
➥$HADOOP_LOG_DIR"

 pdsh -w ^all_hosts "mkdir -p $HADOOP_MAPRED_LOG_DIR && chown mapred:hadoop
➥$HADOOP_MAPRED_LOG_DIR"

 echo "Creating pid directories on all hosts..."

 pdsh -w ^all_hosts "mkdir -p $YARN_PID_DIR && chown yarn:hadoop
➥$YARN_PID_DIR"

 pdsh -w ^all_hosts "mkdir -p $HADOOP_PID_DIR && chown hdfs:hadoop
➥$HADOOP_PID_DIR"

 pdsh -w ^all_hosts "mkdir -p $HADOOP_MAPRED_PID_DIR && chown mapred:hadoop
➥$HADOOP_MAPRED_PID_DIR"

 echo "Editing Hadoop environment scripts for log directories on all
➥hosts..."

 pdsh -w ^all_hosts echo "export HADOOP_LOG_DIR=$HADOOP_LOG_DIR >>
➥$HADOOP_HOME/etc/hadoop/hadoop-env.sh"

 pdsh -w ^all_hosts echo "export YARN_LOG_DIR=$YARN_LOG_DIR >>
➥$HADOOP_HOME/etc/hadoop/yarn-env.sh"

 pdsh -w ^all_hosts echo "export
➥HADOOP_MAPRED_LOG_DIR=$HADOOP_MAPRED_LOG_DIR >>
➥$HADOOP_HOME/etc/hadoop/mapred-env.sh"

 echo "Editing Hadoop environment scripts for pid directories on all
➥hosts..."

 pdsh -w ^all_hosts echo "export HADOOP_PID_DIR=$HADOOP_PID_DIR >>
➥$HADOOP_HOME/etc/hadoop/hadoop-env.sh"

 pdsh -w ^all_hosts echo "export YARN_PID_DIR=$YARN_PID_DIR >>
➥$HADOOP_HOME/etc/hadoop/yarn-env.sh"

 pdsh -w ^all_hosts echo "export
➥HADOOP_MAPRED_PID_DIR=$HADOOP_MAPRED_PID_DIR >>
➥$HADOOP_HOME/etc/hadoop/mapred-env.sh"

 echo "Creating base Hadoop XML config files..."

 create_config --file core-site.xml

 put_config --file core-site.xml --property fs.default.name
➥--value "hdfs://$nn:9000"

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B YARN Installation Scripts252

 put_config --file core-site.xml --property hadoop.http.staticuser.user
➥--value "$HTTP_STATIC_USER"

 create_config --file hdfs-site.xml

 put_config --file hdfs-site.xml --property dfs.namenode.name.dir
➥--value "$NN_DATA_DIR"

 put_config --file hdfs-site.xml --property fs.checkpoint.dir
➥--value "$SNN_DATA_DIR"

 put_config --file hdfs-site.xml --property fs.checkpoint.edits.dir
➥--value "$SNN_DATA_DIR"

 put_config --file hdfs-site.xml --property dfs.datanode.data.dir

➥--value "$DN_DATA_DIR"

 put_config --file hdfs-site.xml --property dfs.namenode.http-address
➥--value "$nn:50070"

 put_config --file hdfs-site.xml
➥--property dfs.namenode.secondary.http-address --value "$snn:50090"

 create_config --file mapred-site.xml

 put_config --file mapred-site.xml --property mapreduce.framework.name
➥--value yarn

 put_config --file mapred-site.xml --property mapreduce.jobhistory.address
➥--value "$mr_hist:10020"

 put_config --file mapred-site.xml
➥--property mapreduce.jobhistory.webapp.address --value "$mr_hist:19888"

 put_config --file mapred-site.xml
➥--property yarn.app.mapreduce.am.staging-dir --value /mapred

 create_config --file yarn-site.xml

 put_config --file yarn-site.xml --property yarn.nodemanager.aux-services

➥--value mapreduce.shuffle

 put_config --file yarn-site.xml --property yarn.nodemanager.aux-

➥services.mapreduce.shuffle.class --value org.apache.hadoop.mapred.ShuffleHandler

 put_config --file yarn-site.xml --property yarn.web-proxy.address

➥--value "$yarn_proxy:$YARN_PROXY_PORT"

 put_config --file yarn-site.xml -–property yarn.resourcemanager

➥.scheduler.address

➥--value

➥"$rmgr:8030"

 put_config --file yarn-site.xml --property yarn.resourcemanager.resource-

➥tracker.address --value "$rmgr:8031"

 put_config --file yarn-site.xml

➥--property yarn.resourcemanager.address --value "$rmgr:8032"

 put_config --file yarn-site.xml

➥--property yarn.resourcemanager.admin.address --value "$rmgr:8033"

 put_config --file yarn-site.xml

➥--property yarn.resourcemanager.webapp.address --value "$rmgr:8088"

 echo "Copying base Hadoop XML config files to all hosts..."

 pdcp -w ^all_hosts core-site.xml hdfs-site.xml mapred-site.xml
➥yarn-site.xml $HADOOP_HOME/etc/hadoop/

www.it-ebooks.info

http://www.it-ebooks.info/

253install-hadoop2.sh

 echo "Creating configuration, command, and script links on all hosts..."

 pdsh -w ^all_hosts "ln -s $HADOOP_HOME/etc/hadoop /etc/hadoop"

 pdsh -w ^all_hosts "ln -s $HADOOP_HOME/bin/* /usr/bin"

 pdsh -w ^all_hosts "ln -s $HADOOP_HOME/libexec/* /usr/libexec"

 echo "Formatting the NameNode..."

 pdsh -w ^nn_host "su - hdfs -c '$HADOOP_HOME/bin/hdfs namenode -format'"

 echo "Copying startup scripts to all hosts..."

 pdcp -w ^nn_host hadoop-namenode /etc/init.d/

 pdcp -w ^snn_host hadoop-secondarynamenode /etc/init.d/

 pdcp -w ^dn_hosts hadoop-datanode /etc/init.d/

 pdcp -w ^rm_host hadoop-resourcemanager /etc/init.d/

 pdcp -w ^nm_hosts hadoop-nodemanager /etc/init.d/

 pdcp -w ^mr_history_host hadoop-historyserver /etc/init.d/

 pdcp -w ^yarn_proxy_host hadoop-proxyserver /etc/init.d/

 echo "Starting Hadoop $HADOOP_VERSION services on all hosts..."

 pdsh -w ^nn_host "chmod 755 /etc/init.d/hadoop-namenode && chkconfig
➥hadoop-namenode on && service hadoop-namenode start"

 pdsh -w ^snn_host "chmod 755 /etc/init.d/hadoop-secondarynamenode &&
➥chkconfig hadoop-secondarynamenode on && service hadoop-secondarynamenode start"

 pdsh -w ^dn_hosts "chmod 755 /etc/init.d/hadoop-datanode && chkconfig
➥hadoop-datanode on && service hadoop-datanode start"

 pdsh -w ^rm_host "chmod 755 /etc/init.d/hadoop-resourcemanager &&
➥chkconfig hadoop-resourcemanager on && service hadoop-resourcemanager start"

 pdsh -w ^nm_hosts "chmod 755 /etc/init.d/hadoop-nodemanager && chkconfig
➥hadoop-nodemanager on && service hadoop-nodemanager start"

 pdsh -w ^yarn_proxy_host "chmod 755 /etc/init.d/hadoop-proxyserver
➥&& chkconfig hadoop-proxyserver on && service hadoop-proxyserver start"

 echo "Creating MapReduce Job History directories..."

 su - hdfs -c "hadoop fs -mkdir -p /mapred/history/done_intermediate"

 su - hdfs -c "hadoop fs -chown -R mapred:hadoop /mapred"

 su - hdfs -c "hadoop fs -chmod -R g+rwx /mapred"

 pdsh -w ^mr_history_host "chmod 755 /etc/init.d/hadoop-historyserver &&
➥chkconfig hadoop-historyserver on && service hadoop-historyserver start"

 echo "Running YARN smoke test..."

 pdsh -w ^all_hosts "usermod -a -G hadoop $(whoami)"

 su - hdfs -c "hadoop fs -mkdir -p /user/$(whoami)"

 su - hdfs -c "hadoop fs -chown $(whoami):$(whoami) /user/$(whoami)"

 source /etc/profile.d/java.sh

 source /etc/profile.d/hadoop.sh

 source /etc/hadoop/hadoop-env.sh

 source /etc/hadoop/yarn-env.sh

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B YARN Installation Scripts254

 hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-
➥$HADOOP_VERSION.jar pi
➥-Dmapreduce.clientfactory.class.name=org.apache.hadoop.mapred.YarnClientFactory
➥-libjars $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-
➥$HADOOP_VERSION.jar 16 10000

}

interactive()

{

 echo -n "Enter NameNode hostname: "

 read nn

 echo -n "Enter Secondary NameNode hostname: "

 read snn

 echo -n "Enter ResourceManager hostname: "

 read rmgr

 echo -n "Enter Job History Server hostname: "

 read mr_hist

 echo -n "Enter YARN Proxy hostname: "

 read yarn_proxy

 echo -n "Enter DataNode hostnames (comma-separated or hostlist syntax): "

 read dns

 echo -n "Enter NodeManager hostnames (comma-separated or hostlist
➥syntax): "

 read nms

 echo "$nn" > "$nn_host"

 echo "$snn" > "$snn_host"

 echo "$rmgr" > "$rm_host"

 echo "$mr_hist" > "$mr_history_host"

 echo "$yarn_proxy" > "$yarn_proxy_host"

 dn_hosts_var=$(sed 's/\,/\n/g' <<< $dns)

 nm_hosts_var=$(sed 's/\,/\n/g' <<< $nms)

 echo "$dn_hosts_var" > "$dn_hosts"

 echo "$nm_hosts_var" > "$nm_hosts"

 echo "$(echo "$nn $snn $rmgr $mr_hist $yarn_proxy
➥$dn_hosts_var $nm_hosts_var" | tr ' ' '\n' | sort -u)" > "$all_hosts"

}

file()

{

 nn=$(cat nn_host)

 snn=$(cat snn_host)

 rmgr=$(cat rm_host)

 mr_hist=$(cat mr_history_host)

 yarn_proxy=$(cat yarn_proxy_host)

 dns=$(cat dn_hosts)

 nms=$(cat nm_hosts)

www.it-ebooks.info

http://www.it-ebooks.info/

255install-hadoop2.sh

 echo "$(echo "$nn $snn $rmgr $mr_hist $dns $nms"
➥| tr ' ' '\n' | sort -u)" > "$all_hosts"

}

help()

{

cat << EOF

install-hadoop2.sh

This script installs Hadoop 2 with basic data, log, and pid directories.

USAGE: install-hadoop2.sh [options]

OPTIONS:

 -i, --interactive Prompt for fully qualified domain names (FQDN) of the
➥NameNode,

 Secondary NameNode, DataNodes,
➥ResourceManager, NodeManagers,

 MapReduce Job History Server, and YARN
➥Proxy server. Values

 entered are stored in files in the same
➥directory as this command.

 -f, --file Use files with fully qualified domain names
➥(FQDN), newline

 separated. Place files in the same directory
➥as this script.

 Services and file name are as follows:

 NameNode = nn_host

 Secondary NameNode = snn_host

 DataNodes = dn_hosts

 ResourceManager = rm_host

 NodeManagers = nm_hosts

 MapReduce Job History Server = mr_history_host

 YARN Proxy Server = yarn_proxy_host

 -h, --help Show this message.

