

SCHAUM’S OUTLINE OF

THEORY AND PROBLEMS

of

PROGRAMMING

WITH C++

Second Edition

·

JOHN R. HUBBARD, Ph.D.

Professor of Mathematics and Computer Science
University of Richmond

·

SCHAUM’S OUTLINE SERIES

McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogota′ Caracas
Lisbon London Madrid Mexico City Milan Montreal

New Delhi San Juan Singapore Sydney Tokyo Toronto

Copyright © 2000, 1996 by the McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

 0-07-136811-6

The material in this eBook also appears in the print version of this title: ISBN 0-07-135346-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-
grams. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (ÒMcGraw-HillÓ) and its licensors reserve all rights in and to t he work. Use of
this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-HillÕ s prior consent. You may use the work for your own noncommercial
and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED ÒAS ISÓ. McGRA W-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has
no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether
such claim or cause arises in contract, tort or otherwise.

 abc
McGraw-Hill

DOI: 10.1036/0071368116

iii

Preface

Like all Schaum’s Outline Series books, this volume is intended to be used primarily for self
study, preferably in conjunction with a regular course in C++ programming language or
computer science. However, it is also well-suited for use in independent study or as a reference.

The book includes over 200 examples and solved problems. The author firmly believes that
the principles of data structures can be learned from a well-constructed collection of examples
with complete explanations. This book is designed to provide that support.

C++ was created by Bjarne Stroustrup in the early 1980s. Based upon C and Simula, it is
now one of the most popular languages for object-oriented programming. The language was
standardized in 1998 by the American National Standards Institute (ANSI) and the International
Standards Organization (ISO). This new ANSI/ISO Standard includes the powerful Standard
Template Library (STL). This book conforms to these standards.

Although most people who undertake to learn C++ have already had some previous
programming experience, this book assumes none. It approaches C++ as one’s first programming
language. Therefore, those who have had previous experience may need only skim the first few
chapters.

C++ is a difficult language for at least two reasons. It inherits from the C language an
economy of expression that novices often find cryptic. And as an object-oriented language, its
widespread use of classes and templates presents a formidable challenge to those who have not
thought in those terms before. It is the intent of this book to provide the assistance necessary for
first-time programmers to overcome these obstacles.

Source code for all the examples and problems in this book, including the Supplementary
Problems, may be downloaded from these websites http://projectEuclid.net/schaums ,
http://www.richmond.edu/~hubbard/schaums, http://hubbards.org/schaums, or
http://jhubbard.net/schaums. Any corrections or addenda for the book will also be
available at these sites.

I wish to thank all my friends, colleagues, students, and the McGraw-Hill staff who have
helped me with the critical review of this manuscript, including John Aliano, Arthur Biderman,
Francis Minhthang Bui, Al Dawson, Peter Dailey, Mohammed El-Beltagy, Gary Galvez, Libbie
Geiger, Sergei Gorlatch, Chris Hanes, John B. Hubbard, Raana Jeelani, Dick Palas, Blake Puhak,
Arni Sigurjonsson, Andrew Somers, Joe Troncale, Maureen Walker, Stefan Wentzig, and Nat
Withers. Their editorial advice and debugging skills are gratefully appreciated.

Special thanks to my wife and colleague, Anita H. Hubbard, for her advice, encouragement,
and creative ideas for this book. Many of the original problems used here are hers.

JOHN R. HUBBARD

Richmond, Virginia

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

v

Contents

Chapter 1 Elementary C++ Programming . 1

1.1 GETTING STARTED . 1

1.2 SOME SIMPLE PROGRAMS . 2

1.3 THE OUTPUT OPERATOR . 4

1.4 CHARACTERS AND LITERALS . 4

1.5 VARIABLES AND THEIR DECLARATIONS . 5

1.6 PROGRAM TOKENS . 6

1.7 INITIALIZING VARIABLES . 7

1.8 OBJECTS, VARIABLES, AND CONSTANTS . 7

1.9 THE INPUT OPERATOR . 8

Chapter 2 Fundamental Types . 16

2.1 NUMERIC DATA TYPES . 16

2.2 THE BOOLEAN TYPE . 17

2.3 ENUMERATION TYPES . 17

2.4 CHARACTER TYPES . 19

2.5 INTEGER TYPES . 19

2.6 ARITHMETIC OPERATORS . 21

2.7 THE INCREMENT AND DECREMENT OPERATORS . 21

2.8 COMPOSITE ASSIGNMENT OPERATORS . 22

2.9 FLOATING-POINT TYPES . 23

2.10 TYPE CONVERSIONS . 25

2.11 NUMERIC OVERFLOW . 26

2.12 ROUND-OFF ERROR . 28

2.13 THE E-FORMAT FOR FLOATING-POINT VALUES . 30

2.14 SCOPE . 31

Chapter 3 Selection . 36

3.1 THE if STATEMENT . 36

3.2 THE if..else STATEMENT . 36

3.3 KEYWORDS . 37

3.4 COMPARISON OPERATORS . 38

3.5 STATEMENT BLOCKS . 39

3.6 COMPOUND CONDITIONS . 41

3.7 SHORT-CIRCUITING . 42

3.8 BOOLEAN EXPRESSIONS . 42

3.9 NESTED SELECTION STATEMENTS . 43

3.10 THE else if CONSTRUCT . 46

3.11 THE switch STATEMENT . 47

3.12 THE CONDITIONAL EXPRESSION OPERATOR . 49

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

vi CONTENTS

Chapter 4 Iteration . 60

4.1 THE while STATEMENT . 60

4.2 TERMINATING A LOOP . 62

4.3 THE do..while STATEMENT . 64

4.4 THE for STATEMENT . 65

4.5 THE break STATEMENT . 71

4.6 THE continue STATEMENT . 73

4.7 THE goto STATEMENT . 74

4.8 GENERATING PSEUDO-RANDOM NUMBERS . 75

Chapter 5 Functions . 87

5.1 INTRODUCTION . 87

5.2 STANDARD C++ LIBRARY FUNCTIONS . 87

5.3 USER-DEFINED FUNCTIONS . 90

5.4 TEST DRIVERS . 90

5.5 FUNCTION DECLARATIONS AND DEFINITIONS . 92

5.6 LOCAL VARIABLES AND FUNCTIONS . 95

5.7 void FUNCTIONS . 96

5.8 BOOLEAN FUNCTIONS . 98

5.9 I/O FUNCTIONS . 101

5.10 PASSING BY REFERENCE . 102

5.11 PASSING BY CONSTANT REFERENCE . 106

5.12 INLINE FUNCTIONS . 107

5.13 SCOPE . 108

5.14 OVERLOADING . 109

5.15 THE main() FUNCTION . 109

5.16 DEFAULT ARGUMENTS . 111

Chapter 6 Arrays . 126

6.1 INTRODUCTION . 126

6.2 PROCESSING ARRAYS . 126

6.3 INITIALIZING AN ARRAY . 127

6.4 ARRAY INDEX OUT OF BOUNDS . 129

6.5 PASSING AN ARRAY TO A FUNCTION . 131

6.6 THE LINEAR SEARCH ALGORITHM . 133

6.7 THE BUBBLE SORT ALGORITHM . 134

6.8 THE BINARY SEARCH ALGORITHM . 134

6.9 USING ARRAYS WITH ENUMERATION TYPES . 137

6.10 TYPE DEFINITIONS . 138

6.11 MULTIDIMENSIONAL ARRAYS . 139

CONTENTS vii

Chapter 7 Pointers and References . 156

7.1 THE REFERENCE OPERATOR . 156
7.2 REFERENCES . 157
7.3 POINTERS . 158
7.4 THE DEREFERENCE OPERATOR . 159
7.5 DERIVED TYPES . 161
7.6 OBJECTS AND LVALUES . 162
7.7 RETURNING A REFERENCE . 162
7.8 ARRAYS AND POINTERS . 163
7.9 DYNAMIC ARRAYS . 168
7.10 USING const WITH POINTERS . 169
7.11 ARRAYS OF POINTERS AND POINTERS TO ARRAYS 170
7.12 POINTERS TO POINTERS . 170
7.13 POINTERS TO FUNCTIONS . 170
7.14 NUL, NULL, AND void . 172

Chapter 8 C-Strings . 183

8.1 INTRODUCTION . 183
8.2 REVIEW OF POINTERS . 183
8.3 C-STRINGS . 185
8.4 STRING I/O . 186
8.5 SOME cin MEMBER FUNCTIONS . 187
8.6 STANDARD C CHARACTER FUNCTIONS . 190
8.7 ARRAYS OF STRINGS . 191
8.8 STANDARD C STRING FUNCTIONS . 193

Chapter 9 Standard C++ Strings . 213

9.1 INTRODUCTION . 213
9.2 FORMATTED INPUT . 213
9.3 UNFORMATTED INPUT . 214
9.4 THE STANDARD C++ string TYPE . 216
9.5 FILES . 217
9.6 STRING STREAMS . 219

Chapter 10 Classes . 232

10.1 INTRODUCTION . 232
10.2 CLASS DECLARATIONS . 232
10.3 CONSTRUCTORS . 235
10.4 CONSTRUCTOR INITIALIZATION LISTS . 237
10.5 ACCESS FUNCTIONS . 238
10.6 PRIVATE MEMBER FUNCTIONS . 238
10.7 THE COPY CONSTRUCTOR . 240
10.8 THE CLASS DESTRUCTOR . 242
10.9 CONSTANT OBJECTS . 243
10.10 STRUCTURES . 243
10.11 POINTERS TO OBJECTS . 244
10.12 STATIC DATA MEMBERS . 245
10.13 static FUNCTION MEMBERS . 247

viii CONTENTS

Chapter 11 Overloading Operators . 256

11.1 INTRODUCTION . 256
11.2 OVERLOADING THE ASSIGNMENT OPERATOR . 256
11.3 THE this POINTER . 256
11.4 OVERLOADING ARITHMETIC OPERATORS . 258
11.5 OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS 260
11.6 OVERLOADING THE RELATIONAL OPERATORS . 260
11.7 OVERLOADING THE STREAM OPERATORS . 261
11.8 CONVERSION OPERATORS . 263
11.9 OVERLOADING THE INCREMENT AND DECREMENT OPERATORS 264
11.10 OVERLOADING THE SUBSCRIPT OPERATOR . 266

Chapter 12 Composition and Inheritance . 273

12.1 INTRODUCTION . 273
12.2 COMPOSITION . 273
12.3 INHERITANCE . 275
12.4 protected CLASS MEMBERS . 276
12.5 OVERRIDING AND DOMINATING INHERITED MEMBERS 278
12.6 private ACCESS VERSUS protected ACCESS 281
12.7 virtual FUNCTIONS AND POLYMORPHISM . 282
12.8 VIRTUAL DESTRUCTORS . 285
12.9 ABSTRACT BASE CLASSES . 286
12.10 OBJECT-ORIENTED PROGRAMMING . 290

Chapter 13 Templates and Iterators . 300

13.1 INTRODUCTION . 300
13.2 FUNCTION TEMPLATES . 300
13.3 CLASS TEMPLATES . 302
13.4 CONTAINER CLASSES . 304
13.5 SUBCLASS TEMPLATES . 306
13.6 PASSING TEMPLATE CLASSES TO TEMPLATE PARAMETERS 307
13.7 A CLASS TEMPLATE FOR LINKED LISTS . 309
13.8 ITERATOR CLASSES . 312

Chapter 14 Standard C++ Vectors . 324

14.1 INTRODUCTION . 324
14.2 ITERATORS ON VECTORS . 326
14.3 ASSIGNING VECTORS . 327
14.4 THE erase() and insert() FUNCTIONS . 328
14.5 THE find() FUNCTION . 329
14.6 THE C++ STANDARD vector CLASS TEMPLATE 331
14.7 RANGE CHECKING . 332

Chapter 15 Container Classes . 338

15.1 ANSI/ISO STANDARD C++ . 338
15.2 THE STANDARD TEMPLATE LIBRARY . 338
15.3 STANDARD C++ CONTAINER CLASS TEMPLATES . 338
15.4 STANDARD C++ GENERIC ALGORITHMS . 339
15.5 HEADER FILES . 340

CONTENTS ix

Appendix A Character Codes . 342

A.1 The ASCII Code . 342
A.2 Unicode . 346

Appendix B Standard C++ Keywords . 348

Appendix C Standard C++ Operators . 351

Appendix D Standard C++ Container Classes . 353

D.1 THE vector CLASS TEMPLATE . 353
D.2 THE deque CLASS TEMPLATE . 358
D.3 THE stack CLASS TEMPLATE . 359
D.4 THE queue CLASS TEMPLATE . 359
D.5 THE priority_queue CLASS TEMPLATE . 360
D.6 THE list CLASS TEMPLATE . 361
D.7 THE map CLASS TEMPLATE . 363
D.8 THE set CLASS TEMPLATE . 365

Appendix E Standard C++ Generic Algorithms . 367

Appendix F The Standard C Library . 396

Appendix G Hexadecimal Numbers . 401

Appendix H References . 405

Index . 409

This page intentionally left blank.

Dedicated to

Anita H. Hubbard

1

Chapter 1

Programming is best regarded as
the process of creating works of literature,

which are meant to be read.
—Donald E. Knuth

Elementary C++ Programming

A program is a sequence of instructions that can be executed by a computer. Every program is
written in some programming language. C++ (pronounced “see-plus-plus”) is one of the most
powerful programming languages available. It gives the programmer the power to write
efficient, structured, object-oriented programs.

1.1 GETTING STARTED

To write and run C++ programs, you need to have a text editor and a C++ compiler installed
on your computer. A text editor is a software system that allows you to create and edit text files
on your computer. Programmers use text editors to write programs in a programming language
such as C++. A compiler is a software system that translates programs into the machine language
(called binary code) that the computer’s operating system can then run. That translation process
is called compiling the program. A C++ compiler compiles C++ programs into machine
language.

If your computer is running a version of the Microsoft Windows operating system (e.g.,
Windows 98 or Windows 2000), then it already has two text editors: WordPad and Notepad.
These can be started from the Start key. In Windows 98, they are listed under Accessories.

Windows does not come with a built-in C++ compiler. So unless someone has installed a C++
compiler on the machine you are using, you will have to do that yourself. If you are using a
Windows computer that is maintained by someone else (e.g., an Information Services depart-
ment at your school or company), you may find a C++ compiler already installed. Use the Start
key to look under Programs for Borland C++Builder, Metrowerks CodeWarrior, Microsoft Visual
C++, or any other program with “C++” in its name. If you have to buy your own C++ compiler,
browse the Web for inexpensive versions of any of the compilers mentioned above. These are
usually referred to as IDEs (Integrated Development Environments) because they include their
own specialized text editors and debuggers.

If your computer is running a proprietary version of the UNIX operating system on a worksta-
tion (e.g., Sun Solaris on a SPARCstation), it may already have a C++ compiler installed. An
easy way to find out is to create the program shown in Example 1.1 on page 2, name it hello.C,
and then try to compile it with the command

CC hello

The Free Software Foundation has a suite of UNIX software, named “GNU” software that can
be downloaded for free from

http://www.gnu.org/software/software.html

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 ELEMENTARY C++ PROGRAMMING [CHAP. 1

Use their GCC package which includes a C++ compiler and their Emacs editor. For DOS
systems, use their DJGPP which includes a C++ compiler.

1.2 SOME SIMPLE PROGRAMS

Now you have a text editor for writing C++ programs and a C++ compiler for compiling
them. If you are using an IDE such as Borland C++Builder on a PC, then you can compile and
run your programs by clicking on the appropriate buttons. Other systems may require you to use
the command line to run your programs. In that case, you do so by entering the file name as a
command. For example, if your source code is in a file named hello.cpp, type

hello

at the command line to run the program after it has been compiled.
When writing C++ programs, remember that C++ is case-sensitive. That means that main()

is different from Main(). The safest policy is to type everything in lower-case except when you
have a compelling reason to capitalize something.

EXAMPLE 1.1 The “Hello, World” Program

This program simply prints “Hello, World!”:
#include <iostream>
int main()
{ std::cout << "Hello, World!\n";
}

The first line of this source code is a preprocessor directive that tells the C++ compiler where to find
the definition of the std::cout object that is used on the third line. The identifier iostream is the
name of a file in the Standard C++ Library. Every C++ program that has standard input and output must
include this preprocessor directive. Note the required punctuation: the pound sign # is required to
indicate that the word “include” is a preprocessor directive; the angle brackets < > are required to
indicate that the word “iostream” (which stands for “input/output stream”) is the name of a Standard
C++ Library file. The expression <iostream> is called a standard header.

The second line is also required in every C++ program. It tells where the program begins. The identi-
fier main is the name of a function, called the main function of the program. Every C++ program must
have one and only one main() function. The required parentheses that follow the word “main” indicate
that it is a function. The keyword int is the name of a data type in C++. It stands for “integer”. It is used
here to indicate the return type for the main() function. When the program has finished running, it can
return an integer value to the operating system to signal some resulting status.

The last two lines constitute the actual body of the program. A program body is a sequence of program
statements enclosed in braces { }. In this example there is only one statement:

std::cout << "Hello, World!\n";
It says to send the string "Hello, World!\n" to the standard output stream object std::cout.

The single symbol << represents the C++ output operator. When this statement executes, the characters
enclosed in quotation marks " " are sent to the standard output device which is usually the computer
screen. The last two characters \n represent the newline character. When the output device encounters
that character, it advances to the beginning of the next line of text on the screen. Finally, note that every
program statement must end with a semicolon (;).

Notice how the program in Example 1.1 is formatted in four lines of source code. That format-
ting makes the code easier for humans to read. The C++ compiler ignores such formatting. It

CHAP. 1] ELEMENTARY C++ PROGRAMMING 3

reads the program the same as if it were written all on one line, like this:
#include <iostream>
int main(){std::cout<<"Hello, World!\n";}

Blank spaces are ignored by the compiler except where needed to separate identifiers, as in
int main

Note that the preprocessor directive must precede the program on a separate line.

EXAMPLE 1.2 Another “Hello, World” Program

This program has the same output as that in Example 1.1:
#include <iostream>
using namespace std;
int main()
{ // prints "Hello, World!":

cout << "Hello, World!\n";
return 0;

}
The second line

using namespace std;
tells the C++ compiler to apply the prefix std:: to resolve names that need prefixes. It allows us to use
cout in place of std::cout. This makes larger programs easier to read.

The fourth line
{ // prints "Hello, World!"

includes the comment “prints "Hello, World!"”. A comment in a program is a string of characters
that the preprocessor removes before the compiler compiles the programs. It is included to add explana-
tions for human readers. In C++, any text that follows the double slash symbol //, up to the end of the
line, is a comment. You can also use C style comments, like this:

{ /* prints "Hello, World!" */
A C style comment (introduced by the programming language named “C”) is any string of characters
between the symbol /* and the symbol */. These comments can run over several lines.

The sixth line
return 0;

is optional for the main() function in Standard C++. We include it here only because some compilers
expect it to be included as the last line of the main() function.

A namespace is a named group of definitions. When objects that are defined within a
namespace are used outside of that namespace, either their names must be prefixed with the
name of the namespace or they must be in a block that is preceded by a using namespace

statement. Namespaces make it possible for a program to use different objects with the same
name, just as different people can have the same name. The cout object is defined within a
namespace named std (for “standard”) in the <iostream> header file.

Throughout the rest of this book, every program is assumed to begin with the two lines
#include <iostream>
using namespace std;

These two required lines will be omitted in the examples. We will also omit the line
return 0;

from the main() function. Be sure also to include this line if you are using a compiler (such as
Microsoft Visual C++) that expects it.

4 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.3 THE OUTPUT OPERATOR

The symbol << is called the output operator in C++. (It is also called the put operator or the
stream insertion operator.) It inserts values into the output stream that is named on its left. We
usually use the cout output stream, which ordinarily refers to the computer screen. So the state-
ment

cout << 66;

would display the number 66 on the screen.
An operator is something that performs an action on one or more objects. The output operator

<< performs the action of sending the value of the expression listed on its right to the output
stream listed on its left. Since the direction of this action appears to be from right to left, the
symbol << was chosen to represent it. It should remind you of an arrow pointing to the left.

The cout object is called a “stream” because output sent to it flows like a stream. If several
things are inserted into the cout stream, they fall in line, one after the other as they are dropped
into the stream, like leaves falling from a tree into a natural stream of water. The values that are
inserted into the cout stream are displayed on the screen in that order.

EXAMPLE 1.3 Yet Another “Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":

cout << "Hel" << "lo, Wo" << "rld!" << endl;
}

The output operator is used four times here, dropping the four objects "Hel", "lo, Wo", "rld!", and
endl into the output stream. The first three are strings that are concatenated together (i.e., strung
end-to-end) to form the single string "Hello, World!". The fourth object is the stream manipulator
object endl (meaning “end of line”). It does the same as appending the endline character '\n' to the
string itself: it sends the print cursor to the beginning of the next line. It also “flushes” the output buffer.

1.4 CHARACTERS AND LITERALS

The three objects "Hel", "lo, Wo", and "rld!" in Example 1.3 are called string literals.
Each literal consists of a sequence of characters delimited by quotation marks.

A character is an elementary symbol used collectively to form meaningful writing. English
writers use the standard Latin alphabet of 26 lower case letters and 26 upper case letters along
with the 10 Hindu-Arabic numerals and a collection of punctuation marks. Characters are stored
in computers as integers. A character set code is a table that lists the integer value for each
character in the set. The most common character set code in use at the end of the millennium is
the ASCII Code, shown in Appendix A. The acronym (pronounced “as-key”) stands for Ameri-
can Standard Code for Information Interchange.

The newline character '\n' is one of the nonprinting characters. It is a single character
formed using the backslash \ and the letter n. There are several other characters formed this way,
including the horizontal tab character '\t' and the alert character '\a'. The backslash is also
used to denote the two printing characters that could not otherwise be used within a string literal:
the quote character \" and the backslash character itself \\.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 5

Characters can be used in a program statement as part of a string literal, or as individual
objects. When used individually, they must appear as character constants. A character constant is
a character enclosed in single quotes. As individual objects, character constants can be output the
same way string literals are.

EXAMPLE 1.4 A Fourth Version of the “Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":

cout << "Hello, W" << 'o' << "rld" << '!' << '\n';
}

This shows that the output operator can process characters as well as string literals. The three individual
characters 'o', '!', and '\n' are concatenated into the output the same was as the two string literals
"Hello, W" and "rld".

EXAMPLE 1.5 Inserting Numeric Literals into the Standard Output Stream

int main()
{ // prints "The Millennium ends Dec 31 2000.":

cout << "The Millennium ends Dec " << 3 << 1 << ' ' << 2000 << endl;
}

When numeric literals like 3 and 2000 are passed to the output stream they are automatically
converted to string literals and concatenated the same way as characters. Note that the blank character
(' ') must be passed explicitly to avoid having the digits run together.

1.5 VARIABLES AND THEIR DECLARATIONS

A variable is a symbol that represents a storage location in the computer’s memory. The infor-
mation that is stored in that location is called the value of the variable. One common way for a
variable to obtain a value is by an assignment. This has the syntax

variable = expression;

First the expression is evaluated and then the resulting value is assigned to the variable. The
equals sign “=” is the assignment operator in C++.

EXAMPLE 1.6 Using Integer Variables

In this example, the integer 44 is assigned to the variable m, and the value of the expression m + 33
is assigned to the variable n:

int main()
{ // prints "m = 44 and n = 77":

int m, n;
m = 44; // assigns the value 44 to the variable m
cout << "m = " << m;
n = m + 33; // assigns the value 77 to the variable n
cout << " and n = " << n << endl;

}
The output from the program is shown in the shaded panel at the top of the next page.

6 ELEMENTARY C++ PROGRAMMING [CHAP. 1

We can view the variables m and n like this:
The variable named m is like a mailbox. Its name
m is like the address on a mailbox, its value 44 is like the contents of a mailbox, and its type int is like a
legal classification of mailboxes that stipulates what may be placed inside it. The type int means that the
variable holds only integer values.

Note in this example that both m and n are declared on the same line. Any number of variables can be
declared together this way if they have the same type.

Every variable in a C++ program must be declared before it is used. The syntax is
specifier type name initializer;

where specifier is an optional keyword such as const (see Section 1.8), type is one of the
C++ data types such as int, name is the name of the variable, and initializer is an optional
initialization clause such as =44 (see Section 1.7).

The purpose of a declaration is to introduce a name to the program; i.e., to explain to the
compiler what the name means. The type tells the compiler what range of values the variable
may have and what operations can be performed on the variable.

The location of the declaration within the program determines the scope of the variable: the
part of the program where the variable may be used. In general, the scope of a variable extends
from its point of declaration to the end of the immediate block in which it is declared or which it
controls.

1.6 PROGRAM TOKENS

A computer program is a sequence of elements called tokens. These tokens include keywords
such as int, identifiers such as main, punctuation symbols such as {, and operators such as <<.
When you compile your program, the compiler scans the text in your source code, parsing it into
tokens. If it finds something unexpected or doesn’t find something that was expected, then it
aborts the compilation and issues error messages. For example, if you forget to append the
semicolon that is required at the end of each statement, then the message will report the missing
semicolon. Some syntax errors such as a missing second quotation mark or a missing closing
brace may not be described explicitly; instead, the compiler will indicate only that it found
something wrong near that location in your program.

EXAMPLE 1.7 A Program’s Tokens

int main()
{ // prints "n = 44":

int n=44;
cout << "n = " << n << endl;

}
The output is

This source code has 19 tokens: “int”, “main”, “(”, “)”, “{”, “int”, “n”, “=”, “44”, “;”, “cout”,
“<<”, “"n = "”, “<<”, “n”, “<<”, “endl”, “;”, and “}”. Note that the compiler ignores the comment
symbol // and the text that follows it on the second line.

m = 44 and n = 77

44m
int

77n
int

n = 44

CHAP. 1] ELEMENTARY C++ PROGRAMMING 7

EXAMPLE 1.8 An Erroneous Program

This is the same program as above except that the required semicolon on the third line is missing:
int main()
{ // THIS SOURCE CODE HAS AN ERROR:

int n=44
cout << "n = " << n << endl;

}
One compiler issued the following error message:

Error : ';' expected
Testing.cpp line 4 cout << "n = " << n << endl;

This compiler underlines the token where it finds the error. In this case, that is the “cout” token at the
beginning of the fourth line. The missing token was not detected until the next token was encountered.

1.7 INITIALIZING VARIABLES

In most cases it is wise to initialize variables where they are declared.

EXAMPLE 1.9 Initializing Variables

This program contains one variable that is not initialized and one that is initialized.
int main()
{ // prints "m = ?? and n = 44":

int m; // BAD: m is not initialized
int n=44;
cout << "m = " << m << " and n = " << n << endl;

}

The output is shown in the shaded box.
This compiler handles uninitialized variables in a special way. It gives them a special value that appears

as ?? when printed. Other compilers may simply leave “garbage” in the variable, producing output like
this:

In larger programs, uninitialized variables can cause troublesome errors.

1.8 OBJECTS, VARIABLES, AND CONSTANTS

An object is a contiguous region of memory that has an address, a size, a type, and a value.
The address of an object is the memory address of its first byte. The size of an object is simply
the number of bytes that it occupies in memory. The value of an object is the constant determined
by the actual bits stored in its memory location and by the object’s type which prescribes how
those bits are to be interpreted.

For example, with GNU C++ on a UNIX workstation, the object n defined by
int n = 22;

has the memory address 0x3fffcd6, the size 4, the type int, and the value 22. (The memory
address is a hexadecimal number. See Appendix G.)

m = ?? and n = 44

m = -2107339024 and n = 44

8 ELEMENTARY C++ PROGRAMMING [CHAP. 1

The type of an object is determined by the programmer. The value of an object may also be
determined by the programmer at compile time, or it may be determined at run-time. The size of
an object is determined by the compiler. For example, in GNU C++ an int has size 4, while in
Borland C++ its size is 2. The address of an object is determined by the computer’s operating
system at run-time.

Some objects do not have names. A variable is an object that has a name. The object defined
above is a variable with name ‘n’.

The word “variable” is used to suggest that the object’s value can be changed. An object
whose value cannot be changed is called a constant. Constants are declared by preceding its type
specifier with the keyword const, like this:

const int N = 22;
Constants must be initialized when they are declared.

EXAMPLE 1.10 The const Specifier

This program illustrates constant definitions:
int main()
{ // defines constants; has no output:

const char BEEP = '\b';
const int MAXINT = 2147483647;
const int N = MAXINT/2;
const float KM_PER_MI = 1.60934;
const double PI = 3.14159265358979323846;

}

Constants are usually defined for values like π that will be used more than once in a program
but not changed.

It is customary to use all capital letters in constant identifiers to distinguish them from other
kinds of identifiers. A good compiler will replace each constant symbol with its numeric value.

1.9 THE INPUT OPERATOR

In C++, input is almost as simple as output. The input operator >> (also called the get opera-
tor or the extraction operator) works like the output operator <<.

EXAMPLE 1.11 Using the Input Operator

int main()
{ // tests the input of integers, floats, and characters:

int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << "m = " << m << ", n = " << n << endl;
double x, y, z;
cout << "Enter three decimal numbers: ";
cin >> x >> y >> z;
cout << "x = " << x << ", y = " << y << ", z = " << z << endl;
char c1, c2, c3, c4;
cout << "Enter four characters: ";

CHAP. 1] ELEMENTARY C++ PROGRAMMING 9

cin >> c1 >> c2 >> c3 >> c4;
cout << "c1 = " << c1 << ", c2 = " << c2 << ", c3 = " << c3

<< ", c4 = " << c4 << endl;
}

The input is shown in boldface in the output panel.

Review Questions

1.1 Describe the two ways to include comments in a C++ program.
1.2 What is wrong with this program?

#include <iostream>
int main()
{ // prints "Hello, World!":

cout << "Hello, World!\n"
}

1.3 What is wrong with the following C-style comment?
cout << "Hello, /* change? */ World.\n";

1.4 What’s wrong with this program:
#include <iostream>;
int main
{ // prints "n = 22":

n = 22;
cout << "n = << n << endl;

}
1.5 What does a declaration do?
1.6 What is the purpose of the preprocessing directive:

#include <iostream>
1.7 What is the shortest possible C++ program?
1.8 Where does the name “C++” come from?
1.9 What’s wrong with these declarations:

int first = 22, last = 99, new = 44, old = 66;
1.10 In each of the following, assume that m has the value 5 and n has the value 2 before the

statement executes. Tell what the values of m and n will be after each of the following
statements executes:
a. m *= n++;
b. m += --n;

1.11 Evaluate each of the following expressions, assuming in each case that m has the value 25
and n has the value 7:
a. m - 8 - n
b. m = n = 3
c. m%n
d. m%n++
e. m%++n
f. ++m - n--

Enter two integers: 22 44
m = 22, n = 44
Enter three decimal numbers: 2.2 4.4 6.6
x = 2.2, y = 4.4, z = 6.6
Enter four characters: ABCD
c1 = A, c2 = B, c3 = C, c4 = D

10 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.12 Parse the following program, identifying all the keywords, identifiers, operators, literals,
punctuation, and comments:

int main()
{ int n;

cin >> n;
n *= 3; // multiply n by 3
cout << "n=" << n << endl;

}
1.13 Identify and correct the error in each of the following:

a. cout >> count;

b. int double=44;

1.14 How do the following two statements differ:
char ch = 'A';
char ch = 65;

1.15 What code could you execute to find the character whose ASCII code is 100?
1.16 What does “floating-point” mean, and why is it called that?
1.17 What is numeric overflow?
1.18 How is integer overflow different from floating-point overflow?
1.19 What is a run-time error? Give examples of two different kinds of run-time errors.
1.20 What is a compile-time error? Give examples of two different kinds of compile-time errors.

Problems

1.1 Write four different C++ statements, each subtracting 1 from the integer variable n.
1.2 Write a block of C++ code that has the same effect as the statement

n = 100 + m++;

without using the post-increment operator.
1.3 Write a block of C++ code that has the same effect as the statement

n = 100 + ++m;

without using the pre-increment operator.
1.4 Write a single C++ statement that subtracts the sum of x and y from z and then

increments y.
1.5 Write a single C++ statement that decrements the variable n and then adds it to total.
1.6 Write a program that prints the first sentence of the Gettysburg Address (or your favorite

quotation).
1.7 Write a program that prints the block letter “B” in a 7 × 6 grid of stars like this:

* *
* *

* *
* *

1.8 Write and run a program that prints the first letter of your last name as a block letter in a
7 × 7 grid of stars.

1.9 Write and run a program that shows what happens when each of the following ten “escape
sequences” is printed: \a, \b, \n, \r, \t, \v, \', \", \\, \?.

1.10 Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integers. Initialize the integers with the values 60 and 7.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 11

1.11 Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integers that are input interactively.

1.12 Write and run a test program that shows how your system handles uninitialized variables.
1.13 Write and run a program that causes negative overflow of a variable of type short.
1.14 Write and run a program that demonstrates round-off error by executing the following steps:

(1) initialize a variable a of type float with the value 666666; (2) initialize a variable b of
type float with the value 1-1/a; (3) initialize a variable c of type float with the value
1/b - 1; (4) initialize a variable d of type float with the value 1/c + 1; (5) print all four
variables. Show algebraically that d = a even though the computed value of d ≠ a. This is
caused by round-off error.

Answers to Review Questions

1.1 One way is to use the standard C style comment
/* like this */

The other way is to use the standard C++ style comment
// like this

The first begins with a slash-star and ends with a star-slash. The second begins with a double-slash and
ends at the end of the line.

1.2 The semicolon is missing from the last statement.
1.3 Everything between the double quotes will be printed, including the intended comment.
1.4 There are four errors: the precompiler directive on the first line should not end with a semicolon, the

parentheses are missing from main(), n is not declared, and the quotation mark on the last line has
no closing quotation mark.

1.5 A declaration tells the compiler the name and type of the variable being declared. It also may be ini-
tialized in the declaration.

1.6 It includes contents of the header file iostream into the source code. This includes declarations
needed for input and output; e.g., the output operator <<.

1.7 int main() { }
1.8 The name refers to the C language and its increment operator ++. The name suggests that C++ is an

advance over C.
1.9 The only thing wrong with these declarations is that new is a keyword. Keywords are reserved and

cannot be used for names of variables. See Appendix B for a list of the 62 keywords in C++.
1.10 a. m will be 10 and n will be 3.

b. m will be 6 and n will be 1.
1.11 a. m - 8 - n evaluates to (25 - 8) - 7 = 17 - 7 = 10

b. m = n = 3 evaluates to 3
1.12 a. m - 8 - n evaluates to (25 - 8) - 7 = 17 - 7 = 10

b. m = n = 3 evaluates to 3
c. m%n evaluates to 25%7 = 4
d. m%n++ evaluates to 25%(7++) = 25%7 = 4
e. m%++n evaluates to 25%(++7) = 25%8 = 1
f. ++m - n-- evaluates to (++25) - (7--) = 26 - 7 = 19

1.13 The keyword is int. The identifiers are main, n, cin, cout, and endl. The operators are (), >>,
*=, and <<. The literals are 3 and "n=". The punctuation symbols are {, ;, and }. The comment
is “// multiply n by 3”.

1.14 a. The output object cout requires the output operator <<. It should be cout << count;
b. The word double is a keyword in C++; it cannot be used as a variable name. Use: int d=44;

12 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.15 Both statements have the same effect: they declare ch to be a char and initialize it with the value 65.
Since this is the ASCII code for 'A', that character constant can also be used to initialize ch to 65.

1.16 cout << "char(100) = " << char(100) << endl;
1.17 The term “floating-point” is used to describe the way decimal numbers (rational numbers) are stored

in a computer. The name refers to the way that a rational number like 386501.294 can be represented
in the form 3.86501294×105 by letting the decimal point “float” to the left 5 places.

1.18 Numeric overflow occurs in a computer program when the size of a numeric variable gets too big for
its type. For example, on most computers values variables of type short cannot exceed 32,767, so if
a variable of that type has the value 32,767 and is then incremented (or increased by any arithmetic
operation), overflow will occur.

1.19 When integer overflow occurs the value of the offending variable will “wrap around” to negative val-
ues, producing erroneous results. When floating-point overflow occurs, the value of the offending
variable will be set to the constant inf representing infinity.

1.20 A run-time error is an error that occurs when a program is running. Numeric overflow and division by
zero are examples of run-time errors.

1.21 A compile-time error is an error that occurs when a program is being compiled. Examples: syntax
errors such as omitting a required semicolon, using an undeclared variable, using a keyword for the
name of a variable.

Solutions to Problems

1.1 Four different statements, each subtracting 1 from the integer variable n:
a. n = n - 1;
b. n -= 1;
c. --n;
d. n--;

1.2 n = 100 + m;
++m;

1.3 ++m;
n = 100 + m;

1.4 z -= (x + y++);
1.5 total += --n;
1.6 int main()

{ // prints the first sentence of the Gettysburg Address
cout << "\tFourscore and seven years ago our fathers\n";
cout << "brought forth upon this continent a new nation,\n";
cout << "conceived in liberty, and dedicated to the\n";
cout << "proposition that all men are created equal.\n";

}

1.7 int main()
{ // prints "B" as a block letter

cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl;

Fourscore and seven years ago our fathers
brought forth upon this continent a new nation,
conceived in liberty, and dedicated to the
proposition that all men are created equal.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 13

cout << "*****" << endl;
}

1.8 int main()
{ // prints "W" as a block letter

cout << "* *" << endl;
cout << " * *" << endl;
cout << " * *" << endl;
cout << " * * *" << endl;
cout << " * * * *" << endl;
cout << " * * * *" << endl;
cout << " * *" << endl;

}

1.9 int main()
{ // prints escape sequences

cout << "Prints \"\\nXXYY\": " << "\nXXYY" << endl;
cout << "--" << endl;
cout << "Prints \"\\nXX\\bYY\": " << "\nXX\bYY" << endl;
cout << "--" << endl;
cout << "Prints \"\\n\\tXX\\tYY\": " << "\n\tXX\tYY" << endl;
cout << "--" << endl;
cout << "Prints the \'\\a\' character: " << '\a' << endl;
cout << "--" << endl;
cout << "Prints the \'\\r\' character: " << '\r' << endl;
cout << "--" << endl;
cout << "Prints the \'\\v\' character: " << '\v' << endl;
cout << "--" << endl;
cout << "Prints the \'\\?\' character: " << '\?' << endl;
cout << "--" << endl;

}

* *
* *

* *
* *

* *
* *
* *
* * *
* * * *
* * * *
* *

Prints the '\v' character:
--
Prints the '\?' character: ?
--
Prints "\nXXYY":
XXYY
--
Prints "\nXX\bYY":
XYY
--
Prints "\n\tXX\tYY":

14 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.10 int main()
{ // prints the results of arithmetic operators

int m = 60, n = 7;
cout << "The integers are " << m << " and " << n << endl;
cout << "Their sum is " << (m + n) << endl;
cout << "Their difference is " << (m - n) << endl;
cout << "Their product is " << (m * n) << endl;
cout << "Their quotient is " << (m / n) << endl;
cout << "Their remainder is " << (m % n) << endl;

}

1.11 int main()
{ // prints the results of arithmetic operators

int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << "The integers are " << m << " and " << n << endl;
cout << "Their sum is " << (m + n) << endl;
cout << "Their difference is " << (m - n) << endl;
cout << "Their product is " << (m * n) << endl;
cout << "Their quotient is " << (m / n) << endl;
cout << "Their remainder is " << (m % n) << endl;

}

1.12 int main()
{ // prints the values of uninitialized variables

bool b; // not initialized
cout << "b = " << b << endl;
char c; // not initialized
cout << "c = [" << c << "]" << endl;
int m; // not initialized
cout << "m = " << m << endl;
int n; // not initialized
cout << "n = " << n << endl;
long nn; // not initialized

XX YY
--
Prints the '\a' character:
--
Prints the '\r' character:
--

The integers are 60 and 7
Their sum is 67
Their difference is 53
Their product is 420
Their quotient is 8
Their remainder is 4

Enter two integers: 60 7
The integers are 60 and 7
Their sum is 67
Their difference is 53
Their product is 420
Their quotient is 8
Their remainder is 4

CHAP. 1] ELEMENTARY C++ PROGRAMMING 15

cout << "nn = " << nn << endl;
float x; // not initialized
cout << "x = " << x << endl;
double y; // not initialized
cout << "y = " << y << endl;

}

1.13 int main()
{ // prints the values an overflowing negative short int

short m=0;
cout << "m = " << m << endl;
m -= 10000; // m should be -10,000
cout << "m = " << m << endl;
m -= 10000; // m should be -20,000
cout << "m = " << m << endl;
m -= 10000; // m should be -30,000
cout << "m = " << m << endl;
m -= 10000; // m should be -40,000
cout << "m = " << m << endl;

}

1.14 int main()
{ float a = 666666; // = a = 666666

float b = 1 - 1/a; // = (a-1)/a = 666665/666666
float c = 1/b - 1; // = 1/(a-1) = 1/666665
float d = 1/c + 1; // = a = 666666 != 671089
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "c = " << c << endl;
cout << "d = " << d << endl;

}

b = 0
c =
m = 4296913
n = 4296716
nn = 4296794
x = 6.02438e-39
y = 9.7869e-307

m = 0
m = -10000
m = -20000
m = -30000
m = 25536

a = 666666
b = 0.999999
c = 1.49012e-06
d = 671089

16

Chapter 2

Fundamental Types

2.1 NUMERIC DATA TYPES

In science there are two kinds of numbers: whole numbers (e.g., 666) and decimal numbers
(e.g., 3.14159). Whole numbers, including 0 and negative whole numbers, are called integers.
Decimal numbers, including negative decimal numbers and all integers, are called rational num-
bers because they can always be expressed as ratios of whole numbers (i.e., fractions). Mathe-
matics also uses irrational real numbers (e.g., and π), but these must be approximated with
rational numbers to be used in computers.

Integers are used for counting; rational
numbers are used for measuring. Integers
are meant to be exact; rational numbers are
meant to be approximate. When we say
there are 12 people on the jury, we mean
exactly 12, and anyone can count them to
verify the statement. But when we say the
tree is 12 meters high, we mean approxi-
mately 12.0 meters, and someone else may
be just as accurate in saying that it is
12.01385 meters high.

This philosophical dichotomy is reflected
in computers by the different ways in which
these two fundamentally different kinds of
numbers are stored and manipulated. Those
differences are embodied in the two kinds of
numeric types common to all programming
languages: integral types and floating-point
types. The term “floating-point” refers to
the scientific notation that is used for ratio-
nal numbers. For example, 1234.56789 can
also be represented as 1.23456789 × 103, and
0.00098765 as 9.8765 × 10–4. These alterna-
tives are obtained by letting the decimal
point “float” among the digits and using the exponent on 10 to count how many places it has
floated to the left or right.

Standard C++ has 14 different fundamental types: 11 integral types and 3 floating-point types.
These are outlined in the diagram shown above. The integral types include the boolean type
bool, enumeration types defined with the enum keyword, three character types, and six explicit
integer types. The three floating-point types are float, double, and long double. The most
frequently used fundamental types are bool, char, int, and double.

2

Fundamental Types

double

Integral Types

Floating-point Types

Boolean Type

Character Types
char

float

long double

wchar_t

bool

unsigned char

Integer Types
short

unsigned short
long
int

Enumeration Types
enum

unsigned int
unsigned long

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 2] FUNDAMENTAL TYPES 17

2.2 THE BOOLEAN TYPE

A boolean type is an integral type whose variables can have only two values: false and
true. These values are stored as the integers 0 and 1. The boolean type in Standard C++ is
named bool.

EXAMPLE 2.1 Boolean Variables

int main()
{ // prints the value of a boolean variable:

bool flag=false;
cout << "flag = " << flag << endl;
flag = true;
cout << "flag = " << flag << endl;

}

Note that the value false is printed as the integer 0 and the value true is printed as the integer 1.

2.3 ENUMERATION TYPES

In addition to the predefined types such as int and char, C++ allows you to define your own
special data types. This can be done in several ways, the most powerful of which use classes as
described in Chapter 11. We consider here a much simpler kind of user-defined type.

An enumeration type is an integral type that is defined by the user with the syntax
enum typename { enumerator-list };

Here enum is a C++ keyword, typename stands for an identifier that names the type being
defined, and enumerator-list stands for a list of names for integer constants. For example, the
following defines the enumeration type Semester, specifying the three possible values that a
variable of that type can have

enum Semester {FALL, SPRING, SUMMER};
We can then declare variables of this type:

Semester s1, s2;
and we can use those variables and those type values as we would with predefined types:

s1 = SPRING;
s2 = FALL;
if (s1 == s2) cout << "Same semester." << endl;

The actual values defined in the enumerator-list are called enumerators. In fact, they are
ordinary integer constants. For example, the enumerators FALL, SPRING, and SUMMER that are
defined for the Semester type above could have been defined like this:

const int FALL=0;
const int WINTER=1;
const int SUMMER=2;

The values 0, 1, … are assigned automatically when the type is defined. These default values can
be overridden in the enumerator-list:

enum Coin {PENNY=1, NICKEL=5, DIME=10, QUARTER=25};

If integer values are assigned to only some of the enumerators, then the ones that follow are
given consecutive values. For example,

flag = 0
flag = 1

18 FUNDAMENTAL TYPES [CHAP. 2

enum Month {JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV
DEC};

will assign the numbers 1 through 12 to the twelve months.
Since enumerators are simply integer constants, it is legal to have several different enumera-

tors with the same value:
enum Answer {NO = 0, FALSE=0, YES = 1, TRUE=1, OK = 1};

This would allow the code
int answer;
cin >> answer;

:
:

if (answer == YES) cout << "You said it was o.k." << endl;

to work as expected. If the value of the variable answer is 1, then the condition will be true and
the output will occur. Note that since the integer value 1 always means “true” in a condition, this
selection statement could also be written

if (answer) cout << "You said it was o.k." << endl;

Notice the conspicuous use of capitalization here. Most programmers usually follow these
conventions for capitalizing their identifiers:

1. Use only upper-case letters in names of constants.
2. Capitalize the first letter of each name in user-defined types.
3. Use all lower-case letters everywhere else.

These rules make it easier to distinguish the names of constants, types, and variables, especially
in large programs. Rule 2 also helps distinguish standard C++ types like float and string

from user-defined types like Coin and Month.
Enumeration types are usually defined to make code more self-documenting; i.e., easier for

humans to understand. Here are a few more typical examples:
enum Sex {FEMALE, MALE};
enum Day {SUN, MON, TUE, WED, THU, FRI, SAT};
enum Radix {BIN=2, OCT=8, DEC=10, HEX=16};
enum Color {RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET};
enum Rank {TWO=2, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,

JACK, QUEEN, KING, ACE};
enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES};
enum Roman {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};

Definitions like these can help make your code more readable. But enumerations should not be
overused. Each enumerator in an enumerator list defines a new identifier. For example, the
definition of Roman above defines the seven identifiers I, V, X, L, C, D, and M as specific integer
constants, so these letters could not be used for any other purpose within the scope of their
definition.

Note that enumerators must be valid identifiers. So for example, this definition would not be
valid

enum Grade {F, D, C-, C, C+, B-, B, B+, A-, A}; // ERRONEOUS

because the characters '+' and '-' cannot be used in identifiers. Also, the definitions for Month
and Radix shown above could not both be in the same scope because they both define the
symbol OCT.

Enumerations can also be anonymous in C++:
enum {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};

This is just a convenient way to define integer constants.

CHAP. 2] FUNDAMENTAL TYPES 19

2.4 CHARACTER TYPES

A character type is an integral type whose variables represent characters like the letter 'A' or
the digit '8'. Character literals are delimited by the apostrophe ('). Like all integral type values,
character values are stored as integers.

EXAMPLE 2.2 Character Variables

int main()
{ // prints the character and its internally stored integer value:

char c='A';
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c='t';
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c='\t'; // the tab character
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c='!';
cout << "c = " << c << ", int(c) = " << int(c) << endl;

}

Since character values are used for input and output, they appear in their character form instead of their
integral form: the character 'A' is printed as the letter “A”, not as the integer 65 which is its internal
representation. The type cast operator int() is used here to reveal the corresponding integral value.
These are the characters’ ASCII codes. (See Appendix A.)

2.5 INTEGER TYPES

There are 6 integer types in Standard C++:
These types actually have several names. For
example, short is also named short int, and
int is also named signed int.

You can determine the numerical ranges of
the integer types on your system by running the
program in the following example.

EXAMPLE 2.3 Integer Type Ranges

This program prints the numeric ranges of the 6 integer types in C++:
#include <iostream>
#include <climits> // defines the constants SHRT_MIN, etc.
using namespace std;
int main()
{ // prints some of the constants stored in the <climits> header:

cout << "minimum short = " << SHRT_MIN << endl;
cout << "maximum short = " << SHRT_MAX << endl;

c = A, int(c) = 65
c = t, int(c) = 116
c = , int(c) = 9
c = !, int(c) = 33

Fundamental Types
Integral Types

Integer Types
short

unsigned short
long
int

unsigned int
unsigned long

20 FUNDAMENTAL TYPES [CHAP. 2

cout << "maximum unsigned short = 0" << endl;
cout << "maximum unsigned short = " << USHRT_MAX << endl;
cout << "minimum int = " << INT_MIN << endl;
cout << "maximum int = " << INT_MAX << endl;
cout << "minimum unsigned int = 0" << endl;
cout << "maximum unsigned int = " << UINT_MAX << endl;
cout << "minimum long= " << LONG_MIN << endl;
cout << "maximum long= " << LONG_MAX << endl;
cout << "minimum unsigned long = 0" << endl;
cout << "maximum unsigned long = " << ULONG_MAX << endl;

}

The header file <climits> defines the constants SHRT_MIN, SHRT_MAX, USHRT_MIN, etc.
These are the limits on the range of values that a variable of the indicated type can have. For example, the
output shows that variables of type int can have values in the range –2,147,483,648 to 2,147,483,647 on
this computer.

On this computer, the three signed integer types have the same range as their corresponding unquali-
fied integer type. For example, signed short int is the same as short int. This tells us that the
signed integer types are redundant on this computer.

The output also reveals that the range of the int type (–2,147,483,648 to 2,147,483,647) is the same as
that of the long int type, and that the range of the unsigned int type (0 to 4,294,967,295) is the
same as that of the unsigned long int type. This tells us that the long integer types are redundant
on this computer.

The output from Example 2.3 shows that on this computer (a Pentium II PC running the Win-
dows 98 operating system and the CodeWarrior 3.2 C++ compiler), the six integer types have the
following ranges:

short: –32,768 to 32,767; (28 values� 1 byte)
int: –2,147,483,648 to 2,147,483,647; (232 values� 4 bytes)
long: –2,147,483,648 to 2,147,483,647; (232 values� 4 bytes)
unsigned short: 0 to 65,535; (28 values� 1 byte)
unsigned int: 0 to 4,294,967,295; (232 values� 4 bytes)
unsigned long: 0 to 4,294,967,295; (232 values� 4 bytes)

Note that long is the same as int and unsigned long is the same as unsigned int.
The unsigned integer types are used for bit strings. A bit string is a string of 0s and 1s as is

stored in the computer’s random access memory (RAM) or on disk. Of course, everything stored
in a computer, in RAM or on disk, is stored as 0s and 1s. But all other types of data are format-
ted; i.e., interpreted as something such as a signed integer or a string of characters.

minimum short = -32768
maximum short = 32767
maximum unsigned short = 0
maximum unsigned short = 65535
minimum int = -2147483648
maximum int = 2147483647
minimum unsigned int= 0
maximum unsigned int= 4294967295
minimum long = -2147483648
maximum long = 2147483647
minimum unsigned long = 0
maximum unsigned long = 4294967295

CHAP. 2] FUNDAMENTAL TYPES 21

2.6 ARITHMETIC OPERATORS

Computers were invented to perform numerical calculations. Like most programming
languages, C++ performs its numerical calculations by means of the five arithmetic operators +,
–, *, /, and %.

EXAMPLE 2.4 Integer Arithmetic

This example illustrates how the arithmetic operators work.
int main()
{ // tests operators +, -, *, /, and %:

int m=54;
int n=20;
cout << "m = " << m << " and n = " << n << endl;
cout << "m+n = " << m+n << endl; // 54+20 = 74
cout << "m-n = " << m-n << endl; // 54-20 = 34
cout << "m*n = " << m*n << endl; // 54*20 = 1080
cout << "m/n = " << m/n << endl; // 54/20 = 2
cout << "m%n = " << m%n << endl; // 54%20 = 14

}

Note that integer division results in another integer: 54/20 = 2, not 2.7.

The last two operators used in Example 2.4 are the division operator / and the modulus oper-
ator % (also called the remainder operator). The modulus operator results in the remainder from
the division. Thus, 54%20 = 14 because 14 is the remainder after 54 is divided by 20.

2.7 THE INCREMENT AND DECREMENT OPERATORS

The values of integral objects can be incremented and decremented with the ++ and --

operators, respectively. Each of these operators has two versions: a “pre” version and a “post”
version. The “pre” version performs the operation (either adding 1 or subtracting 1) on the object
before the resulting value is used in its surrounding context. The “post” version performs the
operation after the object’s current value has been used.

EXAMPLE 2.5 Applying the Pre-increment and Post-increment Operators

int main()
{ // shows the difference between m++ and ++m:

int m, n;
m = 44;
n = ++m; // the pre-increment operator is applied to m
cout << "m = " << m << ", n = " << n << endl;

m = 54 and n = 20
m+n = 74
m-n = 34
m*n = 1080
m/n = 2
m%n = 14

22 FUNDAMENTAL TYPES [CHAP. 2

m = 44;

n = m++; // the post-increment operator is applied to m

cout << "m = " << m << ", n = " << n << endl;

}

The line

n = ++m; // the pre-increment operator is applied to m

increments m to 45 and then assigns that value to n. So both variables have the same value 45 when the
next output line executes.

The line

n = m++; // the post-increment operator is applied to m

increments m to 45 only after it has assigned the value of m to n. So n has the value 44 when the next out-
put line executes.

2.8 COMPOSITE ASSIGNMENT OPERATORS

The standard assignment operator in C++ is the equals sign =. In addition to this operator,
C++ also includes the following composite assignment operators: +=, -=, *=, /=, and %=.
When applied to a variable on the left, each applies the indicated arithmetic operation to it using
the value of the expression on the right.

EXAMPLE 2.6 Applying Composite Arithmetic Assignment Operators

int main()

{ // tests arithmetic assignment operators:

int n=22;

cout << "n = " << n << endl;

n += 9; // adds 9 to n

cout << "After n += 9, n = " << n << endl;

n -= 5; // subtracts 5 from n

cout << "After n -= 5, n = " << n << endl;

n *= 2; // multiplies n by 3

cout << "After n *= 2, n = " << n << endl;

n /= 3; // divides n by 9

cout << "After n /= 3, n = " << n << endl;

n %= 7; // reduces n to the remainder from dividing by 4

cout << "After n %= 7, n = " << n << endl;

}

m = 45, n = 45
m = 45, n = 44

n = 22
After n += 9, n = 31
After n -= 5, n = 26
After n *= 2, n = 52
After n /= 3, n = 17
After n %= 7, n = 3

CHAP. 2] FUNDAMENTAL TYPES 23

2.9 FLOATING-POINT TYPES

C++ supports three real number types: float, double, and long double. On most systems,
double uses twice as many bytes as float. Typically, float uses 4 bytes, double uses 8 bytes,
and long double uses 8, 10, 12, or 16 bytes.

Types that are used for real numbers are called “floating-point” types because of the way they
are stored internally in the computer. On most systems, a number like 123.45 is first converted to
binary form:

123.45 = 1111011.011100112 × 27

Then the point is “floated” so that all the bits are on its right. In this example, the floating-point
form is obtained by floating the point 7 bits to the left, producing a mantissa 27 times smaller. So
the original number is

123.45 = 0.1111011011100112 × 27

This number would be represented internally by storing the mantissa 111101101110011 and the
exponent 7 separately. For a 32-bit float type, the mantissa is stored in a 23-bit segment and the
exponent in an 8-bit segment, leaving 1 bit for the sign of the number. For a 64-bit double type,
the mantissa is stored in a 52-bit segment and the exponent in an 11-bit segment.

EXAMPLE 2.7 Floating-Point Arithmetic

This program is nearly the same as the one in Example 2.4. The important difference is that these
variables are declared to have the floating-point type double instead of the integer type int.

int main()
{ // tests the floating-point operators +, -, *, and /:

double x=54.0;
double y=20.0;
cout << "x = " << x << " and y = " << y << endl;
cout << "x+y = " << x+y << endl; // 54.0+20.0 = 74.0
cout << "x-y = " << x-y << endl; // 54.0-20.0 = 34.0
cout << "x*y = " << x*y << endl; // 54.0*20.0 = 1080.0
cout << "x/y = " << x/y << endl; // 54.0/20.0 = 2.7

}

Unlike integer division, floating-point division does not truncate the result: 54.0/20.0 = 2.7.

The next example can be used on any computer to determine how many bytes it uses for each
type. The program uses the sizeof operator which returns the size in bytes of the type specified.

EXAMPLE 2.8 Using the sizeof Operator

This program tells you how much space each of the 12 fundamental types uses:
int main()
{ // prints the storage sizes of the fundamental types:

cout << "Number of bytes used:\n";

x = 55 and y = 20
x+y = 75
x-y = 35
x*y = 1100
x/y = 2.7

24 FUNDAMENTAL TYPES [CHAP. 2

cout << "\t char: " << sizeof(char) << endl;
cout << "\t short: " << sizeof(short) << endl;
cout << "\t int: " << sizeof(int) << endl;
cout << "\t long: " << sizeof(long) << endl;
cout << "\t unsigned char: " << sizeof(unsigned char) << endl;
cout << "\tunsigned short: " << sizeof(unsigned short) << endl;
cout << "\t unsigned int: " << sizeof(unsigned int) << endl;
cout << "\t unsigned long: " << sizeof(unsigned long) << endl;
cout << "\t signed char: " << sizeof(signed char) << endl;
cout << "\t float: " << sizeof(float) << endl;
cout << "\t double: " << sizeof(double) << endl;
cout << "\t long double: " << sizeof(long double) << endl;

}

The output below shows the sizes for a typical UNIX workstation. On this machine, int and long are
equivalent, unsigned int and unsigned long are equivalent, and double and long double are
equivalent. In other words, ‘long’ is no different from ‘regular’ on this computer.

The next program can be used to investigate floating-point types on any computer system. It
reads the values of various constants from the <cfloat> header file. To access it, the program
must include the preprocessor directive:

#include <cfloat>

This is like the #include <iostream> directive that we always include in order to use the
cin and cout objects.

EXAMPLE 2.9 Reading from the <cfloat> Header File

This program tells you the precision and magnitude range that the float type has on your system:
#include <cfloat> // defines the FLT constants
#include <iostream> // defines the FLT constants
using namespace std;
int main()
{ // prints the storage sizes of the fundamental types:

int fbits = 8*sizeof(float); // each byte contains 8 bits
cout << "float uses " << fbits << " bits:\n\t"

<< FLT_MANT_DIG - 1 << " bits for its mantissa,\n\t "
<< fbits - FLT_MANT_DIG << " bits for its exponent,\n\t "
<< 1 << " bit for its sign\n"
<< " to obtain: " << FLT_DIG << " sig. digits\n"

Number of bytes used:
char: 1

short: 2
int: 4

long: 4
unsigned char: 1

unsigned short: 2
unsigned int: 4

unsigned long: 4
signed char: 1

float: 4
double: 8

long double: 8

CHAP. 2] FUNDAMENTAL TYPES 25

<< " with minimum value: " << FLT_MIN << endl
<< " and maximum value: " << FLT_MAX << endl;

}

The constants FLT_MANT_DIG, FLT_DIG, FLT_MIN, and FLT_MAX are defined in the <cfloat>
header file.

This output is from a UNIX workstation. It shows that the 32 bits it uses to store a float are
partitioned into 3 parts: 23 bits for the mantissa, 8 bits for the exponent, and 1 bit for the sign. The 23-bit
mantissa produces a floating-point value with 6 significant digits, and the 8-bit exponent yields a range in
magnitude from about 10–37 to about 3 × 1038. i.e.,

0.0000000000000000000000000000000000001 < |x | < 300,000,000,000,000,000,000,000,000,000,000,000,000
for any variable x declared to have type float.

All floating-point arithmetic is done in double precision. So the only time you should use
float instead of double is when you are storing large quantities of real numbers and are con-
cerned about storage space or access time.

2.10 TYPE CONVERSIONS

We saw in Chapter 1 how one integer type can be converted automatically to another. C++
also converts integral types into floating point types when they are expected. For example,

int n = 22;
float x = 3.14159;
x += n; // the value 22 is automatically converted to 22.0
cout << x - 2 << endl; // value 2 is automatically converted to 2.0

Converting from integer to float like this is what one would expect and is usually taken for
granted. But converting from a floating point type to an integral type is not automatic.

In general, if T is one type and v is a value of another type, then the expression
T(v)

converts v to type T. This is called type casting. For example, if expr is a floating-point
expression and n is a variable of type int, then

n = int(expr);

converts the value of expr to type int and assigns it to n. The effect is to remove the real
number’s fractional part, leaving only its whole number part to be assigned to n. For example,
2.71828 would be converted to 2. Note that this is truncating, not rounding.

EXAMPLE 2.10 Simple Type Casting

This program casts a double value into int value:
int main()
{ // casts a double value as an int:

double v = 1234.56789;
int n = int(v);

float uses 32 bits:
23 bits for its mantissa,
8 bits for its exponent,
1 bit for its sign
to obtain: 6 sig. digits

with minimum value: 1.17549e-38
and maximum value: 3.40282e+38

26 FUNDAMENTAL TYPES [CHAP. 2

cout << "v = " << v << ", n = " << n << endl;
}

The double value 1234.56789 is converted to the int value 1234.

When one type is to be converted to a “higher” type, the type case operator is not needed. This
is called type promotion. Here’s a simple example of promotion from char all the way up to
double:

EXAMPLE 2.11 Promotion of Types

This program promotes a char to a short to an int to a float to a double:
int main()
{ // prints promoted vales of 65 from char to double:

char c='A'; cout << " char c = " << c << endl;
short k=c; cout << " short k = " << k << endl;
int m=k; cout << " int m = " << m << endl;
long n=m; cout << " long n = " << n << endl;
float x=m; cout << " float x = " << x << endl;
double y=x; cout << "double y = " << y << endl;

}

The integer value of the character 'A' is its ASCII code 65. This value is converted as a char in c, a
short in k, an int in m, and a long in n. The value is then converted to the floating point value 65.0
and stored as a float in x and as a double in y. Notice that cout prints the integer c as a character, and
that it prints the real numbers x and y as integers because their fractional parts are 0.

Because it is so easy to convert between integer types and real types in C++, it is easy to forget
the distinction between them. In general, integers are used for counting discrete things, while
reals are used for measuring on a continuous scale. This means that integer values are exact,
while real values are approximate.

Note that type casting and promotion convert the type of the value of a variable or expression,
but it does not change the type of the variable itself.

In the C programming language, the syntax for casting v as type T is (T) v. C++ inherits
this form also, so we could have done n = int(v) as n = (int) v.

2.11 NUMERIC OVERFLOW

On most computers the long int type allows 4,294,967,296 different values. That’s a lot of
values, but it’s still finite. Computers are finite, so the range of any type must also be finite. But
in mathematics there are infinitely many integers. Consequently, computers are manifestly prone
to error when their numeric values become too large. That kind of error is called numeric
overflow.

v = 1234.57, n = 1234

char c = A
short k = 65

int m = 65
long n = 65

float x = 65
double y = 65

CHAP. 2] FUNDAMENTAL TYPES 27

EXAMPLE 2.12 Integer Overflow

This program repeatedly multiplies n by 1000 until it overflows.
int main()
{ // prints n until it overflows:

int n=1000;
cout << "n = " << n << endl;
n *= 1000; // multiplies n by 1000
cout << "n = " << n << endl;
n *= 1000; // multiplies n by 1000
cout << "n = " << n << endl;
n *= 1000; // multiplies n by 1000
cout << "n = " << n << endl;

}

This shows that the computer that ran this program cannot multiply 1,000,000,000 by 1000 correctly.

EXAMPLE 2.13 Floating-point Overflow

This program is similar to the one in Example 2.12. It repeatedly squares x until it overflows.
int main()
{ // prints x until it overflows:

float x=1000.0;
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;

}

This shows that, starting with x = 1000, this computer cannot square x correctly more than three times.
The last output is the special symbol inf which stands for “infinity.”

Note the difference between integer overflow and floating-point overflow. The last output in
Example 2.12 is the negative integer –727,379,968 instead of the correct value of
1,000,000,000,000 = 1012. The last output in Example 2.13 is the infinity symbol inf instead of
the correct value of 1048. Integer overflow “wraps around” to negative integers. Floating-point
overflow “sinks” into the abstract notion of infinity.

n = 1000
n = 1000000
n = 1000000000
n = -727379968

x = 1000
x = 1e+06
x = 1e+12
x = 1e+24
x = inf

28 FUNDAMENTAL TYPES [CHAP. 2

2.12 ROUND-OFF ERROR

Round-off error is another kind of error that often occurs when computers do arithmetic on
rational numbers. For example, the number 1/3 might be stored as 0.333333, which is not exactly
equal to 1/3. The difference is called round-off error. In some cases, these errors can cause
serious problems.

EXAMPLE 2.14 Round-off Error

This program does some simple arithmetic to illustrate roundoff error:
int main()
{ // illustrates round-off error::

double x = 1000/3.0;cout << "x = " << x << endl; // x = 1000/3
double y = x - 333.0;cout << "y = " << y << endl; // y = 1/3
double z = 3*y - 1.0;cout << "z = " << z << endl; // z = 3(1/3) - 1
if (z == 0) cout << "z == 0.\n";
else cout << "z does not equal 0.\n"; // z != 0

}

In exact arithmetic, the variables would have the values x = 333 1/3, y = 1/3, and z = 0. But 1/3 cannot
be represented exactly as a floating-point value. The inaccuracy is reflected in the residue value for z.

Example 2.14 illustrates an inherent problem with using floating-point types within condi-
tional tests of equality. The test (z == 0) will fail even if z is very nearly zero, which is likely
to happen when z should algebraically be zero. So it is better to avoid tests for equality with
floating-point types.

The next example shows that round-off error can be difficult to recognize.

EXAMPLE 2.15 Hidden Round-off Error

This program implements the quadratic formula to solve quadratic equations.
#include <cmath> // defines the sqrt() function
#include <iostream>
using namespace std;
int main()
{ // implements the quadratic formula

float a, b, c;
cout << "Enter the coefficients of a quadratic equation:" << endl;
cout << "\ta: ";
cin >> a;
cout << "\tb: ";
cin >> b;
cout << "\tc: ";
cin >> c;
cout << "The equation is: " << a << "*x*x + " << b

<< "*x + " << c << " = 0" << endl;

x = 333.333
y = 0.333333
z = -5.68434e-14
z does not equal 0.

CHAP. 2] FUNDAMENTAL TYPES 29

float d = b*b - 4*a*c; // discriminant
float sqrtd = sqrt(d);
float x1 = (-b + sqrtd)/(2*a);
float x2 = (-b - sqrtd)/(2*a);
cout << "The solutions are:" << endl;
cout << "\tx1 = " << x1 << endl;
cout << "\tx2 = " << x2 << endl;
cout << "Check:" << endl;
cout << "\ta*x1*x1 + b*x1 + c = " << a*x1*x1 + b*x1 + c << endl;
cout << "\ta*x2*x2 + b*x2 + c = " << a*x2*x2 + b*x2 + c << endl;

}
The quadratic formula requires computing the square root . This is done on the line

float sqrtd = sqrt(d);
which calls the square root function sqrt() defined in the header file <cmath>. The last two lines of
the program check the solutions by substituting them back into the original quadratic equation. If the
resulting expression on the left evaluates to 0 then the solutions are correct.

This run solves the equation 2x2 + 1x – 3 = 0 correctly:

But this run attempts to solve the equation x2 + 10000000000x + 1 = 0 and fails:

The first solution, x1 = 0, is obviously incorrect: the resulting quadratic expression ax1
2 + bx1 + c evaluates

to 1 instread of 0. The second solution, x2 = –1e10 = –10,000,000,000 is even worse. The correct solutions
are x1 = –0.00000 00000 99999 99999 99999 99519 and x2 = 9,999,999,999.99999 99999.

Numeric overflow and round-off errors are examples of run-time errors, which are errors that
occur while the program is running. Such errors are more serious than compile-time errors such
as neglecting to declare a variable or forgetting a semicolon because they are usually harder to
detect and locate. Compile-time errors are caught by the compiler, which usually gives a pretty
good report on where they are. But run-time errors are detected only when the user notices that
the results are incorrect. Even if the program crashes, it still may be difficult to find where the
problem is in the program.

b2 4ac–

Enter the coefficients of a quadratic equation:
a: 2
b: 1
c: -3

The equation is: 2*x*x + 1*x + -3 = 0
The solutions are:

x1 = 1
x2 = -1.5

Check:
a*x1*x1 + b*x1 + c = 0
a*x2*x2 + b*x2 + c = 0

Enter the coefficients of a quadratic equation:
a: 1
b: 1e10
c: 1

The equation is: 1*x*x + 1e10*x + 1 = 0
The solutions are:

x1 = 0
x2 = -1e10

Check:
a*x1*x1 + b*x1 + c = 1
a*x2*x2 + b*x2 + c = 1

30 FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.16 Other Kinds of Run-Time Errors

Here are two more runs of the quadratic formula program in Example 2.15:

The quadratic equation 1x2 + 2x + 3 = 0 has no real solution because the discriminant b2 – 4ac is negative.
When the program runs, the square root function sqrt(d) fails because d < 0. It returns the symbolic
constant nan which stands for “not a number.” Then every subsequent numeric operation that uses this
constant results in the same value. That’s why the check values come out as nan at the end of the run.

This run attempts to solve the equation 0x2 + 2x + 5 = 0. That equation has the solution x = 2.5. But the
quadratic formula fails because a = 0:

Notice that x1 comes out as nan, but x2 comes out as -inf. The symbol inf stands for “infinity.”
That’s what you get when you divide a nonzero number by zero. The quadratic formula computes x2 as

which becomes -inf. But it computes x1 as

which becomes nan.

The three symbols inf, -inf, and nan are numeric constants. The usual numeric operators
can be applied to them, although the results are usually useless. For example, you can multiply
nan by any number, but the result will still be nan.

2.13 THE E-FORMAT FOR FLOATING-POINT VALUES

When input or output, floating-point values may be specified in either of two formats: fixed-
point and scientific. The output in Example 2.16 illustrates both: 333.333 has fixed-point
format, and -5.68434e–14 has scientific format.

Enter the coefficients of a quadratic equation:
a: 1
b: 2
c: 3

The equation is: 1*x*x + 2*x + 3 = 0
The solutions are:

x1 = nan
x2 = nan

Check:
a*x1*x1 + b*x1 + c = nan
a*x2*x2 + b*x2 + c = nan

Enter the coefficients of a quadratic equation:
a: 0
b: 2
c: 5

The equation is: 0*x*x + 2*x + 5 = 0
The solutions are:

x1 = nan
x2 = -inf

Check:
a*x1*x1 + b*x1 + c = nan
a*x2*x2 + b*x2 + c = nan

x2
b– b2 4ac––

2a
-------------------------------------- 2()– 2()2

4 0() 5()––
2 0()

-- 2– 2–

0
--------------- 4–

0
------= = = =

x1
b– b2 4ac–+

2a
------------------------------------- 2()– 2()2 4 0() 5()–+

2 0()
--- 2– 2+

0
--------------- 0

0
---= = = =

CHAP. 2] FUNDAMENTAL TYPES 31

In scientific format, the letter e stands for “exponent on 10.” So e-14 means 10–14, and thus
-5.68434e-14 means –5.68434 × 10–14 = –0.0000000000000568434. Obviously, the scientific
format is more efficient for very small or very large numbers.

Floating-point values with magnitude in the range 0.1 to 999,999 will normally be printed in
fixed-point format; all others will be printed in scientific format.

EXAMPLE 2.17 Scientific Format

This program shows how floating-point values may be input in scientific format:
int main()

{ // prints double values in scientific e-format:

double x;

cout << "Enter float: "; cin >> x;

cout << "Its reciprocal is: " << 1/x << endl;

}

You can use either e or E in the scientific format.

2.14 SCOPE

The scope of an identifier is that part of the program where it can be used. For example,
variables cannot be used before they are declared, so their scopes begin where they are declared.
This is illustrated by the next example.

EXAMPLE 2.18 Scope of Variables

int main()

{ // illustrates the scope of variables:

x = 11; // ERROR: this is not in the scope of x

int x;

{ x = 22; // OK: this is in the scope of x

y = 33; // ERROR: this is not in the scope of y

int y;

x = 44; // OK: this is in the scope of x

y = 55; // OK: this is in the scope of y

}

x = 66; // OK: this is in the scope of x

y = 77; // ERROR: this is not in the scope of y

}

The scope of x extends from the point where it is declared to the end of main(). The scope of y
extends from the point where it is declared to the end of the internal block within which it is declared.

A program may have several objects with the same name as long as their scopes are nested or
disjoint. This is illustrated by the next example.

Enter float: 234.567e89
Its reciprocal is: 4.26317e-92

32 FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.19 Nested and Parallel Scopes

int x = 11; // this x is global

int main()

{ // illustrates the nested and parallel scopes:

int x = 22;

{ // begin scope of internal block

int x = 33;

cout << "In block inside main(): x = " << x << endl;

} // end scope of internal block

cout << "In main(): x = " << x << endl;

cout << "In main(): ::x = " << ::x << endl;

} // end scope of main()

There are three different objects named x in this program. The x that is initialized with the value 11 is
a global variable, so its scope extends throughout the file. The x that is initialized with the value 22 has
scope limited to main(). Since this is nested within the scope of the first x, it hides the first x within
main(). The x that is initialized with the value 33 has scope limited to the internal block within
main(), so it hides both the first and the second x within that block.

The last line in the program uses the scope resolution operator :: to access the global x that is
otherwise hidden in main().

Review Questions

2.1 Write a single C++ statement that prints "Too many" if the variable count exceeds 100.
2.2 What is wrong with the following code:

a. cin << count;

b. if x < y min = x

else min = y;

2.3 What is wrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)

cout << "That is negative. Try again." << endl;
cin >> n;

else
cout << "o.k. n = " << n << endl;

2.4 What is the difference between a reserved word and a standard identifier?
2.5 What is wrong with this code:

enum Semester {FALL, SPRING, SUMMER};

enum Season {SPRING, SUMMER, FALL, WINTER};

2.6 What is wrong with this code:
enum Friends {"Jerry", "Henry", "W.D."};

In block inside main(): x = 33
In main(): x = 22
In main(): ::x = 11

CHAP. 2] FUNDAMENTAL TYPES 33

Problems

2.1 Write and run a program like the one in Example 2.2 on page 19 that prints the ASCII codes
for only the 10 upper case and lower case vowels. Use Appendix A to check your output.

2.2 Modify the program in Example 2.15 on page 28 so that it uses type double instead of
float. Then see how much better it performs on the input that illustrated round-off error.

2.3 Write and run a program to find which, if any, arithmetic operations can be applied to a vari-
able that will change its value from any of the three numeric constants inf, -inf, and nan
to something else.

2.4 Write a program that converts inches to centimeters. For example, if the user enters 16.9 for a
length in inches, the output would be 42.926 cm. (One inch equals 2.54 centimeters.)

Answers to Review Questions

2.1 if (count > 100) cout << "Too many";
2.2 a. Either cout should be used in place of cin, or the extraction operator >> should be used in

place of the insertion operator <<.
b. Parentheses are required around the condition x < y, and a semicolon is required at the end of the

if clause before the else.
2.3 There is more than one statement between the if clause and the else clause. They need to be

made into a compound statement by enclosing them in braces { }.
2.4 A reserved word is a keyword in a programming language that serves to mark the structure of a state-

ment. For example, the keywords if and else are reserved words. A standard identifier is a key-
word that defines a type. Among the 63 keywords in C++, if, else, and while are some of the
reserved words, and char, int, and float are some of the standard identifiers.

2.5 The second enum definition attempts to redefine the constants SPRING, SUMMER, and FALL.
2.6 Enumerators must be valid identifiers. String literals like "Jerry" and "Henry" are not identifiers.

Solutions to Problems

2.1 int main()
{ // prints the ASCII codes of the vowels

cout << "int('A') = " << int('A') << endl;
cout << "int('E') = " << int('E') << endl;
cout << "int('I') = " << int('I') << endl;
cout << "int('O') = " << int('O') << endl;
cout << "int('U') = " << int('U') << endl;
cout << "int('a') = " << int('a') << endl;
cout << "int('e') = " << int('e') << endl;
cout << "int('i') = " << int('i') << endl;
cout << "int('o') = " << int('o') << endl;
cout << "int('u') = " << int('u') << endl;

}

int('A') = 65
int('E') = 69
int('I') = 73
int('O') = 79
int('U') = 85

34 FUNDAMENTAL TYPES [CHAP. 2

2.2 int main()
{ // implements the quadratic formula

double a, b, c;
cout << "Enter the coefficients:" << endl;
cout << "\ta: ";
cin >> a;
cout << "\tb: ";
cin >> b;
cout << "\tc: ";
cin >> c;
cout << "The equation is: " << a << "*x*x + " << b

<< "*x + " << c << " = 0" << endl;
double d = b*b - 4*a*c;
double sqrtd = sqrt(d);
double x1 = (-b + sqrtd)/(2*a);
double x2 = (-b - sqrtd)/(2*a);
cout << "The solutions are:" << endl;
cout << "\tx1 = " << x1 << endl;
cout << "\tx2 = " << x2 << endl;
cout << "Check:" << endl;
cout << "\ta*x1*x1 + b*x1 + c = " << a*x1*x1 + b*x1 + c << endl;
cout << "\ta*x2*x2 + b*x2 + c = " << a*x2*x2 + b*x2 + c << endl;

}

2.3 The following program changes the value of x from inf to -inf and vice versa. But no arithmetic
operation will change the value of a variable once it becomes nan.

int main()
{ // changes the value of x after it becomes inf:

float x=1e30;
cout << "x= " << x << endl;
x *= x;
cout << "x= " << x << endl;
x *= -1.0;
cout << "x= " << x << endl;
x *= -1.0;
cout << "x= " << x << endl;

}

int('a') = 97
int('e') = 101
int('i') = 105
int('o') = 111
int('u') = 117

Enter the coefficients of a quadratic equation:
a: 2
b: 8.001
c: 8.002

The equation is: 2*x*x + 8.001*x + 8.002 = 0
The solutions are:

x1 = -2
x2 = -2.0005

Check:
a*x1*x1 + b*x1 + c = 0
a*x2*x2 + b*x2 + c = 0

CHAP. 2] FUNDAMENTAL TYPES 35

2.4 We use two variables of type float
int main()
{ // converts inches to centimeters:

float inches, cm;
cout << "Enter length in inches: ";
cin >> inches;
cm = 2.54*inches;
cout << inches << " inches = " << cm << " centimeters.\n";

}

x= 1e+30
x= inf
x= -inf
x= inf

Enter length in inches: 16.9
16.9 inches = 42.926 centimeters.

36

Chapter 3

Selection

The programs in the first two chapters all have sequential execution: each statement in the
program executes once, and they are executed in the same order that they are listed. This chapter
shows how to use selection statements for more flexible programs. It also describes the various
integral types that are available in C++.

3.1 THE if STATEMENT

The if statement allows conditional execution. Its syntax is
if (condition) statement;

where condition is an integral expression and statement is any executable statement. The
statement will be executed only if the value of the integral expression is nonzero. Notice the
required parentheses around the condition.

EXAMPLE 3.1 Testing for Divisibility

This program tests if one positive integer is not divisible by another:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;

}
On the first run, we enter 66 and 7:

The value 66%7 is computed to be 3. Since that integral value is not zero, the expression is interpreted as
a true condition and consequently the divisibility message is printed.

On the second run, we enter 56 and 7:

The value 56%7 is computed to be 0, which is interpreted to mean “false,” so the divisibility message is
not printed.

In C++, whenever an integral expression is used as a condition, the value 0 means “false” and
all other values mean “true.”

The program in Example 3.1 is inadequate because it provides no affirmative information
when n is divisible by d. That fault can be remedied with an if..else statement.

3.2 THE if..else STATEMENT

The if..else statement causes one of two alternative statements to execute depending upon
whether the condition is true. Its syntax is

Enter two positive integers: 66 7
66 is not divisible by 7

Enter two positive integers: 56 7

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 3] SELECTION 37

if (condition) statement1;
else statement2;

where condition is an integral expression and statement1 and statement2 are executable
statements. If the value of the condition is nonzero then statement1 will execute; otherwise
statement2 will execute.

EXAMPLE 3.2 Testing for Divisibility Again

This program is the same as the program in Example 3.1 except that the if statement has been replaced
by an if..else statement:

int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;
else cout << n << " is divisible by " << d << endl;

}
Now when we enter 56 and 7, we get an affirmative response:

Since 56%7 is zero, the expression is interpreted as being a false condition and consequently the statement
after the else is executed.

Note that the if..else is only one statement, even though it requires two semicolons.

3.3 KEYWORDS

A keyword in a programming language is a word that is already defined and is reserved for a
unique purpose in programs written in that language. Standard C++ now has 74 keywords:

and and_eq asm auto bitand

bitor bool break case catch

char class compl const const_cast

continue default delete do double

dynamic_cast else enum explicit export

extern dfalse float for friend

goto if inline int long

mutable namespace new not not_eq

operator or or_eq private protected

public register reinterpret_cast return short

signed sizeof static static_cast struct

switch template this throw true

try typedef typeid typename using

union unsigned virtual void volatile

wchar_t while xor xor_eq

Enter two positive integers: 56 7
56 is divisible by 7

38 SELECTION [CHAP. 3

Keywords like if and else are found in nearly every programming language. Other
keywords such as dynamic_cast are unique to C++. The 74 keywords of C++ include all 32 of
the keywords of the C language.

There are two kinds of keywords: reserved words and standard identifiers. A reserved word is
a keyword that serves as a structure marker, used to define the syntax of the language. The
keywords if and else are reserved words. A standard identifier is a keyword that names a
specific element of the language. The keywords bool and int are standard identifiers because
they are names of standard types in C++.

See Appendix B for more information on the C++ keywords.

3.4 COMPARISON OPERATORS

The six comparison operators are
x < y // x is less than y
x > y // x is greater than y
x <= y // x is less than or equal to y
x >= y // x is greater than or equal to y
x == y // x is equal to y
x != y // x is not equal to y

These can be used to compare the values of expressions of any ordinal type. The resulting
integral expression is interpreted as a condition that is either false or true according to whether
the value of the expression is zero. For example, the expression 7*8 < 6*9 evaluates to zero,
which means that the condition is false.