EXAMPLES:

 Prompt for host names:

 install-hadoop2.sh -i

 install-hadoop2.sh --interactive

 Use values from files in the same directory:

 install-hadoop2.sh -f

 install-hadoop2.sh --file

EOF

}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B YARN Installation Scripts256

while true;

do

 case "$1" in

 -h|--help)

 help

 exit 0

 ;;

 -i|--interactive)

 interactive

 install

 shift

 ;;

 -f|--file)

 file

 install

 shift

 ;;

 --)

 shift

 break

 ;;

 esac

done

uninstall-hadoop2.sh

#!/bin/bash

HADOOP_VERSION=2.0.5-alpha

HADOOP_HOME="/opt/hadoop-${HADOOP_VERSION}"

NN_DATA_DIR=/var/data/hadoop/hdfs/nn

SNN_DATA_DIR=/var/data/hadoop/hdfs/snn

DN_DATA_DIR=/var/data/hadoop/hdfs/dn

YARN_LOG_DIR=/var/log/hadoop/yarn

HADOOP_LOG_DIR=/var/log/hadoop/hdfs

HADOOP_MAPRED_LOG_DIR=/var/log/hadoop/mapred

echo "Stopping Hadoop 2 services..."

pdsh -w ^dn_hosts "service hadoop-datanode stop"

pdsh -w ^snn_host "service hadoop-secondarynamenode stop"

pdsh -w ^nn_host "service hadoop-namenode stop"

pdsh -w ^mr_history_host "service hadoop-historyserver stop"

pdsh -w ^yarn_proxy_host "service hadoop-proxyserver stop"

pdsh -w ^nm_hosts "service hadoop-nodemanager stop"

pdsh -w ^rm_host "service hadoop-resourcemanager stop"

www.it-ebooks.info

http://www.it-ebooks.info/

257uninstall-hadoop2.sh

echo "Removing Hadoop 2 services from run levels..."

pdsh -w ^dn_hosts "chkconfig --del hadoop-datanode"

pdsh -w ^snn_host "chkconfig --del hadoop-secondarynamenode"

pdsh -w ^nn_host "chkconfig --del hadoop-namenode"

pdsh -w ^mr_history_host "chkconfig --del hadoop-historyserver"

pdsh -w ^yarn_proxy_host "chkconfig --del hadoop-proxyserver"

pdsh -w ^nm_hosts "chkconfig --del hadoop-nodemanager"

pdsh -w ^rm_host "chkconfig --del hadoop-resourcemanager"

echo "Removing Hadoop 2 startup scripts..."

pdsh -w ^all_hosts "rm -f /etc/init.d/hadoop-*"

echo "Removing Hadoop 2 distribution tarball..."

pdsh -w ^all_hosts "rm -f /opt/hadoop-2*.tar.gz"

echo "Removing JDK 1.6.0_31 distribution..."

pdsh -w ^all_hosts "rm -f /opt/jdk*"

echo "Removing JDK 1.6.0_31 artifacts..."

pdsh -w ^all_hosts "rm -f sun-java*"

pdsh -w ^all_hosts "rm -f jdk*"

echo "Removing Hadoop 2 home directory..."

pdsh -w ^all_hosts "rm -Rf $HADOOP_HOME"

echo "Removing Hadoop 2 bash environment setting..."

pdsh -w ^all_hosts "rm -f /etc/profile.d/hadoop.sh"

echo "Removing Java bash environment setting..."

pdsh -w ^all_hosts "rm -f /etc/profile.d/java.sh"

echo "Removing /etc/hadoop link..."

pdsh -w ^all_hosts "unlink /etc/hadoop"

echo "Removing Hadoop 2 command links..."

pdsh -w ^all_hosts "unlink /usr/bin/container-executor"

pdsh -w ^all_hosts "unlink /usr/bin/hadoop"

pdsh -w ^all_hosts "unlink /usr/bin/hdfs"

pdsh -w ^all_hosts "unlink /usr/bin/mapred"

pdsh -w ^all_hosts "unlink /usr/bin/rcc"

pdsh -w ^all_hosts "unlink /usr/bin/test-container-executor"

pdsh -w ^all_hosts "unlink /usr/bin/yarn"

echo "Removing Hadoop 2 script links..."

pdsh -w ^all_hosts "unlink /usr/libexec/hadoop-config.sh"

pdsh -w ^all_hosts "unlink /usr/libexec/hdfs-config.sh"

pdsh -w ^all_hosts "unlink /usr/libexec/httpfs-config.sh"

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B YARN Installation Scripts258

pdsh -w ^all_hosts "unlink /usr/libexec/mapred-config.sh"

pdsh -w ^all_hosts "unlink /usr/libexec/yarn-config.sh"

echo "Uninstalling JDK 1.6.0_31 RPM..."

pdsh -w ^all_hosts "rpm -ev jdk-1.6.0_31-fcs.x86_64"

echo "Removing NameNode data directory..."

pdsh -w ^nn_host "rm -Rf $NN_DATA_DIR"

echo "Removing Secondary NameNode data directory..."

pdsh -w ^snn_host "rm -Rf $SNN_DATA_DIR"

echo "Removing DataNode data directories..."

pdsh -w ^dn_hosts "rm -Rf $DN_DATA_DIR"

echo "Removing YARN log directories..."

pdsh -w ^all_hosts "rm -Rf $YARN_LOG_DIR"

echo "Removing HDFS log directories..."

pdsh -w ^all_hosts "rm -Rf $HADOOP_LOG_DIR"

echo "Removing MapReduce log directories..."

pdsh -w ^all_hosts "rm -Rf $HADOOP_MAPRED_LOG_DIR"

echo "Removing HDFS account..."

pdsh -w ^all_hosts "userdel -r hdfs"

echo "Removing MapReduce system account..."

pdsh -w ^all_hosts "userdel -r mapred"

echo "Removing YARN system account..."

pdsh -w ^all_hosts "userdel -r yarn"

echo "Removing Hadoop system group..."

pdsh -w ^all_hosts "groupdel hadoop"

hadoop-xml-conf.sh

#!/bin/bash

#

Utility functions for processing Hadoop 2 XML configuration files.

Depends on Python built-in XML processing and libxml2 for formatting.

#

installed=false

if [-f /etc/profile.d/hadoop.sh]; then

www.it-ebooks.info

http://www.it-ebooks.info/

259hadoop-xml-conf.sh

 source /etc/profile.d/hadoop.sh

 source $HADOOP_HOME/etc/hadoop/hadoop-env.sh

 installed=true

fi

create_config()

{

 local filename=

 case $1 in

 '') echo $"$0: Usage: create_config --file"

 return 1;;

 --file)

 filename=$2

 ;;

 esac

 python - <<END

from xml.etree import ElementTree

from xml.etree.ElementTree import Element

conf = Element('configuration')

conf_file = open("$filename",'w')

conf_file.write(ElementTree.tostring(conf))

conf_file.close()

END

 write_file $filename

}

put_config()

{

 local filename= property= value=

 while ["$1" != ""]; do

 case $1 in

 '') echo $"$0: Usage: put_config --file --property --value"

 return 1;;

 --file)

 filename=$2

 shift 2

 ;;

 --property)

 property=$2

 shift 2

 ;;

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B YARN Installation Scripts260

 --value)

 value=$2

 shift 2

 ;;

 esac

 done

 python - <<END

from xml.etree import ElementTree

from xml.etree.ElementTree import Element

from xml.etree.ElementTree import SubElement

def putconfig(root, name, value):

 for existing_prop in root.getchildren():

 if existing_prop.find('name').text == name:

 root.remove(existing_prop)

 break

 property = SubElement(root, 'property')

 name_elem = SubElement(property, 'name')

 name_elem.text = name

 value_elem = SubElement(property, 'value')

 value_elem.text = value

path = ''

if "$installed" == 'true':

 path = "$HADOOP_CONF_DIR" + '/'

conf = ElementTree.parse(path + "$filename").getroot()

putconfig(root = conf, name = "$property", value = "$value")

conf_file = open("$filename",'w')

conf_file.write(ElementTree.tostring(conf))

conf_file.close()

END

 write_file $filename

}

del_config()

{

 local filename= property=

 while ["$1" != ""]; do

 case $1 in

 '') echo $"$0: Usage: del_config --file --property"

 return 1;;

 --file)

 filename=$2

www.it-ebooks.info

http://www.it-ebooks.info/

261hadoop-xml-conf.sh

 shift 2

 ;;

 --property)

 property=$2

 shift 2

 ;;

 esac

 done

 python - <<END

from xml.etree import ElementTree

from xml.etree.ElementTree import Element

from xml.etree.ElementTree import SubElement

def delconfig(root, name):

 for existing_prop in root.getchildren():

 if existing_prop.find('name').text == name:

 root.remove(existing_prop)

 break

path = ''

if "$installed" == 'true':

 path = "$HADOOP_CONF_DIR" + '/'

conf = ElementTree.parse(path + "$filename").getroot()

delconfig(root = conf, name = "$property")

conf_file = open("$filename",'w')

conf_file.write(ElementTree.tostring(conf))

conf_file.close()

END

 write_file $filename

}

write_file()

{

 local file=$1

 xmllint --format "$file" > "$file".pp && mv "$file".pp "$file"

}

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

C
YARN Administration Scripts

The following is a listing of the administration scripts discussed in Chapter 6, “Apache

Hadoop YARN Administration.” They can be used to help follow the administration

discussion. All of the scripts are available from the download page listed in Appendix A.

configure-hadoop2.sh

#!/bin/bash

HADOOP_VERSION=2.0.5-alpha

HADOOP_HOME=/opt/hadoop-"${HADOOP_VERSION}"

source hadoop-xml-conf.sh

op=

file=

property=

value=

refresh=false

delete()

{

 del_config --file $file --property $property

}

put()

{

 put_config --file $file --property $property --value $value

}

deploy()

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C YARN Administration Scripts264

{

 echo "Deploying $file to the cluster..."

 pdcp -w ^all_hosts "$file" $HADOOP_HOME/etc/hadoop/

}

restart_hadoop()

{

 echo "Restarting Hadoop 2..."

 pdsh -w ^dn_hosts "service hadoop-datanode stop"

 pdsh -w ^snn_host "service hadoop-secondarynamenode stop"

 pdsh -w ^nn_host "service hadoop-namenode stop"

 pdsh -w ^mr_history_host "service hadoop-historyserver stop"

 pdsh -w ^yarn_proxy_host "service hadoop-proxyserver stop"

 pdsh -w ^nm_hosts "service hadoop-nodemanager stop"

 pdsh -w ^rm_host "service hadoop-resourcemanager stop"

 pdsh -w ^nn_host "service hadoop-namenode start"

 pdsh -w ^snn_host "service hadoop-secondarynamenode start"

 pdsh -w ^dn_hosts "service hadoop-datanode start"

 pdsh -w ^rm_host "service hadoop-resourcemanager start"

 pdsh -w ^nm_hosts "service hadoop-nodemanager start"

 pdsh -w ^yarn_proxy_host "service hadoop-proxyserver start"

 pdsh -w ^mr_history_host "service hadoop-historyserver start"

}

process()

{

 if ["$op" == "delete"]

 then

 delete

 fi

 if ["$op" == "put"]

 then

 put

 fi

 deploy

 if $refresh;

 then

 restart_hadoop

 fi

}

help()

{

www.it-ebooks.info

http://www.it-ebooks.info/

configure-hadoop2.sh 265

cat << EOF

configure-hadoop2.sh

This script edits Hadoop 2 XML configuration files. Assumes an existing
➥Hadoop installation.

USAGE: configure-hadoop2.sh [options]

OPTIONS:

 -o, --operation Valid values are 'put' and 'delete'. A 'put'
 operation writes the property and value if it
 doesn't exist and overwrites it if it does exist.
 A 'delete' operation removes the property.

 -f, --file The name of the configuration file.

 -p, --property The name of the Hadoop configuration property

 -v, --value The value of the Hadoop configuration property.
 Required for a 'put' operation, ignored for a
 'delete' operation.

 -r, --restart Flag to restart Hadoop. Configuration files are
 deployed to the cluster automatically to
 \$HADOOP_HOME/etc/hadoop.

 -h, --help Show this message.

EXAMPLES:

 Add or edit a Hadoop configuration property:

 configure-hadoop2.sh -f hdfs-site.xml -p dfs.namenode.name.dir -v
➥/path/to/nn/data

 Delete a Hadoop configuration property:

 configure-hadoop2.sh -f hdfs-site.xml -p dfs.namenode.name.dir

 Add or edit a Hadoop configuration property and restart Hadoop:

 configure-hadoop2.sh -f hdfs-site.xml -p dfs.namenode.name.dir
➥-v /path/to/nn/data -r

EOF

}

while :

do

 case $1 in

 -h | --help)

 help

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C YARN Administration Scripts266

 exit 0

 ;;

 -o | --operation)

 if [-n "$2"];

 then

 if ["$2" != "put"] && ["$2" != "delete"]

 then

 echo "Operation (-o | --operation) must be either 'put' or 'delete'"

 exit 1

 fi

 op="$2"

 fi

 shift 2

 ;;

 -f | --file)

 if [-n "$2"];

 then

 file="$2"

 fi

 shift 2

 ;;

 -p | --property)

 if [-n "$2"];

 then

 property="$2"

 fi

 shift 2

 ;;

 -v | --value)

 value="$2"

 shift 2

 ;;

 -r | --restart)

 refresh=true

 shift

 ;;

 --)

 shift

 break

 ;;

 -*)

 echo "WARN: Unknown option (ignored): $1" >&2

 shift

 ;;

 *)

 break

 ;;

www.it-ebooks.info

http://www.it-ebooks.info/

configure-hadoop2.sh 267

 esac

done

if ["$op" == ""]; then

 echo "ERROR: option '-o | --operation' not given. See --help" >&2

 exit 1

fi

if ["$file" == ""]; then

 echo "ERROR: option '-f | --file' not given. See --help" >&2

 exit 1

fi

if ["$property" == ""]; then

 echo "ERROR: option '-p | --property' not given. See --help" >&2

 exit 1

fi

if ["$op" == "put"] && ["$value" == ""]; then

 echo "ERROR: option '-o | --operation' given with option '-v | --value' not
➥given. See --help" >&2

 exit 1

fi

process

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

D
Nagios Modules

The following is a selective listing of the Nagios modules described in Chapter 6,