EXAMPLE 3.3 The Minimum of Two Integers

This program prints the minimum of the two integers entered:
int main()
{ int m, n;

cout << "Enter two integers: ";
cin >> m >> n;
if (m < n) cout << m << " is the minimum." << endl;
else cout << n << " is the minimum." << endl;

}

Note that in C++ the single equal sign “=” is the assignment operator, and the double equal
sign “==” is the equality operator:

x = 33; // assigns the value 33 to x
x == 33; // evaluates to 0 (for false) unless 33 is the value of x

This distinction is critically important.

EXAMPLE 3.4 A Common Programming Error

This program is erroneous:
int main()
{ int n;

cout << "Enter an integer: ";

Enter two integers: 77 55
55 is the minimum.

CHAP. 3] SELECTION 39

cin >> n;
if (n = 22) cout << n << " = 22" << endl; // LOGICAL ERROR!
else cout << n << " != 22" << endl;

}

The expression n = 22 assigns the value 22 to n, changing it from its previous value of 77. But the
expression n = 22 itself is an integral expression that evaluates to 22 after it executes. Thus the
condition (n = 22) is interpreted as being true, because only 0 yields false, so the statement before the
else executes. The line should have been written as

if (n == 22) cout << n << " = 22" << endl; // CORRECT

The error illustrated in Example 3.4 is called a logical error. This is the worst kind of error.
Compile-time errors (e.g., omitting a semicolon) are caught by the compiler. Run-time errors
(e.g., dividing by zero) are caught by the operating system. But no such help exists for catching
logical errors.

EXAMPLE 3.5 The Minimum of Three Integers

This program is similar to the one in Example 3.3 except that it applies to three integers:
int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
int min=n1; // now min <= n1
if (n2 < min) min = n2; // now min <= n1 and min <= n2
if (n3 < min) min = n3; // now min <= n1, min <= n2, and min <= n3
cout << "Their minimum is " << min << endl;

}

The three comments track the progress of the program: min is initialized to equal n1, so it is the
minimum of the set {n1}. After the first if statement executes, min is equal to either n1 or n2,
whichever is smaller, so it is the minimum of the set {n1, n2}. The last if statement changes the value of
min to n3 only if n3 is less than the current value of min which is the minimum of the set {n1, n2}. So
in either case, min becomes the minimum of the set {n1, n2, n3}.

3.5 STATEMENT BLOCKS

A statement block is a sequence of statements enclosed by braces { }, like this:
{ int temp=x; x = y; y = temp; }

In C++ programs, a statement block can be used anywhere that a single statement can be used.

EXAMPLE 3.6 A Statement Block within an if Statement

This program inputs two integers and then outputs them in increasing order:
int main()
{ int x, y;

cout << "Enter two integers: ";
cin >> x >> y;

Enter an integer: 77
22 = 22

Enter two integers: 77 33 55
Their minimum is 33

40 SELECTION [CHAP. 3

if (x > y) { int temp=x; x = y; y = temp; } // swap x and y
cout << x << " <= " << y << endl;

}

The three statements within the statement block sort the values of x and y into increasing order by
swapping them if they are out of order. Such an interchange requires three separate steps along with the
temporary storage location named temp here. The program either should execute all three statements or
it should execute none of them. That alternative is accomplished by combining the three statements into
the statement block.

Note that the variable temp is declared inside the block. That makes it local to the block; i.e., it only
exists during the execution of the block. If the condition is false (i.e., x ≤ y), then temp will never exist.
This illustrates the recommended practice of localizing objects so that they are created only when needed.

Note that a C++ program itself is a statement block preceded by int main().
Recall (Section 1.5 on page 5) that the scope of a variable is that part of a program where the

variable can be used. It extends from the point where the variable is declared to the end of the
block which that declaration controls. So a block can be used to limit the scope of a variable,
thereby allowing the same name to be used for different variables in different parts of a program.

EXAMPLE 3.7 Using Blocks to Limit Scope

This program uses the same name n for three different variables:
int main()
{ int n=44;

cout << "n = " << n << endl;
{ int n; // scope extends over 4 lines

cout << "Enter an integer: ";
cin >> n;
cout << "n = " << n << endl;

}
{ cout << "n = " << n << endl; // the n that was declared first
}
{ int n; // scope extends over 2 lines

cout << "n = " << n << endl;
}
cout << "n = " << n << endl; // the n that was declared first

}

This program has three internal blocks. The first block declares a new n which exists only within that
block and overrides the previous variable n. So the original n retains its value of 44 when this n is given
the input value 77. The second block does not redeclare n, so the scope of the original n includes this
block. Thus the third output is the original value 44. The third block is like the first block: it declares a
new n which overrides the original n. But this third block does not initialize its local n, so the fourth
output is a garbage value (4251897). Finally, since the scope of each redeclared n extends only to the
block where it is declared, the last line of the program is in the scope of the original n, so it prints 44.

Enter two integers: 66 44
44 <= 66

n = 44
Enter an integer: 77
n = 77
n = 44
n = 4251897
n = 44

CHAP. 3] SELECTION 41

3.6 COMPOUND CONDITIONS

Conditions such as n % d and x >= y can be combined to form compound conditions. This is
done using the logical operators && (and), || (or), and ! (not). They are defined by

p && q evaluates to true if and only if both p and q evaluate to true
p || q evaluates to false if and only if both p and q evaluate to false
!p evaluates to true if and only if p evaluates to false

For example, (n % d || x >= y) will be false if and only if n % d is zero and x is less than y.
The definitions of the three logical operators are usually given by the truth tables below.

These show, for example, that if p is true and q is false, then the expression p && q will be false
and the expression p || q will be true.

The next example solves the same problem that Example 3.5 on page 39 solved, except that it
uses compound conditions.

EXAMPLE 3.8 Using Compound Conditions

This program has the same effect as the one in Example 3.5 on page 39. This version uses compound
conditions to find the minimum of three integers:

int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
if (n1 <= n2 && n1 <= n3) cout << "Their minimum is " << n1 <<endl;
if (n2 <= n1 && n2 <= n3) cout << "Their minimum is " << n2 <<endl;
if (n3 <= n1 && n3 <= n2) cout << "Their minimum is " << n3 <<endl;

}

Note that Example 3.8 is no improvement over Example 3.5. Its purpose was simply to illus-
trate the use of compound conditions.

Here is another example using a compound condition:

EXAMPLE 3.9 User-Friendly Input

This program allows the user to input either a “Y” or a “y” for “yes”:
int main()
{ char ans;

cout << "Are you enrolled (y/n): ";
cin >> ans;
if (ans == 'Y' || ans == 'y') cout << "You are enrolled.\n";
else cout << "You are not enrolled.\n";

}

p q p && q
T T T
T F F
F T F
F F F

p q p || q
T T T
T F T
F T T
F F F

p !p
T F
F T

Enter two integers: 77 33 55
Their minimum is 33

42 SELECTION [CHAP. 3

It prompts the user for an answer, suggesting a response of either y or n. But then it accepts any charac-
ter and concludes that the user meant “no” unless either a Y or a y is input.

3.7 SHORT-CIRCUITING

Compound conditions that use && and || will not even evaluate the second operand of the
condition unless necessary. This is called short-circuiting. As the truth tables show, the condition
p && q will be false if p is false. In that case there is no need to evaluate q. Similarly if p is true
then there is no need to evaluate q to determine that p || q is true. In both cases the value of
the condition is known as soon as the first operand is evaluated.

EXAMPLE 3.10 Short-Circuiting

This program tests integer divisibility:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (d != 0 && n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;

}
In this run,d is positive and n%d is zero, so the compound condition is true:

In this run, d is positive but n%d is not zero, so the compound condition is false:

In this run,d is zero, so the compound condition is immediately determined to be false without evaluat-
ing the second expression “n%d == 0”:

This short-circuiting prevents the program from crashing because when d is zero the expression n%d
cannot be evaluated.

3.8 BOOLEAN EXPRESSIONS

A boolean expression is a condition that is either true or false. In the previous example the
expressions d > 0, n%d == 0, and (d > 0 && n%d == 0) are boolean expressions. As we
have seen, boolean expressions evaluate to integer values. The value 0 means “false” and every
nonzero value means “true.”

Since all nonzero integer values are interpreted as meaning “true,” boolean expressions are
often disguised. For example, the statement

if (n) cout << "n is not zero";

will print n is not zero precisely when n is not zero because that is when the boolean
expression (n) is interpreted as “true”. Here is a more realistic example:

Are you enrolled (y|n): N
You are not enrolled.

Enter two positive integers: 300 6
6 divides 300

Enter two positive integers: 300 7
7 does not divide 300

Enter two positive integers: 300 0
0 does not divide 300

CHAP. 3] SELECTION 43

if (n%d) cout << "n is not a multiple of d";
The output statement will execute precisely when n%d is not zero, and that happens precisely
when d does not divide n evenly, because n%d is the remainder from the integer division.

The fact that boolean expressions have integer values can lead to some surprising anomalies in
C++.

EXAMPLE 3.11 Another Logical Error

This program is erroneous:
int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
if (n1 >= n2 >= n3) cout << "max = x"; // LOGICAL ERROR!

}

The source of this error is the fact that boolean expressions have numeric values. Since the expression
(n1 >= n2 >= n3) is evaluated from left to right, the first part n1 >= n2 evaluates to “true” since
0 >= 0. But “true” is stored as the numeric value 1. That value is then compared to the value of n3 which
is also 1, so the complete expression evaluates to “true” even though it is really false! (0 is not the
maximum of 0, 0, and 1.)

The problem here is that the erroneous line is syntactically correct, so the compiler cannot catch the
error. Nor can the operating system. This is another logical error, comparable to that in the program in
Example 3.4 on page 38.

The moral from Example 3.11 is to remember that boolean expressions have numeric values,
so compound conditions can be tricky.

3.9 NESTED SELECTION STATEMENTS

Like compound statements, selection statements can be used wherever any other statement
can be used. So a selection statement can be used within another selection statement. This is
called nesting statements.

EXAMPLE 3.12 Nesting Selection Statements

This program has the same effect as the one in Example 3.10 on page 42:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (d != 0)

if (n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;

else cout << d << " does not divide " << n << endl;
}

The second if..else statement is nested within the if clause of the first if..else statement. So
the second if..else statement will execute only when d is not zero.

Enter an integer: 0 0 1
max = 0

44 SELECTION [CHAP. 3

Note that the " does not divide " statement has to be used twice here. The first one, nested
within the if clause of the first if..else statement, executes when d is not zero and n%d is zero.
The second one executes when d is zero.

When if..else statements are nested, the compiler uses the following rule to parse the
compound statement:

Match each else with the last unmatched if.

Using this rule, the compiler can easily decipher code as inscrutable as this:
if (a > 0) if (b > 0) ++a; else if (c > 0) // BAD CODING STYLE
if (a < 4) ++b; else if (b < 4) ++c; else --a; // BAD CODING STYLE
else if (c < 4) --b; else --c; else a = 0; // BAD CODING STYLE

To make this readable for humans it should be written either like this:
if (a > 0)

if (b > 0) ++a;
else

if (c > 0)
if (a < 4) ++b;
else

if (b < 4) ++c;
else --a;

else
if (c < 4) --b;
else --c;

else a = 0;

or like this:
if (a > 0)

if (b > 0) ++a;
else if (c > 0)

if (a < 4) ++b;
else if (b < 4) ++c;
else --a;

else if (c < 4) --b;
else --c;

else a = 0;
This second rendering aligns the else if pairs when they form parallel alternatives. (See
Section 3.10 on page 46.)

EXAMPLE 3.13 Using Nested Selection Statements

This program has the same effect as those in Example 3.5 on page 39 and Example 3.8 on page 41.
This version uses nested if..else statements to find the minimum of three integers:

int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
if (n1 < n2)

if (n1 < n3) cout << "Their minimum is " << n1 << endl;
else cout << "Their minimum is " << n3 << endl;

else // n1 >= n2
if (n2 < n3) cout << "Their minimum is " << n2 << endl;

CHAP. 3] SELECTION 45

else cout << "Their minimum is " << n3 << endl;
}

In this run, the first condition (n1 < n2) is false, and the third condition (n2 < n3) is true, so it
reports that n2 is the minimum.

This program is more efficient than the one in Example 3.8 on page 41 because on any run it
will evaluate only two simple conditions instead of three compound conditions. Nevertheless, it
should be considered inferior because its logic is more complicated. In the trade-off between
efficiency and simplicity, it is usually best to choose simplicity.

EXAMPLE 3.14 A Guessing Game

This program finds a number that the user selects from 1 to 8:
int main()

{ cout << "Pick a number from 1 to 8." << endl;
char answer;
cout << "Is it less than 5? (y|n): "; cin >> answer;
if (answer == 'y') // 1 <= n <= 4
{ cout << "Is it less than 3? (y|n): "; cin >> answer;

if (answer == 'y') // 1 <= n <= 2
{ cout << "Is it less than 2? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 1." << endl;

else cout << "Your number is 2." << endl;
}
else // 3 <= n <= 4
{ cout << "Is it less than 4? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 3." << endl;
else cout << "Your number is 4." << endl;

}
}
else // 5 <= n <= 8

{ cout << "Is it less than 7? (y|n): "; cin >> answer;
if (answer == 'y') // 5 <= n <= 6
{ cout << "Is it less than 6? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 5." << endl;
else cout << "Your number is 6." << endl;

}
else // 7 <= n <= 8
{ cout << "Is it less than 8? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 7." << endl;

else cout << "Your number is 8." << endl;
}

}
}

By repeatedly subdividing the problem, it can discover any one of the 8 numbers by asking only three
questions. In this run, the user’s number is 6.

Enter three integers: 77 33 55
Their minimum is 33

46 SELECTION [CHAP. 3

The algorithm used in Example 3.14 is called the binary search. It can be implemented more
simply. (See Example 6.14 on page 135.)

3.10 THE else if CONSTRUCT

Nested if..else statements are often used to test a sequence of parallel alternatives, where
only the else clauses contain further nesting. In that case, the resulting compound statement is
usually formatted by lining up the else if phrases to emphasize the parallel nature of the
logic.

EXAMPLE 3.15 Using the else if Construct for Parallel Alternatives

This program requests the user’s language and then prints a greeting in that language:
int main()

{ char language;

cout << "Engl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): ";

cin >> language;

if (language == 'e') cout << "Welcome to ProjectEuclid.";

else if (language == 'f') cout << "Bon jour, ProjectEuclid.";

else if (language == 'g') cout << "Guten tag, ProjectEuclid.";

else if (language == 'i') cout << "Bon giorno, ProjectEuclid.";

else if (language == 'r') cout << "Dobre utre, ProjectEuclid.";

else cout << "Sorry; we don't speak your language.";

}

This program uses nested if..else statements to select from the five given alternatives.
As ordinary nested if..else statements, the code could also be formatted as

if (language == 'e') cout << "Welcome to ProjectEuclid.";

else

if (language == 'f') cout << "Bon jour, ProjectEuclid.";

else

if (language == 'g') cout << "Guten tag, ProjectEuclid.";

else

if (language == 'i') cout << "Bon giorno, ProjectEuclid.";

else

if (language == 'r') cout << "Dobre utre, ProjectEuclid.";

else cout << "Sorry; we don't speak your language.";

But the given format is preferred because it displays the parallel nature of the logic more clearly. It also
requires less indenting.

Pick a number from 1 to 8.
Is it less than 5? (y|n): n
Is it less than 7? (y|n): y
Is it less than 6? (y|n): n
Your number is 6.

Engl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): i
Bon giorno, ProjectEuclid.

CHAP. 3] SELECTION 47

EXAMPLE 3.16 Using the else if Construct to Select a Range of Scores

This program converts a test score into its equivalent letter grade:
int main()
{ int score;

cout << "Enter your test score: "; cin >> score;
if (score > 100) cout << "Error: that score is out of range.";
else if (score >= 90) cout << "Your grade is an A." << endl;
else if (score >= 80) cout << "Your grade is a B." << endl;
else if (score >= 70) cout << "Your grade is a C." << endl;
else if (score >= 60) cout << "Your grade is a D." << endl;
else if (score >= 0) cout << "Your grade is an F." << endl;
else cout << "Error: that score is out of range.";

}

The variable score is tested through a cascade of selection statements, continuing until either one of
the conditions is found to be true, or the last else is reached.

3.11 THE switch STATEMENT

The switch statement can be used instead of the else if construct to implement a
sequence of parallel alternatives. Its syntax is

switch (expression)
{ case constant1: statementList1;

case constant2: statementList2;
case constant3: statementList3;

:
:

case constantN: statementListN;
default: statementList0;

}

This evaluates the expression and then looks for its value among the case constants. If the
value is found among the constants listed, then the statements in the corresponding
statementList are executed. Otherwise if there is a default (which is optional), then the
program branches to its statementList. The expression must evaluate to an integral type
(see Section 2.1 on page 16) and the constants must be integral constants.

EXAMPLE 3.17 Using a switch Statement to Select a Range of Scores

This program has the same effect as the one in Example 3.16:
int main()
{ int score;

cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:

case 9: cout << "Your grade is an A." << endl; break;
case 8: cout << "Your grade is a B." << endl; break;
case 7: cout << "Your grade is a C." << endl; break;

Enter your test score: 83
Your grade is a B.

48 SELECTION [CHAP. 3

case 6: cout << "Your grade is a D." << endl; break;
case 5:
case 4:
case 3:
case 2:
case 1:
case 0: cout << "Your grade is an F." << endl; break;
default: cout << "Error: score is out of range.\n";

}
cout << "Goodbye." << endl;

}

First the program divides the score by 10 to reduce the range of values to 0–10. So in the test run, the
score 83 reduces to the value 8, the program execution branches to case 8, and prints the output shown.
Then the break statement causes the program execution to branch to the first statement after the switch
block. That statement prints “Goodbye.”.

Note that scores in the ranges 101 to 109 and -9 to -1 produce incorrect results. (See Problem 3.14.)

It is normal to put a break statement at the end of each case clause in a switch statement.
Without it, the program execution will not branch directly out of the switch block after it fin-
ishes executing its case statement sequence. Instead, it will continue within the switch block,
executing the statements in the next case sequence. This (usually) unintended consequence is
called a fall through.

EXAMPLE 3.18 An Erroneous Fall-through in a switch Statement

This program was intended to have the same effect as the one in Example 3.17. But with no break
statements, the program execution falls through all the case statements it encounters:

int main()
{ int score;

cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:

case 9: cout << "Your grade is an A." << endl; // LOGICAL ERROR
case 8: cout << "Your grade is a B." << endl; // LOGICAL ERROR
case 7: cout << "Your grade is a C." << endl; // LOGICAL ERROR
case 6: cout << "Your grade is a D." << endl; // LOGICAL ERROR
case 5:
case 4:
case 3:
case 2:
case 1:
case 0: cout << "Your grade is an F." << endl; // LOGICAL ERROR
default: cout << "Error: score is out of range.\n";

}
cout << "Goodbye." << endl;

}

Enter your test score: 83
Your grade is a B.
Goodbye.

Enter your test score: 83
Your grade is a B.
Your grade is a C.

CHAP. 3] SELECTION 49

After branching to case 8, and printing “Your grade is a B.”, the program execution goes
right on to case 7 and prints “Your grade is a C.” Since the break statements have been
removed, it keeps falling through, all the way down to the default clause, executing each of the cout
statements along the way.

3.12 THE CONDITIONAL EXPRESSION OPERATOR

C++ provides a special operator that often can be used in place of the if...else statement.
It is called the conditional expression operator. It uses the ? and the : symbols in this syntax:

condition ? expression1 : expression2

It is a ternary operator; i.e., it combines three operands to produce a value. That resulting value
is either the value of expression1 or the value of expression2, depending upon the boolean
value of the condition. For example, the assignment

min = (x<y ? x : y);

would assign the minimum of x and y to min, because if the condition x<y is true, the
expression (x<y ? x : y) evaluates to x; otherwise it evaluates to y.

Conditional expression statements should be used sparingly: only when the condition and both
expressions are very simple.

EXAMPLE 3.19 Finding the Minimum Again

This program has the same effect as the program in Example 3.3 on page 38:
int main()
{ int m, n;

cout << "Enter two integers: ";
cin >> m >> n;
cout << (m<n ? m : n) << " is the minimum." << endl;

}
The conditional expression (m<n ? m : n) evaluates to m if m<n, and to n otherwise.

Review Questions

3.1 Write a single C++ statement that prints "Too many" if the variable count exceeds 100.
3.2 What is wrong with the following code:

a. cin << count;

b. if x < y min = x
else min = y;

3.3 What is wrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)

cout << "That is negative. Try again." << endl;
cin >> n;

Your grade is a D.
Your grade is an F.
Error: score is out of range.
Goodbye.

50 SELECTION [CHAP. 3

else
cout << "o.k. n = " << n << endl;

3.4 What is the difference between a reserved word and a standard identifier?
3.5 State whether each of the following is true or false. If false, tell why.

a. !(p || q) is the same as !p || !q

b. !!!p is the same as !p

c. p && q || r is the same as p && (q || r)

3.6 Construct a truth table for each of the following boolean expressions, showing its truth value
(0 or 1) for all 4 combinations of truth values of its operands p and q.
a. !p || q

b. p&&q || !p&&!q

c. (p||q) && !(p&&q)

3.7 Use truth tables to determine whether the two boolean expressions in each of the following
are equivalent.
a. !(p && q) and !p && !q

b. !!p and p

c. !p || q and p || !q

d. p && (q && r) and (p && q) && r

e. p || (q && r) and (p || q) && r

3.8 What is short-circuiting and how is it helpful?
3.9 What is wrong with this code:

if (x = 0) cout << x << " = 0\n";
else cout << x << " != 0\n";

3.10 What is wrong with this code:
if (x < y < z) cout << x << " < " << y << " < " << z << endl;

3.11 Construct a logical expression to represent each of the following conditions:
a. score is greater than or equal to 80 but less than 90;
b. answer is either 'N' or 'n';
c. n is even but not 8;
d. ch is a capital letter.

3.12 Construct a logical expression to represent each of the following conditions:
a. n is between 0 and 7 but not equal to 3;
b. n is between 0 and 7 but not even;
c. n is divisible by 3 but not by 30;
d. ch is a lowercase or uppercase letter.

3.13 What is wrong with this code:
if (x == 0)

if (y == 0) cout << "x and y are both zero." << endl;
else cout << "x is not zero." << endl;

3.14 What is the difference between the following two statements:
if (n > 2) { if (n < 6) cout << "OK"; } else cout << "NG";
if (n > 2) { if (n < 6) cout << "OK"; else cout << "NG"; }

3.15 What is a “fall-through?
3.16 How is the following expression evaluated?

(x < y ? -1 : (x == y ? 0 : 1));

3.17 Write a single C++ statement that uses the conditional expression operator to assign the
absolute value of x to absx.

CHAP. 3] SELECTION 51

3.18 Write a single C++ statement that prints “too many” if the variable count exceeds 100, using
a. an if statement;
b. the conditional expression operator.

Problems

3.1 Modify the program in Example 3.1 on page 36 so that it prints a response only if n is divisi-
ble by d.

3.2 Modify the program in Example 3.5 on page 39 so that it prints the minimum of four input
integers.

3.3 Modify the program in Example 3.5 on page 39 so that it prints the median of three input
integers.

3.4 Modify the program in Example 3.6 on page 39 so that it has the same effect without using a
statement block.

3.5 Predict the output from the program in Example 3.7 on page 40 after removing the declara-
tion on the fifth line of the program. Then run that program to check your prediction.

3.6 Write and run a program that reads the user’s age and then prints “You are a child.” if the
age < 18, “You are an adult.” if 18 ≤ age < 65, and “You are a senior citizen.” if age ≥ 65.

3.7 Write and run a program that reads two integers and then uses the conditional expression
operator to print either “multiple” or “not” according to whether one of the integers is a mul-
tiple of the other.

3.8 Write and run a program that simulates a simple calculator. It reads two integers and a char-
acter. If the character is a +, the sum is printed; if it is a -, the difference is printed; if it is a *,
the product is printed; if it is a /, the quotient is printed; and if it is a %, the remainder is
printed. Use a switch statement.

3.9 Write and run a program that plays the game of “Rock, paper, scissors.” In this game, two
players simultaneously say (or display a hand symbol representing) either “rock,” “paper,” or
“scissors.” The winner is the one whose choice dominates the other. The rules are: paper
dominates (wraps) rock, rock dominates (breaks) scissors, and scissors dominate (cut) paper.
Use enumerated types for the choices and for the results.

3.10 Modify the solution to Problem 3.9 by using a switch statement.
3.11 Modify the solution to Problem 3.10 by using conditional expressions where appropriate.
3.12 Write and test a program that solves quadratic equations. A quadratic equation is an equation

of the form ax2 + bx + c = 0, where a, b, and c are given coefficients and x is the unknown.
The coefficients are real number inputs, so they should be declared of type float or
double. Since quadratic equations typically have two solutions, use x1 and x2 for the
solutions to be output. These should be declared of type double to avoid inaccuracies from
round-off error. (See Example 2.15 on page 28.)

3.13 Write and run a program that reads a six-digit integer and prints the sum of its six digits. Use
the quotient operator / and the remainder operator % to extract the digits from the integer.
For example, if n is the integer 876,543, then n/1000%10 is its thousands digit 6.

3.14 Correct Example 3.17 on page 47 so that it produces the correct response for all inputs.

Answers to Review Questions

3.1 if (count > 100) cout << "Too many";

52 SELECTION [CHAP. 3

3.2 a. Either cout should be used in place of cin, or the extraction operator >> should be used in
place of the insertion operator <<.

b. Parentheses are required around the condition x < y, and a semicolon is required at the end of the
if clause before the else.

3.3 There is more than one statement between the if clause and the else clause. They need to be
made into a compound statement by enclosing them in braces { }.

3.4 A reserved word is a keyword in a programming language that serves to mark the structure of a state-
ment. For example, the keywords if and else are reserved words. A standard identifier is a key-
word that defines a type. Among the 63 keywords in C++, if, else, and while are some of the
reserved words, and char, int, and float are some of the standard identifiers.

3.5 a. !(p || q) is not the same as !p || !q; for example, if p is true and q is false, the first
expression will be false but the second expression will be true. The correct equivalent to the
expression !(p || q) is the expression !p && !q.

b. !!!p is the same as !p.
c. p && q || r is not the same as p && (q || r); for example, if p is false and r is true,

the first expression will be true, but the second expression will be false: p && q || r is the
same as (p && q) || r.

3.6 Truth tables for boolean expressions:

3.7 a. These two boolean expressions are not equivalent:

b. These two boolean expressions are equivalent:

c. These two boolean expressions are not equivalent:

d. These two boolean expressions are equivalent:

p q !p || q
T T T
T F F
F T T
F F T

p q p&&q || !p&&!q
T T T
T F F
F T F
F F T

p q (p||q) && !(p&&q)
T T F
T F T
F T T
F F F

p q !(p&&q)
T T F
T F T
F T T
F F T

p q !p && !q
T T T
T F T
F T T
F F F

p !pp
T T
F F

p p
T T
F F

p q !p || q
T T T
T F F
F T T
F F T

p q p || !q
T T T
T F T
F T F
F F T

p q r p && (q&&r)
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

p q r (p&&q) && r
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

CHAP. 3] SELECTION 53

e. These two boolean expressions are not equivalent:

3.8 The term “short-circuiting” is used to describe the way C++ evaluates compound logical expressions
like (x > 2 || y > 5) and (x > 2 && y > 5). If x is greater than 2 in the first expres-
sion, then y will not be evaluated. If x is less than or equal to 2 in the second expression, then y
will not be evaluated. In these cases only the first part of the compound expression is evaluated
because that value alone determines the truth value of the compound expression.

3.9 The programmer probably intended to test the condition (x == 0). But by using assignment opera-
tor “=” instead of the equality operator “==” the result will be radically different from what was
intended. For example, if x has the value 22 prior to the if statement, then the if statement will
change the value of x to 0. Moreover, the assignment expression (x = 0) will be evaluated to 0
which means “false,” so the else part of the selection statement will execute, reporting that x is
not zero!

3.10 The programmer probably intended to test the condition (x < y && y < z). The code as written
will compile and run, but not as intended. For example, if the prior values of x, y, and z are 44, 66,
and 22, respectively, then the algebraic condition “x < y < z” is false. But as written, the code will be
evaluated from left to right, as (x < y) < z. First the condition x < y will be evaluated as
“true.” But this has the numeric value 1, so the expression (x < y) is evaluated to 1. Then the
combined expression (x < y) < z is evaluated as (1) < 66 which is also true. So the output state-
ment will execute, erroneously reporting that 44 < 66 < 22.

3.11 a. (score >= 80 && score < 90)
b. (answer == 'N' || answer == 'n')
c. (n%2 == 0 && n != 8)
d. (ch >= 'A' && ch <= 'Z')

3.12 a. (n > 0 && n < 7 && n != 3)
b. (n > 0 && n < 7 && n%2 != 0)
c. ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z'))

3.13 The programmer clearly intended for the second output "x is not zero." to be printed if the
first condition (x == 0) is false, regardless of the second condition (y == 0). That is, the
else was intended to be matched with the first if. But the “else matching” rule causes it to be
matched with the second condition, which means that the output "x is not zero." will be
printed only when x is zero and y is not zero. The “else matching” rule can be overridden with
braces:

if (x == 0)
{ if (y == 0) cout << "x and y are both zero." << endl;
}
else cout << "x is not zero." << endl;

Now the else will be matched with the first if, the way the programmer had intended it to be.
3.14 In the first statement, the else is matched with the first if. In the second statement, the else is

matched with the second if. If n ≤ 2, the first statement will print NG while the second statement will
do nothing. If 2 < n < 6, both statements will print OK. If n ≥ 6, the first statement will do nothing
while the second statement will print NG. Note that this code is difficult to read because it does not fol-
low standard indentation conventions. The first statement should be written

p q r p || (q&&r)
T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T F
F F F F

p q r (p||q) && r
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T F
F F F F

54 SELECTION [CHAP. 3

if (n > 2)
{ if (n < 6) cout << "OK";
}
else cout << "NG";

The braces are needed here to override the “else matching” rule. This else is intended to match
the first if. The second statement should be written

if (n > 2)
if (n < 6) cout << "OK";
else cout << "NG";

Here the braces are not needed because the else is intended to be matched with the second if.
3.15 A “fall through” in a switch statement is a case that does not include a break statement, thereby

causing control to continue right on to the next case statement.
3.16 This expression evaluates to –1 if x < y, it evaluates to 0 if x == y, and it evaluates to 1 if x >

y.
3.17 absx = (x>0 ? x : -x);
3.18 a. if (count > 100) cout << "too many";

b. cout << (count > 100 ? "too many" : "");

Solutions to Problems

3.1 This version of Example 3.1 on page 36 prints a response only when n is divisible by d:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d == 0) cout << n << " is divisible by " << d << endl;

}

3.2 This version of Example 3.5 on page 39 prints the minimum of four input integers:
int main()
{ int n1, n2, n3, n4;

cout << "Enter four integers: ";
cin >> n1 >> n2 >> n3 >> n4;
int min=n1; // now min <= n1
if (n2 < min) min = n2; // now min <= n1, n2
if (n3 < min) min = n3; // now min <= n1, n2, n3
if (n4 < min) min = n4; // now min <= n1, n2, n3, n4
cout << "Their minimum is " << min << endl;

}

3.3 This program finds the median of three input integers:
int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
cout << "Their median is ";
if (n1 < n2)

if (n2 < n3) cout << n2; // n1 < n2 < n3

Enter two positive integers: 56 7
56 is divisible by 7

Enter four integers: 44 88 22 66
Their minimum is 22

CHAP. 3] SELECTION 55

else if (n1 < n3) cout << n3; // n1 < n3 <= n2
else cout << n1; // n3 <= n1 < n2

else if (n1 < n3) cout << n1; // n2 <= n1 < n3
else if (n2 < n3) cout << n2; // n2 < n3 <= n1
else cout << n3; // n3 <= n2 <= n1

}

3.4 This program has the same effect as the one in Example 3.6 on page 39:
int main()
{ int x, y;

cout << "Enter two integers: ";
cin >> x >> y;
if (x > y) cout << y << " <= " << x << endl;
else cout << x << " <= " << y << endl;

}

3.5 Modification of the program in Example 3.7 on page 40:
int main()
{ int n=44;

cout << "n = " << n << endl;
{ cout << "Enter an integer: ";

cin >> n;
cout << "n = " << n << endl;

}
{ cout << "n = " << n << endl;
}
{ int n;

cout << "n = " << n << endl;
}
cout << "n = " << n << endl;

}

3.6 Here we used the else if construct because the three outcomes depend upon age being in one
of three disjoint intervals:

int main()
{ int age;

cout << "Enter your age: ";
cin >> age;
if (age < 18) cout << "You are a child.\n";
else if (age < 65) cout << "You are an adult.\n";
else cout << "you are a senior citizen.\n";

}

Enter three integers: 44 88 22
Their median is 44

Enter two integers: 66 44
44 <= 6

n = 44
Enter an integer: 77
n = 77
n = 77
n = 4251897
n = 77

Enter your age: 44
You are an adult.

56 SELECTION [CHAP. 3

If control reaches the second condition (age < 65), then the first condition must be false so in fact
18 ≤ age < 65. Similarly, if control reaches the second else, then both conditions must be false so in
fact age ≥ 65.

3.7 An integer m is a multiple of an integer n if the remainder from the integer division of m by n is 0. So
the compound condition m % n == 0 || n % m == 0 tests whether either is a multiple of the
other:

int main()
{ int m, n;

cin >> m >> n;
cout << (m % n == 0 || n % m == 0 ? "multiple" : "not") << endl;

}

The value of the conditional expression will be either "multiple" or "not", according to whether
the compound condition is true. So sending the complete conditional expression to the output stream
produces the desired result.

3.8 The character representing the operation should be the control variable for the switch statement:
int main()
{ int x, y;

char op;
cout << "Enter two integers: ";
cin >> x >> y;
cout << "Enter an operator: ";
cin >> op;
switch (op)
{ case '+': cout << x + y << endl; break;

case '-': cout << x - y << endl; break;
case '*': cout << x * y << endl; break;
case '/': cout << x / y << endl; break;
case '%': cout << x % y << endl; break;

}
}

In each of the five cases, we simply print the value of the corresponding arithmetic operation and then
break.

3.9 First define the two enum types Choice and Result. Then declare variables choice1,
choice2, and result of these types, and use an integer n to get the required input and assign it to
them:

enum Choice {ROCK, PAPER, SCISSORS};
enum Winner {PLAYER1, PLAYER2, TIE};
int main()
{ int n;

Choice choice1, choice2;
Winner winner;
cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> n;
choice1 = Choice(n);

30 4
not

30 5
multiple

Enter two integers: 30 13
Enter an operator: %
4

CHAP. 3] SELECTION 57

cout << "Player #2: ";
cin >> n;
choice2 = Choice(n);
if (choice1 == choice2) winner = TIE;
else if (choice1 == ROCK)

if (choice2 == PAPER) winner = PLAYER2;
else winner = PLAYER1;

else if (choice1 == PAPER)
if (choice2 == SCISSORS) winner = PLAYER2;
else winner = PLAYER1;

else // (choice1 == SCISSORS)
if (choice2 == ROCK) winner = PLAYER2;
else winner = PLAYER1;

if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." <<endl;
else cout << "\tPlayer #2 wins." << endl;

}

Through a series of nested if statements, we are able to cover all the possibilities.
3.10 Using a switch statement:

enum Winner {PLAYER1, PLAYER2, TIE};
int main()
{ int choice1, choice2;

Winner winner;
cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> choice1;
cout << "Player #2: ";
cin >> choice2;
switch (choice2 - choice1)
{ case 0:

winner = TIE;
break;

case -1:
case 2:

winner = PLAYER1;
break;

case -2:
case 1:

winner = PLAYER2;
}

Choose rock (0), paper (1), or scissors (2):
Player #1: 1
Player #2: 1

You tied.

Choose rock (0), paper (1), or scissors (2):
Player #1: 2
Player #2: 1

Player #1 wins.

Choose rock (0), paper (1), or scissors (2):
Player #1: 2
Player #2: 0

Player #2 wins.

58 SELECTION [CHAP. 3

if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;

}
3.11 Using a switch statement and conditional expressions:

enum Winner {PLAYER1, PLAYER2, TIE};
int main()
{ int choice1, choice2;

cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> choice1;
cout << "Player #2: ";
cin >> choice2;
int n = (choice1 - choice2 + 3) % 3;
Winner winner = (n==0 ? TIE : (n==1?PLAYER1:PLAYER2));
if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;

}
3.12 The solution(s) to the quadratic equation is given by the quadratic formula:

But this will not apply if a is zero, so that condition must be checked separately. The formula also fails
to work (for real numbers) if the expression under the square root is negative. That expression b2 +
4ac is called the discriminant of the quadratic. We define that as the separate variable d and check its
sign.

#include <iostream>
#include <cmath> // defines the sqrt() function
int main()
{ // solves the equation a*x*x + b*x + c == 0:

float a, b, c;
cout << "Enter coefficients of quadratic equation: ";
cin >> a >> b >> c;
if (a == 0)
{ cout << "This is not a quadratic equation: a == 0\n";

return 0;
}
cout << "The equation is: " << a << "x^2 + " << b

<< "x + " << c << " = 0\n";
double d, x1, x2;
d = b*b - 4*a*c; // the discriminant
if (d < 0)
{ cout << "This equation has no real solutions: d < 0\n";

return 0;
}
x1 = (-b + sqrt(d))/(2*a);
x2 = (-b - sqrt(d))/(2*a);
cout << "The solutions are: " << x1 << ", " << x2 << endl;

}

x
b– b2 4ac–±

2a
--------------------------------------=

CHAP. 3] SELECTION 59

Note how we use the return statement inside the selection statements to terminate the program if
either a is zero or d is negative. The alternative would have been to use an else clause in each if
statement.

3.13 This program prints the sum of the digits of the given integer:
int main()
{ int n, sum;

cout << "Enter a six-digit integer: ";
cin >> n;
sum = n%10 + n/10%10 + n/100%10 + n/1000%10 + n/10000%10

+ n/100000;
cout << "The sum of the digits of " << n << " is " << sum <<endl;

}

3.14 A corrected version of Example 3.17 on page 47:
int main()
{ // reports the user's grade for a given test score:

int score;
cout << "Enter your test score: ";
cin >> score;
if (score > 100 || score < 0)

cout << "Error: that score is out of range.\n";
else

switch (score/10)
{ case 10:

case 9: cout << "Your grade is an A.\n"; break;
case 8: cout << "Your grade is a B.\n"; break;
case 7: cout << "Your grade is a C.\n"; break;
case 6: cout << "Your grade is a D.\n"; break;
default: cout << "Your grade is an F.\n"; break;

}
cout << "Goodbye." << endl;

}

Enter coefficients of quadratic equation: 2 1 -6
The equation is: 2x^2 + 1x + -6 = 0
The solutions are: 1.5, -2

Enter coefficients of quadratic equation: 1 4 5
The equation is: 1x^2 + 4x + 5 = 0
This equation has no real solutions: d < 0

Enter coefficients of quadratic equation: 0 4 5
This is not a quadratic equation: a == 0

Enter a six-digit integer: 876543
The sum of the digits of 876543 is 33

Enter your test score: 103
Error: that score is out of range.
Goodbye.

Enter your test score: 93
Your grade is an A.
Goodbye.

Enter your test score: -3
Error: that score is out of range.
Goodbye.

60

Chapter 4

Iteration

Iteration is the repetition of a statement or block of statements in a program. C++ has three
iteration statements: the while statement, the do..while statement, and the for statement.
Iteration statements are also called loops because of their cyclic nature.

4.1 THE while STATEMENT

The syntax for the while statement is
while (condition) statement;

where condition is an integral expression and statement is any executable statement. If the
value of the expression is zero (meaning “false”) then the statement is ignored and program
execution immediately jumps to the next statement that follows the while statement. If the value
of the expression is nonzero (meaning “true”) then the statement is executed repeatedly until
the expression evaluates to zero. Note that the condition must be enclosed by parentheses.

EXAMPLE 4.1 Using a while Loop to Compute a Sum of Consecutive Integers

This program computes the sum 1 + 2 + 3 + ⋅⋅⋅ + n, for an input integer n:
int main()
{ int n, i=1;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (i <= n)

sum += i++;
cout << "The sum of the first " << n << " integers is " << sum;

}
This program uses three local variables: n, i, and sum. Each time the while loop

iterates, i is incremented and then added to sum. The loop stops when i = n, so n is the last
value added to sum. The trace at right shows the values of i and sum on each iteration after
the user input 8 for n. The output for this run is

The program computed 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36.
On the second run the user inputs 100 for n, so the while loop iterated 100 times to

compute the sum 1 + 2 + 3 + ⋅⋅⋅ + 98 + 99 + 100 = 5050:

Note that the statement inside the loop is indented. This convention makes the program’s logic
easier to follow, especially in large programs.

i sum
0 0
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36

Enter a positive integer: 8
The sum of the first 8 integers is 36

Enter a positive integer: 100
The sum of the first 100 integers is 5050

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 4] ITERATION 61

EXAMPLE 4.2 Using a while Loop to Compute a Sum of Reciprocals

This program computes the sum of reciprocals s = 1 + 1/2 + 1/3 + ⋅⋅⋅ + 1/n, where n is the smallest
integer for which n ≥ s:

int main()
{ int bound;

cout << "Enter a positive integer: ";
cin >> bound;
double sum=0.0;
int i=0;
while (sum < bound)

sum += 1.0/++i;
cout << "The sum of the first " << i

<< " reciprocals is " << sum << endl;
}

With input 3 for n, this run computes 1 + 1/2 + 1/3 + ⋅⋅⋅ + 1/11 = 3.01988:

The trace of this run is shown at right. The sum does not exceed 3 until the 11th
iteration.

EXAMPLE 4.3 Using a while Loop to Repeat a Computation

This program prints the square root of each number input by the user. It uses a while loop to allow any
number of computations in a single run of the program:

int main()
{ double x;

cout << "Enter a positive number: ";
cin >> x;
while (x > 0)
{ cout << "sqrt(" << x << ") = " << sqrt(x) << endl;

cout << "Enter another positive number (or 0 to quit): ";
cin >> x;

}
}

The condition (x > 0) in Example 4.3 uses the variable x to control the loop. Its value is
changed inside the loop by means of an input statement. A variable that is used this way is called
a loop control variable.

i sum
0 0.00000
1 1.00000
2 1.50000
3 1.83333
4 2.08333
5 2.28333
6 2.45000
7 2.59286
8 2.71786
9 2.82897

10 2.92897
11 3.01988

Enter a positive integer: 3
The sum of the first 11 reciprocals is 3.01988

Enter a positive number: 49
sqrt(49) = 7
Enter another positive number (or 0 to quit): 3.14159
sqrt(3.14159) = 1.77245
Enter another positive number (or 0 to quit): 100000
sqrt(100000) = 316.228
Enter another positive number (or 0 to quit): 0

62 ITERATION [CHAP. 4

4.2 TERMINATING A LOOP

We have already seen how the break statement is used to control the switch statement. (See
Example 3.17 on page 47.) The break statement is also used to control loops.

EXAMPLE 4.4 Using a break Statement to Terminate a Loop

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n, i=1;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break; // terminates the loop immediately

sum += i++;
}
cout << "The sum of the first " << n << " integers is " << sum;

}

This runs the same as in Example 4.1: as soon as the value of i reaches n, the loop terminates and the
output statement at the end of the program executes.

Note that the control condition on the while loop itself is true, which means continue forever. This
is the standard way to code a while loop when it is being controlled from within.

One advantage of using a break statement inside a loop is that it causes the loop to terminate
immediately, without having to finish executing the remaining statements in the loop block.

EXAMPLE 4.5 The Fibonacci Numbers

The Fibonacci numbers F0 , F1, F2 , F3, ... are defined recursively by the equations

For example, letting n = 2 in the third equation yields
F2 = F2–1 + F2–2 = F1 + F0 = 0 + 1 = 1

Similarly, with n = 3,
F3 = F3–1 + F3–2 = F2 + F1 = 1 + 1 = 2

and with n = 4,
F4 = F4–1 + F4–2 = F3 + F2 = 2 + 1 = 3

The first ten Fibonacci numbers are shown in the table at right.
This program prints all the Fibonacci numbers up to an input limit:

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\n0, 1";
long f0=0, f1=1;

Enter a positive integer: 100
The sum of the first 100 integers is 5050

F0 0=
F1 1=
Fn Fn 1– Fn 2–+=�

�
�
�
�

n Fn

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

9 35

CHAP. 4] ITERATION 63

while (true)
{ long f2 = f0 + f1;

if (f2 > bound) break; // terminates the loop immediately
cout << ", " << f2;
f0 = f1;
f1 = f2;

}
}

This while loop contains a block of five statements. When the condition (f2 > bound) is
evaluated to be true, the break statement executes, terminating the loop immediately, without executing
the last three statements in that iteration.

Note the use of the newline character \n in the string ":\n0, 1". This prints the colon : at the
end of the current line, and then prints 0, 1 at the beginning of the next line.

EXAMPLE 4.6 Using the exit(0) Function

The exit() function provides another way to terminate a loop. When it executes, it terminates the
program itself:

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\n0, 1";
long f0=0, f1=1;
while (true)
{ long f2 = f0 + f1;

if (f2 > bound) exit(0); // terminates the program immediately
cout << ", " << f2;
f0 = f1;
f1 = f2;

}
}

Since this program has no statements following its loop, terminating the loop is the same as terminating
the program. So this program runs the same as the one in Example 4.5.

The program in Example 4.6 illustrates one way to break out of an infinite loop. The next
example shows how to abort an infinite loop. But the preferred method is to use a break state-
ment, as illustrated in Example 4.20 on page 71.

EXAMPLE 4.7 Aborting Infinite Loop

Without some termination mechanism, the loop will run forever. To abort its execution after it starts,
press <Ctrl>+C (i.e., hold the Ctrl key down and press the C key on your keyboard):

Enter a positive integer: 1000
Fibonacci numbers < 1000:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

Enter a positive integer: 1000
Fibonacci numbers < 1000:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

64 ITERATION [CHAP. 4

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\n0, 1";
long f0=0, f1=1;
while (true) // ERROR: INFINITE LOOP! (Press <Ctrl>+C.)

{ long f2 = f0 + f1;
cout << ", " << f2;
f0 = f1;
f1 = f2;

}
}

Since this program has no statements following its loop, terminating the loop is the same as terminat-
ing the program. So this program runs the same as the one in Example 4.5.

4.3 THE do..while STATEMENT

The syntax for the do..while statement is
do statement while (condition);

where condition is an integral expression and statement is any executable statement. It
repeatedly executes the statement and then evaluates the condition until that condition
evaluates to false.

The do..while statement works the same as the while statement except that its condition is
evaluated at the end of the loop instead of at the beginning. This means that any control variables
can be defined within the loop instead of before it. It also means that a do...while loop will
always iterate at least once, regardless of the value of its control condition.

EXAMPLE 4.8 Using a do..while Loop to Compute a Sum of Consecutive Integers

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n, i=0;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
do

sum += i++;
while (i <= n);
cout << "The sum of the first " << n << " integers is " << sum;

}

Enter a positive integer: 1000
Fibonacci numbers < 1000:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597
81, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 5
040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817,
63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 11349

CHAP. 4] ITERATION 65

EXAMPLE 4.9 The Factorial Numbers

The factorial numbers 0!, 1!, 2!, 3!, ⋅⋅⋅ are defined recursively by the equations

For example, letting n = 1 in the second equation yields
1! = 1((1–1)!) = 1(0!) = 1(1) = 1

Similarly, with n = 2:
2! = 2((2–1)!) = 2(1!) = 2(1) = 2

and with n = 3:
3! = 3((3–1)!) = 3(2!) = 3(2) = 6

The first seven factorial numbers are shown in the table at right.
This program prints all the factorial numbers up to an input limit:

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Factorial numbers < " << bound << ":\n1, 1";
long f=1, i=1;
do
{ f *= ++i;

cout << ", " << f;
}
while (f < bound);

}

The do..while loop iterates until its control condition (f < bound) is false.

4.4 THE for STATEMENT

The syntax for the for statement is
for (initialization; condition; update) statement;

where initialization, condition, and update are optional expressions, and statement is
any executable statement. The three-part (initialization; condition; update) controls
the loop. The initialization expression is used to declare and/or initialize control
variable(s) for the loop; it is evaluated first, before any iteration occurs. The condition

expression is used to determine whether the loop should continue iterating; it is evaluated
immediately after the initialization; if it is true, the statement is executed. The update

expression is used to update the control variable(s); it is evaluated after the statement is
executed. So the sequence of events that generate the iteration are:

1. evaluate the initialization expression;
2. if the value of the condition expression is false, terminate the loop;
3. execute the statement;
4. evaluate the update expression;
5. repeat steps 2–4.

0! 1=

n! n n 1–()=�
�
�

n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720

Enter a positive integer: 1000000
Factorial numbers < 1000000:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880

66 ITERATION [CHAP. 4

EXAMPLE 4.10 Using a for Loop to Compute a Sum of Consecutive Integers

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1; i <= n; i++)

sum += i;
cout << "The sum of the first " << n << " integers is " << sum;

}
Here, the initialization expression is int i=1, the condition expression is i <= n, and the update

expression is i++. Note that these same expressions are used in the programs in Example 4.1 on page 60,
Example 4.4 on page 62, and Example 4.8 on page 64.

In Standard C++, when a loop control variable is declared within a for loop, as i is in Exam-
ple 4.10, its scope is limited to that for loop. That means that it cannot be used outside that for
loop. It also means that the same name can be used for different variables outside that for loop.

EXAMPLE 4.11 Reusing for Loop Control Variable Names

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1; i < n/2; i++) // the scope of this i is this loop

sum += i;
for (int i=n/2; i <= n; i++) // the scope of this i is this loop

sum += i;
cout << "The sum of the first " << n << " integers is "

<< sum << endl;
}

The two for loops in this program do the same computations as the single for loop in the program in
Example 4.10. They simply split the job in two, doing the first n/2 accumulations in the first loop and the
rest in the second. Each loop independently declares its own control variable i.

Warning: Most pre-Standard C++ compilers extend the scope of a for loop’s control variable
past the end of the loop.

EXAMPLE 4.12 The Factorial Numbers Again

This program has the same effect as the one in Example 4.9 on page 65:
int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;

CHAP. 4] ITERATION 67

cout << "Factorial numbers that are <= " << bound << ":\n1, 1";
long f=1;
for (int i=2; f <= bound; i++)
{ f *= i;

cout << ", " << f;
}

}

This for loop program has the same effect as the do..while loop program because it executes the
same instructions. After initializing f to 1, both programs initialize i to 2 and then repeat the following
five instructions: print f, multiply f by i, increment i, check the condition (f <= bound), and
terminate the loop if the condition is false.

The for statement is quite flexible, as the following examples demonstrate.

EXAMPLE 4.13 Using a Descending for Loop

This program prints the first ten positive integers in reverse order:
int main()
{ for (int i=10; i > 0; i--)

cout << " " << i;
}

EXAMPLE 4.14 Using a for Loop with a Step Greater than One

This program determines whether an input number is prime:
int main()
{ long n;

cout << "Enter a positive integer: ";
cin >> n;
if (n < 2) cout << n << " is not prime." << endl;
else if (n < 4) cout << n << " is prime." << endl;
else if (n%2 == 0) cout << n << " = 2*" << n/2 << endl;
else
{ for (int d=3; d <= n/2; d += 2)

if (n%d == 0)
{ cout << n << " = " << d << "*" << n/d << endl;

exit(0);
}

cout << n << " is prime." << endl;
};

}

Note that this for loop uses an increment of 2 on its control variable i.

Enter a positive integer: 1000000
Factorial numbers < 1000000:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880

10 9 8 7 6 5 4 3 2 1

Enter a positive integer: 101
101 is prime.

Enter a positive integer: 975313579
975313579 = 17*57371387

68 ITERATION [CHAP. 4

EXAMPLE 4.15 Using a Sentinel to Control a for Loop

This program finds the maximum of a sequence of input numbers:
int main()

{ int n, max;

cout << "Enter positive integers (0 to quit): ";

cin >> n;

for (max = n; n > 0;)

{ if (n > max) max = n;

cin >> n;

}

cout << "max = " << max << endl;

}

This for loop is controlled by the input variable n; it continues until n ≤ 0. When an input variable
controls a loop this way, it is called a sentinel.

Note the control mechanism (max = n; n > 0;) in this for loop. Its update part is missing, and
its initialization max = n has no declaration. The variable max has to be declared before the for loop
because it is used outside of its block, in the last output statement in the program.

EXAMPLE 4.16 Using a Loop Invariant to Prove that a for Loop is Correct

This program finds the minimum of a sequence of input numbers. It is similar to the program in
Example 4.15:

int main()

{ int n, min;

cout << "Enter positive integers (0 to quit): ";

cin >> n;

for (min = n; n > 0;)

{ if (n < min) min = n;

// INVARIANT: min <= n for all n, and min equals one of the n

cin >> n;

}

cout << "min = " << min << endl;

}

The full-line comment inside the block of the for loop is called a loop invariant. It states a condition
that has two characteristic properties: (1) it is true at that point on every iteration of the loop; (2) the fact
that it is true when the loop terminates proves that the loop performs correctly. In this case, the condition
min <= n for all n is always true because the preceding if statement resets the value of min if the
last input value of n was less than the previous value of min. And the condition that min equals one
of the n is always true because min is initialized to the first n and the only place where min changes
its value is when it is assigned to a new input value of n. Finally, the fact that the condition is true when
the loop terminates means that min is the minimum of all the input numbers. And that outcome is
precisely the objective of the for loop.

Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
max = 99

Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
min = 11

CHAP. 4] ITERATION 69

EXAMPLE 4.17 More than One Control Variable in a for Loop

The for loop in this program uses two control variables:
int main()
{ for (int m=95, n=11; m%n > 0; m -= 3, n++)

cout << m << "%" << n << " = " << m%n << endl;
}

The two control variables m and n are declared and initialized in the control mechanism of this for
loop. Then m is decremented by 3 and n is incremented on each iteration of the loop, generating the
sequence of (m,n) pairs (95,11), (92,12), (89,13), (86,14), (83,15), (80,16). The loop terminates with the
pair (80,16) because 16 divides 80.

EXAMPLE 4.18 Nesting for Loops

This program prints a multiplication table:
#include <iomanip> // defines setw()
#include <iostream> // defines cout
using namespace std;
int main()

{ for (int x=1; x <= 12; x++)

{ for (int y=1; y <= 12; y++)

cout << setw(4) << x*y;
cout << endl;

}
}

Each iteration of the outer x loop prints one row of the multiplication table. For example, on the first
iteration when x = 1, the inner y loop iterates 12 times, printing 1*y for each value of y from 1 to 12.
And then on the second iteration of the outer x loop when x = 2, the inner y loop iterates 12 times again,
this time printing 2*y for each value of y from 1 to 12. Note that the separate cout << endl
statement must be inside the outer loop and outside the inner loop in order to produce exactly one line for
each iteration of the outer loop.

This program uses the stream manipulator setw to set the width of the output field for each integer
printed. The expression setw(4) means to “set the output field width to 4 columns” for the next output.

95%11 = 7
92%12 = 8
89%13 = 11
86%14 = 2
83%15 = 8

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

70 ITERATION [CHAP. 4

This aligns the outputs into a readable table of 12 columns of right-justified integers. Stream manipulators
are defined in the <iomanip> header, so this program had to include the directive

#include <iomanip>
in addition to including the <iostream> header.

EXAMPLE 4.19 Testing a Loop Invariant

This program computes and prints the discrete binary logarithm of an input number (the greatest
integer ≤ the base 2 logarithm of the number). It tests its loop invariant by printing the relevant values on
each iteration:

#include <cmath> // defines pow() and log()
#include <iostream> // defines cin and cout
#include <iomanip> // defines setw()
using namespace std;

int main()
{ long n;

cout << "Enter a positive integer: ";
cin >> n;
int d=0; // the discrete binary logarithm of n
double p2d=1; // = 2^d
for (int i=n; i > 1; i /= 2, d++)
{ // INVARIANT: 2^d <= n/i < 2*2^d

p2d=pow(2,d); // = 2^d
cout << setw(2) << p2d << " <= " << setw(2) << n/i

<< " < " << setw(2) << 2*p2d << endl;
}
p2d=pow(2,d); // = 2^d
cout << setw(2) << p2d << " <= " << setw(2) << n

<< " < " << setw(2) << 2*p2d << endl;
cout << " The discrete binary logarithm of " << n

<< " is " << d << endl;
double lgn = log(n)/log(2); // base 2 logarithm of n
cout << "The continuous binary logarithm of " << n

<< " is " << lgn << endl;
}

The discrete binary logarithm is computed to be the number of times the input number can be divided
by 2 before reaching 1. So the for loop initializes i to n and then divides i by 2 once on each iteration.
The counter c counts the number of iterations. So when the loop terminates, c contains the value of the
discrete binary logarithm of n.

In addition to using the setw() function that is defined in the <iomanip> header, this program
also uses the log() function that is defined in the <cmath> header. That function returns the natural

Enter a positive integer: 63
1 <= 1 < 2
2 <= 2 < 4
4 <= 4 < 8
8 <= 9 < 16

16 <= 21 < 32
32 <= 63 < 64

The discrete binary logarithm of 63 is 5
The continuous binary logarithm of 63 is 5.97728

CHAP. 4] ITERATION 71

(base e) logarithm of n: log(n) = log e n = lnn. It is used in the expression log(n)/log(2) to
compute the binary (base 2) logarithm of n: log 2 n = lg n = (lnn)/(ln2). The printed results compare the
discrete binary logarithm with the continuous binary logarithm. The former is equal to the latter truncated
downward to its nearest integer (the floor of the number).

The loop invariant in this example is the condition 2^d <= n/i < 2*2^d (i.e., 2d ≤ n/i < 2⋅2d). It is
tested by printing the values of the three expressions p2d, n, and 2*p2d, where the quantity p2d is
computed with the power function pow() that is defined in the <cmath> header.

We can prove that this for loop will always compute the discrete binary logarithm correctly. When it
starts, d = 0 and i = n, so 2d = 20 = 1, n/i = n/n = 1, and 2⋅2d = 2⋅1= 2; thus 2d ≤ n/i < 2⋅2d. On each iteration,
d increments and i is halved, so n/i is doubled. Thus the condition 2d ≤ n/i < 2⋅2d remains invariant; i.e., it
is true initially and it remains true throughout the life of the loop. When the loop terminates, i = 1, so the
condition becomes 2d ≤ n/1 < 2⋅2d, which is equivalent to 2d ≤ n < 2d+1. The logarithm of this expression is
d = lg(2d) ≤ lgn < lg(2d+1) = d+1, so d is greatest integer ≤ lgn.

4.5 THE break STATEMENT

We have already seen the break statement used in the switch statement. It is also used in
loops. When it executes, it terminates the loop, “breaking out” of the iteration at that point.

EXAMPLE 4.20 Using a break Statement to Terminate a Loop

This program has the same effect as the one in Example 4.1 on page 60. It uses a break statement to
control the loop:

int main()
{ int n, i=1;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break;

sum += i++;
}
cout << "The sum of the first " << n << " integers is " << sum;

}

As long as (i <= n), the loop will continue, just as in Example 4.1. But as soon as i > n, the
break statement executes, immediately terminating the loop.

The break statement provides extra flexibility in the control of loops. Normally a while loop,
a do..while loop, or a for loop will terminate only at the beginning or at the end of the com-
plete sequence of statements in the loop’s block. But the break statement can be placed any-
where among the other statements within a loop, so it can be used to terminate a loop anywhere
from within the loop’s block. This is illustrated by the following example.

EXAMPLE 4.21 Controlling Input with a Sentinel

This program reads a sequence of positive integers, terminated by 0, and prints their average:

Enter a positive integer: 8
The sum of the first 8 integers is 36

72 ITERATION [CHAP. 4

int main()

{ int n, count=0, sum=0;

cout << "Enter positive integers (0 to quit):" << endl;

for (;;) // "forever"

{ cout << "\t" << count + 1 << ": ";

cin >> n;

if (n <= 0) break;

++count;

sum += n;

}

cout << "The average of those " << count << " positive numbers is "

<< float(sum)/count << endl;

}

When 0 is input, the break executes, immediately terminating the for loop and transferring
execution to the final output statement. Without the break statement, the ++count statement would
have to be put in a conditional, or count would have to be decremented outside the loop or initialized to
–1.

Note that all three parts of the for loop’s control mechanism are empty: for (;;). This construct is
pronounced “forever.” Without the break, this would be an infinite loop.

When used within nested loops, the break statement applies only to the loop to which it
directly belongs; outer loops will continue, unaffected by the break. This is illustrated by the fol-
lowing example.

EXAMPLE 4.22 Using a break Statement with Nested Loops

Since multiplication is commutative (e.g., 3×4 = 4×3), multiplication tables are often presented with
the numbers above the main diagonal omitted. This program modifies that of Example 4.18 on page 69 to
print a triangular multiplication table:

int main()

{ for (int x=1; x <= 12; x++)

{ for (int y=1; y <= 12; y++)

if (y > x) break;

else cout << setw(4) << x*y;

cout << endl;

}

}

Enter positive integers (0 to quit):
1: 4
2: 7
3: 1
4: 5
5: 2
6: 0

The average of those 5 positive numbers is 3.8

CHAP. 4] ITERATION 73

When y > x, the execution of the inner y loop terminates and the next iteration of the outer x loop
begins. For example, when x = 3, the y loop iterates 3 times (with y = 1, 2, 3), printing 3 6 9. Then
on its 4th iteration, the condition (y > x) is true, so the break statement executes, transferring control
immediately to the cout << endl statement (which is outside of the inner y loop). Then the outer x
loop begins its 4th iteration with x = 4.

4.6 THE continue STATEMENT

The break statement skips the rest of the statements in the loop’s block, jumping immediately
to the next statement outside of the loop. The continue statement is similar. It also skips the rest
of the statements in the loop’s block, but instead of terminating the loop, it transfers execution to
the next iteration of the loop. It continues the loop after skipping the remaining statements in its
current iteration.

EXAMPLE 4.23 Using continue and break Statements

This little program illustrates the continue and break statements:
int main()
{ int n;

for (;;)
{ cout << "Enter int: "; cin >> n;

if (n%2 == 0) continue;
if (n%3 == 0) break;
cout << "\tBottom of loop.\n";

}
cout << "\tOutside of loop.\n";

}

When n has the value 7, both if conditions are false and control reaches the bottom of the loop. When
n has the value 4, the first if condition is true (4 is a multiple of 2), so control skips over the rest of the
statements in the loop and jumps immediately to the top of the loop again to continue with its next
iteration. When n has the value 9, the first if condition is false (9 is not a multiple of 2) but the second if
condition is true (9 is a multiple of 3), so control breaks out of the loop and jumps immediately to the first
statement that follows the loop.

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49
8 16 24 32 40 48 56 64
9 18 27 36 45 54 63 72 81

10 20 30 40 50 60 70 80 90 100
11 22 33 44 55 66 77 88 99 110 121
12 24 36 48 60 72 84 96 108 120 132 144

Enter int: 7
Bottom of loop.

Enter int: 4
Enter int: 9

Outside of loop.

74 ITERATION [CHAP. 4

4.7 THE goto STATEMENT

The break statement, the continue statement, and the switch statement each cause the pro-
gram control to branch to a location other than where it normally would go. The destination of
the branch is determined by the context: break goes to the next statement outside the loop, con-
tinue goes to the loop’s continue condition, and switch goes to the correct case constant. All
three of these statements are called jump statements because they cause the control of the pro-
gram to “jump over” other statements.

The goto statement is another kind of jump statement. Its destination is specified by a label
within the statement.

A label is simply an identifier followed by a colon placed in front of a statement. Labels work
like the case statements inside a switch statement: they specify the destination of the jump.

Example 4.22 illustrated how a break normally behaves within nested loops: execution
breaks out of only the innermost loop that contains the break statement. Breaking out of several
or all of the loops in a nest requires a goto statement, as the next example illustrates.

EXAMPLE 4.24 Using a goto Statement to Break Out of a Nest of Loops

int main()
{ const int N=5;

for (int i=0; i<N; i++)
{ for (int j=0; j<N; j++)

{ for (int k=0; k<N; k++)
if (i+j+k>N) goto esc;
else cout << i+j+k << " ";

cout << "* ";
}

esc: cout << "." << endl; // inside the i loop, outside the j loop
}

}

When the goto is reached inside the innermost k loop, program execution jumps out to the labeled
output statement at the bottom of the outermost i loop. Since that is the last statement in the i loop, the i
loop will go on to its next iteration after executing that statement.

When i and j are 0, the k loop iterates 5 times, printing 0 1 2 3 4 followed by a star *. Then j
increments to 1 and the k loop iterates 5 times again, printing 1 2 3 4 5 followed by a star *. Then j
increments to 2 and the k loop iterates 4 times, printing 2 3 4 5. But then on the next iteration of the k
loop, i = 0, j = 2, and k = 4, so i+j+k = 6, causing the goto statement to execute for the first time. So
execute jumps immediately to the labeled output statement, printing a dot and advancing to the next line.
Note that both the k loop and the j loop are aborted before finishing all their iterations.

Now i = 1 and the middle j loop begins iterating again with j = 0. The k loop iterates 5 times, printing
1 2 3 4 5 followed by a star *. Then j increments to 1 and the k loop iterates 4 times, printing 2 3
4 5. But then on the next iteration of the k loop, i = 1, j = 2, and k = 3, so i+j+k = 6, causing the goto
statement to execute for the second time. Again execution jumps immediately to the labeled output
statement, printing a dot and advancing to the next line.

0 1 2 3 4 * 1 2 3 4 5 * 2 3 4 5 .
1 2 3 4 5 * 2 3 4 5 .
2 3 4 5 .
3 4 5 .
4 5 .

CHAP. 4] ITERATION 75

On the subsequent three iterations of the outer i loop, the inner k loop never completes its iterations
because i+j+4 is always greater than 5 (because i is greater than 2). So no more stars are printed.

Note that the labeled output statement could be placed inside any of the loops or even outside of all of
them. In the latter case, the goto statement would terminate all three of the loops in the nest.

Also note how the labeled statement is indented. The convention is to shift it to the left one indentation
level to make it more visible. If it were not a labeled statement, it would be indented as

}
cout << "." << endl;

}
instead of

}
esc: cout << "." << endl;
}

Example 4.24 illustrates one way to break out of a nest of loops. Another method is to use a
flag. A flag is a boolean variable that is initialized to false and then later set to true to signal
an exceptional event; normal program execution is interrupted when the flag becomes true. This
is illustrated by the following example.

EXAMPLE 4.25 Using a Flag to Break Out of a Nest of Loops

This program has the same output as that in Example 4.24:
int main()
{ const int N=5;

bool done=false;
for (int i=0; i<N; i++)
{ for (int j=0; j<N && !done; j++)

{ for (int k=0; k<N && !done; k++)
if (i+j+k>N) done = true;
else cout << i+j+k << " ";

cout << "* ";
}
cout << "." << endl; // inside the i loop, outside the j loop
done = false;

}
}

When the done flag becomes true, both the innermost k loop and the middle j loop will terminate, and
the outer i loop will finish its current iteration by printing the dot, advancing to the beginning of the next
line, and resetting the done flag to false. Then it starts its next iteration, the same as in Example 4.24.

4.8 GENERATING PSEUDO-RANDOM NUMBERS

One of the most important applications of computers is the simulation of real-world systems.
Most high-tech research and development is heavily dependent upon this technique for studying
how systems work without actually having to interact with them directly.

Simulation requires the computer generation of random numbers to model the uncertainty of
the real world. Of course, computers cannot actually generate truly random numbers because
computers are deterministic: given the same input, the same computer will always produce the

76 ITERATION [CHAP. 4

same output. But it is possible to generate numbers that appear to be randomly generated; i.e.,
numbers that are uniformly distributed within a given interval and for which there is no discern-
ible pattern. Such numbers are called pseudo-random numbers.

The Standard C header file <cstdlib> defines the function rand() which generates
pseudo-random integers in the range 0 to RAND_MAX, which is a constant that is also defined in
<cstdlib>. Each time the rand() function is called, it generates another unsigned integer in
this range.

EXAMPLE 4.26 Generating Pseudo-Random Numbers

This program uses the rand() function to generate pseudo-random numbers:
#include <cstdlib> // defines the rand() function and RAND_MAX const

#include <iostream>

using namespace std;

int main()

{ // prints pseudo-random numbers:

for (int i = 0; i < 8; i++)

cout << rand() << endl;

cout << "RAND_MAX = " << RAND_MAX << endl;

}

On each run, the computer generates 8 unsigned integers that are uniformly distributed in the
interval 0 to RAND_MAX, which is 2,147,483,647 on this computer. Unfortunately each run produces the
same sequence of numbers. This is because they are generated from the same “seed.”

Each pseudo-random number is generated from the previously generated pseudo-random
number by applying a special “number crunching” function that is defined internally. The first
pseudo-random number is generated from an internally defined variable, called the seed for the
sequence. By default, this seed is initialized by the computer to be the same value every time the
program is run. To overcome this violation of pseudo-randomness, we can use the srand()

function to select our own seed.

1103527590
377401575
662824084
1147902781
2035015474
368800899
1508029952
486256185
RAND_MAX = 2147483647

1103527590
377401575
662824084
1147902781
2035015474
368800899
1508029952
486256185
RAND_MAX = 2147483647

CHAP. 4] ITERATION 77

EXAMPLE 4.27 Setting the Seed Interactively

This program is the same as the one in Example 4.26 except that it allows the pseudo-random number
generator’s seed to be set interactively:

#include <cstdlib> // defines the rand() and srand() functions
#include <iostream>
using namespace std;

int main()
{ // prints pseudo-random numbers:

unsigned seed;
cout << "Enter seed: ";
cin >> seed;
srand(seed); // initializes the seed
for (int i = 0; i < 8; i++)

cout << rand() << endl;
}

The line srand(seed) assigns the value of the variable seed to the internal “seed” used by the
rand() function to initialize the sequence of pseudo-random numbers that it generates. Different seeds
produce different results.

Note that the seed value 12345 used in the third run of the program is the first number generated by
rand() in the first run. Consequently the first through seventh numbers generated in the third run are the
same as the second through eighth numbers generated in the first run. Also note that the sequence
generated in the second run is the same as the one produced in Example 4.26. This suggests that, on this
computer, the default seed value is 1.

Enter seed: 0
12345
1406932606
654583775
1449466924
229283573
1109335178
1051550459
1293799192

Enter seed: 1
1103527590
377401575
662824084
1147902781
2035015474
368800899
1508029952
486256185

Enter seed: 12345
1406932606
654583775
1449466924
229283573
1109335178
1051550459
1293799192
794471793

78 ITERATION [CHAP. 4

The problem of having to enter a seed value interactively can be overcome by using the com-
puter’s system clock. The system clock keeps track of the current time in seconds. The
time() function defined in the header file <ctime> returns the current time as an unsigned

integer. This then can be used as the seed for the rand() function.

EXAMPLE 4.28 Setting the Seed from the System Clock

This program is the same as the one in Example 4.27 except that it sets the pseudo-random number
generator’s seed from the system clock.

Note: if your compiler does not recognize the <ctime> header, then use the pre-standard
<time.h> header instead.

#include <cstdlib> // defines the rand() and srand() functions
#include <ctime> // defines the time() function
#include <iostream>
//#include <time.h> // use this if <ctime> is not recognized
using namespace std;
int main()
{ // prints pseudo-random numbers:

unsigned seed = time(NULL); // uses the system clock
cout << "seed = " << seed << endl;
srand(seed); // initializes the seed
for (int i = 0; i < 8; i++)

cout << rand() << endl;
}

Here are two runs using a UNIX workstation running a Motorola processor:

On the first run, the time() function returns the integer 808,148,157 which is used to “seed” the ran-
dom number generator. The second run is done 3 seconds later, so the time() function returns the inte-
ger 808,148,160 which generates a completely different sequence.

Here are two runs using a Windows PC running an Intel processor:

In many simulation programs, one needs to generate random integers that are uniformly dis-
tributed in a given range. The next example illustrates how to do that.

seed = 808148157
1877361330
352899587
1443923328
1857423289
200398846
1379699551
1622702508
715548277

seed = 808148160
892939769
1559273790
1468644255
952730860
1322627253
1305580362
844657339
440402904

CHAP. 4] ITERATION 79

EXAMPLE 4.29 Generating Pseudo-Random Numbers in Given Range

This program is the same as the one in Example 4.28 except that the pseudo-random numbers that it
generates are restricted to given range:

#include <cstdlib>
#include <ctime> // defines the time() function
#include <iostream>
//#include <time.h> // use this if <ctime> is not recognized
using namespace std;
int main()
{ // prints pseudo-random numbers:

unsigned seed = time(NULL); // uses the system clock
cout << "seed = " << seed << endl;
srand(seed); // initializes the seed
int min, max;
cout << "Enter minimum and maximum: ";
cin >> min >> max; // lowest and highest numbers
int range = max - min + 1; // number of numbers in range
for (int i = 0; i < 20; i++)
{ int r = rand()/100%range + min;

cout << r << " ";
}
cout << endl;

}
Here are two runs:

The first run generates 20 integers uniformly distributed between 1 and 100. The second run generates
20 integers uniformly distributed between 22 and 66.

seed = 943364015
2948
15841
72
25506
30808
29709
13115
2527

seed = 943364119
17427
20464
13149
5702
12766
1424
16612
31746

seed = 808237677
Enter minimum and maximum: 1 100
85 57 1 10 5 73 81 43 46 42 17 44 48 9 3 74 41 4 30 68

seed = 808238101
Enter minimum and maximum: 22 66
63 29 56 22 53 57 39 56 43 36 62 30 41 57 26 61 59 26 28

80 ITERATION [CHAP. 4

In the for loop, we divide rand() by 100 first to strip way the two right-most digits of the random
number. This is to compensate for the problem that this particular random number generator has of
producing numbers that alternate odd and even. Then rand()/100%range produces random numbers
in the range 0 to range-1, and rand()/100%range + min produces random numbers in the range
min to max.

Review Questions

4.1 What happens in a while loop if the control condition is false (i.e., zero) initially?
4.2 When should the control variable in a for loop be declared before the loop (instead of within

its control mechanism)?
4.3 How does the break statement provide better control of loops?
4.4 What is the minimum number of iterations that

a. a while loop could make?
b. a do..while loop could make?

4.5 What is wrong with the following loop:
while (n <= 100)
sum += n*n;

4.6 If s is a compound statement, and e1, e2, and e3 are expressions, then what is the difference
between the program fragment:

for (e1; e2; e3)
s;

and the fragment:
e1;
while (e2)
{ s;

e3;
}

4.7 What is wrong with the following program:
int main()
{ const double PI;

int n;

PI = 3.14159265358979;
n = 22;

}

4.8 What is an “infinite loop,” and how can it be useful?
4.9 How can a loop be structured so that it terminates with a statement in the middle of its block?
4.10 Why should tests for equality with floating-point variables be avoided?

Problems

4.1 Trace the following code fragment, showing the value of each variable each time it changes:
float x = 4.15;

for (int i=0; i < 3; i++)
x *= 2;

CHAP. 4] ITERATION 81

4.2 Assuming that e is an expression and s is a statement, convert each of the following for

loops into an equivalent while loop:
a. for (; e;) s
b. for (; ; e) s

4.3 Convert the following for loop into a while loop:
for (int i=1; i <= n; i++)

cout << i*i << " ";
4.4 Describe the output from this program:

int main()
{ for (int i = 0; i < 8; i++)

if (i%2 == 0) cout << i + 1 << "\t";
else if (i%3 == 0) cout << i*i << "\t";
else if (i%5 == 0) cout << 2*i - 1 << "\t";
else cout << i << "\t";

}
4.5 Describe the output from this program:

int main()
{ for (int i=0; i < 8; i++)

{ if (i%2 == 0) cout << i + 1 << endl;
else if (i%3 == 0) continue;
else if (i%5 == 0) break;
cout << "End of program.\n";

}
cout << "End of program.\n";

}
4.6 In a 32-bit float type, 23 bits are used to store the mantissa and 8 bits are used to store the

exponent.
a. How many significant digits of precision does the 32-bit float type yield?
b. What is the range of magnitude for the 32-bit float type?

4.7 Write and run a program that uses a while loop to compute and prints the sum of a given
number of squares. For example, if 5 is input, then the program will print 55, which equals 12

+ 22 + 32 + 42 + 52.
4.8 Write and run a program that uses a for loop to compute and prints the sum of a given num-

ber of squares.
4.9 Write and run a program that uses a do..while loop to compute and prints the sum of a

given number of squares.
4.10 Write and run a program that directly implements the quotient operator / and the remainder

operator % for the division of positive integers.
4.11 Write and run a program that reverses the digits of a given positive integer. (See Problem

3.13 on page 51.)
4.12 Apply the Babylonian Algorithm to compute the square root of 2. This algorithm (so called

because it was used by the ancient Babylonians) computes by repeatedly replacing one
estimate x with the closer estimate (x + 2/x)/2. Note that this is simply the average of x and
2/x.

4.13 Write a program to find the integer square root of a given number. That is the largest integer
whose square is less than or equal to the given number.

4.14 Implement the Euclidean Algorithm for finding the greatest common divisor of two given
positive integers. This algorithm transforms a pair of positive integers (m, n) into a pair (d, 0)
by repeatedly dividing the larger integer by the smaller integer and replacing the larger with

2

82 ITERATION [CHAP. 4

the remainder. When the remainder is 0, the other integer in the pair will be the greatest com-
mon divisor of the original pair (and of all the intermediate pairs). For example, if m is 532
and n is 112, then the Euclidean Algorithm reduces the pair (532,112) to (28,0) by

(532,112) → (112,84) → (84,28) → (28,0).

So 28 is the greatest common divisor of 532 and 112. This result can be verified from the
facts that 532 = 28·19 and 112 = 28·8. The reason that the Euclidean Algorithm works is that
each pair in the sequence has the same set of divisors, which are precisely the factors of the
greatest common divisor. In the example above, that common set of divisors is {1, 2, 4, 7, 14,
28}. The reason that this set of divisors is invariant under the reduction process is that when
m = n·q + r, a number is a common divisor of m and n if and only if it is a common divisor of
n and r.

Answers to Review Questions

4.1 If the control condition of a while loop is initially false, then the loop is skipped altogether; the state-
ment(s) inside the loop are not executed at all.

4.2 The control variable in a for loop has to be declared before the loop (instead of within its control
mechanism) if it is used outside of the loop’s statement block, as in Example 4.14 on page 67.

4.3 The break statement provides better control of loops by allowing immediate termination of the loop
after any statement within its block. Without a break statement, the loop can terminate only at the
beginning or at the end of the block.

4.4 a. The minimum number of iterations that a while loop could make is 0.

b. The minimum number of iterations that a do..while loop could make is 1.

4.5 That is an infinite loop because the value of its control variable n does not change.

4.6 There is no difference between the effects of those two program fragments, unless s is a break state-
ment or s is a compound statement (i.e., a block) that contains a break statement or a continue
statement. For example, this for statement will iterate 4 times and then terminate normally:

for (i = 0; i < 4; i++)

if (i == 2) continue;

but this while statement will be an infinite loop:

i = 0;

while (i < 4)

{ if (i == 2) continue;

i++;

}

4.7 The constant PI is not initialized. Every constant must be initialized at its declaration.

4.8 An infinite loop is one that continues without control; it can be stopped only by a branching statement
within the loop (such as a break or goto statement) or by aborting the program (e.g., with Ctrl+C).
Infinite loops are useful if they are stopped with branching statements.

4.9 A loop can be terminated by a statement in the middle of its block by using a break or a goto state-
ment.

4.10 Floating-point variables suffer from round-off error. After undergoing arithmetic transformations,
exact values may not be what would be expected. So a test such as (y == x) may not work cor-
rectly.

CHAP. 4] ITERATION 83

Solutions to Problems

4.1 First, x is initialized to 4.15 and i is initialized to 0. Then x is doubled three times by the three itera-
tions of the for loop.

4.2 The equivalent while loops are:
a. while (e) s;
b. while (true) { s; e; }, assuming that s contains no break or continue statements.

4.3 The equivalent while loop is:
int i=1;
while (i <= n)
{ cout << i*i << " ";

i++;
}

4.4 The output is
1 1 3 9 5 9 7 7

4.5 The output is
End of program.
End of program.
3
End of program.
5
End of program.
End of program.

4.6 a. The 23 bits hold the 2nd through 24th bit of the mantissa. The first bit must be a 1, so it is not stored.
Thus 24 bits are represented. These 24 bits can hold 224 numbers. And 224 = 16,777,216, which has
7 digits with full range, so 7 complete digits can be represented. But the last digit is in doubt
because of rounding. Thus, the 32-bit float type yields 6 significant digits of precision.

b. The 8 bits that the 32-bit float type uses for its exponent can hold 28 = 256 different numbers.
Two of these are reserved for indicating underflow and overflow, leaving 254 numbers for expo-
nents. So an exponent can range from –126 to +127, yielding a magnitude range of 2–126 =
1.175494 × 10–38 to 2127 = 1.70141 × 1038.

4.7 This program uses a while loop to compute the sum of the first n squares, where n is input:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=0;
while (i++ < n)

sum += i*i;
cout << "The sum of the first " << n << " squares is "

<< sum << endl;
}

4.8 This program uses a for loop to compute the sum of the first n squares, where n is input:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
int sum=0;
for (int i=1; i <= n; i++)

Enter a positive integer: 6
The sum of the first 6 squares is 91

84 ITERATION [CHAP. 4

sum += i*i;
cout << "The sum of the first " << n << " squares is "

<< sum << endl;
}

4.9 This program uses a do..while loop to compute the sum of the first n squares, where n is input:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=1;
do
{ sum += i*i;
}
while (i++ < n);
cout << "The sum of the first " << n << " squares is "

<< sum << endl;
}

4.10 This program directly implements the quotient operator / and the remainder operator % for the
division of positive integers. The algorithm used here, applied to the fraction n/d, repeatedly sub-
tracts the d from the n until n is less than d. At that point, the value of n will be the remainder, and
the number q of iterations required to reach it will be the quotient:

int main()
{ int n, d, q, r;

cout << "Enter numerator: ";
cin >> n;
cout << "Enter denominator: ";
cin >> d;
for (q = 0, r = n; r >= d; q++)

r -= d;
cout << n << " / " << d << " = " << q << endl;
cout << n << " % " << d << " = " << r << endl;
cout << "(" << q << ")(" << d << ") + (" << r << ") = "

<< n << endl;
}

This run iterated 4 times: 30 – 7 = 23, 23 – 7 = 16, 16 – 7 = 9, and 9 – 7 = 2. So the quotient is 4, and
the remainder is 2. Note that this relationship must always be true for integer division:

(quotient)(denominator) + (remainder) = numerator
4.11 The trick here is to strip off the digits one at a time from the given integer and “accumulate” them in

reverse in another integer:
int main()
{ long m, d, n = 0;

cout << "Enter a positive integer: ";
cin >> m;

Enter a positive integer: 6
The sum of the first 6 squares is 91

Enter a positive integer: 6
The sum of the first 6 squares is 91

Enter numerator: 30
Enter denominator: 7
30 / 7 = 4
30 % 7 = 2
(4)(7) + (2) = 30

CHAP. 4] ITERATION 85

while (m > 0)
{ d = m % 10; // d will be the right-most digit of m

m /= 10; // then remove that digit from m
n = 10*n + d; // and append that digit to n

}
cout << "The reverse is " << n << endl;

}

In this run, m begins with the value 123,456. In the first iteration of the loop, d is assigned the digit 6,
m is reduced to 12,345, and n is increased to 6. On the second iteration, d is assigned the digit 5, m is
reduced to 1,234, and n is increased to 65. On the third iteration, d is assigned the digit 4, m is reduced
to 123, and n is increased to 654. This continues until, on the sixth iteration, d is assigned the digit 1,
m is reduced to 0, and n is increased to 654,321.

4.12 This implements the Babylonian Algorithm:
#include <cmath> // defines the fabs() function
#include <iostream>
using namespace std;
int main()
{ const double TOLERANCE = 5e-8;

double x = 2.0;
while (fabs(x*x - 2.0) > TOLERANCE)
{ cout << x << endl;

x = (x + 2.0/x)/2.0; // average of x and 2/x
}
cout << "x = " << x << ", x*x = " << x*x << endl;

}

We use a “tolerance” of 5e-8 (= 0.00000005) to ensure accuracy to 7 decimal places. The fabs()
function (for “floating-point absolute value”), defined in the <cmath> header file, returns the abso-
lute value of the expression passed to it. So the loop continues until x*x is within the given tolerance
of 2.

4.13 This program finds the integer square root of a given number. This method uses an “exhaustive” algo-
rithm to find all the positive integers whose square is less than or equal to the given number:

int main()
{ float x;

cout << "Enter a positive number: ";
cin >> x;
int n = 1;
while (n*n <= x)

++n;
cout << "The integer square root of " << x << " is "

<< n-1 << endl;
}

Enter a positive integer: 123456
The reverse is 654321

2
1.5
1.41667
1.41422
x = 1.41421, x*x = 2

Enter a positive number: 1234.56
The integer square root of 1234.56 is 35

86 ITERATION [CHAP. 4

It starts with n=1 and continues to increment n until n*n > x. When the for loop terminates, n
is the smallest integer whose square is greater than x, so n-1 is the integer square root of x. Note the
use of the null statement in the for loop. Everything that needs to be done in the loop is done within
the control parts of the loop. But the semicolon is still necessary at the end of the loop.

4.14 This implements the Euclidean Algorithm:
int main()
{ int m, n, r;

cout << "Enter two positive integers: ";
cin >> m >> n;
if (m < n) { int temp = m; m = n; n = temp; } // make m >= n
cout << "The g.c.d. of " << m << " and " << n << " is ";
while (n > 0)
{ r = m % n;

m = n;
n = r;

}
cout << m << endl;

}
Enter two positive integers: 532 112
The g.c.d. of 532 and 112 is 28

87

Chapter 5

Functions

5.1 INTRODUCTION

Most useful programs are much larger than the programs that we have considered so far. To
make large programs manageable, programmers modularize them into subprograms. These
subprograms are called functions. They can be compiled and tested separately and reused in
different programs. This modularization is characteristic of successful object-oriented software.

5.2 STANDARD C++ LIBRARY FUNCTIONS

The Standard C++ Library is a collection of pre-defined functions and other program
elements which are accessed through header files. We have used some of these already: the
INT_MAX constant defined in <climits> (Example 2.3 on page 19), the sqrt() function
defined in <cmath> (Example 2.15 on page 28), the rand() function defined in <cstdlib>

(Example 4.26 on page 76), and the time() function defined in <ctime> (Example 4.28 on
page 78). Our first example illustrates the use of one of these mathematical functions.

EXAMPLE 5.1 The Square Root Function sqrt()

The square root of a given positive number is the number whose square is the given number. The
square root of 9 is 3 because the square of 3 is 9. We can think of the square root function as a “black
box.” When you put in a 9, out comes a 3. When the number 2 is input, the number 1.41421 is output. This
function has the same input-process-output nature that complete programs have. However, the processing
step is hidden: we do not need to know what the function does to 2 to produce 1.41421. All we need to
know is that the output 1.41421 does have the square root property: its square is the input 2.

Here is a simple program that uses the predefined square root function:
#include <cmath> // defines the sqrt() function
#include <iostream> // defines the cout object
using namespace std;
int main()
{ // tests the sqrt() function:

for (int x=0; x < 6; x++)
cout << "\t" << x << "\t" << sqrt(x) << endl;

}

This program prints the square roots of the numbers 0 through 5. Each time the expression sqrt(x)
is evaluated in the for loop, the sqrt() function is executed. Its actual code is hidden away within the
Standard C++ Library. In using it, we may confidently assume that the expression sqrt(x) will be

0 0
1 1
2 1.41421
3 1.73205
4 2
5 2.23607

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

88 FUNCTIONS [CHAP. 5

replaced by the actual square root of whatever value x has at that moment.
Notice the directive #include <cmath> on the first line of the program. This is necessary for the

compiler to find the definition of the sqrt() function. It tells the compiler that the function is declared
in the <cmath> header file.

A function like sqrt() is executed by using its name as a variable in a statement, like this:
y = sqrt(x);

This is called invoking or calling the function. Thus in Example 5.1, the code sqrt(x) calls the
sqrt() function. The expression x in the parentheses is called the argument or actual
parameter of the function call, and we say that it is passed by value to the function. So when x is
3, the value 3 is passed to the sqrt() function by the call sqrt(x).

This process is illustrated by
this diagram. The variables x and
y are declared in main(). The
value of x is passed to the sqrt()

function which then returns the
value 1.73205 back to main().
Note that the box representing the
sqrt() function is shaded,
indicating that its internal working mechanism is not visible.

EXAMPLE 5.2 Testing a Trigonometry Identity

Here is another program that uses the <cmath> header. Its purpose is to verify empirically the
identity sin2x = 2 sinx cosx.

int main()
{ // tests the identity sin 2x = 2 sin x cos x:

for (float x=0; x < 2; x += 0.2)
cout << x << "\t\t" << sin(2*x) << "\t"

<< 2*sin(x)*cos(x) << endl;
}

.
The program prints x in the first column, sin 2x in the second column, and 2 sin x cos x in the third

column. For each value of x tested, sin 2x = 2 sin x cos x. Of course, this does not prove the identity, but it
does provide convincing empirical evidence of its truth.

Note that x has type float instead of int. This allows the increment x += 0.2 to work correctly.

Function values may be used like ordinary variables in an expression. Thus we can write
y = sqrt(2);
cout << 2*sin(x)*cos(x);

3x
int

1.73205y
double

main()

sqrt()
3

1.73205

0 0 0
0.2 0.389418 0.389418
0.4 0.717356 0.717356
0.6 0.932039 0.932039
0.8 0.999574 0.999574
1 0.909297 0.909297
1.2 0.675463 0.675463
1.4 0.334988 0.334988
1.6 -0.0583744 -0.0583744
1.8 -0.442521 -0.442521

CHAP. 5] FUNCTIONS 89

We can even “nest” function calls, like this:
y = sqrt(1 + 2*sqrt(3 + 4*sqrt(5)))

Most of the mathematical functions that you find on a pocket calculator are declared in the
<cmath> header file, including all those shown in the table below.

Notice that every mathematical function returns a double type. If an integer is passed to the
function, it is promoted to a double before the function processes it.

The table below lists some of the more useful header files in the Standard C++ Library.

These are derived from the Standard C Library. They are used the same way that Standard C++
header files such as <iostream> are used. For example, if you want to use the random number
function rand() from the <cstdlib> header file, include the following preprocessor
directive at the beginning of your main program file:

#include <cstdlib>

The Standard C Library is described in greater detail in Chapter 8 and in Appendix F.

Some Functions Defined in the <cmath> Header

Function Description Example

acos(x) inverse cosine of x (in radians) acos(0.2) returns 1.36944

asin(x) inverse sine of x (in radians) asin(0.2) returns 0.201358

atan(x) inverse tangent of x (in radians) atan(0.2) returns 0.197396

ceil(x) ceiling of x (rounds up) ceil(3.141593) returns 4.0

cos(x) cosine of x (in radians) cos(2) returns -0.416147

exp(x) exponential of x (base e) exp(2) returns 7.38906

fabs(x) absolute value of x fabs(-2) returns 2.0

floor(x) floor of x (rounds down) floor(3.141593) returns 3.0

log(x) natural logarithm of x (base e) log(2) returns 0.693147

log10(x) common logarithm of x (base 10) log10(2) returns 0.30103

pow(x,p) x to the power p pow(2,3) returns 8.0

sin(x) sine of x (in radians) sin(2) returns 0.909297

sqrt(x) square root of x sqrt(2) returns 1.41421

tan(x) tangent of x (in radians) tan(2) returns -2.18504

Some of the Header Files in the Standard C++ Library

Header File Description

<cassert> Defines the assert() function

<ctype> Defines functions to test characters

<cfloat> Defines constants relevant to floats

<climits> Defines the integer limits on your local system

<cmath> Defines mathematical functions

<cstdio> Defines functions for standard input and output

<cstdlib> Defines utility functions

<cstring> Defines functions for processing strings

<ctime> Defines time and date functions

90 FUNCTIONS [CHAP. 5

5.3 USER-DEFINED FUNCTIONS

The great variety of functions provided by the Standard C++ Library is still not sufficient for
most programming tasks. Programmers also need to be able to define their own functions.

EXAMPLE 5.3 A cube() Function

Here is a simple example of a user-defined function:
int cube(int x)
{ // returns cube of x:

return x*x*x;
}

The function returns the cube of the integer passed to it. Thus the call cube(2) would return 8.

A user-defined function has two parts: its head and its body. The syntax for the head of a func-
tion is

return-type name(parameter-list)

This specifies for the compiler the function’s return type, its name, and its parameter list. In
Example 5.3, the function’s return type is int, its name is cube, and its parameter list is int x.
So its head is

int cube(int x)

The body of a function is the block of code that follows its head. It contains the code that
performs the function’s action, including the return statement that specifies the value that the
function sends back to the place where it was called. The body of the cube function is

{ // returns cube of x:
return x*x*x;

}

This is about as simple a body as a function could have. Usually the body is much larger. But the
function’s head typically fits on a single line.

Note that main() itself is a function. Its head is
int main()

and its body is the program itself. Its return type is int, its name is main, and its parameter list is
empty.

A function’s return statement serves two purposes: it terminates the execution of the function,
and it returns a value to the calling program. Its syntax is

return expression;

where expression is any expression whose value could be assigned to a variable whose type is
the same as the function’s return type.

5.4 TEST DRIVERS

Whenever you create your own function, you should immediately test it with a simple
program. Such a program is called a test driver for the function. Its only purpose is to test the
function. It is a temporary, ad hoc program that should be “quick and dirty.” That means that you
need not include all the usual niceties such as user prompts, output labels, and documentation.
Once you have used it to test your function thoroughly you can discard it.

CHAP. 5] FUNCTIONS 91

EXAMPLE 5.4 A Test Driver for the cube() Function

Here is a complete program that includes the definition of the cube() function from Example 5.4
together with a test driver for it:

int cube(int x)
{ // returns cube of x:

return x*x*x;
}

int main()
{ // tests the cube() function:

int n=1;
while (n != 0)
{ cin >> n;

cout << "\tcube(" << n << ") = " << cube(n) << endl;
}

}

This reads integers and prints their cubes until the user inputs the sentinel value 0. Each integer read is
passed to the cube() function by the call cube(n). The value returned by the function replaces the
expression cube(n) and then is passed to the output object cout.

We can visualize the relationship
between the main() function and
the cube() function like this:

The main() function passes the
value 5 to the cube() function, and
the cube() function returns the
value 125 to the main() function.
The argument n is passed by value to the formal parameter x. This simply means that x is
assigned the value of n when the function is called.

Note that the cube() function is defined above the main() function in the example. This is
because the C++ compiler must know about the cube() function before it is used in main().

The next example shows a user-defined function named max() which returns the larger of
the two ints passed to it. This function has two arguments.

EXAMPLE 5.5 A Test Driver for the max() Function

Here is a function with two parameters. It returns the larger of the two values passed to it.
int max(int x, int y)
{ // returns larger of the two given integers:

if (x < y) return y;
else return x;

}

5
cube(5) = 125

-6
cube(-6) = -216

0
cube(0) = 0

5n
int

main()

5

125

5x
int

cube()

92 FUNCTIONS [CHAP. 5

int main()
{ // tests the max() function:

int m, n;
do
{ cin >> m >> n;

cout << "\tmax(" << m << "," << n << ") = " << max(m,n) << endl;
}
while (m != 0);

}

Notice that the function has more than one return statement. The first one that is reached terminates
the function and returns the indicated value to the calling program.

A return statement is like a break statement. It is a jump statement that jumps out of the
function that contains it. Although usually found at the end of the function, a return statement
may be put anywhere that any other statement could appear within a function.

5.5 FUNCTION DECLARATIONS AND DEFINITIONS

The last two examples illustrate one method of defining a function in a program: the complete
definition of the function is listed above the main program. This is the simplest arrangement and
is good for test drivers.

Another, more common arrangement is to list only the function’s header above the main
program, and then list the function’s complete definition (head and body) below the main
program. This is illustrated in the next example.

In this arrangement, the function’s declaration is separated from its definition. A function
declaration is simply the function’s head, followed by a semicolon. A function definition is the
complete function: header and body. A function declaration is also called a function prototype.

A function declaration is like a variable declaration; its purpose is simply to provide the
compiler with all the information it needs to compile the rest of the file. The compiler does not
need to know how the function works (its body). It only needs to know the function’s name, the
number and types of its parameters, and its return type. This is precisely the information
contained in the function’s head.

Also like a variable declaration, a function declaration must appear above any use of the
function’s name. But the function definition, when listed separately from the declaration, may
appear anywhere outside the main() function and is usually listed after it or in a separate file.

The variables that are listed in the function’s parameter list are called parameters. They are
local variables that exist only during the execution of the function. Their listing in the parameter
list constitutes their declaration. In the example above, the parameters are x and y.

The variables that are listed in the function’s calls are called the arguments. Like any other
variable in the main program, they must be declared before they are used in the call. In the
example above, the arguments are m and n.

5 8
max(5,8) = 8

4 -3
max(4,-3) = 4

0 0
max(0,0) = 0

CHAP. 5] FUNCTIONS 93

In these examples, the arguments are passed by value. This means that their values are
assigned to the function’s corresponding parameters. So in the previous example, the value of m
is assigned to x and the value of n is assigned to y. When passed by value, arguments may be
constants or general expressions. For example, the max() function could be called by
max(44,5*m-n). This would assign 44 to x and the value of the expression 5*m-n to y.

EXAMPLE 5.6 The max() Function with Declaration Separate from Definition

This program is the same test driver for the same max() function as in Example 5.6. But here the
function’s declaration appears above the main program and the function’s definition follows it:

int max(int,int);
// returns larger of the two given integers:

int main()
{ // tests the max() function:

int m, n;
do
{ cin >> m >> n;

cout << "\tmax(" << m << "," << n << ") = " << max(m,n) << endl;
}
while (m != 0);

}

int max(int x, int y)
{ if (x < y) return y;

else return x;
}

Notice that the formal parameters x and y are listed in the header in the definition (as usual) but not in the
declaration.

Function declarations are very similar to variable declarations, especially if the function has
no parameters. For example, in a program that processes strings, you might need a variable
named length to store the length of a string. But a reasonable alternative would be to have a
function that computes the length of the string wherever it is needed, instead of storing and
updating the value. The function would be declared as

int length();

whereas the variable would be declared as
int length;

The only difference is that the function declaration includes the parentheses (). In reality, the
two alternatives are quite different, but syntactically they are nearly the same when they are
used. In cases like this, one can regard a function as a kind of an “active variable;” i.e., a variable
that can do things.

EXAMPLE 5.7 SEPARATE COMPILATION

Function definitions are often compiled independently in separate files. For example, all the
functions declared in the Standard C++ Library are compiled separately. One reason for separate
compilation is “information hiding”—that is, information that is necessary for the complete

94 FUNCTIONS [CHAP. 5

compilation of the program but not essential to the programmer’s understanding of the program
is hidden. Experience shows that information hiding facilitates the understanding and thus
success of large software projects.

EXAMPLE 5.8 The max() Function Compiled Separately

This shows one way that the max function and its test driver could be compiled separately. The test
driver is in a file named test_max.cpp and the function is in a separate file named max.cpp.

The actual commands that you would use to compile these files together depend on the system you are
using. In UNIX you could do it like this:

$ c++ -c max.c
$ c++ -c test_max.c
$ c++ -o test_max test_max.o max.o
$ test_max

(Here the dollar sign is the system prompt.) The first command compiles the max function, the second
command compiles the test driver separately, the third command links them together to produce the exe-
cutable module test_max, which is then run by the command on the fourth line.

One advantage of compiling functions separately is that they can be tested separately before
the program(s) that call them are written. Once you know that the max function works properly,
you can forget about how it works and save it as a “black box” ready to be used whenever it is
needed. This is how the functions in the math library are used. It is the “off-the-shelf software”
point of view.

Another advantage of separate compilation is the ease with which one module can be replaced
by another equivalent module. For example, if you happen to discover a better way to compute
the maximum of two integers, you can compile and test that function and then link that module
with whatever programs were using the previous version of the max() function.

int max(int x, int y)
{ if (x < y) return y;

else return x;
}

int max(int,int);
// returns larger of the two given integers:

int main()
{ // tests the max() function:

int m, n;
do
{ cin >> m >> n;

cout << "\tmax(" << m << "," << n << ") = " << max(m,n) << endl;
}
while (m != 0);

}

test_max.cpp

max.cpp

CHAP. 5] FUNCTIONS 95

5.6 LOCAL VARIABLES AND FUNCTIONS

A local variable is simply a variable that is declared inside a block. It is accessible only from
within that block. Since the body of a function itself is a block, variables declared within a
function are local to that function; they exist only while the function is executing. A function’s
formal parameters (arguments) are also regarded as being local to the function.

The next two examples show functions with local variables.

EXAMPLE 5.9 The Factorial Function

The factorial numbers were introduced in Example 4.9 on page 65. The factorial of a positive integer n
is the number n! obtained by multiplying n by all the positive integers less than n:

n! = (n)(n – 1) · · · (3)(2)(1)
For example, 5! = (5)(4)(3)(2)(1) = 120.

Here is an implementation of the factorial function:
long fact(int n)
{ // returns n! = n*(n-1)*(n-2)*...*(2)(1)

if (n < 0) return 0;
int f = 1;
while (n > 1)

f *= n--;
return f;

}
This function has two local variables: n and f. The parameter n is local because it is declared in the

function’s parameter list. The variable f is local because it is declared within the body of the function.
Here is a test driver for the factorial function:

long fact(int);
// returns n! = n*(n-1)*(n-2)*...*(2)(1)

int main()
{ // tests the factorial() function:

for (int i=-1; i < 6; i++)
cout << " " << fact(i);

cout << endl;
}

This program could be compiled separately, or it could be placed in the same file with the function and
compiled together.

EXAMPLE 5.10 The Permutation Function

A permutation is an arrangement of elements taken from a finite set. The permutation function P(n,k)
gives the number of different permutations of any k items taken from a set of n items. One way to compute
this function is by the formula

For example,

0 1 1 2 6 24 120

P n k,() n!
n k–()!

------------------=

P 5 2,() 5!
5 2–()!

------------------ 5!
3!
----- 120

6
--------- 20= = = =

96 FUNCTIONS [CHAP. 5

So there are 20 different permutations of 2 items taken from a set of 5. For example, here are the 20 differ-
ent permutations of length 2 taken from the set {A, B, C, D, E}: AB, AC, AD, AE, BC, BD, BE, CD, CE,
DE, BA, CA, DA, EA, CB, DB, EB, DC, EC, ED.

The code below implements this formula for the permutation function:
long perm(int n, int k)
{ // returns P(n,k), the number of permutations of k from n:

if (n < 0 || k < 0 || k > n) return 0;
return fact(n)/fact(n-k);

}
Notice that the condition (n < 0 || k < 0 || k > n) is used to handle the cases where either

parameter is out of range. In these cases the function returns an “impossible” value, 0, to indicate that its
input was erroneous. That value would then be recognized by the calling program as an “error flag.”

Here is a test driver for the perm() function:
long perm(int,int);
// returns P(n,k), the number of permutations of k from n;

int main()
{ // tests the perm() function:

for (int i = -1; i < 8; i++)
{ for (int j=-1; j <= i+1; j++)

cout << " " << perm(i,j);
cout << endl;

}
}

Note that the test driver checks the “exceptional cases where i < 0, j < 0, and j > i. Such values are
called boundary values because they lie on the boundary of the output set (where perm() returns 0).

5.7 void FUNCTIONS

A function need not return a value. In other programming languages, such a function is called
a procedure or a subroutine. In C++, such a function is identified simply by placing the keyword
void where the function’s return type would be.

A type specifies a set of values. For example, the type short specifies the set of integers from
–32,768 to 32,767. The void type specifies the empty set. Consequently, no variable can be
declared with void type. A void function is simply one that returns no value.

EXAMPLE 5.11 A Function that Prints Dates

void printDate(int,int,int);
// // prints the given date in literal form;

0 0
0 1 0
0 1 1 0
0 1 2 2 0
0 1 3 6 6 0
0 1 4 12 24 24 0
0 1 5 20 60 120 120 0
0 1 6 30 120 360 720 720 0
0 1 7 42 210 840 2520 5040 5040 0

CHAP. 5] FUNCTIONS 97

int main()
{ // tests the printDate() function:

int month, day, year;
do
{ cin >> month >> day >> year;

printDate(month,day,year);
}
while (month > 0);

}

void printDate(int m, int d, int y)
{ // prints the given date in literal form:

if (m < 1 || m > 12 || d < 1 || d > 31 || y < 0)
{ cerr << "Error: parameter out of range.\n";

return;
}
switch (m)
{ case 1: cout << "January "; break;

case 2: cout << "February "; break;
case 3: cout << "March "; break;
case 4: cout << "April "; break;
case 5: cout << "May "; break;
case 6: cout << "June "; break;
case 7: cout << "July "; break;
case 8: cout << "August "; break;
case 9: cout << "September "; break;
case 10: cout << "October "; break;
case 11: cout << "November "; break;
case 12: cout << "December "; break;

}
cout << d << ", " << y << endl;

}

The printDate() function returns no value. Its only purpose is to print the date. So its return type
is void. The function uses a switch statement to print the month as a literal, and it prints the day and
year as integers.

Note that the function returns without printing anything if the parameters are obviously out of range
(e.g., m > 12 or y < 0). But impossible values such as February 31, 1996 would be printed.
Corrections for these anomalies are left as exercises.

Since a void function does not return a value, it need not include a return statement. If it
does have a return statement, then it should appear simply as

return;

with no expression following the keyword return. In this case, the purpose of the return

statement is simply to terminate the function.

12 7 1941
December 7, 1941
5 16 1994
May 16, 1994
0 0 0
Error: parameter out of range.

98 FUNCTIONS [CHAP. 5

A function with no return value is an action. Accordingly, it is usually best to use a verb
phrase for its name. For example, the above function is named printDate instead of some
noun phrase like date.

5.8 BOOLEAN FUNCTIONS

In some situations it is helpful to use a function to evaluate a condition, typically within an if

statement or a while statement. Such functions are called boolean functions after the British
logician George Boole (1815-1864) who developed boolean algebra.

EXAMPLE 5.12 Classifying Characters

The following program classifies the 128 ASCII characters (see Appendix A):
#include <cctype> // defines the functions isdigit(), islower(), etc.
#include <iostream> // defines the cout object
using namespace std;

void printCharCategory(char c);
// prints the category to which the given character belongs;

int main()
{ // tests the printCharCategory() function:

for (int c=0; c < 128; c++)
printCharCategory(c);

}

void printCharCategory(char c)
{ // prints the category to which the given character belongs:

cout << "The character [" << c << "] is a ";
if (isdigit(c)) cout << "digit.\n";
else if (islower(c)) cout << "lower-case letter.\n";
else if (isupper(c)) cout << "capital letter.\n";
else if (isspace(c)) cout << "white space character.\n";
else if (iscntrl(c)) cout << "control character.\n";
else if (ispunct(c)) cout << "punctuation mark.\n";
else cout << "Error.\n";

}
The void function printCharCategory() calls the six boolean functions isdigit(),

islower(), isupper(), isspace(), iscntrl(), and ispunct(). Each of these functions is
predefined in the <cctype> header file. These functions are used to test objects’ character type (i.e., “c
type”).

Here is part of the output:

The complete output contains 128 lines.

The character [] is a control character.
The character [] is a white space character.
The character [!] is a punctuation mark.
The character ["] is a punctuation mark.
The character [#] is a punctuation mark.
The character [$] is a punctuation mark.

CHAP. 5] FUNCTIONS 99

This example illustrates several new ideas. The main idea is the use of the boolean functions
isdigit(), islower(), isupper(), isspace(), iscntrl(), and ispunct(). For example,
the call isspace(c) tests the character c to determine whether it is a white space character. (There are
six white space characters: the horizontal tab character \t, the newline character \n, the vertical tab
character \v, the form feed character \f, the carriage return character \r, and the space character.) If
c is any of these characters, then the function returns a nonzero integer for true; otherwise it returns 0 for
false. Placing the call as the condition in the if statement causes the corresponding output statement to
execute if and only if c is one of these characters.

Each character is tested within the printCharCategory() function. Although the program could
have been written without this separate function, its use modularizes the program, making it more
structured. We are conforming here to the general programming principle that recommends that every task
be relegated to a separate function.

Functions such as isdigit() and ispunct() which are defined in the C header files (such
as <cctype>) were originally defined for the C programming language. Since that language
does not have a standard boolean type, those boolean functions return an integer instead of true
or false. But since those C++ boolean values are stored as integers (see Section 2.2), the conver-
sion from integer value to bool value is automatic.

EXAMPLE 5.13 A Function that Tests Primality

Here is a boolean function that determines whether an integer is a prime number:
bool isPrime(int n)
{ // returns true if n is prime, false otherwise:

float sqrtn = sqrt(n);
if (n < 2) return false; // 0 and 1 are not primes
if (n < 4) return true; // 2 and 3 are the first primes
if (n%2 == 0) return false; // 2 is the only even prime
for (int d=3; d <= sqrtn; d += 2)

if (n%d == 0) return false; // n has a nontrivial divisor
return true; // n has no nontrivial divisors

}
This function works by looking for a divisor d of the given number n. It tests divisibility by the value of
the condition (n%d == 0). This will be true precisely when d is a divisor of n. In that case, n cannot be
a prime number, so the function immediately returns false. If the for loop finishes without finding any
divisors of n, then the function returns true.

We can stop searching for divisors once we get past the square root of n because if n is a product d*a,
then one of these factors must be less than or equal to the square root of n. We define the sqrtn outside
the loop so that it only has to be evaluated once.

It is also more efficient to check for even numbers (n%2 == 2) first. This way, once we get to the
for loop, we need only check for odd divisors. This is done by incrementing the divider d by 2 on each
iteration.

Here is a test driver and a test run for the isPrime() function:
#include <cmath> // defines the sqrt() function
#include <iostream> // defines the cout object
using namespace std;

bool isPrime(int);
// returns true if n is prime, false otherwise;

100 FUNCTIONS [CHAP. 5

int main()
{ for (int n=0; n < 80; n++)

if (isPrime(n)) cout << n << " ";
cout << endl;

}

Notice that, like the “c-type” functions in the previous example, a verb phrase is used for the name of
this function. The name isPrime makes the function’s use more readable for humans: the code

if (isPrime(n)) . . .
is almost the same as the ordinary English phrase “if n is prime...”

It should be noted that this function is not optimal. In searching for divisors, we need only check prime
numbers, because every composite (non-prime) number is a unique product of primes. To modify this
function so that it checks only prime divisors requires that the primes be stored as they are found. That
requires using an array. (See Problem 6.22 on page 144.)

EXAMPLE 5.14 A Leap Year Function

A leap year is a year in which one extra day (February 29) is added to the regular calendar. Most of us
know that the leap years are the years that are divisible by 4. For example, 1992 and 1996 are leap years.
Most people, however, do not know that there is an exception to this rule: centennial years are not leap
years. For example, 1800 and 1900 are not leap years. Furthermore, there is an exception to the exception:
centennial years which are divisible by 400 are leap years. Thus, the year 2000 is a leap year.

Here is a boolean function that implements this definition:
bool isLeapYear(int y)
{ // returns true iff y is a leap year:

return y % 4 == 0 && y % 100 != 0 || y % 400 == 0;
}

The compound condition y % 4 == 0 && y % 100 != 0 || y % 400 == 0 will be true
precisely when y is divisible by 4 but not by 100 unless it is also divisible by 400. In these cases the
function returns true; in all other cases it returns false.

Here is a test driver and test run for the function:
bool isLeapYear(int);
// returns true iff y is a leap year;

int main()
{ // tests the isLeapYear() function:

int n;
do
{ cin >> n;

if (isLeapYear(n)) cout << n << " is a leap year.\n";
else cout << n << " is not a leap year.\n";

}
while (n > 1);

}
The output is

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79

2000
2000 is a leap year.
2001
2001 is not a leap year.
0
0 is a leap year.

CHAP. 5] FUNCTIONS 101

5.9 I/O FUNCTIONS

Functions are particularly useful for encapsulating tasks that require messy details that are not
very relevant to the primary task of the program. For example, in processing personnel records,
you might have a program that requires interactive input of a user’s age. By relegating this task
to a separate function, you can encapsulate the details needed to ensure correct data entry
without distracting the main program.

We have already seen examples of output functions. The only purpose of the printDate()

function in Example 5.11 on page 96 was to print the date represented by its input parameters.
Instead of sending information back to the calling function, it sends its information to the
standard output (i.e., the computer screen). An input function like the one described above is
analogous. Instead of receiving its information through its parameters, it reads it from standard
input (i.e., the keyboard).

The next example illustrates an input function. The while (true) control of the loop in this
example makes it look like an infinite loop: the condition (true) is always true. But the loop
is actually controlled by the return statement which not only terminates the loop but also termi-
nates the function.

EXAMPLE 5.15 A Function for Reading the User’s Age

Here is a simple function that prompts the user for his/her age and then returns it. It is “robust” in the
sense that it rejects any unreasonable integer input. It repeatedly requests input until it receives an integer
in the range 0 to 120:

int age()
{ // prompts the user to input his/her age, and returns that value:

int n;
while (true)
{ cout << "How old are you: ";

cin >> n;
if (n < 0) cout << "\a\tYour age could not be negative.";
else if (n > 120) cout << "\a\tYou could not be over 120.";
else return n;
cout << "\n\tTry again.\n";

}
}

As soon as the input received from cin is acceptable, the function terminates with a return
statement, sending the input back to the calling function. If the input is not acceptable (either n < 0 or
n > 120), then the system beep is sounded by printing the character '\a' and a comment printed.
Then the user is asked to “Try again.”

Note that this is an example of a function whose return statement is not at the end of the function.
Here is a test driver and output from a sample run:

int age();
// prompts the user to input his/her age, and returns that value;

int main()
{ // tests the age() function:

int a = age();
cout << "\nYou are " << a << " years old.\n";

}

102 FUNCTIONS [CHAP. 5

Notice that the function’s parameter list is empty. But even though it has no input parameters, the
parentheses () must be included both in the function’s header and in every call to the function.

5.10 PASSING BY REFERENCE

Until now, all the parameters that we have seen in functions have been passed by value. That
means that the expression used in the function call is evaluated first and then the resulting value
is assigned to the corresponding parameter in the function’s parameter list before the function
begins executing. For example, in the call cube(x), if x has the value 4, then the value 4 is
passed to the local variable n before the function begins to execute its statements. Since the value
4 is used only locally inside the function, the variable x is unaffected by the function. Thus the
variable x is a read-only parameter.

The pass-by-value mechanism allows for more general expressions to be used in place of an
argument in the function call. For example the cube() function could also be called as
cube(3), or as cube(2*x-3), or even as cube(2*sqrt(x)-cube(3)). In each case, the
expression within the parentheses is evaluated to a single value and then that value is passed to
the function.

The read-only, pass-by-value method of communication is usually what we usually want for
functions. It makes the functions more self-contained, protecting them against accidental side
effects. However, there are some situations where a function needs to change the value of the
parameter passed to it. That can be done by passing it by reference.

To pass a parameter by reference instead of by value, simply append an ampersand, &, to the
type specifier in the functions parameter list. This makes the local variable a reference to the
argument passed to it. So the argument is read-write instead of read-only. Then any change to the
local variable inside the function will cause the same change to the argument that was passed to
it.

Note that parameters that are passed by value are called value parameters, and parameters that
are passed by reference are called reference parameters.

EXAMPLE 5.16 The swap() Function

This little function is widely used in sorting data:
void swap(float& x, float& y)
{ // exchanges the values of x and y:

float temp = x;
x = y;

y = temp;
}

How old are you: 125
You could not be over 120.
Try again.

How old are you: -3
Your age could not be negative.
Try again.

How old are you: 99

You are 99 years old.

CHAP. 5] FUNCTIONS 103

Its sole purpose is to interchange the two objects that are passed to it. This is accomplished by declaring
the formal parameters x and y as reference variables: float& x, float& y. The reference opera-
tor & makes x and y synonyms for the arguments passed to the function.

Here is a test driver and output from a sample run:
void swap(float&, float&);

// exchanges the values of x and y;

int main()

{ // tests the swap() function:

float a = 22.2, b = 44.4;

cout << "a = " << a << ", b = " << b << endl;

swap(a,b);

cout << "a = " << a << ", b = " << b << endl;

}

When the call swap(a,b) executes, the function creates its local references x and y, so that x is the
function’s local name for a, and y is the function’s local name for b. Then the function’s three statements
execute: the local variable temp is declared and initialized with the value of x (which is a); then x (which
is a) is assigned the value of y (which is b); then y (which is b) is assigned the value of temp. So a ends
up with the value 44.4, and b ends up with the value 22.2:

Note that the function declaration
void swap(float&, float&);

includes the reference operator & for each reference parameter, even though the parameters are omitted.
Some programmers write the reference operator & as a prefix to the parameter, like this:

void swap(float &x, float &y)

instead of as a suffix to its type as done here. That style is more common among C programmers. In C++,
we think of x as the parameter and float& as its type. But the compiler will accept float& x,
float &x, float & x, or even float&x. It’s mostly a matter of taste.

a = 22.2, b = 44.4
a = 44.4, b = 22.2

44.4b
float

main()

Upon the call swap(a,b):

22.2a
float

Upon the return:

y
float&

swap()

x
float&

22.2b
float

main()

44.4a
float

y
float&

swap()

x
float&

22.2temp
float

104 FUNCTIONS [CHAP. 5

EXAMPLE 5.17 Passing By Value and Passing By Reference

This example shows the difference between passing by value and passing by reference:
void f(int,int&);
// changes reference argument to 99:;

int main()
{ // tests the f() function:

int a = 22, b = 44;
cout << "a = " << a << ", b = " << b << endl;
f(a,b);
cout << "a = " << a << ", b = " << b << endl;
f(2*a-3,b);
cout << "a = " << a << ", b = " << b << endl;

}

void f(int x, int& y)
{ // changes reference argument to 99:

x = 88;
y = 99;

}

The call f(a,b) passes a by value to x and it passes b by reference to y. So x is a local variable that
is assigned a’s value of 22, while y is an alias for the variable b whose value is 33. The function assigns
88 to x, but that has no effect on a. But when it assigns 99 to y, it is really assigning 99 to b, because y is
an alias for b. So when the function terminates, a still has its original value 22, while b has the new value
99. The argument a is read-only, while the argument b is read-write.

The next table summarizes the differences between passing by value and passing by reference.

a = 22, b = 44
a = 22, b = 99
a = 22, b = 99

Upon the call f(a,b):

Upon the return:

main()

y
int&

f()

88x
int

22a
int

99b
int

main()

y
int&

f()

22x
int

22a
int

33b
int

CHAP. 5] FUNCTIONS 105

A common situation where reference parameters are needed is where the function has to
return more than one value. It can only return one value directly with a return statement. So if
more than one value must be returned, reference parameters can do the job.

EXAMPLE 5.18 Returning More than One Value

This function returns two values by using two reference parameters: the area and circumference
of a circle whose radius has the given length r:

void computeCircle(double& area, double& circumference, double r)

{ // returns the area and circumference of a circle with radius r:

const double PI = 3.141592653589793;

area = PI*r*r;

circumference = 2*PI*r;

}

Here is a test driver and output from a sample run:

void computeCircle(double&, double&, double);

// returns the area and circumference of a circle with radius r;

int main()

{ // tests the computeCircle() function:

double r, a, c;

cout << "Enter radius: ";

cin >> r;

computeCircle(a, c, r);

cout << "area = " << a << ", circumference = " << c << endl;

}

Note that the output parameters area and circumference are listed first in the parameter list, to the
left of the input parameter r. This standard C style is consistent with the format of assignment statements:
y = x, where the information (the value) flows from the read-only variable x on the right to the
read-write variable y on the left.

Passing By Value Versus Passing By Reference

Passing By Value Passing By Reference

int x; int &x;

The parameter x is a local variable. The parameter x is a local reference.

It is a duplicate of the argument. It is a synonym for the argument.

It cannot change the argument. It can change the argument.

The argument passed by value may be a
constant, a variable, or an expression.

The argument passed by reference must
be a variable.

The argument is read-only. The argument is read-write.

Enter radius: 100
area = 31415.9, circumference = 628.319

106 FUNCTIONS [CHAP. 5

5.11 PASSING BY CONSTANT REFERENCE

There are two good reasons for passing a parameter by reference. If the function has to change
the value of the argument, as the swap() function did, then it must be passed by reference.
Also, if the argument that is passed to a function takes up a lot of storage space (for example, a
one-megabyte graphics image), then it is more efficient to pass it by reference to prevent it from
being duplicated. However, this also allows the function to change the value (i.e., contents) of
the argument. If you don’t want the function to change its contents (for example, if the purpose
of the function is to print the object), then passing by reference can be risky. Fortunately, C++
provides a third alternative: passing by constant reference. It works the same way as passing by
reference, except that the function is prevented from changing the value of the parameter. The
effect is that the function has access to the argument by means of its formal parameter alias, but
the value of that formal parameter may not be changed during the execution of the function. A
parameter that is passed by value is called “read-only” because it cannot write (i.e., change) the
contents of that parameter.

EXAMPLE 5.19 Passing By Constant Reference

This illustrates the three ways to pass a parameter to a function:
void f(int x, int& y, const int& z)
{ x += z;

y += z;
cout << "x = " << x << ", y = " << y << ", z = " << z << endl;

}
The first parameter a is passed by value, the second parameter b is passed by reference, and the third

parameter c is passed by constant reference:
void f(int, int&, const int&);
int main()
{ // tests the f() function:

int a = 22, b = 33, c = 44;
cout << "a = " << a << ", b = " << b << ", c = " << c << endl;
f(a,b,c);
cout << "a = " << a << ", b = " << b << ", c = " << c << endl;
f(2*a-3,b,c);
cout << "a = " << a << ", b = " << b << ", c = " << c << endl;

}

The function changes the formal parameters x and y, but it would not be able to change z. The
function’s change of x has no effect upon the argument a because it was passed by value. The function’s
change of y causes the same change on the argument b because it was passed by reference.

Passing parameters by constant reference is used mostly in functions that process large
objects, such as arrays and class instances that are described in later chapters. Objects of funda-
mental types (integers, floats, etc.) are usually passed either by value (if you don’t want the func-
tion to change them) or by reference (if you do want the function to change them).

a = 22, b = 33, c = 44
x = 66, y = 77, z = 44
a = 22, b = 77, c = 44
x = 85, y = 121, z = 44
a = 22, b = 121, c = 44

CHAP. 5] FUNCTIONS 107

5.12 INLINE FUNCTIONS

A function call involves substantial overhead. Extra time and space have to be used to invoke
the function, pass parameters to it, allocate storage for its local variables, store the current
variables and the location of execution in the main program, etc. In some cases, it is better to
avoid all this by specifying the function to be inline. This tells the compiler to replace each call
to the function with explicit code for the function. To the programmer, an inline function appears
the same as an ordinary function, except for the use of the inline specifier.

EXAMPLE 5.20 Inlining the Cube Function

This is the same cube() function as in Example 5.3 on page 90:
inline int cube(int x)

{ // returns cube of x:

return x*x*x;

}

The only difference is that the inline keyword has been added as a prefix to the function’s head. This
tells the compiler to replace the expression cube(n) in the main program with the actual code
(n)*(n)*(n). So this test program

int main()

{ // tests the cube() function:

cout << cube(4) << endl;

int x, y;

cin >> x;

y = cube(2*x-3);

}

will actually be compiled as though it were this program:
int main()

{ // tests the cube() function:

cout << (4)*(4)*(4) << endl;

int x, y;

cin >> x;

y = (2*X+3)*(2*X+3)*(2*X+3);

}

When the compiler replaces the inline function call with the function’s actual code, we say
that it expands the inline function.

The C++ Standard does not actually require the compiler to expand inline functions. It only
“advises” the compiler to do so. A compiler that doesn’t follow this “advice” could still be
validated as a Standard C++ compiler. On the other hand, some Standard C++ compilers may
expand some simple functions even if they are not declared to be inline.

Warning: use of inlined function can cause negative side effects. For example, inlining a
40-line function that is called in 26 different locations would add at least 1000 lines of unnoticed
source code to your program. Inlined functions can also limit the portability of your code across
platforms.

108 FUNCTIONS [CHAP. 5

5.13 SCOPE

The scope of variable names was described in Section 3.5. The scope of a name consists of
that part of the program where it can be used. It begins where the name is declared. If that decla-
ration is inside a function (including the main() function), then the scope extends to the end of
the innermost block that contains the declaration.

A program can have several objects with the same name if their scopes are nested or disjoint.
This is illustrated by the next example, which is an elaboration of Example 3.7 on page 40.

EXAMPLE 5.21 Nested and Parallel Scopes

In this example, f() and g() are global functions, and the first x is a global variable. So their scope
includes the entire file. This is called file scope. The second x is declared inside main() so it has local
scope; i.e., it is accessible only from within main(). The third x is declared inside an internal block, so
its scope is restricted to that internal block. Each x scope overrides the scope of the previously declared
x, so there is no ambiguity when the identifier x is referenced. The scope resolution operator :: is used
to access the last x whose scope was overridden; in this case, the global x whose value is 11:

void f(); // f() is global
void g(); // g() is global
int x = 11; // this x is global

int main()
{ int x = 22;

{ int x = 33;
cout << "In block inside main(): x = " << x << endl;

} // end scope of internal block
cout << "In main(): x = " << x << endl;
cout << "In main(): ::x = " << ::x << endl; // accesses global x
f();
g();

} // end scope of main()

void f()
{ int x = 44;

cout << "In f(): x = " << x << endl;
} // end scope of f()

void g()
{ cout << "In g(): x = " << x << endl;
} // end scope of g()

The x initialized with 44 has scope limited to the function f() which is parallel to main(); but its
scope is also nested within the global scope of the first x, so its scope overrides that of both the first x
within f(). In this example, the only place where the scope of the first x is not overridden is within the
function g().

In block inside main(): x = 33
In main(): x = 22
In main(): ::x = 11
In f(): x = 44
In g(): x = 11

CHAP. 5] FUNCTIONS 109

5.14 OVERLOADING

C++ allows you to use the same name for different functions. As long as they have different
parameter type lists, the compiler will regard them as different functions. To be distinguished,
the parameter lists must either contain a different number of parameters, or there must be at least
one position in their parameter lists where the types are different.

EXAMPLE 5.22 Overloading the max() Function

Example 5.6 on page 93 defined a max() function for two integers. Here we define two other max()
functions in the same program:

int max(int, int);
int max(int, int, int);

int main()
{ cout << max(99,77) << " " << max(55,66,33);
}

int max(int x, int y)
{ // returns the maximum of the two given integers:

return (x > y ? x : y);
}

int max(int x, int y, int z)
{ // returns the maximum of the three given integers:

int m = (x > y ? x : y); // m = max(x,y)
return (z > m ? z : m);

}

Three different functions, all named max, are defined here. The compiler checks their parameter lists to
determine which one to use on each call. For example, the first call passes two ints, so the version that
has two ints in its parameter list is called. (If that version had been omitted, then the system would
promote the two ints 99 and 77 to the doubles 99.0 and 77.0 and then pass them to the version that has two
doubles in its parameter list.)

Overloaded functions are widely used in C++. Their value will become more apparent with
the use of classes in Chapter 12.

5.15 THE main() FUNCTION

Every C++ program requires a function named main(). In fact, we can think of the complete
program itself as being made up of the main() function together with all the other functions
that are called either directly or indirectly from it. The program starts by calling main().

Since main() is a function with return type int, it is normal to end its block with
return 0;

although most compilers do not require this. Some compilers allow it to be omitted but will issue
a warning when it is. The value of the integer that is returned to the operating system should be
the number of errors counted; the value 0 is the default.

99 66

110 FUNCTIONS [CHAP. 5

The return statement in main() can be used to terminate the program abnormally, as the
next example illustrates.

EXAMPLE 5.23 Using the return Statement to Terminate a Program

int main()
{ // prints the quotient of two input integers:

int n, d;
cout << "Enter two integers: ";
cin >> n >> d;
if (d == 0) return 0;
cout << n << "/" << d << " = " << n/d << endl;

}

If the user inputs 0 for d, the program will terminate without output:

In any function, the return statement will terminate the current function and return control to
the invoking function. That’s why a return statement in main() terminates the program.
There are actually four ways to terminate a program abnormally (i.e., before execution reaches
the end of the main block):

1. use a return statement in main();
2. call the exit() function;
3. call the abort() function;
4. throw an uncaught exception.

The exit() and abort() functions are described in Appendix F.
The exit() function is defined in the <cstdlib> header. It is useful for terminating a

program from within a function other than main(). This is illustrated by the next example.

EXAMPLE 5.24 Using the exit() Function to Terminate a Program

#include <cstdlib> // defines the exit() function
#include <iostream> // defines the cin and cout objects
using namespace std;
double reciprocal(double x);

int main()
{ double x;

cin >> x;
cout << reciprocal(x);

}

double reciprocal(double x)
{ // returns the reciprocal of x:

if (x == 0) exit(1); // terminate the program
return 1.0/x;

}

Enter two integers: 99 17
99/17 = 5

Enter two integers: 99 0

CHAP. 5] FUNCTIONS 111

If the user enters 0 for x, the program will terminate from within the reciprocal() function
without attempting to divide by it.

5.16 DEFAULT ARGUMENTS

In C++ the number of arguments that a function has can vary during run-time. This is done by
providing default values for the optional arguments.

EXAMPLE 5.25 Default Parameters

This function evaluates the third degree polynomial a0 + a1x + a2x
2 + a3x

3. The actual evaluation is
done using Horner’s Algorithm, grouping the calculations as a0 + (a1 + (a2 + a3x)x)x for greater efficiency:

double p(double, double, double=0, double=0, double=0);

int main()

{ // tests the p() function:

double x = 2.0003;

cout << "p(x,7) = " << p(x,7) << endl;

cout << "p(x,7,6) = " << p(x,7,6) << endl;

cout << "p(x,7,6,5) = " << p(x,7,6,5) << endl;

cout << "p(x,7,6,5,4) = " << p(x,7,6,5,4) << endl;

}

double p(double x, double a0, double a1, double a2, double a3)

{ // returns a0 + a1*x + a2*x^2 + a3*x^3:

return a0 + (a1 + (a2 + a3*x)*x)*x;

}

The call p(x,a0,a1,a2,a3) evaluates the third-degree polynomial a0 + a1x + a2x
2 + a3x

3. But
since a1, a2, and a3 all have the default value 0, the function can also be called by p(x,a0) to
evaluate the constant polynomial a0, or by p(x,a0,a1) to evaluate the first-degree polynomial a0 +
a1x, or by p(x,a0,a1,a2) to evaluate the second-degree polynomial a0 + a1x + a2x

2.
Note how the default values of 0 are given in the function prototype. For example, the call

p(x,7,6,5), which is equivalent to the call p(x,7,6,5,0), evaluates the second degree polynomial
7 + 6 x + 5 x2.

In the example above, the function may be called with 2, 3, 4, or 5 arguments. So the effect of
allowing default parameter values is really to allow a variable number of arguments passed to the
function.

If a function has default parameter values, then the function’s parameter list must show all the
parameters that have default values to the right of those that don’t, like this:

void f(int a, int b, int=4, int=7, int=3); // OK

void g(int a, int=2, int=4, int, int=3); // ERROR

In other words, all “optional” parameters must be listed last.

p(x,7) = 7
p(x,7,6) = 19.0018
p(x,7,6,5) = 39.0078
p(x,7,6,5,4) = 71.0222

112 FUNCTIONS [CHAP. 5

Review Questions

5.1 What are the advantages of using functions to modularize a program?
5.2 What is the difference between a function’s declaration and its definition?
5.3 Where can the declaration of a function be placed?
5.4 When does a function need an include directive?
5.5 What is the advantage of putting a function’s definition in a separate file?
5.6 What is the advantage of compiling a function separately?
5.7 What are the differences between passing a parameter by value and by reference?
5.8 What are the differences between passing a parameter by reference and by constant refer-

ence?
5.9 Why is a parameter that is passed by value referred to as “read-only”? Why is a parameter

that is passed by reference referred to as “read-write”?
5.10 What is wrong with the following declaration:

int f(int a, int b=0, int c);

Problems

5.1 In Example 5.14, the following expression was used to test whether y is a leap year:
y % 4 == 0 && y % 100 != 0 || y % 400 == 0

This expression is not the most efficient form. If y is not divisible by 4, it will still test the
condition y % 400 == 0 which would have to be false. C++ implements “short circuit-
ing,” which means that subsequent parts of a compound condition are tested only when nec-
essary. Find an equivalent compound condition that is more efficient due to short circuiting.

5.2 Describe how a void function with one reference parameter can be converted into an
equivalent non-void function with one value parameter.

5.3 Write a simple program like the one in Example 5.2 on page 88 to check the trigonometry
cos2x = 2 cos2x – 1.

5.4 Write a program like the one in Example 5.2 that checks the identity: cos2x + sin2x = 1.
5.5 Write a program like the one in Example 5.2 that checks the identity: bx = e(x log b).
5.6 Write and test the following min function that returns the smallest of four given integers:

int min(int,int,int,int);
5.7 Write and test the following max() function that uses the max(int,int) function from

Example 5.5 on page 91 to find and return the largest of four given integers:
int max(int,int,int);

5.8 Write and test the following min() function that uses a min(int,int) function to find
and return the smallest of four given integers:

int min(int,int,int,int);
5.9 Write and test the following average() function that returns the average of four numbers:

float average(float x1, float x2, float x3, float x4)
5.10 Write and test the following average() function that returns the average of up to four pos-

itive numbers:
float average(float x1, float x2=0, float x3=0, float x4=0)

5.11 Implement the factorial function fact() with a for loop. (See Example 4.9 on page 65.)
Determine which values of n will cause fact(n) to overflow.

5.12 A more efficient way to compute the permutations function P(n,k) is by the formula

P(n,k) = (n)(n–1)(n–2)⋅⋅⋅(n–k+2)(n–k+1)

CHAP. 5] FUNCTIONS 113

This means the product of the k integers from n down to n – k + 1. Use this formula to rewrite
and test the perm() function from Example 5.10.

5.13 The combination function C(n,k) gives the number of different (unordered) k-element subsets
that can be found in a given set of n elements. The function can be computed from the for-
mula

Implement this formula.
5.14 The combinations function C(n,k) can be computed from the formula

Use this formula to rewrite and test the comb() function implemented in Problem 5.13.
5.15 A more efficient way to compute C(n,k) is shown by the formula

C(n,k) = ((((((((n/1)(n–1))/2)(n–2))/3)⋅⋅⋅(n–k+2))/(k–1))(n–k+1))/k
This alternates divisions and multiplications, each time multiplying by the next decremented
value from n and then dividing by the next incremented value from 1. Use this formula to
rewrite and test the comb() function implemented in Problem 5.13. Hint: Use a for loop
like the one in Problem 5.12.

5.16 Pascal’s Triangle is a triangular array of numbers that begins like this:

Each number in Pascal’s Triangle is one of the combinations C(n,k). (See Problem 5.13.) If
we count the rows and the diagonal columns starting with 0, then the number C(n,k) is in row
n and column k. For example, the number C(6,2) = 15 is in row number 6 and column num-
ber 2. Write a program that uses the comb() function to print Pascal’s Triangle down to row
number 12.

5.17 Write and test the digit() function:
int digit(int n, int k)

This function returns the kth digit of the positive integer n. For example, if n is the integer
29,415, then the call digit(n, 0) would return the digit 5, and the call digit(n, 2)
would return the digit 4. Note that the digits are numbered from right to left beginning with
the “zeroth digit.”

5.18 Write and test a function that implements the Euclidean Algorithm to return the greatest com-
mon divisor of two given positive integers. See Problem 4.14 on page 67.

5.19 Write and test a function that uses the greatest common divisor function (Problem 5.18) to
return the least common multiple of two given positive integers.

5.20 Write and test the following power() function that returns x raised to the power n, where n
can be any integer:

double power(double x, int p);

Use the algorithm that would compute x20 by multiplying 1 by x 20 times.

C n k,() n!
k! n k–()!
-----------------------=

C n k,() P n k,()
k!

-----------------=

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

114 FUNCTIONS [CHAP. 5

5.21 The ancient Greeks classified numbers
geometrically. For example, a number
was called “triangular” if that number of
pebbles could be arranged in a symmetric
triangle. The first ten triangular numbers
are 0, 1, 3, 6, 10, 15, 21, 28, 36, and 45. Write and test the boolean function:

int isTriangular(int n)

This function returns 1 if the given integer n is a triangular number, and 0 otherwise.
5.22 Write and test the following isSquare() function that determines whether the given inte-

ger is a square number:
int isSquare(int n)

The first ten square numbers are 0, 1, 4, 9, 16, 25, 36, 49, 64, and 81.
5.23 Write and test the following isPentagonal() function that determines whether the given

integer is a pentagonal number:
int isPentagonal(int n)

The first ten pentagonal numbers are 0, 1, 5, 12, 22, 35, 51, 70, 92, and 117.
5.24 Write and test the following computeCircle() function that returns the area a and the

circumference c of a circle with given radius r:
void computeCircle(float& a, float& c, float r).

5.25 Write and test the following computeTriangle() function that returns the area a and the
perimeter p of a triangle with given side lengths a, b, and c:

void computeTriangle(float& a, float& p, float a, float b, float
c)

5.26 Write and test the following computeSphere() function that returns the volume v and the
surface area s of a sphere with given radius r:

void computeSphere(float& v, float& s, float r).

Answers to Review Questions

5.1 A separately compiled function can be regarded as an independent “black box” which performs a spe-
cific task. Once the function has been thoroughly tested, the programmer need not be concerned about
how it works. This frees the programmer to concentrate on the development of the main program.
Moreover, if a better way of implementing the function is found later, it can replace the previous ver-
sion without affecting the main program.

5.2 A function’s declaration (also called its prototype) is essentially only the function’s header. A func-
tion’s definition is the complete function: header and body block. The declaration provides only the
information needed to call the function: its name, its parameter types, and its return type; it is the
interface between the function and its caller. The definition gives all the information about the func-
tion, including the details of how it works; it is the function’s implementation.

5.3 A function may be declared anywhere as long as its declaration is above all references to the function.
So the declaration must come before any calls to it, and if its definition is separate then it too must
come after its declaration.

5.4 An include directive is used to include other files. Typically, function declarations and/or defini-
tions are listed in a separate “header” file (with.h file extension). If only the declarations are in the
header file, then the definitions would be compiled separately in other files.

5.5 The advantage of putting a function’s definition in a separate header file is that it doesn’t have to be
brought into the editor when changes are made to the functions that call it.

5.6 The advantage of compiling a function separately is that it does not need to be recompiled when the
functions that call it are recompiled.

T5 = 15T4 = 10T3 = 6T2 = 3T1 = 1

CHAP. 5] FUNCTIONS 115

5.7 A parameter passed by value is duplicated by its corresponding argument. A parameter passed by
reference is simply renamed by its corresponding argument.

5.8 A parameter passed by constant reference cannot be changed by the function to which it is passed.
5.9 A parameter that is passed by value cannot be changed (rewritten).
5.10 The function has a default value for a parameter (b) that precedes a parameter (c) that has no default

value. This violates the requirement that all default parameters be listed after all the other parameters
in the function’s parameter list.

Solutions to Problems

5.1 The compound condition
y%4 == 0 && (y % 100 != 0 || y % 400 == 0)

is equivalent and more efficient. The two can be seen to be equivalent by checking their values in the
four possibilities, represented by the four y values 1995, 1996, 1900, and 2000. This condition is
more efficient because if y is not divisible by 4 (the most likely case), then it will not test y further.

5.2 Convert the reference parameter into a return value. For example, the function
void f(int& n)
{ n *= 2;
}

is equivalent to the function
int g(int n)
{ return 2*n;
}

The two functions are invoked differently:
int x=22, y=44;
f(x); // double the value of x
y = g(y); // double the value of y

But in both cases, the effect is to double the value of the parameter.
5.3 This is similar to Example 5.2:

int main()
{ for (float x=0; x < 1; x += 0.1)

cout << cos(2*x) << '\t' << 2*cos(x)*cos(x) - 1 << endl;
}

The equal values show that the identity is true for the 10 values of x tested.
5.4 This is similar to Example 5.2:

int main()
{ for (double x=0; x < 2; x += 0.2)

{ double s=sin(x);
double c=cos(x);
cout << s*s << "\t" << c*c << "\t" << s*s+c*c << endl;

}
}

1 1
0.980067 0.980067
0.921061 0.921061
0.825336 0.825336
0.696707 0.696707
0.540302 0.540302
0.362358 0.362358
0.169967 0.169967
-0.0291997 -0.0291997
-0.227202 -0.227202

116 FUNCTIONS [CHAP. 5

5.5 This is similar to Example 5.2:
int main()
{ double b=2;

double lg2=log(2);
for (double x=0; x < 2; x += 0.2)

cout << pow(b,x) << "\t" << exp(x*lg2) << endl;
}

5.6 This tests a function that returns the minimum of four integers:
int min(int,int,int,int);
int main()
{ cout << "Enter four integers: ";

int w, x, y, z;
cin >> w >> x >> y >> z;
cout << "Their minimum is " << min(w,x,y,z) << endl;

}
int min(int n1, int n2, int n3, int n4)
{ int min=n1;

if (n2 < min) min = n2;
if (n3 < min) min = n3;
if (n4 < min) min = n4;
return min;

}

5.7 This tests a function that returns the maximum of three integers:
int max(int,int,int);
int main()
{ cout << "Enter three integers: ";

int x, y, z;
cin >> x >> y >> z;
cout << "Their maximum is " << max(x,y,z) << endl;

}

0 1 1
0.0394695 0.96053 1
0.151647 0.848353 1
0.318821 0.681179 1
0.5146 0.4854 1
0.708073 0.291927 1
0.868697 0.131303 1
0.971111 0.0288888 1
0.999147 0.000852612 1
0.948379 0.0516208 1
0.826822 0.173178 1

1 1
1.1487 1.1487
1.31951 1.31951
1.51572 1.51572
1.7411 1.7411
2 2
2.2974 2.2974
2.63902 2.63902
3.03143 3.03143
3.4822 3.4822
4 4

Enter four integers: 44 88 22 66
Their minimum is 22

CHAP. 5] FUNCTIONS 117

int max(int, int);
int max(int x, int y, int z)
{ int max(int,int);

return max(max(x,y),z);
}
int max(int x, int y)
{ // returns the maximum of the two given integers:

if (x < y) return y;
else return x;

}

5.8 This tests a function that returns the minimum of four integers:
int min(int,int,int,int);
int main()
{ cout << "Enter four integers: ";

int w, x, y, z;
cin >> w >> x >> y >> z;
cout << "Their minimum is " << min(w,x,y,z) << endl;

}
int min(int,int);
int min(int n1, int n2, int n3, int n4)
{ int m12=min(n1,n2);

int m34=min(n3,n4);
return (m12 < m34 ? m12 : m34);

}
int min(int m, int n)
{ return (m < n ? m : n);
}

5.9 This tests a function that returns the average of four numbers:
double ave(double,double,double,double);
double main()
{ cout << "Enter four numbers: ";

double w, x, y, z;
cin >> w >> x >> y >> z;
cout << "Their average is " << ave(w,x,y,z) << endl;

}
double ave(double x1, double x2, double x3, double x4)
{ return (x1 + x2 + x3 + x4)/4.0;
}

5.10 This tests a function that returns the average of four or fewer numbers:
double ave(double,double=0,double=0,double=0);
double main()
{ cout << "Enter four non-zero numbers: ";

double w, x, y, z;
cin >> w >> x >> y >> z;
cout << "The average of the first one is " << ave(w) << endl;

Enter three integers: 44 88 66
Their maximum is 88

Enter four integers: 44 88 22 66
Their minimum is 22

Enter four numbers: 44 88 22 66
Their average is 55

118 FUNCTIONS [CHAP. 5

cout << "The average of the first two is " << ave(w,x) << endl;

cout << "The average of the first three is " << ave(w,x,y)<<endl;

cout << "The average of all four is " << ave(w,x,y,z) << endl;

}

double ave(double x1, double x2, double x3, double x4)

{ double sum = x1 + x2 + x3 + x4;

if (x2 == 0) return sum;

if (x3 == 0) return sum/2.0;

if (x4 == 0) return sum/3.0;

return sum/4.0;

}

5.11 This tests the factorial function:
long fact(int n);

int main()

{ for (int i=-1; i<20; i++)

cout << "fact(" << i << ") = " << fact(i) << endl;

}

long fact(int n)

{ if (n < 2) return 1;

long f=1;

for (int i=2; i <= n; i++)

f *= i;

return f;

}

This overflows when n = 13 on machines that implement the long type with 32-bits.

Enter four non-zero numbers: 44 88 22 66
The average of the first one is 44
The average of the first two is 66
The average of the first three is 51.3333
The average of all four is 55

fact(-1) = 1
fact(0) = 1
fact(1) = 1
fact(2) = 2
fact(3) = 6
fact(4) = 24
fact(5) = 120
fact(6) = 720
fact(7) = 5040
fact(8) = 40320
fact(9) = 362880
fact(10) = 3628800
fact(11) = 39916800
fact(12) = 479001600
fact(13) = 1932053504
fact(14) = 1278945280
fact(15) = 2004310016
fact(16) = 2004189184
fact(17) = -288522240
fact(18) = -898433024
fact(19) = 109641728

CHAP. 5] FUNCTIONS 119

5.12 This tests the permutation function:
long perm(int n, int k);
int main()
{ for (int i = -1; i < 6; i++)

{ for (int j = -1; j <= i+1; j++)
cout << " " << perm(i,j);

cout << endl;
}

}
long perm(int n, int k)
{ if (n < 0 || k < 0 || k > n) return 0;

int p = 1;
for (int i = 1; i <= k; i++, n--)

p *= n;
return p;

}

5.13 This tests the combination function:
long comb(int n, int k);
int main()
{ for (int i = -1; i < 6; i++)

{ for (int j = -1; j <= i+1; j++)
cout << " " << comb(i,j);

cout << endl;
}

}
long fact(int n);
long comb(int n, int k)
{ if (n < 0 || k < 0 || k > n) return 0;

return fact(n)/(fact(k)*fact(n-k));
}
long fact(int n)
{ if (n < 2) return 1;

long f=1;
for (int i=2; i <= n; i++)

f *= i;
return f;

}

Note that the fact() function must be declared above the comb() function because it is used by
comb(). But it does not need to be declared above main() because it is not used there.

0 0
0 1 0
0 1 1 0
0 1 2 2 0
0 1 3 6 6 0
0 1 4 12 24 24 0
0 1 5 20 60 120 120 0

0 0
0 1 0
0 1 1 0
0 1 2 1 0
0 1 3 3 1 0
0 1 4 6 4 1 0
0 1 5 10 10 5 1 0

120 FUNCTIONS [CHAP. 5

5.14 This tests the combination function:
long comb(int n, int k);
int main()
{ for (int i = -1; i < 9; i++)

{ for (int j = -1; j <= i+1; j++)
cout << " " << comb(i,j);

cout << endl;
}

}
long perm(int,int);
long fact(int);
long comb(int n, int k)
{ if (n < 0 || k < 0 || k > n) return 0;

return perm(n,k)/fact(k);
}
long perm(int n, int k)
{ if (n < 0 || k < 0 || k > n) return 0;

int p = 1;
for (int i = 1; i <= k; i++, n--)

p *= n;
return p;

}
long fact(int n)
{ if (n < 2) return 1;

long f=1;
for (int i=2; i <= n; i++)

f *= i;
return f;

}
The output is the same as for Problem 5.13.

5.15 This tests the combination function:
long comb(int n, int k);
int main()
{ for (int i = -1; i < 9; i++)

{ for (int j = -1; j <= i+1; j++)
cout << " " << comb(i,j);

cout << endl;
}

}
long comb(int n, int k)
{ if (n < 0 || k < 0 || k > n) return 0;

long c = 1;
for (int i=1; i<=k; i++, n--)

c = c*n/i;
return c;

}
The output is the same as for Problem 5.13.

5.16 This prints Pascal’s Triangle:
long comb(int n, int k);
int main()
{ const m = 13;

for (int i = 0; i < m; i++)

CHAP. 5] FUNCTIONS 121

{ for (int j = 1; j < m-i; j++)
cout << setw(2) << ""; // print whitespace

for (int j = 0; j <= i; j++)
cout << setw(4) << comb(i,j);

cout << endl;
}

}
long comb(int n, int k)
{ if (n < 0 || k < 0 || k > n) return 0;

long c = 1;
for (int i=1; i<=k; i++, n--)

c = c*n/i;
return c;

}

5.17 This tests a function that extracts a digit from an integer:
int digit(long,int);
int main()
{ int n, k;

cout << "Integer: ";
cin >> n;
do
{ cout << "Digit: ";

cin >> k;
cout << "Digit number " << k << " of " << n

<< " is " << digit(n, k) << endl;
} while (k > 0);

}
int digit(long n, int k)
{ for (int i = 0; i < k; i++)

n /= 10; // remove right-most digit
return n % 10;

}

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

Integer: 876543210
Digit: 4
Digit number 4 of 876543210 is 4
Digit: 7
Digit number 7 of 876543210 is 7
Digit: 0
Digit number 0 of 876543210 is 0

122 FUNCTIONS [CHAP. 5

5.18 This tests the greatest common divisor function:
long gcd(long,long);
int main()
{ int m, n;

cout << "Enter two positive integers: ";
cin >> m >> n;
cout << "gcd(" << m << "," << n << ") = " << gcd(m,n) << endl;

}
long gcd(long m, long n)
{ // returns the greatest common divisor of m and n:

if (m<n) swap(m,n);
assert(n >= 0);
while (n>0)
{ long r=m%n;

m = n;
n = r;

}
return m;

}

5.19 This tests the least common multiple function:
long lcm(long,long);
int main()
{ int m, n;

cout << "Enter two positive integers: ";
cin >> m >> n;
cout << "lcm(" << m << "," << n << ") = " << lcm(m,n) << endl;

}
long gcd(long,long);
long lcm(long m,long n)
{ return m*n/gcd(m,n);
}
long gcd(long m,long n)
{ if (m < n) swap(m,n);

while (n>0)
{ int r = m%n;

m = n;
n = r;

}
return m;

}

5.20 This tests the power function:
double pow(double,int);
int main()
{ cout << "Enter a positive float x and an integer n: ";

double x;
int n;
cin >> x >> n;

Enter two positive integers: 144 192
gcd(144,192) = 48

Enter two positive integers: 144 192
lcm(144,192) = 576

CHAP. 5] FUNCTIONS 123

cout << "pow(" << x << "," << n << ") = " << pow(x,n) << endl;
}
double pow(double x, int n)
{ if (x == 0) return 0;

if (n == 0) return 1;
double y=1;
for (int i=0; i < n; i++)

y *= x;
for (int i=0; i > n; i--)

y /= x;
return y;

}

5.21 This tests a boolean function that tests integers for triangularity:
int isTriangular(int);
int main()
{ const int MAX=12;

for (int i=0; i<MAX; i++)
if (isTriangular(i)) cout << i << " is triangular.\n";
else cout << i << " is not triangular.\n";

}
int isTriangular(int n)
{ int x=0, y=0, dy=1;

while (y < n)
y += dy++;

if (y == n) return true;
else return false;

}

5.22 This tests a boolean function that tests integers for squares:
int isSquare(int);
int main()
{ const int MAX=20;

for (int i=0; i<MAX; i++)
if (isSquare(i)) cout << i << " is square.\n";
else cout << i << " is not square.\n";

}
int isSquare(int n)
{ int i=0;

while (i*i<n)

Enter a positive float x and an integer n: 2.0 -3
pow(2,-3) = 0.125

0 is triangular.
1 is triangular.
2 is not triangular.
3 is triangular.
4 is not triangular.
5 is not triangular.
6 is triangular.
7 is not triangular.
8 is not triangular.
9 is not triangular.
10 is triangular.
11 is not triangular.

124 FUNCTIONS [CHAP. 5

++i;
if (i*i == n) return true;
else return false;

}

5.23 This tests a boolean function that tests integers for pentangularity:
int isPentagonal(int);
int main()
{ const int MAX=40;

for (int i=0; i<MAX; i++)
if (isPentagonal(i)) cout << i << " is pentagonal.\n";
else cout << i << " is not pentagonal.\n";

}
int isPentagonal(int n)
{ int x=0, y=0, dy=1;

while (y < n)
{ y += dy;

dy += 3;
}
if (y == n) return true;
else return false;

}

5.24 This tests a function that has reference parameters:
void computeCircle(double& area, double& circ, double r);
int main()
{ double a, c, r;

cout << "Enter the radius: ";
cin >> r;

0 is square.
1 is square.
2 is not square.
3 is not square.
4 is square.
5 is not square.
6 is not square.
7 is not square.
8 is not square.
9 is square.
10 is not square.
11 is not square.

0 is pentagonal.
1 is pentagonal.
2 is not pentagonal.
3 is not pentagonal.
4 is not pentagonal.
5 is pentagonal.
6 is not pentagonal.
7 is not pentagonal.
8 is not pentagonal.
9 is not pentagonal.
10 is not pentagonal.
11 is not pentagonal.
12 is pentagonal.
13 is not pentagonal.

CHAP. 5] FUNCTIONS 125

computeCircle(a,c,r);
cout << "The area of a circle of radius " << r << " is " << a

<< "\nand its circumference is " << c << endl;
}
void computeCircle(double& area, double& circ, double r)
{ const double PI=3.141592653589793;

area = PI*r*r;
circ = 2*PI*r;

}

5.25 This tests a function that has reference parameters:
void computeTriangle(float& a, float& p, float x,float y,float z);
int main()
{ float a, p, x, y, z;

cout << "Enter the sides: ";
cin >> x >> y >> z;
computeTriangle(a,p,x,y,z);
cout << "The area of the triangle is " << a

<< "\nand its perimeter is " << p << endl;
}
void computeTriangle(float& a, float& p, float x, float y, float
z)
{ p = x + y + z;

float s = p/2.0; // the semiperimeter of the triangle
a = sqrt(s*(s-x)*(s-y)*(s-z)); // Heron's formula

}

5.26 This tests a function that has reference parameters:
void computeSphere(double& a, double& v, double r);
int main()
{ double a, v, r;

cout << "Enter the radius: ";
cin >> r;
computeSphere(a,v,r);
cout << "The area of a sphere of radius " << r << " is " << a

<< "\nand its volume is " << v << endl;
}
void computeSphere(double& a, double& v, double r)
{ const double PI=3.141592653589793;

a = 4.0*PI*r*r;
v = a*r/3.0;

}

Enter the radius: 10
The area of a circle of radius 10 is 314.159
and its circumference is 62.8319

Enter the sides: 30 50 40
The area of the triangle is 600
and its perimeter is 120

Enter the radius: 10
The area of a sphere of radius 10 is 1256.64
and its volume is 4188.79

126

Chapter 6

Arrays

6.1 INTRODUCTION

An array is a sequence of objects all of which have the same type. The objects are called the
elements of the array and are numbered consecutively 0, 1, 2, 3, These numbers are called
index values or subscripts of the array. The term “subscript” is used because as a mathematical
sequence, an array would be written with subscripts: a0, a1, a2, …. The subscripts locate the
element’s position within the array, thereby giving direct access into the array.

If the name of the array is a, then a[0] is the name of the element that is in position 0, a[1]

is the name of the element that is in position 1, etc. In general, the ith element is in position i–1.
So if the array has n elements, their names are a[0], a[1], a[2], …, a[n-1].

We usually visualize an array as a series of adjacent storage compartments
that are numbered by their index values. For example, the diagram here shows
an array named a with 5 elements: a[0] contains 11.11, a[1] contains 33.33,
a[2] contains 55.55, a[3] contains 77.77, and a[4] contains 99.99. The
diagram actually represents a region of the computer’s memory because an
array is always stored this way with its elements in a contiguous sequence.

The method of numbering the ith element with index i–1 is called zero-based indexing. It
guarantees that the index of each array element is equal to the number of “steps” from the initial
element a[0] to that element. For example, element a[3] is 3 steps from element a[0].

Virtually all useful programs use arrays. If several objects of the same type are to be used in
the same way, it is usually simpler to encapsulate them into an array.

6.2 PROCESSING ARRAYS

An array is a composite object: it is composed of several elements with independent values. In
contrast, an ordinary variable of a primitive type is called a scalar object.

The first example shows that array elements can be assigned and accessed the same as
ordinary scalar objects.

EXAMPLE 6.1 Using Direct Access on Arrays

int main()
{ double a[3];

a[2] = 55.55;
a[0] = 11.11;
a[1] = 33.33;
cout << "a[0] = " << a[0] << endl;
cout << "a[1] = " << a[1] << endl;
cout << "a[2] = " << a[2] << endl;

}

11.11

33.33

55.55

77.77

99.99

0

1

2

3

4

a

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 6] ARRAYS 127

The first line declares a to be an array of 3 elements of type double. The next three lines assign values
to those elements.

Arrays are usually processed with for loops.

EXAMPLE 6.2 Printing a Sequence in Order

This program reads five numbers and then prints them in reverse order:
int main()
{ const int SIZE=5; // defines the size N for 5 elements

double a[SIZE]; // declares the array’s elements as type double
cout << "Enter " << SIZE << " numbers:\t";
for (int i=0; i<SIZE; i++)

cin >> a[i];
cout << "In reverse order: ";
for (int i=SIZE-1; i>=0; i--)

cout << "\t" << a[i];
}

The first line defines the symbolic constant SIZE to be 5 elements. The second line declares a to be an
array of 5 elements of type double. Then the first for loop reads 5 values into the array, and the second
for loop prints them in reverse order.

The syntax for an array declaration is
type array-name[array-size];

where type is the array’s element type and array-size is its number of elements. The
declaration in Example 6.1

double a[SIZE];

declares a to be an array of 5 elements, each of type double. Standard C++ requires
array-size to be a positive integer constant. So it must be either a symbolic constant as in
Example 6.1, or an integer literal like this:

double a[5];
Generally, it is better to use a symbolic constant since the same size value is likely to be used in
for loops that process the array.

6.3 INITIALIZING AN ARRAY

In C++, an array can be initialized with an optional initializer list, like this:
float a[] = {22.2, 44.4, 66.6 };

The values in the list are assigned to the elements of the array in the order that
they are listed. The size of the array is set to be equal to the number of values in
the initializer list. So this single line of code declares a to be an array of 3 floats
and then initializes those for elements with the four values given in the list.

a[0] = 11.11
a[1] = 33.33
a[2] = 55.55

Enter 5 numbers: 11.11 33.33 55.55 77.77 99.99
In reverse order: 99.99 77.77 55.55 33.33 11.11

22.2

44.4

66.6

0

1

2

a

128 ARRAYS [CHAP. 6

EXAMPLE 6.3 Initializing an Array

This program initializes the array a and then prints its values:
int main()
{ float a[] = { 22.2, 44.4, 66.6 };

int size = sizeof(a)/sizeof(float);
for (int i=0; i<size; i++)

cout << "\ta[" << i << "] = " << a[i] << endl;
}

The first line declares a to be the array of 3 elements described above. The second line uses the
sizeof() function to compute the actual number of elements in the array. The value of
sizeof(float) is 4 because on this machine a float value occupies 4 bytes in memory. The value of
sizeof(a) is 12 because the complete array occupies 12 bytes in memory. Therefore, the value of
size is computed to be 12/4 = 3.

An array can be “zeroed out” by declaring it with an initializer list together
with an explicit size value, like this:

float a[7] = { 55.5, 66.6, 77.7 };
This array is declared to have 7 elements of type float; then its initializer list
initializes the first 3 elements with the given values and the remaining 4
elements with the value 0.

EXAMPLE 6.4 Initializing an Array with Trailing Zeros

This program initializes the array a and then prints its values:
int main()
{ float a[7] = { 22.2, 44.4, 66.6 };

int size = sizeof(a)/sizeof(float);
for (int i=0; i<size; i++)

cout << "\ta[" << i << "] = " << a[i] << endl;
}

Note that the number of values in an array’s initializer list cannot exceed its size:
float a[3] = { 22.2, 44.4, 66.6, 88.8 }; // ERROR: too many values!

An array can be initialized to be all zeros by using an empty initializer list. So, for example,
the following three declarations are equivalent:

float a[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
float a[9] = { 0, 0 };
float a[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };

But note that this is not the same as using no initializer list. Just as with a variable of
fundamental type, if an array is not initialized it will contain “garbage” values.

a[0] = 22.2
a[1] = 44.4
a[2] = 66.6

55.5

66.6

77.7

0.0

0.0

0

1

2

3

4

a

0.0

0.0

6

7

a[0] = 22.2
a[1] = 44.4
a[2] = 66.6
a[3] = 0
a[4] = 0
a[5] = 0
a[6] = 0

CHAP. 6] ARRAYS 129

EXAMPLE 6.5 An Uninitialized Array

This program initializes the array a and then prints its values:
int main()
{ const int SIZE=4; // defines the size N for 4 elements

float a[SIZE]; // declares the array's elements as type float
for (int i=0; i<SIZE; i++)

cout << "\ta[" << i << "] = " << a[i] << endl;
}

Note that the values in the uninitialized array may or may not be zero; it depends upon how that part of
memory was used prior to the execution of this program.

Note that an initialization is not the same as an assignment. Arrays can be initialized, but they
cannot be assigned:

float a[7] = { 22.2, 44.4, 66.6 };
float b[7] = { 33.3, 55.5, 77.7 };
b = a; // ERROR: arrays cannot be assigned!

Nor can an array be used to initialize another array:
float a[7] = { 22.2, 44.4, 66.6 };
float b[7] = a; // ERROR: arrays cannot be used as initializers!

6.4 ARRAY INDEX OUT OF BOUNDS

In some programming languages, an index variable will not be allowed to go beyond the
bounds set by the array’s definition. For example, in Pascal, if an array a is defined to be indexed
from 0 to 3, then the reference a[6] will crash the program. This is a security device that does
not exist for arrays in C++ (or C). As the next example shows, the index variable may run far
beyond its defined range without any error being detected by the computer.

EXAMPLE 6.6 Allowing an Array Index to Exceed its Bounds

This program has a run-time error: it accesses a part of memory that is not allocated:
int main()
{ const int SIZE=4;

float a[SIZE] = { 33.3, 44.4, 55.5, 66.6 };
for (int i=0; i<7; i++) // ERROR: index is out of bounds!

cout << "\ta[" << i << "] = " << a[i] << endl;
}

The last three values printed are garbage values, left from the previous use of those bytes in memory.

a[0] = 6.01838e-39
a[1] = 9.36651e-39
a[2] = 6.00363e-39
a[3] = 0

a[0] = 33.3
a[1] = 44.4
a[2] = 55.5
a[3] = 66.6
a[4] = 5.60519e-45
a[5] = 6.01888e-39
a[6] = 6.01889e-39

130 ARRAYS [CHAP. 6

Allowing an array index to exceed its bounds can cause disastrous side effects, as the next
example shows.

EXAMPLE 6.7 Causing Side Effects

This program inadvertently changes the value of a variable when it accesses a nonexistent element of
an array:

int main()
{ const int SIZE=4;

float a[] = { 22.2, 44.4, 66.6 };
float x=11.1;
cout << "x = " << x << endl;
a[3] = 88.8; // ERROR: index is out of bounds!
cout << "x = " << x << endl;

}

The variable x is declared after the array a, so the system allocates
a 4-byte block of memory to x that immediately follows the 12 bytes
of memory that it allocates to the 3 elements of a. Consequently, the
16 contiguous bytes of memory that a and x occupy are configured as
though x were a[3]. So when the program assigns 88.8 to a[3]
(which does not exist), it actually changes the value of x to 88.8. This
is depicted in the diagram on the right which represents 20 contiguous
bytes of memory; the four bytes used to store 88.8 immediately follow
the four bytes used to store 66.6.

This is the worst kind of run-time error. It changes the value of a variable which is completely indepen-
dent and not even mentioned in the code where the change occurs. This kind of error is called a side effect.
It can have disastrous consequences because it may not be detected.

It is the C++ programmer’s responsibility to ensure that array index values are kept in range.
As Example 6.7 shows, the penalty for shirking that responsibility can be severe if the resulting
side effects are not detected.

The next example shows that a different kind of run-time error can occur if an array index is
allowed to get too big.

EXAMPLE 6.8 Causing Unhandled Exceptions

This program crashes because the array index gets too big:
int main()
{ const int SIZE=4;

float a[] = { 22.2, 44.4, 66.6 };
float x=11.1;
cout << "x = " << x << endl;
a[3333] = 88.8; // ERROR: index is out of bounds!
cout << "x = " << x << endl;

}

22.2

44.4

66.6

0

1

2

a

88.8x

22.2

44.4

66.6

88.8

x = 11.1
x = 88.8

CHAP. 6] ARRAYS 131

When run on a Windows workstation, this program generates
the alert panel shown here. This little window is reporting that the
program attempted to access memory location 0040108e. That
location is outside the segment of memory that was allocated to
the process that is running the program. So the Windows operat-
ing system aborted the program.

The run-time error that occurred in Example 6.8 is called an unhandled exception because
there is no code in the program to respond to the error. It is possible to include code in C++ pro-
grams so that the program won’t crash. Such code is called an exception handler.

Unlike some other programming languages (e.g., Pascal and Java), the Standard C++ compiler
will not allow arrays to be assigned and it will not restrict array indexes from exceeding their
bounds. It is the programmer’s responsibility to prevent these compile-time and run-time errors.
The reward for this extra responsibility is faster, more efficient code. If those benefits are not
important to your application, then you should use Standard C++ vector objects instead of
arrays. (See Chapter 10.)

6.5 PASSING AN ARRAY TO A FUNCTION

The code float a[] that declares an array a in the previous examples tells the compiler two
things: the name of the array is a, and the array’s elements have type float. The symbol a stores
the array’s memory address. So the code float a[] provides all the information that the
compiler needs to declare the array. The size of the array (i.e., the number of elements in the
array) does not need to be conveyed to the compiler. C++ requires the same information to be
passed to a function that uses an array as a parameter.