“Apache Hadoop YARN Administration.” They can be used to help follow the Nagios

installation discussion. All the Nagios modules are available from the download page

listed in Appendix A.

check_resource_manager.sh

#!/bin/bash

Licensed to the Apache Software Foundation (ASF) under one or more

contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0

(the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

VERSION="Version 1.0"

PROGNAME=`/bin/basename $0`

Exit codes

STATE_OK=0

STATE_CRITICAL=2

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix D Nagios Modules270

version() {

 echo "$PROGNAME - $VERSION"

}

usage() {

 echo "Usage: $PROGNAME [-v] -w <limit> -c <limit>"

}

help() {

 version

 echo "Check the ResourceManager process\n"

 usage

}

while ["$1"]; do

 case "$1" in

 -h | --help)

 help

 exit $STATE_OK

 ;;

 -V | --version)

 version

 exit $STATE_OK

 ;;

 -v | --verbose)

 : $((verbosity++))

 shift

 ;;

 -?)

 usage

 exit $STATE_OK

 ;;

 *)

 echo "$PROGNAME: Invalid option '$1'"

 usage

 exit $STATE_UNKNOWN

 ;;

 esac

done

status=$(/sbin/service hadoop-resourcemanager status)

if echo "$status" | grep --quiet running ; then

 echo "ResourceManager OK - $status"

 exit $STATE_OK

else

www.it-ebooks.info

http://www.it-ebooks.info/

271check_data_node.sh

 echo "ResourceManager CRITICAL - $status"

 exit $STATE_CRITICAL

fi

check_data_node.sh

#!/bin/bash

Licensed to the Apache Software Foundation (ASF) under one or more

contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0

(the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

VERSION="Version 1.0"

PROGNAME=`/bin/basename $0`

Exit codes

STATE_OK=0

STATE_CRITICAL=2

version() {

 echo "$PROGNAME - $VERSION"

}

usage() {

 echo "Usage: $PROGNAME [-v] -w <limit> -c <limit>"

}

help() {

 version

 echo "Check the DataNode process\n"

 usage

}

while ["$1"]; do

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix D Nagios Modules272

 case "$1" in

 -h | --help)

 help

 exit $STATE_OK

 ;;

 -V | --version)

 version

 exit $STATE_OK

 ;;

 -v | --verbose)

 : $((verbosity++))

 shift

 ;;

 -?)

 usage

 exit $STATE_OK

 ;;

 *)

 echo "$PROGNAME: Invalid option '$1'"

 usage

 exit $STATE_UNKNOWN

 ;;

 esac

done

status=$(/sbin/service hadoop-datanode status)

if echo "$status" | grep --quiet running ; then

 echo "DataNode OK - $status"

 exit $STATE_OK

else

 echo "DataNode CRITICAL - $status"

 exit $STATE_CRITICAL

fi

check_resource_manager_old_space_pct.sh

#!/bin/bash

Licensed to the Apache Software Foundation (ASF) under one or more

contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0

(the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at

#

www.it-ebooks.info

http://www.it-ebooks.info/

273check_resource_manager_old_space_pct.sh

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

VERSION="Version 1.0"

PROGNAME=`/bin/basename $0`

Exit codes

STATE_OK=0

STATE_WARNING=1

STATE_CRITICAL=2

STATE_UNKNOWN=3

source /etc/profile.d/hadoop.sh

source /etc/profile.d/java.sh

source /etc/rc.d/init.d/functions

source ${HADOOP_HOME}/etc/hadoop/hadoop-env.sh

source ${HADOOP_HOME}/etc/hadoop/yarn-env.sh

PIDFILE="${YARN_PID_DIR}/yarn-yarn-resourcemanager.pid"

version() {

 echo "$PROGNAME - $VERSION"

}

usage() {

 echo "Usage: $PROGNAME [-v] -w <limit> -c <limit>"

}

help() {

 version

 echo "Check the ResourceManager Heap Old Space % used\n"

 usage

}

warn=

critical=

while ["$1"]; do

 case "$1" in

 -h | --help)

 help

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix D Nagios Modules274

 exit $STATE_OK

 ;;

 -V | --version)

 version

 exit $STATE_OK

 ;;

 -v | --verbose)

 : $((verbosity++))

 shift

 ;;

 -w | --warning | -c | --critical)

 if [[-z "$2" || "$2" = -*]] ; then

 echo "$PROGNAME: Option '$1' requires an argument"

 print_usage

 exit $STATE_UNKNOWN

 elif [["$2" = +([0-9])]] ; then

 thresh=$2

 else

 echo "$PROGNAME: Threshold must be integer or percentage"

 print_usage

 exit $STATE_UNKNOWN

 fi

 [["$1" = *-w*]] && warn=$thresh || critical=$thresh

 shift 2

 ;;

 -?)

 usage

 exit $STATE_OK

 ;;

 *)

 echo "$PROGNAME: Invalid option '$1'"

 usage

 exit $STATE_UNKNOWN

 ;;

 esac

done

if [[-z "$warn" || -z "$critical"]]; then

 echo "$PROGNAME: Threshold not set"

 usage

 exit $STATE_UNKNOWN

elif [["$critical" -lt "$warn"]]; then

 echo "$PROGNAME: Warning Old Space % should be more than critical Old Space %"

 usage

 exit $STATE_UNKNOWN

fi

www.it-ebooks.info

http://www.it-ebooks.info/

275check_resource_manager_old_space_pct.sh

pct=$("$JAVA_HOME"/bin/jstat -gcutil $(cat "$PIDFILE") | awk 'FNR == 2 {print $4}')

if ["$pct" > "$critical"] ; then

 printf "ResourceManager Heap Old Space %% used %s - %g" CRITICAL "$pct"

 exit $STATE_CRITICAL

elif ["$pct" > "$warn"]; then

 printf "ResourceManager Heap Old Space %% used %s - %g" WARN "$pct"

 exit $STATE_WARNING

else

 printf "ResourceManager Heap Old Space %g%% used is %s" "$pct" OK

 exit $STATE_OK

fi

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

E
Resources and Additional

Information

Apache Hadoop is an open-source project and is part of the Apache Foundation

(http://www.apache.org/). Community involvement is encouraged and information

about the Apache Hadoop project can be found at the project website: http://hadoop.

apache.org.

In addition, an active discussion can be found in Apache’s JIRA issue tracker sys-

tem. Issues, ideas, and many important discussions take place on this site. You can see

all the Hadoop JIRAs by consulting the following:

https://issues.apache.org/jira/secure/BrowseProjects.jspa#10292

In addition to the project website and the JIRA issue tracker, you may wish to con-

sult the following resources for further information.

1. Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia,

Benjamin Reed, and Eric Baldeschwieler. Apache Hadoop YARN: Yet Another

Resource Negotiator. ACM Symposium on Cloud Computing 2013. http://www.

socc2013.org/home/program/a5-vavilapalli.pdf.

2. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clus-

ters. Communications of the ACM, 51(1), January 2008.

3. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed

File System. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Sys-

tems and Technologies (MSST), MSST ’10. Washington, DC: IEEE Computer

Society, 2010.

4. O. O’Malley. Hadoop. In Hadoop: The Definitive Guide. O’Reilly Media, 2012.

5. Apache Storm: http://storm-project.net/documentation.html.

www.it-ebooks.info

http://www.apache.org/
http://hadoop.apache.org
http://hadoop.apache.org
http://www.socc2013.org/home/program/a5-vavilapalli.pdf
http://www.socc2013.org/home/program/a5-vavilapalli.pdf
http://storm-project.net/documentation.html
http://www.it-ebooks.info/

Appendix E Resources and Additional Information278

6. T. Graves. GraySort and MinuteSort at Yahoo! on Hadoop 0.23. 2013.

http://sortbenchmark.org/Yahoo2013Sort.pdf.

7. Apache TEZ. http://incubator.apache.org/projects/tez.html.

8. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-

parallel programs from sequential building blocks. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys ’07.

New York, NY: ACM, 2007.

9. S. Loughran, D. Das, and E. Baldeschwieler. Introducing Hoya: HBase on YARN.

2013. http://hortonworks.com/blog/introducing-hoya-hbase-on-yarn.

10. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A

not-so-foreign language for data processing. In Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’08. New

York, NY: ACM, 2008.

11. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony,

H. Liu, and R. Murthy. Hive: A petabyte scale data warehouse using Hadoop.

In F. Li, M. M. Moro, S. Ghandeharizadeh, J. R. Haritsa, G. Weikum,

M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, and

V. J. Tsotras, eds., Proceedings of the 26th International Conference on Data Engineer-

ing, ICDE 2010, March 1–6, 2010, Long Beach, California, USA. IEEE, 2010.

12. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing

in the data center. In Proceedings of the 8th USENIX Conference on Networked Sys-

tems Design and Implementation, NSDI ’11. Berkeley, CA: USENIX Association,

2011.

www.it-ebooks.info

http://sortbenchmark.org/Yahoo2013Sort.pdf
http://hortonworks.com/blog/introducing-hoya-hbase-on-yarn
http://incubator.apache.org/projects/tez.html
http://www.it-ebooks.info/

F

HDFS Quick Reference

This appendix is intended for those readers who have little or no experience with

the Hadoop Distributed File System (HDFS). The following discussion is intended to

provide minimal background on a few commands that will help get you started with

Apache Hadoop HDFS. It is not a full description of HDFS and may be missing many

of the important commands and features. In addition to this Quick Start, you are

strongly advised to consult these two resources:

 n http://hadoop.apache.org/docs/stable1/hdfs_design.html

 n http://developer.yahoo.com/hadoop/tutorial/module2.html

The following is a quick command reference that may help you get started with

HDFS. Be aware that there are alternative options for each command and that the

examples given here are simple use-cases.

Quick Command Reference

To interact with HDFS, you must use the hdfs command. The following options are

available. Only a few of these will be demonstrated here.

Usage: hdfs [--config confdir] COMMAND

 where COMMAND is one of:

 dfs run a file system command on the file systems supported in

➥Hadoop.

 namenode -format format the DFS file system

 secondarynamenode run the DFS secondary namenode

 namenode run the DFS namenode

 journalnode run the DFS journalnode

 zkfc run the ZK Failover Controller daemon

 datanode run a DFS datanode

 dfsadmin run a DFS admin client

 haadmin run a DFS HA admin client

 fsck run a DFS filesystem checking utility

www.it-ebooks.info

http://hadoop.apache.org/docs/stable1/hdfs_design.html
http://developer.yahoo.com/hadoop/tutorial/module2.html
http://www.it-ebooks.info/

Appendix F HDFS Quick Reference280

 balancer run a cluster balancing utility

 jmxget get JMX exported values from NameNode or DataNode

 oiv apply the offline fsimage viewer to an fsimage

 oev apply the offline edits viewer to an edits file

 fetchdt fetch a delegation token from the NameNode

 getconf get config values from configuration

 groups get the groups which users belong to

 snapshotDiff diff two snapshots of a directory or diff the

 current directory contents with a snapshot

 lsSnapshottableDir list all snapshottable dirs owned by the current user

 Use -help to see options

 portmap run a portmap service

 nfs3 run an NFS version 3 gateway

Most commands print help when invoked w/o parameters.

Starting HDFS and the HDFS Web GUI

HDFS must be started and running on the cluster before it can used. See Chapter

5, “Installing Apache Hadoop YARN,” for information on how to start and verify

HDFS on your cluster.

Get an HDFS Status Report

A status report, similar to what is summarized on the web GUI, can be obtained by

entering the following command (the output is truncated here).

$ hdfs dfsadmin –report

Configured Capacity: 747576360960 (696.23 GB)

Present Capacity: 675846991872 (629.43 GB)

DFS Remaining: 302179352576 (281.43 GB)

DFS Used: 373667639296 (348.01 GB)

DFS Used%: 55.29%

Under replicated blocks: 13

Blocks with corrupt replicas: 0

Missing blocks: 0

Datanodes available: 4 (4 total, 0 dead)

Live datanodes:

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

281Quick Command Reference

Perform an FSCK on HDFS

The health of HDFS can be checked by using the fsck (file system check) option.