EXAMPLE 6.9 Passing an Array to a Function that Returns its Sum

int sum(int[],int);
int main()
{ int a[] = { 11, 33, 55, 77 };

int size = sizeof(a)/sizeof(int);
cout << "sum(a,size) = " << sum(a,size) << endl;

}
int sum(int a[], int n)
{ int sum=0;

for (int i=0; i<n; i++)
sum += a[i];

return sum;
}

The function’s parameter list is (int a[], int n). The function prototype, which is used to
declare the function above main(), uses (int[],int); this is the same as in the prototype except that
the names of the parameters are omitted. (They can be included.) The function call, which occurs inside
main(), uses sum(a,size); this lists the names of the parameters without their types. Note that the
actual name of the type for the object a is int[].

sum(a,size) = 176

132 ARRAYS [CHAP. 6

When an array is passed to a function, as in the call sum(a,size) in Example 6.9, the value
of array name a is actually the memory address of the first element (a[0]) in the array. The func-
tion uses that address value to access and possibly modify the contents of the array. So passing
an array to a function is similar to passing a variable by reference: the function can change the
values of the array’s elements. This is illustrated in the next example.

EXAMPLE 6.10 Input and Output Functions for an Array

This program uses a read() function to input values into the array a interactively. Then it uses a
print() function to print the array:

void read(int[],int&);
void print(int[],int);
int main()
{ const int MAXSIZE=100;

int a[MAXSIZE]={0}, size;
read(a,size);
cout << "The array has " << size << " elements: ";
print(a,size);

}
void read(int a[], int& n)
{ cout << "Enter integers. Terminate with 0:\n";

n = 0;
do
{ cout << "a[" << n << "]: ";

cin >> a[n];
} while (a[n++] != 0 && n < MAXSIZE);
--n; // don't count the 0

}
void print(int a[], int n)
{ for (int i=0; i<n; i++)

cout << a[i] << " ";
}

The read() function changes the values of the array a and the value of the size parameter n. Since n
is a scalar variable, it must be passed by reference to allow the function to change its value. Since a is an
array variable, it must be passed by value and the function is able to change the values its elements.

Note that the size of the array has to be passed explicitly to the function that processes the
array. In C++ a function is unable to compute the size of an array passed to it.

Example 6.10 shows that a function can change the values of an array’s elements even though
the array variable is passed by value. That is possible because the value of the array variable
itself is the memory address of the first element of the array. Passing the value of that address to
the function gives the function all the information it needs to access and change that part of
memory where the array is stored. This is accomplished by a direct calculation of the elements’

Enter integers. Terminate with 0:
a[0]: 11
a[1]: 22
a[2]: 33
a[3]: 44
a[4]: 0
The array has 4 elements: 11 22 33 44

CHAP. 6] ARRAYS 133

locations from the given memory address and the array index. For example, in the input state-
ment

cin >> a[n];
in Example 6.10, when n = 3 the system computes that the memory
address of a[3] is 3×4 = 12 bytes past the memory address of a[0].
That address is passed (by value) to the function in the variable a, so the
explicit address of a[3] is obtained. For example, suppose that a[0]

is stored in the four contiguous bytes starting at location 0x0064fdbc
(“0x0064fdbc” is hexadecimal notation for 6,618,556). Then the
calculated address for a[3] is 0x0064fdc8 (hexadecimal for 6,618,568
= 6,618,556 + 12). In this calculation, the number 12 is called the offset
for the element a[3]. (See Problem 6.5 on page 143. Also see
Appendix G for information on hexadecimal numerals.)

Note that an array name (whose value is a memory address) itself is a constant, so it cannot be
changed anywhere. This simply means that the array cannot be moved to another place in
memory.

EXAMPLE 6.11 Printing the Memory Location of an Array

This program prints the value of the address stored in an array name.
int main()
{ int a[] = { 22, 44, 66, 88 };

cout << "a = " << a; // the address of a[0]
}

The array name a has two interpretations. It is used with an index to name each element of the
array, so it identifies the complete composite object. But as a variable, its value is the memory
address of the first byte of the first element a[0] in the array.

6.6 THE LINEAR SEARCH ALGORITHM

Computers are probably used more for the storage and retrieval of information than for any
other purpose. Data is often stored in a sequential structure such as an array. The simplest way to
find an object in an array is start at the beginning and inspect each element, one after the other,
until the object is found. This method is called the Linear Search algorithm.

EXAMPLE 6.12 The Linear Search

This program tests a function that implements the Linear Search algorithm:
int index(int,int[],int);
int main()
{ int a[] = { 22, 44, 66, 88, 44, 66, 55 };

cout << "index(44,a,7) = " << index(44,a,7) << endl;
cout << "index(50,a,7) = " << index(50,a,7) << endl;

}

0x0064fdba
0x0064fdbb
0x0064fdbc
0x0064fdbd
0x0064fdbe
0x0064fdbf
0x0064fdc0
0x0064fdc1
0x0064fdc2
0x0064fdc3
0x0064fdc4
0x0064fdc5
0x0064fdc6
0x0064fdc7
0x0064fdc8
0x0064fdc9
0x0064fdca
0x0064fdcb
0x0064fdcc
0x0064fdcd

of
fs

et
=

12
by

te
s

a[1]

a[0]

a[3]

a[2]

22.2

44.4

66.6

0

1

2

a

88.8

0x0064fdbca

3

a = 0x0064fdec

134 ARRAYS [CHAP. 6

int index(int x, int a[], int n)
{ for (int i=0; i<n; i++)

if (a[i] == x) return i;
return n; // x not found

}

6.7 THE BUBBLE SORT ALGORITHM

The Linear Search algorithm is not very efficient. It obviously would not be a good way to
find a name in the telephone book. We can do this common task more efficiently because the
names are sorted in alphabetical order. To use an efficient searching algorithm on a sequential
data structure such as an array, we must first sort the structure to put its elements in order.

There are many algorithms for sorting an array. Although not as efficient as most others, the
Bubble Sort is one of the simplest sorting algorithms. It proceeds through a sequence of itera-
tions, each time moving the next largest item into its correct position. On each iteration, it
compares each pair of consecutive elements, moving the larger element up.

EXAMPLE 6.13 The Bubble Sort

This program tests a function that implements the Bubble Sort algorithm.
void print(float[],int);
void sort(float[],int);
int main()
{ float a[] = {55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7};

print(a,8);
sort(a,8);
print(a,8);

}
void sort(float a[], int n)
{ // bubble sort:

for (int i=1; i<n; i++)
// bubble up max{a[0..n-i]}:
for (int j=0; j<n-i; j++)

if (a[j] > a[j+1]) swap(a[j],a[j+1]);
// INVARIANT: a[n-1-i..n-1] is sorted

}

The sort() function uses two nested loops. The inside for loop compares pairs of adjacent elements
and swaps them whenever they are out of order. This way, each element “bubbles up” past all the elements
that are less than it.

6.8 THE BINARY SEARCH ALGORITHM

The binary search uses the “divide and conquer” strategy. It repeatedly divides the array into
two pieces and then searches the piece that could contain the target value.

index(44,a,7) = 1
index(50,a,7) = 7

55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7
22.5, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9

CHAP. 6] ARRAYS 135

EXAMPLE 6.14 The Binary Search Algorithm

This program tests a function that implements the Binary Search algorithm. It uses the same test driver
that was used in Example 6.12 on page 133 to test the Linear Search algorithm:

int index(int,int[],int);
int main()
{ int a[] = { 22, 33, 44, 55, 66, 77, 88 };

cout << "index(44,a,7) = " << index(44,a,7) << endl;
cout << "index(60,a,7) = " << index(60,a,7) << endl;

}
int index(int x, int a[], int n)
{ // PRECONDITION: a[0] <= a[1] <= ... <= a[n-1];

// binary search:
int lo=0, hi=n-1, i;
while (lo <= hi)
{ i = (lo + hi)/2; // the average of lo and hi

if (a[i] == x) return i;
if (a[i] < x) lo = i+1; // continue search in a[i+1..hi]
else hi = i-1; // continue search in a[lo..i-1]

}
return n; // x was not found in a[0..n-1]

}

Note that the array is already sorted before the Binary Search is applied. That requirement is expressed
in the PRECONDITION specified as a comment in the function’s code.

On each iteration of the while loop, the middle element a[i] of the subarray a[lo..hi] (i.e., all
the elements from a[lo] to a[hi]) is examined. If it is not the target x, then the search continues
either on the upper half a[i+1..hi] or on the lower half a[lo..i-1]. If (a[i] < x), then x
could not be in the lower half (since the array is sorted into increasing order), so the lower half can be
ignored and the search continued on only the upper half. Similarly, if the condition (a[i] < x) is false,
then the search is continued on only the lower half. So on each iteration of the loop, the scope of the
search is reduced by about 50%. The loop stops either when x is found at a[i] and the function returns,
or when lo > hi. In that latter case, the subarray a[lo..hi] is empty, meaning that x was not found,
so the function returns n.

Here is a trace of the call index(44,a,7). When
the loop begins, x = 44, n = 7, lo = 0, and hi = 6; the
middle element of the array a[0..6] is a[3] = 55
which is greater than x, so hi gets reset to i-1 = 2. On
the second iteration, lo = 0 and hi = 2; the middle
element of the subarray a[0..2] is a[1] = 33 which
is less than x, so lo gets reset to i+1 = 2. On the third iteration, lo = 2 and hi = 2; the middle element of
the subarray a[2..2] is a[2] = 44 which is equal to x, so the function returns 2, indicating that the
target x is was found at a[2].

Here is a trace of the call index(60,a,7). When
the loop begins, x = 44, n = 7, lo = 0, and hi = 6; the
middle element of the array a[0..6] is a[3] = 55
which is less than x, so lo gets reset to i+1 = 4. On the
second iteration, lo = 4 and hi = 6; the middle element
of the subarray a[4..6] is a[5] = 77 which is

index(44,a,7) = 2
index(60,a,7) = 7

lo hi i a[i] ?? x

0 6 3 55 > 44

2 1 33 < 44

2 2 44 == 44

lo hi i a[i] ?? x

0 6 3 55 < 60

4 5 77 > 60

4 4 66 > 60

136 ARRAYS [CHAP. 6

greater than x, so hi gets reset to i-1 = 4. On the third iteration, lo = 4 and hi = 4; the middle element
of the subarray a[4..4] is a[4] = 66 which is greater than x, so hi gets reset to i-1 = 3. That
terminates the loop, so the function returns 7, indicating that the target x was not found.

The Binary Search algorithm is significantly different from the Linear Search algorithm. The
most important distinction is that the Binary Search works only on sorted arrays. The benefit of
that requirement is that the Binary Search is much faster than the Linear Search. For example, on
an array of 100 elements, the Linear Search could take up to 100 iterations, but the Binary
Search will not need more than 8 iterations, no matter what the target is. That is because the
Binary Search runs in logarithmic time; i.e., the number of iterations cannot exceed lgn + 1,
where n is the size of the array and lgn is the binary (base 2) logarithm of n. When n = 100, lgn
+ 1 = 7.64. Note that in Example 6.14, n = 7 elements, so lgn + 1 = 3.81; this means that no more
than 3 iterations will ever be needed.

A third distinction between the two algorithms is that the Linear Search returns the smallest
index i for which a[i] == x. But the Binary Search is not specific: if there are multiple copies
of x, you cannot be sure which one is located by the returned index.

Since the Binary Search requires that the array be sorted, it is useful to have a separate
function that tests that condition.

EXAMPLE 6.15 Determining whether an Array is Sorted

This program tests a boolean function that determines whether a given array is nondecreasing.
bool isNondecreasing(int a[], int n);

int main()

{ int a[] = { 22, 44, 66, 88, 44, 66, 55 };

cout << "isNondecreasing(a,4) = " << isNondecreasing(a,4) << endl;
cout << "isNondecreasing(a,7) = " << isNondecreasing(a,7) << endl;

}

bool isNondecreasing(int a[], int n)
{ // returns true iff a[0] <= a[1] <= ... <= a[n-1]:

for (int i=1; i<n; i++)

if (a[i]<a[i-1]) return false;
return true;

}

If the function finds any adjacent pair (a[i-1],a[i]) of elements that decrease (i.e.,
a[i]<a[i-1]), then it returns false. If that doesn’t happen, then it returns true, meaning that the
array is nondecreasing.

Note that the boolean values true and false are printed as the integers 1 and 0; that is how they are
stored in memory.

If the precondition in Example 6.14 that the array be sorted is not true, the Binary search func-
tion search() will not work correctly. Such conditions can be checked automatically using the
assert() function defined in the <cassert> header. This function takes a boolean argument.
If the argument is false, the function terminates the program and reports the fact to the operat-
ing system. If the argument is true, the program continues unaffected.

isNondecreasing(a,4) = 1
isNondecreasing(a,7) = 0

CHAP. 6] ARRAYS 137

EXAMPLE 6.16 Using the assert() Function to Enforce a Precondition

This program tests an improved version of the search() function from Example 6.14. This version
uses the isNondecreasing() function from Example 6.15 to determine whether the array is sorted. It
passes the resulting boolean return value to the assert() function so that the search will not be carried
out if the array is not sorted:

#include <cassert> // defines the assert() function
#include <iostream> // defines the cout object
using namespace std;
int index(int x, int a[], int n);
int main()
{ int a[] = { 22, 33, 44, 55, 66, 77, 88, 60 };

cout << "index(44,a,7) = " << index(44,a,7) << endl;
cout << "index(44,a,7) = " << index(44,a,8) << endl;
cout << "index(60,a,7) = " << index(60,a,8) << endl;

}
bool isNondecreasing(int a[], int n);
int index(int x, int a[], int n)
{ // PRECONDITION: a[0] <= a[1] <= ... <= a[n-1];

// binary search:
assert(isNondecreasing(a,n));
int lo=0, hi=n-1, i;
while (lo <= hi)
{ i = (lo + hi)/2;

if (a[i] == x) return i;
if (a[i] < x) lo = i+1; // continue search in a[i+1..hi]
else hi = i-1; // continue search in a[lo..i-1]

}
return n; // x was not found in a[0..n-1]

}

Here, the array a[] is not completely
sorted. But its first 7 elements are in order.
So on the first call index(44,a,7), the
index() function makes the call
isNondecreasing(a,7) which
returns the boolean value true to the
assert() function, and the output is
the same as in Example 6.14. But on the second call index(44,a,8), the subsequent call
isNondecreasing(a,8) returns the boolean value false to the assert() function which then
aborts the program, causing Windows to display the alert panel shown here.

6.9 USING ARRAYS WITH ENUMERATION TYPES

Enumeration types were described in Chapter 2. They are naturally processed with arrays.

EXAMPLE 6.17 Enumerating the Days of the Week

This program defines an array high[] of seven floats, representing the high temperatures for
the seven days of a week:

index(44,a,7) = 2

138 ARRAYS [CHAP. 6

int main()
{ enum Day { SUN, MON, TUE, WED, THU, FRI, SAT };

float high[SAT+1] = {88.3, 95.0, 91.2, 89.9, 91.4, 92.5, 86.7};
for (int day = SUN; day <= SAT; day++)

cout << "The high temperature for day " << day
<< " was " << high[day] << endl;

}

The array size is SAT+1 because SAT has the integer value 6 and the array needs 7 elements.
The int variable day, declared as an index in the for loop, takes the values SUN, MON, TUE, WED,

THU, FRI, or SAT. Remember that they are actually stored as the integers 0, 1, 2, 3, 4, 5, and 6.
Note that it is not possible to print the names of the symbolic constants.

The advantage of using enumeration constants this way is that they render your code
“self-documenting.” For example, in Example 6.17 the for loop control

for (int day = SUN; day <= SAT; day++)

speaks for itself.

6.10 TYPE DEFINITIONS

Enumeration types are one way for programmers to define their own types. For example,
enum Color { RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET };

defines the type Color which can then be used to declare variables like this:
Color shirt = BLUE;
Color car[] = { GREEN, RED, BLUE, RED };
float wavelength[VIOLET+1] = {420, 480, 530, 570, 600, 620};

Here, shirt is a variable whose value can be any one of the 6 values of the type Color and is
initialized to have the value BLUE, car is an array of 4 such Color type variables indexed from 0
to 3, and wavelength is an array of 6 float type variables indexed from RED to VIOLET.

C++ also provides a way to rename existing types. The keyword typedef declares a new
name (i.e., a synonym or alias) for a specified type. The syntax is

typedef type alias;

where type is the given type and alias is the new name. For example, if you are used to
programming in Pascal, you might want to use these type aliases:

typedef long Integer;
typedef double Real;

Then you could declare variables like this:
Integer n = 22;
const Real PI = 3.141592653589793;
Integer frequency[64];

Note the syntax for the typedef of an array type:
typedef element-type alias[];

It shows that the number of elements in an array is not part of its type.

The high temperature for day 0 was 88.3
The high temperature for day 1 was 95.0
The high temperature for day 2 was 91.2
The high temperature for day 3 was 89.9
The high temperature for day 4 was 91.4
The high temperature for day 5 was 92.5
The high temperature for day 6 was 86.7

CHAP. 6] ARRAYS 139

A typedef statement does not define a new type; it only provides a synonym for an existing
type. For example, the sum() function defined in Example 6.9 on page 131 could be called by

cout << sum(frequency,4);

even though the frequency[] array is declared (above) to have elements of type Integer.
There is no conflict in the parameter because Integer and int are merely different names for
the same type.

The next example shows another use for typedefs.

EXAMPLE 6.18 The Bubble Sort Again

This is the same program as in Example 6.13 on page 134. The only change is the typedef for the
type name Sequence which is then used in the parameter lists and the declaration of a in main():

typedef float Sequence[];
void sort(Sequence,int);
void print(Sequence,int);
int main()
{ Sequence a = {55.5, 22.5, 99.9, 66.6, 44.4, 88.8, 33.3, 77.7};

print(a,8);
sort(a,8);
print(a,8);

}
void sort(Sequence a, int n)
{ for (int i=n-1; i>0; i--)

for (int j=0; j<i; j++)
if (a[j] > a[j+1]) swap(a[j],a[j+1]);

}
Note the typedef:

typedef float Sequence[];
The brackets [] appear after the alias type name Sequence. This alias is then used without brackets to
declare array variables and formal parameters.

6.11 MULTIDIMENSIONAL ARRAYS

The arrays we have used previously have all been one-dimensional. This means that they are
linear; i.e., sequential. But the element type of an array can be almost any type, including an
array type. An array of arrays is called a multidimensional array. A one-dimensional array of
one-dimensional arrays is called a two-dimensional array; a one-dimensional array of
two-dimensional arrays is called a three-dimensional array; etc.

The simplest way to declare a multidimensional array is like this:
double a[32][10][4];

This is a three-dimensional array with dimensions 32, 10, and 4. The statement
a[25][8][3] = 99.99

would assign the value 99.99 to the element identified by the multi-index (25,8,3).

EXAMPLE 6.19 Reading and Printing a Two-Dimensional Array

This program shows how a two-dimensional array can be processed:
void read(int a[][5]);
void print(cont int a[][5]);

140 ARRAYS [CHAP. 6

int main()
{ int a[3][5];

read(a);
print(a);

}
void read(int a[][5])
{ cout << "Enter 15 integers, 5 per row:\n”;

for (int i=0; i<3; i++)
{ cout << "Row " << i << ": ";

for (int j=0; j<5; j++)
cin >> a[i][j];

}
}
void print(const int a[][5])
{ for (int i=0; i<3; i++)

{ for (int j=0; j<5; j++)
cout << " " << a[i][j];

cout << endl;
}

}

Notice that in the functions’ parameter lists, the first dimension is left unspecified while the second
dimension (5) is specified. This is because the two-dimensional array a[][] is stored as a
one-dimensional array of three 5-element arrays. The compiler does not need to know how many of these
5-element arrays are to be stored, but it does need to know that they are 5-element arrays.

When a multi-dimensional array is passed to a function, the first dimension is not specified,
while all the remaining dimensions are specified.

EXAMPLE 6.20 Processing a Two-Dimensional Array of Quiz Scores

const NUM_STUDENTS = 3;
const NUM_QUIZZES = 5;
typedef int Score[NUM_STUDENTS][NUM_QUIZZES];
void read(Score);
void printQuizAverages(Score);
void printClassAverages(Score);
int main()
{ Score score;

cout << "Enter " << NUM_QUIZZES << " scores for each student:\n";
read(score);
cout << "The quiz averages are:\n";
printQuizAverages(score);
cout << "The class averages are:\n";
printClassAverages(score);

}

Enter 15 integers, 5 per row:
Row 0: 44 77 33 11 44
Row 1: 60 50 30 90 70
Row 2: 85 25 45 45 55
44 77 33 11 44
60 50 30 90 70
85 25 45 45 55

CHAP. 6] ARRAYS 141

void read(Score score)
{ for (int s=0; s<NUM_STUDENTS; s++)

{ cout << "Student " << s << ": ";
for (int q=0; q<NUM_QUIZZES; q++)

cin >> score[s][q];
}

}
void printQuizAverages(Score score)
{ for (int s=0; s<NUM_STUDENTS; s++)

{ float sum = 0.0;
for (int q=0; q<NUM_QUIZZES; q++)

sum += score[s][q];
cout << "\tStudent " << s << ": " << sum/NUM_QUIZZES << endl;

}
}
void printClassAverages(Score score)
{ for (int q=0; q<NUM_QUIZZES; q++)

{ float sum = 0.0;
for (int s=0; s<NUM_STUDENTS; s++)

sum += score[s][q];
cout << "\tQuiz " << q << ": " << sum/NUM_STUDENTS << endl;

}
}

This uses a typedef to define the alias Score for the two-dimensional array type. This makes the
function headers more readable.

The printQuizAverages() function prints the average of each of the 3 rows of scores, while the
printClassAverages() function prints the average of each of the 5 columns of scores.

EXAMPLE 6.21 Processing a Three-Dimensional Array

This program simply counts the number of zeros in a three-dimensional array:
int numZeros(int a[][4][3], int n1, int n2, int n3);
int main()
{ int a[2][4][3] = { { {5,0,2}, {0,0,9}, {4,1,0}, {7,7,7} },

{ {3,0,0}, {8,5,0}, {0,0,0}, {2,0,9} }
};

cout << "This array has " << numZeros(a,2,4,3) << " zeros:\n";
}

Enter 5 quiz scores for each student:
Student 0: 8 7 9 8 9
Student 1: 9 9 9 9 8
Student 2: 5 6 7 8 9
The quiz averages are:

Student 0: 8.2
Student 1: 8.8
Student 2: 7

The class averages are:
Quiz 0: 7.33333
Quiz 1: 7.33333
Quiz 2: 8.33333
Quiz 3: 8.33333
Quiz 4: 8.66667

142 ARRAYS [CHAP. 6

int numZeros(int a[][4][3], int n1, int n2, int n3)
{ int count = 0;

for (int i = 0; i < n1; i++)
for (int j = 0; j < n2; j++)

for (int k = 0; k < n3; k++)
if (a[i][j][k] == 0) ++count;

return count;
}

Notice how the array is initialized: it is a 2-element array of 4-element arrays of 3 elements each. That
makes a total of 24 elements. It could have been initialized like this:

int a[2][4][3]={5,0,2,0,0,9,4,1,0,7,7,7,3,0,0,8,5,0,0,0,0,2,0,9};
or like this:

int a[2][4][3]={{5,0,2,0,0,9,4,1,0,7,7,7},{3,0,0,8,5,0,0,0,0,2,0,9}};
But these are more difficult to read and understand than the three-dimensional initializer list.

Also notice the three nested for loops. In general, processing a d-dimensional array is done with d
for loops, one for each dimension.

Review Questions

6.1 How many different types can the elements of an array have?
6.2 What type and range must an array’s subscript have?
6.3 What values will the elements of an array have when it is declared if it does not include an

initializer?
6.4 What values will the elements of an array have when it is declared if it has an initializer with

fewer values than the number of elements in the array?
6.5 What happens if an array’s initializer has more values than the size of the array?
6.6 How does an enum statement differ from a typedef statement?
6.7 When a multi-dimensional array is passed to a function, why does C++ require all but the

first dimension to be specified in the parameter list?

Solved Programming Problems

6.1 Modify the program in Example 6.1 on page 126 so that each input is prompted and each
output is labeled, like this:

This array has 11 zeros:

Enter 5 numbers
a[0]: 11.11
a[1]: 33.33
a[2]: 55.55
a[3]: 77.77
a[4]: 99.99

In reverse order, they are:
a[4] = 99.99
a[3] = 77.77
a[2] = 55.55
a[1] = 33.33
a[0] = 11.11

CHAP. 6] ARRAYS 143

6.2 Modify the program in Example 6.1 on page 126 so that it fills the array in reverse and then
prints them in the order that they are stored, like this:

6.3 Modify the program in Example 6.9 on page 131 so that it tests the following function:
float ave(int[] a, int n);
// returns the average of the first n elements of a[]

6.4 Modify the program in Example 6.10 on page 132 so that it prints the array, its sum, and its
average. (See Example 6.9 on page 131 and Problem 6.3.)

6.5 Modify the program in Example 6.11 on page 133 so that it prints the memory address and its
contents for each element of an array. For an array named a, use the expressions a, a+1,
a+2, etc. to obtain the addresses of a[0], a[1], a[2], etc., and use the expressions *a,
*(a+1), *(a+2), etc. to obtain the contents of those locations. Declare the array as

unsigned int a[];

so that the array element values will be printed as integers when inserted into the cout

stream.
6.6 Modify the program in Example 6.12 on page 133 so that it returns the last location of the

target instead of the first.
6.7 Modify the program in Example 6.15 on page 136 so that it returns true if and only if the

array is nonincreasing.
6.8 Write and test the following function that returns the minimum value among the first n ele-

ments of the given array:
float min(float a[], int n);

6.9 Write and test the following function that returns the index of the first minimum value among
the first n elements of the given array:

int minIndex(float a[], int n);
6.10 Write and test the following function that returns through its reference parameters both the

maximum and the minimum values stored in an array:
void getExtremes(float& min, float& max, float a[], int n);

6.11 Write and test the following function that returns through its reference parameters both the
largest and the second largest values (possibly equal) stored in an array:

void largest(float& max1, float& max2, float a[], int n);
6.12 Write and test the following function that removes an item from an array:

void remove(float a[], int& n, int i);

The function removes a[i] by shifting all the elements above that position are down and
decrementing n.

6.13 Write and test the following function that attempts to remove an item from an array:
bool removeFirst(float a[], int& n, float x);

The function searches the first n elements of the array a for the item x. If x is found, its first
occurrence is removed, all the elements above that position are shifted down, n is decre-

Enter 5 numbers:
a[4]: 55.55
a[3]: 66.66
a[2]: 77.77
a[1]: 88.88
a[0]: 99.99

In reverse order, they are:
a[0] = 99.99
a[1] = 88.88
a[2] = 77.77
a[3] = 66.66
a[4] = 55.55

144 ARRAYS [CHAP. 6

mented, and true is returned to indicate a successful removal. If x is not found, the array is
left unchanged and false is returned. (See Problem 6.12.)

6.14 Write and test the following function that removes items from an array:
void removeAll(float a[], int& n, float x);

The function removes all occurrences of x among the first n elements of the array a and
decreases the value of n by the number removed. (See Problem 6.13.)

6.15 Write and test the following function:
void rotate(int a[], int n, int k);

The function “rotates” the first n elements of the array a, k positions to the right (or –k
positions to the left if k is negative). The last k elements are “wrapped” around to the
beginning of the array. For example, the call rotate(a,8,3) would transform the array
{22,33,44,55,66,77,88,99} into {77,88,99,22,33,44,55,66}. The call rotate(a,8,-5)
would have the same effect.

6.16 Write and test the following function:
void append(int a[], int m, int b[], int n);

The function appends the first n elements of the array b onto the end of the first m ele-
ments of the array a. It assumes that a has room for at least m + n elements. For exam-
ple, if a is {22,33,44,55,66,77,88,99} and b is {20,30,40,50,60,70,80,90} then the call
append(a,5,b,3) would transform a into {22,33,44,55,66,20,30,40}. Note that b is
left unchanged and only n elements of a are changed.

6.17 Write and test the function
void insert(float a[], int& n, float x)

This function inserts the item x into the sorted array a of n elements and increments n.
The new item is inserted at the location that maintains the sorted order of the array. This
requires shifting elements forward to make room for the new x. (Note that this requires the
array to have at least n+1 elements allocated.)

6.18 Implement the Insertion Sort algorithm for sorting an array of n elements. In this algorithm,
the main loop index i runs from 1 to n–1. On the ith iteration, the element a[i] is
“inserted” into its correct position among the subarray a[0..i]. This is done by shifting
one position up all the elements in the subarray that are greater than a[i]. Then a[i] is
copied into the gap between the elements that are less than or equal to a[i] and those that
are greater. (Hint: use the insert() algorithm from Problem 6.17.)

6.19 Implement the Selection Sort algorithm for sorting an array of n elements. This algorithm has
n–1 iterations, each selecting the next largest element a[j] and swapping it with the ele-
ment that is in the position where a[j] should be. So on the first iteration it selects the larg-
est of all the elements and swaps it with a[n-1], and on the second iteration it selects the
largest from the remaining unsorted elements a[0..n-2] and swaps it with a[n-2], etc.
On its ith iteration it selects the largest from the remaining unsorted elements a[0..n-i]
and swaps it with a[n-i]. (Hint: use the same loops as in Example 6.13 on page 134.)

6.20 Rewrite and test the Bubble Sort function presented in Example 6.13 on page 134, as an indi-
rect sort. Instead of moving the actual elements of the array, sort an index array instead.

6.21 Write and test the function
int frequency(float a[], int n, int x);

This function counts the number of times the item x appears among the first n elements of
the array a and returns that count as the frequency of x in a.

6.22 Implement the Sieve of Eratosthenes to find prime numbers. Define a boolean array named
isPrime[SIZE], set its values isPrime[0] and isPrime[1] false (2 is the first

CHAP. 6] ARRAYS 145

prime), and set all the other elements true. Then for each i from 4 to SIZE-1, set
isPrime[i] false if i is divisible by 2 (i.e., i%2 = 0). Then for each i from 6 to
SIZE-1, set isPrime[i] false if i is divisible by 3. Repeat this process for each possi-
ble divisor from 2 to SIZE/2. When finished, all the is for which isPrime[i] is still
true are the prime numbers. They are the numbers that have fallen through the sieve.

6.23 Write and test the following function:
void reverse(int a[], int n);

The function reverses the first n elements of the array. For example, the call reverse(a,5)
would transform the array {22,33,44,55,66,77,88,99} into {66,55,44,33,22,77,88,99}.

6.24 Write and test the following function:
bool isSymmetric(int a[], int n);

The function returns true if and only if the array obtained by reversing the first n elements is
the same as the original array. For example, if a is {22,33,44,55,44,33,22} then the call
isSymmetric(a,7) would return true, but the call isSymmetric(a,4) would return
false. Warning: The function should leave the array unchanged.

6.25 Write and test the following function:
void add(float a[], int n, float b[]);

The function adds the first n elements of b to the corresponding first n elements of a. For
example, if a is {2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9} and b is {6.0,5.0,4.0,3.0,2.0,1.0}, then the
call add(a,5,b) would transform a into {8.2,8.3,8.4,8.5,8.6,7.7,8.8,9.9}.

6.26 Write and test the following function:
void multiply(float a[], int n, float b[]);

The function multiplies the first n elements of a by the corresponding first n elements of b.
For example, if a is the array {2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9} and b is the array
{4.0,–3.0,2.0,–1.0,0.0,0.0}, then the call multiply(a,5,b) would transform a into the
array {8.8,–9.9,8.8,–5.5,0.0,7.7,8.8,9.9}.

6.27 Write and test the following function:
float innerProduct(float a[], int n, float b[]);

The function returns the inner product (also called the “dot product” or “scalar product”) of
the first n elements of a with the first n elements of b. This is defined as the sum of the prod-
ucts of corresponding terms. For example, if a is the array {2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9}
and b is the array {4.0,–3.0,2.0,–1.0,0.0,0.0}, then the call innerProduct(a,5,b)
would return (2.2)(4.0) + (3.3)(–3.0) + (2.2)(4.0) + (5.5)(–1.0) + (6.6)(0.0) = 2.2.

6.28 Write and test the following function:
float outerProduct3(float p[][3], float a[], float b[]);

The function returns the outer product of the first 3 elements of a with the first 3 elements of
b. For example, if a is the array {2.2,3.3,4.4} and b is the array {2.0,–1.0,0.0}, then the call
outerProduct(p,a,b) would transform the two-dimensional array p into

Its element p[i][j] is the product of a[i] with b[j].
6.29 Write and test a function that implements the Perfect Shuffle of a one-dimensional array with

an even number of elements. For example, it would replace the array
{11,22,33,44,55,66,77,88} with the array {11,55,22,66,33,77,44,88}.

4.4 2.2– 0.0

6.6 3.3– 0.0

8.8 4.4– 0.0

146 ARRAYS [CHAP. 6

6.30 Write and test the function that “rotates” 90° clockwise a two-dimensional square array of
ints. For example, it would transform the array

into the array

6.31 Write and run a program that reads an unspecified number of numbers and then prints them
together with their deviations from their mean.

6.32 Write and test the following function:
double stdev(double x[], int n);

The function returns the standard deviation of a data set of n numbers x0, …, xn–1 defined by
the formula

where is the mean of the data. This formula says: square each deviation (x[i] - mean);
sum those squares; divide that square root by n-1; take the square root of that sum.

6.33 Extend the program from Problem 6.31 so that it also computes and prints the Z-scores of the
input data. The Z-scores of the n numbers x0, …, xn–1 are defined by zi = (xi –)/s. They nor-
malize the given data so that they are centered about 0.0 and have standard deviation 1.0.
Use the function defined in Problem 6.32.

6.34 In the imaginary “good old days” when a grade of “C” was considered “average,” teachers of
large classes would often “curve” their grades according to the following distribution:

A: 1.5 ≤ z
B: 0.5 ≤ z < 1.5
C: –0.5 ≤ z < 0.5
D: –1.5 ≤ z < –0.5
F: z < –1.5

If the grades were normally distributed (i.e., their density curve is bell-shaped), then this
algorithm would produce about 7% A’s, 24% B’s, 38% C’s, 24% D’s, and 7% F’s. Here the z
values are the Z scores described in Problem 6.33. Extend the program from Problem 6.33 so
that it prints the “curved” grade for each of the test scores read.

6.35 Write and test a function that creates Pascal’s Triangle in the square matrix that is passed to
it. For example, if the two-dimensional array a and the integer 4 were passed to the function,
then it would load the following into a:

6.36 In the theory of games and economic behavior, founded by John von Neumann, certain
two-person games can be represented by a single two-dimensional array, called the payoff
matrix. Players can obtain optimal strategies when the payoff matrix has a saddle point. A
saddle point is an entry in the matrix that is both the minimax and the maximin. The minimax

11 22 33

44 55 66

77 88 99

77 44 11

88 55 22

99 66 33

s
xi x–()2

i 0=

n 1–

�

n 1–
----------------------------=

x

x

1 0 0 0 0

1 1 0 0 0

1 2 1 0 0

1 3 3 1 0

1 4 6 4 1

CHAP. 6] ARRAYS 147

of a matrix is the minimum of the column maxima, and the maximin is the maximum of the
row minima. The optimal strategies are possible when these two values are equal. Write a
program that prints the minimax and the maximin of a given matrix.

Answers to Review Questions

6.1 Only one: all of an array’s elements must be the same type.
6.2 An array’s subscript must be an integer type with range from 0 to n-1, where n is the array’s size.
6.3 In the absence of an initializer, the elements of an array will have unpredictable initial values.
6.4 If the array’s initializer has fewer values than the array size, then the specified values will be assigned

to the lowest numbered elements and the remaining elements will automatically be initialized to zero.
6.5 It is an error to have more initial values than the size of the array.
6.6 An enum statement defines an enumeration type which is a new unsigned integer type. A typedef

merely defines a synonym for an existing type.
6.7 When a multi-dimensional array is passed to a function, all dimensions except the first must be speci-

fied so that the compiler will be able to compute the location of each element of the array.

Solutions to Problems

6.1 Example 6.1 modified with input prompts and output labels:
int main()
{ const int SIZE=5;

double a[SIZE];
cout << "Enter " << SIZE << " numbers:\n";
for (int i=0; i<SIZE; i++)
{ cout << "\ta[" << i << "]: ";

cin >> a[i];
}
cout << "In reverse order, they are:\n";
for (int i=SIZE-1; i>=0; i--)

cout << "\ta[" << i << "] = " << a[i] << endl;
}

6.2 Example 6.1 modified so that inputs are stored in reverse:
int main()
{ const int SIZE=5;

double a[SIZE];
cout << "Enter " << SIZE << " numbers:\n";
for (int i=SIZE-1; i>=0; i--)
{ cout << "\ta[" << i << "]: ";

cin >> a[i];
}
cout << "In reverse order, they are:\n";
for (int i=0; i<SIZE; i++)

cout << "\ta[" << i << "] = " << a[i] << endl;
}

6.3 Example 6.9 modified so that it tests a function that returns the average of the elements of an array:
float ave(int[],int);
int main()
{ int a[] = { 11, 33, 55, 77 };

148 ARRAYS [CHAP. 6

int size = sizeof(a)/sizeof(int);
cout << "ave(a,size) = " << ave(a,size) << endl;

}
float ave(int a[], int n)
{ float sum=0.0;

for (int i=0; i<n; i++)
sum += a[i];

return sum/n;
}

6.4 Example 6.10 modified so that that it prints the array, its sum, and its average:
void read(int[],int&);
void print(int[],int);
int sum(int[],int);
float ave(int[],int);
int main()
{ const int MAXSIZE=100;

int a[MAXSIZE]={0}, size;
read(a,size);
cout << "The array has " << size << " elements: ";
print(a,size);
cout << "\nIts sum is " << sum(a,size)

<< "\nand its average is " << ave(a,size) << endl;
}

The function definitions are the same as in Example 6.9, Example 6.10, and Problem 6.3.
6.5 Example 6.11 modified so that that it prints the memory locations and their contents for each element

of an array:
int main()
{ unsigned int a[] = { 22, 44, 66, 88 };

cout << "a = " << a << ", *a = " << *a << endl;
cout << "a+1 = " << a+1 << ", *(a+1) = " << *(a+1) << endl;
cout << "a+2 = " << a+2 << ", *(a+2) = " << *(a+2) << endl;
cout << "a+3 = " << a+3 << ", *(a+3) = " << *(a+3) << endl;

}

The 0x that prefixes each memory location indicates that those are hexadecimal (base 16) val-
ues. (Most computers express memory addresses in hexadecimal notation.) Note that each
address is 4 bytes past its predecessor; that shows that unsigned int objects occupy 4 bytes in
memory.

6.6 Example 6.12 modified so that that it prints the memory locations and their contents for each element
of an array:

int index(int,int[],int);
int main()
{ int a[] = { 22, 44, 66, 88, 44, 66, 55 };

cout << "index(44,a,7) = " << index(44,a,7) << endl;
cout << "index(50,a,7) = " << index(50,a,7) << endl;

}
int index(int x, int a[], int n)
{ for (int i=n-1; i>=0; i--)

a = 0x0064fdbc, *a = 22
a+1 = 0x0064fdc0, *(a+1) = 44
a+2 = 0x0064fdc4, *(a+2) = 66
a+3 = 0x0064fdc8, *(a+3) = 88

CHAP. 6] ARRAYS 149

if (a[i] == x) return i;
return n;

}

6.7 Example 6.15 modified so that that it determines whether the array is nonincreasing:
bool isNonincreasing(int a[], int n)
{ for (int i=1; i<n; i++)

if (a[i]>a[i-1]) return false;
return true;

}
6.8 float min(float a[], int n)

{ assert(n >= 0);
float min=a[0];
for (int i=1; i<n; i++)

if (a[i] < min) min = a[i];
return min;

}
6.9 int minIndex(float a[], int n)

{ assert(n >= 0);
int j=0;
for (int i=1; i<n; i++)

if (a[i] < a[j]) j = i;
return j;

}
6.10 void getExtremes(float& min, float& max, float a[], int n)

{ assert(n >= 0);
min = max = a[0];
for (int i=1; i<n; i++)

if (a[i] < min) min = a[i];
else if (a[i] > max) max = a[i];

}
6.11 void largest(float& max1, float& max2, float a[], int n)

{ assert(n >= 1);
if (n == 1) return a[0];
int i1=0, i2;
for (int i=1; i<n; i++)

if (a[i] > a[i1]) i1 = i;
max1 = a[i1];
i2 = (i1 == 0 ? 1 : 0);
for (int i=i2+1; i<n; i++)

if (i != i1 && a[i] > a[i2]) i2 = i;
max2 = a[i2];

}
6.12 void remove(float a[], int& n, int i)

{ for (int j=i+1; j<n; j++)
a[j-1] = a[j];

--n;
}

6.13 bool removeFirst(float a[], int& n, float x)
{ for (int i=0; i<n; i++)

if (a[i] == x)

index(44,a,7) = 4
index(50,a,7) = 7

150 ARRAYS [CHAP. 6

{ for (int j=i+1; j<n; j++)
a[j-1] = a[j];

--n;
return true;

}
return false;

}
6.14 void removeAll(float a[], int& n, float x)

{ for (int i=0; i<n; i++)
if (a[i] == x)
{ for (int j=i+1; j<n; j++)

a[j-1] = a[j];
--n;

}
}

6.15 void rotate(int a[], int n, int k)
{ const int MAXOFFSET=100;

assert(k < MAXOFFSET);
int temp[MAXOFFSET];
if (k > 0)
{ for (int j=0; j<k; j++) // copy k elements into temp[]

temp[j] = a[n-k+j];
for (int i=n-1; i>=k; i--) // shift n-k elements

a[i] = a[i-k];
for (int i=0; i<k; i++) // copy k elements back to a[]

a[i] = temp[i];
}
if (k < 0)
{ for (int j=0; j<-k; j++) // copy -k elements into temp[]

temp[j] = a[j];
for (int i=0; i<n+k; i++) // shift n+k elements

a[i] = a[i-k];
for (int i=n+k; i<n; i++) // copy -k elements back to a[]

a[i] = temp[i-n-k];
}

}
6.16 void append(int a[], int m, int b[], int n)

{ for (int j=0; j<n; j++) // copy n elements into a[]
a[m+j] = b[j];

}
6.17 void insert(float a[], int& n, float x)

{ int j=n;
while (j>0 && a[j-1]>x)

a[j--] = a[j-1];
a[j] = x;
++n;

}
6.18 void sort(float a[], int n)

{ // insertion sort:
for (int i=1; i<n; i++)
{ // insert a[i] among a[0..i-1]:

float x=a[i];

CHAP. 6] ARRAYS 151

int j=i;
while (j>0 && a[j-1]>x)

a[j--] = a[j-1];
a[j] = x;
// INVARIANT: a[0..i] is sorted

}
}

6.19 void sort(float a[], int n)
{ // selection sort:

for (int i=1; i<n; i++)
{ // select a[k] = max{a[0],a[1],...,a[n-i]}:

int k=0;
for (int j=1; j<=n-i; j++)

if (a[j]>a[k]) k = j;
swap(a[k],a[n-i]);
// INVARIANT: a[n-1-i..n-1] is sorted

}
}

6.20 void sort(float a[], int indx[], int n)
{ // indirect bubble sort:

for (int i=1; i<n; i++)
// bubble up max{a[0],a[1],...,a[n-i]}:
for (int j=0; j<n-i; j++)

if (a[indx[j]] > a[indx[j+1]]) swap(indx[j],indx[j+1]);
// INVARIANT: a[indx[n-1-i]] <= a[indx[n-i]] <= ..a[indx[n-1]]

}
6.21 int frequency(float[],int,int);

int main()
{ float a[] = {561, 508, 400, 301, 329, 599, 455, 400, 346, 346,

329, 375, 561, 390, 399, 400, 401, 561, 405, 405,
455, 508, 473, 329, 561, 505, 329, 455, 561, 599,
561, 455, 346, 301, 455, 561, 399, 599, 508, 508};

int n=40, x;
cout << "Item: ";
cin >> x;
cout << x << " has frequency " << frequency(a,n,x) << endl;

}
int frequency(float a[], int n, int x)
{ int count = 0;

for (int i=0; i<n; i++)
if (a[i] == x) ++count;

return count;
}

6.22 #include <iomanip> // defines the setw() function
#include <iomanip> // defines the setw() function
#include <iostream> // defines the cout object
using namespace std;
const int SIZE = 400;
void sieve(bool[],int);
void print(bool[],int);

Item: 400
400 has frequency 3

152 ARRAYS [CHAP. 6

int main()
{ // prints all the prime numbers less than SIZE:

bool isPrime[SIZE] = {0};
sieve(isPrime,SIZE);
print(isPrime,SIZE);

}
void sieve(bool isPrime[], int n)
{ // sets isPrime[i] = false iff i is not prime:

for (int i=2; i<n; i++)
isPrime[i] = true; // assume all i > 1 are prime

for (int p=2; p<=n/2; p++)
for (int m=2*p; m<n; m += p)

isPrime[m] = false; // no multiple of p is prime
}
void print(bool a[], int n)
{ // prints each i for which isPrime[i] is true:

for (int i=1; i<n; i++)
if (a[i]) cout << setw(3) << i;
else cout << setw(3) << (i%20==0?'\n':' ');

}

6.23 void reverse(int a[], int n)
{ for (int i=0; i<n/2; i++)

swap(a[i],a[n-1-i]);
}

6.24 bool isSymmetric(int a[], int n)
{ for (int i=0; i<n/2; i++)

if (a[i] != a[n-1-i]) return false;
return true;

}
6.25 void add(float a[], int n, float b[])

{ for (int i=0; i<n; i++)
a[i] += b[i];

}

2 3 5 7 11 13 17 19
23 29 31 37

41 43 47 53 59
61 67 71 73 79

83 89 97
101 103 107 109 113

127 131 137 139
149 151 157

163 167 173 179
181 191 193 197 199

211
223 227 229 233 239

241 251 257
263 269 271 277

281 283 293
307 311 313 317

331 337
347 349 353 359
367 373 379

383 389 397

CHAP. 6] ARRAYS 153

6.26 void multiply(float a[], int n, float b[])
{ for (int i=0; i<n; i++)

a[i] *= b[i];
}

6.27 float innerProduct(float a[], int n, float b[])
{ float p=0;

for (int i=0; i<n; i++)
p += a[i]*b[i];

return p;
}

6.28 void outerProduct3(float p[][3], float a[], float b[])
{ for (int i=0; i<3; i++)

for (int j=0; j<3; j++)
p[i][j] = a[i]*b[j];

}
6.29 void shuffle(int a[], int n

{ // The Perfect Shuffle for an even number of elements:
assert(n <= SIZE);
int temp[SIZE];
for (int i=0; i<n/2; i++)
{ temp[2*i] = a[i];

temp[2*i+1] = a[n/2+i];
}
for (int i=0; i<n; i++)

a[i] = temp[i];
}

6.30 const int SIZE=3;
typedef int Matrix[SIZE][SIZE];
void print(Matrix);
void rotate(Matrix);
int main()
{ // tests the rotate() function:

Matrix m = { 11, 22, 33, 44, 55, 66, 77, 88, 99 };
print(m);
rotate(m);
print(m);

}
void print(Matrix a)
{ for (int i=0; i<SIZE; i++)

{ for (int j=0; j<SIZE; j++)
cout << a[i][j] << "\t";

cout << endl;
}
cout << endl;

}
void rotate(Matrix m)
{ Matrix temp;

for (int i=0; i<SIZE; i++)
for (int j=0; j<SIZE; j++)

temp[i][j] = m[SIZE-j-1][i];
for (int i=0; i<SIZE; i++)

for (int j=0; j<SIZE; j++)

154 ARRAYS [CHAP. 6

m[i][j] = temp[i][j];
}

6.31 const int SIZE = 100;
void read(double[],int&);
double mean(double[],int);
int main()
{ double x[SIZE];

int n=0;
read(x,n);
double m = mean(x,n);
cout << "mean = " << m << endl;
for (int i = 0; i < n; i++)

cout << "x[" << i << "] = " << x[i]
<< ", dev[i] = " << x[i] - m << endl;

}
void read(double x[], int& n)
{ cout << "Enter data. Terminate with 0:\n";

while (n<SIZE)
{ cout << "x[" << n << "]: ";

cin >> x[n];
if (x[n] == 0) break;
else ++n;

}
}
double mean(double x[], int n)
{ double sum=0;

for (int i=0; i<n; i++)
sum += x[i];

return sum/n;
}

6.32 double stdev(double a[], int n)
{ assert(n > 1);

double sum=0;
for (int i=0; i<n; i++)

sum += a[i];
double mean = sum/n;
sum=0;
double deviation;
for (int i=0; i<n; i++)
{ deviation = a[i] - mean;

sum += deviation*deviation;
}
return sqrt(sum/(n-1));

}

Enter data. Terminate with 0:
x[0]: 1.23
x[1]: 7.65
x[2]: 0
mean = 4.44
x[0] = 1.23, dev[i] = -3.21
x[1] = 7.65, dev[i] = 3.21

CHAP. 6] ARRAYS 155

6.33 int main()
{ double x[] = { 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9 };

int n=8;
print(x,n);
double m = mean(x,n);
double s = stdev(x,n);
cout << "mean = " << m << ", std dev = " << s << endl;
for (int i=0; i<n; i++)

cout << "x[" << i << "] = " << x[i]
<< ", z[" << i << "] = " << (x[i] - m)/s << endl;

}
6.34 int main()

{ double x[] = { 2.5, 4.5, 6.3, 6.7, 7.2, 7.5, 7.8, 9.9 };
int n=8;
print(x,n);
double m = mean(x,n);
double s = stdev(x,n);
cout << "mean = " << m << ", std dev = " << s << endl;
for (int i=0; i<n; i++)
{ double z = (x[i] - m)/s;

cout << "x[" << i << "] = " << x[i]
<< ", z[" << i << "] = " << z;

if (z >= 1.5) cout << " = A" << endl;
else if (z >= 0.5) cout << " = B" << endl;
else if (z >= -0.5) cout << " = C" << endl;
else if (z >= -1.5) cout << " = D" << endl;
else cout << " = F" << endl;

}
}

6.35 void build_pascal(int p[][SIZE], int n)
{ assert(n > 0 && n < SIZE);

for (int i=0; i<SIZE; i++)
for (int j=0; j<SIZE; j++)

if (i>n || j>i) p[i][j] = 0;
else if (j==0 || j==i) p[i][j] = 1;
else p[i][j] = p[i-1][j-1] + p[i-1][j];

}
6.36 double max_of_col(Matrix m, int n, int j)

{ double max=m[0][j];
for (int i=1; i<n; i++)

if (m[i][j]>max) max = m[i][j];
return max;

}
double minimax(Matrix m, int n)
{ assert(n>0 && n < SIZE);

double minimax=max_of_col(m,n,0);
for (int j=1; j<n; j++)
{ double mm = max_of_col(m,n,j);

if (mm<minimax) minimax = mm;
}
return minimax;

}

156

Chapter 7

Pointers and References

7.1 THE REFERENCE OPERATOR

Computer memory can be imagined as a very large array of bytes. For
example, a computer with 256 MB of RAM (256 megabytes of
random-access memory) actually contains an array of 268,435,456 (228)
bytes. As an array, these bytes are indexed from 0 to 268,435,455. The
index of each byte is its memory address. So a 256 MB computer has
memory addresses ranging from 0 to 268,435,455, which is 0x00000000
to 0x0fffffff in hexadecimal (see Appendix G). The diagram at right
represents that array of bytes, each with its hexadecimal address.

A variable declaration associates three fundamental attributes to the
variable: its name, its type, and its memory address. For example, the
declaration

int n;

associates the name n, the type int, and the address of some location in
memory where the value of n is stored. Suppose that address is
0x0064fdf0. Then we can visualize n like this:

The variable itself is represented by the box. The variable’s name n is on the left of the box, the
variable’s address 0x0064fdf0 is above the box, and the variable’s type int is below the box.

On most computers, variables of type int occupy 4 bytes in memory.
So the variable n shown above would occupy the 4-byte block of
memory represented by the shaded rectangle in the diagram at right,
using bytes 0x0064fdf0, 0x0064fdf1, 0x0064fdf2, and 0x0064fdf3.
Note that the address of the object is the address of the first byte in the
block of memory where the object is stored.

If the variable is initialized, like this:
int n=44;

then the two representations look like this:

The variable’s value 44 is stored in the four bytes allocated to it.
In C++, you can obtain the address of a variable by using the reference

operator &, also called the address operator. The expression &n evaluates to the address of the
variable n.

0x0064fdee
0x0064fdef
0x0064fdf0
0x0064fdf1
0x0064fdf2
0x0064fdf3
0x0064fdf4
0x0064fdf5
0x0064fdf6
0x0064fdf7
0x0064fdf8
0x0064fdf9
0x0064fdfa
0x0064fdfb
0x0064fdfc
0x0064fdfd
0x0064fdfe
0x0064fdff
0x0064fe00
0x0064fe01

0x0ffffff7
0x0ffffff8
0x0ffffff9
0x0ffffffa
0x0ffffffb
0x0ffffffc
0x0ffffffd
0x0ffffffe
0x0fffffff

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
 ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅

n
int

0x0064fdf0

0x0064fdee
0x0064fdef
0x0064fdf0
0x0064fdf1
0x0064fdf2
0x0064fdf3
0x0064fdf4
0x0064fdf5
0x0064fdf6

0x0064fdee
0x0064fdef
0x0064fdf0
0x0064fdf1
0x0064fdf2
0x0064fdf3
0x0064fdf4
0x0064fdf5
0x0064fdf6

4444n
int

0x0064fdf0

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 7] POINTERS AND REFERENCES 157

EXAMPLE 7.1 Printing Pointer Values

int main()
{ int n=44;

cout << "n = " << n << endl; // prints the value of n
cout << "&n = " << &n << endl; // prints the address of n

}

The output shows that the address of n is 0x0064fdf0. You can tell that the output 0x0064fdf0
must be an address because it is given in hexadecimal form, identified by its 0x prefix. The decimal form
for this number is 6,618,608. (See Appendix G.)

Displaying the address of a variable this way is not very useful. The reference operator & has
other more important uses. We saw one use in Chapter 5: designating reference parameters in a
function declaration. That use is closely tied to another: declaring reference variables.

7.2 REFERENCES

A reference is an alias or synonym for another variable. It is declared by the syntax
type& ref-name = var-name;

where type is the variable’s type, ref-name is the name of the reference, and var-name is the
name of the variable. For example, in the declaration

int& rn=n; // r is a synonym for n
rn is declared to be a reference to the variable n, which must already have been declared.

EXAMPLE 7.2 Using References

This declares rn as a reference to n:
int main()
{ int n=44;

int& rn=n; // r is a synonym for n
cout << "n = " << n << ", rn = " << rn << endl;
--n;
cout << "n = " << n << ", rn = " << rn << endl;
rn *= 2;
cout << "n = " << n << ", rn = " << rn << endl;

}

The two identifiers n and rn are different names for the same variable; they always have the same value.
Decrementing n changes both n and nr to 32. Doubling rn increases both n and rn to 64.

Like constants, references must be initialized when they are declared. But unlike a constant, a
reference must be initialized to a variable, not a literal:

int& rn=44; // ERROR: 44 is not a variable!
(Some compilers may allow this, issuing a warning that a temporary variable had to be created to
allocate memory to which the reference rn can refer.)

n = 44
&n = 0x0064fdf0

n = 44, rn = 44
n = 43, rn = 43
n = 86, rn = 86

158 POINTERS AND REFERENCES [CHAP. 7

Although a reference must be initialized to a variable, references are not variables. A variable
is an object; i.e., a block of contiguous bytes in memory used to store accessible information.
Different objects must occupy disjoint blocks of memory.

EXAMPLE 7.3 References Are Not Separate Variables

int main()
{ int n=44;

int& rn=n; // r is a synonym for n
cout << " &n = " << &n << ", &rn = " << &rn << endl;
int& rn2=n; // r is another synonym for n
int& rn3=rn; // r is another synonym for n
cout << "&rn2 = " << &rn2 << ", &rn3 = " << &rn3 << endl;

}

The first line of output shows that n and rn have the same
address: 0x0064fde4. Thus they are merely different names for
the same object. The second line of output shows that an object can
have several references, and that a reference to a reference is the
same as a reference to the object to which it refers. In this program,
there is only one object: an int named n with address
0x0064fde4. The names rn, rn2, and rn3 are all references to
that same object.

In C++, the reference operator & is used for two distinct purposes. When applied as a prefix to
the name of an object, it forms an expression that evaluates to the address of the object. When
applied as a suffix to a type T, it names the derived type “reference to T”. For example, int& is
the type “reference to int”. So in Example 7.3, n is declared to have type int and rn is declared
to have type reference to int.

C++ actually has five kinds of derived types. If T is a type, then const T is the derived type
“constant T”, T() is the derived type “function returning T”, T[] is the derived type “array of
T”, T& is the derived type “reference to T”, and T* is the derived type “pointer to T”.

References are used mostly for reference parameters (See Section 5.10 on page 102.). We see
now that they work the same way as reference variables: they are merely synonyms for other
variables. Indeed, a reference parameter for a function is really just a reference variable whose
scope is limited to the function.

7.3 POINTERS

The reference operator & returns the memory address of the variable to which it is applied.
We used this in Example 7.1 on page 157 to print the address. We can also store the address in
another variable. The type of the variable that stores an address is called a pointer. Pointer
variables have the derived type “pointer to T”, where T is the type of the object to which the
pointer points. As mentioned in Section 7.2, that derived type is denoted by T*. For example,
the address of an int variable can be stored in a pointer variable of type int*.

44n
int

0x0064fd04

rn2 rn3rn

&n = 0x0064fde4, &rn = 0x0064fde4
&rn2 = 0x0064fde4, &rn3 = 0x0064fde4

CHAP. 7] POINTERS AND REFERENCES 159

EXAMPLE 7.4 Using Pointer Variables

This program defines the int variable n and the int* variable pn:
int main()
{ int n=44;

cout << "n = " << n << ", &n = " << &n << endl;
int* pn=&n; // pn holds the address of n
cout << " pn = " << pn << endl;
cout << "&pn = " << &pn << endl;

}

The variable n is initialized to 44. Its address is 0x0064fddc. The variable
pn is initialized to &n which is the address of n, so the value of pn is
0x0064fddc, as the second line of output shows. But pn is a separate object,
as the third line of output shows: it has the distinct address 0x0064fde0.

The variable pn is called a “pointer” because its value “points”
to the location of another value. The value of a pointer is an
address. That address depends upon the state of the individual
computer on which the program is running. In most cases, the
actual value of that address (here, 0x0064fddc) is not relevant to
the issues that concern the programmer. So diagrams like the one
above are usually drawn more simply like this. This captures the
essential features of n and pn: pn is a pointer to n, and n has the
value 44. A pointer can be thought of as a “locator”: it locates another object.

7.4 THE DEREFERENCE OPERATOR

If pn points to n, we can obtain the value of n directly from p; the expression *pn evaluates
to the value of n. This evaluation is called “dereferencing the pointer” pn, and the symbol * is
called the dereference operator.

EXAMPLE 7.5 Dereferencing a Pointer

This is the same program as in Example 7.4 with one more line of code:
int main()
{ int n=44;

cout << "n = " << n << ", &n = " << &n << endl;
int* pn=&n; // pn holds the address of n
cout << " pn = " << pn << endl;
cout << "&pn = " << &pn << endl;
cout << "*pn = " << *pn << endl;

}

0x0064fdda
0x0064fddb
0x0064fddc
0x0064fddd
0x0064fdde
0x0064fddf
0x0064fde0
0x0064fde1
0x0064fde2
0x0064fde3
0x0064fde4
0x0064fde5

44

64fddc

44n
int

0x0064fddc

0x0064fddcpn
int*

0x0064fde0

n = 44, &n = 0x0064fddc
pn = 0x0064fddc

&pn = 0x0064fde0

44n
int

pn
int*

160 POINTERS AND REFERENCES [CHAP. 7

This shows that *pn is an alias for n: they both have the value 44.

EXAMPLE 7.6 Pointers to Pointers

This continues to build upon the program from Example 7.4:
int main()
{ int n=44;

cout << " n = " << n << endl;
cout << " &n = " << &n << endl;
int* pn=&n; // pn holds the address of n
cout << " pn = " << pn << endl;
cout << " &pn = " << &pn << endl;
cout << " *pn = " << *pn << endl;
int** ppn=&pn; // ppn holds the address of pn
cout << " ppn = " << ppn << endl;
cout << " &ppn = " << &ppn << endl;
cout << " *ppn = " << *ppn << endl;
cout << "**ppn = " << **ppn << endl;

}

The variable ppn points to pn which points to n. So
*ppn is an alias for pn, just as *pn is an alias for n. Therefore **ppn is also an alias for n.

Note in Example 7.6 that each of the three variables n, pn, and ppn, has a different type: int,
int*, and int**. In general, if T1 and T2 are different types, then any of their derived types
will also be different. So although pn and ppn are both pointers, they are not the same type: pn
has type pointer to int, while ppn has type pointer to int*.

The reference operator & and the dereference operator * are inverses: n == *p whenever
p == &n. This can also be expressed as *&n == n and &*p == p.

EXAMPLE 7.7 Referencing Is the Opposite of Dereferencing

This also builds upon the program from Example 7.4:
int main()
{ int n=44;

cout << " n = " << n << endl;
cout << " &n = " << &n << endl;
int* pn=&n; // pn holds the address of n

n = 44, &n = 0x0064fdcc
pn = 0x0064fdcc

&pn = 0x0064fdd0
*pn = 44

44n
int

pn
int*

ppn
int**

n = 44
&n = 0x0064fd78
pn = 0x0064fd78

&pn = 0x0064fd7c
*pn = 44
ppn = 0x0064fd7c

&ppn = 0x0064fd80
*ppn = 0x0064fd78

**ppn = 44

CHAP. 7] POINTERS AND REFERENCES 161

cout << " pn = " << pn << endl;
cout << " &pn = " << &pn << endl;
cout << " *pn = " << *pn << endl;
int nn=*pn; // nnn is a duplicate of n
cout << " nn = " << nn << endl;
cout << " &nn = " << &nn << endl;
int& rpn=*pn; // rpn is a reference for n
cout << " rpn = " << rpn << endl;
cout << " &rpn = " << &rpn << endl;

}

Here p points to the integer named np and rnp is a
reference that is initialized to the value to which pn
points. So pn references n and rpn dereferences pn. Therefore rpn is an alias for n; i.e., they are differ-
ent names for the same object. The output verifies this: n and rpn have the same address: 0x0064fd74.

7.5 DERIVED TYPES

Like the reference operator &, the dereference operator * is used for two distinct purposes.
When applied as a prefix to a pointer to an object, it forms an expression that evaluates to that
object’s value. When applied as a suffix to a type T, it names the derived type “pointer to T”. For
example, int* is the type “pointer to int”.

As mentioned above, there are five kinds of derived types in C++. Here are some declarations
of derived types:

const int C = 33; // const int
int& rn = n; // reference to int
int* pn = &n; // pointer to int
int a[] = { 33, 66 }; // array of int
int f() = { return 33; }; // function returning int

A derived type can derive from any other type. So many combinations are possible:
int* const Pn=44; // constant pointer to an int
const int* pN=&N; // pointer to a constant int
const int* const PN=&N; // constant pointer to a constant int
float& ar[] = { x, y }; // array of 2 references to floats
float* ap[] = { &x, &y }; // array of 2 pointers to floats
long& r() { return n; } // function returning reference to long
long* p() { return &n; } // function returning pointer to long
long (*pf)() { return 44; } // pointer to function returning long

Some derived types require the assistance of typedefs:
typedef char Word[255]; // type array of 255 chars
Word& pa=a; // reference to an array of 255 chars
Word* pa=&a; // pointer to an array of 255 chars

44n
int

pn
int*

44nn
int

rpn

0x0064fd7c 0x0064fd74

n = 44
&n = 0x0064fd74
pn = 0x0064fd74

&pn = 0x0064fd78
*pn = 44
nn = 44

&nn = 0x0064fd7c
rpn = 44

&rpn = 0x0064fd74

162 POINTERS AND REFERENCES [CHAP. 7

7.6 OBJECTS AND LVALUES

The Annotated C++ Reference Manual [Ellis] states: “An object is a region of storage. An
lvalue is an expression referring to an object or function.” Originally, the terms “lvalue” and
“rvalue” referred to things that appeared on the left and right sides of assignments. But now
“lvalue” is more general.

The simplest examples of lvalues are names of objects, i.e., variables:
int n;
n = 44; // n is an lvalue

The simplest examples of things that are not lvalues are literals:
44 = n; // ERROR: 44 is not an lvalue

But symbolic constants are lvalues:
const int MAX = 65535; // MAX is an lvalue

even though they cannot appear on the left side of an assignment:
MAX = 21024; // ERROR: MAX is constant

Lvalues that can appear on the left side of an assignment are called mutable lvalues; those that
cannot are called immutable lvalues. A variable is a mutable lvalue; a constant is an immutable
lvalue. Other examples of mutable lvalues include subscripted variables and dereferenced point-
ers:

int a[8];
a[5] = 22; // a[5] is a mutable lvalue
int* p = &n;
*p = 77; // *p is a mutable lvalue

Other examples of immutable lvalues include arrays, functions, and references.
In general, an lvalue is anything whose address is accessible. Since an address is what a refer-

ence variable needs when it is declared, the C++ syntax requirement for such a declaration speci-
fies an lvalue:

type& refname = lvalue;

For example, this is a legal declaration of a reference:
int& r = n; // OK: n is an lvalue

but these are illegal:
int& r = 44; // ERROR: 44 is not an lvalue
int& r = n++; // ERROR: n++ is not an lvalue
int& r = cube(n); // ERROR: cube(n) is not an lvalue

7.7 RETURNING A REFERENCE

A function’s return type may be a reference provided that the value returned is an lvalue
which is not local to the function. This restriction means that the returned value is actually a
reference to an lvalue that exists after the function terminates. Consequently that returned lvalue
may be used like any other lvalue; for example, on the left side of an assignment:

EXAMPLE 7.8 Returning a Reference

int& max(int& m, int& n) // return type is reference to int
{ return (m > n ? m : n); // m and n are non-local references
}

CHAP. 7] POINTERS AND REFERENCES 163

int main()
{ int m = 44, n = 22;

cout << m << ", " << n << ", " << max(m,n) << endl;
max(m,n) = 55; // changes the value of m from 44 to 55
cout << m << ", " << n << ", " << max(m,n) << endl;

}

The max() function returns a reference to the larger of the two variables passed to it. Since the return
value is a reference, the expression max(m,n) acts like a reference to m (since m is larger than n). So
assigning 55 to the expression max(m,n) is equivalent to assigning it to m itself.

EXAMPLE 7.9 Using a Function as an Array Subscript

float& component(float* v, int k)
{ return v[k-1];
}

int main()
{ float v[4];

for (int k = 1; k <= 4; k++)
component(v,k) = 1.0/k;

for (int i = 0; i < 4; i++)
cout << "v[" << i << "] = " << v[i] << endl;

}

The component() function allows vectors to be accessed using the scientific “1-based indexing”
instead of the default “0-based indexing.” So the assignment component(v,k) = 1.0/k is really the
assignment v[k+1] = 1.0/k. We’ll see a better way to do this in Chapter 10.

7.8 ARRAYS AND POINTERS

Although pointer types are not integer types, some integer arithmetic operators can be applied
to pointers. The affect of this arithmetic is to cause the pointer to point to another memory loca-
tion. The actual change in address depends upon the size of the fundamental type to which the
pointer points.

Pointers can be incremented and decremented like integers. However, the increase or decrease
in the pointer’s value is equal to the size of the object to which it points:

EXAMPLE 7.10 Traversing an Array with a Pointer

This example shows how a pointer can be used to traverse an array.
int main()
{ const int SIZE = 3;

short a[SIZE] = {22, 33, 44};

44, 22, 44
55, 22, 55

v[0] = 1
v[1] = 0.5
v[2] = 0.333333
v[3] = 0.25

164 POINTERS AND REFERENCES [CHAP. 7

cout << "a = " << a << endl;

cout << "sizeof(short) = " << sizeof(short) << endl;

short* end = a + SIZE; // converts SIZE to offset 6

short sum = 0;

for (short* p = a; p < end; p++)

{ sum += *p;

cout << "\t p = " << p;

cout << "\t *p = " << *p;

cout << "\t sum = " << sum << endl;

}

cout << "end = " << end << endl;

}

The second line of output shows that on this machine short integers occupy 2 bytes. Since p is a
pointer to short, each time it is incremented it advances 2 bytes to the next short integer in the array.
That way, sum += *p accumulates their sum of the integers. If p were a pointer to double and
sizeof(double) were 8 bytes, then each time p is incremented it would advance 8 bytes.

Example 7.10 shows that when a pointer is incremented, its value is increased by the number
SIZE (in bytes) of the object to which it points. For example,

float a[8];

float* p = a; // p points to a[0]

++p; // increases the value of p by sizeof(float)

If floats occupy 4 bytes, then ++p; increases the value of p by 4, and p += 5; increases
the value of p by 20. This is how an array can be traversed: by initializing a pointer to the first
element of the array and then repeatedly incrementing the pointer. Each increment moves the
pointer to the next element of the array.

We can also use a pointer for direct access into the array. For example, we can access a[5] by
initializing the pointer to a[0] and then adding 5 to it:

float* p = a; // p points to a[0]

p += 5; // now p points to a[5]

So once the pointer is initialized to the starting address of the array, it works like an index.

Warning: In C++ it is possible to access and even modify unallocated memory locations. This
is risky and should generally be avoided. For example,

float a[8];

float* p = a[7]; // p points to last element in the array

++p; // now p points to memory past last element!

*p = 22.2; // TROUBLE!

The next example shows an even tighter connection between arrays and pointers: the name of
an array itself is a const pointer to the first element of the array. It also shows that pointers can
be compared.

a = 0x3fffd1a
sizeof(short) = 2

p = 0x3fffd1a *p = 22 sum = 22
p = 0x3fffd1c *p = 33 sum = 55
p = 0x3fffd1e *p = 44 sum = 99

end = 0x3fffd20

CHAP. 7] POINTERS AND REFERENCES 165

EXAMPLE 7.11 Examining the Addresses of Array Elements

int main()
{ short a[] = {22, 33, 44, 55, 66};

cout << "a = " << a << ", *a = " << *a << endl;
for (short* p = a; p < a + 5; p++)

cout << "p = " << p << ", *p = " << *p << endl;
}

Initially, a and p are the same: they are both pointers to short and they have the same value
(0x3fffd08). Since a is a constant pointer, it cannot be incremented to traverse the array. Instead, we
increment p and use the exit condition p < a + 5 to terminate the loop. This computes a + 5 to
be the hexadecimal address 0x3fffd08 + 5*sizeof(short) = 0x3fffd08 + 5*2 =
0x3fffd08 + 0xa = 0x3fffd12, so the loop continues as long as p < 0x3fffd12.

The array subscript operator [] is equivalent to the dereference operator *. They provide
direct access into the array the same way:

a[0] == *a
a[1] == *(a + 1)
a[2] == *(a + 2), etc.

So the array a could be traversed like this:
for (int i = 0; i < 8; i++)
cout << *(a + i) << endl;

The next example illustrates how pointers can be combined with integers to move both
forward and backward in memory.

EXAMPLE 7.12 Pattern Matching

In this example, the loc function searches through the first n1 elements of array a1 looking for
the string of integers stored in the first n2 elements of array a2 inside it. If found, it returns a pointer to
the location within a1 where a2 begins; otherwise it returns the NULL pointer.

short* loc(short* a1, short* a2, int n1, int n2)
{ short* end1 = a1 + n1;

for (short* p1 = a1; p1 < end1; p1++)
if (*p1 == *a2)
{ int j;

for (j = 0; j < n2; j++)
if (p1[j] != a2[j]) break;

if (j == n2) return p1;
}

return 0;
}

int main()
{ short a1[9] = {11, 11, 11, 11, 11, 22, 33, 44, 55};

a = 0x3fffd08, *a = 22
p = 0x3fffd08, *p = 22
p = 0x3fffd0a, *p = 33
p = 0x3fffd0c, *p = 44
p = 0x3fffd0e, *p = 55
p = 0x3fffd10, *p = 66

166 POINTERS AND REFERENCES [CHAP. 7

short a2[5] = {11, 11, 11, 22, 33};
cout << "Array a1 begins at location\t" << a1 << endl;
cout << "Array a2 begins at location\t" << a2 << endl;
short* p = loc(a1, a2, 9, 5);
if (p)
{ cout << "Array a2 found at location\t" << p << endl;

for (int i = 0; i < 5; i++)
cout << "\t" << &p[i] << ": " << p[i]

<< "\t" << &a2[i] << ": " << a2[i] << endl;
}
else cout << "Not found.\n";

}

The pattern matching algorithm uses two loops. The outer loop is controlled by the pointer p1 which
points to elements in array a1 where the inner loop will begin checking for a match with array a2. The
inner loop is controlled by the integer j which is used to compare corresponding elements of the two
arrays. If a mismatch is found, the inner loop aborts and the outer loop continues by incrementing p1 to
look for a match starting with the next element of a1. If the inner loop is allowed to finish, then the
condition (j == n2) will be true and the current location pointed to by p1 is returned.

The test driver verifies that the match has indeed been found by checking the actual addresses.

EXAMPLE 7.13 THE new OPERATOR

When a pointer is declared like this:
float* p; // p is a pointer to a float

it only allocates memory for the pointer itself. The value of the pointer will be some memory
address, but the memory at that address is not yet allocated. This means that storage could
already be in use by some other variable. In this case, p is uninitialized: it is not pointing to any
allocated memory. Any attempt to access the memory to which it points will be an error:

*p = 3.14159; // ERROR: no storage has been allocated for *P

A good way to avoid this problem is to initialize pointers when they are declared:
float x = 3.14159; // x contains the value 3.14159
float* p = &x; // p contains the address of x
cout << *p; // OK: *p has been allocated

In this case, accessing *p is no problem because the memory needed to store the float 3.14159
was automatically allocated when x was declared; p points to the same allocated memory.

Another way to avoid the problem of a dangling pointer is to allocate memory explicitly for
the pointer itself. This is done with the new operator:

float* q;
q = new float; // allocates storage for 1 float
*q = 3.14159; // OK: *q has been allocated

Array a1 begins at location 0x3fffd12
Array a2 begins at location 0x3fffd08
Array a2 found at location 0x3fffd16

0x3fffd16: 11 0x3fffd08: 11
0x3fffd18: 11 0x3fffd0a: 11
0x3fffd1a: 11 0x3fffd0c: 11
0x3fffd1c: 22 0x3fffd0e: 22
0x3fffd1e: 33 0x3fffd10: 33

CHAP. 7] POINTERS AND REFERENCES 167

The new operator returns the address of a block of s unallocated bytes in memory, where s is the
size of a float. (Typically, sizeof(float) is 4 bytes.) Assigning that address to q guarantees
that *q is not currently in use by any other variables.

The first two of these lines can be combined, thereby initializing q as it is declared:
float* q = new float;

Note that using the new operator to initialize q only initializes the pointer itself, not the
memory to which it points. It is possible to do both in the same statement that declares the
pointer:

float* q = new float(3.14159);

cout << *q; // ok: both q and *q have been initialized

In the unlikely event that there is not enough free memory to allocate a block of the required
size, the new operator will return 0 (the NULL pointer):

double* p = new double;

if (p == 0) abort(); // allocator failed: insufficient memory

else *p = 3.141592658979324;

This prudent code calls an abort() function to prevent dereferencing the NULL pointer.
Consider again the two alternatives to allocating memory:

float x = 3.14159; // allocates named memory

float* p = new float(3.14159); // allocates unnamed memory

In the first case, memory is allocated at compile time to the named variable x. In the second
case, memory is allocated at run time to an unnamed object that is accessible through *p.

EXAMPLE 7.14 THE delete OPERATOR

The delete operator reverses the action of the new operator, returning allocated memory to
the free store. It should only be applied to pointers that have been allocated explicitly by the new

operator:
float* q = new float(3.14159);

delete q; // deallocates q

*q = 2.71828; // ERROR: q has been deallocated

Deallocating q returns the block of sizeof(float) bytes to the free store, making it
available for allocation to other objects. Once q has been deallocated, it should not be used
again until after it has been reallocated. A deallocated pointer, also called a dangling pointer, is
like an uninitialized pointer: it doesn’t point to anything.

A pointer to a constant cannot be deleted:
const int * p = new int;

delete p; // ERROR: cannot delete pointer to const

This restriction is consistent with the general principle that constants cannot be changed.
Using the delete operator for fundamental types (char, int, float, double, etc.) is

generally not recommended because little is gained at the risk of a potentially disastrous error:
float x = 3.14159; // x contains the value 3.14159

float* p = &x; // p contains the address of x

delete p; // RISKY: p was not allocated by new

This would deallocate the variable x, a mistake that can be very difficult to debug.

168 POINTERS AND REFERENCES [CHAP. 7

7.9 DYNAMIC ARRAYS

An array name is really just a constant pointer that is allocated at compile time:
float a[20]; // a is a const pointer to a block of 20 floats
float* const p = new float[20]; // so is p

Here, both a and p are constant pointers to blocks of 20 floats. The declaration of a is called
static binding because it is allocated at compile time; the symbol is bound to the allocated
memory even if the array is never used while the program is running.

In contrast, we can use a non-constant pointer to postpone the allocation of memory until the
program is running. This is generally called run-time binding or dynamic binding:

float* p = new float[20];

An array that is declared this way is called a dynamic array.
Compare the two ways of defining an array:

float a[20]; // static array
float* p = new float[20]; // dynamic array

The static array a is created at compile time; its memory remains allocated throughout the
run of the program. The dynamic array p is created at run time; its memory allocated only when
its declaration executes. Furthermore, the memory allocated to the array p is deallocated as
soon as the delete operator is invoked on it:

delete [] p; // deallocates the array p

Note that the subscript operator [] must be included this way, because p is an array.

EXAMPLE 7.15 Using Dynamic Arrays

The get() function here creates a dynamic array:
void get(double*& a, int& n)
{ cout << "Enter number of items: "; cin >> n;

a = new double[n];
cout << "Enter " << n << " items, one per line:\n";
for (int i = 0; i < n; i++)
{ cout << "\t" << i+1 << ": ";

cin >> a[i];
}

}
void print(double* a, int n)
{ for (int i = 0; i < n; i++)

cout << a[i] << " ";
cout << endl;

}
int main()
{ double* a; // a is simply an unallocated pointer

int n;
get(a,n); // now a is an array of n doubles
print(a,n);
delete [] a; // now a is simply an unallocated pointer again
get(a,n); // now a is an array of n doubles
print(a,n);

}

CHAP. 7] POINTERS AND REFERENCES 169

Inside the get() function, the new operator allocates storage for n doubles after the value of n is
obtained interactively. So the array is created “on the fly” while the program is running.

Before get() is used to create another array for a, the current array has to be deallocated with the
delete operator. Note that the subscript operator [] must be specified when deleting an array.

Note that the array parameter a is a pointer that is passed by reference:
void get(double*& a, int& n)

This is necessary because the new operator will change the value of a which is the address of the first
element of the newly allocated array.

7.10 USING const WITH POINTERS

A pointer to a constant is different from a constant pointer. This distinction is illustrated in the
following example.

EXAMPLE 7.16 Constant Pointers and Pointers to Constants

This fragment declares four variables: a pointer p, a constant pointer cp, a pointer pc to a constant,
and a constant pointer cpc to a constant:

int n = 44; // an int
int* p = &n; // a pointer to an int
++(*p); // ok: increments int *p
++p; // ok: increments pointer p
int* const cp = &n; // a const pointer to an int
++(*cp); // ok: increments int *cp
++cp; // illegal: pointer cp is const
const int k = 88; // a const int
const int * pc = &k; // a pointer to a const int
++(*pc); // illegal: int *pc is const
++pc; // ok: increments pointer pc
const int* const cpc = &k; // a const pointer to a const int
++(*cpc); // illegal: int *cpc is const
++cpc; // illegal: pointer cpc is const

Note that the reference operator * may be used in a declaration with or without a space on
either side. Thus, the following three declarations are equivalent:

int* p; // indicates that p has type int* (pointer to int)
int * p; // style sometimes used for clarity
int *p; // old C style

Enter number of items: 4
Enter 4 items, one per line:

1: 44.4
2: 77.7
3: 22.2
4: 88.8

44.4 77.7 22.2 88.8
Enter number of items: 2
Enter 2 items, one per line:

1: 3.33
2: 9.99

3.33 9.99

170 POINTERS AND REFERENCES [CHAP. 7

7.11 ARRAYS OF POINTERS AND POINTERS TO ARRAYS

The elements of an array may be pointers. Here is an array of 4 pointers to type double:
double* p[4];

Its elements can allocated like any other pointer:
p[0] = new double(2.718281828459045);
p[1] = new double(3.141592653589793);

We can visualize this array like this.
The next example illustrates a useful application of

pointer arrays. It shows how to sort a list indirectly by
changing the pointers to the elements instead of moving the elements themselves. This is equiv-
alent to the Indirect Bubble Sort shown in Problem 5.12.

EXAMPLE 7.17 Indirect Bubble Sort

void sort(float* p[], int n)
{ float* temp;

for (int i = 1; i < n; i++)
for (int j = 0; j < n-i; j++)

if (*p[j] > *p[j+1])
{ temp = p[j];

p[j] = p[j+1];
p[j+1] = temp;

}
}

On each iteration of the inner loop, if the floats of adjacent pointers are out of order, then the
pointers are swapped.

7.12 POINTERS TO POINTERS

A pointer may point to another pointer. For example,
char c = 't';
char* pc = &c;
char** ppc = &pc;
char*** pppc = &ppc;
***pppc = 'w'; // changes value of c to 'w'

We can visualize these variables like this:
The assignment ***pppc = 'w' refers to the contents of the

address pc that is pointed to by the address ppc that is pointed to by
the address pppc.

7.13 POINTERS TO FUNCTIONS

Like an array name, a function name is actually a constant pointer. We can think of its value as
the address of the code that implements the function.

3.141592653589793
double

p

0

1

2

3

double

2.718281828459045

't'c

pc

ppc

pppc

CHAP. 7] POINTERS AND REFERENCES 171

A pointer to a function is simply a pointer whose value is the address of the function name.
Since that name is itself a pointer, a pointer to a function is just a pointer to a constant pointer.
For example,

int f(int); // declares function f
int (*pf)(int); // declares function pointer pf
pf = &f; // assigns address of f to pf

We can visualize the function pointer like this:
The value of function pointers is that they allow us to define

functions of functions. This is done by passing a function pointer
as a parameter to another function.