$ hdfs fsck /

Connecting to namenode via http://headnode:50070

FSCK started by hdfs (auth:SIMPLE) from /10.0.0.1 for path / at

➥Fri Jan 03 16:32:16 EST 2014

Status: HEALTHY

 Total size: 110594648065 B

 Total dirs: 311

 Total files: 528

 Total symlinks: 0

 Total blocks (validated): 1341 (avg. block size 82471773 B)

 Minimally replicated blocks: 1341 (100.0 %)

 Over-replicated blocks: 0 (0.0 %)

 Under-replicated blocks: 13 (0.9694258 %)

 Mis-replicated blocks: 0 (0.0 %)

 Default replication factor: 3

 Average block replication: 2.9888144

 Corrupt blocks: 0

 Missing replicas: 78 (1.9089574 %)

 Number of data-nodes: 4

 Number of racks: 1

FSCK ended at Fri Jan 03 16:32:16 EST 2014 in 74 milliseconds

General HDFS Commands

HDFS provides a series of commands similar to those found in a standard POSIX file

system. A list of those commands can be obtained by issuing the following command.

A few of these commands will be highlighted here.

$ hdfs dfs

Usage: hadoop fs [generic options]

 [-appendToFile <localsrc> ... <dst>]

 [-cat [-ignoreCrc] <src> ...]

 [-checksum <src> ...]

 [-chgrp [-R] GROUP PATH...]

 [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

 [-chown [-R] [OWNER][:[GROUP]] PATH...]

 [-copyFromLocal [-f] [-p] <localsrc> ... <dst>]

 [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

 [-count [-q] <path> ...]

 [-cp [-f] [-p] <src> ... <dst>]

 [-createSnapshot <snapshotDir> [<snapshotName>]]

 [-deleteSnapshot <snapshotDir> <snapshotName>]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix F HDFS Quick Reference282

 [-df [-h] [<path> ...]]

 [-du [-s] [-h] <path> ...]

 [-expunge]

 [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

 [-getmerge [-nl] <src> <localdst>]

 [-help [cmd ...]]

 [-ls [-d] [-h] [-R] [<path> ...]]

 [-mkdir [-p] <path> ...]

 [-moveFromLocal <localsrc> ... <dst>]

 [-moveToLocal <src> <localdst>]

 [-mv <src> ... <dst>]

 [-put [-f] [-p] <localsrc> ... <dst>]

 [-renameSnapshot <snapshotDir> <oldName> <newName>]

 [-rm [-f] [-r|-R] [-skipTrash] <src> ...]

 [-rmdir [--ignore-fail-on-non-empty] <dir> ...]

 [-setrep [-R] [-w] <rep> <path> ...]

 [-stat [format] <path> ...]

 [-tail [-f] <file>]

 [-test -[defsz] <path>]

 [-text [-ignoreCrc] <src> ...]

 [-touchz <path> ...]

 [-usage [cmd ...]]

Generic options supported are

-conf <configuration file> specify an application configuration file

-D <property=value> use value for given property

-fs <local|namenode:port> specify a namenode

-jt <local|jobtracker:port> specify a job tracker

-files <comma-separated list of files> specify comma separated files to
➥be copied to the map reduce cluster

-libjars <comma separated list of jars> specify comma separated jar files to
➥include in the class path

-archives <comma separated list of archives> specify comma separated
➥archives to be unarchived on the compute machines.

The general command-line syntax is

bin/hadoop command [genericOptions] [commandOptions]

List Files in HDFS

To list the files in the root HDFS directory, enter the following command:

$ hdfs dfs -ls /

Found 8 items

drwxr-xr-x - hdfs hdfs 0 2013-02-06 21:17 /apps

drwxr-xr-x - hdfs hadoop 0 2014-01-01 14:17 /benchmarks

www.it-ebooks.info

http://www.it-ebooks.info/

283Quick Command Reference

drwx------ - mapred hdfs 0 2013-04-25 16:20 /mapred

drwxr-xr-x - hdfs hdfs 0 2013-12-17 12:57 /system

drwxrwxr-- - hdfs hadoop 0 2013-11-21 14:07 /tmp

drwxrwxr-x - hdfs hadoop 0 2013-10-31 11:13 /user

drwxr-xr-x - doug hdfs 0 2013-10-11 16:24 /usr

drwxr-xr-x - hdfs hdfs 0 2013-10-31 21:25 /yarn

To list files in your home directory, enter the following command:

$ hdfs dfs –ls

Found 16 items

drwx------ - doug hadoop 0 2013-04-26 02:00 .Trash

drwxr-xr-x - doug hadoop 0 2013-10-16 20:25 DistributedShell

-rw------- 3 doug hadoop 488 2013-04-24 16:01 NOTES.txt

drwxr-xr-x - doug hadoop 0 2013-11-21 14:34

➥QuasiMonteCarlo_1385061734722_747204430

drwxr-xr-x - doug hadoop 0 2014-01-02 12:48 TeraGen

drwxr-xr-x - doug hadoop 0 2014-01-01 16:31 TeraGen-output

-rw------- 3 doug hadoop 1083049567 2013-02-07 01:10 acces_log

drwx------ - doug hadoop 0 2013-04-25 15:01 bin

-rw-r--r-- 3 doug hadoop 31 2013-10-16 17:09 ds-test.sh

drwxr-xr-x - doug hadoop 0 2013-04-25 15:44 id.out

-rw------- 3 doug hadoop 2246 2013-04-25 15:43 passwd

drwxr-xr-x - doug hadoop 0 2013-05-14 17:07 test

drwxr-xr-x - doug hadoop 0 2013-05-14 17:23 test-output

drwx------ - doug hadoop 0 2013-05-15 11:21 war-and-peace

drwxr-xr-x - doug hadoop 0 2013-02-06 15:14 wikipedia

drwxr-xr-x - doug hadoop 0 2013-08-27 15:54 wikipedia-output

The same result can be obtained by issuing the following command:

$ hdfs dfs -ls /user/doug

Make a Directory in HDFS

To make a directory in HDFS, use the following command. As with the –ls com-

mand, when no path is supplied, the user’s home directory is used (e.g., /users/doug).

$ hdfs dfs -mkdir stuff

Copy Files to HDFS

To copy a file from your current local directory into HDFS, use the following com-

mand. Note that if a full path is not supplied, your home directory on HDFS is

assumed. In this case, the file test is placed in the directory stuff that was created

previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix F HDFS Quick Reference284

$ hdfs dfs -put test stuff

The file transfer can be confirmed by using the –ls command:

$ hdfs dfs -ls stuff

Found 1 items

-rw-r--r-- 3 doug hadoop 0 2014-01-03 17:03 stuff/test

Copy Files from HDFS

Files can be copied back to your local file system using the following command. In

this case, the file we copied into HDFS, test, will be copied back to the current local

directory with the name test-local.

$ hdfs dfs -get stuff/test test-local

Copy Files within HDFS

The following command will copy a file in HDFS.

$ hdfs dfs -cp stuff/test test.hdfs

Delete a File within HDFS

The following command will delete the HDFS file test.dhfs that was created

previously.

$ hdfs dfs -rm test.hdfs

Deleted test.hdfs

Delete a Directory in HDFS

The following command will delete the HDFS directory stuff and all its contents.

$ hdfs dfs -rm -r stuff

Deleted stuff

Decommissioning HDFS Nodes

This task is done by the HDFS administrator. To remove an active HDFS node,

perform the following steps. The procedure for removing a YARN node run-

ning the NodeManager daemons is given in Chapter 6, “Apache Hadoop YARN

www.it-ebooks.info

http://www.it-ebooks.info/

285Quick Command Reference

Administration.” Depending on your installation, these may be the same or different

nodes on which HDFS is running.

1. Add the following file path property to the hdfs-site.xml file. In this example,

the file name hdfs.excludes is used.

<property>

 <name> dfs.hosts.exclude</name>

 <value>/opt/yarn/hadoop-2.2.0/etc/hadoop/hdfs.excludes</value>

 </property>

2. Stop and restart the NameNode daemon.

3. To decommission a node, add the node name (or IP address) to the

hdfs.excludes file.

4. Run the following to decommission the node:

hdfs dfsadmin –refreshNodes

5. HDFS will then begin decommissioning the node. Do not shut down or remove

the node until this process is complete. The decommission status can be found

by running hdfs dfsadmin –report. The report for the decommissioned nodes

should have the following line:

Decommission Status : Decommission in progress

Once the task is complete, issuing the command hdfs dfsadmin –report will

produce the following output:

Decommission Status : Decommissioned

It is now safe to remove the node. To add the node back, simply remove the

node from the hdfs.excludes file and rerun hdfs dfsadmin –refreshNodes.

Consult the HDFS documentation for additional information.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Access control, and shared clusters, 14–15

ACLs (Access Control Lists)

administration of ResourceManager, 109

Application ACLsManager, 119–120

ApplicationMaster and, 139

Capacity scheduler queues using, 47

evolution of shared clusters, 12

queues and, 159–160

Ad hoc clusters, 3

Admin window, Ambari dashboard, 103

Administration of YARN

adding/decommissioning nodes, 107–108

with Ambari, 99–103

configuring Capacity scheduler, 108

JVM analysis, 103–105

managing jobs, 109–110

monitoring basic Hadoop services, 92–95

monitoring cluster health with Nagios,

90–92

monitoring JVM, 95–97

overview of, 85

real-time monitoring with Ganglia,

97–98

refreshing ACLs for administration of

ResourceManager, 109

refreshing superuser proxy groups map-

pings, 109

refreshing user-to-groups mappings, 108

reloading service-level authorization pol-

icy file, 109

script-based configuration, 85–90

setting container cores, 110

setting container memory, 110

setting MapReduce properties, 110–111

tools for, 106–107

user log management, 111–113

using JobHistoryServer, 108

YARN WebProxy, 108

Administration scripts

code download, 247

configure-hadoop2.sh script, 263–267

Administration Service, ResourceManager,

119

AggregatedLogDeletionService service, 111

Agility, MapReduce shared clusters issues, 18

Allocate API, 140–141, 146

Ambari, administration with, 99–103

Ambari-Agents, 73–74, 76

Ambari installation

checking requirements, 73

of Hadoop 2, 71–72

installing Ambari server, 73

installing and starting agents, 73–74

installing HDP2.X cluster, 75–84

performing, 72–73

starting Ambari server, 74

Ambari-Server, 73–74

AMRMTokens SecretManager, 126

Apache

Giraph framework, 242–243

Hadoop. See MapReduce

Hadoop YARN. See YARN

Hive. See Hive

Oozie worfklows, 188

Pig. See Pig

Spark framework, 244

Storm framework, 244–245

Tez framework, 242

Apache Software Foundation (ASF) site, 59

Application ACLsManager, 119–120, 136

www.it-ebooks.info

http://www.it-ebooks.info/

288 Index

Application development example, YARN

ApplicationMaster. See ApplicationMaster,

writing

overview of, 191

YARN client. See Client, writing YARN

APPLICATION LocalResources, 56,

132–133

ApplicationAttempts, 146–147

ApplicationClientProtocol, Client

Service, 119

ApplicationConstants.Environment API, 149

ApplicationMaster

adding local resources to container

for, 235

AMRMTokens SecretManager, 126

cleanup on exit with FinishApplication-

Request, 147

client application life cycle, 51–53

Client class launching, 233–234

communication with, 149–150

completed containers, 146

as container 0, 49

container specification, 42

coordination and output commit,

146–147

in Distributed-Shell application, 236–240

enabling restarts, 182

failures and recovery of, 146

features of, 40

information for clients, 147

interaction with NodeManager, 145

interaction with ResourceManager, 117,

120–121

launching, 138–139

launching containers, 145–146

liveliness monitor, 121, 139–140

monitoring MapReduce, 176–179

overview of, 50

requesting containers, 49

resource requirements, 140

ResourceRequest, 41–42

responsibilities of, 38–39, 44, 139

scheduling, 140–142

scheduling protocol and locality, 142–144

security, 147

specifying resource timestamps to Node-

Manager, 55

submitting application to YARN,

201–205

YARN applications formed by containers

and, 115–116

ApplicationMaster Launcher, 123

ApplicationMaster, writing

creating RMCallbackHandler, 215–217

developing, 208–210

initialization, 211–212

launching container, 217–226

overview of, 208

registering with ResourceManager, 215

YARN service life-cycle method invoca-

tion, 214–215

ApplicationMasterProtocol, 120–121

ApplicationReport, 206–208

Applications

Capacity scheduler limits/overriding

limits on, 168–169

interaction with ResourceManager,

120–121

life cycle of client, 50–53

responsibilities for writers of, 150–151

running existing MRv1 applications with

MRv2, 184–186

unique ApplicationMaster for, 50

YARN components and, 44–45

Applications, managing dependencies

lifetime of LocalResources, 57

LocalResource timestamps, 55

LocalResource types, 55–56

LocalResource visibilities, 56–57

LocalResources definitions, 54–55

overview of, 53–54

Applications status window, 175

ApplicationsManager, 122–123

ApplicationSubmissionContext, 198–202,

206–208

ApplicationSummary, 122

Architecture

ApplicationMaster, 138–147

Hadoop on Demand, 4–5

NodeManager. See NodeManager

architecture

overview of, 115–117

ResourceManager. See ResourceManager

architecture

www.it-ebooks.info

http://www.it-ebooks.info/

289Index

responsibilities of application writers,

150–151

shared MapReduce clusters, 9–15

YARN, 38–39

YARN containers, 148–150

ARCHIVE type

changing LocalResourceType to, 238

LocalResource as, 56

ASF (Apache Software Foundation) site, 59

Assign Masters window, Ambari host

assignment, 79

Auditing, 14–15, 19

Authentication, 14–15, 119

Authorization, 109, 126–127

Auto-deallocation of idle clusters, 7

Automatic failover, Hadoop 2, 60

Auxiliary services, 135, 137

B

Backward compatibility. See Compatibility

Binary compatibility, MapReduce on

YARN, 184–185

BSP (bulk-synchronous parallel model), 17

C

Callback handlers

creating RMCallbackHandler, 215–217

running ApplicationMaster, 213–214

Capacity, calculating node, 182–184

Capacity management with queues

Capacity scheduler properties, 156

enforcing fairness, 163–166

with hierarchical queues, 156–157

overview of, 160–163

Capacity scheduler

capacity management with queues,

160–163

configuration of, 108, 155–156

evolution of, 11–12

hierarchical queues, 156–159

introduction to, 153–155

limits on applications, 168–169

overview of, 47, 153

queue access control, 159–160

queues, 156

reservations, 166–167

state of queues, 167–168

user interface, 169

user limits, 163–166

capacity-scheduler.xml, 156

check_data_node.sh script, Nagios, 271–272

check_resource_manager.sh script, Nagios,

269–271

chkconfig, Ganglia, 98

CLC (container launch context)

ApplicationMaster–container manager

communication, 52

containers described with, 50, 128

resource request to ResourceManager, 51

CLI (command-line interface), Client CLI in

Distributed-Shell, 233–234

Client

Ambari Hadoop 2 install, 80

application life cycle, 50–53

ApplicationMaster and, 147

core functionality of YARN, 191–193

interaction with ResourceManager,

118–120

Client class, in Distributed-Shell application,

233–236

Client CLI, in Distributed-Shell application,

233–234

Client Service, ResourceManager, 118–119

Client, writing YARN

core functionality of, 191–193

initialization, 196–198

monitoring application, 205–208

submitting application to YARN,

198–205

Cluster menu, 46

Cluster Metrics table, 175

Clusters

Ambari Hadoop 2 install, 75

auto-deallocation of idle, 7

era of ad hoc, 3

evolution of shared. See Shared clusters

Ganglia monitoring Hadoop, 97–98

monitoring health with Nagios, 90–92

shortcomings of HOD, 8

Code downloads, 247

Command reference, HDFS quick reference,

279–280

www.it-ebooks.info

http://www.it-ebooks.info/

290 Index

Command-line

HDFS quick reference, 281–282

log interactions, 112

MRv1/MRv2 script compatibility, 185

Compatibility

MRv1 with MRv2 applications, 184–186

MRv2, 181

MRv2 incompatible APIs, 186

YARN requirements for backward,

19–20

Completed containers, ApplicationMaster, 146

Completed jobs, management of, 11

Configuration

Capacity scheduler, 155–156

HOD, 7

writing ApplicationMaster, 222–223

Configuration files

Ambari installation, 72

basic YARN administration, 106

properties description. See http://yarn-

book.com

scripted Hadoop 2 install, 68–70

YARN client constructor, 195

configure-hadoop2.sh script

code, 263–267

code download, 247

script-based configuration with, 86

Constants, in Distributed-Shell application,

232–233

Container Executor, NodeManager, 136

Container ID field, ContainerTokens, 124

Container launch context. See CLC

(container launch context)

ContainerAllocationExpirer, 123

ContainerLaunchContext

in ApplicationMaster, 145

ApplicationMaster setting up launch

context, 237

container environment, 148

submitting application to YARN,

202–205

ContainerManagementProtocol, 240

ContainerManager, NodeManager

auxiliary services, 135

Containers Launcher, 135

ContainersMonitor, 135–136

LogHandler, 136

resource localization configuration,

133–135

resource localization process, 131–133

resource localization service, 130–131

RPC server, 130

Containers

adding commands to launch con-

tainers, 239

adding environment and file data

to, 238

adding local resources to AM con-

tainer, 235

ApplicationMaster allocating, 51–52

ApplicationMaster monitoring, 40

architecture of YARN, 117, 148–150

Client class in Distributed-Shell applica-

tion, 233–236

coordination and output commit needed

by, 146–147

defined, 43, 148

environment of, 148–149

executing Distributed-Shell commands

on, 229

interaction with ApplicationMaster/

NodeManager, 149–150

launch specification API for, 42

launching in ApplicationMaster, 145–146,

217–226

launching in NodeManager, 137

managing application dependencies,

53–57

NodeManager responsibilities, 50

overview of, 38–39, 49

reserved, 48–49

resource allocation model and, 50–51

ResourceManager and, 33

ResourceRequests and, 41–42, 142

setting cores for, 110–111

setting memory and cores for, 110

storing shell script metadata in, 235

uploading container libraries to

HDFS, 234

Containers Launcher, ContainerManager, 135

ContainersMonitor, ContainerManager,

135–136

www.it-ebooks.info

http://yarn-book.com
http://yarn-book.com
http://www.it-ebooks.info/

291Index

ContainerToken SecretManager, 124–126, 136

Coordination, with ApplicationMaster,

146–147

Copy files

to HDFS, 283–284

from HDFS, 284

within HDFS, 285

core-default.xml f ile, 106

core-site.xml f ile

quick-start YARN install, 24

scripted Hadoop 2 install, 68–69

Cores, setting for containers, 110

Credentials, authentication and access

control, 14–15

Customize Services window, Ambari, 81

D

DAG (directed acyclic graph), Apache Tez, 60

Dashboard, Ambari, 99–103

Data

creating directories in YARN install

for, 23

Hadoop performance and, 35

locality, MapReduce with YARN, 181

Data Nodes (HDFS), Ambari Hadoop 2

install, 80

DataNode service

monitoring, 94

quick-start YARN install, 24–25, 27

Debugging

with launch_container.sh f ile, 230–231

with user logs, 111

Decommissioning nodes

HDFS, 285–286

YARN, 107–108

Delegation tokens, ResourceManager,

119, 127

DelegationToken Renewer, 127

Delete, file/directory in HDFS, 285

DeletionService, LocalResources, 55

Dependencies, managing application, 53–57

Desktop machine, running YARN on, 21

Directed acyclic graph (DAG), Apache Tez, 60

Directories

for data and logs in YARN install, 23

making in HDFS quick reference, 283

in scripted Hadoop 2 install, 63–65

writing ApplicationMaster, 223–224

Distributed Cache, 13

Distributed-Shell application

ApplicationMaster class, 235

Client class, 233–236

containers, 229

DSConstants class, 232–233

example, 228–229

examples with arguments, 230–231

final containers, 240

main classes, 232

running shell commands/scripts in

containers, 241

using, 227–228

Domain controller user interface, 224–225

Domain mode, configuring

ApplicationMaster, 222–223

Dreadnaught, 2

Dryad on YARN, 243–244

DSConstants class, in Distributed-Shell

application, 232–233

Dynamic information, container environ-

ment, 149

Dynamic resource requirements,

ApplicationMaster, 140

E

Eclipse Memory Analyzer, JVM heat dumps,

104–105

Eden subsegment, JVM, 104

Elasticity

Capacity scheduler support for, 154

shortcomings of HOD, 8–9

End-user MapReduce API, 36

Environment, container, 148–149

Environment variables, 204

Environment.JAVA_HOME.$(), 204

EPEL (Extra Packages for Enterprise Linux)

Nagios installation, 90

scripted Hadoop 2 install, 60–61

Expiry time, ContainerAllocation-

Expirer, 123

Expiry timestamp field, ContainerTokens, 125

www.it-ebooks.info

http://www.it-ebooks.info/

292 Index

F

Failures

ApplicationMaster, 146, 182

container, 146

Fair scheduler

under development, 48

evolution of shared clusters, 11–12

overview of, 47–48

Fault tolerance, of MapReduce with

YARN, 181

FIFO (first in, first out) scheduler, 46–47, 155

File-based mode, scripted Hadoop 2 install, 64

File-system URLs, container environment, 148

FILE type, 55–56

Files, listing in HDFS quick reference,

282–283

Finish API, ApplicationMaster, 147

FinishApplicationMasterRequest, 240

FinishApplicationRequest, Application-

Master, 147

Flexible Resource Model, requirements for

YARN, 18–19

FQDN

Ambari Hadoop 2 install issues, 83

configuring Ambari-Agent ini file, 74

scripted Hadoop 2 install, 61–62

starting Ambari server, 74

Frameworks, YARN

Apache Giraph, 242–243

Apache Spark, 244

Apache Storm, 244–245

Apache Tez, 242

distributed shell, 241

Dryad on YARN, 243–244

end-user interactions with, 116

Hadoop MapReduce, 241–242

Hamster, 245

Hoya: HBase on YARN, 243

REEF, 245

FSCK, performing in HDFS quick refer-

ence, 281

G

Ganglia

managed by Ambari, 72, 99

real-time monitoring with, 97–98

Generations, JVM processes, 103–104

GetNewApplicationResponse, 198–201

Giraph framework, 242–243

gmetad daemon, Ganglia, 97–98

gmond daemon, Ganglia, 97–98

Google’s Pregel, Giraph based on, 242

Granular scheduling, Capacity scheduler sup-

porting, 154–155

Groups, quick-start YARN install, 23

H

HA (high availability), NameNode, 60

Hadoop. See also Scripted Hadoop 2

uninstallation

core components of version 1, 21

download from website, 22–23

evolution of, 2–3

installation. See Installation, YARN

introduction to. See http://yarn-book.com

Phase 0, era of ad hoc clusters, 3

Phase 1, Hadoop on Demand. See

Hadoop on Demand (HOD)

Phase 2, shared clusters. See Shared

clusters

Phase 3, emergence of YARN, 18–20

review summary, 20

scripted Hadoop 2 uninstallation, 68

YARN. See YARN

hadoop-cluster.cfg f ile, monitoring, 93–95

Hadoop on Demand (HOD)

development of, 3

evolution of shared clusters vs., 9–14

features and advantages of, 6–7

HDFS in, 5

overview of, 3–5

shortcomings of, 7–9

hadoop-xml-conf.sh script

code, 258–261

XML file processing, 68, 86

HADOOP_HOME variable, scripted Hadoop 2

install, 63–64

hadoop.http.staticuser.user property,

quick-start YARN install, 24

HADOOP_VERSION variable, scripted Hadoop 2

install, 63–64

Hamster, 245

www.it-ebooks.info

http://yarn-book.com
http://www.it-ebooks.info/

293Index

Hard drive space, YARN installation, 22

Hardware, YARN installation, 22

hdfs-default.xml f ile, 106

HDFS (Hadoop Distributed File System)

ad hoc clusters and, 3

advancements in Phase 2, 10

as core component, 21–22

format during YARN install, 26

in HOD, 5

improvements to, 60

quick reference, 279

scripted Hadoop 2 install, 65, 67

security credentials, 14

shared, 4–5

starting services during YARN install, 27

uploading container libraries to, 234

HDFS (Hadoop Distributed File System)

quick reference

copy files from, 284

copy files to, 283–284

copy files within, 285

decommissioning nodes, 285–286

delete directory in, 285

delete file within, 285

general commands, 281–282

getting status report, 280

list f iles, 282–283

make directory, 283

performing FSCK, 281

quick command reference, 279–280

starting HDFS web GUI and, 280

hdfs-site.xml f ile

quick-start YARN install, 24–25

scripted Hadoop 2 install, 69

HDP 2.0 (Hortonworks Data Platform),

Ambari Automated Install, 73, 75–84

Heap dumps, analyzing JVM, 104–105

Heap sizes, modifying JAVA for YARN

install, 26

Heartbeats to ResourceManager

ApplicationMaster container allocation, 52

ApplicationMaster liveliness monitor, 121,

139–140

ApplicationMaster scheduling, 140–141

ApplicationMaster sending, 50

NodeManager sending, 50

with Resource Tracker Service, 121–122

Heatmaps window, Ambari dashboard,

99–100

Hierarchical queues

Capacity scheduler, 156–159

Fair scheduler, 49

High availability (HA), NameNode, 60

High Cluster Utilization, 8, 19

High-performance computing (HPC),

Hamster, 245

Hive, 60, 187

HOD (Hadoop on Demand)