EXAMPLE 7.18 The Sum of a Function

The sum() function has two parameters: the function pointer pf
and the integer n:

int sum(int (*)(int), int);
int square(int);
int cube(int);

int main()
{ cout << sum(square,4) << endl; // 1 + 4 + 9 + 16

cout << sum(cube,4) << endl; // 1 + 8 + 27 + 64
}

The call sum(square,4) computes and returns the sum square(1) + square(2) +
square(3) + square(4). Since square(k) computes and returns k*k, the sum() function
returns 1 + 4 + 9 + 16 = 30.
Here are the function definitions and the output:

int sum(int (*pf)(int k), int n)
{ // returns the sum f(0) + f(1) + f(2) + . . . + f(n-1):

int s = 0;
for (int i = 1; i <= n; i++)

s += (*pf)(i);
return s;

}

int square(int k)
{ return k*k;
}

int cube(int k)
{ return k*k*k;
}

The sum() function evaluates the function to which pf points, at each of the integers 1 through
n, and returns the sum of these n values.

Note that the declaration of the function pointer parameter pf in the sum() function’s parameter list
requires the dummy variable k.

f

pf

int f(int n)
{

. . .
}

30
100

172 POINTERS AND REFERENCES [CHAP. 7

7.14 NUL, NULL, AND void

The constant 0 (zero) has type int. Nevertheless, this symbol can be assigned to all the
fundamental types:

char c = 0; // initializes c to the char '\0'
short d = 0; // initializes d to the short int 0
int n = 0; // initializes n to the int 0
unsigned u = 0; // initializes u to the unsigned int 0
float x = 0; // initializes x to the float 0.0
double z = 0; // initializes z to the double 0.0

In each case, the object is initialized to the number 0. In the case of type char, the character c

becomes the null character; denoted by '\0' or NUL, it is the character whose ASCII code is 0.
The values of pointers are memory addresses. These addresses must remain within that part of

memory allocated to the executing process, with the exception of the address 0x0. This is called
the NULL pointer. The same constant applies to pointers derived from any type:

char* pc = 0; // initializes pc to NULL
short* pd = 0; // initializes pd to NULL
int* pn = 0; // initializes pn to NULL
unsigned* pu = 0; // initializes pu to NULL
float* px = 0; // initializes px to NULL
double* pz = 0; // initializes pz to NULL

The NULL pointer cannot be dereferenced. This is a common but fatal error:
int* p = 0;
*p = 22; // ERROR: cannot dereference the NULL pointer

A reasonable precaution is to test a pointer before attempting to dereference it:
if (p) *p = 22; // ok

This tests the condition (p != NULL) because that condition is true precisely when p is
nonzero.

The name void denotes a special fundamental type. Unlike all the other fundamental types,
void can only be used in a derived type:

void x; // ERROR: no object can have type void
void* p; // OK

The most common use of the type void is to specify that a function does not return a value:
void swap(double&, double&);

Another, different use of void is to declare a pointer to an object of unknown type:
void* p = q;

This use is most common in low-level C programs designed to manipulate hardware resources.

Review Questions

7.1 How do you access the memory address of a variable?
7.2 How do you access the contents of the memory location whose address is stored in a pointer

variable?
7.3 Explain the difference between the following two declarations:

int n1=n;
int& n2=n;

CHAP. 7] POINTERS AND REFERENCES 173

7.4 Explain the difference between the following two uses of the reference operator &:
int& r = n;
p = &n;

7.5 Explain the difference between the following two uses of the indirection operator *:
int* q = p;
n = *p;

7.6 True or false? Explain:
a. If (x == y) then (&x == &y).
b. If (x == y) then (*x == *y).

7.7 a. What is a “dangling pointer”?
b. What dire consequences could result from dereferencing a dangling pointer?
c. How can these dire consequences be avoided?

7.8 What is wrong with the following code:
int& r = 22;

7.9 What is wrong with the following code:
int* p = &44;

7.10 What is wrong with the following code:
char c = 'w';
char p = &c;

7.11 Why couldn’t the variable ppn in Example 7.6 on page 160 be declared like this:
int** ppn=&&n;

7.12 What is the difference between “static binding” and “dynamic binding”?
7.13 What is wrong with the following code:

char c = 'w';
char* p = c;

7.14 What is wrong with the following code:
short a[32];
for (int i = 0; i < 32; i++)
*a++ = i*i;

7.15 Determine the value of each of the indicated variables after the following code executes.
Assume that each integer occupies 4 bytes and that m is stored in memory starting at byte
0x3fffd00.

int m = 44;
int* p = &m;
int& r = m;
int n = (*p)++;
int* q = p - 1;
r = *(--p) + 1;
++*q;

a. m
b. n
c. &m
d. *p
e. r
f. *q

7.16 Classify each of the following as a mutable lvalue, an immutable lvalue, or a non-lvalue:
a. double x = 1.23;

b. 4.56*x + 7.89

c. const double Y = 1.23;

174 POINTERS AND REFERENCES [CHAP. 7

d. double a[8] = {0.0};
e. a[5]
f. double f() { return 1.23; }

g. f(1.23)
h. double& r = x;

i. double* p = &x;

j. *p
k. const double* p = &x;

l. double* const p = &x;

7.17 What is wrong with the following code:
float x = 3.14159;
float* p = &x;
short d = 44;
short* q = &d;
p = q;

7.18 What is wrong with the following code:
int* p = new int;
int* q = new int;
cout << "p = " << p << ", p + q = " << p + q << endl;

7.19 What is the only thing that you should ever do with the NULL pointer?
7.20 In the following declaration, explain what type p is, and describe how it might be used:

double**** p;
7.21 If x has the address 0x3fffd1c, then what will values of p and q be for each of the fol-

lowing:
double x = 1.01;
double* p = &x;
double* q = p + 5;

7.22 If p and q are pointers to int and n is an int, which of the following are legal:
a. p + q

b. p – q
c. p + n

d. p – n

e. n + p
f. n – q

7.23 What does it mean to say that an array is really a constant pointer?
7.24 How is it possible that a function can access every element of an array when it is passed only

the address of the first element?
7.25 Explain why the following three conditions are true for an array a and an int i:

a[i] == *(a + i);
*(a + i) == i[a];
a[i] == i[a];

7.26 Explain the difference between the following two declarations:
double * f();
double (* f)();

7.27 Write a declaration for each of the following:
a. an array of 8 floats;
b. an array of 8 pointers to float;
c. a pointer to an array of 8 floats;
d. a pointer to an array of 8 pointers to float;

CHAP. 7] POINTERS AND REFERENCES 175

e. a function that returns a float;
f. a function that returns a pointer to a float;
g. a pointer to a function that returns a float;
h. a pointer to a function that returns a pointer to a float;

Problems

7.1 Write a function that uses pointers to copy an array of double.
7.2 Write a function that uses pointers to search for the address of a given integer in a given

array. If the given integer is found, the function returns its address; otherwise it returns
NULL.

7.3 Write a function that is passed an array of n pointers to floats and returns a newly created
array that contains those n float values.

7.4 Implement a function for integrating a function by means of Riemann sums. Use the formula

7.5 Write a function that returns the numerical derivative of a given function f at a given point x,
using a given tolerance h. Use the formula

7.6 Write a function that is passed an array of n pointers to floats and returns a pointer to the
maximum of the n floats.

7.7 Write the following function that is passed an array of n pointers to floats and returns a
newly created array that contains those n float values in reverse order.

float* mirror(float* p[], int n)

7.8 Write the following function that returns the number of bytes that s has to be incremented
before it points to the null character '\0':

unsigned len(const char* s)

7.9 Write the following function that copies the first n bytes beginning with *s2 into the bytes
beginning with *s1, where n is the number of bytes that s2 has to be incremented before it
points to the null character '\0':

void cpy(char* s1, const char* s2)

7.10 Write the following function that copies the first n bytes beginning with *s2 into the bytes
beginning at the location of the first occurrence of the null character’\0’ after *s1, where
n is the number of bytes that s2 has to be incremented before it points to the null character
'\0':

void cat(char* s1, const char* s2)

7.11 Write the following function that compares at most n bytes beginning with s2 with the cor-
responding bytes beginning with s1, where n is the number of bytes that s2 has to be
incremented before it points to the null character '\0'. If all n bytes match, the function
should return 0; otherwise, it should return either -1 or 1 according to whether the byte from
s1 is less than or greater than the byte from s2 at the first mismatch:

int cmp(char* s1, char* s2)

f x() xd
a

b

� f a jh+()
j 1=

n

� h=

f ' x() f x h+() f x h–()–
2h

--=

176 POINTERS AND REFERENCES [CHAP. 7

7.12 Write the following function that searches the n bytes beginning with s for the character c,
where n is the number of bytes that s has to be incremented before it points to the null char-
acter '\0'. If the character is found, a pointer to it is returned; otherwise return NULL:

char* chr(char* s, char c)
7.13 Write the following function that returns the sum of the floats pointed to by the first n

pointers in the array p:
float sum(float* p[], int n)

7.14 Write the following function that changes the sign of each of the negative floats pointed to
by the first n pointers in the array p:

void abs(float* p[], int n)
7.15 Write the following function that indirectly sorts the floats pointed to by the first n point-

ers in the array p by rearranging the pointers:
void sort(float* p[], int n)

7.16 Implement the Indirect Selection Sort using an array of pointers. (See Problem 6.19 on page
144 and Example 7.17 on page 170.)

7.17 Implement the Indirect Insertion Sort. (See Problem 6.18 on page 144 and Example 7.17 on
page 170.)

7.18 Implement the Indirect Perfect Shuffle. (See Problem 6.29 on page 145.)
7.19 Rewrite the sum() function (Example 7.18 on page 171) so that it applies to functions with

return type double instead of int. Then test it on the sqrt() function (defined in
<math.h>) and the reciprocal function.

7.20 Apply the riemann() function (Problem 7.4 on page 173) to the following functions
defined in <math.h>:
a. sqrt(), on the interval [1, 4];
b. cos(), on the interval [0, π/2];
c. exp(), on the interval [0, 1];
d. log(), on the interval [1, e].

7.21 Apply the derivative() function (Problem 7.5 on page 175) to the following functions
defined in <math.h>:
a. sqrt(), at the point x = 4;

b. cos(), at the point x = p/6;
c. exp(), at the point x = 0;

d. log(), at the point x = 1.
7.22 Write the following function that returns the product of the n values f(1), f(2), ..., and f(n).

(See Example 7.18 on page 171.)
int product(int (*pf)(int k), int n)

7.23 Implement the Bisection Method for solving equations. Use the following function:
double root(double (*pf)(double x), double a, double b, int n)

Here, pf points to a function f that defines the equation f(x) = 0 that is to be solved, a
and b bracket the unknown root x (i.e., a ≤ x ≤ b), and n is the number of iterations to use.
For example, if f(x) = x2 – 2, then root(f,1,2,100) would return 1.414213562373095
(= √2), thereby solving the equation x2 = 2. The Bisection Method works by repeatedly
bisecting the interval and replacing it with the half that contains the root. It checks the sign of
the product f(a) f(b) to determine whether the root is in the interval [a, b].

7.24 Implement the Trapezoidal Rule for integrating a function. Use the following function:
double trap(double (*pf)(double x), double a, double b, int n)

Here, pf points to the function f that is to be integrated, a and b bracket the interval [a, b]
over which f is to be integrated, and n is the number of subintervals to use. For example, the

CHAP. 7] POINTERS AND REFERENCES 177

call trap(square,1,2,100) would return 1.41421. The Trapezoidal Rule returns the
sum of the areas of the n trapezoids that would approximate the area under the graph of f. For
example, if n = 5, then it would return the following, where h = (b–a)/5, the width of each

trapezoid.

Answers to Review Questions

7.1 Apply the address operator & to the variable &x.
7.2 Apply the dereference operator * to the variable *p.
7.3 The declaration int n1=n; defines n1 to be a clone of n; it is a separate object that has the same

value as n. The declaration int& n2=n; defines n2 to be a synonym of n; it is the same object as
n, with the same address.

7.4 The declaration int& r = n; declares r to be a reference (alias) for the int variable n. The
assignment p = &n; assigns the address of n to the pointer p.

7.5 The declaration int* q = p; declares q to be a pointer (memory address) pointing to the same
int to which p points. The assignment n = *p; assigns to n the int to which p points.

7.6 a. True: &x == x and &y == y because &x and &y are synonyms for x and y, respectively; so
if (x == y) then they all have the same value.

b. False: different objects can have the same value, but different objects have different addresses.
7.7 a. A “dangling pointer” is a pointer that has not been initialized. It is dangerous because it could be

pointing to unallocated memory, or inaccessible memory.
b. If a pointer pointing to unallocated memory is dereferenced, it could change the value of some

unidentified variable. If a pointer pointing to inaccessible memory is dereferenced, the program
will probably crash (i.e., terminate abruptly).

c. Initialize pointers when they are declared.
7.8 You cannot have a reference to a constant; it’s address is not accessible.
7.9 The reference operator & cannot be applied to a constant.
7.10 The variable p has type char, while the expression &c has type pointer to char. To initialize p

to &c, p would have to be declared as type char*.
7.11 The declaration is invalid because the expression &&n is illegal. The reference operator & can be

applied only to objects (variables and class instances). But &n is not an object, it is only a reference.
References do not have addresses, so &&n does not exist.

7.12 Static binding is when memory is allocated at compile time, as with the array declaration:
double a[400];

Dynamic binding is when memory is allocated at run time, by means of the new operator:
double* p;
p = new double[400];

7.13 The variable p has type char*, while the expression c has type char. To initialize p to c, p
would have the same type as c: either both char or both char*.

7.14 The only problem is that the array name a is a constant pointer, so it cannot be incremented. The fol-
lowing modified code would be okay:

short a[32];
short* p = a;
for (int i = 0; i < 32; i++)
*p++ = i*i;

7.15 a. m = 46
b. n = 44
c. &m = 0x3fffd00

h
2
--- f a() 2f a h+() 2f a 2h+() 2f a 3h+() 2f a 4h+() f b()+ + + + +[]

178 POINTERS AND REFERENCES [CHAP. 7

d. *p = 46
e. r = 46
f. *q = 46

7.16 a. mutable lvalue;
b. not an lvalue;
c. immutable lvalue;
d. immutable lvalue;
e. mutable lvalue;
f. immutable lvalue;
g. mutable lvalue if return type is a non-local reference; otherwise not an lvalue;
h. mutable lvalue;
i. mutable lvalue;
j. mutable lvalue, unless p points to a constant, in which case *p is an immutable lvalue;
k. mutable lvalue;
l. immutable lvalue;

7.17 The pointers p and q have different types: p is pointer to float while q is pointer to short. It is an
error to assign the address in one pointer type to a different pointer type.

7.18 It is an error to add two pointers.
7.19 Test it to see if it is NULL. In particular, you should never try to dereference it.
7.20 p is a pointer to a pointer to a pointer to a pointer to a double. It could be used to represent a

four-dimensional array.
7.21 The value of p is the same as the address of x: 0x3fffd1c. The value of q depends upon

sizeof(double). If objects of type double occupy 8 bytes, then an offset of 8(5) = 40 is added
to p to give q the hexadecimal value 0x3fffd44.

7.22 The only expressions among these six that are illegal are p + q and n - q.
7.23 The name of an array is a variable that contains the address of the first element of the array. This

address cannot be changed, so the array name is actually a constant pointer.
7.24 In the following code that adds all the elements of the array a, each increment of the pointer p locates

the next element:
const SIZE = 3;

short a[SIZE] = {22, 33, 44};

short* end = a + SIZE; // adds SIZE*sizeof(short) = 6 to a

for (short* p = a; p < end; p++)

sum += *p;

7.25 The value a[i] returned by the subscripting operator [] is the value stored at the address computed
from the expression a + i. In that expression, a is a pointer to its base type T and i is an int, so
the offset i*sizeof(T) is added to the address a. The same evaluation would be made from the
expression i + a which is what would be used for i[a].

7.26 The declaration double * f(); declares f to be a function that returns a pointer to double. The
declaration double (* f)(); declares *f to be a pointer to a function that returns a double.

7.27 a. float a[8];

b. float* a[8];

c. float (* a)[8];

d. float* (* a)[8];

e. float f();

f. float* f();

g. float (* f)();

h. float* (* f)();

CHAP. 7] POINTERS AND REFERENCES 179

Solutions to Problems

7.1 The copy() function uses the new operator to allocate an array of n doubles. The pointer p
contains the address of the first element of that new array, so it can be used for the name of the array,
as in p[i]. Then after copying the elements of a into the new array, p is returned by the function

double* copy(double a[], int n)

{ double* p = new double[n];

for (int i = 0; i < n; i++)

p[i] = a[i];

return p;

}

void print(double [], int);

int main()

{ double a[8] = {22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9};

print(a, 8);

double* b = copy(a, 8);

a[2] = a[4] = 11.1;

print(a, 8);

print(b, 8);

}

In this run we initialize a as an array of 8 doubles. We use a print() function to examine the
contents of a. The copy() function is called and its return value is assigned to the pointer b
which then serves as the name of the new array. Before printing b, we change the values of two of
a’s elements in order to check that b is not the same array as a, as the last two print() calls
confirm.

7.2 We use a for loop to traverse the array. If the target is found at a[i], then its address &a[i]
is returned. Otherwise, NULL is returned:

int* location(int a[], int n, int target)

{ for (int i = 0; i < n; i++)

if (a[i] == target) return &a[i];

return NULL;

}

The test driver calls the function and stores its return address in the pointer p. If that is nonzero (i.e.,
not NULL), then it and the int to which it points are printed.

int main()

{ int a[8] = {22, 33, 44, 55, 66, 77, 88, 99}, * p, n;

do

{ cin >> n;

if (p = location(a, 8, n)) cout << p << ", " << *p << endl;

else cout << n << " was not found.\n";

} while (n > 0);

}

22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9
22.2, 33.3, 11.1, 55.5, 11.1, 77.7, 88.8, 99.9
22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9

180 POINTERS AND REFERENCES [CHAP. 7

7.3 We use a for loop to traverse the array until p points to the target:
float* duplicate(float* p[], int n)
{ float* const b = new float[n];

for (int i = 0; i < n; i++)
b[i] = *p[i];

return b;
}

void print(float [], int);
void print(float* [], int);

int main()
{ float a[8] = {44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5};

print(a, 8);
float* p[8];
for (int i = 0; i < 8; i++)

p[i] = &a[i]; // p[i] points to a[i]
print(p, 8);
float* const b = duplicate(p, 8);
print(b, 8);

}

7.4 This function, named riemann(), is similar to the sum() function in Example 7.18. Its first
argument is a pointer to a function that has one double argument and returns a double. In this
test run, we pass it (a pointer to) the cube() function. The other three arguments are the boundaries
a and b of the interval [a, b] over which the integration is being performed and the number n of
subintervals to be used in the sum. The actual Riemann sum is the sum of the areas of the n rectan-
gles based on these subintervals whose heights are given by the function being integrated:

double riemann(double (*)(double), double, double, int);
double cube(double);

int main()
{ cout << riemann(cube,0,2,10) << endl;

cout << riemann(cube,0,2,100) << endl;
cout << riemann(cube,0,2,1000) << endl;
cout << riemann(cube,0,2,10000) << endl;

}

// Returns [f(a)*h + f(a+h)*h + f(a+2h)*h + . . . + f(b-h)*h],
// where h = (b-a)/n:

44
0x3fffcc4, 44
50
50 was not found.
99
0x3fffcd8, 99
90
90 was not found.
0
0 was not found.

44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5
44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5
44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5

CHAP. 7] POINTERS AND REFERENCES 181

double riemann(double (*pf)(double t), double a, double b, int n)
{ double s = 0, h = (b-a)/n, x;

int i;
for (x = a, i = 0; i < n; x += h, i++)

s += (*pf)(x);
return s*h;

}

double cube(double t)
{ return t*t*t;
}

In this test run, we are integrating the function y = x3 over the interval [0, 2]. By elementary calculus,
the value of this integral is 4.0. The call riemann(cube,0,2,10) approximates this integral
using 10 subintervals, obtaining 3.24. The call riemann(cube,0,2,100) approximates the
integral using 100 subintervals, obtaining 3.9204. These sums get closer to their limit 4.0 as n
increases. With 10,000 subintervals, the Riemann sum is 3.9992. Note that the only significant differ-
ence between this riemann() function and the sum() function in Example 7.18 is that the sum
is multiplied by the subinterval width h before being returned.

7.5 This derivative() function is similar to the sum() function in Example 7.18, except that it
implements the formula for the numerical derivative instead. It has three arguments: a pointer to the
function f, the x value, and the tolerance h. In this test run, we pass it (pointers to) the cube() func-
tion and the sqrt() function.

#include <iostream>
#include <cmath>
using namespace std;
double derivative(double (*)(double), double, double);
double cube(double);

int main()

{ cout << derivative(cube, 1, 0.1) << endl;
cout << derivative(cube, 1, 0.01) << endl;
cout << derivative(cube, 1, 0.001) << endl;
cout << derivative(sqrt, 1, 0.1) << endl;
cout << derivative(sqrt, 1, 0.01) << endl;
cout << derivative(sqrt, 1, 0.001) << endl;

}

// Returns an approximation to the derivative f'(x):
double derivative(double (*pf)(double t), double x, double h)

{ return ((*pf)(x+h) - (*pf)(x-h))/(2*h);
}

double cube(double t)
{ return t*t*t;
}

3.24
3.9204
3.992
3.9992

182 POINTERS AND REFERENCES [CHAP. 7

The derivative of the cube() function x3 is 3x2, and its value at x = 1 is 3, so the numerical deriva-
tive should be close to 3.0 for small h. Similarly, the derivative of the sqrt() function is

, and its value at x = 1 is 1/2, so its numerical derivative should be close to 0.5 for small h.
7.6 The pointer pmax is used to locate the maximum float. It is initialized to have the same value as

p[0] which points to the first float. Then inside the for loop, the float to which p[i] points
is compared to the float to which pmax points, and pmax is updated to point to the larger float
when it is detected. So when the loop terminates, pmax points to the largest float:

float* max(float* p[], int n)
{ float* pmax = p[0];

for (int i = 1; i < n; i++)
if (*p[i] > *pmax) pmax = p[i];

return pmax;
}

void print(float [], int);
void print(float* [], int);

int main()
{ float a[8] = {44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5};

print(a, 8);
float* p[8];
for (int i = 0; i < 8; i++)

p[i] = &a[i]; // p[i] points to a[i]
print(p, 8);
float* m = max(p, 8);
cout << m << ", " << *m << endl;

}

Here we have two (overloaded) print() functions: one to print the array of pointers, and one to
print the floats to which they point. After initializing and printing the array a, we define the array p
and initialize its elements to point to the elements of a. The call print(p, 8) verifies that p pro-
vides indirect access to a. Finally, the pointer m is declared and initialized with the address returned
by the max() function. The last output verifies that m does indeed point to the largest float among
those accessed by p.

Solutions to Problems 7.7-7.24 are available on-line at projectEuclid.net.

3.01
3.0001
3
0.500628
0.500006
0.5

x
1 2 x()⁄

44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5
44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5
0x3fffcd4, 99.9

183

Chapter 8

C-Strings

8.1 INTRODUCTION

A C-string (also called a character string) is a sequence of contiguous characters in memory
terminated by the NUL character '\0'. C-strings are accessed by variables of type char*

(pointer to char). For example, if s has type char*, then
cout << s << endl;

will print all the characters stored in memory beginning at the address s and ending with the first
occurrence of the NUL character.

The C header file <cstring> provides a wealth of special functions for manipulating
C-strings. For example, the call strlen(s) will return the number of characters in the C-string
s, not counting its terminating NUL character. These functions all declare their C-string parame-
ters as pointers to char. So before we study these C-string operations, we need to review
pointers. (See Section 7.3 on page 158.)

8.2 REVIEW OF POINTERS

A pointer is a memory address. For example, the following
declarations define n to be an int with value 44 and pn to be a
pointer containing the address of n:

int n = 44;
int* pn = &n;

If we imagine memory to be a sequence of bytes with hexadecimal
addresses, then we can picture n and pn as shown at right. This
shows n stored at the address 64fddc and pn stored at the address
64fde0. The variable n contains value 44 and the variable pn

contains the address value 64fddc. The value of pn is the address of
n. This relationship is usually represented by a simpler diagram like
the one shown at right below. This shows two rectangles, one
labeled n and one labeled pn. The rectangles represent storage
locations in memory. The variable pn points to the variable n. We
can access n through the pointer pn by means of the dereference
operator *. For example, the statement

*pn = 77;
would change the value of n to 77.

We can have more than one pointer pointing to the same object:
float* q = &x;

Now *pn, *q, and x are all names for the same object whose
address is 64fddc and whose current value is 77. This is shown in
the diagram at right. Here, q is stored at the address 64fde4. The value stored in q is the address
64fddc of n.

44n
int

0x0064fddc

0x0064fddcpn
int*

0x0064fde0

44n
int

pn
int*

0x0064fdda
0x0064fddb
0x0064fddc
0x0064fddd
0x0064fdde
0x0064fddf
0x0064fde0
0x0064fde1
0x0064fde2
0x0064fde3
0x0064fde4
0x0064fde5
0x0064fde6
0x0064fde7
0x0064fde8
0x0064fde9
0x0064fdea
0x0064fdeb
0x0064fdec
0x0064fded

44

64fddc

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

184 C-STRINGS [CHAP. 8

The example below traces these definitions on a Windows
workstation running Metrowerks CodeWarrior C++ on a Pentium
III processor. As these diagrams indicate, memory is allocated in
ascending order. The first object n, is stored at address 65fcc8,
occupying bytes 65fcc8–65fccb. The second object, pn, is stored
at address 65fccc. The third object, q, is stored at address 65fcd0.

EXAMPLE 8.1 Tracing Pointers

This program is similar to Example 7.5 on page 159:
int main()
{ int n=44; // n holds the int 44
cout << "int n=44; // n holds the int 44:\n";
cout << "\t\t n = " << n << endl;
cout << "\t\t &n = " << &n << endl;
int* pn=&n; // pn holds the address of n
cout << "int* pn=&n; // pn holds the address of n:\n";
cout << "\t\t n = " << n << endl;
cout << "\t\t &n = " << &n << endl;
cout << "\t\t pn = " << pn << endl;
cout << "\t\t &pn = " << &pn << endl;
cout << "\t\t *pn = " << *pn << endl;
*pn = 77; // changes the value of n to 77
cout << "*pn = 77; // changes the value of n to 77:\n";
cout << "\t\t n = " << n << endl;
cout << "\t\t &n = " << &n << endl;
cout << "\t\t pn = " << pn << endl;
cout << "\t\t &pn = " << &pn << endl;
cout << "\t\t *pn = " << *pn << endl;
int* q=&n; // q also holds the address of n
cout << "int* q=&n; // q also holds the address of n:\n";
cout << "\t\t n = " << n << endl;
cout << "\t\t &n = " << &n << endl;
cout << "\t\t pn = " << pn << endl;
cout << "\t\t &pn = " << &pn << endl;
cout << "\t\t *pn = " << *pn << endl;
cout << "\t\t q = " << q << endl;
cout << "\t\t &q = " << &q << endl;
cout << "\t\t *q = " << *q << endl;

}

0x0065fcc6
0x0065fcc7
0x0065fcc8
0x0065fcc9
0x0065fcca
0x0065fccb
0x0065fccc
0x0065fccd
0x0065fcce
0x0065fccf
0x0065fcd0
0x0065fcd1
0x0065fcd2
0x0065fcd3
0x0065fcd4
0x0065fcd5
0x0064fdea
0x0064fdeb
0x0064fdec
0x0064fded

77

65fcc8

65fcc8

77n
int

pn
int*

q
int*

int* pn=&n; // pn holds the address of n:
n = 44
&n = 0x0065fcc8
pn = 0x0065fcc8

&pn = 0x0065fccc
*pn = 44

*pn = 77; // changes the value of n to 77:
n = 77
&n = 0x0065fcc8
pn = 0x0065fcc8

&pn = 0x0065fccc
*pn = 77

CHAP. 8] C-STRINGS 185

If p is a pointer, then the statement cout << *p will always print the value of the object to which p
points, and the statement cout << p will usually print the value of the address that is stored in p. The
important exception to this second rule is when p is declared to have type char*.

8.3 C-STRINGS

In C++, a C-string is an array of characters with the following important features:

• An extra component is appended to the end of the array, and its value is set to the
NUL character '\0'. This means that the total number of characters in the array
is always 1 more than the string length.

• The C-string may be initialized with a string literal, like this:
char str[] = "Bjarne";

Note that this array has 7 elements: 'B', 'j', 'a', 'r', 'n', 'e', and '\0'.

• The entire C-string may be output as a single object, like this:
cout << str;

The system will copy characters from str to cout until the NUL character
'\0' is encountered.

• The entire C-string may be input as a single object, like this:
cin >> buffer;

The system will copy characters from cin into buffer until a white space
character is encountered. The user must ensure that buffer is defined to be a char-
acter string long enough to hold the input.

• The functions declared in the <cstring> header file may be used to manipulate
C-strings. These include the string length function strlen(), the string copying
functions strcpy() and strncpy(), the string concatenating functions strcat()

and strncat(), the string comparing functions strcmp() and strncmp(), and
the token extracting function strtok(). These functions are described in Section
8.8 on page 193.

EXAMPLE 8.2 C-Strings Are Terminated with the NUL Character

This little demo program shows that the NUL character '\0' is appended to the C-string:
int main()

{ char s[] = "ABCD";

for (int i = 0; i < 5; i++)

cout << "s[" << i << "] = '" << s[i] << "'\n";

}

int* q=&n; // q also holds the address of n:
n = 77
&n = 0x0065fcc8
pn = 0x0065fcc8

&pn = 0x0065fccc
*pn = 77
q = 0x0065fcc8
&q = 0x0065fcd0
*q = 77

186 C-STRINGS [CHAP. 8

When the NUL character is sent to cout, nothing is printed—not even a blank. This is seen by
printing one apostrophe immediately before the character and another apostrophe immediately after the
character.

8.4 STRING I/O

Input and output of C-strings are done in several ways in C++ programs. One way is to use
the Standard C++ string class operators. Other methods are described here.

EXAMPLE 8.3 Ordinary Input and Output of C-Strings

This program reads words into a 79-character buffer:
int main()
{ char word[80];

do
{ cin >> word;

if (*word) cout << "\t\"" << word << "\"\n";
} while (*word);

}

In this run, the while loop iterated 10 times: once for each word entered (including the Ctrl+Z that
stopped the loop). Each word in the input stream cin is echoed to the output stream cout. Note that
the output stream is not “flushed” until the input stream encounters the end of the line.

Each C-string is printed with a double quotation mark " on each side. This character must be
designated by the character pair \" inside a C-string literal.

The expression *word controls the loop. It is the initial character in the C-string. It will be nonzero
(i.e., “true”) as long as the C-string word contains a C-string of length greater than 0. The C-string of
length 0, called the empty C-string, contains the NUL character '\0' in its first element. Entering
Ctrl+Z+Enter+Entersends the end-of-file character in from cin. This loads the empty C-string into word,
setting *word (which is the same as word[0]) to '\0' and stopping the loop. The last line of output
shows only the Ctrl+Z echo, as ^Z.

The Enter key may have to be pressed twice after Ctrl+Z is entered.
Note that punctuation marks (apostrophes, commas, periods, etc.) are included in the C-strings, but

whitespace characters (blanks, tabs, newlines, etc.) are not.

s[0] = 'A'
s[1] = 'B'
s[2] = 'C'
s[3] = 'D'
s[4] = ''

s[0] = 'A'
s[1] = 'B'
s[2] = 'C'
s[3] = 'D'
s[4] = ''

Today's date is March 12, 2000.
"Today's"
"date"
"is"
"March"
"12,"
"2000."

Tomorrow is Monday.
"Tomorrow"
"is"
"Monday."

^Z

CHAP. 8] C-STRINGS 187

The do loop in Example 8.3 could be replaced with:
cin >> word
while (*word)
{ cout << "\t\"" << word << "\"\n";

cin >> word;
}

When Ctrl+Z is pressed, the call cin >> word assigns the empty C-string to word.

Example 8.3 and Example 8.1 illustrate an important distinction: the output operator <<

behaves differently with pointers of type char* than with other pointer types. With a char*

pointer, the operator outputs the entire character string to which the pointer points. But with any
other pointer type, the operator will simply output the address of the pointer.

8.5 SOME cin MEMBER FUNCTIONS

The input stream object cin includes the input functions: cin.getline(), cin.get(),
cin.ignore(), cin.putback(), and cin.peek(). Each of these function names includes the
prefix “cin.” because they are “member functions” of the cin object.

The call cin.getline(str,n) reads up to n characters into str and ignores the rest.

EXAMPLE 8.4 The cin.getline() Function with Two Parameters

This program echoes the input, line by line:
int main()
{ char line[80];

do
{ cin.getline(line, 80);

if (*line) cout << "\t[" << line << "]\n";
} while (*line);

}
Note that the condition (*line) will evaluate to “true” precisely when line contains a non-empty

C-string, because only then will line[0] be different from the NUL character (ASCII value 0).

The call cin.getline(str,n,ch) reads all input up to the first occurrence of the delimit-
ing character ch into str. If the specified character ch is the newline character '\n', then
this is equivalent to cin.getline(str,n). This is illustrated in the next example where the
delimiting character is the comma ','.

EXAMPLE 8.5 The cin.getline() Function with Three Parameters

This program echoes the input, clause by clause:
int main()
{ char clause[80];

do
{ cin.getline(clause, 80, ',');

if (*clause) cout << "\t[" << clause << "]\n";
} while (*clause);

}

188 C-STRINGS [CHAP. 8

Notice that the invisible endline character that follows “weary,” is stored as the first character of the
next input line. Since the comma is being used as the delimiting character, the endline character is
processed just like an ordinary character.

The cin.get() function is used for reading input character-by-character. The call
cin.get(ch) copies the next character from the input stream cin into the variable ch and
returns 1, unless the end of file is detected in which case it returns 0.

EXAMPLE 8.6 The cin.get() Function

This program counts the number of occurrences of the letter ‘e’ in the input stream. The loop continues
as long as the cin.get(ch) function is successful at reading characters into ch:

int main()

{ char ch;

int count = 0;

while (cin.get(ch))

if (ch == 'e') ++count;

cout << count << " e's were counted.\n";

}

The opposite of get is put. The cout.put() function is used for writing to the output
stream cout character-by-character. This is illustrated in the next example.

EXAMPLE 8.7 The cout.put() Function

This program echoes the input stream, capitalizing each word:
int main()

{ char ch, pre = '\0';

while (cin.get(ch))

{ if (pre == ' ' || pre == '\n') cout.put(char(toupper(ch)));

else cout.put(ch);

pre = ch;

}

}

Once upon a midnight dreary, while I pondered, weak and weary,
[Once upon a midnight dreary]
[while I pondered]
[weak and weary]

Over a many quaint and curious volume of forgotten lore,
[

Over a many quaint and curious volume of forgotten lore]
^Z

[
]

Once upon a midnight dreary, while I pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore,
^Z
11 e's were counted.

CHAP. 8] C-STRINGS 189

The variable pre holds the previously read character. The idea is that if pre is a blank or the
newline character, then the next character ch would be the first character of the next word. In that case,
ch is replaced by its equivalent uppercase character ch + 'A' - 'a'.

The header file <ctype.h> declares the function toupper(ch) which returns the uppercase
equivalent of ch if ch is a lowercase letter.

The cin.putback() function restores the last character read by a cin.get() back to the
input stream cin. The cin.ignore() function reads past one or more characters in the input
stream cin without processing them. Example 8.8 illustrates these functions.

The cin.peek() function can be used in place of the combination cin.get() and
cin.putback() functions. The call

ch = cin.peek()

copies the next character of the input stream cin into the char variable ch without removing
that character from the input stream. Example 8.9 shows how the peek() function can be used
in place of the get() and putback() functions.

EXAMPLE 8.8 The cin.putback() and cin.ignore() Functions

This tests a function that extracts the integers from the input stream:
int nextInt();

int main()

{ int m = nextInt(), n = nextInt();

cin.ignore(80,'\n'); // ignore rest of input line

cout << m << " + " << n << " = " << m+n << endl;

}

int nextInt()

{ char ch;

int n;

while (cin.get(ch))

if (ch >= '0' && ch <= '9') // next character is a digit

{ cin.putback(ch); // put it back so it can be

cin >> n; // read as a complete int

break;

}

return n;

}

The nextInt() function scans past the characters in cin until it encounters the first digit. In this
run, that digit is 3. Since this digit will be part of the first integer 305, it is put back into cin so that the
complete integer 305 can be read into n and returned.

Fourscore and seven years ago our fathers
Fourscore And Seven Years Ago Our Fathers
brought forth upon this continent a new nation,
Brought Forth Upon This Continent A New Nation,
^Z

What is 305 plus 9416?
305 + 9416 = 9721

190 C-STRINGS [CHAP. 8

EXAMPLE 8.9 The cin.peek() Function

This version of the nextInt() function is equivalent to the one in the previous example:
int nextInt()

{ char ch;

int n;

while (ch = cin.peek())

if (ch >= '0' && ch <= '9')

{ cin >> n;

break;

}

else cin.get(ch);

return n;

}

The expression ch = cin.peek() copies the next character into ch, and returns 1 if successful.
Then if ch is a digit, the complete integer is read into n and returned. Otherwise, the character is
removed from cin and the loop continues. If the end-of-file is encountered, the expression ch =
cin.peek() returns 0, stopping the loop.

8.6 STANDARD C CHARACTER FUNCTIONS

Example 8.7 on page 188 illustrates the toupper() function. This is one of a series of char-
acter manipulation function defined in the <cctype> header file. These are summarized in the
following table.

isalnum() int isalnum(int c);
Returns nonzero if c is an alphabetic or numeric character; otherwise returns 0.

isalpha() int isalpha(int c);
Returns nonzero if c is an alphabetic character; otherwise returns 0.

iscntrl() int iscntrl(int c);
Returns nonzero if c is a control character; otherwise returns 0.

isdigit() int isdigit(int c);
Returns nonzero if c is a digit character; otherwise returns 0.

isgraph() int isgraph(int c);
Returns nonzero if c is any non-blank printing character; otherwise returns 0.

islower() int islower(int c);
Returns nonzero if c is a lowercase alphabetic character; otherwise returns 0.

isprint() int isprint(int c);
Returns nonzero if c is any printing character; otherwise returns 0.

ispunct() int ispunct(int c);
Returns nonzero if c is any printing character, except the alphabetic characters,
the numeric characters, and the blank; otherwise returns 0.

CHAP. 8] C-STRINGS 191

Note that these functions receive an int parameter c and they return an int. This works
because char is an integer type. Normally, a char is passed to the function and the return
value is assigned to a char, so we regard these as character-modifying functions.

8.7 ARRAYS OF STRINGS

Recall that a two-dimensional array is really a one-dimensional array whose components
themselves are one-dimensional arrays. When those component arrays are C-strings, we have an
array of C-strings.

Example 8.10 declares the two-dimensional array name as
char name[5][20];

This declaration allocates 100 bytes, arranged like this:
Each of the 5 rows is a one-dimensional array of 20 characters
and therefore can be regarded as a character string. These
C-strings are accessed as name[0], name[1], name[2], name[3], name[4]. In the sample
run shown in Example 8.10, the data would be stored like this:
Here, the symbol ∅ represents the NUL character '\0'.

EXAMPLE 8.10 An Array of Strings

This program reads in a sequence of C-strings, storing them in an array, and then prints them:
int main()
{ char name[5][20];

int count=0;
cout << "Enter at most 4 names with at most 19 characters:\n";
while (cin.getline(name[count++], 20))

;
--count;

isspace() int isspace(int c);
Returns nonzero if c is any white-space character, including the blank ' ', the
form feed '\f', the newline '\n', the carriage return '\r', the horizontal tab
'\t', and the vertical tab '\v'; otherwise returns 0.

isupper() int isupper(int c);
Returns nonzero if c is an uppercase alphabetic character; otherwise returns 0.

isxdigit() int isxdigit(int c);
Returns nonzero if c is one of the 10 digit characters or one of the 12 hexadecimal
digit letters: 'a', 'b', 'c', 'd', 'e', 'f', 'A', 'B', 'C', 'D', 'E',
or 'F'; otherwise returns 0.

tolower() int tolower(int c);
Returns the lowercase version of c if c is an uppercase alphabetic character;
otherwise returns c.

toupper() int toupper(int c);
Returns the uppercase version of c if c is a lowercase alphabetic character; other-
wise returns c.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 1 2 3

3

2

1

0

4

Thomas Jefferson

George Washingti
John Adams∅

n∅

∅

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 1 2 3

3

2

1

0

4

192 C-STRINGS [CHAP. 8

cout << "The names are:\n";
for (int i=0; i<count; i++)

cout << "\t" << i << ". [" << name[i] << "]" << endl;
}

Note that all the activity in the while loop is done within its control condition:
cin.getline(name[count++],20)

This call to the cin.getline() function reads the next line into name[count] and then incre-
ments count. The function returns nonzero (i.e., “true”) if it was successful in reading a character string
into name[count]. When the end-of-file is signalled (with <Control-D> or <Control-Z>), the
cin.getline() function fails, so it returns 0 which stops the while loop. The body of this loop is
empty, indicated by the line that contains nothing but a semicolon.

A more efficient way to store C-strings is to declare an array of pointers: char* name[4];

Here, each of the 4 components has type char* which means that each name[i] is a C-string.
This declaration does not initially allocate any storage for C-string data. Instead, we need to store
all the data in a buffer C-string. Then we can set each name[i] equal to the address of the first
character of the corresponding name in the buffer. This is done in Example 8.11. This method is
more efficient because each component of name[i] uses only as many bytes as are needed to
store the C-string (plus storage for one pointer). The trade-off is that the input routine needs a
sentinel to signal when the input is finished.

EXAMPLE 8.11 A String Array

This program illustrates the use of the getline() function with the sentinel character '$'. It is
nearly equivalent to that in Example 8.10. It reads a sequence of names, one per line, terminated by the
sentinel '$'. Then it prints the names which are stored in the array name:

int main()
{ char buffer[80];

cin.getline(buffer,80,'$');
char* name[4];
name[0] = buffer;
int count = 0;
for (char* p=buffer; *p != '\0'; p++)

if (*p == '\n')
{ *p = '\0'; // end name[count]

name[++count] = p+1; // begin next name
}

cout << "The names are:\n";
for (int i=0; i<count; i++)

cout << "\t" << i << ". [" << name[i] << "]" << endl;
}

Enter at most 8 names with at most 23 characters:
George Washington
John Adams
Thomas Jefferson
^Z
The names are:

0. [George Washington]
1. [John Adams]
2. [Thomas Jefferson]

CHAP. 8] C-STRINGS 193

The entire input is stored in buffer as the single C-string containing “George Washington\nJohn
Adams\nThomas Jefferson\n”. The for loop then scans through buffer using the pointer p. Each
time p finds the '\n' character, it terminates the C-string in name[count] by appending the NUL
character '\0' to it. Then it increments the counter count and stores the address p+1 of the next
character in name[count].

The resulting array name looks like this:
Note that the extra bytes that padded the
ends of the names in Example 8.10 are not
required here.

If the C-strings being stored are known at compile time, then the C-string array described
above is quite a bit simpler to handle. Example 8.12 illustrates how to initialize a C-string array.

EXAMPLE 8.12 Initializing a String Array

This program is nearly equivalent to those in the previous two examples. It initializes the C-string array
name and then prints its contents:

int main()
{ char* name[]

= { "George Washington", "John Adams", "Thomas Jefferson" };
cout << "The names are:\n";
for (int i = 0; i < 3; i++)

cout << "\t" << i << ". [" << name[i] << "]" << endl;
}

The storage of the data in the name array here is the same as in Example 8.11.

8.8 STANDARD C STRING FUNCTIONS

The C header file <cstring>, also called the C-String Library, includes a family of
functions that are very useful for manipulating C-strings. Example 8.13 illustrates the simplest of
these functions, the C-string length function, which returns the length of the C-string passed to it.

EXAMPLE 8.13 The strlen() Function

This program is a simple test driver for the strlen() function. The call strlen(s) simply
returns the number of characters in s that precede the first occurrence of the NUL character '\0'

#include <cstring>
int main()
{ char s[] = "ABCDEFG";

cout << "strlen(" << s << ") = " << strlen(s) << endl;
cout << "strlen(\"\") = " << strlen("") << endl;
char buffer[80];
cout << "Enter string: "; cin >> buffer;
cout << "strlen(" << buffer << ") = " << strlen(buffer) << endl;

}

0

1

2

3

Thomas Jefferson

George Washingto

John Adams∅

n∅

∅

∅

name

The names are:
0. [George Washington]
1. [John Adams]
2. [Thomas Jefferson]

194 C-STRINGS [CHAP. 8

In some ways, C-strings behave like fundamental objects (i.e., integers and reals). For exam-
ple, they can be output to cout in the same way. But C-strings are structured objects, composed
of smaller pieces (characters). So many of the operations that are provided for fundamental
objects, such as the assignment operator (=), the comparison operators (<, >, ==, <=, >=, and
!=), and the arithmetic operators (+, etc.) are not available for C-strings. Some of the functions in
the C String Library simulate these operations. In Chapter 12 we will learn how to write our own
versions of these operations.

The next example illustrates three other C-string functions. These are used to locate charac-
ters and substrings within a given C-string.

EXAMPLE 8.14 The strchr(), strrchr(), and strstr() Functions

#include <cstring>

int main()

{ char s[] = "The Mississippi is a long river.";

cout << "s = \"" << s << "\"\n";

char* p = strchr(s, ' ');

cout << "strchr(s, ' ') points to s[" << p - s << "].\n";

p = strchr(s, 's');

cout << "strchr(s, 's') points to s[" << p - s << "].\n";

p = strrchr(s, 's');

cout << "strrchr(s, 's') points to s[" << p - s << "].\n";

p = strstr(s, "is");

cout << "strstr(s, \"is\") points to s[" << p - s << "].\n";

p = strstr(s, "isi");

if (p == NULL) cout << "strstr(s, \"isi\") returns NULL\n";

}

The call strchr(s, ' ') returns a pointer to the first occurrence of the blank character ' ' within
the C-string s. The expression p - s computes the index (offset) 3 of this character within the
C-string. (Remember that arrays used zero-based indexing, so the initial character 'T' has index 0.)
Similarly, the character 's' first appears at index 6 in s.

The call strrchr(s, ' ') returns a pointer to the last occurrence of the character 's' within the
C-string s; this is s[17].

The call strstr(s, "is") returns a pointer to the first occurrence of the substring "is" within
the C-string s; this is at s[5]. The call strstr(s, "isi") returns the NULL pointer because
"isi" does not occur anywhere within the C-string s.

There are two functions that simulate the assignment operator for C-strings: strcpy() and
strncpy(). The call strcpy(s1,s2) copies C-string s2 into C-string s1. The call
strncpy(s1,s2,n) copies the first n characters of C-string s2 into C-string s1. Both func-
tions return s1. These are illustrated in the next two examples.

s = "The Mississippi is a long river."
strchr(s, ' ') points to s[3].
strchr(s, 's') points to s[6].
strrchr(s, 's') points to s[17].
strstr(s, "is") points to s[5].
strstr(s, "isi") returns NULL

CHAP. 8] C-STRINGS 195

EXAMPLE 8.15 The strcpy() Function

This program traces call strcpy(s1,s2):
#include <cstring>
#include <iostream>
int main()
{ char s1[] = "ABCDEFG";

char s2[] = "XYZ";
cout << "Before strcpy(s1,s2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;
strcpy(s1,s2);
cout << "After strcpy(s1,s2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;

}

After s2 is copied into s1, they are indistinguish-
able: both consist of the 3 characters XYZ. The effect
of strcpy(s1,s2) can be visualized as shown at
right. Since s2 has length 3, strcpy(s1,s2)
copies 4 bytes (including the NUL character, shown
as ø), overwriting the first 4 characters of s1. This
changes the length of s1 to 3.

Note that strcpy(s1,s2) creates a duplicate of C-string s2. The resulting two copies are distinct
C-strings. Changing one of these C-strings later would have no effect upon the other C-string.

EXAMPLE 8.16 The Function strncpy()

This program traces calls strncpy(s1,s2,n):
int main()
{ char s1[] = "ABCDEFG";

char s2[] = "XYZ";
cout << "Before strncpy(s1,s2,2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;
strncpy(s1,s2,2);
cout << "After strncpy(s1,s2,2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;

}

A
B
C
D
E
F
G
∅

X
Y
Z
∅

X
Y
Z
∅
E
F
G
∅

X
Y
Z
∅

strcpy(s1,s2)

s1

s2

s1

s2

Before strcpy(s1,s2):
s1 = [ABCDEFG], length = 7
s2 = [XYZ], length = 3

After strcpy(s1,s2):
s1 = [XYZ], length = 3
s2 = [XYZ], length = 3

Before strncpy(s1,s2,2):
s1 = [ABCDEFG], length = 7
s2 = [XYZ], length = 3

After strncpy(s1,s2,2):
s1 = [XYCDEFG], length = 7
s2 = [XYZ], length = 3

196 C-STRINGS [CHAP. 8

The call strncpy(s1,s2,2) replaces the first 2
characters of s1 with XY, leaving the rest of s1
unchanged. The effect of strncpy(s1,s2,2) can
be visualized as shown here. Since s2 has length 3,
strncpy(s1,s2,2) copies 2 bytes (excluding the
NUL character ø), overwriting the first 2 characters of
s1. This has no effect upon the length of s1 which is 7.

If n < strlen(s2), as it is in the above example,
then strncpy(s1,s2,n) simply copies the first n
characters of s2 into the beginning of s1. However,
if n ≥ strlen(s2), then strncpy(s1,s2,n) has
the same effect as strcpy(s1,s2): it makes s1 a
duplicate of s2 with the same length.

The strcat() and strncat() functions work the same as the strcpy() and
strncpy() functions except that the characters from the second C-string are copied onto the
end of the first C-string. The term “cat” comes from the word “catenate” meaning “string
together.”

EXAMPLE 8.17 The String Concatenation Function strcat()

This program traces call strcat(s1,s2) which appends the C-string s2 onto the end of s1:
int main()
{ char s1[] = "ABCDEFG";

char s2[] = "XYZ";
cout << "Before strcat(s1,s2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;
strcat(s1,s2);
cout << "After strcat(s1,s2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;

}

The call strcat(s1,s2) appends XYZ onto the
end of s1. It can be visualized as shown here. Since
s2 has length 3, strcat(s1,s2) copies 4 bytes
(including the NUL character, shown as ø), overwrit-
ing the NUL characters of s1 and its following 3
bytes. The length of s1 is increased to 10.

If any of the extra bytes following s1 that are
needed to copy s2 are in use by any other object,
then all of s1 and its appended s2 will be copied
to some other free section of memory.

A
B
C
D
E
F
G
∅

X
Y
Z
∅

X
Y
C
D
E
F
G
∅

X
Y
Z
∅

strncpy(s1,s2,2)

s1

s2

s1

s2

Before strcat(s1,s2):
s1 = [ABCDEFG], length = 7
s2 = [XYZ], length = 3

After strcat(s1,s2):
s1 = [ABCDEFGXYZ], length = 10
s2 = [XYZ], length = 3

A
B
C
D
E
F
G
∅

X
Y
Z
∅

A
B
C
D
E
F
G

X
Y
Z
∅

strcat(s1,s2)

s1

s2

s1

s2

X
Y
Z
∅

CHAP. 8] C-STRINGS 197

EXAMPLE 8.18 The Second String Concatenation Function strncat()

This program traces calls strncat(s1,s2,n):
#include <cstring>
#include <iostream>
using namespace std;
int main()
{ // test-driver for the strncat() function:

char s1[] = "ABCDEFG";
char s2[] = "XYZ";
cout << "Before strncat(s1,s2,2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;
strncat(s1,s2,2);
cout << "After strncat(s1,s2,2):\n";
cout << "\ts1 = [" << s1 << "], length = " << strlen(s1) << endl;
cout << "\ts2 = [" << s2 << "], length = " << strlen(s2) << endl;

}

The call strncat(s1,s2,2) appends XY onto the
end of s1. The effect can be visualized as shown here.
Since s2 has length 3, strncat(s1,s2,2) copies
2 bytes overwriting the NUL character of s1 and the
byte that follows it. Then it puts the NUL character in
the next byte to complete the C-string s1. This
increases its length to 9. (If either of the extra 2 bytes
had been in use by some other object, then the entire 10
characters ABCDEFGXYØ would have been written in
some other free part of memory.)

The next example illustrates the C-string token-
ize function. Its purpose is to identify “tokens”
within a given C-string: e.g., words in a sentence.

EXAMPLE 8.19 The String Tokenize Function strtok()

This program shows how strtok() is used to extract the individual words from a sentence.
#include <cstring>
#include <iostream>
using namespace std;
int main()
{ // test-driver for the strtok() function:

char s[] = "Today's date is March 12, 2000.";
char* p;
cout << "The string is: [" << s << "]\nIts tokens are:\n";
p = strtok(s, " ");

Before strncat(s1,s2,2):
s1 = [ABCDEFG], length = 7
s2 = [XYZ], length = 3

After strncat(s1,s2,2):
s1 = [ABCDEFGXY], length = 9
s2 = [XYZ], length = 3

A
B
C
D
E
F
G
∅

X
Y
Z
∅

A
B
C
D
E
F
G

X
Y
Z
∅

strncat(s1,s2)

s1

s2

s1

s2

X
Y
∅

198 C-STRINGS [CHAP. 8

while (p)

{ cout << "\t[" << p << "]\n";

p = strtok(NULL, " ");

}

cout << "Now the string is: [" << s << "]\n";

}

The call p = strtok(s, " ") sets the pointer p to point to the first token in the C-string s and
changes the blank that follows "Today's" to the NUL character '\0' (denoted by Ø in the following
diagram). This has the effect of making both s and p the C-string "Today's". Then each successive
call p = strtok(NULL, " ") advances the pointer p to the next non-blank character that follows
the new NUL character, changing each blank that it passes into a NUL character, and changing the first
blank that follows *p into a NUL character. This has the effect of making p the next substring that was
delimited by blanks and is now delimited by NUL characters. This continues until p reaches the NUL
character that terminated the original C-string s. That makes p NUL (i.e., 0), which stops the while
loop. The combined effect upon the original C-string s of all the calls to strtok() is to change every
blank into a NUL. This “tokenizes” the C-string s, changing it into a sequence of distinct token strings,
only the first of which is identified by s.

Note that the strtok() function changes the C-string that it tokenizes. Therefore, if you
want to use the original C-string after you tokenize it, you should duplicate it with strcpy().

Also note that the second parameter of the strtok() function is a C-string. This function
uses all the characters in this C-string as delimiters in the first C-string. For example, to identify
words in s, you might use strtok(s, " ,:;.").

The strpbrk() function also uses a C-string of characters as a collection of characters. It
generalizes the strchr() function, looking for the first occurrence in the first C-string of any
of the characters in the second C-string.

The string is: [Today's date is March 12, 2000.]
Its tokens are:

[Today's]
[date]
[is]
[March]
[12,]
[2000.]

Now the string is: [Today's]

∅

∅

T
o
d
a
y
'
s

M
a

strtok(s," ")

s

p

d
a
t
e

i
s

T
o
d
a
y
'
s

M
a

s

p
d
a
t
e

i
s

∅

strtok(NULL," ")

T
o
d
a
y
'
s

M
a

s

p

d
a
t
e

i
s

∅

∅

strtok(NULL," ")

T
o
d
a
y
'
s

M
a

s

p

d
a
t
e

i
s

∅

CHAP. 8] C-STRINGS 199

EXAMPLE 8.20 The strpbrk() Function

#include <cstring>
#include <iostream>
using namespace std;
int main()
{ char s[] = "The Mississippi is a long river.";

cout << "s = \"" << s << "\"\n";
char* p = strpbrk(s, "nopqr");
cout << "strpbrk(s, \"nopqr\") points to s[" << p - s << "].\n";
p = strpbrk(s, "NOPQR");
if (p == NULL) cout << "strpbrk(s, \"NOPQR\") returns NULL.\n";

}

The call strpbrk(s, "nopqr") returns the first occurrence in s of any of the five characters
'n', 'o', 'p', 'q', or 'r'. The first of these found is the 'p' at s[12].

The call strpbrk(s, "NOPQR") returns the NULL pointer because none of these five characters
occurs in s.

The following table summarizes some of the most useful functions declared in <cstring>.
Note that size_t is a special integer type that is defined in the <cstring> file.

memcpy() void* memcpy(void* s1, const void* s2, size_t n);
Replaces the first n bytes of *s1 with the first n bytes of *s2. Returns s.

strcat() char* strcat(char* s1, const char* s2);
Appends s2 to s1. Returns s1.

strchr() char* strchr(const char* s, int c);
Returns a pointer to the first occurrence of c in s. Returns NULL if c is not in s.

strcmp() int strcmp(const char* s1, const char* s2);
Compares s1 with substring s2. Returns a negative integer, zero, or a positive inte-
ger, according to whether s1 is lexicographically less than, equal to, or greater than
s2.

strcpy() char* strcpy(char* s1, const char* s2);
Replaces s1 with s2. Returns s1.

strcspn() size_t strcspn(char* s1, const char* s2);
Returns the length of the longest substring of s1 that begins with s1[0] and con-
tains none of the characters found in s2.

strlen() size_t strlen(const char* s);
Returns the length of s, which is the number of characters beginning with s[0] that
precede the first occurrence of the NUL character.

strncat() char* strncat(char* s1, const char* s2, size_t n);
Appends the first n characters of s2 to s1. Returns s1. If n ≥ strlen(s2),
then strncat(s1,s2,n) has the same effect as strcat(s1,s2).

s = "The Mississippi is a long river."
strpbrk(s, "nopqr") points to s[12].
strpbrk(s, "NOPQR") returns NULL.

200 C-STRINGS [CHAP. 8

Review Questions

8.1 Consider the following declarations for s:
char s[6];
char s[6] = {'H', 'e', 'l', 'l', 'o'};
char s[6] = "Hello";
char s[];
char s[] = new char[6];
char s[] = {'H', 'e', 'l', 'l', 'o'};
char s[] = "Hello";
char s[] = new("Hello");
char* s;
char* s = new char[6];
char* s = {'H', 'e', 'l', 'l', 'o'};
char* s = "Hello";
char* s = new("Hello");

a. Which of these is a valid declaration of a C++ character C-string?

strncmp() int strncmp(const char* s1, const char* s2, size_t n);
Compares the first n characters of s1 with the first n characters of s2. Returns a
negative integer, zero, or a positive integer, according to whether the first substring is
lexicographically less than, equal to, or greater than the second. If n ≥
strlen(s2), then strncmp(s1,s2,n) and strcmp(s1,s2) have the same
effect.

strncpy() char* strncpy(char* s1, const char* s2, size_t n);
Replaces the first n characters of s1 with the first n characters of s2. Returns s1.
If n ≤ strlen(s1), then the length of s1 is not affected. If n ≥ strlen(s2),
then strncpy(s1,s2,n) and strcpy(s1,s2) have the same effect.

strpbrk() char* strpbrk(const char* s1, const char* s2);
Returns the address of the first occurrence in s1 of any of the characters in s2.
Returns NULL if none of the characters in s2 appears in s1.

strrchr() char* strrchr(const char* s, int c);
Returns a pointer to the last occurrence of c in s. Returns NULL if c is not in s.

strspn() size_t strspn(char* s1, const char* s2);
Returns the length of the longest substring of s1 that begins with s1[0] and con-
tains only characters found in s2.

strstr() char* strstr(const char* s1, const char* s2);
Returns the address of the first occurrence of s2 as a substring of s1. Returns NULL
if ch is not in s1.

strtok() char* strtok(char* s1, const char* s2);
Tokenizes the C-string s1 into tokens delimited by the characters found in C-string
s2. After the initial call strtok(s1, s2), each successive call strtok(NULL,
s2) returns a pointer to next token found in s1. These calls change the C-string s1,
replacing each delimiter with the NUL character '\0'.

CHAP. 8] C-STRINGS 201

b. Which of these is a valid declaration of a C++ character C-string of length 5, initialized to
the C-string "Hello" and allocated at compile time?

c. Which of these is a valid declaration of a C++ character C-string of length 5, initialized to
the C-string "Hello" and allocated at run time?

d. Which of these is a valid declaration of a C++ character C-string as a formal parameter for
a function?

8.2 What is wrong with using the statement
cin >> s;

to read the input "Hello, World!" into a C-string s?
8.3 What does the following code print:

char s[] = "123 W. 42nd St., NY, NY 10020-1095";
int count = 0;
for (char* p = s; *p; p++)
if (isupper(*p)) ++count;
cout << count << endl;

8.4 What does the following code print:
char s[] = "123 W. 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
if (isupper(*p)) *p = tolower(*p);
cout << s << endl;

8.5 What does the following code print:
char s[] = "123 W. 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
if (isupper(*p)) (*p)++;
cout << s << endl;

8.6 What does the following code print:
char s[] = "123 W. 42nd St., NY, NY 10020-1095";
int count = 0;
for (char* p = s; *p; p++)
if (ispunct(*p)) ++count;
cout << count << endl;

8.7 What does the following code print:
char s[] = "123 W. 42nd St., NY, NY 10020-1095";
for (char* p = s; *p; p++)
if (ispunct(*p)) *(p-1) = tolower(*p);
cout << s << endl;

8.8 What is the difference between the following two statements, if s1 and s2 have type
char*:

s1 = s2;
strcpy(s1,s2);

8.9 If first contains the C-string "Rutherford" and last contains the C-string
"Hayes", then what will be the effect of each of the following calls:
a.int n = strlen(first);
b. char* s1 = strchr(first, 'r');
c. char* s1 = strrchr(first, 'r');
d. char* s1 = strpbrk(first, "rstuv");
e. strcpy(first, last);
f. strncpy(first, last, 3);

g. strcat(first, last);
h. strncat(first, last, 3);

202 C-STRINGS [CHAP. 8

8.10 What do each of the following assign to n:
a.int n = strspn("abecedarian","abcde");
b. int n = strspn("beefeater","abcdef");
c. int n = strspn("baccalaureate","abc");

d. int n = strcspn("baccalaureate","rstuv");
8.11 What does the following code print:

char* s1 = "ABCDE";
char* s2 = "ABC";
if (strcmp(s1,s2) < 0) cout << s1 << " < " << s2 << endl;
else cout << s1 << " >= " << s2 << endl;

8.12 What does the following code print:
char* s1 = "ABCDE";
char* s2 = "ABCE";
if (strcmp(s1,s2) < 0) cout << s1 << " < " << s2 << endl;
else cout << s1 << " >= " << s2 << endl;

8.13 What does the following code print:
char* s1 = "ABCDE";
char* s2 = "";
if (strcmp(s1,s2) < 0) cout << s1 << " < " << s2 << endl;
else cout << s1 << " >= " << s2 << endl;

8.14 What does the following code print:
char* s1 = " ";
char* s2 = "";
if (strcmp(s1,s2) == 0) cout << s1 << " == " << s2 << endl;
else cout << s1 << " != " << s2 << endl;

Problems

8.1 Explain why the following alternative to Example 8.12 does not work:
int main()
{ char name[10][20], buffer[20];

int count = 0;
while (cin.getline(buffer,20))

name[count++] = buffer;
--count;
cout << "The names are:\n";
for (int i = 0; i < count; i++)

cout << "\t" << i << ". [" << name[i] << "]" << endl;
}

8.2 Write the strcpy() function.
8.3 Write the strncat() function.
8.4 Write and test a function that returns the plural form of the singular English word that is

passed to it.
8.5 Write a program that reads a sequence of names, one per line, and then sorts and prints them.
8.6 Write and test a function to reverse a C-string in place, without any duplication of characters.
8.7 Write and run the variation of the program in Example 8.3 that uses

while (cin >> word)

instead of
do..while (*word)

CHAP. 8] C-STRINGS 203

8.8 Write the strchr() function.
8.9 Write a function that returns the number of occurrences of a given character within a given

C-string.
8.10 Write and test the strrchr() function.
8.11 Write and test the strstr() function.
8.12 Write and test the strncpy() function.
8.13 Write and test the strcat() function.
8.14 Write and test the strcmp() function.
8.15 Write and test the strncmp() function.
8.16 Write and test the strspn() function.
8.17 Write and test the strcspn() function.
8.18 Write and test the strpbrk() function.
8.19 Write a function that returns the number of words that contain a given character within a

given C-string. (See Example 8.19.)
8.20 First, try to predict what the following program will do to the C-string s. (See Example 8.19 on

page 197.) Then run the program to check your prediction.
int main()
{ char s[] = "###ABCD#EFG##HIJK#L#MN#####O#P#####";

char* p;
cout << "The string is: [" << s << "]\nIts tokens are:\n";
p = strtok(s, "#");
while (p)
{ cout << "\t[" << p << "]\n";

p = strtok(NULL, "#");
}
cout << "Now the string is: [" << s << "]\n";

}
8.21 Write a program that reads one line of text and then prints it with all its letters capitalized.
8.22 Write a program that reads one line of text and then prints it with all its blanks removed.
8.23 Write a program that reads one line of text and then prints the number of words that were

read.
8.24 Write a program that reads one line of text and then prints the same words in reverse order.

For example, the input
today is Tuesday

would produce the output
Tuesday is today

Answers to Review Questions

8.1 Among the 13 declarations:
a. The following are valid declarations for a C++ character string:

char s[6];
char s[6] = {'H', 'e', 'l', 'l', 'o'};
char s[6] = "Hello";
char s[] = {'H', 'e', 'l', 'l', 'o'};
char s[] = "Hello";
char* s;

204 C-STRINGS [CHAP. 8

char* s = new char[6];
char* s = "Hello";
Warning: this last declaration only defines s to be a pointer to a string constant.

b. The following are valid declarations for a C++ character C-string of length 5, initialized to the
C-string "Hello" and allocated at compile time:
char s[6] = {'H', 'e', 'l', 'l', 'o'};
char s[6] = "Hello";
char s[] = {'H', 'e', 'l', 'l', 'o'};
char s[] = "Hello";
char* s = "Hello"; // defines s as a pointer to a string constant

c. It is not possible to initialize a C-string like this at run time.
d. The following are valid declarations for a C++ character string as a formal parameter for a func-

tion:
char s[];
char* s;

8.2 This will read only as far as the first whitespace. For the given input, it would assign "Hello," to
s.

8.3 This counts the number of uppercase letters in the C-string s, so the output is 6.
8.4 This changes all uppercase letters to lowercase in the C-string s:

123 w. 42nd st., ny, ny 10020-1095
Note that to change the case of a character *p, it must be assigned the return value of the function:

*p = tolower(*p);
8.5 This increments all uppercase letters, changing the W to an X, the S to a T, etc.:

123 X. 42nd Tt., OZ, OZ 10020-1095
8.6 This counts the number of punctuation characters in the C-string s, so the output is 5.
8.7 It changes each character that is followed by a punctuation character to that following character:

123 .. 42nd S.,, N,, NY 1002--1095
8.8 The assignment s1 = s2 simply makes s1 a synonym for s2; i.e., they both point to the same

character. The call strcpy(s1,s2) actually copies the characters of s2 into the C-string s1,
thereby duplicating the C-string.

8.9 a. This assigns the integer 10 to n.
b. This assigns the substring "rford" to s1.
c. This assigns the substring "rd" to s1.
d. This assigns the substring "utherford" to s1.
e. This copies last to first, so that first will also be the string "Hayes".
f. This copies the substring "Hay" into the first part of first, making it "Hayherford".
g. This appends last onto the end of first, making it "RutherfordHayes".
h. This appends the substring "Hay" onto the end of first, making it "RutherfordHay".

8.10 a. 7.
b. 6.
c. 5.
d. 7.

8.11 It prints: ABCDE >= ABC
8.12 It prints: ABCDE < ABCE
8.13 It prints: ABCDE >=
8.14 It prints: !=

Solutions to Problems

8.1 This does not work because the assignment
name[count] = buffer;

CHAP. 8] C-STRINGS 205

assigns the same pointer to each of the C-strings name[0], name[1], etc. Arrays cannot be
assigned this way. To copy one array into another, use strcpy(), or strncpy().

8.2 This copies the C-string s2 into the C-string s1:
char* strcpy(char* s1, const char* s2)
{ char* p; for (p=s1; *s2;)

*p++ = *s2++;
*p = '\0';
return s1;

}
The pointer p is initialized at the beginning of s1. On each iteration of the for loop, the character
*s2 is copied into the character *p, and then both s2 and p are incremented. The loop continues
until *s2 is 0 (i.e., the null character '\0'). Then the null character is appended to the C-string
s1 by assigning it to *p. (The pointer p was left pointing to the byte after the last byte copied when
the loop terminated.) Note that this function does not allocate any new storage. So its first argument
s1 should already have been defined to be a character string with the same length as s2.

8.3 This function appends up to n characters from s2 onto the end of s1. It is the same as the str-
cat() function except that its third argument n limits the number of characters copied:

char* strncat(char* s1, const char* s2, size_t n)
{ char* end; for (end=s1; *end; end++) // find end of s1

;
char* p; for (p=s2; *p && p-s2<n;)

*end++ = *p++;
*end = '\0';
return s1;

}
The first for loop finds the end of C-string s1. That is where the characters from C-string s2 are
to be appended. The second for loop copies characters from s2 to the locations that follow s1.
Notice how the extra condition p-s2<n limits the number of characters copied to n: the expression
p-s2 equals the number of characters copied because it is the difference between p (which points
to the next character to be copied) and s2 (which points to the beginning of the C-string). Note that
this function does not allocate any new storage. It requires that C-string s1 have at least k more bytes
allocated, where k is the smaller of n and the length of C-string s2.

8.4 This requires testing the last letter and the second from last letter of the word to be pluralized. We use
pointers p and q to access these letters.

void pluralize(char* s)
{ int len = strlen(s);

char* p = s + len - 1; // last letter
char* q = s + len - 2; // last 2 letters
if (*p == 'h' && (*q == 'c' || *q == 's')) strcat(p, "es");
else if (*p == 's') strcat(p, "es");
else if (*p == 'y')

if (isvowel(*q)) strcat(p, "s");
else strcpy(p, "ies");

else if (*p == 'z')
if (isvowel(*q)) strcat(p, "zes");
else strcat(p, "es");

else strcat(p, "s");
}

Two of the tests depend upon whether the second from last letter is a vowel, so we define a little bool-
ean function isvowel() for testing that condition:

bool isvowel(char c)
{ return (c=='a' || c=='e' || c=='i' || c=='o' || c=='u');
}

206 C-STRINGS [CHAP. 8

The test driver repeatedly reads a word, prints it, pluralizes it, and prints it again. The loop terminates
when the user enters a single blank for a word:

bool pluralize(char*);
int main()
{ char word[80];

for (;;)
{ cin.getline(word, 80);

if (*word == ' ') break;
cout << "\tThe singular is [" << word << "].\n";
pluralize(word);
cout << "\t The plural is [" << word << "].\n";

}
}

8.5 We assume that names have no more than 20 characters and that there will be no more than 25 names.
We’ll read all the input in at once and store it all in a single buffer. Since each name will be termi-
nated with a NUL character, the buffer needs to be large enough to hold 25*(20 + 1) + 1 charac-
ters (25 21-character strings plus one last NUL character). The program is modularized into five
function calls. The call input(buffer) reads everything into the buffer. The call token-
ize(name, numNames, buffer) “tokenizes” the buffer, storing pointers to its names in
the name array and returning the number of names in numNames. The call print(name,
numNames) prints all the names that are stored in buffer. The call sort(name, num-
Names) does an indirect sort on the names stored in buffer by rearranging the pointers stored in
the name array.

#include <cstring>
#include <iostream>
using namespace std;
const int NAME_LENGTH = 20;
const int MAX_NUM_NAMES = 25;

wish
The singular is [wish].

The plural is [wishes].
hookah

The singular is [hookah].
The plural is [hookahs].

bus
The singular is [bus].

The plural is [buses].
toy

The singular is [toy].
The plural is [toys].

navy
The singular is [navy].

The plural is [navies].
quiz

The singular is [quiz].
The plural is [quizzes].

quartz
The singular is [quartz].

The plural is [quartzes].
computer

The singular is [computer].
The plural is [computers].

CHAP. 8] C-STRINGS 207

const int BUFFER_LENGTH = MAX_NUM_NAMES*(NAME_LENGTH + 1);
void input(char* buffer);
void tokenize(char** name, int& numNames, char* buffer);
void print(char** name, int numNames);
void sort(char** name, int numNames);
int main()
{ char* name[MAX_NUM_NAMES];

char buffer[BUFFER_LENGTH+1];
int numNames;
input(buffer);
tokenize(name, numNames, buffer);
print(name, numNames);
sort(name, numNames);
print(name, numNames);

}
The entire input is done by the single call cin.getline(buffer, BUFFER_LENGTH, '$').
This reads characters until the “$” character is read, storing all the characters in buffer.

void input(char* buffer)
{ // reads up to 25 strings into buffer:

cout << "Enter up to " << MAX_NUM_NAMES << " names, one per"
<< " line. Terminate with \'$\'.\nNames are limited to "
<< NAME_LENGTH << " characters.\n";

cin.getline(buffer, BUFFER_LENGTH, '$');
}

The tokenize() function uses the strtok() function to scan through the buffer, “tokeniz-
ing” each substring that ends with the newline character '\n' and storing its address in the name
array. The for loop continues until p points to the sentinel '$'. Notice that the function’s name
parameter is declared as a char** because it is an array of pointers to chars. Also note that the
counter n is declared as an int& (passed by reference) so that its new value is returned to
main().

void tokenize(char** name, int& n, char* buffer)
{ // copies address of each string in buffer into name array:

char* p = strtok(buffer, "\n"); // p points to each token
for (n = 0; p && *p != '$'; n++)
{ name[n] = p;

p = strtok(NULL, "\n");
}

}
The print() and sort() functions are similar to those seen before, except that both operate
here indirectly. Both functions operate on the name array.

void print(char** name, int n)
{ // prints the n names stored in buffer:

cout << "The names are:\n";
for (int i = 0; i < n; i++)

cout << "\t" << i+1 << ". " << name[i] << endl;
}
void sort(char** name, int n)
{ // sorts the n names stored in buffer:

char* temp;
for (int i = 1; i < n; i++) // Bubble Sort

for (int j = 0; j < n-i; j++)
if (strcmp(name[j], name[j+1]) > 0)
{ temp = name[j];

208 C-STRINGS [CHAP. 8

name[j] = name[j+1];
name[j+1] = temp;

}
}

On this sample run the user entered 7 names and then the sentinel “$”. The names were then printed,
sorted, and printed again.

8.6 The function first locates the end of the C-string. Then it swaps the first character with the last charac-
ter, the second character with the second from last character, etc.:

void reverse(char* s)
{ char* end, temp;

for (end = s; *end; end++)
; // find end of s

while (s < end - 1)
{ temp = *--end;

*end = *s;
*s++ = temp;

}
}

The test driver uses the getline() function to read the C-string. Then it prints it, reverses it, and
prints it again:

void reverse(char*);
int main()
{ char string[80];

cin.getline(string, 80);
cout << "The string is [" << string << "].\n";
reverse(string);
cout << "The string is [" << string << "].\n";

}

Enter up to 25 names, one per line. Terminate with '$'.
Names are limited to 20 characters.
Washington, George
Adams, John
Jefferson, Thomas
Madison, James
Monroe, James
Adams, John Quincy
Jackson, Andrew
$The names are:

1. Washington, George
2. Adams, John
3. Jefferson, Thomas
4. Madison, James
5. Monroe, James
6. Adams, John Quincy
7. Jackson, Andrew

The names are:
1. Adams, John
2. Adams, John Quincy
3. Jackson, Andrew
4. Jefferson, Thomas
5. Madison, James
6. Monroe, James
7. Washington, George

CHAP. 8] C-STRINGS 209

8.7 int main()

{ char word[80];

while (cin >> word)

if (*word) cout << "\t\"" << word << "\"\n";

}

8.8 char* Strchr(const char* s, int c)

{ for (const char* p=s; p && *p; p++)

if (*p==c) return (char*)p;

return 0;

}

8.9 int numchr(const char* s, int c)

{ int n=0;

for (const char* p=s; p && *p; p++)

if (*p==c) ++n;

return n;

}

8.10 char* Strrchr(const char* s, int c)

{ const char* pp=0;

for (const char* p=s; p && *p; p++)

if (*p==c) pp = p;

return (char*)pp;

}

8.11 char* Strstr(const char* s1, const char* s2)

{ if (*s2==0) return (char*)s1; // s2 is the empty string

for (; *s1; s1++)

if (*s1==*s2)

for (const char* p1=s1, * p2=s2; *p1==*p2; p1++, p2++)

if (*(p2+1)==0) return (char*)s1;

return 0;

}

8.12 char* Strncpy(char* s1, const char* s2, size_t n)

{ char* p=s1;

for (; n>0 && *s2; n--)

*p++ = *s2++;

for (; n>0; n--)

*p++ = 0;

return s1;

}

Today is Wednesday.
The string is [Today is Wednesday.].
The string is [.yadsendeW si yadoT].

Today is Wednesday.
"Today"
"is"
"Wednesday."

^Z

210 C-STRINGS [CHAP. 8

8.13 char* Strcat(char* s1, const char* s2)
{ char* p=s1;

for (; *p; p++)
;

for (; *s2; p++, s2++)
*p = *s2;

*p = 0;
return s1;

}
8.14 int Strcmp(char* s1, const char* s2)

{ for (; *s1==*s2; s1++, s2++)
if (*s1==0) return 0;

return (int)(*s1-*s2);
}

8.15 int Strncmp(char* s1, const char* s2, size_t n)
{ for (; n>0; s1++, s2++, n--)

if (*s1!=*s2) return (int)(*s1-*s2);
else if (*s1==0) return 0;

return 0;
}

8.16 size_t Strspn(const char* s1, const char* s2)
{ const char *p1, *p2;

for (p1 = s1 ; *p1; p1++)
for (p2 = s2 ; ; p2++)

if (*p2 == '\0') // end of s2 reached; no match found
return (p1 - s1) ; // so *p1 is not in s2[]

else if (*p1 == *p2) // *p1 is not the one
break ; // aborts inner for loop

return (p1 - s1) ; // returning length of s1
}

8.17 size_t Strcspn(const char* s1, const char* s2)
{ const char *p1, *p2;

for (p1 = s1 ; *p1; p1++)
for (p2 = s2 ; *p2 ; p2++)

if (*p1 == *p2) // *p1 found in s2[]
return (p1 - s1) ; // and p1-s1 is its index

return (p1 - s1) ; // returning length of s1
}

8.18 char* Strpbrk(const char* s1, const char* s2)
{ const char *p1, *p2;

for (p1 = s1 ; *p1; p1++)
for (p2 = s2 ; *p2 ; p2++)

if (*p1 == *p2) // *p1 found in s2[]
return (char*) p1 ; // so returns its address

return NULL ; // no character of s1 is in s2[]
}

8.19 int freqInWords(const char* sentence, char ch)
{ int count = 0 ;

char* copy = new char[strlen(sentence)] ;
copy = strcpy(copy, sentence) ;
if (copy == NULL) return 0 ;
char *p = strtok(copy, "\t\n \v\f\r") ;

CHAP. 8] C-STRINGS 211

while (p) {
for (int i = 0 ; p[i] ; i++)

if (p[i] == ch) // ch found in current word
{ count++ ; // referenced by p

break ; // finished with current word
} // end if (p[i] == ch)

p = strtok(NULL, "\t\n \v\f\r") ; // advance to next word
} // end while (p)
return count ; //

}
8.20
8.21 void capitalize(char* s)

{ if (s == NULL) return;
for (char* p=s; *p; p++)

if (*p>='a' && *p<='z')*p = (char)(*p - 'a' + 'A');
}

8.22 void removeBlanks(char* s)
{ if (s == NULL) return ;

int j = 0 ;
for (int i = 0; s[i] ; i++)

if (s[i] != ' ') s[j++] = s[i] ;
s[j] = '\0' ;

}
8.23 int numWords(const char* s)

{ if (s == NULL) return 0 ;
int wordCount = 0 ;
char * Copy = new char[strlen(s)] ;
Copy = strcpy(Copy, s) ;
char * p = strtok(Copy, "\n \v\t\f\r") ;
while (p)
{ char ch0 = p[0]; // check whether first char is letter

if (((ch0 >= 'a') && (ch0 <= 'z')) || // lowercase
((ch0 >= 'A') && (ch0 <= 'Z'))) // uppercase
wordCount++ ;

p = strtok(NULL, "\n \v\t\f\r") ;
}
return wordCount ;

}
8.24 char* reverseWords(char* reverseS, const char* s)

{ if ((reverseS == NULL) || (s == NULL)) return NULL;
char * Copy = new char[strlen(s)] ;
Copy = strcpy(Copy , s) ;
char * currentReverse = new char[strlen(s)] ;
char * revPtr = reverseS ;
*revPtr = '\0' ; // reverse starts with no words
char * pS;
pS = strtok(Copy, " \t") ; // words separated by space or tab
while (pS)
{ // reverseS = currentWordInS + currentReverse

currentReverse = strcpy(currentReverse, revPtr) ;
revPtr = addWords(revPtr, pS, currentReverse) ;
pS = strtok(NULL, " \t") ; // advance pS to next word in s

212 C-STRINGS [CHAP. 8

} // end while (pS)
return revPtr ;

}

char* addWords(char* leftPLUSright, const char* left,
const char* right)

{ char * both = leftPLUSright ;
const char * pLeft = left ;
const char * pRight = right ;
while (*pLeft)

*(both++) = *(pLeft++) ;
if (*left && *right) // both words nonempty

*(both++) = ' ' ; // so put space between
while (*pRight)

*(both++) = *(pRight++) ;
*both = '\0' ; // terminate new string with null character
return leftPLUSright ;

}

213

Chapter 9

Standard C++ Strings

9.1 INTRODUCTION

The classic C-strings described in Chapter 8 are an important part of C++. They provide a
very efficient means for fast data processing. But as with ordinary arrays, the efficiency of
C-strings comes at a price: the risk of run-time errors, resulting primarily from their dependency
upon the use of the NUL character as a string terminator.

Standard C++ strings provide a safe alternative to C-strings. By encapsulating the length of
the string with the string itself, there is no direct reliance on string terminators.

9.2 FORMATTED INPUT

Recall the idea of a stream in C++ as a conduit through which data passes. Input passes
through an istream object and output passes through an ostream object. The istream class
defines the behavior of objects like cin. The most common behavior is the use of the extraction
operator >> (also called the input operator). It has two operands: the istream object from
which it is extracting characters, and the object to which it copies the corresponding value
formed from those characters. This process of forming a typed value from raw input characters is
called formatting.