advantages of, 6–7

HDFS and, 5

moving to shared clusters from, 10–15

overview of, 3–5

shortcomings and retirement of, 7–9

HODRings, 4

Hosts

Ambari dashboard, 101–102

Ambari Hadoop 2 install, 77, 79

Nagios group definition, 90–91

scripted Hadoop 2 install, 64

Hoya: HBase on YARN framework, 243

Httpd services, configuring Nagios, 90

I

Info operation, multiple concurrent clusters, 6

init method

ApplicationMaster initialization,

211–212, 237

developing ApplicationMaster, 210

running ApplicationMaster, 213–215

YARN client initialization, 196–198

init scripts

monitoring Hadoop services, 92

starting Hadoop, 71, 87

Initialization

writing ApplicationMaster script, 211–213

writing YARN client script, 196–198

Input/output paths, containers, 148

install-hadoop2.sh script

code for, 249–256

scripted Hadoop 2 install, 63

Install quick start, YARN

configuring core-site.xml, 24

configuring hdfs-site.xml, 24–25

www.it-ebooks.info

http://www.it-ebooks.info/

294 Index

Install quick start, YARN (continued)

configuring mapred-site.xml, 25

configuring yarn-site.xml, 25–26

creating users and groups, 23

downloading Apache Hadoop, 22–23

formatting HDFS, 26

getting started, 22

HDFS services, 27

making data and log directories, 23

minimal requirements, 22

modifying Java heap sizes, 26

overview of, 21

setting JAVA_HOME, 23

testing with sample MapReduce

examples, 30–31

verify running services using web inter-

face, 28–29

wrap-up, 31

YARN services, 28

Installation scripts

code download page for, 247

hadoop-xml-conf.sh, 258–261

install-hadoop2.sh, 249–256

uninstall-hadoop2.sh, 256–258

Installation, YARN

with Ambari. See Ambari installation

basics, 59–60

by downloading from ASF site, 59

improvements other than YARN, 60

overview of, 59

from scratch. See Install quick start, YARN

scripted. See Scripted Hadoop 2 installation

scripted uninstallation, 68

system preparation, 60–62

troubleshooting. See http://yarn-book.com

Instances, HDFS, 3

Interactive mode, scripted Hadoop 2 install, 64

Interface, Capacity scheduler, 169

IPC address, ApplicationMaster and, 139

Iptables, configuring Nagios, 90

Isolation on individual nodes, and shared

clusters, 12–13

J

JAR file

testing YARN installation, 30–31

writing ApplicationMaster, 221–223

writing YARN client, 202–203

Java for YARN install, 22, 26

Java Virtual Machine (JVM)

analysis, 103–105

evolution of MapReduce framework, 15

monitoring, 95–97

JAVA_HOME

quick start YARN install, 23

scripted Hadoop 2 install, 63, 64

JBoss AS (JBoss application server) cluster.

See Application development example,

YARN

JDK (Java Development Kit)

installing Ambari server, 73

quick-start YARN install, 23

scripted Hadoop 2 install, 59, 62, 64

jhat utility, analyzing JVM heat dumps,

104–105

jmap tool, analyzing memory usage, 104

Job ACLs, 14–15

JobHistoryServer

managing completed jobs, 11

in MapReduce version 2, 182

storing MapReduce history, 108

Jobs

authentication and access control, 14–15

Capacity scheduler for, 11–12

isolation on individual nodes, 12–13

JobTracker memory management for, 10

management of completed, 11

managing MapReduce, 109

managing YARN, 109–110

recovery and upgrades, 12

scripted Hadoop 2 install, 65, 67

user log management, 111

JobToken-based authentication, 14

JobTracker

ApplicationMaster replacing in ver-

sion 2, 182

Hadoop on Demand and, 4–5, 7

MapReduce shared clusters using, 9–13,

15–18

reworking in YARN, 18–19

YARN process f low, 36–38

JVM (Java Virtual Machine)

analysis, 103–105

www.it-ebooks.info

http://yarn-book.com
http://www.it-ebooks.info/

295Index

evolution of MapReduce framework, 15

monitoring, 95–97

K

Kerberos, 14, 119

Kill events, client application life cycle, 53

-kill, yarn application command,

109–110

L

launch_container.sh f ile

in Distributed-Shell application, 230–231

writing ApplicationMaster, 224–225

Launching containers

ApplicationMaster, 145–146

NodeManager, 137

Leaf queues

defined, 157

enforcing fairness with user limits,

163–166

naming queues in Capacity scheduler, 159

scheduling, 157–158

stopping/restarting, 167–168

Libraries, uploading container libraries to

HDFS, 234

Life cycle

client application, 50–53

LocalResources, 57

NodeManager overseeing container, 49

YARN service, 214–215

Limits, Capacity scheduler, 168–169

Linux file system, Hadoop 2 installation, 59

linux-server template, Nagios, 90

LinuxTaskController, 14

List files, HDFS quick start, 282–283

List operation, HOD, 6

-list, yarn application command,

109–110

Liveliness monitor

ApplicationMaster, 121, 139–140

NodeManager, 122

LocalCache, LocalResources, 55–56

Locality

Hadoop on Demand issues, 7–8

ResourceRequest constraints, 144

Locality Awareness

of Capacity scheduler, 155

as key requirement for YARN, 8, 19

Localization

LocalResources, 54

NodeManager, 131–133

resource localization service, 130–131

Localizer, LocalResources, 55

LocalResources

adding to AM container, 235

definitions, 54–55

initializing metadata for, 237

lifetime of, 57

localization of PRIVATE/APPLICATION

resources, 132–133

localization of PUBLIC resources,

131–132

managing application dependencies,

53–54

modifying ApplicationMaster code,

235–237

managing with Client class, 233–234

resource localization service, 131

submitting application to YARN,

202–204

target locations of, 133

timestamps, 55

types, 55–56

visibilities, 56–57

writing ApplicationMaster, 221–222

LogHandler, ContainerManager, 136

Logs

administration and configuration,

112–113

aggregated output, 89–90

aggregation in YARN, 111

command-line utility interacting

with, 112

container environment, 148

in Hadoop on Demand, 6

NodeManager overseeing, 49, 137

permissions, 113

quick-start YARN install, 23, 27

scripted Hadoop 2 install, 65

web user interface and, 112

Loss of information issue, ResourceRequests,

142–143

www.it-ebooks.info

http://www.it-ebooks.info/

296 Index

M

Macros, Nagios, 94–95

Main method, writing YARN client,

193–194

Map, Hadoop on Demand, 4–5

Map slots

in earlier Hadoop versions, 50

Fair scheduler departure from, 48

YARN departure from, 45

mapred-default.xml f ile, 106

mapred job command, 109

mapred-site.xml f ile

calculating node capacity, 182–183

quick-start YARN install, 25

scripted Hadoop 2 install, 69

setting MapReduce properties, 110–111

MapReduce

Apache Tez framework and, 60

evolution of shared clusters. See Shared

clusters, evolution of MapReduce

MapReduce (MRv1)

abuse of, 17

basic structure of, 33–34

compatibility of MRv2 applications with,

184–186

death of JobTracker in, 182

evolution of, 15

Hadoop on Demand issues, 7–9

process f low, 35–37

running existing code, 187–188

shared cluster issues, 15–18

MapReduce with YARN (MRv2)

ApplicationMaster failures and recov-

ery, 182

basic structure, 34–35

calculating node capacity, 182–184

compatibility, 181–182

configuration file, 69–70

debugging with user logs, 111

defined, 21

features, 241–242

JobHistoryServer, 108

LocalResource timestamps, 55

managing jobs, 109

need for non-MapReduce workloads, 37

overview of, 171

paradigm, 35

setting properties, 110–111

shuff le service, 137, 184

untested features, 188–189

user agility, 38

MapReduce with YARN (MRv2), running

existing examples

monitoring examples with web GUI,

174–179

overview of, 171–172

pi example, 172–174

terasort benchmark, 180

TestDFSIO benchmark, 180–181

testing quick start installation, 30–31

version 1 applications, 184–186

version 1 existing code, 187–188

mapreduce.framework.name property, quick-

start YARN install, 25

Master key identifier field, Container-

Tokens, 125

master_memory, submitting application to

YARN, 202

Maui, 4, 7–8

Memory

analyzing usage on running application, 104

Capacity scheduler for applications with

high, 47

isolation on individual nodes and, 12–13

issues of MapReduce shared clusters, 18

managing JobTracker, 10

setting for containers, 110

submitting application to YARN, 202, 206

Message Passing Interface (MPI), 245

Metadata

code for storing shell script metadata in

containers, 235

for DSConstants class, 232

initializing for local resources, 237

Metrics dashboard, Ambari, 72

minimum-user-limit-percent property,

capacity management, 164–165

Monitoring

Ambari server, 72

basic Hadoop services, 92–95

cluster health with Nagios, 90–92

JVM, 95–97

MapReduce examples with web GUI,

174–179

www.it-ebooks.info

http://www.it-ebooks.info/

297Index

real-time with Ganglia, 97–98

YARN applications, 206–208

MPI (Message Passing Interface), 245

MPICH2, 245

Multitenancy

Capacity scheduler support for, 154

Hadoop on Demand and, 3–4, 7

requirements for YARN, 19

N

Nagios

Ganglia monitoring versus, 97–98

managed by Ambari, 99

monitoring cluster health, 90–92

monitoring Hadoop services, 92–95

Nagios modules

check_data_node.sh, 271–272

check_resource_manager_old_space_

pct.sh, 272–275

check_resource_manager.sh, 269–271

code download, 247

Nagios Remote Plugin Executor (NRPE),

93–95

NameNode

federation, 60

HA (high availability), 60

quick-start YARN install, 24, 26–27

scripted Hadoop 2 install, 64–65

Naming conventions

hierarchical queues, 158–159

scripted Hadoop 2 install, 64

Network partitions, application coordination

issues, 147

New generation, JVM processes, 103–104

NMToken SecretManager, 126–127, 136

Node Health CheckerService component, 136

Node-level isolation, 12–13

NodeManager

Ambari Hadoop 2 install with, 80

ApplicationMaster communication path-

way with, 208–210

client application life cycle and, 51–52

interaction of containers with, 149–150

interaction of nodes with Resource

Manager, 121–122

launching containers, 38, 145, 220–221

liveliness monitor, 122

LocalResources, 55–56

monitoring, 94

overview of, 49–50

as per-machine slave, 38

quick-start YARN install with, 25–26

ResourceManager working with, 117

ResourceRequests and, 46

responsibilities of, 43–44

SecretManager ContainerTokens and,

124–126

user log management, 111

YARN control elements, 38–39

NodeManager architecture

Container Executor component, 136

ContainerManager component, 130–136

important functions of, 137

Node Health CheckerService compon-

ent, 136

NodeStatusUpdater component, 129–130

overview, 117

overview of components, 128–129

responsibilities of, 127–128

security components, 136

Nodes

adding/decommissioning, 15, 107–108

Administration Service refreshing, 119

Ambari Hadoop 2 install, 76

calculating capacity of, 182–184

Capacity scheduler reservations on, 166–167

integrating scripts with services manage-

ment, 71

interaction with Resource Manager, 121–122

scripted Hadoop 2 install, 62, 64

Nodes-list manager, 122

Nodes status window, Hadoop, 175

NodeStatusUpdater component, 129–130

Non-MapReduce workf lows, 33–35, 37

NRPE (Nagios Remote Plugin Executor),

93–95

number of containers, ResourceRequest, 41

O

Old generation, JVM processes, 103–104

Online resources

and additional information, 277–278

www.it-ebooks.info

http://www.it-ebooks.info/

298 Index

Online resources (continued)