EXAMPLE 9.1 The Extraction Operator >> Performs Formatted Input

Suppose the code
int n;
cin >> n;

executes on the input
46

This input actually contains
the 7 characters: ' ', ' ', ' ', ' ', '4', '6', '\n' (four blanks followed by a 4, a 6, and the newline
character). It could be viewed as coming through the input stream. The stream object cin scans charac-
ters one at a time. If the first character it sees is a whitespace character (a blank, a tab, a newline, etc.), it
extracts it and ignores it. It continues to extract and ignore the characters in the stream until it encounters
a non-whitespace character. In this example, that would be the '4'. Since the second operand of the
expression cin >> n has type int, the cin object is looking for digits to form an integer. So after
“eating” any preceding whitespace, it expects to find one of the 12 characters '+', '-', '0', '1',
'2', '3', '4', '5', '6', '7', '8', or '9'. If it encounters any of the other 244 characters, it will
fail. In this case, it sees the '4'. So it extracts it and then continues, expecting more digits. As long as it
encounters only digits, it continues to extract them. As soon as it sees a non-digit, it stops, leaving that
non-digit in the stream. In this case, that means that cin will extract exactly 6 characters: the 4 blanks,
the '4', and the '6'. It discards the 4 blanks and then combines the '4' and the '6' to form the
integer value 46. Then it copies that value into the object n.

int

n istream

cin

4 6 \n

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

214 STANDARD C++ STRINGS [CHAP. 9

After that extrac-
tion has finished, the
newline character is
still in the input
stream. If the next
input statement is another formatted input, then like all whitespace characters that newline character will
be ignored.

The extraction operator >> formats the data that it receives through its input stream. This
means that it extracts characters from the stream and uses them to form a value of the same type
as its second operand. In the process it ignores all whitespace characters that precede the charac-
ters it uses. A direct consequence of this rule is that it is impossible to use the extraction operator
to read whitespace characters. For that you must use an unformatted input function.

The operator expression
cin >> x

has a value that can be interpreted in a condition as boolean; i.e., either true or false

depending upon whether the input is successful. That allows such an expression to be used to
control a loop.

EXAMPLE 9.2 Using the Extraction Operation to Control a Loop

int main()
{ int n;

while (cin >> n)
cout << "n = " << n << endl;

}

The loop continues iterating as long as the integer data is separated by only whitespace. The first
non-whitespace character, the comma ',' causes the input to fail, thereby stopping the loop.

9.3 UNFORMATTED INPUT

The <iostream> files define several functions inputting characters and C-strings that do
not skip over whitespace. The most common are the cin.get() function for reading individual
characters and the cin.getline() function for reading C-strings.

EXAMPLE 9.3 Inputting Characters with the cin.get() Function

while (cin.get(c))
{ if (c >= 'a' && c <= 'z') c += 'A' - 'a'; // capitalize c

cout.put(c);

int
n 46

istream

cin
\n

46
n = 46
22 44 66 88
n = 22
n = 44
n = 66
n = 88
33, 55, 77, 99
n = 33

CHAP. 9] STANDARD C++ STRINGS 215

if (c == '\n') break;
}

This loop is controlled by the input expression (cin.get(c)). When the input stream object cin
detects the end-of-file (signaled interactively by Ctrl+Z or Ctrl+D), the expression evaluates to false and
stops the loop. This loop also terminates with a break statement after reading and processing the
newline character '\n'. The if statement simply capitalizes all lowercase letters, and the
cout.put(c) statement prints the character.

Here is a sample run:

EXAMPLE 9.4 Inputting C-Strings with the cin.getline() Function

This program shows how to read text data line-by-line into an array of C-strings:
const int LEN=32; // maximum word length
const int SIZE=10; // array size
typedef char Name[LEN]; // defines Name to be a C-string type
int main()
{ Name king[SIZE]; // defines king to be an array of 10 names

int n=0;
while(cin.getline(king[n++], LEN) && n<SIZE)

;
--n; // now n == the number of names read
for (int i=0; i<n; i++)

cout << '\t' << i+1 << ". " << king[i] << endl;
}

The object king is an array of 10 objects of type Name. The typedef defines Name as a synonym
for C-strings of 32 chars (31 non-null). The function call cin.getline(king[n++], LEN) reads
characters from cin until either it has extracted LEN-1 characters or it encounters the newline character,
whichever comes first. It copies these characters into the C-string king[n]. If it encounters the newline
character, it extracts it and ignores it (i.e., it does not copy it into the C-string). Then it increments n.

Note that the body of the while loop is
empty. The loop stops when either cin detects
the end-of-file or when n == SIZE. Since n
starts at 0 and is incremented after the last name
is read, its value is always 1 greater than the
number of names read. So it gets decremented
once at the end so that its value equals the
number of names read. Then it is easy to print
them or process them in other ways using a
simple for loop.

When input is read from this text file,
the output is

Cogito, ergo sum!
COGITO, ERGO SUM!

Kings.dat

Kenneth II (971-995)
Constantine III (995-997)
Kenneth III (997-1005)
Malcolm II (1005-1034)
Duncan I (1034-1040)
Macbeth (1040-1057)
Lulach (1057-1058)
Malcolm III (1058-1093)

1. Kenneth II (971-995)
2. Constantine III (995-997)
3. Kenneth III (997-1005)
4. Malcolm II (1005-1034)
5. Duncan I (1034-1040)
6. Macbeth (1040-1057)
7. Lulach (1057-1058)
8. Malcolm III (1058-1093)

216 STANDARD C++ STRINGS [CHAP. 9

9.4 THE STANDARD C++ string TYPE

Standard C++ defines its string type in the <string> header file. Objects of type
string can be declared and initialized in several ways:

string s1; // s1 contains 0 characters
string s2 = "New York"; // s2 contains 8 characters
string s3(60, '*'); // s3 contains 60 asterisks
string s4 = s3; // s4 contains 60 asterisks
string s5(s2, 4, 2); // s5 is the 2-character string "Yo"

If the string is not initialized, like s1 here, then it represents the empty string containing 0
characters. A string can be initialized the same way a C-string is, like s2 here. Or a string

can be initialized to hold a given number of the same character, like s3 here which holds 60
stars. Unlike a C-string, C++ string objects can be initialized with a copy of another existing
string object, like s4 here, or with a substring of an existing string, like s5. Note that the
standard substring designator has three parts: the parent string (s2, here), the starting character
(s2[4], here), and the length of the substring (2, here).

Formatted input works the same way for C++ strings as it does for C-strings: preceding
whitespace is skipped, and input is halted at the end of the first whitespace-terminated word.
C++ strings have a getline() function that works almost the same way as the
cin.getline() function for C-strings:

string s = "ABCDEFG";
getline(cin, s); // reads the entire line of characters into s

They also use the subscript operator the same way that C-strings do:
char c = s[2]; // assigns 'C' to c
s[4] = '*'; // changes s to "ABCD*FG"

Note that the array index always counts how many characters precede the indexed character.
C++ strings can be converted to C-strings like this:

const char* cs = s.c_str(); // converts s into the C-string cs

The c_str() function has return type const char*.
The C++ string class also defines a length() function that can be used like this to

determine how many characters are stored in a string:
cout << s.length() << endl; // prints 7 for the string s == "ABCD*FG"

C++ strings can be compared using the relational operators like fundamentals types:
if (s2 < s5) cout << "s2 lexicographically precedes s5\n";
while (s4 == s3) //...

You can also concatenate and append strings using the + and += operators:
string s6 = s + "HIJK"; // changes s6 to "ABCD*FGHIJK"
s2 += s5; // changes s2 to "New YorkYo"

The substring() function is used like this:
s4 = s6.substr(5,3); // changes s4 to "FGH";

The erase() and replace() function work like this:
s6.erase(4, 2); // changes s6 to "ABCDGHIJK"
s6.replace(5, 2, "xyz"); // changes s6 to "ABCDGxyzJK"

The find() function returns the index of the first occurrence of a given substring:
string s7 = "Mississippi River basin";
cout << s7.find("si") << endl; // prints 3
cout << s7.find("so") << endl; // prints 23, the length of the string

If the find() function fails, it returns the length of the string it was searching.

CHAP. 9] STANDARD C++ STRINGS 217

EXAMPLE 9.5 Using the Standard C++ string Type

This code adds a nonsense syllable after each “t” that precedes a vowel. For example, the sentence
The first step is to study the status of the C++ Standard.

is replaced by the sentence:
The first stegep is tego stegudy the stegatus of the C++ Stegandard.

It uses an auxiliary boolean function named is_vowel():
string word;
int k;
while (cin >> word)
{ k = word.find("t") + 1;

if (k < word.length() && is_vowel(word[k]))
word.replace(k, 0, "eg");

cout << word << ' ';
}

The while loop is controlled by the input, terminating when the end-of-file is detected. It reads one
word at a time. If the letter t is found and if it is followed by a vowel, then e.g. is inserted between
that t and the vowel.

9.5 FILES

File processing in C++ is very similar to ordinary interactive input and output because the
same kind of stream objects are used. Input from a file is managed by an ifstream object the
same way that input from the keyboard is managed by the istream object cin. Similarly,
output to a file is managed by an ofstream object the same way that output to the monitor or
printer is managed by the ostream object cout. The only difference is that ifstream and
ofstream objects have to be declared explicitly and initialized with the external name of the
file which they manage. You also have to #include the <fstream> header file (or
<fstream.h> in pre-Standard C++) that defines these classes.

EXAMPLE 9.6 Capitalizing All the Words in a Text File

Here is a complete program that reads words from the external file named input.txt, capitalizes
them, and then writes them to the external file named output.txt:

#include <fstream>
#include <iostream>
using namespace std;
int main()
{ ifstream infile("input.txt");

ofstream outfile("output.txt");
string word;
char c;
while (infile >> word)
{ if (word[0] >= 'a' && word[0] <= 'z') word[0] += 'A' - 'a';

outfile << word;
infile.get(c);
outfile.put(c);

}
}

218 STANDARD C++ STRINGS [CHAP. 9

The picture below illustrates the process.

Notice that the program has four objects: an ifstream object named infile, an ofstream
object named outfile, a string object named word, and a char object named c.

The advantage of using external files instead of command line redirection is that there is no
limit to the number of different files that you can use in the same program.

EXAMPLE 9.7 Merging Two Sorted Data Files

This program merges two files into a third file. The numbers stored in the files north.dat and
south.dat are sorted in increasing order. The program reads these two input files simultaneously and
copies all their data to the file combined.dat so that they are all together in increasing order:

bool more(ifstream& fin, int& n)
{ if (fin >> n) return true;

else return false;
}
bool copy(ofstream& fout, ifstream& fin, int& n)
{ fout << " " << n;

return more(fin, n);
}
int main()
{ ifstream fin1("north.dat");

ifstream fin2("south.dat");
ofstream fout("combined.dat");
int n1, n2;
bool more1 = more(fin1, n1);
bool more2 = more(fin2, n2);

string

word And

ostream

outfile

istream

infile

char

c
‘Twas Brillig, And The Slithy Toves
Did Gyre And Gimble In The Wabe;
All Mimsy Were The Borogroves,
And The Mome Raths Outgrabe.

‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogroves,
And the mome raths outgrabe.

output.txt

input.txt

int

n1 99 ifstream

fin1

bool

more2 false

int

n2 85

bool

more1 false

ofstream

fout

ifstream

fin2

20 22 25 30 33 40 44 47 48 50

52 55 60 66 70 72 75 77 80 85

88 99

combined.dat

20 30 33 47 50 60 66 72 85

south.dat

22 25 40 44 48 52 55 70 75 77

80 88 99

north.dat

CHAP. 9] STANDARD C++ STRINGS 219

while (more1 && more2)
if (n1 < n2) more1 = copy(fout, fin1, n1);
else more2 = copy(fout, fin2, n2);

while (more1)
more1 = copy(fout, fin1, n1);

while (more2)
more2 = copy(fout, fin2, n2);

fout << endl;
}

The more() function is used to read the data from the input files. Each call attempts to read one
integer from the fin file to the reference parameter n. It returns true if it is successful, otherwise
false. The copy() function writes the value of n to the fout file and then calls the more()
function to read the next integer from the fin file into n. It also returns true if and only if it is
successful.

The first two calls to the more() function read 22 and 20 into n1 and n2, respectively. Both calls
return true which allows the main while loop to begin. On that first iteration, the condition (n1 <
n2) is false, so the copy() function copies 20 from n2 into the combined.dat file and then calls
the more() function again which reads 30 into n2. On the second iteration, the condition (n1 < n2)
is true (because 22 < 30), so the copy() function copies 22 from n1 into the combined.dat file
and then calls the more() function again which reads 25 into n1. The next iteration writes 25 to the
output file and then reads 40 into n1. The next iteration writes 30 to the output file and then reads 33 into
n2. This process continues until 85 is written to the output file from n2 and the next call to more()
fails, assigning false to more2. That stops the main while loop. Then the second while loop
iterates three times, copying the last three integers from north.dat to combined.dat before it sets
more1 to false. The last loop does not iterate at all.

Note that file objects (fin1, fin2, fout) are passed to function the same way any other objects are
passed. However, they must always be passed by reference.

9.6 STRING STREAMS

A string stream is a stream object that allows a string to be used as an internal text file.
This is also called in-memory I/O. String streams are quite useful for buffering input and output.
Their types istringstream and ostringstream are defined in the <sstream> header file.

EXAMPLE 9.8 Using an Output String Stream

This program creates four objects: a character string s,
an integer n, a floating-point number x, and an output
string stream oss:

#include <iostream>
#include <sstream>
#include <string>
using namespace std;
void print(ostringstream&);
int main()
{ string s="ABCDEFG";

int n=33;
float x=2.718;
ostringstream oss;

istringstream

iss ABCDEFG 33 2.718

ABCDEFG 33
intstring

ns 2.718
float

x

220 STANDARD C++ STRINGS [CHAP. 9

print(oss);
oss << s;
print(oss);
oss << " " << n;
print(oss);
oss << " " << x;
print(oss);

}
void print(ostringstream& oss)
{ cout << "oss.str() = \"" << oss.str() << "\"" << endl;
}

The output string stream object oss acts like the output stream object cout: the values of the string s,
the integer n, and the number x are written to it by means of the insertion operator <<.

While the internal object oss is like an external text file, its contents can be accessed as a string
object by the call iss.str().

EXAMPLE 9.9 Using an Input String Stream

This program is similar to the one in Example 9.8
except that it reads from an input string stream iss
instead of writing to an output string stream.:

void print(string&,int,float,istringstream&);
int main()
{ string s;

int n=0;
float x=0.0;
istringstream iss("ABCDEFG 44 3.14");
print(s,n,x,iss);
iss >> s;
print(s,n,x,iss);
iss >> n;
print(s,n,x,iss);
iss >> x;
print(s,n,x,iss);

}

void print(string& s, int n, float x, istringstream& iss)
{ cout << "s = \"" << s << "\", n = " << n << ", x = " << x

<< ", iss.str() = \"" << iss.str() << "\"" << endl;
}

The input string stream object iss acts like the input stream object cin: values for the string s, the
integer n, and the number x are read from it by means of the extraction operator >>. But the iss object
also acts like an external file: reading from it does not change its contents.

oss.str() = ""
oss.str() = "ABCDEFG"
oss.str() = "ABCDEFG 33"
oss.str() = "ABCDEFG 33 2.718"

istringstream

iss ABCDEFG 44 3.14

ABCDEFG 44
intstring

ns 3.14
float

x

s = "", n = 0, x = 0, iss.str() = "ABCDEFG 44 3.14"
s = "ABCDEFG", n = 0, x = 0, iss.str() = "ABCDEFG 44 3.14"
s = "ABCDEFG", n = 44, x = 0, iss.str() = "ABCDEFG 44 3.14"
s = "ABCDEFG", n = 44, x = 3.14, iss.str() = "ABCDEFG 44 3.14"

CHAP. 9] STANDARD C++ STRINGS 221

Review Questions

9.1 What is the difference between a C-string and a C++ string?
9.2 What is the difference between formatted input and unformatted input?
9.3 Why can’t whitespace be read with the extraction operator?
9.4 What is a stream?
9.5 How does C++ simplify the processing of strings, external files, and internal files?
9.6 What is the difference between sequential access and direct access?
9.7 What do the seekg() and seekp() functions do?
9.8 What do the read() and write() functions do?

Problems

9.1 Describe what the following code does:
char cs1[] = "ABCDEFGHIJ";
char cs2[] = "ABCDEFGH";
cout << cs2 << endl;
cout << strlen(cs2) << endl;
cs2[4] = 'X';
if (strcmp(cs1, cs2) < 0) cout << cs1 << " < " << cs2 << endl;
else cout << cs1 << " >= " << cs2 << endl;
char buffer[80];
strcpy(buffer, cs1);
strcat(buffer, cs2);
char* cs3 = strchr(buffer, 'G');
cout << cs3 << endl;

9.2 Describe what the following code does:
string s = "ABCDEFGHIJKLMNOP";
cout << s << endl;
cout << s.length() << endl;
s[8] = '!';
s.replace(8, 5, "xyz");
s.erase(6, 4);
cout << s.find("!");
cout << s.find("?");
cout << s.substr(6, 3);
s += "abcde";
string part(s, 4, 8);
string stars(8, '*');

9.3 Describe what happens when the code
string s;
int n;
float x;
cin >> s >> n >> x >> s;

executes on each of the following inputs:
a. ABC 456 7.89 XYZ
b. ABC 4567 .89 XYZ
c. ABC 456 7.8 9XYZ
d. ABC456 7.8 9 XYZ
e. ABC456 7 .89 XYZ
f. ABC4 56 7.89XY Z
g. AB C456 7.89 XYZ
h. AB C 456 7.89XYZ

222 STANDARD C++ STRINGS [CHAP. 9

9.4 Trace the execution of the merge program in Example 9.7 on page 218 on the following two
data files:

Show each value of the variables n1, n2, more1, and more2, as they change.
9.5 Write a program that reads full names, one per line, and then prints them in the standard tele-

phone directory format. For example, the input
Johann Sebastian Bach
George Frederic Handel
Carl Phillipp Emanuel Bach
Joseph Haydn
Johann Christian Bach
Wolfgang Amadeus Mozart

would be printed as:
Bach, Johann S.
Handel, George F.
Bach, Carl P. E.
Haydn, Joseph
Bach, Johann C.
Mozart, Wolfgang A.

9.6 Write a program that counts and prints the number of lines, words, and letter frequencies in
its input. For example, the input:

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

would produce the output:
The input had 5 lines, 37 words,
and the following letter frequencies:

A: 10 B: 3 C: 2 D: 13 E: 15 F: 1 G: 3 H: 4
I: 7 J: 0 K: 1 L: 8 M: 0 N: 12 O: 20 P: 0
Q: 0 R: 11 S: 5 T: 11 U: 3 V: 3 W: 6 X: 0
Y: 2 Z: 0

9.7 Implement and test the following function:
void reduce(string& s);
// Changes all capital letters in s to lowercase
// and removes all non-letters from the beginning and end.
// EXAMPLE: if s == "'Tis,", then reduce(s) makes it "tis"

Hint: First write and test the following three boolean functions:
bool is_uppercase(char c);
bool is_lowercase(char c);
bool is_letter(char c);

9.8 Modify your program from Problem 9.6 so that it counts the frequencies of words instead of
letters. For example, the input

[I] then went to Wm. and Mary college, to wit in the spring of
1760, where I continued 2 years. It was my great good fortune,
and what probably fixed the destinies of my life that Dr. Wm.
Small of Scotland was then professor of Mathematics, a man
profound in most of the useful branches of science, with a happy
talent of communication, correct and gentlemanly manners, & an
enlarged & liberal mind. He, most happily for me, became soon

31 34 41 45 49 56 63 74 92 95

south.dat

27 35 38 52 55 61 81 87

north.dat

CHAP. 9] STANDARD C++ STRINGS 223

attached to me & made me his daily companion when not engaged in
the school; and from his conversation I got my first views of the
expansion of science & of the system of things in which we are
placed.

would produce the output
The input had 11 lines and 120 words,
with the following frequencies:

i: 3 then: 2 went: 1
to: 3 wm: 2 and: 4

mary: 1 college: 1 wit: 1
in: 4 the: 6 spring: 1
of: 11 : 6 where: 1

continued: 1 years: 1 it: 1
was: 2 my: 3 great: 1

good: 1 fortune: 1 what: 1
probably: 1 fixed: 1 destinies: 1

life: 1 that: 1 dr: 1
small: 1 scotland: 1 professor: 1

mathematics: 1 a: 2 man: 1
profound: 1 most: 2 useful: 1
branches: 1 science: 2 with: 1

happy: 1 talent: 1 communication: 1
correct: 1 gentlemanly: 1 manners: 1

an: 1 enlarged: 1 liberal: 1
mind: 1 he: 1 happily: 1
for: 1 me: 3 became: 1

soon: 1 attached: 1 made: 1
his: 2 daily: 1 companion: 1

when: 1 not: 1 engaged: 1
school: 1 from: 1 conversation: 1

got: 1 first: 1 views: 1
expansion: 1 system: 1 things: 1

which: 1 we: 1 are: 1
placed: 1

9.9 Write a program that right-justifies text. It should read and echo a sequence of left-justified
lines and then print them in right-justified format. For example, the input

Listen, my children, and you shall hear
Of the midnight ride of Paul Revere,
On the eighteenth of April, in Seventy-five;
Hardly a man is now alive
Who remembers that famous day and year.

would be printed as
Listen, my children, and you shall hear

Of the midnight ride of Paul Revere,
On the eighteenth of April, in Seventy-five;

Hardly a man is now alive
Who remembers that famous day and year.

9.10 Implement and test the following function:
string Roman(int n);
// Returns the Roman numeral equivalent to the Hindu-Arabic
// numeral n.
// PRECONDITIONS: n > 0, n < 3888
// EXAMPLES: Roman(1776) returns "MDCCLXXVI",
// Roman(1812) returns "MDCCCXII", Roman(1945) returns "MCMXLV"

224 STANDARD C++ STRINGS [CHAP. 9

9.11 Implement and test the following function:
int HinduArabic(string s);

// Returns the Hindu-Arabic numeral equivalent to the Roman

// numeral given in the string s.

// PRECONDITIONS: s contains a valid Roman numeral

// EXAMPLES: HindArabic("MDCCLXXVI") returns 1776,

// HindArabic("MDCCCXII") returns 1812

Note that this is the inverse of the Roman() function in Problem 9.10. [Hint: Write an aux-
iliary function int v(string s, int i) that returns the digit for the Roman numeral
character s[i]; e.g., v("MDCCCXII", 1) returns 500.]

9.12 Implement Algorithm G.1 on page 403 to convert decimal numerals to hexadecimal:
string hexadecimal(int n);

// Returns the hexadecimal numeral that represents n.

// PRECONDITION: n >= 0

// POSTCONDITION: each character in the returned string is a

// hexadecimal digit and that string is the dexadecimal

// equivalent of n

// EXAMPLE: hexadecimal(11643) returns "2d7b"

[Hint: Write an auxiliary function char c(int k) that returns the hexadecimal character
for the hexadecimal digit k; e.g., c(14) returns 'e'.]

9.13 Implement Algorithm G.2 on page 403 to convert hexadecimal numerals to decimal:
int decimal(string s);

// Returns the decimal numeral that represents the hexadecimal

// numeral stored in the string s.

// PRECONDITION: s.length() > 0 and each s[i] is a hexadecimal

// digit

// POSTCONDITION: the returns value is the decimal equivalent

// EXAMPLE: decimal("2d7b") returns 11643

Note that this is the inverse of the hexadecimal() function in Problem 9.12. [Hint: Write
an auxiliary function int v(string s, int i) that returns the decimal digit for the
hexadecimal character s[i]; e.g., v("2d7b", 3) returns 12.]

9.14 Implement and test the following function:
void reverse(string& s);

// Reverses the string s.

// POSTCONDITION: s[i] <--> s[len-i-1]

// EXAMPLE: reverse(s) changes s = "ABCDEFG" into "GFEDCBA"

[Hint: Use a temporary string.]
9.15 Implement and test the following function:

bool is_palindrome(string s);

// Returns true iff s is a palindrome

// EXAMPLES: is_palindrome("RADAR") returns true,

// is_palindrome("ABCD") returns false

9.16 Modify the program in Example 9.7 on page 218 so that it merges the two sorted files of
names shown at the top of the next page, writing the resulting sorted lines both to a file
named Presidents.dat and to cout:

[Hint: Use getline(fin, s).]

CHAP. 9] STANDARD C++ STRINGS 225

Answers to Review Questions

9.1 A C-string is an array of chars that uses the null character '\0' to mark the end of the string. A C++
string is an object whose string type is defined in the <string> file and which has a large rep-
ertoire of function, such as length() and replace():

char cs[8] = "ABCDEFG"; // cs is a C-string

string s = "ABCDEFG"; // s is a C++ string

cout << s << " has " << s.length() << " characters.\n";

s.replace(4, 2, "yz"); // changes s to "ABCDyzG"

9.2 Formatted input uses the extraction operator >> which ignores whitespace. Unformatted input uses
the get() and getline() functions. The get() function reads the next character in the input
stream without ignoring whitespace. The getline() function reads all the rest of the characters in
the input stream until it reaches the newline character '\n', which it extracts and ignores.

9.3 Whitespace (blanks, tabs, newlines, etc.) cannot be read with the extraction operator because it ignores
all whitespace.

9.4 A stream is an object that manages input and output between a program and a data source. C++ allows
<iostream> objects for interactive I/O (viz., cin and cout), <fstream> objects for exter-
nal files, and <sstream> objects for internal files (string streams).

9.5 C++ simplifies the processing of strings, external files, and internal files, by defining the same family
of functions and operations for all three. For example, the extraction operator >> works the same way
for inputting a double from the keyboard, from an external file, or from a string stream.

9.6 Sequential access must begin at the beginning and access each element in order, one after the other.
Direct access allows the access of any element directly by locating it by its index number or address.
Arrays allow direct access. Magnetic tape has only sequential access, but CDs had direct access. If you
are on a railroad train, to go from one car to another you must use sequential access. But when you
board the train initially you have direct access. Direct access is faster than sequential access, but it
requires some external mechanism (array index, file byte number, railroad platform).

9.7 The seekg() and seekp() functions position the get pointer and the put pointer, respectively,
in an external file to allow direct access. For example, the call input.seekg(24) positions the
get pointer at byte number 24 in the file bound to the file stream named input.

9.8 The read() and write() functions are used for direct access input and output, respectively, of
external files. For example, the call input.read(s.c_str(), n) would copy n bytes to the
string s directly from the file bound to the file stream named input.

Bush, George Herbert Walker
Coolidge, Calvin
Eisenhower, Dwight David
Ford, Gerald Rudolph
Harding, Warren Gamaliel
Hoover, Herbert Clark
McKinley, William
Nixon, Richard Milhous
Reagan, Ronald Wilson
Roosevelt, Theodore
Taft, William Howard

Carter, James Earl
Clinton, William Jefferson
Johnson, Lyndon Baines
Kennedy, John Fitzgerald
Roosevelt, Franklin
Truman, Harry S
Wilson, Woodrow

Republicans Democrats

226 STANDARD C++ STRINGS [CHAP. 9

Solutions to Problems

9.1 char cs1[] = "ABCDEFGHIJ"; // defines cs1 to be that C-string

char cs2[] = "ABCDEFGH"; // defines cs1 to be that C-string
cout << cs2 << endl; // prints: ABCDEFGH

cout << strlen(cs2) << endl; // prints: 8

cs2[4] = 'X'; // changes cs2 to "ABCDXFGH"

if (strcmp(cs1, cs2) < 0) cout << cs1 << " < " << cs2 << endl;
else cout << cs1 << " >= " << cs2 << endl;

// prints: ABCDEFGHIJ < ABCDXFGH

char buffer[80]; // defines buffer to be a C-string of < 80 chars

strcpy(buffer, cs1); // changes buffer to "ABCDEFGHIJ"
strcat(buffer, cs2); // changes buffer to "ABCDEFGHIJABCDXFGH"

char* cs3 = strchr(buffer, 'G'); // make cs3 point to buffer[6]

cout << cs3 << endl; // prints: GHIJABCDXFGH

9.2 string s = "ABCDEFGHIJKLMNOP"; // defines s to be that string
cout << s << endl; // prints: ABCDEFGHIJKLMNOP

cout << s.length() << endl; // prints: 16

s[8] = '!'; // changes s to "ABCDEFGH!JKLMNOP"
s.replace(10, 5, "xyz"); // changes s to "ABCDEFGH!JxyzP"

s.erase(2, 4); // changes s to "ABGH!JxyzP"

cout << s.find("!") << endl; // prints: 4

cout << s.find("?") << endl; // prints: 10
cout << s.substr(3, 6) << endl; // prints: H!Jxyz

s += "abcde"; // changes s to "ABGH!JxyzPabcde"

string part(s, 1, 10); // defines part to be "BGH!JxyzPa"

string stars(8, '*'); // defines stars to be "********"
9.3 a. ABC 456 7.89 XYZ

Assigns "ABC" to s, 456 to n, 7.89 to x, and then "XYZ" to s.
b. ABC 4567 .89 XYZ

Assigns "ABC" to s, 4567 to n, 0.89 to x, and then "XYZ" to s.
c. ABC 456 7.8 9XYZ

Assigns "ABC" to s, 456 to n, 7.8 to x, and then "9XYZ" to s.
d. ABC456 7.8 9 XYZ

Assigns "ABC456" to s, and then crashes because 7.8 is not a valid integer literal.
e. ABC456 7 .89 XYZ

Assigns "ABC456" to s, 7 to n, 0.89 to x, and then "XYZ" to s.
f. ABC4 5 67.89XY Z

Assigns "ABC4" to s, 56 to n, and then crashes because 7.89XY is not a valid float
literal.

g. AB C456 7.89 XYZ

Assigns "AB" to s and then crashes because C456 is not a valid integer literal. (Note that
the hexidecimal numeral c456, which can also be written C456, would qualify as a valid
integer literal. But on input, hexadecimal numerals must be prefixed with “0x”, as in
0xc456.)

h. AB C 456 7.89XYZ

Assigns "ABC" to s and then crashes because C is not a valid integer literal.

CHAP. 9] STANDARD C++ STRINGS 227

9.4 Tracing the merge program:

9.5 int main()
{ string word, first, last;

char c;
bool is_first, is_last = true;
string name[32];
int n=0;
while (cin >> word)
{ cin.get(c); // should be either a blank or a newline

is_first = is_last; // current word is a first name
is_last = bool(c == '\n'); // current word is a last name
if (is_first) first = word;
else if (is_last) name[n++] = word + ", " + first;
else first += " " + word.substr(0,1) + "."; // add initial

}
--n;
for (int i=0; i<n; i++)

cout << '\t' << i+1 << ". " << name[i] << endl;
}

9.6 int main()
{ string word;

const int SIZE=91; // for frequency array (int('Z') == 90)
int lines=0, words=0, freq[SIZE] = {0}, len;
char c;
while (cin >> word)
{ ++words;

cin.get(c);
if (c == '\n') ++lines;
len = word.length();
for (int i=0; i<len; i++)
{ c = word[i];

n1 n2 more1 more2

27 31 true true
35

34
41

38
52

45
49

56
55
61

63
81

74

92
87 false

95 false

228 STANDARD C++ STRINGS [CHAP. 9

if (c >= 'a' && c <= 'z') c += 'A' - 'a'; // capitalize c
if (c >= 'A' && c <= 'Z') ++freq[c]; // count c

}
}
cout << "The input had " << lines << " lines, " << words

<< " words,\nand the following letter frequencies:\n";
for (int i=65; i<SIZE; i++)
{ cout << '\t' << char(i) << ": " << freq[i];
if (i > 0 && i%8 == 0) cout << endl; // print 8 to a line

}
cout << endl;

}
9.7 bool is_upper(char c)

{ return bool(c >= 'A' && c <= 'Z');
}
bool is_lower(char c)
{ return bool(c >= 'a' && c <= 'z');
}
bool is_letter(char c)
{ return bool(is_upper(c) || is_lower(c));
}
void reduce(string& s)
{ while (s.length() > 0 && !is_letter(s[0]))

s.erase(0, 1);
int k = s.length() - 1;
while (k > 0 && !is_letter(s[k--]))

s.erase(k+1, 1);
int len = s.length();
if (len == 0) return;
for (int i=0; i<len; i++)

if (is_upper(s[i])) s[i] += 'a' - 'A';
}

9.8 int main()
{ ifstream in("Pr0907.in");

string s;
const int SIZE=1000; // assume at most 1000 different words
string word[SIZE]; // holds words read
int lines=0, words=0, n=0, freq[SIZE]={0}, i;
char c;
while (in >> s)
{ reduce(s);

if (s.length() == 0) continue;
++words;
in.get(c);
if (c == '\n') ++lines; // count line
for (i=0; i<n; i++)

if (word[i] == s) break;
if (i == n) word[n++] = s; // add word to list
++freq[i]; // count word

}
cout << "The input had " << lines << " lines and " << words

<< " words,\nwith the following frequencies:\n";

CHAP. 9] STANDARD C++ STRINGS 229

for (int i=0; i<n; i++)
{ s = word[i];

if (i > 0 && i%3 == 0) cout << endl; // print 3 to a line
cout << setw(16) << setiosflags(ios::right)

<< s.c_str() << ": " << setw(2) << freq[i];
}
cout << endl;

}
9.9 int main()

{ const int SIZE=100; // maximum number of lines stored
string line[SIZE], s;
int n=0, len, maxlen=0;
while (!cin.eof())
{ getline(cin, s);

len = s.length();
if (len > 0) cout << s << endl;
if (len > maxlen) maxlen = len;
line[n++] = s;

}
--n; // n == number of lines read
for (int i=0; i<n; i++)
{ s = line[i];

len = s.length();
cout << string(maxlen-len, ' ') << s << endl;

}
}

9.10 string Roman(int n)
{ int d3 = n/1000; // the thousands digit

string s(d3, 'M');
n %= 1000;
int d2 = n/100; // the hundreds digit
if (d2 == 9) s += "CM";
else if (d2 >= 5)
{ s += "D";

s += string(d2-5, 'C');
}
else if (d2 == 4) s += "CD";
else s += string(d2, 'C');
n %= 100;
int d1 = n/10; // the tens digit
if (d1 == 9) s += "XC";
else if (d1 >= 5)
{ s += "L";

s += string(d1-5, 'X');
}
else if (d1 == 4) s += "XL";
else s += string(d1, 'X');
n %= 10;
int d0 = n/1; // the ones digit
if (d0 == 9) s += "IX";
else if (d0 >= 5)
{ s += "V";

230 STANDARD C++ STRINGS [CHAP. 9

s += string(d0-5, 'I');
}
else if (d0 == 4) s += "IV";
else s += string(d0, 'I');
return s;

}
9.11 int v(string s, int i)

{ char c = s[i];
if (c == 'M') return 1000;
if (c == 'D') return 500;
if (c == 'C') return 100;
if (c == 'L') return 50;
if (c == 'X') return 10;
if (c == 'V') return 5;
if (c == 'I') return 1;
return 0;

}
int HindArabic(string s)
{ int n0=0, n1=0, n=0;

for (int i=0; i<s.length(); i++)
{ n0 = n1;

n += n1 = v(s,i);
if (n1>n0) n -= 2*n0;

}
return n;

}
9.12 char c(int k)

{ assert(k >= 0 && k <= 15);
if (k < 10) return char(k + '0');
return char(k - 10 + 'a');

}
string hexadecimal(int n)
{ if (n == 0) return string(1, '0');

string s;
while (n > 0)
{ s = string(1, c(n%16)) + s;

n /= 16;
}
return s;

}
9.13 int v(string s, int i)

{ char c = s[i];
assert(c >= '0' && c <= '9' || c >= 'a' && c <= 'f');
if (c >= '0' && c <= '9') return int(c - '0');
else return int(c - 'a' + 10);

}
int decimal(string s)
{ int len = s.length();

assert(len > 0);
int n=0;
for (int i=0; i<len; i++)

n = 16*n + v(s,i);

CHAP. 9] STANDARD C++ STRINGS 231

return n;
}

9.14 void reverse(string& s)
{ string temp = s;

int len = s.length();
for (int i=0; i<len; i++)

s[i] = temp[len-i-1];
}

9.15 bool is_palindrome(string s)
{ int len = s.length();

for (int i=0; i<len/2; i++)
if (s[i] != s[len-i-1]) return false;

return true;
}

9.16 bool more(ifstream& fin, string& s)
{ if (getline(fin, s)) return true;

else return false;
}

bool copy(ofstream& fout, ifstream& fin, string& s)
{ fout << s << endl;

cout << s << endl;
return more(fin,s);

}
int main()
{ ifstream fin1("Democrats.dat");

ifstream fin2("Republicans.dat");
ofstream fout("Presidents.dat");
string s1, s2;
bool more1 = more(fin1, s1);
bool more2 = more(fin2, s2);
while (more1 && more2)

if (s1 < s2) more1 = copy(fout, fin1, s1);
else more2 = copy(fout, fin2, s2);

while (more1)
more1 = copy(fout, fin1, s1);

while (more2)
more2 = copy(fout, fin2, s2);

fout << endl;
}

232

Chapter 10

Classes

10.1 INTRODUCTION

A class is like an array: it is a derived type whose elements have other types. But unlike an
array, the elements of a class may have different types. Furthermore, some elements of a class
may be functions, including operators.

Although any region of storage may generally be regarded as an “object”, the word is usually
used to describe variables whose type is a class. Thus “object-oriented programming” involves
programs that use classes. We think of an object as a self-contained entity that stores its own data
and owns its own functions. The functionality of an object gives it life in the sense that it
“knows” how to do things on its own.

There is much more to object-oriented programming than simply including classes in your
programs. However, that is the first step. An adequate treatment of the discipline lies far beyond
an introductory outline such as this.

10.2 CLASS DECLARATIONS

Here is a declaration for a class whose objects represent rational numbers (i.e., fractions):
class Ratio

{ public:

void assign(int, int);

double convert();

void invert();

void print();

private:

int num, den;

};

The declaration begins with the keyword class followed by the name of the class and ends
with the required semicolon. The name of this class is Ratio.

The functions assign(), convert(), invert(), and print() are called member
functions because they are members of the class. Similarly, the variables num and den are
called member data. Member functions are also called methods and services.

In this class, all the member functions are designated as public, and all the member data are
designated as private. The difference is that public members are accessible from outside the
class, while private members are accessible only from within the class. Preventing access
from outside the class is called “information hiding.” It allows the programmer to compartmen-
talize the software which makes it easier to understand, to debug, and to maintain.

The following example shows how this class could be implemented and used.

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 10] CLASSES 233

EXAMPLE 10.1 Implementing the Ratio Class

class Ratio
{ public:

void assign(int, int);
double convert();
void invert();
void print();

private:
int num, den;

};

int main()
{ Ratio x;

x.assign(22,7);
cout << "x = ";
x.print();
cout << " = " << x.convert() << endl;
x.invert();
cout << "1/x = "; x.print();
cout << endl;

}

void Ratio::assign(int numerator, int denominator)
{ num = numerator;

den = denominator;
}

double Ratio::convert()
{ return double(num)/den;
}

void Ratio::invert()
{ int temp = num;

num = den;
den = temp;

}

void Ratio::print()
{ cout << num << '/' << den;
}

Here x is declared to be an object of the Ratio class. Consequently, it has its own internal data
members num and den, and it has the ability to call the four class member functions assign(),
convert(), invert(), and print(). Note that a member function like invert() is called by
prefixing its name with the name of its owner: x.invert(). Indeed, a member function can only be
called this way. We say that the object x “owns” the call.

An object like x is declared just like an ordinary variable. Its type is Ratio. We can think of this
type as a “user-defined type.” C++ allows us to extend the definition of the programming language by

x = 22/7 = 3.14286
1/x = 7/22

234 CLASSES [CHAP. 10

adding the new Ratio type to the collection of predefined numeric types int, float, etc. We can
envision the object x like this:

Notice the use of the specifier Ratio:: as a prefix to each function name. This is necessary for each
member function definition that is given outside of its class definition. The scope resolution operator ::
is used to tie the function definition to the Ratio class. Without this specifier, the compiler would not
know that the function being defined is a member function of the Ratio class. This can be avoided by
including the function definitions within declaration, as shown below in Example 10.2.

When an object like the Ratio object x in Example 10.1 is declared, we say that the class
has been instantiated, and we call the object an instance of the class. And just as we may have
many variables of the same type, we may also have may instances of the same class:

Ratio x, y, z;

EXAMPLE 10.2 A Self-Contained Implementation of the Ratio Class

Here’s the same Ratio class with the definitions of its member functions included within the class
declaration:

class Ratio
{ public:

void assign(int n, int d) { num = n; den = d; }
double convert() { return double(num)/den; }
void invert() { int temp = num; num = den; den = temp; }
void print() { cout << num << '/' << den; }

private:
int num, den;

};

In most cases, the preferred style is to define the member functions outside of the class decla-
ration, using the scope resolution operator as shown in Example 10.1. That format physically
separates the function declarations from their definitions, consistent with the general principle of
information hiding. In fact, the definitions are often put in a separate file and compiled sepa-
rately. The point is that application programs that use the class need only know what the objects
can do; they do not need to know how the objects do it. The function declarations tell what they
do; the function definitions tell how they do it. This, of course, is how the predefined types (int,
double, etc.) work: we know what the result should be when we divide one float by another, but
we don’t really know how the division is done (i.e., what algorithm is implemented). More
importantly, we don’t want to know. Having to think about those details would distract us from
the task at hand. This point of view is often called information hiding and is an important princi-
ple in object-oriented programming.

When the member function definitions are separated from the declarations, as in Example
10.1, the declaration section is called the class interface, and the section containing the member
function definitions is called the implementation. The interface is the part of the class that the
programmer needs to see in order to use the class. The implementation would normally be

num 22

den 7

Ratio

x

CHAP. 10] CLASSES 235

concealed in a separate file, thereby “hiding” that information that the user (i.e., the programmer)
does not need to know about. These class implementations are typically done by implementors
who work independently of the programmers who will use the classes that they have
implemented.

10.3 CONSTRUCTORS

The Ratio class defined in Example 10.1 uses the assign() function to initialize its
objects. It would be more natural to have this initialization occur when the objects are declared.
That’s how ordinary (predefined) types work:

int n = 22;

char* s = "Hello";

C++ allows this simpler style of initialization to be done for class objects using constructor
functions.

A constructor is a member function that is invoked automatically when an object is declared.
A constructor function must have the same name as the class itself, and it is declared without
return type. The following example illustrates how we can replace the assign() function with
a constructor.

EXAMPLE 10.3 A Constructor Function for the Ratio Class

class Ratio

{ public:

Ratio(int n, int d) { num = n; den = d; }

void print() { cout << num << '/' << den; }

private:

int num, den;

};

int main()

{ Ratio x(-1,3), y(22,7);

cout << "x = ";

x.print();

cout << " and y = ";

y.print();

}

The constructor function has the same effect as the assign() function had in Example 10.1: it
initializes the object by assigning the specified values to its member data. When the declaration of x
executes, the constructor is called automatically and the integers -1 and 3 are passed to its parameters n
and d. The function then assigns these values to x’s num and den data members. So the declarations

Ratio x(-1,3), y(22,7);

are equivalent to the three lines
Ratio x, y;

x.assign(-1,3);

y.assign(22,7);

x = -1/3 and y = 22/7

236 CLASSES [CHAP. 10

A class’s constructor “constructs” the class objects by allocating and initializing storage for
the objects and by performing any other tasks that are programmed into the function. It literally
creates a live object from a pile of unused bits.

We can visualize the relationships between the Ratio class itself and its instantiated objects
like this:

The class itself is represented by a rounded box containing its member functions. Each function
maintains a pointer, named “this”, which points to the object that is calling it. The snapshot
here represents the status during the execution of the last line of the program, when the object y

is calling the print() function: y.print(). At that moment, the “this” pointer for the
constructor is NULL because it is not being called.

A class may have several constructors. Like any other overloaded function, these are distin-
guished by their distinct parameter lists.

EXAMPLE 10.4 Adding More Constructors to the Ratio Class

class Ratio
{ public:

Ratio() { num = 0; den = 1; }
Ratio(int n) { num = n; den = 1; }
Ratio(int n, int d) { num = n; den = d; }
void print() { cout << num << '/' << den; }

private:
int num, den;

};

int main()
{ Ratio x, y(4), z(22,7);

cout << "x = ";
x.print();
cout << "\ny = ";
y.print();
cout << "\nz = ";
z.print();

}

This version of the Ratio class has three constructors. The first has no parameters and initializes the
declared object with the default values 0 and 1. The second constructor has one integer parameter and

print()

Ratio()

Ratio

num -1

den 3

Ratio

x

num 22

den 7

Ratio

y

x = 0/1
y = 4/1
z = 22/7

CHAP. 10] CLASSES 237

initializes the object to be the fractional equivalent to that integer. The third constructor is the same as in
Example 10.2.

Among the various constructors that a class may have, the simplest is the one with no parame-
ters. It is called the default constructor. If this constructor is not explicitly declared in the class def-
inition, then the system will automatically create it for the class. That is what happens in
Example 10.1.

10.4 CONSTRUCTOR INITIALIZATION LISTS

Most constructors do nothing more than initialize the object’s member data. Consequently,
C++ provides a special syntactical device for constructors that simplifies this code. The device is
an initialization list.

Here is the third constructor in Example 10.2, rewritten using an initialization list:
Ratio(int n, int d) : num(n), den(d) { }

The assignment statements in the function’s body that assigned n to num and d to den are
removed. Their action is handled by the initialization list shown in boldface. Note that the list
begins with a colon and precedes the function body which is now empty.

Here is the Ratio class with its three constructors rewritten using initializer lists.

EXAMPLE 10.5 Using Initializer Lists in the Ratio Class

class Ratio
{ public:

Ratio() : num(0), den(1) { }
Ratio(int n) : num(n), den(1) { }
Ratio(int n, int d) : num(n), den(d) { }

private:
int num, den;

};

Of course, these three separate constructors are not necessary. They can be combined into a
single constructor, using default parameter values, as illustrated by the next example.

EXAMPLE 10.6 Using Default Parameter Values in the Ratio Class Constructor

class Ratio
{ public:

Ratio(int n=0, int d=1) : num(n), den(d) { }
private:

int num, den;
};

int main()
{ Ratio x, y(4), z(22,7);
}

Here, x will represent 0/1, y will represent 4/1, and z will represent 22/7.
Recall that the default values are used when actual parameters are not passed. So in the declaration of

the Ratio object x where no values are passed, the formal parameter n is given the default value 0

238 CLASSES [CHAP. 10

which is then assigned to x.num, and the formal parameter d is given the default value 1 which is then
assigned to x.den. In the declaration of the object y where only the value 4 is passed, the formal
parameter n is given that value 4 which is then assigned to y.num, and the formal parameter d is
given the default value 1 which is then assigned to y.den. No default values are used in the declaration
of z.

10.5 ACCESS FUNCTIONS

Although a class’s member data are usually declared to be private to limit access to them, it
is also common to include public member functions that provide read-only access to the data.
Such functions are called access functions. (In Java, they are also called getty methods, because
they usually use the word “get” in their names. This is in contrast to setty methods which are
used to change the values of data members and use the word “set” in their name. Getty methods
are read-only; setty methods are read-write.)

EXAMPLE 10.7 Access Functions in the Ratio Class

class Ratio
{ public:

Ratio(int n=0, int d=1) : num(n), den(d) { }
int numerator() const { return num; }
int denominator() const { return den; }

private:
int num, den;

};

int main()
{ Ratio x(22,7);

cout << x.numerator() << '/' << x.denominator() << endl;
}

The functions numerator() and denominator() return the values of the private member data.
Note the use of the const keyword in the declarations of the two access functions. This allows the

functions to be applied to constant objects. (See Section 10.9.)

10.6 PRIVATE MEMBER FUNCTIONS

Class member data are usually declared to be private and member functions are usually
declared to be public. But this dichotomy is not required. In some cases, it is useful to declare
one or more member functions to be private. As such, these functions can only be used within
the class itself; i.e., they are local utility functions.

EXAMPLE 10.8 Using private Member Functions

class Ratio
{ public:

Ratio(int n=0, int d=1) : num(n), den(d) { reduce(); }
void print() const { cout << num << '/' << den << endl; }

private:

CHAP. 10] CLASSES 239

int num, den;
void reduce();

};

int gcd(int,int);

void Ratio::reduce()
{ // enforce invariant(den > 0):

if (num == 0 || den == 0)
{ num = 0;

den = 1;
return;

}

if (den < 0)
{ den *= -1;

num *= -1;
}

// enforce invariant(gcd(num,den) == 1):
if (den == 1) return; // it's already reduced
int sgn = (num<0?-1:1); // no negatives to gcd()

int g = gcd(sgn*num,den);
num /= g;

den /= g;
}

int gcd(int m, int n)
{ // returns the greatest common divisor of m and n:

if (m<n) swap(m,n);

while (n>0)
{ int r=m%n;

m = n;
n = r;

}
return m;

}

int main()

{ Ratio x(100,-360);
x.print();

}

This version includes the private function reduce() that uses the gcd() function (see Problem
5.18 on page 113) to reduce the fraction num/den to lowest terms. Thus the fraction 100/–360 is stored
as –5/18.

Instead of having a separate reduce() function, we could have done the actual reduction within the
constructor. But there are two good reasons for doing it this way. Combining the construction with the
reduction would violate the software principle that separate tasks should be handled by separate functions.
Moreover, the reduce() function will be needed later to reduce the results of arithmetic operations
performed on Ratio objects.

-5/18

240 CLASSES [CHAP. 10

Note that the keywords public and private are called access specifiers; they specify
whether the members are accessible outside the class definition. The keyword protected is the
third access specifier. It is described in Chapter 13.

10.7 THE COPY CONSTRUCTOR

Every class has at least two constructors. These are identified by their unique declarations:
X(); // default constructor
X(const X&); // copy constructor

where X is the class identifier. For example, these two special constructors for a Widget class
would be declared:

Widget(); // default constructor
Widget(const Widget&); // copy constructor

The first of these two special constructors is called the default constructor; it is called automati-
cally whenever an object is declared in the simplest form, like this:

Widget x;

The second of these two special constructors is called the copy constructor; it is called automati-
cally whenever an object is copied (i.e., duplicated), like this:

Widget y(x);

If either of these two constructors is not defined explicitly, then it is automatically defined
implicitly by the system.

Note that the copy constructor takes one parameter: the object that it is going to copy. That
object is passed by constant reference because it should not be changed.

When the copy constructor is called, it copies the complete state of an existing object into a
new object of the same class. If the class definition does not explicitly include a copy constructor
(as all the previous examples have not), then the system automatically creates one by default.
The ability to write your own copy constructor gives you more control over your software.

EXAMPLE 10.9 Adding a Copy Constructor to the Ratio Class

class Ratio
{ public:

Ratio(int n=0, int d=1) : num(n), den(d) { reduce(); }
Ratio(const Ratio& r) : num(r.num), den(r.den) { }
void print() { cout << num << '/' << den; }

private:
int num, den;
void reduce();

};
int main()
{ Ratio x(100,360);

Ratio y(x);
cout << "x = ";
x.print();
cout << ", y = ";
y.print();

}
x = 5/18, y = 5/18

CHAP. 10] CLASSES 241

The copy constructor copies the num and den fields of the parameter r into the object being
constructed. When y is declared, it calls the copy constructor which copies x into y.

Note the required syntax for the copy constructor: it must have one parameter, which has the
same class as that being declared, and it must be passed by constant reference: const X&.

The copy constructor is called automatically whenever

• an object is copied by means of a declaration initialization;

• an object is passed by value to a function;

• an object is returned by value from a function.

EXAMPLE 10.10 Tracing Calls to the Copy Constructor

class Ratio
{ public:

Ratio(int n=0, int d=1) : num(n), den(d) { reduce(); }
Ratio(const Ratio& r) : num(r.num), den(r.den)
{ cout << "COPY CONSTRUCTOR CALLED\n"; }

private:
int num, den;
void reduce();

};

Ratio f(Ratio r) // calls the copy constructor, copying ? to r
{ Ratio s = r; // calls the copy constructor, copying r to s

return s; // calls the copy constructor, copying s to ?
}

int main()
{ Ratio x(22,7);

Ratio y(x); // calls the copy constructor, copying x to y
f(y);

}

In this example, the copy constructor is called four times. It is called when y is declared, copying x
to y; it is called when y is passed by value to the function f, copying y to r; it is called when s is
declared, copying r to s; and it is called when the function f returns by value, even though nothing is
copied there. Note that the initialization of s looks like an assignment. But as part of a declaration it calls
the copy constructor just as the declaration of y does.

If you do not include a copy constructor in your class definition, then the compiler generates
one automatically. This “default” copy constructor will simply copy objects bit-by-bit. In many
cases, this is exactly what you would want. So in these cases, there is no need for an explicitly
defined copy constructor.

However, in some important cases, a bit-by-bit copy will not be adequate. The string class,
described in Chapter 9, is a prime example. In objects of that class, the relevant data member

COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED
COPY CONSTRUCTOR CALLED

242 CLASSES [CHAP. 10

holds only a pointer to the actual string, so a bit-by-bit copy would only duplicate the pointer, not
the string itself. In cases like this, it is essential that you define your own copy constructor.

10.8 THE CLASS DESTRUCTOR

When an object is created, a constructor is called automatically to manage its birth. Similarly,
when an object comes to the end of its life, another special member function is called automati-
cally to manage its death. This function is called a destructor.

Each class has exactly one destructor. If it is not defined explicitly in the class definition, then
like the default constructor, the copy constructor, and the assignment operator, the destructor is
created automatically.

EXAMPLE 10.11 Including a Destructor in the Ratio Class

class Ratio

{ public:

Ratio() { cout << "OBJECT IS BORN.\n"; }

~Ratio() { cout << "OBJECT DIES.\n"; }

private:

int num, den;

};

int main()

{ { Ratio x; // beginning of scope for x

cout << "Now x is alive.\n";

} // end of scope for x

cout << "Now between blocks.\n";

{ Ratio y;

cout << "Now y is alive.\n";

}

}

The output here shows when the constructor and the destructor are called.

The class destructor is called for an object when it reaches the end of its scope. For a local
object, this will be at the end of the block within which it is declared. For a static object, it
will be at the end of the main() function.

Although the system will provide them automatically, it is considered good programming
practice always to define the copy constructor, the assignment operator, and the destructor within
each class definition.

OBJECT IS BORN.
Now x is alive.
OBJECT DIES.
Now between blocks.
OBJECT IS BORN.
Now y is alive.
OBJECT DIES.

CHAP. 10] CLASSES 243

10.9 CONSTANT OBJECTS

It is good programming practice to make an object constant if it should not be changed. This is
done with the const keyword:

const char BLANK = ' ';
const int MAX_INT = 2147483647;
const double PI = 3.141592653589793;
void init(float a[], const int SIZE);

Like variables and function parameters, objects may also be declared to be constant:
const Ratio PI(22,7);

However, when this is done, the C++ compiler restricts access to the object’s member functions.
For example, with the Ratio class defined previously, the print() function could not be
called for this object:

PI.print(); // error: call not allowed

In fact, unless we modify our class definition, the only member functions that could be called for
const objects would be the constructors and the destructor. To overcome this restriction, we
must declare as constant those member functions that we want to be able to use with const

objects.
A function is declared constant by inserting the const keyword between its parameter list

and its body:
void print() const { cout << num << '/' << den << endl; }

This modification of the function definition will allow it to be called for constant objects:
const Ratio PI(22,7);
PI.print(); // o.k. now

10.10 STRUCTURES

The C++ class is a generalization of the C struct (for “structure”) which is a class with
only public members and no functions. One normally thinks of a class as a structure that is
given life by means of its member functions and which enjoys information hiding by means of
private data members.

To remain compatible with the older C language, C++ retains the struct keyword which
allows structs to be defined. However, a C++ struct is essentially the same as a C++ class.
The only significant difference between a C++ struct and a C++ class is with the default
access specifier assigned to members. Although not recommended, C++ classes can be defined
without explicitly specifying its member access specifier. For example,

class Ratio
{ int num, den;
};

is a valid definition of a Ratio class. Since the access specifier for its data members num and
den is not specified, it is set by default to be private. If we make it a struct instead of a
class, like this:

struct Ratio
{ int num, den;
};

then the data members are set by default to be public. But this could be corrected simply by
specifying the access specifier explicitly:

244 CLASSES [CHAP. 10

struct Ratio
{ private:

int num, den;
};

So the difference between a class and a C++ struct is really just cosmetic.

10.11 POINTERS TO OBJECTS

In many applications, it is advantageous to use pointers to objects (and structs). Here is a
simple example:

EXAMPLE 10.12 Using Pointers to Objects

class X
{ public:

int data;
};
int main()
{ X* p = new X;

(*p).data = 22; // equivalent to: p->data = 22;
cout << "(*p).data = " << (*p).data << " = " << p->data << endl;
p->data = 44;
cout << " p->data = " << (*p).data << " = " << p->data << endl;

}

Since p is a pointer to an X object, *p is an X object, and (*p).data accesses its public member
data. Note that parentheses are required in the expression (*p).data because the direct member
selection operator “.” has higher precedence than the dereferencing operator “*”. (See Appendix C.)

The two notations
(*p).data
p->data

have the same meaning. When working with pointers, the “arrow” symbol “->” is preferred
because it is simpler and it suggests “the thing to which p points.”

Here is a more important example:

EXAMPLE 10.13 A Node Class for Linked Lists

class Node
{ public:

Node(int d, Node* q=0) : data(d), next(q) { }
int data;
Node* next;

};
This defines a Node class each of whose objects contain an int data member and a next pointer.

int main()
{ int n;

Node* p;

(*p).data = 22 = 22
p->data = 44 = 44

CHAP. 10] CLASSES 245

Node* q=0;

while (cin >> n)

{ p = new Node(n, q);

q = p;

}

for (; p; p = p->next)

cout << p->data << " -> ";

cout << "*\n";

}

First note that the definition of the Node class includes two references to the class itself. This is
allowed because each reference is actually a pointer to the class. Also note that the constructor initializes
both data members.

The program allows the user to create a linked list in reverse. Then it traverses the list, printing each
data value.

The while loop continues reads ints into n until the user enters the end-of-file character (Ctrl+D).
Within the loop, it gets a new node, inserts the int into its data member, and connects the new node to
the previous node (pointed to by q). Finally, the for loop traverses the list, beginning with the node
pointed to by p (which is the last node constructed) and continuing until p is NUL.

The list constructed in this example can be visualized like this:

10.12 STATIC DATA MEMBERS

Sometimes a single value for a data member applies to all members of the class. In this case, it
would be inefficient to store the same value in every object of the class. That can be avoided by
declaring the data member to be static. This is done by including the static keyword at the
beginning of the variable’s declaration. It also requires that the variable be defined globally. So
the syntax looks like this:

class X

{ public:

static int n; // declaration of n as a static data member

};

int X::n = 0; // definition of n

Static variables are automatically initialized to 0, so the explicit initialization in the definition is
unnecessary unless you want it to have a non-zero initial value.

22 33 44 55 66 77 ^D
77 -> 66 -> 55 -> 44 -> 33 -> 22 -> *

77 66 55 44 22

pq

33

246 CLASSES [CHAP. 10

EXAMPLE 10.14 A static Data Member

The Widget class maintains a static data member count which keeps track of the number of
Widget objects in existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time a widget is destroyed (by the destructor) the counter is decremented.

class Widget
{ public:

Widget() { ++count; }
~Widget() { --count; }
static int count;

};
int Widget::count = 0;

int main()
{ Widget w, x;

cout << "Now there are " << w.count << " widgets.\n";
{ Widget w, x, y, z;

cout << "Now there are " << w.count << " widgets.\n";
}
cout << "Now there are " << w.count << " widgets.\n";
Widget y;
cout << "Now there are " << w.count << " widgets.\n";

}

Notice how four widgets are created inside the inner block, and then they are destroyed when program
control leaves that block, reducing the global number of widgets from 6 to 2.

A static data member is like an ordinary global variable: only one copy of the variable exists
no matter how many instances of the class exist. The main difference is that it is a data member
of the class, and so may be private.

EXAMPLE 10.15 A static Data Member that is private

class Widget
{ public:

Widget() { ++count; }
~Widget() { --count; }
int numWidgets() { return count; }

private:
static int count;

};
int Widget::count = 0;

int main()
{ Widget w, x;

cout << "Now there are " << w.numWidgets() << " widgets.\n";
{ Widget w, x, y, z;

Now there are 2 widgets.
Now there are 6 widgets.
Now there are 2 widgets.
Now there are 3 widgets.

CHAP. 10] CLASSES 247

cout << "Now there are " << w.numWidgets() << " widgets.\n";
}
cout << "Now there are " << w.numWidgets() << " widgets.\n";
Widget y;
cout << "Now there are " << w.numWidgets() << " widgets.\n";

}
This works the same way as Example 10.2. But now that the static variable count is private, we
need the access function numWidgets() to read count in main().

The relationships among the class, its members, and its objects can be visualized like this:

The rounded box represents the class itself which contains the three member functions and the
data member count. The public members are above the line and the private member(s)
are below it. Each member function maintains a pointer (named “this”) which points to the
object that owns the current function call. This snapshot shows the status during the execution of
the last line in the program: three widgets (w, x, and y) exist, and w is calling the numWid-

gets() function which returns the value of the private data member count. Note that this data
member resides within the class itself; the class objects have no data.

10.13 static FUNCTION MEMBERS

Like any ordinary member function, the numWidgets() function in Example 10.2 requires
that it be owned by some instance of the class. But since it returns the value of the static data
member count which is independent of the individual objects themselves, it doesn’t matter
which object calls it. We had w call it each time, but we could just as well have had x or y or
z call it when they exist. Moreover, we couldn’t call it at all until after some object had been
created. This is rather arbitrary. Since the action of the function is independent of the actual
function objects, it would be better to make the calls independent of them too. This can be done
simply by declaring the function to be static.

EXAMPLE 10.16 A static Function Member

The Widget class maintains a static data member count which keeps track of the number of
Widget objects in existence globally. Each time a widget is created (by the constructor) the counter is
incremented, and each time a widget is destroyed (by the destructor) the counter is decremented.

class Widget
{ public:

Widget() { ++count; }

~Widget()

Widget()

Widget

count 3

Widget

y

numWidgets()
Widget

x

Widget

w

248 CLASSES [CHAP. 10

~Widget() { --count; }
static int num() { return count; }

private:
static int count;

};

int Widget::count = 0;

int main()
{ cout << "Now there are " << Widget::num() << " widgets.\n";

Widget w, x;
cout << "Now there are " << Widget::num() << " widgets.\n";
{ Widget w, x, y, z;

cout << "Now there are " << Widget::num() << " widgets.\n";
}
cout << "Now there are " << Widget::num() << " widgets.\n";
Widget y;
cout << "Now there are " << Widget::num() << " widgets.\n";

}
Declaring the numWidgets() function to be static renders it independent of the class instances.

So now it is invoked simply as a member of the Widget class using the scope resolution operator “::”.
This allows the function to be called before any objects have been instantiated.

The previous figure showing relationships among the class and its instances should now looks like this:

The difference is that now the member function num() has no “this” pointer. As a static member
function, it is associated with the class itself, not with its instances.

Static member functions can access only static data from their own class.

Review Questions

10.1 Explain the difference between a public member and a private member of a class.
10.2 Explain the difference between the interface and the implementation of a class.
10.3 Explain the difference between a class member function and an application function.
10.4 Explain the difference between a constructor and a destructor.
10.5 Explain the difference between the default constructor and other constructors.
10.6 Explain the difference between the copy constructor and the assignment operator.
10.7 Explain the difference between an access function and a utility function.
10.8 Explain the difference between a class and a struct in C++.

~Widget()

Widget()

Widget

count 3

Widget

y

numWidgets()
Widget

x

Widget

w

CHAP. 10] CLASSES 249

10.9 What name must a constructor have?
10.10 What name must a destructor have?
10.11 How many constructors can a class have?
10.12 How many destructors can a class have?
10.13 How and why is the scope resolution operator :: used in class definitions?
10.14 Which member functions are created automatically by the compiler if they are not included

(by the programmer) in the class definition?
10.15 How many times is the copy constructor called in the following code:

Widget f(Widget u)
{ Widget v(u);

Widget w = v;
return w;

}

main()
{ Widget x;

Widget y = f(f(x));
}

10.16 Why are the parentheses needed in the expression (*p).data?

Problems

10.1 Implement a Point class for three-dimensional points (x,y,z). Include a default constructor,
a copy constructor, a negate() function to transform the point into its negative, a norm()

function to return the point’s distance from the origin (0,0,0), and a print() function.
10.2 Implement a Stack class for stacks of ints. Include a default constructor, a destructor,

and the usual stack operations: push(), pop(), isEmpty(), and isFull(). Use an
array implementation.

10.3 Implement a Time class. Each object of this class will represent a specific time of day, stor-
ing the hours, minutes, and seconds as integers. Include a constructor, access functions, a
function advance(int h, int m, int s) to advance the current time of an existing
object, a function reset(int h, int m, int s) to reset the current time of an existing
object, and a print() function.

10.4 Implement a Random class for generating pseudo-random numbers.
10.5 Implement a Person class. Each object of this class will represent a human being. Data

members should include the person’s name, year of birth, and year of death. Include a default
constructor, a destructor, access functions, and a print function.

10.6 Implement a String class. Each object of this class will represent a character string. Data
members are the length of the string and the actual character string. In addition to construc-
tors, destructor, access functions, and a print function, include a “subscript” function.

10.7 Implement a Matrix class for 2-by-2 matrices:

Include a default constructor, a copy constructor, an inverse() function that returns the
inverse of the matrix, a det() function that returns the determinant of the matrix, a Bool-
ean function isSingular() that returns 1 or 0 according to whether the determinant is
zero, and a print() function.

a b

c d

250 CLASSES [CHAP. 10

10.8 Implement a Point class for two-dimensional points (x, y). Include a default constructor, a
copy constructor, a negate() function to transform the point into its negative, a norm()
function to return the point’s distance from the origin (0,0), and a print() function.

10.9 Implement a Circle class. Each object of this class will represent a circle, storing its
radius and the x and y coordinates of its center as floats. Include a default constructor,
access functions, an area() function, and a circumference() function.

Answers to Review Questions

10.1 A public member is accessible from outside the class; a private member is not.

10.2 The class interface consists of the member data and the member function prototypes (i.e. just the func-
tion declarations). The class implementation contains the definitions of the member functions.

10.3 A class member function is part of the class, so it has access to the class’s private parts. An appli-
cation function is declared outside the class, and so it does not have access to the class’s private
parts.

10.4 A constructor is a class member function that executes automatically whenever an object of that class
is instantiated (i.e., constructed). A destructor is a class member function that executes automatically
whenever the scope of that object terminates (i.e., is destructed).

10.5 The default constructor is the unique constructor that has no parameters (or the one whose parameters
all have default values).

10.6 A class’s copy constructor executes whenever an object of that class is copied by any mechanism
except direct assignment. This includes initialization, passing a parameter by value, and returning by
value.

10.7 An access function is a public class member function that returns the value of one of the class’s
data members. A utility function is a private class member function that is used only within the
class to perform “technical” tasks.

10.8 A class and a struct in C++ are essentially the same. The only significant difference is that
the default access level for a class is private, while that for a struct is public.

10.9 Every class constructor must have the same name as the class itself.

10.10 Every class destructor must have the same name as the class itself, prefixed with a tilde (~).

10.11 There is no limit to the number of constructors that a class may have. But since multiple constructors
are function overloads, they all must be distinguishable by their parameter lists.

10.12 A class can have only one destructor.

10.13 The scope resolution operator :: is used in general “to resolve external references.” It is used in a
class definition whenever the definition of a member function is given outside the scope of the class
definition.

10.14 There are four class member functions that are created automatically by the compiler if they are not
included (by the programmer) in the class definition: the default constructor, the copy constructor, the
destructor, and the overloaded assignment operator.

10.15 The copy constructor is called 7 times in this code. Each call to the function f requires 3 calls to the
copy constructor: when the parameter is passed by value to u, when v is initialized, and when w is
returned by value. The seventh call is for the initialization y.

10.16 The parentheses are needed in the expression (*p).data because the direct member selection
operator “.” has higher precedence than the dereferencing operator “*”. (See Appendix C.)

CHAP. 10] CLASSES 251

Solutions to Problems

10.1 This implementation of a Point class uses the common device of ending the name of each data mem-
ber with an underscore (_). This has the advantage of making it easy to match up the names of con-
structor parameters (x, y, and z) with their corresponding data members (x_, y_, and z_) without
conflict.

#include <cmath>
#include <iostream>
using namespace std;
class Point
{ public:

Point(float x=0, float y=0, float z=0): x_(x), y_(y), z_(z) {}
Point(const Point& p) : x_(p.x_), y_(p.y_), z_(p.z_) { }
void negate() { x_ *= -1; y_ *= -1; z_ *= -1; }
double norm() { return sqrt(x_*x_ + y_*y_ + z_*z_); }
void print()

{ cout << '(' << x_ << "," << y_ << "," << z_ << ")"; }
private:

float x_, y_, z_;
};

10.2 In this implementation of a Stack class, top is always the index of the top element on the stack. The
data member size is the size of the array that holds the stack items. So the stack is full when it con-
tains that number of items. The constructor sets size to 10 as the default.

class Stack
{ public:

Stack(int s=10) : size(s), top(-1) { a = new int[size]; }
~Stack() { delete [] a; }
void push(const int& item) { a[++top] = item; }
int pop() { return a[top--]; }
bool isEmpty() const { return top == -1; }
bool isFull() const { return top == (size-1); }

private:
int size; // size of array
int top; // top of stack
int* a; // array to hold stack items

};
10.3 class Time

{ public:
Time(int h=0, int m=0, int s=0)

: hr(h), min(m), sec(s) { normalize(); }
int hours() { return hr; }
int minutes() { return min; }
int seconds() { return sec; }
void advance(int =0, int =0, int =1);
void reset(int =0, int =0, int =0);
void print() { cout << hr << ":" << min << ":" << sec; }

private:
int hr, min, sec;
void normalize();

};
void Time::normalize()

252 CLASSES [CHAP. 10

{ min += sec/60;
hr += min/60;
hr = hr % 24;
min = min % 60;
sec = sec % 60;

}
void Time::advance(int h, int m, int s)
{ hr += h;

min += m;
sec += s;
normalize();

}
void Time::reset(int h, int m, int s)
{ hr = h;

min = m;
sec = s;
normalize();

}
10.4 This implementation of a Random class uses a utility function normalize(), which normalizes the

Time object so that its three data members are in the correct range: 0 ≤ sec < 60, 0 ≤ min < 60,
and 0 ≤ hr < 24. It also uses the utility function randomize(), which implements the Linear
Congruential Algorithm introduced by D. H. Lehmer in 1949. The utility function _next()
updates the _seed by calling the _randomize() function a random number of times.

#include <climits> // defines INT_MAX and ULONG_MAX constant
#include <ctime> // defines time() function
#include <iomanip> // defines the setw() function
#include <iostream> // defines the cout object
using namespace std;
class Random
{ public:

Random(long seed=0) { _seed = (seed?seed:time(NULL)); }
void seed(long seed=0) { _seed = (seed?seed:time(NULL)); }
int integer() { return _next(); }
int integer(int min, int max)

{ return min +_next()%(max-min+1);}
double real()

{ return double(_next())/double(INT_MAX); }
private:

unsigned long _seed;
void _randomize()

{ _seed = (314159265*_seed + 13579)%ULONG_MAX;}
int _next()
{ int iterations = _seed % 3;

for (int i=0; i <= iterations; i++) _randomize();
return int(_seed/2);

}
};
int main()
{ Random random;

for (int i = 1; i <= 10; i++)
cout << setw(16) << setiosflags(ios::right)

<< random.integer()
<< setw(6) << random.integer(1,6)

CHAP. 10] CLASSES 253

<< setw(12) << setiosflags(ios::fixed | ios::left)
<< random.real() << endl;

}
The test driver makes 10 calls to each of the three random number functions, generating 10
pseudo-random integers in the range 0 to 2,147,483,647, 10 pseudo-random integers in the range 1 to
6, and 10 pseudo-random real numbers in the range 0.0 to 1.0.

10.5 class Person
{ public:

Person(const char* =0, int =0, int =0);
~Person() { delete [] name_; }
char* name() { return name_; }
int born() { return yob_; }
int died() { return yod_; }
void print();

private:
int len_;
char* name_;
int yob_, yod_;

};
Person::Person(const char* name, int yob, int yod)

: len_(strlen(name)),
name_(new char[len_+1]),
yob_(yob),
yod_(yod)

{ memcpy(name_, name, len_+1);
}
void Person::print()
{ cout << "\tName: " << name_ << endl;

if (yob_) cout << "\tBorn: " << yob_ << endl;
if (yod_) cout << "\tDied: " << yod_ << endl;

}
To keep the object self-contained, name_ is stored as a separate string. To facilitate this separate
storage, we save its length in the data member len_ and use the memcpy() function (defined in
string.h) to copy the string name into the string name_. Then the destructor uses the delete
operator to de-allocate this storage.

10.6 This implementation of a String class includes three constructors: the default constructor with optional
parameter size, a constructor that allows an object to be initialized with an ordinary C string, and the
copy constructor. The second access function is named convert() because it actually converts
from type String to char* type. The “subscript” function is named character() because it
returns one character in the string—the one indexed by the parameter i.

class String
{ public:

String(short =0); // default constructor
String(const char*); // constructor
String(const String&); // copy constructor
~String() { delete [] data; } // destructor
int length() const { return len; } // access function
char* convert() { return data; } // access function
char character(short i) { char c = data[i]; return c; }
void print() { cout << data; }

private:
short len; // number of (non-null) characters in string
char* data; // the string

254 CLASSES [CHAP. 10

};
String::String(short size) : len(size)
{ data = new char[len+1];

for (int i=0; i < len; i++) data[i] = ' ';
data[len] = '\0';

}
String::String(const char* str) : len(strlen(str))
{ data = new char[len+1];

memcpy(data, str, len+1);
}
String::String(const String& str) : len(str.len)
{ data = new char[len+1];

memcpy(data, str.data, len+1);
}

10.7 class Matrix
{ public:

Matrix(double a=0, double b=0, double c=0, double d=0)
: a_(a), b_(b), c_(c), d_(d) { }

Matrix(const Matrix& m)
: a_(m.a_), b_(m.b_), c_(m.c_), d_(m.d_) { }

double det() { return a_*d_ - b_*c_; }
int isSingular() { return det() == 0; }
Matrix inverse();
void print();

private:
double a_, b_, c_, d_;

};
Matrix Matrix::inverse()
{ double k = 1/det();

Matrix temp(k*d_,-k*b_,-k*c_,k*a_);
return temp;

}
void Matrix::print()
{ cout << a_ << " " << b_ << '\n' << c_ << " " << d_ << "\n";
}

10.8 class Point
{ public:

Point() : _x(0.0) , _y(0.0) {}
Point(double x, double y): _x(x) , _y(y) {}
Point(const Point & P) {_x = P._x ; _y = P._y ; }
double norm() const { return sqrt(_x*_x + _y*_y); }
void print() const

{ cout << "(" << _x << " , " << _y << ")" ; }
void negate() { _x = -1.0 * _x ; _y = -1.0 * _y ; }

private:
double _x ;
double _y ;

};
10.9 class Circle

{ public:
Circle() : _x(0.0) , _y(0.0), _radius(1.0) {}
Circle(float x, float y, float radius)

CHAP. 10] CLASSES 255

: _x(x) , _y(y), _radius(radius) {}
Circle(const Circle & C)

{ _x = C._x ; _y = C._y ; _radius = C._radius; }
float diameter() const { return 2.0 * _radius ; }
float area() const

{ return 3.141592654 * _radius * _radius ; }
float circumference() const

{ return 3.141592654 * diameter() ; }
void print() const
{ cout << "Center is at (" << _x << " , " << _y

<< ") and " << "Radius = " << _radius ; }
private:

float _x ;
float _y ;
float _radius ;

};

256

Chapter 11

Overloading Operators

11.1 INTRODUCTION

C++ includes a rich store of 45 operators. They are summarized in Appendix C. These
operators are defined automatically for the fundamental types (int, float, etc.). When you
define a class, you are actually creating a new type. Most of the C++ operators can be overloaded
to apply to your new class type. This chapter describes how to do that.

11.2 OVERLOADING THE ASSIGNMENT OPERATOR

Of all the operators, the assignment operator = is probably used the most. Its purpose is to
copy one object to another. Like the default constructor, the copy constructor, and the destructor,
the assignment operator is created automatically for every class that is defined. But also like
those other three member functions, it can be defined explicitly in the class definition.

EXAMPLE 11.1 Adding an Assignment Operator to the Ratio Class

Here is a class interface for the Ratio class, showing the default constructor, the copy constructor,
and the assignment operator:

class Ratio
{ public:

Ratio(int =0, int =1); // default constructor
Ratio(const Ratio&); // copy constructor
void operator=(const Ratio&); // assignment operator
// other declarations go here

private:
int num, den;

};
Note the required syntax for the assignment operator. The name of this member function is

operator=. Its argument list is the same as that of the copy constructor: it contains a single argument of
the same class, passed by constant reference.

Here is the implementation of the overloaded assignment operator:
void Ratio::operator=(const Ratio& r)
{ num = r.num;

den = r.den;
}

It simply copies the member data from the object r to the object that owns the call.

11.3 THE this POINTER

C++ allows assignments to be chained together, like this:
x = y = z = 3.14;

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 11] OVERLOADING OPERATORS 257

This is executed first by assigning 3.14 to z, then to y, and finally to x. But, as Example 11.1
shows, the assignment operator is really a function named operator=. In this chain, the
function is called three times. On its first call, it assigns 3.14 to z, so the input to the function is
3.14. On its second call, it assigns 3.14 to y, so its input again must be 3.14. So that value should
be the output (i.e., return value) of the first call. Similarly, the output of the second call should
again be 3.14 to serve as the input to the third call. The three calls to this function are nested, like
this:

f(x, f(y, f(z, 3.14)))

The point is that the assignment operator is a function that should return the value it assigns.
Therefore, instead of the return type void, the assignment operator should return a reference to
the same type as the object being assigned:

Ratio& operator=(const Ratio& r)
This allows assignments to be chained together.

EXAMPLE 11.2 The Preferred Prototype for an Overloaded Assignment Operator

class Ratio
{ public:

Ratio(int =0, int =1); // default constructor
Ratio(const Ratio&); // copy constructor
Ratio& operator=(const Ratio&); // assignment operator
// other declarations go here

private:
int num, den;
// other declarations go here

};

The preferred syntax for the prototype of an overloaded assignment operator in a class T is
T& operator=(const T&);

The return type is a reference to an object of the same class T. But then this means that the
function should return the object that is being assigned in order for the assignment chain to work.
So when the assignment operator is being overloaded as a class member function, it should
return the object that owns the call. Since there is no other name available for this owner object,
C++ defines a special pointer, named this, which points to the owner object.

We can envision the this pointer like this:

Now we can give the correct implementation of the overloaded assignment operator:

EXAMPLE 11.3 Implementation of the Assignment Operator for the Ratio Class

Ratio& Ratio::operator=(const Ratio& r)
{ num = r.num;

den = r.den;
return *this;

}

this num 22

den 7

Ratio

258 OVERLOADING OPERATORS [CHAP. 11

Now assignments for the Ratio class can be chained together:
Ratio x, y, z(22,7);
x = y = z;

The correct implementation for an overloaded assignment operator in a class T is
T& T::operator=(const T& t)
{ // assign each member datum of t to the

// corresponding member datum of the owner
return *this;

}

Finally, note that an assignment is different from an initialization, even though they both use
the equals sign:

Ratio x(22,7); // this is an initialization
Ratio y(x); // this is an initialization
Ratio z = x; // this is an initialization
Ratio w;
w = x; // this is an assignment

An initialization calls the copy constructor. An assignment calls the assignment operator.

11.4 OVERLOADING ARITHMETIC OPERATORS

All programming languages provide the standard arithmetic operators +, -, *, and / for
numeric types. So it is only natural to define these for user-defined numeric types like the
Ratio class. In older programming languages like C and Pascal, this is done by defining
functions like this:

Ratio product(Ratio x, Ratio y)
{ Ratio z(x.num*y.num, x.den*y.den);

return z;
}

This works. But the function has to be called in the conventional way:
z = product(x,y);

C++ allows such functions to be defined using the standard arithmetic operator symbols, so that
they can be called more naturally:

z = x*y;

Like most operators in C++, the multiplication operator has a function name that uses the
reserved word operator: its name is “operator*”. Using this in place of “product” in the
code above, we would expect the overloaded function to look something like this:

Ratio operator*(Ratio x, Ratio y)
{ Ratio z(x.num*y.num, x.den*y.den);

return z;
}

But this is not a member function. If it were, we would have to set it up as in with only one
argument. The operator* function requires two arguments.

Since the overloaded arithmetic operators cannot be member functions, they cannot access the
private member data num and den. Fortunately, C++ allows an exception to this rule so that
we can complete our definitions of the overloaded arithmetic functions. The solution is to
declare the function as a friend of the Ratio class.

CHAP. 11] OVERLOADING OPERATORS 259

A friend function is a nonmember function that is given access to all members of the class
within which it is declared. So it has all the privileges of a member function without actually
being a member of the class. This attribute is used mostly with overloaded operators.

EXAMPLE 11.4 Declaring the Multiplication Operator as a friend Function

Here is the Ratio class declaration with the overloaded multiplication operator declared as a
friend function:

class Ratio

{ friend Ratio operator*(const Ratio&, const Ratio&);

public:

Ratio(int =0, int =1);

Ratio(const Ratio&);

Ratio& operator=(const Ratio&);

// other declarations go here

private:

int num, den;

// other declarations go here

};

Note that the function prototype is inserted inside the class declaration, above the public section.
Also note that the two arguments to the function are both passed by constant reference.

Now we can implement this nonmember just as we had expected:
Ratio operator*(const Ratio& x, const Ratio& y)

{ Ratio z(x.num * y.num, x.den * y.den);

return z;

}

Note that the keyword friend is not used in the function implementation. Also note that the scope
resolution prefix Ratio:: is not used because this is not a member function.

Here is a little program that uses our improved Ratio class:

EXAMPLE 11.5 The Ratio Class with Assignment and Multiplication Operators

#include "Ratio.h"

int main()

{ Ratio x(22,7), y(-3,8), z;

z = x; // assignment operator is called

z.print(); cout << endl;

x = y*z; // multiplication operator is called

x.print(); cout << endl;

}

Note that the reduce() function was called from within the constructor to reduce -66/56 to -33/58.
(See Example 10.8 on page 238.)

22/7
-33/28

260 OVERLOADING OPERATORS [CHAP. 11

11.5 OVERLOADING THE ARITHMETIC ASSIGNMENT OPERATORS

C++ allows you to combine arithmetic operations with the assignment operator; for example,
using x *= y in place of x = x * y. These combination operators can all be overloaded for
use in your own classes.

EXAMPLE 11.6 The Ratio Class with an Overloaded *= Operator

class Ratio
{ public:

Ratio(int =0, int =1);
Ratio& operator=(const Ratio&);
Ratio& operator*=(const Ratio&);
// other declarations go here

private:
int num, den;
// other declarations go here

};
Ratio& Ratio::operator*=(const Ratio& r)
{ num = num*r.num;

den = den*r.den;
return *this;

}
The operator operator*= has the same syntax and nearly the same implementation as the basic

assignment operator operator=. By returning *this, the operator can be chained, like this:
x *= y *= z;

It is also important to ensure that overloaded operators perform consistently with each other. For
example, the following two lines should have the same effect, even though they call different operators:

x = x*y;
x *= y

11.6 OVERLOADING THE RELATIONAL OPERATORS

The six relational operators <, >, <=, >=, ==, and != can be overloaded the same way that
the arithmetic operators are overloaded: as friend functions.