Apache Giraph, 243

Apache Spark framework, 244

Apache Storm framework, 245

Apache Tez, 242

available code downloads, 247

Capacity scheduler configuration, 108

currently running scheduler, 46

Dryad on YARN, 243–244

Hadoop website, 22

HDFS options in Hadoop 2, 60

HDFS quick reference, 279

Hoya: HBase on YARN framework, 243

Java for YARN install, 23

most recent version of Hadoop, 62

MPICH2, 245

Nagios, 90

Parallel Distributed Shell, 60

REEF framework, 245

OpenJDK path, scripted Hadoop 2 install, 63

OpenSSH package, scripted Hadoop 2

install, 61–62

Options class, command-line options, 196

org.apache.hadoop.mapred APIs, 184–185

org.apache.hadoop.mapreduce APIs, 183

Output commit, ApplicationMaster, 146–147

P

Parallel Distributed Shell, 60–62

Parallel map phase. See also Map slots, 35

Parent queues

defined, 157

naming in Capacity scheduler, 159

scheduling, 157–158

stopping/restarting, 167–168

Passwords

Ambari user database, 81

configuring secure shell without, 61, 73–74

developing YARN ApplicationMaster,

209, 211–212

setting Nagios, 91

submitting application to YARN, 200, 205

YARN client initialization, 198

YARN client main method, 193, 195–196

Path name, Capacity scheduler queues, 156

PATTERN type, LocalResource as, 56

pdcp tool

defined, 60

installing Ambari agents, 74

script-based configuration, 86

pdsh tool

defined, 60

installing Ambari agents, 74

installing Ganglia, 97

script-based configuration, 87

scripted Hadoop 2 install, 60–62

Performance, Hadoop, 35

Permanent generation, JVM processes, 103–104

Permissions

HDFS, 3

log, 113

shared cluster, 14

writing ApplicationMaster, 223

Phases. See YARN, history of

pi example, 172–174

pid directories, scripted Hadoop 2 install, 65

Pig, 60, 187

Platform, YARN, 115–116

Plug-ins, Nagios, 90

Pluggable scheduler, ResourceManager, 40

Pluggable shuff le and sort, 188–189

Policies

Capacity scheduler scheduling, 155

reloading service-level authorization, 109

Ports, writing ApplicationMaster, 222–223

Pregel, 242

Priorities, MapReduce with YARN applica-

tion, 181

Priority, ResourceRequests

defined, 41, 142

example, 144

submitting application to YARN, 206

PRIVATE LocalResources, 56, 132–133

Programming Model Diversity, 17

Properties

adding/decommissioning YARN nodes,

107–108

ApplicationMaster, 222

Capacity scheduler, 108

log administration and configuration,

112–113

www.it-ebooks.info

http://www.it-ebooks.info/

299Index

MapReduce, 110–111

queues in Capacity scheduler, 156

quick-start YARN install, 24, 25

refreshing ACLs for ResourceManager

administration, 109

refreshing superuser proxy groups map-

pings, 109

refreshing user-to-groups mappings, 108

scripted Hadoop 2 install for MapReduce,

69–70

YARN WebProxy, 108

Proxy groups mappings, refreshing super-

user, 109

Proxy servers, Web Application Proxy, 108

Pseudo-distributed installation, 22

PUBLIC LocalResources, 56, 131–133

Q

QJM (Quorum Journal Manager), 60

Queue access control, Capacity scheduler,

159–160

Queue ACLs, 14

Queue paths, Capacity scheduler, 158

Queues

Administration Service refreshing, 119

Capacity scheduler. See Capacity

scheduler

controlling who can submit jobs to spe-

cific, 14

defined, 156

Fair scheduler, 48–49

FIFO scheduler, 46–47

scheduling jobs with, 11–12

submitting application to YARN, 206

Quick command reference, HDFS quick ref-

erence, 279–280

R

radmin utility

adding new queues at runtime, 159

warning messages when executing, 185

RAM, YARN installation requirements, 22

Recovery

ApplicationMaster, 146, 182

enabling for completed tasks, 182

evolution of shared clusters, 12

Red Hat (RPM-based installation)

defined, 60

Nagios, 90

scripted Hadoop 2, 60–62

single-node YARN server configuration,

22–23

Reduce slots

MapReduce, 35

static allocation in earlier Hadoop ver-

sions, 50

REEF (Retainable Evaluator Execution

Framework), 245

RegionServers, Ambari Hadoop 2 install, 80

Registration, ApplicationMaster, 139

relaxLocality f lag, ResourceRequests, 142

Reliability and Availability, YARN require-

ments, 17, 19

Reliability, MapReduce shared cluster issues,

16–17

Remote procedure calls. See RPCs (remote

procedure calls)

Reservations, Capacity scheduler, 166–167

Reserved container, Fair scheduler, 48–49

Resource allocation model, 50

Resource capability, ResourceRequests, 142

Resource container, scheduler, 38–39

Resource field, ContainerTokens, 124

Resource localization service

configuring, 133–135

ContainerManager, 130–131

process of, 131–133

Resource location, ResourceRequests, 142

Resource management

client application life cycle, 50–53

Hadoop on Demand, 4–7

moving to shared clusters from, 9

YARN providing, 35–39

Resource Manager, Hadoop on Demand,

4–5, 9

resource-name, ResourceRequest, 41

resource-requirement, ResourceRequest, 41

Resource requirements, ApplicationMaster, 140

Resource scheduler, YARN as, 21

Resource Tracker Service, 121–122

www.it-ebooks.info

http://www.it-ebooks.info/

300 Index

Resource usage, NodeManager overseeing, 49

ResourceLocalizationService, Local-

Resources, 55

ResourceManager

adding/decommissioning YARN nodes,

107–108

ApplicationMaster’s communication path-

way with, 208–210

client application life cycle, 51–53

failures affecting cluster availability, 46

features of, 39–40

granting ResourceRequest, 41

overview of, 45–46

refreshing ACLs, 109

registering ApplicationMaster with,

215, 237

responsibilities of, 43–44

scheduling containers, 49

tasks not responsible for, 46

YARN control elements, 38–39

ResourceManager architecture

application interaction with, 120–121

architectural overview, 117

client interaction with, 118–120

components, 117–118

core components, 122–123

defined, 117

node interaction with, 121–122

overview of components, 117–118

security-related components, 123–127

ResourceManagerAdministrationProtocol,

Administration Service, 119

ResourceRequests

issued by ApplicationMaster, 44, 141–143

locality constraints, 144

loss of information issue, 142–143

scheduling example, 143–144

as strict or negotiable, 46

Resources

Capacity scheduler limits/overriding

limits on, 168–169

Capacity scheduler support for, 154

features of YARN model, 41

issues of MapReduce shared clusters, 17–18

submitting application to YARN, 206

Retainable Evaluator Execution Framework

(REEF), 245

Review window, Ambari, 82

RingMaster, HOD architecture, 4

RMDelegationToken SecretManager, 127

ROOT queue, hierarchical

defined, 157

naming in Capacity scheduler, 158–159

scheduling among queues, 157–158

stopping/restarting, 167–168

RPC server, ContainerManager, 130

RPCs (remote procedure calls)

ApplicationMasters service, 120

Client Service, 119

management of completed jobs, 11

RPM-based installation. See Red Hat

(RPM-based installation)

RUNNING state, queues, 167–168

S

Scalability

with ApplicationMaster, 40

authentication and access control, 14–15

building share compute platform with, 1

evolution of Apache Hadoop, 2–3

Hadoop 2 installation addressing, 37

requirements for YARN, 19

ResourceManager addressing, 45

shared MapReduce cluster issues, 15–16

Scheduling

abuse of MapReduce, 17

among hierarchical queues, 157–158

ApplicationMaster and, 140–144

with Capacity scheduler. See Capacity

scheduler

with Fair scheduler, 47–49

with FIFO scheduler, 46–47

overview of, 46

ResourceManager limited to, 38–39,

45–46

shared clusters and, 11–12

with YarnScheduler, 123

Script-based configuration, YARN adminis-

tration, 85–90

Scripted Hadoop 2 installation

configuration file processing, 68

configuration file settings, 68–70

downloading/extracting scripts, 63

www.it-ebooks.info

http://www.it-ebooks.info/

301Index

of Hadoop 2, 62

JDK options, 62

providing node names, 64

running script, 64–65

setting script variables, 63

start-up scripts, 71

system preparation for, 60–62

verifying installation, 65–68

Scripted Hadoop 2 uninstallation, 68

Scripts

creating service monitoring, 92–95

downloading/installing install, 63

integrating with services management, 71

YARN installation. See Installation scripts

Secondary NameNode service, quick-start

YARN install, 24–25, 27

SecretManager

AMRMTokens, 126

ContainerTokens, 124–126

NMTokens, 126–127

ResourceManager and, 124–126

RMDelegationToken, 127

Secure and Auditable Operation, YARN

requirements, 15, 19

Security

ApplicationMaster, 147

authentication and access control, 14–15

Capacity scheduler, 154

Client Service authentication, 119

container environment, 149

evolution of shared clusters, 13–14

NodeManager, 136

ResourceManager, 124–127

Web Application Proxy in YARN

addressing, 108

Service-level authorization policy file,

reloading, 109

Services

Ambari Hadoop 2 install, 78, 81

evolution of shared clusters, 12

functionality in YARN, 196

of Hadoop on Demand, 6

managed by Ambari, 99

MapReduce shared cluster issues, 16–17

monitoring basic, 92–95

in quick-start YARN install, 27–28

ResourceManager web, 120

verifying with web interface, 28–29

YARN requirements for, 19

Services window, Ambari dashboard, 100–102

Shared clusters

Capacity scheduler for large, 47

Fair scheduler for large, 47–48

overview of, 9–10

Shared clusters, evolution of MapReduce

authentication and access control, 14–15

central JobTracker daemon, 10

central scheduler, 11–12

HDFS instances, 10

isolation on individual nodes, 12–13

issues of, 15–18

JobTracker memory management, 10

management of completed jobs, 11

MapReduce framework, 15

miscellaneous management features, 15

overview of, 9

recovery and upgrades, 12

security, 13–14

-shell_args option, adding arguments to

Distributed-Shell application, 230

Shuff le service

as MapReduce auxiliary service, 137

MapReduce version 2 changes, 184

pluggable, 188–189

Single point of failure, JobTracker, 12

Slaves, Ambari Hadoop 2 install, 80

Software, distribution of Hadoop, 7

Software stack, Ambari Hadoop 2 install, 75

Source compatibility, org.apache.hadoop.