EXAMPLE 11.7 Overloading the Equality Operator == in the Ratio Class

Like other friend functions, the equality operator is declared above the public section of the
class:

class Ratio
{ friend bool operator==(const Ratio&, const Ratio&);

friend Ratio operator*(const Ratio&, const Ratio&);
// other declarations go here

public:
Ratio(int =0, int =1);
Ratio(const Ratio&);
Ratio& operator=(const Ratio&);
// other declarations go here

CHAP. 11] OVERLOADING OPERATORS 261

private:
int num, den;
// other declarations go here

};
bool operator==(const Ratio& x, const Ratio& y)
{ return (x.num * y.den == y.num * x.den);
}

The test for equality of two fractions a/b and c/d is equivalent to the test a*d == b*c. So we end up
using the equality operator for ints to define the equality operator for Ratios.

Note that the relational operators return an int type, representing either “true” (1) or “false” (0).

11.7 OVERLOADING THE STREAM OPERATORS

C++ allows you to overload the stream insertion operator >> for customizing input and the
stream deletion operator << for customizing output. Like the arithmetic and relational
operators, these should also be declared as friend functions.

For a class T with data member d, the syntax for the output operator is
friend ostream& operator<<(ostream& ostr, const T& t)
{ return ostr << t.d; }

Here, ostream is a standard class defined (indirectly) in the iostream.h header file. Note
that all the parameters and the return value are passed by reference.

This function can then be called using the same syntax that we used for fundamental types:
cout << "x = " << x << ", y = " << y << endl;

Here is an example of how custom output can be written:

EXAMPLE 11.8 Overloading the Output Operator << for the Ratio Class

class Ratio
{ friend ostream& operator<<(ostream&, const Ratio&);

public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
// other declarations go here

private:
int num, den;
// other declarations go here

};
int main()
{ Ratio x(22,7), y(-3,8);

cout << "x = " << x << ", y = " << y << endl;
}
ostream& operator<<(ostream& ostr, const Ratio& r)
{ return ostr << r.num << '/' << r.den;
}

When the second line of main() executes, the expression cout << "x = " executes first. This
calls the standard output operator <<, passing the standard output stream cout and the string "x = "
to it. As usual, this inserts the string into the output stream and then returns a reference to cout. This
return value is then passed with the object x to the overloaded << operator. This call to operator<<
executes with cout in place of ostr and with x in place of r. The result is the execution of the line

x = 22/7, y = -3/8

262 OVERLOADING OPERATORS [CHAP. 11

return ostr << r.num << '/' << r.den;

which inserts 22/7 into the output stream and returns a reference to cout. Then another call to the
standard output operator << and another call to the overloaded operator are made, with the output (a ref-
erence to cout) of each call cascading into the next call as input. Finally, the last call to the standard
output operator << is made, passing cout and endl. This flushes the stream, causing the complete
line

x = 22/7, y = -3/8

to be printed.

The syntax for overloading the input operator for a class T with data member d is
friend istream& operator>>(istream& istr, T& t)

{ return istr >> t.d; }

Here, istream is another standard class defined (indirectly) in the iostream.h header file.
Here is an example of how custom input can be written:

EXAMPLE 11.9 Overloading the Input Operator >> in the Ratio Class

class Ratio

{ friend istream& operator>>(istream&, Ratio&);

friend ostream& operator<<(ostream&, const Ratio&);

public:

Ratio(int n=0, int d=1) : num(n), den(d) { }

// other declarations go here

private:

int num, den;

int gcd(int, int);

void reduce();

};

int main()

{ Ratio x, y;

cin >> x >> y;

cout << "x = " << x << ", y = " << y << endl;

}

istream& operator>>(istream& istr, Ratio& r)

{ cout << "\t Numerator: "; istr >> r.num;

cout << "\tDenominator: "; istr >> r.den;

r.reduce();

return istr;

}

This version of the input operator includes user prompts to facilitate input. It also includes a call to the
utility function reduce(). Note that, as a friend, the operator can access this private function.

Numerator: -10
Denominator: -24

Numerator: 36
Denominator: -20

x = 5/12, y = -9/5

CHAP. 11] OVERLOADING OPERATORS 263

11.8 CONVERSION OPERATORS

In our original implementation of the Ratio class (Example 10.1 on page 233) we defined
the member function convert() to convert from type Ratio to type double:

double convert() { return double(num)/den; }

This requires the member function to be called as
x.convert();

In keeping with our goal to make objects of the Ratio class behave like objects of
fundamental types (i.e., like ordinary variables), we would like to have a conversion function
that could be called with a syntax that conforms to ordinary type conversions:

n = int(t);
y = double(x);

This can be done with a conversion operator.
Our Ratio class already has the facility to convert an object from int to Ratio:

Ratio x(22);

This is handled by the default constructor, which assigns 22 to x.num and 1 to x.den. This
constructor also handles direct type conversions from type int to type Ratio:

x = Ratio(22);

Constructors of a given class are used to convert from another type to that class type.
To convert from the given class type to another type requires a different kind of member

function. It is called a conversion operator, and it has a different syntax. If type is the type to
which the object is to be converted, then the conversion operator is declared as

operator type();

For example, a member function of the Ratio class that returns an equivalent float would be
declared as

operator float();

Or, if we want it to convert to type double, then we would declare it as
operator double();

And, if we want it to be usable for constant Ratios (like pi), then we would declare it as
operator double() const;

Recall that, in our original implementation of the Ratio class (Example 10.1 on page 233) we
defined the member function convert() for this purpose.

EXAMPLE 11.10 Adding a Conversion Operator to the Ratio Class

class Ratio
{ friend istream& operator>>(istream&, Ratio&);

friend ostream& operator<<(ostream&, const Ratio&);
public:

Ratio(int n=0, int d=1) : num(n), den(d) { }
operator double() const;

private:
int num, den;

};

int main()
{ Ratio x(-5,8);

cout << "x = " << x << ", double(x) = " << double(x) << endl;

264 OVERLOADING OPERATORS [CHAP. 11

const Ratio P(22,7);
const double PI = double(P);
cout << "P = " << P << ", PI = " << PI << endl;

}

Ratio::operator double() const
{ return double(num)/den;
}

First we use the conversion operator double() to convert the Ratio object x into the double
-0.625. Then we use it again to convert the constant Ratio object p into the constant double pi.

11.9 OVERLOADING THE INCREMENT AND DECREMENT OPERATORS

The increment operator ++ and the decrement operator -- each have two forms: prefix and
postfix. Each of these four forms can be overloaded. We’ll examine the overloading of the
increment operator here. Overloading the decrement operator works the same way.

When applied to integer types, the pre-increment operator simply adds 1 to the value of the
object being incremented. This is a unary operator: its single argument is the object being
incremented. The syntax for overloading it for a class named T is simply

T operator++();

So for our Ratio class, it is declared as
Ratio operator++();

EXAMPLE 11.11 Adding a Pre-Increment Operator to the Ratio Class

This example adds an overloaded pre-increment operator ++ to our Ratio class. Although we can
make this function do whatever we want, it should be consistent with the action that the standard
pre-increment operator performs on integer types. That adds 1 to the current value of the object before
that value is used in the expression. This is equivalent to adding its denominator to its numerator:

So, we simply add den to num and then return *this, which is the object itself:
class Ratio
{ friend ostream& operator<<(ostream&, const Ratio&);

public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
Ratio operator++();
// other declarations go here

private:
int num, den;
// other declarations go here

};
int main()
{ Ratio x(22,7), y = ++x;

cout << "y = " << y << ", x = " << x << endl;

x = -5/8, double(x) = -0.625
P = 22/7, PI = 3.14286

22
7

------ 1+
22 7+

7
--------------- 29

7
------= =

CHAP. 11] OVERLOADING OPERATORS 265

}
Ratio Ratio::operator++()
{ num += den;

return *this;
}

Postfix operators have the same function name as the prefix operators. For example, both the
pre-increment operator and the post-increment operator are named operator++. To distinguish
them, C++ specifies that the prefix operator has one argument and the postfix operator has two
arguments. (When used, they both appear to have one argument.) So the correct syntax for the
prototype for an overloaded post-increment operator is

T operator++(int);

The required argument must have type int. This appears a bit strange because no integer is
passed to the function when it is invoked. The integer argument is thus a dummy argument,
required only so that the postfix operator can be distinguished from the corresponding prefix
operator.

EXAMPLE 11.12 Adding a Post-Increment Operator to the Ratio Class

To be consistent with the ordinary post-increment operator for integer types, this overloaded version
should not change the value of x until after it has been assigned to y. To do that, we need a temporary
object to hold the contents of the object that owns the call. This is done by assigning *this to temp.
Then this object can be returned after adding den to num.

class Ratio
{ friend ostream& operator<<(ostream&, const Ratio&);

public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
Ratio operator++(); // pre-increment
Ratio operator++(int); // post-increment

private:
int num, den;
};

int main()
{ Ratio x(22,7), y = x++;

cout << "y = " << y << ", x = " << x << endl;
}

Ratio Ratio::operator++(int)
{ Ratio temp = *this;

num += den;
return temp;

}

Note that the dummy argument in the operator++ function is an unnamed int. It need not be
named because it is not used. But it must be declared to distinguish the post-increment from the
pre-increment operator.

y = 29/7, x = 29/7

y = 22/7, x = 29/7

266 OVERLOADING OPERATORS [CHAP. 11

11.10 OVERLOADING THE SUBSCRIPT OPERATOR

Recall that, if a is an array, then the expression a[i] really means nothing more than
*(a+i). This is because a is actually the address of the initial element in the array, so a+i is
the address of the ith element, since the number of bytes added to a is i times the size of each
array element.

The symbol [] denotes the subscript operator. Its name derives from the original use of
arrays, where a[i] represented the mathematical symbol ai . When used as a[i], it has two
operands: a and i. The expression a[i] is equivalent to operator[](a, i). And as an
operator, [] can be overloaded.

EXAMPLE 11.13 Adding a Subscript Operator to the Ratio Class

class Ratio
{ friend ostream& operator<<(ostream&, const Ratio&);

public:
Ratio(int n=0, int d=1) : num(n), den(d) { }
int& operator[](int);
// other declarations go here

private:
int num, den;
// other declarations go here

};

int main()
{ Ratio x(22,7);

cout << "x = " << x << endl;
cout << "x[1] = " << x[1] << ", x[2] = " << x[2] << endl;

}

ostream& operator<<(ostream& ostr, const Ratio& r)
{ return ostr << r.num << "/" << r.den;
}

int& Ratio::operator[](int i)
{ if (i == 1) return num;

else return den;
}

The expression x[1] calls the subscript operator, passing 1 to i, which returns x.num. Similarly,
x[2] returns x.den. If i has any value other than 1 or 2, then an error message is sent to cerr, the
standard error stream, and then the exit() function is called.

This example is artificial. There is no advantage to accessing the fields of the Ratio object x with
x[1] and x[2] instead of x.num and x.den. However, there are many important classes where the
subscript is very useful. (See Problem 11.2.)

Note that the subscript operator is an access function, since it provides public access to
private member data.

x = 22/7
x[1] = 22, x[2] = 7

CHAP. 11] OVERLOADING OPERATORS 267

Review Questions

11.1 How is the operator keyword used?
11.2 What does *this always refer to?
11.3 Why can’t the this pointer be used in nonmember functions?
11.4 Why should the overloaded assignment operator return *this?
11.5 What is the difference between the effects of the following two declarations:

Ratio y(x);

Ratio y = x;

11.6 What is the difference between the effects of the following two lines:
Ratio y = x;

Ratio y; y = x;

11.7 Why can’t ** be overloaded as an exponentiation operator?
11.8 Why should the stream operators << and >> be overloaded as friend functions?
11.9 Why should the arithmetic operators +, -, *, and / be overloaded as friend functions?
11.10 How is the overloaded pre-increment operator defintion distinguished from that of the over-

loaded post-increment operator?
11.11 Why is the int argument in the implementation of the post-increment operator left

unnamed?
11.12 What mechanism allows the overloaded subscript operator [] to be used on the left side of

an assignment statement, like this: v[2] = 22?

Problems

11.1 Implement the binary subtraction operator, the unary negation operator, and the less-than
operator < for the Ratio class (see Example 11.4 on page 259).

11.2 Implement a Vector class, with a default constructor, a copy constructor, a destructor, and
overloaded assignment operator, subscript operator, equality operator, stream insertion oper-
ator, and stream extraction operator.

11.3 Implement the addition and division operators for the Ratio class (see Example 11.5 on
page 259).

11.4 Rewrite the overloaded input operator for the Ratio class (Example 11.9 on page 262) so
that, instead of prompting for the numerator and denominator, it reads a fraction type as
“22/7”.

11.5 Implement an overloaded assignment operator = for the Point class (see Problem 10.1 on
page 249).

11.6 Implement overloaded stream insertion operator << for the Point class (see Problem 10.1
on page 249).

11.7 Implement overloaded comparison operators == and != for the Point class (see Prob-
lem 10.1 on page 249).

11.8 Implement overloaded addition operator + and subtraction operator - for the Point

class (see Problem 10.1 on page 249).
11.9 Implement an overloaded multiplication operator * to return the dot product of two Point

objects (see Problem 10.1 on page 249).

268 OVERLOADING OPERATORS [CHAP. 11

Answers to Review Questions

11.1 The operator keyword is used to form the name of a function that overloads an operator. For
example, the name of the function that overloads the assignment operator = is “operator=”.

11.2 The expression *this always refers to the object that owns the call of the member function in
which the expression appears. Therefore, it can only be used within member functions.

11.3 The keyword this is a pointer to the object that owns the call of the member function in which the
expression appears.

11.4 The overloaded assignment operator should return *this so that the operator can be used in a cas-
cade of calls, like this: w = x = y = z;

11.5 There is no difference. Both declarations use the copy constructor to create the object y as a dupli-
cate of the object x.

11.6 The declaration Ratio y = x; calls the copy constructor. The code Ratio y; y = x; calls
the default constructor and then the assignment operator.

11.7 The symbol ** cannot be overloaded as an operator because it is not a C++ operator.
11.8 The stream operators << and >> should be overloaded as friend functions because their left

operands should be stream objects. If an overloaded operator is a member function, then its left oper-
and is *this, which is an object of the class to which the function is a member.

11.9 The arithmetic operators +, -, *, and / should be overloaded as friend functions so that their
left operands can be declared as const. This allows, for example, the use of an expression like 22
+ x. If an overloaded operator is a member function, then its left operand is *this, which is not
const.

11.10 The overloaded pre-increment operator has no arguments. The overloaded post-increment operator
has one (dummy) argument, of type int.

11.11 The int argument in the implementation of the post-increment operator is left unnamed
because it is not used. It is a dummy argument.

11.12 By returning a reference, the overloaded subscript operator [] can be used on the left side of an
assignment statement, like this: v[2] = 22. This is because, as a reference, v[2] is an lvalue.

Solutions to Problems

11.1 All three of these operators are implemented as friend functions to give them access to the num
and den data members of their owner objects:

class Ratio
{ friend Ratio operator-(const Ratio&, const Ratio&);

friend Ratio operator-(const Ratio&);
friend bool operator<(const Ratio&, const Ratio&);

public:
Ratio(int =0, int =1);
Ratio(const Ratio&);
Ratio& operator=(const Ratio&);
// other declarations go here

private:
int num, den;
int gcd(int, int)
int reduce();

};
The binary subtraction operator simply constructs and returns a Ratio object z that represents the
difference x - y:

Ratio operator-(const Ratio& x, const Ratio& y)
{ Ratio z(x.num*y.den - y.num*x.den, x.den*y.den);

CHAP. 11] OVERLOADING OPERATORS 269

z.reduce();
return z;

}
Algebraically, the subtraction a/b - c/d is performed using the common denominator bd:

So the numerator of x - y should be x.num*y.den - y.num*x.den and the denominator
should be x.den*y.den. The function constructs the Ratio object z with that numerator and
denominator. This algebraic formula can produce a fraction that is not in reduced form, even if x and y
are. For example, 1/2 – 1/6 = (1 ⋅6 – 2 ⋅1)/(2⋅6) = 4/12. So we call the reduce() utility function
before returning the resulting object z.

The unary negation operator overloads the symbol “-”. It is distinguished from the binary subtrac-
tion operator by its parameter list; it has only one parameter:

Ratio Ratio::operator-(const Ratio& x)
{ Ratio y(-x.num, x.den);

return y;
}

To negate a fraction a/b we simply negate its numerator: (-a)/b. So the newly constructed Ratio
object y has the same denominator as x but its numerator is -x.num. The less-than operator is
easier to do if we first modify our default constructor to ensure that every object’s den value is pos-
itive. Then we can use the standard equivalence for the less-than operator:

bool operator<(const Ratio& x, const Ratio& y)
{ return (x.num*y.den < y.num*x.den);
}

Ratio::Ratio(int n, int d) : num(n), den(d)
{ if (d == 0) n = 0;

else if (d < 0) { n *= -1; d *= -1; }
reduce();

}
The modification ensuring that den > 0 could instead be done in the reduce() function, since
that utility should be called by every member function that allows den to be changed. However,
none of our other member functions allows the sign of den to change, so by requiring it to be posi-
tive when the object is constructed we don’t need to check the condition again.

11.2 Here is the class declaration:
class Vector
{ friend bool operator==(const Vector&, const Vector&);

friend ostream& operator<<(ostream&, const Vector&);
friend istream& operator>>(istream&, Vector&);

public:
Vector(int =1, double =0.0); // default constructor
Vector(const Vector&); // copy constructor
~Vector(); // destructor
const Vector& operator=(const Vector&); // assignment operator
double& operator[](int) const; // subscript operator

private:
int size;
double* data;

};
Here is the implementation of the overloaded equality operator:

a
b
--- c

d
---–

ad bc–
bd

------------------=

a
b
--- c

d
---< ad bc<⇔

270 OVERLOADING OPERATORS [CHAP. 11

bool operator==(const Vector& v, const Vector& w)

{ if (v.size != w.size) return 0;
for (int i = 0; i < v.size; i++)

if (v.data[i] != w.data[i]) return 0;

return 1;

}

It is a nonmember function which returns 1 or 0 according to whether the two vectors v and w are
equal. If their sizes are not equal, then it returns 0 immediately. Otherwise it checks the correspond-
ing elements of the two vectors, one at a time. If there is any mismatch, then again it returns 0 imme-
diately. Only if the entire loop finishes without finding any mismatches can we conclude that the two
vectors are equal and return 1.

Here is the implementation of the overloaded stream insertion operator:
ostream& operator<<(ostream& ostr, const Vector& v)

{ ostr << '(';

for (int i = 0; i < v.size-1; i++) {

ostr << v[i] << ", ";
if ((i+1)%8 == 0) cout << "\n ";

}

return ostr << v[i] << ")\n";

}

This prints the vector like this: (1.11111, 2.22222, 3.33333, 4.44444, 5.55556).
The conditional inside the loop allows the output to “wrap” around several lines neatly if the vector
has more than 8 elements.

The output is sent to ostr which is just a local name for the output stream that is passed to the
function. That would be cout if the function is called like this: cout << v;.
In the last line of the function, the expression ostr << v[i] << ")\n" makes two calls to the
(standard) stream extraction operator. Those two calls return ostr as the value of this expression,
and so that object ostr is then returned by this function.

Here is the overloaded stream extraction operator:
istream& operator>>(istream& istr, Vector& v)

{ for (int i = 0; i < v.size; i++)
{ cout << i << ": ";

istr >> v[i];

}

return istr;

}
This implementation prompts the user for each element of the vector v. It could also be implemented
without user prompts, simply reading the elements one at a time. Notice that the elements are read
from the input stream istr, which is the first parameter passed in to the function. When the func-
tion is called like this: cin >> v; the standard input stream cin will be passed to the parameter
istr, so the vector elements are actually read from cin. The argument istr is simply a local
name for the actual input stream which probably will be cin. Notice that this argument is also
returned, allowing a cascade of calls like this: cin >> u >> v >> w;.

Here is the implementation of the default constructor:
Vector::Vector(int sz, double t) : size(sz)

{ data = new double[size];

for (int i = 0; i < size; i++)
data[i] = t;

}

CHAP. 11] OVERLOADING OPERATORS 271

The declaration Vector u; would construct the vector u having 1 element with the value 0.0; the
declaration Vector v(4); would construct the vector v with 4 elements all with the value 0.0;
and the declaration Vector w(8, 3.14159); would construct the vector w with 8 elements
all with the value 3.14159.

This constructor uses the initialization list size(sz) to assign the argument sz to the data
member size. Then it uses the new operator to allocate that number of elements to the array
data. Finally, it initializes each element with the value t.

The copy constructor is almost the same as the default constructor:
Vector::Vector(const Vector& v) : size(v.size)
{ data = new double[v.size];

for (int i = 0; i < size; i++)
data[i] = v.data[i];

}
It uses the data members of the vector argument v to initialize the object being constructed. So it
assigns v.size to the new object’s size member, and it assigns v.data[i] to the elements
of the new object’s data member.

The destructor simply restores the storage allocated to the data array and then sets data to
NULL and size to 0:

Vector::~Vector()
{ delete [] data;

data = NULL;
size = 0;

}
The overloaded assignment operator creates a new object that duplicates the vector v:

const Vector& Vector::operator=(const Vector& v)
{ if (&v != this)

{ delete [] data;
size = v.size;
data = new double[v.size];
for (int i = 0; i < size; i++)

data[i] = v.data[i];
}
return *this;

}
The condition (&v != this) determines whether the object that owns the call is different from
the vector v. If the address of v is the same as this (which is the address of the current object),
then they are the same object and nothing needs to be done. This check is a safety precaution to guard
against the possibility that an object might, directly or indirectly, be assigned to itself, like this: w =
v = w;.

Before creating a new object, the function restores the allocated data array. Then it copies the vec-
tor v the same way that the copy constructor did.

The overloaded subscript operator simply returns the ith component of the object’s data array:
double& Vector::operator[](int i) const
{ return data[i];
}

11.3 Ratio operator+(const Ratio& r1, const Ratio& r2)
{ Ratio r(r1.num*r2.den+r2.num*r1.den,r1.den*r2.den);

r.reduce();
return r;

}
Ratio operator/(const Ratio& r1, const Ratio& r2)
{ Ratio r(r1.num*r2.den,r1.den*r2.num);

272 OVERLOADING OPERATORS [CHAP. 11

r.reduce();
return r;

}
11.4 ostream& operator<<(ostream& ostr, const Ratio& r)

{ return ostr << r.num << "/" << r.den;
}

11.5 Point& Point::operator=(const Point& point)
{ _x = point._x;

_y = point._y;
_z = point._z;
return *this;

}
11.6 ostream& operator<<(ostream& ostr, const Point& point)

{ return ostr << "(" << _x << "," << _y << "," << _z << ")";
}

11.7 bool Point::operator==(const Point& point) const
{ return _x == point._x && _y == point._y && _z == point._z;
}
bool Point::operator!=(const Point& point) const
{ return _x != point._x || _y != point._y || _z != point._z;
}

11.8 Point operator+(const Point& p1, const Point& p2)
{ return Point(p1._x+p2._x,p1._y+p2._y,p1._z+p2._z);
}
Point operator-(const Point& p1, const Point& p2)
{ return Point(p1._x-p2._x,p1._y-p2._y,p1._z-p2._z);
}

11.9 Point operator*(const double coef, const Point& point)
{ return Point(coef*point._x,coef*point._y,coef*point._z);
}

273

Chapter 12

Composition and Inheritance

12.1 INTRODUCTION

We often need to use existing classes to define new classes. The two ways to do this are called
composition and the inheritance. This chapter describes both methods and shows how to decide
when to use them.

12.2 COMPOSITION

Composition (also called containment or aggregation) of classes refers to the use of one or
more classes within the definition of another class. When a data member of the new class is an
object of another class, we say that the new class is a composite of the other objects.

EXAMPLE 12.1 A Person Class

Here is a simple definition for a class to represent people.
class Person

{ public:

Person(char* n="", char* nat="U.S.A.", int s=1)

: name(n), nationality(nat), sex(s) { }

void printName() { cout << name; }

void printNationality() { cout << nationality; }

private:

string name, nationality;

int sex;

};

int main()

{ Person creator("Bjarne Stroustrup", "Denmark");

cout << "The creator of C++ was ";

creator.printName();

cout << ", who was born in ";

creator.printNationality();

cout << ".\n";

}

This example illustrates the composition of the string class within the Person class. The
next example defines another class that we can compose with the Person class to improve it:

The creator of C++ was Bjarne Stroustrup, who was born in Denmark.

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

274 COMPOSITION AND INHERITANCE [CHAP. 12

EXAMPLE 12.2 A Date Class

class Date
{ friend istream& operator>>(istream&, Date&);

friend ostream& operator<<(ostream&, const Date&);
public:

Date(int m=0, int d=0, int y=0) : month(m), day(d), year(y) { }
void setDate(int m, int d, int y) { month = m; day = d; year = y; }

private:
int month, day, year;

};

istream& operator>>(istream& in, Date& x)
{ in >> x.month >> x.day >> x.year;

return in;
}

ostream& operator<<(ostream& out, const Date& x)
{ static char* monthName[13] = {"", "January","February",

"March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"};

out << monthName[x.month] << ' ' << x.day << ", " << x.year;
return out;

}

int main()
{ Date peace(11,11,1918);

cout << "World War I ended on " << peace << ".\n";
peace.setDate(8,14,1945);
cout << "World War II ended on " << peace << ".\n";
cout << "Enter month, day, and year: ";
Date date;
cin >> date;
cout << "The date is " << date << ".\n";

}

The test driver tests the default constructor, the setDate() function, the overloaded insertion
operator <<, and the overloaded extraction operator >>.

Now we can use the Date class inside the Person class to store a person’s date of birth and
date of death:

EXAMPLE 12.3 Composing the Date Class with the Person Class

#include "Date.h"

class Person
{ public:

World War I ended on November 11, 1918.
World War II ended on August 14, 1945.
Enter month, day, and year: 7 4 1776
The date is July 4, 1776.

CHAP. 12] COMPOSITION AND INHERITANCE 275

Person(char* n="", int s=0, char* nat="U.S.A.")
: name(n), sex(s), nationality(nat) { }

void setDOB(int m, int d, int y) { dob.setDate(m, d, y); }
void setDOD(int m, int d, int y) { dod.setDate(m, d, y); }
void printName() { cout << name; }
void printNationality() { cout << nationality; }
void printDOB() { cout << dob; }
void printDOD() { cout << dod; }

private:
string name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

};

int main()
{ Person author("Thomas Jefferson", 1);

author.setDOB(4,13,1743);
author.setDOD(7,4,1826);
cout << "The author of the Declaration of Independence was ";
author.printName();
cout << ".\nHe was born on ";
author.printDOB();
cout << " and died on ";
author.printDOD();
cout << ".\n";

}

Notice again that we have used a member function of one class to define member functions of the
composed class: the setDate() function is used to define the setDOB() and setDOD() functions.

Composition is often referred to as a “has-a” relationship because the objects of the composite
class “have” objects of the composed class as members. Each object of the Person class “has
a” name and a nationality which are string objects. Composition is one way of reusing
existing software to create new software.

12.3 INHERITANCE

Another way to reuse existing software to create new software is by means of inheritance (also
called specialization or derivation). This is often referred to as an “is-a” relationship because
every object of the class being defined “is” also an object of the inherited class.

The common syntax for deriving a class Y from a class X is
class Y : public X {
// ...
};

Here X is called the base class (or superclass) and Y is called the derived class (or subclass).
The keyword public after the colon specifies public inheritance, which means that public

members of the base class become public members of the derived class.

The author of the Declaration of Independence was Thomas Jefferson.
He was born on April 13, 1743 and died on July 4, 1826.

276 COMPOSITION AND INHERITANCE [CHAP. 12

EXAMPLE 12.4 Deriving a Student Class from the Person Class

Students are people. So it is natural to use the Person class to derive a Student class:
#include "Person.h"
class Student : public Person
{ public:

Student(char* n, int s=0, char* i="")
: Person(n, s), id(i), credits(0) { }

void setDOM(int m, int d, int y) { dom.setDate(m, d, y); }
void printDOM() { cout << dom; }

private:
string id; // student identification number
Date dom; // date of matriculation
int credits; // course credits
float gpa; // grade-point average

};
The Student class inherits all the public functionality of the Person class, including the
Person() constructor which it uses in its constructor to initialize name in the Person class. Note
that this is a private member of the Person class, so it could not be accessed directly.

Here is a test driver for the Student class:
#include "Student.h"
int main()
{ Student x("Ann Jones", 0, "219360061");

x.setDOB(5, 13, 1977);
x.setDOM(8, 29, 1995);
x.printName();
cout << "\n\t Born: "; x.printDOB();
cout << "\n\tMatriculated: "; x.printDOM(); cout << endl;

}

12.4 protected CLASS MEMBERS

The Student class in Section 12.3 has a significant problem: it cannot directly access the
private data members of its Person superclass: name, nationality, DOB, DOD, and sex. The
lack of access on the first four of these is not serious because these can be written and read
through the Person class’s constructor and public access functions. However, there is no way to
write or read a Student’s sex. One way to overcome this problem would be to make sex a data
member of the Student class. But that is unnatural: sex is an attribute that all Person objects
have, not just Students. A better solution is to change the private access specifier to
protected in the Person class. That allows access to these data members from derived classes.

EXAMPLE 12.5 The Person Class with protected Data Members

These are the same class definitions that were given in the two previous examples except that the
private access specifier has been changed to protected, and we have added the access function
printSex() to the Student class:

Ann Jones
Born: May 13, 1977

Matriculated: August 29, 1995

CHAP. 12] COMPOSITION AND INHERITANCE 277

#include "Date.h"

class Person
{ public:

Person(char* n="", int s=0, char* nat="U.S.A.")
: name(n), sex(s), nationality(nat) { }

void setDOB(int m, int d, int y) { dob.setDate(m, d, y); }
void setDOD(int m, int d, int y) { dod.setDate(m, d, y); }
void printName() { cout << name; }
void printNationality() { cout << nationality; }
void printDOB() { cout << dob; }
void printDOD() { cout << dod; }

protected:
string name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male

};

class Student : public Person
{ public:

Student(char* n, int s=0, char* i="")
: Person(n, s), id(i), credits(0) { }

void setDOM(int m, int d, int y) { dom.setDate(m, d, y); }
void printDOM() { cout << dom; }
void printSex() { cout << (sex ? "male" : "female"); }

protected:
string id; // student identification number
Date dom; // date of matriculation
int credits; // course credits
float gpa; // grade-point average

};
Now all five data members defined in the Person class are accessible from its Student subclass,

as seen by the following test driver:
int main()
{ Student x("Ann Jones", 0, "219360061");

x.setDOB(5, 13, 1977);
x.setDOM(8, 29, 1995);
x.setDOD(7,4,1826);
x.printName();
cout << "\n\t Born: "; x.printDOB();
cout << "\n\t Sex: "; x.printSex();
cout << "\n\tMatriculated: "; x.printDOM();
cout << endl;

}

The protected access category is a balance between private and public categories:
private members are accessible only from within the class itself and its friend classes;

Ann Jones
Born: May 13, 1977
Sex: female

Matriculated: August 29, 1995

278 COMPOSITION AND INHERITANCE [CHAP. 12

protected members are accessible from within the class itself, its friend classes, its derived
classes, and their friend classes; public members are accessible from anywhere within the
file. In general, protected is used instead of private whenever it is anticipated that a sub-
class might be defined for the class.

A subclass inherits all the public and protected members of its base class. This means
that, from the point of view of the subclass, the public and protected members of its base
class appear as though they actually were declared in the subclass. For example, suppose that
class X and subclass Y are defined as

class X
{ public:

int a;
protected:

int b;
private:

int c;
};

class Y : public X
{ public:

int d;
};

and x and y are declared by
X x;
Y y;

Then we can visualize objects x and y as shown below.

The public member a of class X is inherited as a public member of y, and the
protected member b of class X is inherited as a protected member of y. But the
private member c of class X is not inherited by y. (The horizontal lines in each object
indicate the separate public, protected, and private regions of the object.)

12.5 OVERRIDING AND DOMINATING INHERITED MEMBERS

If Y is a subclass of X, then Y objects inherit all the public and protected member data
and member functions of X. For example, the name data and printName() function in the
Person class are also members of the Student class.

In some cases, you might want to define a local version of an inherited member. For example,
if a is a data member of X and if Y is a subclass of X, then you could also define a separate
data member named a for Y. In this case, we say that the a defined in Y dominates the a

defined in X. Then a reference y.a for an object y of class Y will access the a defined in Y

instead of the a defined in X. To access the a defined in X, one would use y.X::a.

a

c

Y

y

b

a

c

X

x

b

CHAP. 12] COMPOSITION AND INHERITANCE 279

The same rule applies to member functions. If a function named f() is defined in X and
another function named f() with the same signature is defined in Y, then y.f() invokes the
latter function, and y.X::f() invokes the former. In this case, the local function y.f()

overrides the f() function defined in X unless it is invoked as y.X::f().
These distinctions are illustrated in the following example.

EXAMPLE 12.6 Dominating a Data Member and Overriding a Member Function

Here are two classes, X and Y, with Y inheriting from X.
class X
{ public:

void f() { cout << "X::f() executing\n"; }
int a;

};

class Y : public X
{ public:

void f() { cout << "Y::f() executing\n"; } // overrides X::f()
int a; // dominates X::a

};
But the members of Y have the same signatures as those in X. So Y’s member function f() overrides
the f() defined in X, and Y’s data member a dominates the a defined in X.

Here is a test driver for the two classes:
int main()
{ X x;

x.a = 22;
x.f();
cout << "x.a = " << x.a << endl;
Y y;
y.a = 44; // assigns 44 to the a defined in Y
y.X::a = 66; // assigns 66 to the a defined in X
y.f(); // invokes the f() defined in Y
y.X::f(); // invokes the f() defined in X
cout << "y.a = " << y.a << endl;
cout << "y.X::a = " << y.X::a << endl;
X z = y;
cout << "z.a = " << z.a << endl;

}

Here, y has access to two different data members named a and two different functions f(). The
defaults are the ones defined in the derived class Y. The scope resolution operator :: is used in the form
X:: to override the defaults to access the corresponding members defined in the parent class X. When
the X object z is initialized with y, its X members are used: z.a is assigned the value y.X::a.

This diagram illustrates the three objects x, y, and z:

X::f() executing
x.a = 22
Y::f() executing
X::f() executing
y.a = 44
y.X::a = 66
z.a = 66

280 COMPOSITION AND INHERITANCE [CHAP. 12

Example 12.6 and most of the remaining examples in this chapter are designed to illustrate the
intricacies of inheritance. They are not intended to exemplify common programming practice.
Instead, they focus on specific aspects of C++ which can then be applied to more general and
practical situations. In particular, the method of dominating data members as illustrated in Exam-
ple 12.6 is rather unusual. Although it is not uncommon to override function members, dominat-
ing data members of the same type is rare. More common would be the reuse of the same data
name with a different type, like this:

class Y : public X
{ public:

double a; // the data member a in class X had type int
}

In an inheritance hierarchy, default constructors and destructors behave differently from other
member functions. As the following example illustrates, each constructor invokes its parent
constructor before executing itself, and each destructor invokes its parent destructor after execut-
ing itself:

EXAMPLE 12.7 Parent Constructors and Destructors

class X
{ public:

X() { cout << "X::X() constructor executing\n"; }
~X() { cout << "X::X() destructor executing\n"; }

};

class Y : public X
{ public:

Y() { cout << "Y::Y() constructor executing\n"; }
~Y() { cout << "Y::Y() destructor executing\n"; }

};
class Z : public Y
{ public:

Z(int n) { cout << "Z::Z(int) constructor executing\n"; }
~Z() { cout << "Z::Z() destructor executing\n"; }

};

int main()
{ Z z(44);
}

When z is declared, the Z::Z(int) constructor is called. Before executing, it calls the Y::Y()
constructor which immediately calls the X::X() constructor. After the X::X() constructor has
finished executing, control returns to the Y::Y() constructor which finishes executing. Then finally the
Z::Z() constructor finishes executing. The effect is that all the parent default constructors execute in
top-down order.

X::a 66

a 44

y

Y

a 22
x

X

a 66
z

X

CHAP. 12] COMPOSITION AND INHERITANCE 281

The same thing happens with the destructors, except that each destructor executes its own code before
calling its parent destructor. So all the parent destructors execute in bottom-up order.

Here is a more realistic example:

EXAMPLE 12.8 Parent Constructors and Destructors

Here is a demo program that uses a base class Person and a derived class Student:
class Person
{ public:

Person(const char* s)
{ name = new char[strlen(s)+1]; strcpy(name, s); }

~Person() { delete [] name; }
protected:

char* name;
};

class Student : public Person
{ public:

Student(const char* s, const char* m) : Person(s)
{ major = new char[strlen(m)+1]; strcpy(major, m); }

~Student() { delete [] major; }
private:

char* major;
};

int main()
{ Person x("Bob");

{ Student y("Sarah", "Biology");
}

}
When x is instantiated, it calls the Person constructor which allocates 4 bytes of memory to store the
string “Bob”. Then y instantiates, first calling the Person constructor which allocates 6 bytes to store
the string “Sarah” and then allocating 8 more bytes of memory to store the string “Biology”. The scope
of y terminates before that of x because it is declared within an internal block. At that moment, y’s
destructor deallocates the 8 bytes used for “Biology” and then calls the Person destructor which deal-
locates the 6 bytes used for “Sarah”. Finally, the Person destructor is called to destroy x, deallocating
the 4 bytes used for “Bob”.

12.6 private ACCESS VERSUS protected ACCESS

The difference between private and protected class members is that subclasses can
access protected members of a parent class but not private members. Since protected

is more flexible, when would you want to make members private? The answer lies at the
heart of the principle of information hiding: restrict access now to facilitate changes later. If you
think you may want to modify the implementation of a data member in the future, then declaring
it private will obviate the need to make any corollary changes in subclasses. Subclasses are
independent of private data members.

282 COMPOSITION AND INHERITANCE [CHAP. 12

EXAMPLE 12.9 The person Class with protected and private Data Members

Suppose that we need to know whether people (i.e., Person objects) are high school graduates. We
could just add a protected data member like sex that stores either 0 or 1. But we might decide later
to replace it with data member(s) that contain more detailed information about the person’s education. So,
for now, we set up a private data member hs to prevent derived classes from accessing it directly:

class Person
{ public:

Person(char* n="", int s=0, char* nat="U.S.A.")
: name(n), sex(s), nationality(nat) { }

// ...
protected:

string name, nationality;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male
void setHSgraduate(int g) { hs = g; }
int isHSgraduate() { return hs; }

private:
int hs; // = 1 if high school graduate

};
We include protected access functions to allow subclasses to access the information. If we do later
replace the hs data member with something else, we need only modify the implementations of these two
access functions without affecting any subclasses.

12.7 virtual FUNCTIONS AND POLYMORPHISM

One of the most powerful features of C++ is that it allows objects of different types to respond
differently to the same function call. This is called polymorphism and it is achieved by means of
virtual functions. Polymorphism is rendered possible by the fact that a pointer to a base class
instance may also point to any subclass instance:

class X
{ // ...
}

class Y : public X // Y is a subclass if X
{ // ...
}

int main()
{ X* p; // p is a pointer to objects of base class X

Y y;
p = &y; // p can also point to objects of subclass Y

}

So if p has type X* (“pointer to type X”), then p can also point to any object whose type is a
subclass of X. However, even when p is pointing to an instance of a subclass Y, its type is still
X*. So an expression like p->f() would invoke the function f() defined in the base class.

Recall that p->f() is an alternate notation for (*p).f(). This invokes the member function f()

of the object to which p points. But what if p is actually pointing to an object y of a subclass of the
class to which p points, and what if that subclass Y has its own overriding version of f()? Which

CHAP. 12] COMPOSITION AND INHERITANCE 283

f() gets executed: X::f() or Y::f()? The answer is that p->f() will execute X::f() because
p had type X*. The fact that p happens to be pointing at that moment to an instance of subclass Y is
irrelevant; it’s the statically defined type X* of p that normally determines its behavior.

EXAMPLE 12.10 Using virtual Functions

This demo program declares p to be a pointer to objects of the base class X. First it assigns p to
point to an instance x of class X. Then it assigns p to point to an instance y of the derived class Y.

class X
{ public:

void f() { cout << "X::f() executing\n"; }
};

class Y : public X
{ public:

void f() { cout << "Y::f() executing\n"; }
};

int main()
{ X x;

Y y;
X* p = &x;
p->f(); // invokes X::f() because p has type X*
p = &y;
p->f(); // invokes X::f() because p has type X*

}

Two function calls p->f() are made. Both calls invoke the same version of f() that is defined in the
base class X because p is declared to be a pointer to X objects. Having p point to y has no effect on
the second call p->f().

Transform X::f() into a virtual function by adding the keyword “virtual” to its declaration:
class X
{ public:

virtual void f() { cout << "X::f() executing\n"; }
};

With the rest of the code left unchanged, the output now becomes

Now the second call p->f() invokes Y::f() instead of X::f().

This example illustrates polymorphism: the same call p->f() invokes different functions.
The function is selected according to which class of object p points to. This is called dynamic
binding because the association (i.e., binding) of the call to the actual code to be executed is
deferred until run time. The rule that the pointer’s statically defined type determines which mem-
ber function gets invoked is overruled by declaring the member function virtual.

Here is a more realistic example:

X::f() executing
X::f() executing

X::f() executing
Y::f() executing

284 COMPOSITION AND INHERITANCE [CHAP. 12

EXAMPLE 12.11 Polymorphism through virtual Functions

Here is a Person class with a Student subclass and a Professor subclass:
class Person
{ public:

Person(char* s) { name = new char[strlen(s)+1]; strcpy(name, s); }
void print() { cout << "My name is " << name << ".\n"; }

protected:
char* name;

};

class Student : public Person
{ public:

Student(char* s, float g) : Person(s), gpa(g) { }
void print()
{ cout << "My name is " << name << " and my G.P.A. is "

<< gpa << ".\n"; }
private:

float gpa;
};

class Professor : public Person
{ public:

Professor(char* s, int n) : Person(s), publs(n) { }
void print()
{ cout << "My name is " << name

<< " and I have " << publs << " publications.\n"; }
private:

int publs;
};

int main()
{ Person* p;

Person x("Bob");
p = &x;
p->print();
Student y("Tom", 3.47);
p = &y;
p->print();
Professor z("Ann", 7);
p = &z;
p->print();

}

The print() function defined in the base class is not virtual. So the call p->print() always
invokes that same base class function Person::print() because p has type Person*. The pointer
p is statically bound to that base class function at compile time.

Now change the base class function Person::print() into a virtual function, and run the
same program:

My name is Bob.
My name is Tom.
My name is Ann.

CHAP. 12] COMPOSITION AND INHERITANCE 285

class Person
{ public:

Person(char* s) { name = new char[strlen(s+1)]; strcpy(name, s); }
virtual void print() { cout << "My name is " << name << ".\n"; }

protected:
char* name;

};

Now the pointer p is dynamically bound to the print() function of whatever object it points to. So
the first call p->print() invokes the base class function Person::print(), the second call
invokes the derived class function Student::print(), and the third call invokes the derived class
function Professor::print(). We say that the call p->print() is polymorphic because its
meaning changes according to circumstance.

In general, a member function should be declared as virtual whenever it is anticipated that at
least some of its subclasses will define their own local version of the function.

12.8 VIRTUAL DESTRUCTORS

Virtual functions are overridden by functions that have the same signature and are defined in
subclasses. Since the names of constructors and destructors involve the names of their different
classes, it would seem that constructors and destructors could not be declared virtual. That is
indeed true for constructors. However, an exception is made for destructors.

Every class has a unique destructor, either defined explicitly within the class definition or
implicitly by the compiler. An explicit destructor may be defined to be virtual. The following
example illustrates the value in defining a virtual destructor:

EXAMPLE 12.12 Memory Leaks

This program is similar to Example 12.6:
class X
{ public:

X() { p = new int[2]; cout << "X(). "; }
~X() { delete [] p; cout << "~X().\n"; }

private:
int* p;

};

class Y : public X
{ public:

Y() { q = new int[1023]; cout << "Y(): Y::q = " << q << ". "; }
~Y() { delete [] q; cout << "~Y(). "; }

private:
int* q;

};

My name is Bob.
My name is Tom and my G.P.A. is 3.47
My name is Ann and I have 7 publications.

286 COMPOSITION AND INHERITANCE [CHAP. 12

int main()
{ for (int i = 0; i < 8; i++)

{ X* r = new Y;
delete r;

}
}

Each iteration of the for loop creates a new dynamic object. As in Example 12.6, the constructors are
invoked in top-down sequence: first X() and then Y(), allocating 4100 bytes of storage (using 4 bytes
for each int). But since r is declared to be a pointer to X objects, only the X destructor is invoked,
deallocating only 8 bytes. So on each iteration, 4092 bytes are lost! This loss is indicated by the actual
values of the pointer Y::q.

To plug this leak, change the destructor ~X() into a virtual function:
class X
{ public:

X() { p = new int[2]; cout << "X(). "; }
virtual ~X() { delete [] p; cout << "~X().\n"; }

private:
int* p;

};

With the base class destructor declared virtual, each iteration of the for loop calls both destructors,
thereby restoring all memory that was allocated by the new operator. This allows the same memory to be
reused for the pointer r.

This example illustrates what is known as a memory leak. In a large-scale software system,
this could lead to a catastrophe. Moreover, it is a bug that is not easily located. The moral is:
declare the base class destructor virtual whenever your class hierarchy uses dynamic bind-
ing.

As noted earlier, these examples are contrived to illustrate specific features of C++ and are not
meant to exemplify typical programming practice.

12.9 ABSTRACT BASE CLASSES

A well-designed object-oriented program will include a hierarchy of classes whose interrela-
tionships can be described by a tree diagram like the one below. The classes at the leaves of this

X(). Y(): Y::q = 0x5821c. ~X().
X(). Y(): Y::q = 0x5921c. ~X().
X(). Y(): Y::q = 0x5a21c. ~X().
X(). Y(): Y::q = 0x5b21c. ~X().
X(). Y(): Y::q = 0x5c21c. ~X().
X(). Y(): Y::q = 0x5d21c. ~X().
X(). Y(): Y::q = 0x5e21c. ~X().
X(). Y(): Y::q = 0x5f21c. ~X().

X(). Y(): Y::q = 0x5a220. ~Y(). ~X().
X(). Y(): Y::q = 0x5a220. ~Y(). ~X().
X(). Y(): Y::q = 0x5a220. ~Y(). ~X().
X(). Y(): Y::q = 0x5a220. ~Y(). ~X().
X(). Y(): Y::q = 0x5a220. ~Y(). ~X().
X(). Y(): Y::q = 0x5a220. ~Y(). ~X().
X(). Y(): Y::q = 0x5a220. ~Y(). ~X().
X(). Y(): Y::q = 0x5a220. ~Y(). ~X().

CHAP. 12] COMPOSITION AND INHERITANCE 287

tree (e.g., Owl, Fish, Dog) would include specific functions that implement the behavior of
their respective classes (e.g., Fish.swim(), Owl.fly(), Dog.dig()). However, some of
these functions may be common to all the subclasses of a class (e.g., Vertebrate.eat(),
Mammal.suckle(), Primate.peel()). Such functions are likely to be declared virtual in
these base classes, and then overridden in their subclasses for specific implementations.

If a virtual function is certain to be overridden in all of its subclasses, then there is no need
to implement it at all in its base class. This is done by making the virtual function “pure.” A
pure virtual member function is a virtual function that has no implementation in its class. The
syntax for specifying a pure virtual member function is to insert the initializer “=0;” in place of
the functions body, like this:

virtual int f() =0;

For example, in the Vertebrate class above, we might decide that the eat() function
would be overridden in every one of its subclasses, and thus declare it as a pure virtual member
function within its Vertebrate base class:

class Vertebrate
{ public:

virtual void eat() =0; // pure virtual function
};
class Fish : public Vertebrate
{ public:

void eat(); // implemented specifically for Fish class elsewhere
};

The individual classes in a class hierarchy are designated as either “abstract” or “concrete”
according to whether they have any pure virtual member functions. An abstract base class is a
class that has one or more pure virtual member functions. A concrete derived class is a class that
does not have any pure virtual member functions. In the example above, the Vertebrate class
is an abstract base class, and the Fish class is a concrete derived class. Abstract base classes
cannot be instantiated.

The existence of a pure virtual member function in a class requires that every one of its
concrete derived subclasses implement the function. In the example above, if the methods
Vertebrate.eat(), Mammal.suckle(), and Primate.peel() were the only pure virtual
functions, then the abstract base classes (“ABCs”) would be Vertebrate, Mammal, and
Primate, and the other 15 classes would be concrete derived classes (“CDCs”). Each of these 15

Bear Cat Dog Monkey Human Beaver Mouse

Owl Penguin Bat Carnivore Elephant Primate Rodent

Bird Fish Mammal

Vertebrate

288 COMPOSITION AND INHERITANCE [CHAP. 12

CDCs would have its own implementation of the eat() function, the 11 CDCs of the Mammal

class would have their own implementation of the suckle() function, and the 2 CDCs of the
Primate class would have their own implementation of the peel() function.

An ABC is typically defined during the first stages of the process of developing a class hierarchy. It
lays out the framework from which the details are derived in the ABC’s subclasses. Its pure virtual
functions prescribe a certain uniformity within the hierarchy.

EXAMPLE 12.13 A Hierarchy of Media Classes

Here is a hierarchy of classes to represent various media objects:

The primary ABC is the Media class:
class Media
{ public:

virtual void print() =0;
virtual char* id() =0;

protected:
string title;

};
It has two pure virtual functions and one data member.

Here is the concrete Book subclass:
class Book : Media
{ public:

Book(string a="", string t="", string p="", string i="")
: author(a), publisher(p), isbn(i) { title = t; }

void print() { cout << title << " by " << author << endl; }
char* id() { return isbn; }

private:
string author, publisher, isbn;

};
It implements the two virtual functions using its own member data.

Here is the concrete CD subclass:
class CD : Media
{ public:

CD(string t="", string c="", string m="", string n="")
: composer(c), make(m), number(n) { title = t; }

void print() { cout << title << ", " << composer << endl; }
char* id() { return make + " " + number; }

private:
string composer, make, number;

};
The CD class will also be a CDC of the Audio class, which will be another ABC. So when the Audio
class is defined, its pure virtual functions will also have to be implemented in this CD class.

CD Tape Record Magazine Newspaper Journal Newsletter

Audio Book Periodical

Media

CHAP. 12] COMPOSITION AND INHERITANCE 289

Here is the concrete Magazine subclass:
class Magazine : Media
{ public:

Magazine(string t="", string i="", int v=0, int n=0)
: issn(i), volume(v), number(n) { title = t; }

void print()
{ cout << title << " Magazine, Vol. "

<< volume << ", No." << number << endl;
}
char* id() { return issn; };

private:
string issn, publisher;
int volume, number;

};

The Magazine class will also be a CDC of the Periodical class, which will be another ABC. So
when the Periodical class is defined, its pure virtual functions will also have to be implemented in
this Magazine class.

Here is a test driver for the four classes defined above:
int main()
{ Book book("Bjarne Stroustrup", "The C++ Programming Language",

"Addison-Wesley", "0-201-53992-6");
Magazine magazine("TIME", "0040-781X", 145, 23);
CD cd("BACH CANTATAS", "Johann Sebastian Bach",

"ARCHIV", "D120541");
book.print();
cout << "\tid: " << book.id() << endl;
magazine.print();
cout << "\tid: " << magazine.id() << endl;
cd.print();
cout << "\tid: " << cd.id() << endl;

}

Note that all the calls to the print() and id() functions are independent of their class implementa-
tions. So the implementations of these functions could be changed without making any changes to the pro-
gram. For example, we could change the Book::print() function to

void print()
{ cout << title << " by " << author

<< ".\nPublished by " << publisher << ".\n";
}

and obtain the output

without any changes to the program.

The C++ Programming Language by Bjarne Stroustrup
id: 0-201-53992-6

TIME Magazine, Vol. 145, No.23
id: 0040-781X

BACH CANTATAS, Johann Sebastian Bach
id: ARCHIV D120541

The C++ Programming Language by Bjarne Stroustrup.
Published by Addison-Wesley.

290 COMPOSITION AND INHERITANCE [CHAP. 12

12.10 OBJECT-ORIENTED PROGRAMMING

Object-oriented programming refers to the use of derived classes and virtual functions. A
thorough treatment of object-oriented programming is beyond the scope of this book. See the
books [Bergin], [Perry], and [Wang] listed in Appendix H for a more thorough treatment.

Suppose that you have three televisions, each equipped with its own video cassette recorder.
Like most VCRs, yours are loaded with features and have confusing user manuals. Your three
VCRs are all different, requiring different and complex operations to use them. Then one day
you see on the shelf of your local electronics store a simple remote controller that can operate all
kinds of VCRs. For example, it has a single “RECORD” button that causes whatever VCR it is
pointed at to record the current TV program on the current tape. This marvelous device
represents the essence of object-oriented programming (“OOP”): conceptual simplification of
diverse implementations by means of a single interface. In this example, the interface is the
remote controller, and the implementations are the (hidden) operations within the controller and
the individual VCRs that carry out the requested functions (“RECORD”, “STOP”, “PLAY”,
etc.). The interface is the abstract base class below:

class VCR
{ public:

virtual void on() =0;
virtual void off() =0;
virtual void record() =0;
virtual void stop() =0;
virtual void play() =0;

};

and the implementations are the concrete derived classes below:
class Panasonic : public VCR {
public:
void on();
void off();
void record();
void stop();
void play();
};

class Sony : public VCR {
public:
void on();
void off();
void record();
void stop();
void play();
};

class Mitsubishi : public VCR {
public:
void on();
void off();
void record();
void stop();

CHAP. 12] COMPOSITION AND INHERITANCE 291

void play();
};

One important advantage of object-oriented systems is extensibility. This refers to the ease
with which the system can be extended. In the example above, the VCR controller would be
called “extensible” if it automatically works the same way on new VCRs that we might add in
the future. The controller should not have to be modified when we extend our collection of
VCRs, adding a Toshiba or replacing the Sony with an RCA.

In the object-oriented programming, we imagine two distinct points of view of the system: the
view of the consumer (i.e., the client or user) that shows what is to be done, and the view of the
manufacturer (i.e., the server or implementor) that shows how it is to be done. The consumer
sees only the abstract base class, while the manufacturer sees the concrete derived classes. The
customer’s actions are generally called operations, as opposed to the manufacturer’s implemen-
tations of these actions which are called generally methods. In C++, the actions are the pure
virtual functions, and the methods are their implementations in the concrete derived classes. In
this context, the abstract base class (the user’s view) is called the system interface, and the
concrete derived classes (the implementor’s view) are called the system implementation:

This dichotomy is most effective when we use pointers to objects, as in Example 12.13. Then
we can exploit dynamic binding to make the system interface even more independent from the
system implementation. Extensibility is facilitated by the fact that only the newly added methods
need to be compiled.

Review Questions

12.1 What is the difference between composition and inheritance?
12.2 What is the difference between protected and private members?
12.3 How do the default constructors and destructors behave in an inheritance hierarchy?
12.4 What is a virtual member function?
12.5 What is a pure virtual member function?
12.6 What is a memory leak?
12.7 How can virtual destructors plug a memory leak?
12.8 What is an abstract base class?
12.9 What is a concrete derived class?
12.10 What is the difference between static binding and dynamic binding?
12.11 What is polymorphism?
12.12 How does polymorphism promote extensibility?

The Two Views in an Object-Oriented Program

The System Interface The System Implementation

(user’s view) (implementor’s view)

shows what is done shows how it is done

abstract base class concrete derived classes

operations methods

pure virtual functions functions

292 COMPOSITION AND INHERITANCE [CHAP. 12

12.13 What is wrong with the following definitions:
class X

{ protected:

int a;

};

class Y : public X

{ public:

void set(X x, int c) { x.a = c; }

};

Problems

12.1 Implement a Card class, a composite Hand class, and a composite Deck class for play-
ing poker.

12.2 Implement the following class hierarchy:

12.3 Define and test a Name class whose objects looks like the diagram at the top of the next
page. Then modify the Person class so that name has type Name instead of type string.

Answers to Review Questions

12.1 Composition of classes refers to using one class to declare members of another class. Inheritance
refers to deriving a subclass from a base class.

Triangle Rectangle Circle Cone Cylinder Sphere

TwoDimensional ThreeDimensional

Shape

Box

middle

title Queen

x

suffix I

nick Bloody Mary

last Tudor

first Mary

Name

CHAP. 12] COMPOSITION AND INHERITANCE 293

12.2 A private member is inaccessible from anywhere outside its class definition. A protected
member is inaccessible from anywhere outside its class definition, with the exception that it is accessi-
ble from the definitions of derived classes.

12.3 In an inheritance hierarchy, each default constructor invokes its parent’s default constructor before it
executes itself, and each destructor invokes its parent’s destructor after it executes itself. The effect is
that all the parent default constructors execute in top-down order, and all the parent destructors exe-
cute in bottom-up order.

12.4 A virtual member function is a member function that can be overridden in a subclass.
12.5 A pure virtual function is a virtual member function that cannot be called directly; only

its overridden functions in derived classes can be called. A pure virtual function is identified by
the initializer =0 at the end of its declaration.

12.6 A memory leak is the loss of access to memory in a program due to the wrong destructor being
invoked. See Example 12.12 on page 285.

12.7 By declaring a base class destructor virtual, memory leaks as in Example 12.12 on page 285 can
be prevented because after it is invoked its indicated subclass destructor(s) will also be invoked.

12.8 An abstract base class is a base class which includes at least one pure virtual function. Abstract
base classes cannot be instantiated.

12.9 A concrete derived class is a subclass of an abstract base class that can be instantiated; i.e., one which
contains no pure virtual functions.

12.10 Static binding refers to the linking of a member function call to the function itself during compile time,
in contrast to dynamic binding which postpones that linking until run time. Dynamic is possible in
C++ by using virtual functions and by passing pointers to objects.

12.11 Polymorphism refers to the run-time binding that occurs when pointers to objects are used in classes
that have virtual functions. The expressions p->f() will invoke the functions f() that is
defined in the object to which p points. However, that object could belong to any one of a series of
subclasses, and the selection of subclass could be made at run time. If the base-class function is vir-
tual, then the selection (the “binding”) of which f() to invoke is made at run time. So the expres-
sion p->f() can take “many forms.”

12.12 Polymorphism promotes extensibility by allowing new subclasses and methods to be added to a class
hierarchy without having to modify application programs that already use the hierarchy’s interface.

12.13 The protected data member a can be accessed from the derived Y only if it is the member of
the current object (i.e. only if it is this->a). Y cannot access x.a for any other object x.

Solutions to Problems

12.1 First we implement a Card class:
enum Rank {TWO=2, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN

JACK, QUEEN, KING, ACE};
enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES };

class Card
{ friend class Hand;

friend class Deck;
friend ostream& operator<<(ostream&, const Card&);

public:
char rank() { return rank_; }
char suit() { return suit_; }

private:
Card() { };
Card(Rank rank, Suit suit) : rank_(rank), suit_(suit) { };

294 COMPOSITION AND INHERITANCE [CHAP. 12

Card(const Card& c) : rank_(c.rank_), suit_(c.suit_) { };
~Card() { };
Rank rank_;
Suit suit_;

};
This class uses enumeration types for a card’s 13 possible ranks and 4 possible suits. Anticipating

the implementation of Hand and Deck classes, we declare them here to be friend classes to
the Card class. This will allow them to access the private members of the Card class. Notice
that all three constructors and the destructor are declared to be private. This will prevent any cards
to be created or destroyed except by the Card’s two friend classes.

Here is the implementation of the overloaded insertion operator << for cards:
ostream& operator<<(ostream& ostr, const Card& card)
{ switch (card.rank_)

{ case TWO : ostr << "two of "; break;
case THREE : ostr << "three of "; break;
case FOUR : ostr << "four of "; break;
case FIVE : ostr << "five of "; break;
case SIX : ostr << "six of "; break;
case SEVEN : ostr << "seven of "; break;
case EIGHT : ostr << "eight of "; break;
case NINE : ostr << "nine of "; break;
case TEN : ostr << "ten of "; break;
case JACK : ostr << "jack of "; break;
case QUEEN : ostr << "queen of "; break;
case KING : ostr << "king of "; break;
case ACE : ostr << "ace of "; break;

}
switch (card.suit_)
{ case CLUBS : ostr << "clubs"; break;

case DIAMONDS : ostr << "diamonds"; break;
case HEARTS : ostr << "hearts"; break;
case SPADES : ostr << "spades"; break;

}
return ostr;

}
Here is the implementation of the Hand class:
#include "Card.h"
class Hand
{ friend class Deck;

public:
Hand(unsigned n=5) : size(n) { cards = new Card[n]; }
~Hand() { delete [] cards; }
void display();
int isPair();
int isTwoPair();
int isThreeOfKind();
int isStraight();
int isFlush();
int isFullHouse();
int isFourOfKind();
int isStraightFlush();

CHAP. 12] COMPOSITION AND INHERITANCE 295

private:
unsigned size;
Card* cards;
void sort();

};
It uses an array to store the cards in the hand. The sort() function is a private utility that is

called by the Deck class after dealing the hand. It can be implemented by any simple sort algorithm
such as the Bubble Sort. The display() function is also straightforward, using the insertion oper-
ator << that is overloaded in the Card class.

The eight boolean functions that identify special poker hands are not so straightforward. Here is the
implementation of the isThreeOfKind() function:

int Hand::isThreeOfKind()
{ if (cards[0].rank_ == cards[1].rank_

&& cards[1].rank_ == cards[2].rank_
&& cards[2].rank_ != cards[3].rank_
&& cards[3].rank_ != cards[4].rank_) return 1;

if (cards[0].rank_ != cards[1].rank_
&& cards[1].rank_ == cards[2].rank_
&& cards[2].rank_ == cards[3].rank_
&& cards[3].rank_ != cards[4].rank_) return 1;

if (cards[0].rank_ != cards[1].rank_
&& cards[1].rank_ != cards[2].rank_
&& cards[2].rank_ == cards[3].rank_
&& cards[3].rank_ == cards[4].rank_) return 1;

return 0;
}

Since the hand is sorted by rank_, the only way there could be three cards of the same rank with the
other two cards of different rank would be one of the three forms: xxxyz, xyyyz, or xyzzz. If any of these
three forms is identified, then the function returns 1. If not it returns 0.

The isPair() function, the isTwoPair() function, the isFullHouse() function, and
the isFourOfKind() function are similar to the isThreeOfKind() function.

The isStraight() function, the isFlush() function, and the isStraightFlush()
function are also tricky. Here is the isFlush() function:

int Hand::isFlush()
{ for (int i = 1; i < size; i++)

if (cards[i].suit_ != cards[0].suit_) return 0;
return 1;

}
This compares the suit_ of each of the second through fifth cards (card[1] through
card[4]). If any of these are not the same, then we know immediately that the hand is not a flush
and can return 0. If the loop terminates naturally, then all four pairs match and 1 is returned.

Here is the Deck class:
#include "Random.h"
#include "Hand.h"
class Deck
{ public:

Deck();
void shuffle();
void deal(Hand&, unsigned =5);

private:
unsigned top;
Card cards[52];

296 COMPOSITION AND INHERITANCE [CHAP. 12

Random random;
};

It uses the Random class in its shuffle() function. Note that the random object is declared
as a private member since it is used only by another member function:

void Deck::deal(Hand& hand, unsigned size)
{ for (int i = 0; i < size; i++)

hand.cards[i] = cards[top++];
hand.sort();

}
The top member always locates the top of the deck; i.e., the next card to be dealt. So the deal()
function copies the top five cards off the deck into the hand’s cards array. Then it sorts the hand.

The Deck’s constructor initializes all 52 cards in the deck, in the order two of clubs,
three of clubs, four of clubs, …, ace of spades:

Deck::Deck()
{ for (int i = 0; i < 52; i++)

{ cards[i].rank_ = Rank(i%13);
cards[i].suit_ = Suit(i%4);

}
top = 0;
}

So if hands are dealt without shuffling first, the first hand would be the straight flush of two through
six of clubs.

Finally, here is the shuffle() function:
void Deck::shuffle()
{ for (int i = 0; i < 52; i++) // do 52 random swaps

{ int j = random.integer(0, 51);
Card c = cards[i];
cards[i] = cards[j];
cards[j] = c;

}
top = 0;

}
It swaps the cards in each of the 52 elements with the card in a randomly selected element of the
deck’s cards array.

12.2 Here are the abstract base classes:
const double PI=3.14159265358979;
class Shape
{ public:

virtual void print() = 0;
virtual float area() = 0;

};
class TwoDimensional : public Shape
{ public:

virtual float perimeter() = 0;
};
class ThreeDimensional : public Shape
{ public:

virtual float volume() = 0;
};
Note that the print() function and the area() function prototypes are the same for all

classes in this hierarchy, so their interfaces (pure virtual functions) are placed in the Shape
base class. But only two-dimensional shapes have perimeters, and only three-dimensional shapes
have volumes, so their interfaces are placed in the appropriate second-level ABCs.

CHAP. 12] COMPOSITION AND INHERITANCE 297

Here are two of the seven concrete derived classes:
class Circle : public TwoDimensional
{ public:

Circle(float r) : radius(r) { }
void print() { cout << "Shape is a circle.\n"; }
float perimeter() { return 2*PI*radius; }
float area() { return PI*radius*radius; }

private:
float radius;

};
class Cone : public ThreeDimensional
{ public:

Cone(float r, float h) : radius(r), height(h) { }
void print();
float area();
float volume() { return PI*radius*radius*height/3; }

private:
float radius, height;

};
void Cone::print()
{ cout << "Cone: radius = " << radius << ", height = "

<< height << endl;
}
float Cone::area()
{ float s = sqrt(radius*radius + height*height);

return PI*radius*(radius + s);
}

The other five concrete derived classes are similar.
12.3 Here is the interface for the Name class:

class Name
{ friend ostream& operator<<(ostream&, const Name&);

friend istream& operator>>(istream&, Name&);
public:

Name(char*, char*, char*, char*, char*, char*);
string last() { return last_; }
string first() { return first_; }
string middle() { return middle_; }
string title() { return title_; }
string suffix() { return suffix_; }
string nick() { return nick_; }
void last(string s) { last_ = s; }
void first(string s) { first_ = s; }
void middle(string s) { middle_ = s; }
void title(string s) { title_ = s; }
void suffix(string s) { suffix_ = s; }
void nick(string s) { nick_ = s; }
void dump();

private:
string last_, first_, middle_, title_, suffix_, nick_;

};

298 COMPOSITION AND INHERITANCE [CHAP. 12

Here is an implementation for the Name class:
Name::Name(char* last="", char* first="", char* middle="",

char* title="", char* suffix="", char* nick="")
: last_(last), first_(first), middle_(middle), title_(title),

suffix_(suffix), nick_(nick) { }
void Name::dump()
{ cout << "\t Last Name: " << last_ << endl;

cout << "\t First Name: " << first_ << endl;
cout << "\tMiddle Names: " << middle_ << endl;
cout << "\t Title: " << title_ << endl;
cout << "\t Suffix: " << suffix_ << endl;
cout << "\t Nickname: " << nick_ << endl;

}
ostream& operator<<(ostream& out, const Name& x)
{ if (x.title_ != "") out << x.title_ << " ";

out << x.first_ << " ";
if (x.middle_ != "") out << x.middle_ << " ";
out << x.last_;
if (x.suffix_ != "") out << " " << x.suffix_;
if (x.nick_ != "") out << ", \"" << x.nick_ << "\"";
return out;

}
istream& operator>>(istream& in, Name& x)
{ char buffer[80];

in.getline(buffer, 80, '|');
x.last_ = buffer;
in.getline(buffer, 80, '|');
x.first_ = buffer;
in.getline(buffer, 80, '|');
x.middle_ = buffer;
in.getline(buffer, 80, '|');
x.title_ = buffer;
in.getline(buffer, 80, '|');
x.suffix_ = buffer;
in.getline(buffer, 80);
x.nick_ = buffer;
return in;

}
Finally, here is the modified Person class:

#include "Date.h"
#include "Name.h"
class Person
{ public:

Person(char* n="", int s=0, char* nat="U.S.A.")
: name(n), sex(s), nationality(nat) { }

void setDOB(int m, int d, int y) { dob.setDate(m, d, y); }
void setDOD(int m, int d, int y) { dod.setDate(m, d, y); }
void printName() { cout << name; }
void printNationality() { cout << nationality; }
void printDOB() { cout << dob; }
void printDOD() { cout << dod; }

CHAP. 12] COMPOSITION AND INHERITANCE 299

protected:
Name name;
Date dob, dod; // date of birth, date of death
int sex; // 0 = female, 1 = male
string nationality;

};
Here is a test driver for the Name class, with test run:

#include <iostream.h>
#include "Name.h"

int main()
{ Name x("Bach", "Johann", "Sebastian");

cout << x << endl;
x.dump();
x.last("Clinton");
x.first("William");
x.middle("Jefferson");
x.title("President");
x.nick("Bill");
cout << x << endl;
x.dump();
cin >> x;
cout << x << endl;
cout << "x.last = [" << x.last() << "]\n";
cout << "x.first = [" << x.first() << "]\n";
cout << "x.middle = [" << x.middle() << "]\n";
cout << "x.title = [" << x.title() << "]\n";
cout << "x.suffix = [" << x.suffix() << "]\n";
cout << "x.nick = [" << x.nick() << "]\n";

}
Johann Sebastian Bach

Last Name: Bach
First Name: Johann

Middle Names: Sebastian
Title:

Suffix:
Nickname:

President William Jefferson Clinton, "Bill"
Last Name: Clinton

First Name: William
Middle Names: Jefferson

Title: President
Suffix:

Nickname: Bill
Tudor|Mary||Queen|I|Bloody Mary
Queen Mary Tudor I, "Bloody Mary"
x.last = [Tudor]
x.first = [Mary]
x.middle = []
x.title = [Queen]
x.suffix = [I]
x.nick = [Bloody Mary]

300

Chapter 13

Templates and Iterators

13.1 INTRODUCTION

A template is an abstract recipe for producing concrete code. Templates can be used to
produce functions and classes. The compiler uses the template to generate the code for various
functions or classes, the way you would use a cookie cutter to generate cookies from various
types of dough. The actual functions or classes generated by the template are called instances of
that template.

The same template can be used to generate many different instances. This is done by means of
template parameters which work much the same way for templates as ordinary parameters work
for ordinary functions. But whereas ordinary parameters are place holders for objects, template
parameters are place holders for types and classes.

The facility that C++ provides for instantiating templates is one of its major features and one
that distinguishes it from most other programming languages. As a mechanism for automatic
code generation, it allows for substantial improvements in programming efficiency.

13.2 FUNCTION TEMPLATES

In many sorting algorithms, we need to interchange a pair of elements. This simple task is
often done by a separate function. For example, the following function swaps integers:

void swap(int& m, int& n)
{ int temp = m;

m = n;
n = temp;

}

If, however, we were sorting string objects, then we would need a different function:
void swap(string& s1, string& s2)
{ string temp = s1;

s1 = s2;
s2 = temp;

}

These two functions do the same thing. Their only difference is the type of objects they swap. We
can avoid this redundancy by replacing both functions with a function template:

EXAMPLE 13.1 The swap Function Template

template <class T>
void swap(T& x, T& y)
{ T temp = x;

x = y;
y = temp;

}

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 13] TEMPLATES AND ITERATORS 301

The symbol T is called a type parameter. It is simply a place holder that is replaced by an actual type
or class when the function is invoked.

A function template is declared the same way as an ordinary function, except that it is pre-
ceded by the specification

template <class T>

and the type parameter T may be used in place of ordinary types within the function definition.
The use of the word class here means “any type.” More generally, a template may have
several type parameters, specified like this:

template <class T, class U, class V>

Function templates are called the same way ordinary functions are called:
int m = 22, n = 66;
swap(m, n);
string s1 = "John Adams", s2 = "James Madison";
swap(s1, s2);
Rational x(22/7), y(-3);
swap(x, y);

For each call, the compiler generates the complete function, replacing the type parameter with
the type or class to which the arguments belong. So the call swap(m,n) generates the integer
swap function shown above, and the call swap(s1, s2) generates the swap function for
string objects.

Function templates are a direct generalization of function overloading. We could have written
several overloaded versions of the swap function, one for each type that we thought we might
need. The single swap function template serves the same purpose. But it is an improvement in
two ways. It only has to be written once to cover all the different types that might be used with
it. And we don’t have to decide in advance which types we will use with it; any type or class can
be substituted for the type parameter T. Function templates share source code among structur-
ally similar families of functions.

EXAMPLE 13.2 The Bubble Sort Template

This is the Bubble Sort (Example 6.13 on page 134) and a print function for vectors of any base type.
template<class T>
void sort(T* v, int n)
{ for (int i = 1; i < n; i++)

for (int j = 0; j < n-i; j++)
if (v[j] > v[j+1]) swap(v[j], v[j+1]);

}

template<class T>
void print(T* v, int n)
{ for (int i = 0; i < n; i++)

cout << " " << v[i];
cout << endl;

}

int main()
{ short a[9] = {55, 33, 88, 11, 44, 99, 77, 22, 66};

302 TEMPLATES AND ITERATORS [CHAP. 13

print(a,9);
sort(a,9);
print(a,9);
string s[7] = {"Tom", "Hal", "Dan", "Bob", "Sue", "Ann", "Gus"};
print(s,7);
sort(s,7);
print(s,7);

}
Here, both sort() and print() are function templates. The type parameter T is replaced by the
type short in the first calls and by the class string in the second calls.

A function template works like an outline. The compiler uses the template to generate each
version of the function that is needed. In the previous example, the compiler produces two ver-
sions of the sort() function and two versions of the print() function, one each for the type
short and one each for the class string. The individual versions are called instances of the
function template, and the process of producing them is called instantiating the template. A
function that is an instance of a template is also called a template function. Using templates is a
form of automatic code generation; it allows the programmer to defer more of the work to the
compiler.

13.3 CLASS TEMPLATES

A class template works the same way as a function template except that it generates classes
instead of functions. The general syntax is

template<class T,...> class X { ... };
As with function templates, a class template may have several template parameters. Moreover,
some of them can be ordinary non-type parameters:

template<class T, int n, class U> class X { ... };
Of course, since templates are instantiated at compile time, values passed to non-type parameters
must be constants:

template<class T, int n>
class X {};

int main()
{ X<float, 22> x1; // OK

const int n = 44;
X<char, n> x2; // OK
int m = 66;
X<short, m> x3; // ERROR: m must be constant

}
Class templates are sometimes called parameterized types.

The member functions of a class template are themselves function templates with the same
template header as their class. For example, the function f() declared in the class template

template<class T>
class X
{ T square(T t) { return t*t; }
};

is handled the same way that the following template function would be handled:

CHAP. 13] TEMPLATES AND ITERATORS 303

template<class T>
T square(T t) { return t*t; }

It is instantiated by the compiler, replacing the template parameter T with the type passed to it.
Thus, the declaration

X<short> x;

generates the class and object
class X_short
{ short square(short t) { return t*t; }
};
X_short x;

except that your compiler may use some name other than X_short for the class.

EXAMPLE 13.3 A Stack Class Template

A stack is a simple data structure that simulates an ordinary stack of objects of the same type (e.g., a
stack of dishes) with the restrictions that an object can be inserted into the stack only at the top and an
object can be removed from the stack only at the top. In other words, a stack is a linear data structure with
access at only one end. A stack class abstracts this notion by hiding the implementation of the data
structure, allowing access only by means of public functions that simulate the limited operations
described above.

Here is a class template for generating Stack classes:
template<class T>
class Stack
{ public:

Stack(int s = 100) : size(s), top(-1) { data = new T[size]; }
~Stack() { delete [] data; }
void push(const T& x) { data[++top] = x; }
T pop() { return data[top--]; }
int isEmpty() const { return top == -1; }
int isFull() const { return top == size - 1; }

private:
int size;
int top;
T* data;

};
This definition uses an array data to implement a stack. The constructor initializes the size of the
array, allocates that many elements of type T to the array, and initializes its top pointer to –1. The
value of top is always one less than the number of elements on the stack, and except when the stack is
empty, top is the index in the array of the top element on the stack. The push() function inserts an
object onto the stack, and the pop() function removes an object from the stack. A stack isEmpty()
when its top has the value -1, and it isFull() when its top pointer has the value size - 1.

Here is a program to test the Stack template:
int main()
{ Stack<int> intStack1(5);

Stack<int> intStack2(10);
Stack<char> charStack(8);
intStack1.push(77);
charStack.push('A');
intStack2.push(22);
charStack.push('E');

304 TEMPLATES AND ITERATORS [CHAP. 13

charStack.push('K');
intStack2.push(44);
cout << intStack2.pop() << endl;
cout << intStack2.pop() << endl;
if (intStack2.isEmpty()) cout << "intStack2 is empty.\n";

}

The template has one parameter T which will be used to specify the type of the objects stored on the
stack. The first line declares intStack1 to be a stack that can hold up to 5 ints. Similarly,
intStack2 is a stack that can hold up to 10 ints, and charStack is a stack that can hold up to 8
chars.

After pushing and popping objects on and off the stacks, the last line calls the isEmpty() function
for intStack2. At that instant, the two Stack classes and three Stack objects look like this:

The call intStack2.isEmpty() returns 1 (i.e., “true”) because intStack2.top has the value –1
at that moment.

Note that there are two instances of the Stack class template: Stack<int> and Stack<char>.
These are distinct classes, each generated by the compiler. Each class has its own six distinct member
functions. For example, the two functions Stack<int>::pop() and Stack<char>::pop() are
different: one returns an int and the other returns a char.

13.4 CONTAINER CLASSES

A container is simply an object that contains other objects. Ordinary arrays and stacks are
containers. A container class is a class whose instances are containers. The Stack<int> and
Stack<char> classes in Example 13.3 are container classes. Class templates are natural
mechanisms for generating container classes because the contained objects’ type can be
specified using a template parameter.

A container is called homogeneous if all of its objects have the same type; otherwise it is
called a heterogeneous container. Stacks, arrays, etc., are homogeneous containers.

44
22
intStack2 is empty.

~Stack()

Stack()

Stack<char>

Stack<char>

data

charStack

isFull()

isEmpty()

pop()

push()

size 8

top 2

'A'

'E'

'K'

0

1

2

3

4

5

6

7

~Stack()

Stack()

Stack<int>

Stack<int>

data

intStack1

isFull()

isEmpty()

pop()

push()

size 5

top 0

720

1

2

3

4

Stack<int>

data

intStack2

size 10

top -1

22

44

0

1

2

3

4

5

6

7

8

9

CHAP. 13] TEMPLATES AND ITERATORS 305

A vector is an indexed sequence of objects of the same type. The word is borrowed from
mathematics where it originally referred to a three-dimensional point x = (x1, x2, x3). Of course,
that is just an array of 3 real numbers. The subscripts on the components are the same as the
index values on the array, except that in C++ those values must begin with 0. Since subscripts
cannot be written in source code, we use the bracket notation [] instead. So x[0] represents
x1, x[1] represents x2, and x[2] represents x3.

EXAMPLE 13.4 A Vector Class Template

template<class T>
class Vector
{ public:

Vector(unsigned n=8) : size(n), data(new T[size]) { }
Vector(const Vector<T>& v) : size(v.size), data(new T[size])
{ copy(v); }
~Vector() { delete [] data; }
Vector<T>& operator=(const Vector<T>&);
T& operator[](unsigned i) const { return data[i]; }
unsigned size() { return size; }

protected:
T* data;
unsigned size;
void copy(const Vector<T>&);

};

template<class T>
Vector<T>& Vector<T>::operator=(const Vector<T>& v)
{ size = v.size;

data = new T[size];
copy(v);
return *this;

}

template<class T>
void Vector<T>::copy(const Vector<T>& v)
{ unsigned min_size = (size < v.size ? size : v.size);

for (int i = 0; i < min_size; i++)
data[i] = v.data[i];

}
Note that each implementation of a member function must be preceded by the same template designator
that precedes the class declaration: template<class T>.

This template would allow the following code:
Vector<short> v;
v[5] = 127;
Vector<short> w = v, x(3);
cout << w.size();

Here v and w are both Vector objects with 8 elements of type short, and x is a Vector object
with 3 elements of type short. The class and its three objects can be visualized from the diagram shown
at the top of the next page. It shows the situation at the moment when the member function w.size()
is executing. The class Vector<short> has been instantiated from the template, and three objects v,

306 TEMPLATES AND ITERATORS [CHAP. 13

w, and x have been instantiated from the class. Note that the copy() function is a protected utility
function, so it cannot be invoked by any of the class instances.

Note that the expression v[5] is used on the left side of an assignment, even though this expression
is a function call. This is possible because the subscript operator returns a reference to a Vector<T>,
making it an lvalue.

Class templates are also called parametrized types because they act like types to which
parameters can be passed. For example, the object b above has type Vector<double>, so the
element type double acts like a parameter to the template Vector<T>.

13.5 SUBCLASS TEMPLATES

Inheritance works with class templates the same way as with ordinary class inheritance. To
illustrate this technique, we will define a subclass template of the Vector class template
defined in Example 13.4.

EXAMPLE 13.5 A Subclass Template for Vectors

One problem with the Vector class as implemented by the template in Example 13.4 is that it
requires zero-based indexing; i.e., all subscripts must begin with 0. This is a requirement of the C++
language itself. Some other programming languages allow array indexes to begin with 1 or any other
integer. We can add this useful feature to our Vector class template by declaring a subclass template:

template <class T>
class Array : public Vector<T> {
public:

Array(int i, int j) : i0(i), Vector<T>(j-i+1) { }
Array(const Array<T>& v) : i0(v.i0), Vector<T>(v) { }
T& operator[](int i) const { return Vector<T>::operator[](i-i0); }
int firstSubscript() const { return i0; }
int lastSubscript() const { return i0+size-1; }

protected:
int i0;

};
This Array class template inherits all the functionality of the Vector class template and also

allows subscripts to begin with any integer. The first member function listed is a new constructor that
allows the user to designate the first and last values of the subscript when the object is declared. The

Vector()

Vector()

Vector<short>

size()

operator[]()

operator=()

~Vector()

copy()

Vector<short>

data

w

size 8

127

0

1

2

3

4

5

6

7

Vector<short>

data

v

127

0

1

2

3

4

5

6

7

Vector<short>

data

x

size 3

0

1

2

size 8

CHAP. 13] TEMPLATES AND ITERATORS 307

second function is the copy constructor for this subclass, and the third function is the overloaded subscript
operator. The last two functions simply return the first and last values of the subscript range.

Note how the two Array constructors invoke the corresponding Vector constructors, and how the
Array subscript operator invokes the Vector subscript operator.