mapreduce APIs, 183

ssh keys, scripted Hadoop 2 install, 61–62

start() method, submitting application to

YARN, 198–201

Start-up scripts, 71

StartContainerRequest, 145

StartContainerResponse, 145

States, queue, 167–168

Static allocation issues, earlier Hadoop

versions, 50

Static resource requirements, Application-

Master, 140

Status report, HDFS quick reference, 280

stderr directory, in Distributed-Shell

application, 229

www.it-ebooks.info

http://www.it-ebooks.info/

302 Index

stdout directory, in Distributed-Shell

application, 229

Stinger Initiative Phase 3 release, 242

StopContainersResponse, 145

STOPPED state, queues, 167–168

Submitting application to YARN, 198–205

Summary window, Ambari, 83

Superuser proxy groups mappings, refresh-

ing, 109

Survivor Space I subsegment, new generation

JVM, 104

System requirements

Ambari Hadoop 2 install, 73

preparation for YARN Installation, 60–62

scripted YARN installation, 59–60

YARN install quick start, 22

YARN redesign, 18–20

T

TaskController, 14

TaskTrackers

Hadoop on Demand architecture, 4–5

Hadoop on Demand data locality issues,

7–8

health-check script in, 15

JobTracker managing, 37

MapReduce version 2, 36

responsibilities of, 37

shared MapReduce clusters, 9, 13–14, 18

Templates

configuring Nagios, 90

monitoring basic services, 93–95

Tenured generation, JVM processes, 103

Terasort benchmark, 180

TestDFSIO benchmark, 180–181

Testing

scripted Hadoop 2 install, 65–66

YARN installation, 30–31

Tez framework, 242

Timeout, killing long-running appli-

cations, 236

Timestamps, LocalResource, 55, 203

Tokens

container environment, 149

ContainerToken SecretManager,

124–126, 136

DelegationToken Renewer, 127

NMToken SecretManager, 126–127, 136

RMDelegationToken SecretManager, 127

Tools, administrative, 106–107

Torque, 4, 7–8, 15

U

Uber Jobs, 188–189

uninstall-hadoop2.sh script, code, 256–258

Upgrades, shared clusters, 12

URL, LocalResources, 54, 56–57

Use-cases, evolution of Apache Hadoop, 3

User-limit-factor, capacity management, 166

User logs

authentication and access control, 14

management of, 111–113

MapReduce shared cluster issues, 18

User-session, HOD architecture, 4–5

User-to-group mappings, refreshing,

108, 119

Users

Capacity scheduler limits, 163–166

creating during YARN install, 23

HOD enabling multiple, 6

interaction with frameworks, 116

V

Visibility, LocalResource

APPLICATION, 56–57

PRIVATE, 56

PUBLIC, 56

specifying, 57

submitting application to YARN, 203

W

Web Application Proxy, 108

Web application, ResourceManager, 120

Web interface

Capacity scheduler, 169

configuring Nagios, 90

HDFS quick reference, 280

log aggregation and, 112

monitoring MapReduce examples with,

174–179

www.it-ebooks.info

http://www.it-ebooks.info/

303Index

scripted Hadoop 2 install, 65–66

verifying services after YARN installa-

tion, 28–29

viewing ApplicationMaster on YARN,

224–225

Web server, NodeManager security, 136

Web services, ResourceManager, 120

WebMap application, 2

WebProxy, YARN, 108

Writers of applications

example. See Application development

example, YARN

potential multiple-writer problem, 147

responsibilities of, 150–151

X

–XX:NewRatio, JVM analysis, 104

–XX:NewSize, JVM analysis, 104

Y

YARN

High Cluster Utilization priority for, 8

Locality Awareness priority for, 8

MapReduce. See MapReduce

YARN and Hadoop ecosystem

beyond MapReduce, 33–35

improved utilization, 38

need for non-MapReduce workloads, 37

original MapReduce design, 35–37

overview of, 33

scalability, 37–38

user agility, 38

YARN architecture, 38–39

YARN components, 39–42

yarn application command, 109–110

YARN components

ApplicationMaster, 40, 50

architecture overview, 43–45

Capacity scheduler, 47

client application life cycle, 50–53

containers, 41–42, 49

Fair scheduler, 47–49

FIFO scheduler, 46–47

managing application dependencies, 53–57

NodeManager(s), 49–50

overview of, 43

relationship between application and,

44–45

resource model, 41

ResourceManager, 39–40, 45–46

ResourceRequest, 41

review summary, 57–58

yarn-default-xml f ile

client constructor, 195

client initialization, 196

schedule class, 46

YARN, history of

evolution of Apache Hadoop, 2–3

introduction to, 1–2

overview of, 1

Phase 0, era of ad hoc clusters, 3

Phase 1, Hadoop on Demand, 3–9

Phase 2, shared compute clusters, 9–18

Phase 3, emergence of YARN, 18–20

review summary, 20

yarn rmadmin

adding new queues at runtime, 159

configuring Capacity scheduler, 108, 156

refreshing ACLs for administration of

ResourceManager, 109

refreshing superuser proxy groups map-

pings, 109

for YARN administrative tools, 106–107

yarn-site.xml f ile

calculating node capacity, 182–183

configuring resource localization,

133–135

configuring YARN install, 25–26

in Distributed-Shell application, 230

enabling recovery of completed tasks, 182

scripted Hadoop 2 install, 70

setting container cores, 110

setting container memory, 110

YARN client constructor, 195

YARN client initialization, 196

yarn.acl.enable property, 119

yarn.admin.acl property, 109, 120

YarnClientApplication, 198–202

YarnConfiguration class, 195–196

yarn.log-aggregation-enable property, 113

yarn.nodemanager.aux-services property,

25–26

www.it-ebooks.info

http://www.it-ebooks.info/

304 Index

yarn.nodemanager.log-dirs property, 112

yarn_proxy_host f ile, hostname, 64

YarnScheduler

ApplicationMaster forwarding requests

to, 120

overview of, 123

Resource Tracker Service forwarding

node-heartbeat to, 122

Yet Another Resource Negotiator (YARN).

See YARN

Young generation, JVM processes, 103–104

Z

ZKFailoverController, 60

ZooKeeper, Hadoop 2, 60

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Video Training for Professionals
Working with Data

informit.com/awdataseries

ISBN-13: 978-0-13-339282-1

Demonstrates the core compo-

nents of Hadoop and how to use

it at several levels.

A high-level overview of big data

and how to use key tools to

solve your data challenges.

ISBN-13: 978-0-13-335895-7

For more information about the trainers, what the videos cover,

and sample videos, please visit informit.com/awdataseries.

ISBN-13: 978-0-13-381095-0

ISBN-13: 978-0-13-374327-2 ISBN-13: 978-0-13-359945-9 ISBN-13: 978-0-13-380714-1

Shows how Apache Hadoop leads

to increased scalability and clus-

ter utilization, new programming

models, and services.

A tour through the most impor-

tant parts of R, from the basics

to complex modeling.

A coherent, narrative tutorial that

strikes the right balance between

teaching the “how” and the “why”

of data analytics in Python.

A practical introduction to solving

common data challenges and

addressing each of today’s key

Big Data use cases.

informIT.com
www.it-ebooks.info

http://www.it-ebooks.info/

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register

to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

www.it-ebooks.info

http://www.it-ebooks.info/

* Available to new subscribers only. Discount applies to the Safari Library and is valid for rst

12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,

digital media and professional development from O’Reilly Media,

Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,

Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!

Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts

pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new

books about your favorite topics are available, and customize your library

with favorites, highlights, tags, notes, mash-ups and more.

informIT.com

LearnIT InformIT

informIT.com

 IT

www.it-ebooks.info

http://www.it-ebooks.info/

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

www.it-ebooks.info

http://www.it-ebooks.info/

Activate your FREE Online Edition at

informit.com/safarifree

STEP 1: Enter the coupon code: WDQEQGA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,

please e-mail customer-service@safaribooksonline.com

Your purchase of Apache Hadoop™ YARN includes access to a free online edition for 45

days through the Safari Books Online subscription service. Nearly every Addison-Wesley

Professional book is available online through Safari Books Online, along with thousands of

books and videos from publishers such as Cisco Press, Exam Cram, IBM Press, O’Reilly Media,

Prentice Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands

of technology, digital media, and professional development books and videos from leading

publishers. With one monthly or yearly subscription price, you get unlimited access to learning

tools and information on topics including mobile app and software development, tips and tricks

on using your favorite gadgets, networking, project management, graphic design, and much

more.

FREE
Online Edition

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents
	Foreword by Raymie Stata
	Foreword by Paul Dix
	Preface
	Acknowledgments
	About the Authors
	1 Apache Hadoop YARN: A Brief History and Rationale
	Introduction
	Apache Hadoop
	Phase 0: The Era of Ad Hoc Clusters
	Phase 1: Hadoop on Demand
	HDFS in the HOD World
	Features and Advantages of HOD
	Shortcomings of Hadoop on Demand

	Phase 2: Dawn of the Shared Compute Clusters
	Evolution of Shared Clusters
	Issues with Shared MapReduce Clusters

	Phase 3: Emergence of YARN
	Conclusion

	2 Apache Hadoop YARN Install Quick Start
	Getting Started
	Steps to Configure a Single-Node YARN Cluster
	Step 1: Download Apache Hadoop
	Step 2: Set JAVA_HOME
	Step 3: Create Users and Groups
	Step 4: Make Data and Log Directories
	Step 5: Configure core-site.xml
	Step 6: Configure hdfs-site.xml
	Step 7: Configure mapred-site.xml
	Step 8: Configure yarn-site.xml
	Step 9: Modify Java Heap Sizes
	Step 10: Format HDFS
	Step 11: Start the HDFS Services
	Step 12: Start YARN Services
	Step 13: Verify the Running Services Using the Web Interface

	Run Sample MapReduce Examples
	Wrap-up

	3 Apache Hadoop YARN Core Concepts
	Beyond MapReduce
	The MapReduce Paradigm

	Apache Hadoop MapReduce
	The Need for Non-MapReduce Workloads
	Addressing Scalability
	Improved Utilization
	User Agility

	Apache Hadoop YARN
	YARN Components
	ResourceManager
	ApplicationMaster
	Resource Model
	ResourceRequests and Containers
	Container Specification

	Wrap-up

	4 Functional Overview of YARN Components
	Architecture Overview
	ResourceManager
	YARN Scheduling Components
	FIFO Scheduler
	Capacity Scheduler
	Fair Scheduler

	Containers
	NodeManager
	ApplicationMaster
	YARN Resource Model
	Client Resource Request
	ApplicationMaster Container Allocation
	ApplicationMaster–Container Manager Communication

	Managing Application Dependencies
	LocalResources Definitions
	LocalResource Timestamps
	LocalResource Types
	LocalResource Visibilities
	Lifetime of LocalResources

	Wrap-up

	5 Installing Apache Hadoop YARN
	The Basics
	System Preparation
	Step 1: Install EPEL and pdsh
	Step 2: Generate and Distribute ssh Keys

	Script-based Installation of Hadoop 2
	JDK Options
	Step 1: Download and Extract the Scripts
	Step 2: Set the Script Variables
	Step 3: Provide Node Names
	Step 4: Run the Script
	Step 5: Verify the Installation

	Script-based Uninstall
	Configuration File Processing
	Configuration File Settings
	core-site.xml
	hdfs-site.xml
	mapred-site.xml
	yarn-site.xml

	Start-up Scripts
	Installing Hadoop with Apache Ambari
	Performing an Ambari-based Hadoop Installation
	Step 1: Check Requirements
	Step 2: Install the Ambari Server
	Step 3: Install and Start Ambari Agents
	Step 4: Start the Ambari Server
	Step 5: Install an HDP2.X Cluster

	Wrap-up

	6 Apache Hadoop YARN Administration
	Script-based Configuration
	Monitoring Cluster Health: Nagios
	Monitoring Basic Hadoop Services
	Monitoring the JVM

	Real-time Monitoring: Ganglia
	Administration with Ambari
	JVM Analysis

	Basic YARN Administration
	YARN Administrative Tools
	Adding and Decommissioning YARN Nodes
	Capacity Scheduler Configuration
	YARN WebProxy
	Using the JobHistoryServer
	Refreshing User-to-Groups Mappings
	Refreshing Superuser Proxy Groups Mappings
	Refreshing ACLs for Administration of ResourceManager
	Reloading the Service-level Authorization Policy File
	Managing YARN Jobs
	Setting Container Memory
	Setting Container Cores
	Setting MapReduce Properties
	User Log Management

	Wrap-up

	7 Apache Hadoop YARN Architecture Guide
	Overview
	ResourceManager
	Overview of the ResourceManager Components
	Client Interaction with the ResourceManager
	Application Interaction with the ResourceManager
	Interaction of Nodes with the ResourceManager
	Core ResourceManager Components
	Security-related Components in the ResourceManager

	NodeManager
	Overview of the NodeManager Components
	NodeManager Components
	NodeManager Security Components
	Important NodeManager Functions

	ApplicationMaster
	Overview
	Liveliness
	Resource Requirements
	Scheduling
	Scheduling Protocol and Locality
	Launching Containers
	Completed Containers
	ApplicationMaster Failures and Recovery
	Coordination and Output Commit
	Information for Clients
	Security
	Cleanup on ApplicationMaster Exit

	YARN Containers
	Container Environment
	Communication with the ApplicationMaster

	Summary for Application-writers
	Wrap-up

	8 Capacity Scheduler in YARN
	Introduction to the Capacity Scheduler
	Elasticity with Multitenancy
	Security
	Resource Awareness
	Granular Scheduling
	Locality
	Scheduling Policies

	Capacity Scheduler Configuration
	Queues
	Hierarchical Queues
	Key Characteristics
	Scheduling Among Queues
	Defining Hierarchical Queues

	Queue Access Control
	Capacity Management with Queues
	User Limits
	Reservations
	State of the Queues
	Limits on Applications
	User Interface
	Wrap-up

	9 MapReduce with Apache Hadoop YARN
	Running Hadoop YARN MapReduce Examples
	Listing Available Examples
	Running the Pi Example
	Using the Web GUI to Monitor Examples
	Running the Terasort Test
	Run the TestDFSIO Benchmark

	MapReduce Compatibility
	The MapReduce ApplicationMaster
	Enabling Application Master Restarts
	Enabling Recovery of Completed Tasks
	The JobHistory Server

	Calculating the Capacity of a Node
	Changes to the Shuffle Service
	Running Existing Hadoop Version 1 Applications
	Binary Compatibility of org.apache.hadoop.mapred APIs
	Source Compatibility of org.apache.hadoop. mapreduce APIs
	Compatibility of Command-line Scripts
	Compatibility Tradeoff Between MRv1 and Early MRv2 (0.23.x) Applications

	Running MapReduce Version 1 Existing Code
	Running Apache Pig Scripts on YARN
	Running Apache Hive Queries on YARN
	Running Apache Oozie Workflows on YARN

	Advanced Features
	Uber Jobs
	Pluggable Shuffle and Sort

	Wrap-up

	10 Apache Hadoop YARN Application Example
	The YARN Client
	The ApplicationMaster
	Wrap-up

	11 Using Apache Hadoop YARN Distributed-Shell
	Using the YARN Distributed-Shell
	A Simple Example
	Using More Containers
	Distributed-Shell Examples with Shell Arguments

	Internals of the Distributed-Shell
	Application Constants
	Client
	ApplicationMaster
	Final Containers

	Wrap-up

	12 Apache Hadoop YARN Frameworks
	Distributed-Shell
	Hadoop MapReduce
	Apache Tez
	Apache Giraph
	Hoya: HBase on YARN
	Dryad on YARN
	Apache Spark
	Apache Storm
	REEF: Retainable Evaluator Execution Framework
	Hamster: Hadoop and MPI on the Same Cluster
	Wrap-up

	A: Supplemental Content and Code Downloads
	Available Downloads

	B: YARN Installation Scripts
	install-hadoop2.sh
	uninstall-hadoop2.sh
	hadoop-xml-conf.sh

	C: YARN Administration Scripts
	configure-hadoop2.sh

	D: Nagios Modules
	check_resource_manager.sh
	check_data_node.sh
	check_resource_manager_old_space_pct.sh

	E: Resources and Additional Information
	F: HDFS Quick Reference
	Quick Command Reference
	Starting HDFS and the HDFS Web GUI
	Get an HDFS Status Report
	Perform an FSCK on HDFS
	General HDFS Commands
	List Files in HDFS
	Make a Directory in HDFS
	Copy Files to HDFS
	Copy Files from HDFS
	Copy Files within HDFS
	Delete a File within HDFS
	Delete a Directory in HDFS
	Decommissioning HDFS Nodes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