Here is a test driver and a sample run:
#include <iostream.h>
#include "Array.h"

int main()
{ Array<float> x(1,3);

x[1] = 3.14159;
x[2] = 0.08516;
x[3] = 5041.92;
cout << "x.size() = " << x.size() << endl;
cout << "x.firstSubscript() = " << x.firstSubscript() << endl;
cout << "x.lastSubscript() = " << x.lastSubscript() << endl;
for (int i = 1; i <= 3; i++)

cout << "x[" << i << "] = " << x[i] << endl;
}

13.6 PASSING TEMPLATE CLASSES TO TEMPLATE PARAMETERS

We have already seen examples of passing a class to a template parameter:
Stack<Rational> s; // a stack of Rational objects
Vector<string> a; // a vector of string objects

Array()

Array()

Array<float>

size()

operator[]()

operator=()

~Array()

copy()

Array<float>

data

x

size 3

0

1

2

Array()

lastSubscript=()

firstSubscript()

3.14159

0.08516

5041.92

x.size() = 3
x.firstSubscript() = 1
x.lastSubscript() = 3
x[1] = 3.14159
x[2] = 0.08516
x[3] = 5041.92

308 TEMPLATES AND ITERATORS [CHAP. 13

Since template classes work like ordinary classes, we can also pass them to template parameters:
Stack<Vector<int>> s; // a stack of Vector objects
Array<Stack<Rational>> a; // an array of Stack objects

The next example shows how this “template nesting” can facilitate software reuse.

EXAMPLE 13.6 A Matrix Class Template

A matrix is essentially a two-dimensional vector. For example, a “2-by-3 matrix” is a table with 2 rows
and 3 columns:

We can think of this as a 2-element vector, each of whose elements is a 3-element vector:

The advantage of this point of view is that it allows us to reuse our Vector class template to define a
new Matrix class template.

To facilitate the dynamic allocation of memory, we define a matrix as a vector of pointers to vectors:
Vector<Vector<T>*>

We are passing a class template pointer to the template parameter indicated by the outside angle brackets.
This really means that when the Matrix class template is instantiated, the instances of the resulting
class will contain vectors of pointers to vectors.

template<class T>
class Matrix
{ public:

Matrix(unsigned r=1, unsigned c=1) : row(r)
{ for (int i=0; i<r; i++) row[i] = new Vector<T>(c); }

~Matrix() { for (int i=0; i<row.size(); i++) delete row[i]; }
Vector<T>& operator[](unsigned i) const { return *row[i]; }
unsigned rows() { return row.size(); }
unsigned columns() { return row[0]->size();

protected:
Vector<Vector<T>*> row;

};
Here the only data member is row, a vector of pointers to vectors. As a vector, row can be used with the
subscript operator: row[i] which returns a pointer to the vector that represents the ith row of the
matrix.

The default constructor assigns to each row[i] a new vector containing c elements of type T. The
destructor has to delete each of these vectors separately. The rows() and columns() functions
return the number of rows and columns in the matrix. The number of rows is the value that the member
function size() returns for the Vector<Vector<T>*> object row. The number of columns is the
value that the member function size() returns for the Vector<T> object *row[0], which can be
referenced either by (*row[0]).size() or by row[0]->size().

Here is a test driver and a sample run:
int main()
{ Matrix<float> a(2,3);

a[0][0] = 0.0; a[0][1] = 0.1; a[0][2] = 0.2;
a[1][0] = 1.0; a[1][1] = 1.1; a[1][2] = 1.2;

a b c

d e f

a b c d e f

CHAP. 13] TEMPLATES AND ITERATORS 309

cout << "The matrix a has " << a.rows() << " rows and "
<< a.columns() << " columns:\n";

for (int i=0; i<2; i++)
{ for (int j=0; j<3; j++)

cout << a[i][j] << " ";
cout << endl;

}
}

The matrix a can be visualized like this:

The diagram shows the situation during one of the subscript access calls a[1][2].
Notice that the actual data values 0.2, 1.1, etc., are stored in two separate Vector<float> objects.

The Matrix<float> object m only contains pointers to those objects.
Note that our Matrix class template used composition with the Vector class template,

while our Array class template used inheritance with the Vector class template.

13.7 A CLASS TEMPLATE FOR LINKED LISTS

Linked lists were introduced in Example 10.13 on page 244. These data structures provide an
alternative to vectors, with the advantage of dynamic storage. That is, unlike vectors, linked lists
can grow and shrink dynamically according to how many data items are being stored. There is no
wasted space for unused elements in the list.

EXAMPLE 13.7 A List Class Template

A list consists of a linked sequence of nodes. Each node contains one data item and a link to the next
node. So we begin by defining a ListNode class template:

template<class T>
class ListNode
{ friend class List<T>;

public:
ListNode(T& t, ListNode<T>* p) : data(t), next(p) { }

protected:
T data; // data field
ListNode* next; // points to next node in list

};

The matrix a has 2 rows and 3 columns:
0 0.1 0.2
1 1.1 1.2

~Matrix()

Matrix()

Matrix<float>

operator[]()

rows()

columns()
Vector<float>

data

0.00

1

2Matrix<float>

row

a

size 2

0

1 0.1

0.2

size 3

Vector<float>

data

0.00

1

2

0.1

0.2

size 3

310 TEMPLATES AND ITERATORS [CHAP. 13

The constructor creates a new node, assigning the T value t to its data field and the pointer p to
its next field:

If T is a class (instead of an ordinary type), its constructor will be called by the declaration of data.
Note that the class List<T> is declared here to be a friend of the ListNode class. This will

allow the member functions of the List class to access the protected members of the Node class. For
this statement to compile, some compilers require the following forward reference to precede the
ListNode template definition:

template<class T>
class List;

This simply tells the compiler that the identifier List will be defined later as a class template.
Here is the List class template interface, which follows the ListNode template definition:

template<class T>
class List
{ public:

List() : first(0) { }
~List();
void insert(T t); // insert t at front of list
int remove(T& t); // remove first item t in list
bool isEmpty() { return (first == 0); }
void print();

protected:
ListNode<T>* first;
ListNode<T>* newNode(T& t, ListNode<T>* p)
{ ListNode<T>* q = new ListNode<T>(t,p); return q; }

};
A List object contains only the pointer named first. This points to

a ListNode object. The default constructor initializes the pointer to
NULL. After items have been inserted into the list, the first pointer will
point to the first item in the list.

The newNode() function invokes the new operator to obtain a new
ListNode object by means of the ListNode() constructor. The new node will contain the T value
t in its data field and the pointer p in its next field. The function returns a pointer to the new node.
It is declared protected because it is a utility function that is used only by the other member
functions.

The List destructor is responsible for deleting all the items in the list:
template<class T>
List<T>::~List()
{ ListNode<T>* temp;

for (ListNode<T>* p = first; p;) // traverses list
{ temp = p;

p = p->next;
delete temp;

}
}

White, Annt
string

White, Anndata

pnext

ListNode<string>

first

List<int>

CHAP. 13] TEMPLATES AND ITERATORS 311

This has to be done in a loop that traverses the list. Each node is deleted by invoking the delete oper-
ator on a pointer to the node.

The insert() function creates a new node containing the T value t and then inserts this new
node at the beginning of the list:

template<class T>
void List<T>::insert(T t)
{ ListNode<T>* p = newNode(t,first);

first = p;
}

Since the new node will be made the first node in the list, its next pointer should point to the node that
is currently first in the list. Passing the first pointer to the NewNode constructor does that. Then the
first pointer is reset to point to the new node.

The remove() function removes the first item from the list, returning its data value by reference
in the parameter t. The function’s return value is 1 or 0 according to whether the operation succeeded:

template<class T>
int List<T>::remove(T& t)
{ if (isEmpty()) return 0; // flag to signal no removal

t = first->data; // data value returned by reference
ListNode<T>* p = first;
first = first->next; // advance first pointer to remove node
delete p;
return 1; // flag to signal successful removal

}
The print() function simply traverses the list, printing each node’s data value:

template<class T>
void List<T>::print()
{ for (ListNode<T>* p=first; p; p=p->next)

cout << p->data << " -> ";
cout << "*\n";

}
Here is a test driver and a sample run:

#include <iostream.h>
#include "List.h"

int main()
{ List<string> friends;

friends.insert("Bowen, Van");
friends.insert("Dixon, Tom");
friends.insert("Mason, Joe");
friends.insert("White, Ann");
friends.print();
string name;
friends.remove(name);
cout << "Removed: " << name << endl;
friends.print();

}

Notice that, since each item is inserted at the beginning of the list, they end up in the opposite order from
their insertion.

White, Ann -> Mason, Joe -> Dixon, Tom -> Bowen, Van -> *
Removed: White, Ann
Mason, Joe -> Dixon, Tom -> Bowen, Van -> *

312 TEMPLATES AND ITERATORS [CHAP. 13

This friends list can be visualized like this:

This shows the situation at the moment that the insert() function has invoked the newNode()
function which has invoked the ListNode() constructor to create a new node for "White, Ann".

13.8 ITERATOR CLASSES

A common activity performed on a container object is the traversal of the object. For
example, to traverse a List object means to “travel” through the list, “visiting” each element.
This was done by means of a for loop in both the destructor and the print() function in our
List class template. (See Example 13.7 on page 309.)

An iterator is an object that has the ability to traverse through a container object. It acts like a
pointer, locating one item in the container at a time. All iterators have the same basic functional-
ity, regardless of the type of container to which they are attached. The five fundamental
operations are:

• initialize the iterator at some initial position in the container;

• return the data value stored at the current position;

• change the data value stored at the current position;

• determine whether there actually is an item at the iterator’s current position;

• advance to the next position in the container.

~List()

List()

List<string>

print()

isEmpty()

remove()

insert()

newNode()

friends

first

ListNode()

ListNode<string>

White, Annt
string

Dixon, Tomdata

next

ListNode<string>

Mason, Joedata

next

ListNode<string>

Bowen, Vandata

next

ListNode<string>

White, Anndata

next

ListNode<string>

p

CHAP. 13] TEMPLATES AND ITERATORS 313

Since these five operations should be implemented by every iterator, it makes sense to declare an
abstract base class with these functions. We actually need an abstract base class template
because the container classes will be template instances:

template<class T>
class Iterator
{ public:

virtual void reset() =0; // initialize the iterator
virtual T operator()() =0; // read current value
virtual void operator=(T t) =0; // write current value
virtual int operator!() =0; // determine whether item exists
virtual int operator++() =0; // advance to next item

};

Recall that every pure virtual function prototype begins with the keyword “virtual” and ends
with the code “() =0”. The parentheses are required because it is a function, and the initializer
“=0” makes it a pure virtual function. Also recall that an abstract base class is any class that
contains at least one pure virtual function. (See Section 12.9 on page 286.)

Now we can use this abstract base class template to derive iterator templates for various
container classes.

The List class template in Example 13.7 on page 309 had an obvious shortcoming: it
allowed insertions and deletions only at the front of the list. A list iterator will solve this
problem, as shown in the next example.

EXAMPLE 13.8 An Iterator Class Template for the List Class Template

#include "List.h"
#include "Iterator.h"

template<class T>
class ListIter : public Iterator<T>
{ public:

ListIter(List<T>& l) : list(l) { reset(); }
virtual void reset() { previous = NULL; current = list.first; }
virtual T operator()() { return current->data; }
virtual void operator=(T t) { current->data = t; }
virtual int operator!(); // determine whether current exists
virtual int operator++(); // advance iterator to next item
void insert(T t); // insert t after current item
void preInsert(T t); // insert t before current item
void remove(); // remove current item

protected:
ListNode<T>* current; // points to current node
ListNode<T>* previous; // points to previous node
List<T>& list; // this is the list being traversed

};
In addition to a constructor and the five fundamental operations, we have added three other functions

that will make lists much more useful. They allow the insertion and deletion of items anywhere in the list.
The operator!() function serves two purposes. First it resets the current pointer if necessary,

and then it reports back whether that pointer is NULL. The first purpose is to “clean up” after a call to the
remove() function which deletes the node to which current points.

314 TEMPLATES AND ITERATORS [CHAP. 13

template<class T>

int ListIter<T>::operator!()

{ if (current == NULL) // reset current pointer

if (previous == NULL) current = list.first;

else current = previous->next;

return (current != NULL); // returns TRUE if current exists

}

If the current and previous pointers are both NULL, then either the list is empty or it has only one
item. So setting current equal to the list’s first pointer will either make current NULL or leave it
pointing to the first item in the list. If current is NULL but previous is pointing to a node, then we
simply reset current to point to the item that follows that node. Finally, the function returns 0 or 1
according to whether current is NULL. This allows the function to be invoked in the form

if (!it) . . .

where it is an iterator. The expression (!it) is read “a current item exists,” because the function will
return 1 (i.e., “true”) if current is not NULL. We use this function to check the status of the current
pointer before invoking an insertion or deletion function that requires using the pointer.

The operator++() “increments” the iterator by advancing its current pointer to the next item
in the list after advancing its previous pointer. It precedes this action with the same resetting
procedure that the operator!() function performed if it finds the current pointer NULL:

template<class T>

int ListIter<T>::operator++()

{ if (current == NULL) // reset current pointer

if (previous == NULL) current = list.first;

else current = previous->next;

else

{ previous = current; // advance current pointer

current = current->next;

}

return (current != NULL); // returns TRUE if current exists

}

This operator allows for easy traversal of the list:
for (it.reset(); !it; ++it) . . .

just like an ordinary for loop traversing an array. It resets the iterator to locate the first item in the list.
Then after visiting that item, it increments the iterator to advance and visit the next item. The loop contin-
ues as long as !it returns “true”, which means that there is still an item to be visited.

The insert(t) function creates a new node for t and then inserts that node immediately after the
current node:

template<class T>

void ListIter<T>::insert(T t)

{ ListNode<T>* p = list.newNode(t,0);

if (list.isEmpty()) list.first = p;

else

{ p->next = current->next;

current->next = p;

}

}

CHAP. 13] TEMPLATES AND ITERATORS 315

The insert operation can be visualized like this:

Note that the operation leaves the current and previous pointers unchanged.

The preInsert() function is similar to the insert() function, except that it inserts the new
node in front of the current node:

template<class T>

void ListIter<T>::preInsert(T t)

{ ListNode<T>* p = list.newNode(t,current);

if (current == list.first) list.first = previous = p;

else previous->next = p;

}

friends

first

White, Annt
string

Mason, Joedata

next

ListNode<string>

Dixon, Tomdata

next

ListNode<string>

Bowen, Vandata

next

ListNode<string>

White, Anndata
p

next

ListNode<string>

it

current

ListIter<string>

previous

list

Before:

friends

first

Mason, Joedata

next

ListNode<string>

Dixon, Tomdata

next

ListNode<string>

Bowen, Vandata

next

ListNode<string>

White, Anndata

next

ListNode<string>

it

current

ListIter<string>

previous

list

After:

316 TEMPLATES AND ITERATORS [CHAP. 13

The preInsert operation can be visualized like this:

Note that like insert, this operation also leaves the current and previous pointers unchanged.

The remove() function deletes the current node:

template<class T>

void ListIter<T>::remove()

{ if (current == list.first) list.first = current->next;

else previous->next = current->next;

delete current;

current = 0;

}

It leaves the previous pointer unchanged and the current pointer NULL.

friends

first

Morse, Samt
string

White, Anndata

next

ListNode<string>

Davis, Jimdata

next

ListNode<string>

Bowen, Vandata

next

ListNode<string>

Morse, Samdata
p

next

ListNode<string>

it

current

ListIter<string>

previous

list

Before:

friends

first

White, Anndata

next

ListNode<string>

Davis, Jimdata

next

ListNode<string>

Bowen, Vandata

next

ListNode<string>

Morse, Samdata

next

ListNode<string>

it

current

ListIter<string>

previous

list

After:

CHAP. 13] TEMPLATES AND ITERATORS 317

The remove operation can be visualized like this:

Here is a test driver for the list iterator:
#include "ListIter.h"
int main()
{ List<string> friends;

ListIter<string> it(friends);
it.insert("Bowen, Van");
++it; // sets current to first item
it.insert("Dixon, Tom");
++it; // sets current to second item
it.insert("Mason, Joe");
++it; // sets current to third item
it.insert("White, Ann");
++it; // sets current to fourth item

friends

first

Mason, Joedata

next

ListNode<string>

Dixon, Tomdata

next

ListNode<string>

Bowen, Vandata

next

ListNode<string>

White, Anndata

next

ListNode<string>

it

current

ListIter<string>

previous

list

Before:

friends

first

Dixon, Tomdata

next

ListNode<string>

Bowen, Vandata

next

ListNode<string>

White, Anndata

next

ListNode<string>

it

current

ListIter<string>

previous

list

After:

318 TEMPLATES AND ITERATORS [CHAP. 13

friends.print();
it.reset(); // sets current to first item
++it; // sets current to second item
it = "Davis, Jim"; // replace with new name
++it; // sets current to third item
it.remove(); // removes third item
friends.print();
if (!it) it.preInsert("Morse, Sam");
friends.print();
for (it.reset(); !it; ++it) // traverses entire list

it = "[" + it() + "]";
friends.print();

}

The for loop changes each data value in the list by prepending a left bracket and appending a right
bracket to each string. Note that the assignment it = "[" + it() + "]" calls the operator()()
and operator=() functions of the ListIter<string> class as well as the constructor
string(const char*) and operator+=() function defined in the string class.

To give ListIter objects the access to the protected members of List objects that they need
to do their job, we need to declare the ListIter class a friend of the List class:

template<class T>
class List
{ friend class ListIter<T>;

public:
// other members

protected:
ListNode<T>* first;
// other members

};

List iterators also need the access to the protected members of ListNode objects:
template<class T>
class ListNode
{ friend class List<T>;

friend class ListIter<T>;
public:

ListNode(T& t, ListNode<T>* p) : data(t), next(p) { }
protected:

T data; // data field
ListNode* next; // points to next node in list

};

An iterator acts like a window, allowing access to one item at a time in the container. Iterators
are sometimes called cursors because they locate a specific element among the entire structure,
the same way that a cursor on your computer screen locates one character location.

A structure may have more than one iterator. For example, one could declare three iterators
on a list like this:

List<float> list;
ListIter<float> it1(list), it2(list), it3(list);

Bowen, Van -> Dixon, Tom -> Mason, Joe -> White, Ann -> *
Bowen, Van -> Davis, Jim -> White, Ann -> *
Bowen, Van -> Davis, Jim -> Morse, Sam -> White, Ann -> *
[Bowen, Van] -> [Davis, Jim] -> [Morse, Sam] -> [White, Ann] -> *

CHAP. 13] TEMPLATES AND ITERATORS 319

it1.insert(11.01);
++it1;
it1.insert(22.02);
++it1;
it1.insert(33.03);
for (it2.reset(); !it2; ++it2)
it2 = 10*it2; // multiplies each stored number by 10
it3 = it1; // replaces 110.1 with 330.3 in first item

The iterators are independent of each other. While it2 traverses the list, it1 remains fixed on
the third item.

Review Questions

13.1 What is the difference between a function template and a template function?
13.2 What is the difference between a class template and a template class?
13.3 What are the advantages and disadvantages of using a linked list instead of a vector?
13.4 How is an iterator like an array subscript?

Problems

13.1 Write and test a program that instantiates a function template that returns the minimum of
two values.

13.2 Write and test a program that instantiates a function template that implements a binary search
of a sorted array of objects.

13.3 Implement and test a template for generating Queue classes. A queue works like a stack,
except that insertions are made at one end of the linear structure and removed from the other
end. It simulates an ordinary waiting line.

13.4 Modify the Vector class template so that existing vectors can change their size.
13.5 Add a constructor to the Vector class template that replicates an ordinary array as a vector.
13.6 Derive an Array<T,E> class template from the Vector<T> class template, where the

second template parameter E holds an enumeration type to be used for the array index.

Answers to Review Questions

13.1 A function template is a template that is used to generate functions. A template function is a function
that is produced by a template. For example, swap(T&, T&) in Example 13.1 is a function tem-
plate, but the call swap(m, n) generates the actual template function that is invoked by the call.

13.2 A class template is a template that is used to generate classes. A template class is a class that is pro-
duced by a template. For example, Stack in Example 13.3 is a class template, but the type
Stack<int> used in the declarations is an actual template class.

13.3 Vectors have the advantage of direct access (also called “random access”) to their components by
means of the subscript operator. So if the elements are kept in order, we can locate them very quickly
using the Binary Search Algorithm. Lists have the advantage of being dynamic, so that they never use
more space than is currently needed, and they aren’t restricted to a predetermined size (except for the
size of the computer’s memory). So vectors have a time advantage and lists have a space advantage.

320 TEMPLATES AND ITERATORS [CHAP. 13

13.4 Both iterators and array indexes act as locators into a data structure. The following code shows that
they work the same way:

float a[100]; // an array of 100 floats
int i = 0; // an index for the array
a[i] = 3.14159;
for (i = 0; i < 100; i++) cout << a[i];
List<float> list; // a list of floats
ListIter<float> it(list); // an iterator for the list
it = 3.14159;
for (it.reset(); !it; ++it) cout << it();

Solutions to Problems

13.1 A minimum function should compare two objects of the same type and return the object whose value
is smaller. The type should be the template parameter T:

template <class T>
T min(T x, T y)
{ return (x < y ? x : y);
}

This implementation uses the conditional expression operator: (x < y ? x : y). If x is less
than y, the expression evaluates to x; otherwise it evaluates to y.

Here is the test driver and a sample run:
#include "Ratio.h"
int main()
{ cout << "min(22, 44) = " << min(22, 44) << endl;

cout << "min(66.66, 33.33) = " << min(66.66, 33.33) << endl;
Ratio x(22, 7), y(314, 100);
cout << "min(x, y) = " << min(x, y) << endl;

}

13.2 A search function should be passed the array a, the object key to be found, and the bounds on the
array index that define the scope of the search. If the object is found, its index in the array should be
returned; otherwise, the function should return -1 to signal that the object was not found:

template<class T>
int search(T a[], T key, int first, int last)
{ while (first <= last)

{ int mid = (first + last)/2;
if (key < a[mid]) last = mid - 1;
else if (key > a[mid]) first = mid + 1;
else return mid;

}
return -1; // not found

}
Within the while loop, the subarray from a[first] to a[last] is bisected by mid. If key
< a[mid] then key cannot be in the second half of the array, so last is reset to mid–1 to
reduce the scope of the search to the first half. Otherwise, if key > a[mid], then key cannot be
in the first half of the array, so first is reset to mid+1 to reduce the scope of the search to the
second half. If both conditions are false, then key == a[mid] and we can return.

min(22, 44) = 22
min(66.66, 33.33) = 33.33
min(x, y) = 314/100

CHAP. 13] TEMPLATES AND ITERATORS 321

Here is the test driver and a sample run:
template<class T> int search(T [], T, int, int);

string names[]
= {"Adams", "Black", "Cohen", "Davis", "Evans", "Frost",

"Green", "Healy", "Irwin", "Jones", "Kelly", "Lewis"};

int main()
{ string name;

while (cin >> name)
{ int location = search(names, name, 0, 9);

if (location == -1) cout << name << " is not in list.\n";
else cout << name << " is in position " << location << endl;

}
}

13.3 Like the implementation of the Stack template, this implementation uses an array data of size
elements of type T. The location in the array where the next object will be inserted is always given by
the value of (front % size), and the location in the array that holds the next object to be
removed is always given by the value of (rear % size):

template<class T>
class Queue
{ public:

Queue(int s = 100) : size(s+1), front(0), rear(0)
{ data = new T[size]; }

~Queue() { delete [] data;
}
void insert(const T& x) { data[rear++ % size] = x; }
T remove() { return data[front++ % size]; }
int isEmpty() const { return front == rear; }
int isFull() const { return (rear + 1) % size == front; }

private:
int size, front, rear;
T* data;

};
The test driver uses a queue that can hold at most 3 chars:
#include "Queue.h"
int main()
{ Queue<char> q(3);

q.insert('A');
q.insert('B');

Green
Green is in position 6
Black
Black is in position 1
White
White is not in list.
Adams
Adams is in position 0
Jones
Jones is in position 9
Smith
Smith is not in list.

322 TEMPLATES AND ITERATORS [CHAP. 13

q.insert('C');
if (q.isFull()) cout << "Queue is full.\n";
else cout << "Queue is not full.\n";
cout << q.remove() << endl;
cout << q.remove() << endl;
q.insert('D');
q.insert('E');
if (q.isFull()) cout << "Queue is full.\n";
else cout << "Queue is not full.\n";
cout << q.remove() << endl;
cout << q.remove() << endl;
cout << q.remove() << endl;
if (q.isEmpty()) cout << "Queue is empty.\n";
else cout << "Queue is not empty.\n";

}

13.4 We add two functions:
unsigned resize(unsigned n);
unsigned resize(unsigned n, T t);

Both functions transform the vector into one of size n. If n < size, then the last size - n ele-
ments are simply discarded. If n == size, then the vector is left unchanged. If n > size, then
the first size elements of the transformed vector will be the same as those of the prior version; the
last n - size are assigned the value t by the second resize() function and are left uninitialized
by the first. Both functions return the new size:

template<class T>
unsigned Vector<T>::resize(unsigned n, T t)
{ T* new_data = new T[n];

copy(v);
for (i = size; i < n; i++)

new_data[i] = t;
delete [] data;
size = n;
data = new_data;
return size;
}

template<class T>
unsigned Vector<T>::resize(unsigned n)
{ T* new_data = new T[n];

copy(v);
delete [] data;
size = n;
data = new_data;
return size;

}

Queue is full.
A
B
Queue is full.
C
D
E
Queue is empty.

CHAP. 13] TEMPLATES AND ITERATORS 323

13.5 The new constructor converts an array a whose elements have type T:
template<class T>
class Vector
{ public:

Vector(T* a) : size(sizeof(a)), data(new T[size])
{ for (int i = 0; i < size; i++) data[i] = a[i]; }
// other members

};
Here is a test driver for the new constructor:
int main()
{ int a[] = { 22, 44, 66, 88 };

Vector<int> v(a);
cout << v.size() << endl;
for (int i = 0; i < 4; i++)

cout << v[i] << " ";
}

The advantage of this constructor is that we can initialize a vector now without having to assign each
component separately.

13.6 The derived template has three member functions: two constructors and a new subscript operator:
template <class T, class E>
class Array : public Vector<T>
{ public:

Array(E last) : Vector<T>(unsigned(last) + 1) { }
Array(const Array<T,E>& a) : Vector<T>(a) { }
T& operator[](E index) const
{ return Vector<T>::operator[](unsigned(index));
}

};
The first constructor calls the default constructor defined in the parent class Vector<T>, passing to
it the number of E values that are to be used for the index. The new copy constructor and subscript
operator also invoke their equivalent in the parent class.

Here is a test driver for the Array<T,E> template:
enum Days { SUN, MON, TUE, WED, THU, FRI, SAT };

int main()
{ Array<int,Days> customers(SAT);

customers[MON] = 27; customers[TUE] = 23;
customers[WED] = 20; customers[THU] = 23;
customers[FRI] = 36; customers[SAT] = customers[SUN] = 0;
for (Days day = SUN; day <= SAT; day++)

cout << customers[day] << " ";
}

The enumeration type Days defines seven values for the type. Then the object customers is
declared to be an array of ints indexed by these seven values. The rest of the program applies the
subscript operator to initialize and then print the array.

4
22 44 66 88

0 27 23 20 23 36 0

324

Chapter 14

Standard C++ Vectors

14.1 INTRODUCTION

Although not as efficient, Standard C++ string objects are more robust than the classic
C-strings. They are easier to use and they cause fewer run-time errors. In the same way, Standard
C++ vector objects are more robust than ordinary arrays. So vector objects provide a good
alternative to arrays. The vector class template is also the prototype for all the container classes
in the Standard C++ Library. (See Chapter 15.)

The vector class template is defined in the <vector> header.

EXAMPLE 14.1 Using a vector of strings

This program creates a vector v of 8 strings and then calls a load() function and a print()
function to load and print the vector.

#include <iostream>
#include <string>
#include <vector>
using namespace std;
void load(vector<string>&);
void print(vector<string>);
const int SIZE=8;

int main()
{ vector<string> v(SIZE);

load(v);
print(v);

}

void load(vector<string>& v)
{ v[0] = "Japan";

v[1] = "Italy";
v[2] = "Spain";
v[3] = "Egypt";
v[4] = "Chile";
v[5] = "Zaire";
v[6] = "Nepal";
v[7] = "Kenya";

}

void print(vector<string> v)
{ for (int i=0; i<SIZE; i++)

cout << v[i] << endl;
cout << endl;

}

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 14] STANDARD C++ VECTORS 325

Note that this program could have been written almost the same way using an array of strings:
string v[SIZE];

In particular, access by means of the subscript operator v[i] works the same with vectors and arrays.

EXAMPLE 14.2 Using the push_back() and size() Functions

This is the same program as in Example 14.1 except for the changes indicated in boldface: the type
identifier strings is used in place of vector<string>, the push_back() function is used instead
of assigning elements to v[i], and the size() function is used instead of storing the constant SIZE as
a global constant.

typedef vector<string> Strings;

void load(Strings&);

void print(Strings);

int main()

{ Strings v;

load(v);

print(v);

}

void load(Strings& v)

{ v.push_back("Japan");

v.push_back("Italy");

v.push_back("Spain");

v.push_back("Egypt");

v.push_back("Chile");

v.push_back("Zaire");

v.push_back("Nepal");

v.push_back("Kenya");

}

void print(Strings v)
{ for (int i=0; i<v.size(); i++)

cout << v[i] << endl;

cout << endl;

}

Note that vector v has 0 elements when it is created. Each time the push_back() function is called,
it appends the new element to the end of the vector and increments its size. So when the load()
function returns, the size of v is 8.

The output here is the same as for the program as in Example 14.1.

Japan
Italy
Spain
Egypt
Chile
Zaire
Nepal
Kenya

326 STANDARD C++ VECTORS [CHAP. 14

14.2 ITERATORS ON VECTORS

EXAMPLE 14.3 Using vector Iterators

This program defines the type identifier Sit to stand for iterators on vectors of strings. It then uses
such an iterator to traverse the vector in the print() function.

typedef vector<string> Strings;
typedef Strings::iterator Sit;
void load(Strings&);
void print(Strings);

int main()
{ Strings v;

load(v);
print(v);

}

void print(Strings v)
{ for (Sit it=v.begin(); it!=v.end(); it++)

cout << *it << endl;
cout << endl;

}

The for loop initializes the iterator it to the beginning of the vector v. The expression *it returns
the element located by the iterator. The increment expression it++ advances it to the next element in
the vector. When it == v.end(), it has moved to the imaginary position that follows the last
element of the vector. That signals that the traversal has finished and stops the loop.

The output here is the same as for the program as in Example 14.1.

EXAMPLE 14.4 Using the Generic sort() Algorithm

This uses the sort() function that is defined in the <algorithm> header. (See page 393.) The
subsequent call print(v) shows that the strings are sorted alphabetically.

int main()
{ Strings v;

load(v);
sort(v.begin(),v.end());
print(v);

}

The generic sort() algorithm requires two iterator arguments to indicate what part of the vector is
to be sorted. The begin() and end() functions return iterators that locate the begining and ending
locations of the vector, so passing these two iterators to sort() indicates that the entire vector is to be
sorted.

Chile
Egypt
Italy
Japan
Kenya
Nepal
Spain
Zaire

CHAP. 14] STANDARD C++ VECTORS 327

14.3 ASSIGNING VECTORS

EXAMPLE 14.5 Using the Assignment Operator to Duplicate a vector

This program demonstrates that one vector can be assigned to another.
int main()
{ Strings v, w;

load(v);
w = v;
sort(v.begin(),v.end());
print(v);
print(w);

}

The assignment w = v has the same effect as the call load(w) would have: it duplicates each of the 8
elements of v and loads them into w.

The fact that w is independent of v is evident from the output: w remains unchanged when v is sorted.

EXAMPLE 14.6 Using the front(), back(), and pop_back() Functions

The front() function returns the first element in the vector. The back() function returns the last
element in the vector. The pop_back() function removes the last element in the vector.

int main()
{ Strings v;

load(v);
sort(v.begin(),v.end());
print(v);
cout << "v.front() = " << v.front() << endl;
cout << "v.back() = " << v.back() << endl;
v.pop_back();
cout << "v.back() = " << v.back() << endl;
v.pop_back();
cout << "v.back() = " << v.back() << endl;
print(v);

}

Chile
Egypt
Italy
Japan
Kenya
Nepal
Spain
Zaire

Japan
Italy
Spain
Egypt
Chile
Zaire
Nepal
Kenya

328 STANDARD C++ VECTORS [CHAP. 14

The call v.pop_back() removes the string Zaire from the vector v.

14.4 THE erase() and insert() FUNCTIONS

EXAMPLE 14.7 Using the erase() Function

int main()
{ Strings v;

load(v);
sort(v.begin(),v.end());
print(v);
v.erase(v.begin()+2); // removes Italy
v.erase(v.end()-2); // removes Spain
print(v);

}

The call v.erase(v.begin()+2) removes the element v[2]. It is the element that follows the
2nd element (Egypt) from the beginning of the vector.

The call v.erase(v.begin()-2) removes the element v[n-2], where n is the size of the
vector. It is the element that follows the 2nd element (Nepal) from the end of the vector.

Chile
Egypt
Italy
Japan
Kenya
Nepal
Spain
Zaire

v.front() = Chile
v.back() = Zaire
v.back() = Spain
v.back() = Nepal
Chile
Egypt
Italy
Japan
Kenya
Nepal

Chile
Egypt
Italy
Japan
Kenya
Nepal
Spain
Zaire

Chile
Egypt
Japan
Kenya
Nepal
Zaire

CHAP. 14] STANDARD C++ VECTORS 329

EXAMPLE 14.8 Using the insert() Function

This program illustrates the insert() function and the use of the erase() function to remove an
entire segment of elements.

int main()
{ Strings v;

load(v);
sort(v.begin(),v.end());
print(v);
v.erase(v.begin()+2,v.end()-2); // removes the segment Italy..Nepal
print(v);
v.insert(v.begin()+2,"India");
print(v);

}

The call v.erase(v.begin()+2,v.end()-2) removes the segment v[2..5].
The call v.insert(v.begin()+2,"India") inserts India immediately after the 2nd element

(Egypt) from the beginning of the vector.

14.5 THE find() FUNCTION

The find() function is used to search for an element in a vector.

EXAMPLE 14.9 Using the find() Function

This program uses the find() function to obtain iterators that locate Egypt and Malta in the
vector. Then it passes them to the sort() function to sort that segment within the vector.

int main()
{ Strings v;

load(v);
print(v);
Sit egypt=find(v.begin(),v.end(),"Egypt");
Sit malta=find(v.begin(),v.end(),"Malta");

Chile
Egypt
Italy
Japan
Kenya
Nepal
Spain
Zaire

Chile
Egypt
Spain
Zaire

Chile
Egypt
India
Spain
Zaire

330 STANDARD C++ VECTORS [CHAP. 14

sort(egypt,malta);

print(v);

}

void load(Strings& v)

{ v.push_back("Japan");

v.push_back("Italy");

v.push_back("Spain");

v.push_back("Egypt");

v.push_back("Chile");

v.push_back("Zaire");

v.push_back("Nepal");

v.push_back("Kenya");

v.push_back("India");

v.push_back("China");

v.push_back("Malta");

v.push_back("Syria");

}

The two iterators egypt and malta are initialized by the find() function. Together, they delineate
the segment v[3..9] consisting of the 7 elements {Egypt, Chile, Zaire, Nepal, Kenya, India,
China}. The sort() function sorts that segment, leaving the other 5 elements unchanged.

Like the sort() function, the find() function is a generic algorithm that requires two iterators to
specify what segment of the vector is to be processed. (See page 373.) If you want to search the entire
vector, use the iterators that are returned by the begin() and end() functions, like this:

find(v.begin(), v.end(), x);

Japan
Italy
Spain
Egypt
Chile
Zaire
Nepal
Kenya
India
China
Malta
Syria

Japan
Italy
Spain
Chile
China
Egypt
India
Kenya
Nepal
Zaire
Malta
Syria

CHAP. 14] STANDARD C++ VECTORS 331

14.6 THE C++ STANDARD vector CLASS TEMPLATE

The interface for the vector class template is the prototype for all the Standard C++ container
class templates. (See Chapter 15.) With only a few exceptions, each member function of the
vector class corresponds to an equivalent member function for each of the other container
classes (stack, queue, list, set, map, etc.).

Here is a simplified partial listing of the vector class template interface:
template <class T>
class vector
{ friend bool operator==(const vector&, const vector&);

friend bool operator<(const vector&, const vector&);
public:

typedef T* iterator;
vector(); // default constructor
vector(const vector&); // copy constructor
vector(int, const T&); // auxiliary constructor
vector(iterator, iterator); // auxiliary constructor
~vector(); // destructor
vector& operator=(const vector&); // assignment operator
void assign(int, const T&); // assigns a given value
void assign(iterator, iterator); // copies elements from object
void resize(int); // changes size of vector
void swap(vector&); // swaps elements with object
bool empty() const; // returns true iff empty
int size() const; // return number of elements
iterator begin(); // locates first element
iterator end(); // locates dummy element at end
T& operator[](int); // subscript operator
T& at(int); // range-checked access
T& front(); // accesses the first element
T& back(); // accesses the last element
void push_back(const T&); // inserts element at end
void pop_back(); // removes last element
iterator insert(iterator, const T&);
void insert(iterator, int, const T&);
void insert(iterator, iterator, iterator);
iterator erase(iterator);
iterator erase(iterator, iterator);
void clear(); // removes all the elements

private:
//...

};

EXAMPLE 14.10 Using the Standard vector<> Class Template

Here is a complete C++ program that uses the Standard vector<> class template::
#include <iostream>
#include <vector> // defines the Standard vector<T> class template
using namespace std;
typedef vector<double> Vec;

332 STANDARD C++ VECTORS [CHAP. 14

typedef vector<bool> Bits;

template <class T>
void copy(vector<T>& v, const T* x, int n)
{ vector<T> w;

for (int i=0; i<n; i++)
w.push_back(x[i]);

v = w;
}

Vec projection(Vec& v, Bits& b)
{ int v_size = v.size();

assert(b.size() >= v_size);
Vec w;
for (int i=0; i<v_size; i++)

if (b[i]) w.push_back(v[i]);
return w;

}

void print(Vec& v)
{ int v_size = v.size();

for (int i=0; i<v_size; i++)
cout << v[i] << " ";

cout << endl;
}

int main()
{ double x[8] = { 22.2, 33.3, 44.4, 55.5, 66.6, 77.7, 88.8, 99.9 };

Vec v;
copy(v, x, 8);
bool y[8] = { false, true, false, true, true, true, false, true };
Bits b;
copy(b, y, 8);
Vec w = projection(v, b);
print(v);
print(w);

}

This illustrates the vector class push_back() and size() member functions.
The purpose of the projection(v, b) function is to use the bit vector b as a mask to remove

selected elements of the vector v. The resulting vector w is called the projection of v onto the subspace
determined by b.

14.7 RANGE CHECKING

The at() member function of the standard vector class template automatically checks the
value of the index variable to ensure that it is not out of range. This protection against program
failure is not available for ordinary arrays.

22.2 33.3 44.4 55.5 66.6 77.7 88.8 99.9
33.3 55.5 66.6 77.7 99.9

CHAP. 14] STANDARD C++ VECTORS 333

Review Questions

14.1 What are the main differences between an array and a C++ vector?
14.2 How are vector iterators similar to array indexes?

Problems

14.1 Use the find() algorithm to implement and test the following function for vectors of
ints:

int frequency(vector<int> v, int x);
// returns the number of occurrences of x in v;

14.2 Use the find() algorithm and the erase() function to implement and test the following
function for vectors of ints:

void remove_duplicates(vector<int>& v);
// removes all duplicates in v;

14.3 Use the sort() algorithm to implement and test the following function for vectors of
floats:

float median(vector<float>& v);
// returns the middle number among those stored in v;

14.4 Implement and test the following conversion functions:
int unsignedValue(BinaryCode bc);
// example: if bc has these bit values 1 0 1 0 1
// unsignedValue(bc) returns 21
BinaryCode getUnsignedCode(unsigned n);
// returns shortest possible code for n
// example: if n = 15 returns the vector with elements 1 1 1 1
int signedValue(BinaryCode bc);
// example: if bc has these bit values 1 0 1 1 1 0
// signedValue(bc) returns -30
BinaryCode getSignedCode(int n);
// returns shortest possible twosComplement code for n
// example: if n = 15 returns the vector with elements 0 1 1 1 1
// if n = -15 returns the vector with elements 1 0 0 0 1

These use the following definitions:
typedef vector<int> BinaryCode;
typedef BinaryCode::iterator BCIterator;

Answers to Review Questions

14.1 Some of the main differences between arrays and C++ vectors are:
a. An array is declared as

string[8] a; // a is an array of 8 strings
while a vector is declared as

vector<string> v(8); // v is a vector of 8 strings
b. The assignment operator is defined for vectors but not for arrays:

v = w; // assigns all the elements of the vector w to v

334 STANDARD C++ VECTORS [CHAP. 14

c. The comparison operators are defined for vectors but not for arrays:
if (v == w) // true if the two vectors are equal
if (v < w) // uses the lexicographic ordering of vectors

d. The size() member function is available for vectors but not for arrays:
int n = v.size(); // the number of elements in the vector v

e. The at() member function is available for vectors but not for arrays:
string v8 = v.at(8); // the element at position 8

A range error exception is thrown if the element does not exist.
14.2 Some of the main similarities between arrays indexes and vector iterators are:

a. Both provide direct read-write access to the elements:
x = a[3]; // assigns to x element number 3
x = *it; // assigns to x the element located by it
a[3] = 44; // assigns 44 to element number 3
*it = 44; // assigns 44 to the element located by it

b. Both can be incremented and decremented.
c. Both can be used as a basis for relative positions:

x = a[i+3]; // assigns to x the 3rd element after a[i]
x = *(it+3); // assigns to x the 3rd element after *it

Solutions to Problems

14.1 int frequency(vector<int> v, int x)
{ int n=0;

for (vector<int>::iterator it=v.begin(); ; it++)
{ it = find(it,v.end(),x);

if (it==v.end()) return n;
++n;

}
return n;

}
14.2 void remove_duplicates(vector<int>& v)

{ for (vector<int>::iterator it=v.begin()+1; it!=v.end();)
{ vector<int>::iterator jt=find(v.begin(),it,*it);

if (jt == it) ++it;
else it = v.erase(it);

}
}

14.3 typedef vector<float> ScoreVector;
typedef ScoreVector::iterator ScoreVectorIterator;

float median(ScoreVector sv);
//precondition: sv is not empty
// returns average of two sorted middle values in sv
// caller's argument remains unchanged

void getScores(ScoreVector & sv);
void print(ScoreVectorIterator start, ScoreVectorIterator stop);
int main()
{ ScoreVector scores ;

getScores(scores);

CHAP. 14] STANDARD C++ VECTORS 335

print(scores.begin() , scores.end() - 1);
cout << "median(scores) = " << median(scores) << endl;

}

float median(ScoreVector v)
{ if (v.empty()) return 0.0;

int n = v.size();
sort(v.begin(), v.end());
return (v[n/2] + v[(n-1)/2]) / 2.0;

}

void getScores(ScoreVector & sv)
{ float nextScore;

cout << "Enter next score or negative value to stop: ";
cin >> nextScore;
while (nextScore >= 0.0)
{ sv.push_back(nextScore);

cout << "Enter next score or negative value to stop: ";
cin >> nextScore;

}
}

void print(ScoreVectorIterator start, ScoreVectorIterator stop)
{ for(ScoreVectorIterator svIt = start; svIt <= stop; svIt++)

cout << *svIt << endl;
}

14.4 typedef vector<int> BinaryCode;
typedef BinaryCode::iterator BCIterator;

int unsignedValue(BinaryCode bc);
// example if bc has these bit values 1 0 1 0 1
// unsignedValue(bc) returns 21

BinaryCode getUnsignedCode(unsigned n);
// returns shortest possible code for n
// example: if n = 15 returns the vector with elements 1 1 1 1

int signedValue (BinaryCode bc);
// example if bc has these bit values 1 0 1 1 1 0
// signedValue(bc) returns -30

BinaryCode getSignedCode(int n);
// returns shortest possible twosComplement code for n
// example: if n = 15 returns the vector with elements 0 1 1 1 1
// if n = -15 " " " " " 1 0 0 0 1

void print(BinaryCode bc);
void testUnsigned();
void testSigned();

336 STANDARD C++ VECTORS [CHAP. 14

int main()
{ testUnsigned();

testSigned();
}

void testUnsigned()
{ BinaryCode bc;

for (unsigned n = 0; n <= 11; n++)
{ bc = getUnsignedCode(n);

print(bc);
cout << " has unsigned value " << unsignedValue(bc)

<< " and signed value " << signedValue(bc) << endl;
}

}

int unsignedValue(BinaryCode bc)
{ int value = 0;

for (BCIterator bcIt = bc.begin(); bcIt != bc.end(); bcIt++)
value = value * 2 + *bcIt;

return value;
}

BinaryCode getUnsignedCode(unsigned n)
{ BinaryCode answer;

answer.push_back(n%2); // start with least sig bit
n = n / 2;
while (n > 0)
{ BCIterator bcIt = answer.begin();

answer.insert(bcIt , n % 2);
n = n / 2;

}
return answer;

}

void print(BinaryCode bc)
{ for (BCIterator bcIt = bc.begin(); bcIt != bc.end(); bcIt++)

cout << *bcIt << ' ';
}

int signedValue(BinaryCode bc)
{ int uvalue = unsignedValue(bc);

if (*bc.begin() == 0) return uvalue; // not negative
int modulus = (int) pow(2 , bc.size());
return uvalue - modulus;

}

BinaryCode getSignedCode(int n)
{ BinaryCode answer;

if (n >= 0) // n not negative
{ answer = getUnsignedCode(n);

BCIterator bcIt = answer.begin();
answer.insert(bcIt , 0); // insert leading bit 0

CHAP. 14] STANDARD C++ VECTORS 337

}
else // n is negative
{ int posN = -n;

int modulus = 2;
while (posN > 0) // build modulus
{ posN /= 2;

modulus *= 2;
}
answer = getUnsignedCode(modulus + n);

}
return answer;

}

void testSigned()
{ BinaryCode bcPos;

BinaryCode bcNeg;
for (int n = 1; n <= 12; n++)
{ bcPos = getSignedCode(n);

bcNeg = getSignedCode(-n);
int decodePos = signedValue(bcPos);
int decodeNeg = signedValue(bcNeg);
cout << decodePos << ": ";
print(bcPos);
cout << "\tvs\t\t" << decodeNeg << ": ";
print(bcNeg);
cout << endl;

}
}

338

Chapter 15

Container Classes

15.1 ANSI/ISO STANDARD C++

The standardization of C++ by the ANSI (American National Standards Institute) and the ISO
(International Standards Organization) began in 1989. The final version was approved by those
organizations in 1998. That approval defines Standard C++.

You can obtain a complete copy of the standard from ANSI at their website:
http://www.ansi.org/

The title of the document is Information Technology — Programming Languages — C++.

15.2 THE STANDARD TEMPLATE LIBRARY

The standardization of C++ brought forth many changes, including namespaces and an official
bool type. But the biggest improvement was the addition of the Standard Template Library (the
STL). This is a collection of class templates and functions designed to facilitate the use of
container objects such as strings, vectors, lists, stacks, queues, sets, and maps. Developed by a
team led by Alexander Stepanov at Hewlett-Packard, the STL is now known simply as part of the
Standard C++ Library. The classes that can be defined from these templates are called container
classes.

15.3 STANDARD C++ CONTAINER CLASS TEMPLATES

The ten Standard C++ container class templates are
organized as shown at right. The details of these class
templates are given in Appendix C.

A container is data structure that contains other
objects. The objects that it contains are called its
elements. All the elements in a given container must
have the same type.

A sequence container is a container whose elements
are kept in an ordinal sequence, like an array. The
position of each element is independent of its value. But
the relative positions of the elements are guaranteed not
to change unless they are intentionally moved. As the
diagram shows, there are three general sequence
containers: vector, deque, and list.

An associative container is a container whose elements are kept in sorted order. So the user
has no control over where the elements are kept; their positions are completely determined by
their values and those of the other elements in the container. So the order in which you insert the

Container Templates
Sequences

list<>
deque<>
vector<>

Associative Containers
set<>

multimap<>
map<>
multiset<>

Special Containers
basic_string<>

bitset<>
valarray<>

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 15] CONTAINER CLASSES 339

elements doesn’t matter. As the diagram shows, there are four general sequence containers: set,
multiset, map, and multimap.

The Standard C++ Library also defines three specialized container class templates:
basic_string, valarray, and bitset. These are not classified as general containers because
their operations are not as general as the others.

The vector<> template is the prototype of all the container classes. It generalizes the direct
access array, as described in Chapter 10. Most of its functions apply to the other templates.

The vector<> template is outlined in Chapter 14.

The deque<> template generalizes the stack and the queue containers. A deque (pronounced
“deck”) is a sequential container that allows insertions and deletions at both ends. Special
adapters are provided that use this template to define the stack<> template and the queue<>

template.

The list<> template generalizes the linked list structure which does not have indexed
access but does have much faster insertion and deletion operations. A special adapter uses the
list<> template to define the priority_queue<> template.

The set<> template provides containers that represent mathematical sets, using union and
intersection operations.

The multiset<> template is the same as the set<> template except that its containers
allow multiple copies elements.

The map<> template generalizes the look-up table structure. Maps are also called an associa-
tive array. The hash table data structure is a special kind of map.

The multimap<> template is the same as the map<> template except that its containers
allow multiple copies elements.

The basic_string<> template generalizes the notion of a character string, allowing strings
of any type. The common special cases are defined by typedefs:

typedef basic_string<char> string;

typedef basic_string<wchar_t> wstring;

The valarray<> template is intended for instantiating mathematical vectors and linear array
processing.

The bitset<> template is used for processing bitstrings: objects whose values are usually in
hexadecimal and which are operated upon by the logical operators |, &, ^, <<, and >>.

15.4 STANDARD C++ GENERIC ALGORITHMS

The Standard C++ generic algorithms are non-member functions that apply to the Standard
C++ container classes. They provide a consistent suite of tools that cover just about any applica-
tion of containers. They also allow for easy transfer of elements from one type of container to
another. The details of these functions are given in Appendix D.

Two of the most useful algorithms are the find() and sort() functions. These were
illustrated in Chapter 14. (See Examples 14.4 and 14.9.) These are illustrated with other contain-
ers in the examples in this chapter.

340 CONTAINER CLASSES [CHAP. 15

15.5 HEADER FILES

The Standard C++ container templates and generic algorithms are defined in the following
header files:

accumulate() <numeric>
adjacent_difference() <numeric>
adjacent_find() <algorithm>
basic_string<> <string>
binary_search() <algorithm>
bitset<> <bitset>
copy() <algorithm>
copy_backward() <algorithm>
count() <algorithm>
count_if() <algorithm>
deque<> <deque>
equal() <algorithm>
equal_find() <algorithm>
fill() <algorithm>
fill_n() <algorithm>
find_end() <algorithm>
find_first_of() <algorithm>
find_if() <algorithm>
for_each() <algorithm>
generate() <algorithm>
generate_n() <algorithm>
includes() <algorithm>
inner_product() <numeric>
inplace_merge() <algorithm>
iter_swap() <algorithm>
lexicographic_compare() <algorithm>
list<> <list>
lower_bound() <algorithm>
make_heap() <algorithm>
map<> <map>
max() <algorithm>
max_element() <algorithm>
merge() <algorithm>
min() <algorithm>
min_element() <algorithm>
mismatch() <algorithm>
multimap<> <map>
multiset<> <set>
next_permutation() <algorithm>
nth_element() <algorithm>
partial_sort() <algorithm>
partial_sum() <numeric>
partition() <algorithm>
partition_sort_copy() <algorithm>
pop_heap() <algorithm>
prev_permutation() <algorithm>
priority_queue<> <queue>

CHAP. 15] CONTAINER CLASSES 341

push_heap() <algorithm>
queue<> <queue>
random_shuffle() <algorithm>
remove_copy() <algorithm>
remove_copy_if() <algorithm>
remove_if() <algorithm>
replace_() <algorithm>
replace_copy() <algorithm>
replace_copy_if() <algorithm>
replace_if() <algorithm>
reverse() <algorithm>
reverse_copy() <algorithm>
rotate() <algorithm>
rotate_copy() <algorithm>
search_n() <algorithm>
set<> <set>
set_difference() <algorithm>
set_intersection() <algorithm>
set_symmetric_difference() <algorithm>
set_union() <algorithm>
sort() <algorithm>
sort_heap() <algorithm>
stack<> <stack>
string<> <vector>
swap() <algorithm>
transform() <algorithm>
unique() <algorithm>
unique_copy() <algorithm>
upper_bound() <algorithm>
valarray<> <valarray>
vector<> <vector>

For more information on the Standard C++ container classes and their generic algorithms, see
the books [Hubbard1] and [Hubbard2] listed in Appendix H.

342

Appendix A

Character Codes

A.1 The ASCII Code

Each 8-bit character is stored as its ASCII1 Code, which is an integer in the range 0 to 127.
Note that the first 32 characters are nonprinting characters, so their symbols in the first column
are indicated either with their control sequence or with their escape sequence. The control
sequence of a nonprinting character is the combination of Control key and another key that is
pressed on the keyboard to enter the character. For example, the end-of-file character (ASCII
code 4) is entered with the Ctrl-D sequence. The escape sequence of a nonprinting character is
the combination of the backslash character “\” (called the “control character”) and a letter that is
typed in C++ source code to indicate the character. For example, the newline character (ASCII
code 10) is written “\n” in a C++ program.

1. ASCII is an acronym for the American Standard Code for Information Interchange.

Character Description Decimal Octal Hex Binary

Ctrl-@ Null, end of string 0 000 0x0 0

Ctrl-A Start of heading 1 001 0x1 1

Ctrl-B Start of text 2 002 0x2 10

Ctrl-C End of text 3 003 0x3 11

Ctrl-D End of transmission, end of file 4 004 0x4 100

Ctrl-E Enquiry 5 005 0x5 101

Ctrl-F Acknowledge 6 006 0x6 110

\a Bell, alert, system beep 7 007 0x7 111

\b Backspace 8 010 0x8 1000

\t Horizontal tab 9 011 0x9 1001

\n Line feed, new line 10 012 0xa 1010

\v Vertical tab 11 013 0xb 1011

\f Form feed, new page 12 014 0xc 1100

\r Carriage return 13 015 0xd 1101

Ctrl-N Shift out 14 016 0xe 1110

Ctrl-O Shift in 15 017 0xf 1111

Ctrl-P Data link escape 16 020 0x10 10000

Ctrl-Q Device control 1, resume scroll 17 021 0x11 10001

Ctrl-R Device control 2 18 022 0x12 10010

Ctrl-S Device control 3, stop scroll 19 023 0x13 10011

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

APP. A] CHARACTER CODES 343

Ctrl-T Device control 4 20 024 0x14 10100

Ctrl-U Negative acknowledgment 21 025 0x15 10101

Ctrl-V Synchronous idle 22 026 0x16 10110

Ctrl-W End transmission block 23 027 0x17 10111

Ctrl-X Cancel 24 030 0x18 11000

Ctrl-Y End of message, interrupt 25 031 0x19 11001

Ctrl-Z Substitute, exit 26 032 0x1a 11010

Ctrl-[Escape 27 033 0x1b 11011

Ctrl-/ File separator 28 034 0x1c 11100

Ctrl-] Group separator 29 035 0x1d 11101

Ctrl-^ Record separator 30 036 0x1e 11110

Ctrl-_ Unit separator 31 037 0x1f 11111

Blank, space 32 040 0x20 100000

! Exclamation point 33 041 0x21 100001

" Quotation mark, double quote 34 042 0x22 100010

Hash mark, number sign 35 043 0x23 100011

$ Dollar sign 36 044 0x24 100100

% Percent sign 37 045 0x25 100101

& Ampersand 38 046 0x26 100110

' Apostrophe, single quote 39 047 0x27 100111

(Left parenthesis 40 050 0x28 101000

) Right parenthesis 41 051 0x29 101001

* Asterisk, star, times 42 052 0x2a 101010

+ Plus 43 053 0x2b 101011

, Comma 44 054 0x2c 101100

- Dash, minus 45 055 0x2d 101101

. Dot, period, decimal point 46 056 0x2e 101110

/ Slash 47 057 0x2f 101111

0 Digit zero 48 060 0x30 110000

1 Digit one 49 061 0x31 110001

2 Digit two 50 062 0x32 110010

3 Digit three 51 063 0x33 110011

4 Digit four 52 064 0x34 110100

5 Digit five 53 065 0x35 110101

6 Digit six 54 066 0x36 110110

7 Digit seven 55 067 0x37 110111

8 Digit eight 56 070 0x38 111000

Character Description Decimal Octal Hex Binary

344 CHARACTER CODES [APP. A

9 Digit nine 57 071 0x39 111001

: Colon 58 072 0x3a 111010

; Semicolon 59 073 0x3s 111011

< Less than 60 074 0x3c 111100

= Equal to 61 075 0x3d 111101

> Greater than 62 076 0x3e 111110

? Question mark 63 077 0x3f 111111

@ Commercial at sign 64 0100 0x40 1000000

A Letter capital A 65 0101 0x41 1000001

B Letter capital B 66 0102 0x42 1000010

C Letter capital C 67 0103 0x43 1000011

D Letter capital D 68 0104 0x44 1000100

E Letter capital E 69 0105 0x45 1000101

F Letter capital F 70 0106 0x46 1000110

G Letter capital G 71 0107 0x47 1000111

H Letter capital H 72 0110 0x48 1001000

I Letter capital I 73 0111 0x49 1001001

J Letter capital J 74 0112 0x4a 1001010

K Letter capital K 75 0113 0x4b 1001011

L Letter capital L 76 0114 04xc 1001100

M Letter capital M 77 0115 0x4d 1001101

N Letter capital N 78 0116 0x4e 1001110

O Letter capital O 79 0117 0x4f 1001111

P Letter capital P 80 0120 0x50 1010000

Q Letter capital Q 81 0121 0x51 1010001

R Letter capital R 82 1022 0x52 1010010

S Letter capital S 83 0123 0x53 1010011

T Letter capital T 84 0124 0x54 1010100

U Letter capital U 85 0125 0x55 1010101

V Letter capital V 86 0126 0x56 1010110

W Letter capital W 87 0127 0x57 1010111

X Letter capital X 88 0130 0x58 1011000

Y Letter capital Y 89 0131 0x59 1011001

Z Letter capital Z 90 0132 0x5a 1011010

[Left bracket 91 0133 0x5b 1011011

\ Backslash 92 0134 0x5c 1011100

] Right bracket 93 0135 0x5d 1011101

Character Description Decimal Octal Hex Binary

APP. A] CHARACTER CODES 345

^ Caret 94 0136 0x5e 1011110

_ Underscore 95 0137 0x5f 1011111

‘ Accent grave 96 0140 0x60 1100000

a Letter lowercase A 97 0141 0x61 1100001

b Letter lowercase B 98 0142 0x62 1100010

c Letter lowercase C 99 0143 0x63 1100011

d Letter lowercase D 100 0144 0x64 1100100

e Letter lowercase E 101 0145 0x65 1100101

f Letter lowercase F 102 0146 0x66 1100110

g Letter lowercase G 103 0147 0x67 1100111

h Letter lowercase H 104 0150 0x68 1101000

i Letter lowercase I 105 0151 0x69 1101001

j Letter lowercase J 106 0152 0x6A 1101010

k Letter lowercase K 107 0153 0x6B 1101011

l Letter lowercase L 108 0154 0x6C 1101100

m Letter lowercase M 109 0155 0x6D 1101101

n Letter lowercase N 110 0156 0x6 1101110

o Letter lowercase O 111 0157 0x6F 1101111

p Letter lowercase P 112 0160 0x70 1110000

q Letter lowercase Q 113 0161 0x71 1110001

r Letter lowercase R 114 0162 0x72 1110010

s Letter lowercase S 115 0163 0x73 1110011

t Letter lowercase T 116 0164 0x74 1110100

u Letter lowercase U 117 0165 0x75 1110101

v Letter lowercase V 118 0166 0x76 1110110

w Letter lowercase W 119 0167 0x77 1110111

x Letter lowercase X 120 0170 0x78 1111000

y Letter lowercase Y 121 0171 0x79 0111001

z Letter lowercase Z 122 0172 0x7a 1111010

{ Left brace 123 0173 0x7b 1111011

| Pipe 124 0174 0x7c 1111100

} Right brace 125 0175 0x7d 1111101

~ Tilde 126 0176 0x7e 1111110

Delete Delete, rub out 127 0177 0x7f 1111111

Character Description Decimal Octal Hex Binary

346 CHARACTER CODES [APP. A

A.2 Unicode

Unicode is the international standardized character set that C++ uses for its 16-bit wchar_t

(wide character) type. Each code is a 16-bit integer with unique value in the range 0 to 65,535.
These values are usually expressed in hexadecimal form. (See Appendix G.) For example, the
infinity symbol ∞ has the Unicode value 8734, which is 0x0000221e in hexadecimal.

In C++, the character literal whose Unicode is 0x0000hhhh in hexadecimal is denoted
L'\xhhhh'. For example, the infinity symbol is expressed as L'\x221e', like this:

wchar_t infinity = L'\x221e';

The first 127 Unicode values encode the same characters as the ASCII Code.
The following table summarizes the various alphabets and their Unicodes.
You can obtain more information from the Unicode Consortium website
http://www.unicode.org/

Also, see the book [Unicode] listed in Appendix H.

Range (Hexadecimal) Alphabet

\u0000 – \u024F Latin Alphabets

\u0370 – \u03FF Greek

\u0400 – \u04FF Cyrillic

\u0530 – \u058F Armenian

\u0590 – \u05FF Hebrew

\u0600 – \u06FF Arabic

\u0900 – \u097F Devanagari

\u0980 – \u09FF Bengali

\u0A00 – \u0A7F Gurmukhi

\u0A80 – \u0AFF Gujarati

\u0B00 – \u0B7F Oriya

\u0B80 – \u0BFF Tamil

\u0C00 – \u0C7F Teluga

\u0C80 – \u0CFF Kannada

\u0D00 – \u0D7F Malayam

\u0E00 – \u0E7F Thai

\u0E80 – \u0EFF Lao

\u0F00 – \u0FBF Tibetan

\u10A0 – \u10FF Georgian

\u1100 – \u11FF Hangul Jamo

\u2000 – \u206F Punctuation

\u2070 – \u209F Superscripts and subscripts

\u20A0 – \u20CF Currency symbols

\u20D0 – \u20FF Diacritical marks

\u2100 – \u214F Letterlike symbols

APP. A] CHARACTER CODES 347

\u2150 – \u218F Numeral forms

\u2190 – \u21FF Arrows

\u2200 – \u22FF Mathematical symbols

\u2300 – \u23FF Miscellaneous technical symbols

\u2400 – \u243F Control pictures

\u2440 – \u245F Optical Character Recognition symbols

\u2460 – \u24FF Enclosed alphanumerics

\u2500 – \u257F Box drawing

\u2580 – \u259F Block elements

\u25A0 – \u25FF Geometric shapes

\u2700 – \u27BF Dingbats

\u3040 – \u309F Hiragana

\u30A0 – \u30FF Katakana

\u3100 – \u312F Bopomofo

\u3130 – \u318F Jamo

\u3190 – \u319F Kanbun

\u3200 – \u32FF Enclosed CJK letters and months

\u4E00 – \u9FFF CJK Ideographs

Range (Hexadecimal) Alphabet

348

Appendix B

Standard C++ Keywords
K

ey
w

or
d

D
es

cr
ip

ti
on

E
xa

m
pl

e

a
n
d

A
sy

no
ny

m
fo

r
th

e
A

N
D

op
er

at
or
&
&

(
x
>
0

a
n
d

x
<
8
)

a
n
d
_
e
q

A
sy

no
ny

m
fo

r
th

e
bi

tw
is

e
A

N
D

as
si

gn
m

en
to

pe
ra

to
r
&
=

b
1

a
n
d
_
e
q

b
2
;

a
s
m

A
ll

ow
s

in
fo

rm
at

io
n

to
be

pa
ss

ed
to

th
e

as
se

m
bl

er
di

re
ct

ly
a
s
m

(
"
c
h
e
c
k
"
)
;

a
u
t
o

S
to

ra
ge

cl
as

s
fo

r
ob

je
ct

s
th

at
ex

is
to

nl
y

w
it

hi
n

th
ei

r
ow

n
bl

oc
k

a
u
t
o

i
n
t

n
;

b
i
t
a
n
d

A
sy

no
ny

m
fo

r
th

e
bi

tw
is

e
A

N
D

op
er

at
or
&

b
0

=
b
1

b
i
t
a
n
d

b
2
;

b
i
t
o
r

A
sy

no
ny

m
fo

r
th

e
bi

tw
is

e
O

R
op

er
at

or
|

b
0

=
b
1

b
i
t
o
r

b
2
;

b
o
o
l

A
bo

ol
ea

n
ty

pe
b
o
o
l

f
l
a
g
;

b
r
e
a
k

T
er

m
in

at
es

a
lo

op
or

a
s
w
i
t
c
h

st
at

em
en

t
b
r
e
a
k
;

c
a
s
e

U
se

d
in

a
s
w
i
t
c
h

st
at

em
en

tt
o

sp
ec

if
y

co
nt

ro
le

xp
re

ss
io

n
s
w
i
t
c
h

(
n
/
1
0
)

c
a
t
c
h

S
pe

ci
fi

es
ac

ti
on

s
to

ta
ke

w
he

n
an

ex
ce

pt
io

n
oc

cu
rs

c
a
t
c
h
(
e
r
r
o
r
)

c
h
a
r

A
n

in
te

ge
r

ty
pe

c
h
a
r

c
;

c
l
a
s
s

S
pe

ci
fi

es
a

cl
as

s
de

cl
ar

at
io

n
c
l
a
s
s

X
{

.
.
.

}
;

c
o
m
p
l

A
sy

no
ny

m
fo

r
th

e
bi

tw
is

e
N

O
T

op
er

at
or
~

b
0

=
c
o
m
p
l

b
1
;

c
o
n
s
t

S
pe

ci
fi

es
a

co
ns

ta
nt

de
fi

ni
ti

on
c
o
n
s
t

i
n
t

s
=

3
2
;

c
o
n
s
t
_
c
a
s
t

U
se

d
to

ch
an

ge
ob

je
ct

s
fr

om
w

it
hi

n
im

m
ut

ab
le

m
em

be
r

fu
nc

ti
on

s
p
p

=
c
o
n
s
t
_
c
a
s
t
<
T
*
>
(
p
)

c
o
n
t
i
n
u
e

Ju
m

ps
to

be
gi

nn
in

g
of

ne
xt

it
er

at
io

n
in

a
lo

op
c
o
n
t
i
n
u
e
;

d
e
f
a
u
l
t

T
he

“o
th

er
w

is
e”

ca
se

in
a
s
w
i
t
c
h

st
at

em
en

t
d
e
f
a
u
l
t
:

s
u
m

=
0
;

d
e
l
e
t
e

D
ea

ll
oc

at
es

m
em

or
y

al
lo

ca
te

d
by

a
n
e
w

st
at

em
en

t
d
e
l
e
t
e

a
;

d
o

S
pe

ci
fi

es
a
d
o
.
.
w
h
i
l
e

lo
op

d
o

{
.
.
.
}

w
h
i
l
e

.
.
.

d
o
u
b
l
e

A
re

al
nu

m
be

r
ty

pe
d
o
u
b
l
e

x
;

d
y
n
a
m
i
c
_
c
a
s
t

R
et

ur
ns

a
T
*

po
in

te
r

fo
r

a
gi

ve
n

po
in

te
r

p
p

=
d
y
n
a
m
i
c
_
c
a
s
t
<
T
*
>
p

e
l
s
e

S
pe

ci
fi

es
al

te
rn

at
iv

e
in

an
i
f

st
at

em
en

t
e
l
s
e

n
=

0
;

e
n
u
m

U
se

d
to

de
cl

ar
e

an
en

um
er

at
io

n
ty

pe
e
n
u
m

b
o
o
l

{
.
.
.

}
;

e
x
p
l
i
c
i
t

U
se

d
to

pr
ev

en
ta

co
ns

tr
uc

to
r

fr
om

be
in

g
in

vo
ke

d
im

pl
ic

it
ly

e
x
p
l
i
c
i
t

X
(
i
n
t

n
)
;

e
x
p
o
r
t

A
ll

ow
s

ac
ce

ss
fr

om
an

ot
he

r
co

m
pi

la
ti

on
un

it
e
x
p
o
r
t

t
e
m
p
l
a
t
e
<
c
l
a
s
s

T
>

e
x
t
e
r
n

S
to

ra
ge

cl
as

s
fo

r
ob

je
ct

s
de

cl
ar

ed
ou

ts
id

e
th

e
lo

ca
lb

lo
ck

e
x
t
e
r
n

i
n
t

m
a
x
;

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

APP. B] STANDARD C++ KEYWORDS 349

K
ey

w
or

d
D

es
cr

ip
ti

on
E

xa
m

pl
e

f
a
l
s
e

O
ne

of
th

e
tw

o
li

te
ra

ls
fo

r
th

e
b
o
o
l

ty
pe

b
o
o
l

f
l
a
g
=
f
a
l
s
e
;

f
l
o
a
t

A
re

al
nu

m
be

r
ty

pe
f
l
o
a
t

x
;

f
o
r

S
pe

ci
fi

es
a
f
o
r

lo
op

f
o
r

(
;

;
)

.
.
.

f
r
i
e
n
d

S
pe

ci
fi

es
a
f
r
i
e
n
d

fu
nc

ti
on

in
a

cl
as

s
f
r
i
e
n
d

i
n
t

f
(
)
;

g
o
t
o

C
au

se
s

ex
ec

ut
io

n
to

ju
m

p
to

a
la

be
le

d
st

at
em

en
t

g
o
t
o

e
r
r
o
r
;

i
f

S
pe

ci
fi

es
an

i
f

st
at

em
en

t
i
f

(
n

>
0
)

.
.
.

i
n
l
i
n
e

D
ec

la
re

s
a

fu
nc

ti
on

w
ho

se
te

xt
is

to
be

su
bs

ti
tu

te
d

fo
r

it
s

ca
ll

i
n
l
i
n
e

i
n
t

f
(
)
;

i
n
t

A
n

in
te

ge
r

ty
pe

i
n
t

n
;

l
o
n
g

U
se

d
to

de
fi

ne
in

te
ge

r
an

d
re

al
ty

pe
s

l
o
n
g

d
o
u
b
l
e

x
;

m
u
t
a
b
l
e

A
ll

ow
s

im
m

ut
ab

le
fu

nc
ti

on
s

to
ch

an
ge

th
e

fi
el

d
m
u
t
a
b
l
e

s
t
r
i
n
g

s
s
n
;

n
a
m
e
s
p
a
c
e

A
ll

ow
s

th
e

id
en

ti
fi

ca
ti

on
of

sc
op

e
bl

oc
ks

n
a
m
e
s
p
a
c
e

B
e
s
t

{
i
n
t

n
u
m
;

}

n
e
w

A
ll

oc
at

es
m

em
or

y
i
n
t
*

p
=

n
e
w

i
n
t
;

n
o
t

A
sy

no
ny

m
fo

r
th

e
N

O
T

op
er

at
or
!

(
n
o
t
(
x
=
=
0
)
)

n
o
t
_
e
q

A
sy

no
ny

m
fo

r
th

e
in

eq
ua

li
ty

op
er

at
or
!
=

(
x

n
o
t
_
e
q

0
)

o
p
e
r
a
t
o
r

U
se

d
to

de
cl

ar
e

an
op

er
at

or
ov

er
lo

ad
X

o
p
e
r
a
t
o
r
+
+
(
)
;

o
r

A
sy

no
ny

m
fo

r
th

e
O

R
op

er
at

or
|
|

(
x
>
0

o
r

x
<
8
)

o
r
_
e
q

A
sy

no
ny

m
fo

r
th

e
bi

tw
is

e
O

R
as

si
gn

m
en

to
pe

ra
to

r
|
=

b
1

o
r
_
e
q

b
2
;

p
r
i
v
a
t
e

S
pe

ci
fi

es
p
r
i
v
a
t
e

de
cl

ar
at

io
ns

in
a

cl
as

s
p
r
i
v
a
t
e
:

i
n
t

n
;

p
r
o
t
e
c
t
e
d

S
pe

ci
fi

es
p
r
o
t
e
c
t
e
d

de
cl

ar
at

io
ns

in
a

cl
as

s
p
r
o
t
e
c
t
e
d
:

i
n
t

n
;

p
u
b
l
i
c

S
pe

ci
fi

es
p
u
b
l
i
c

de
cl

ar
at

io
ns

in
a

cl
as

s
p
u
b
l
i
c
:

i
n
t

n
;

r
e
g
i
s
t
e
r

S
to

ra
ge

cl
as

s
sp

ec
if

ie
r

fo
r

ob
je

ct
s

st
or

ed
in

re
gi

st
er

s
r
e
g
i
s
t
e
r

i
n
t

i
;

r
e
i
n
t
e
r
p
r
e
t
_
c
a
s
t

R
et

ur
ns

an
ob

je
ct

w
it

h
gi

ve
n

va
lu

e
an

d
ty

pe
p
p
=
r
e
i
n
t
e
r
p
r
e
t
_
c
a
s
t
<
T
*
>
(
p
)

r
e
t
u
r
n

S
ta

te
m

en
tt

ha
tt

er
m

in
at

es
a

fu
nc

ti
on

an
d

re
tu

rn
s

a
va

lu
e

r
e
t
u
r
n

0
;

s
h
o
r
t

A
n

in
te

ge
r

ty
pe

s
h
o
r
t

n
;

s
i
g
n
e
d

U
se

d
to

de
fi

ne
in

te
ge

r
ty

pe
s

s
i
g
n
e
d

c
h
a
r

c
;

s
i
z
e
o
f

O
pe

ra
to

r
th

at
re

tu
rn

s
th

e
nu

m
be

r
of

by
te

s
us

ed
to

st
or

e
an

ob
je

ct
n

=
s
i
z
e
o
f
(
f
l
o
a
t
)
;

350 STANDARD C++ KEYWORDS [APP B

K
ey

w
or

d
D

es
cr

ip
ti

on
E

xa
m

pl
e

s
t
a
t
i
c

S
to

ra
ge

cl
as

s
of

ob
je

ct
s

th
at

ex
is

tf
or

th
e

du
ra

ti
on

of
th

e
pr

og
ra

m
s
t
a
t
i
c

i
n
t

n
;

s
t
a
t
i
c
_
c
a
s
t

R
et

ur
ns

a
T
*

po
in

te
r

fo
r

a
gi

ve
n

po
in

te
r

p
p

=
s
t
a
t
i
c
_
c
a
s
t
<
T
*
>
p

s
t
r
u
c
t

S
pe

ci
fi

es
a

st
ru

ct
ur

e
de

fi
ni

ti
on

s
t
r
u
c
t

X
{

.
.
.

}
;

s
w
i
t
c
h

S
pe

ci
fi

es
a
s
w
i
t
c
h

st
at

em
en

t
s
w
i
t
c
h

(
n
)

{
.
.
.
}

t
e
m
p
l
a
t
e

S
pe

ci
fi

es
a
t
e
m
p
l
a
t
e

cl
as

s
t
e
m
p
l
a
t
e

<
c
l
a
s
s

T
>

t
h
i
s

P
oi

nt
er

th
at

po
in

ts
to

th
e

cu
rr

en
to

bj
ec

t
r
e
t
u
r
n

*
t
h
i
s
;

t
h
r
o
w

U
se

d
to

ge
ne

ra
te

an
ex

ce
pt

io
n

t
h
r
o
w

X
(
)
;

t
r
u
e

O
ne

of
th

e
tw

o
li

te
ra

ls
fo

r
th

e
b
o
o
l

ty
pe

b
o
o
l

f
l
a
g
=
t
r
u
e
;

t
r
y

S
pe

ci
fi

es
a

bl
oc

k
th

at
co

nt
ai

ns
ex

ce
pt

io
n

ha
nd

le
rs

t
r
y

{
.
.
.

}

t
y
p
e
d
e
f

D
ec

la
re

s
a

sy
no

ny
m

fo
r

an
ex

is
ti

ng
ty

pe
t
y
p
e
d
e
f

i
n
t

N
u
m
;

t
y
p
e
i
d

R
et

ur
ns

an
ob

je
ct

th
at

re
pr

es
en

ts
an

ex
pr

es
si

on
’s

ty
pe

c
o
u
t

<
<

t
y
p
e
i
d
(
x
)
.
n
a
m
e
(
)
;

t
y
p
e
n
a
m
e

A
sy

no
ny

m
fo

r
th

e
ke

yw
or

d
c
l
a
s
s

t
y
p
e
n
a
m
e

X
{

.
.
.
}
;

u
s
i
n
g

D
ir

ec
tiv

e
th

at
al

lo
w

s
om

is
si

on
of

na
m

es
pa

ce
pr

ef
ix

u
s
i
n
g

n
a
m
e
s
p
a
c
e

s
t
d
;

u
n
i
o
n

S
pe

ci
fi

es
a

st
ru

ct
ur

e
w

ho
se

el
em

en
ts

oc
cu

py
th

e
sa

m
e

st
or

ag
e

u
n
i
o
n

z
{

.
.
.

}
;

u
n
s
i
g
n
e
d

U
se

d
to

de
fi

ne
in

te
ge

r
ty

pe
s

u
n
s
i
g
n
e
d

i
n
t

b
;

v
i
r
t
u
a
l

D
ec

la
re

s
a

m
em

be
r

fu
nc

ti
on

th
at

is
de

fi
ne

d
in

a
su

bc
la

ss
v
i
r
t
u
a
l

i
n
t

f
(
)
;

v
o
i
d

D
es

ig
na

te
s

th
e

ab
se

nc
e

of
a

ty
pe

v
o
i
d

f
(
)
;

v
o
l
a
t
i
l
e

D
ec

la
re

s
ob

je
ct

s
th

at
ca

n
be

m
od

if
ie

d
ou

ts
id

e
of

pr
og

ra
m

co
nt

ro
l

i
n
t

v
o
l
a
t
i
l
e

n
;

w
c
h
a
r
_
t

W
id

e
(1

6-
bi

t)
ch

ar
ac

te
r

ty
pe

w
c
h
a
r
_
t

p
r
o
v
i
n
c
e
;

w
h
i
l
e

S
pe

ci
fi

es
a
w
h
i
l
e

lo
op

w
h
i
l
e

(
n

>
0
)

.
.
.

x
o
r

A
sy

no
ny

m
fo

r
th

e
bi

tw
is

e
ex

cl
us

iv
e

O
R

op
er

at
or
^

b
0

=
b
1

x
o
r

b
2
;

x
o
r
_
e
q

A
sy

no
ny

m
fo

r
th

e
bi

tw
is

e
ex

cl
us

iv
e

O
R

as
si

gn
m

en
to

pe
ra

to
r
^
=

b
1

x
o
r
_
e
q

b
2
;

351

Appendix C

Standard C++ Operators

This table lists all the operators in C++, grouping them by order of precedence. The
higher-level precedence operators are evaluated before the lower-level precedence operators. For
example, in the expression (a - b*c), the * operator will be evaluated first and the -

operator second, because * has precedence level 13 which is higher than the level 12
precedence of -. The column labeled “Assoc.” tells whether an operator is right associative or
left associative. For example, the expression (a - b - c) is evaluated as ((a - b) - c)

because - is left associative. The column labeled “Arity” tells whether an operator operates on
one, two, or three operands (unary, binary, or ternary). The column labeled “Ovrldbl.” tells
whether an operator is overloadable. (See Chapter 8.)

Op. Name Prec. Assoc. Arity Ovrldbl. Example
:: Global scope resolution 17 Right Unary No ::x

:: Class scope resolution 17 Left Binary No X::x

. Direct member selection 16 Left Binary No s.len

-> Indirect member selection 16 Left Binary Yes p->len

[] Subscript 16 Left Binary Yes a[i]

() Function call 16 Left n/a Yes rand()

() Type construction 16 Left n/a Yes int(ch)

++ Post-increment 16 Right Unary Yes n++

-- Post-decrement 16 Right Unary Yes n--

sizeof Size of object or type 15 Right Unary No sizeof(a)

++ Pre-increment 15 Right Unary Yes ++n

-- Pre-decrement 15 Right Unary Yes --n

~ Bitwise complement 15 Right Unary Yes ~s

! Logical NOT 15 Right Unary Yes !p

+ Unary plus 15 Right Unary Yes +n

- Unary minus 15 Right Unary Yes -n

* Dereference 15 Right Unary Yes *p

& Address 15 Right Unary Yes &x

new Allocation 15 Right Unary Yes new p

delete Deallocation 15 Right Unary Yes delete p

() Type conversion 15 Right Binary Yes int(ch)

.* Direct member selection 14 Left Binary No x.*q

->* Indirect member selection 14 Left Binary Yes p->q

* Multiplication 13 Left Binary Yes m*n

/ Division 13 Left Binary Yes m/n

% Remainder 13 Left Binary Yes m%n

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

352 STANDARD C++ OPERATORS [APP. C

Op. Name Prec. Assoc. Arity Ovrldbl. Example
+ Unary plus 15 Right Unary Yes +n

- Unary minus 15 Right Unary Yes -n

* Dereference 15 Right Unary Yes *p

& Address 15 Right Unary Yes &x

new Allocation 15 Right Unary Yes new p

delete Deallocation 15 Right Unary Yes delete p

() Type conversion 15 Right Binary Yes int(ch)

.* Direct member selection 14 Left Binary No x.*q

->* Indirect member selection 14 Left Binary Yes p->q

* Multiplication 13 Left Binary Yes m*n

/ Division 13 Left Binary Yes m/n

% Remainder 13 Left Binary Yes m%n

+ Addition 12 Left Binary Yes m + n

- Subtraction 12 Left Binary Yes m - n

<< Bit shift left 11 Left Binary Yes cout << n

>> Bit shift right 11 Left Binary Yes cin >> n

< Less than 10 Left Binary Yes x < y

<= Less than or equal to 10 Left Binary Yes x <= y

> Greater than 10 Left Binary Yes x > y

>= Greater than or equal to 10 Left Binary Yes x >= y

== Equal to 9 Left Binary Yes x == y

!= Not equal to 9 Left Binary Yes x != y

& Bitwise AND 8 Left Binary Yes s&t

^ Bitwise XOR 7 Left Binary Yes s^t

| Bitwise OR 6 Left Binary Yes s|t

&& Logical AND 5 Left Binary Yes u && v

|| Logical OR 4 Left Binary Yes u || v

?: Conditional expression 3 Left Ternary No u ? x : y

= Assignment 2 Right Binary Yes n = 22

+= Addition assignment 2 Right Binary Yes n += 8

-= Subtraction assignment 2 Right Binary Yes n -= 4

*= Multiplication assignment 2 Right Binary Yes n *= -1

/= Division assignment 2 Right Binary Yes n /= 10

%= Remainder assignment 2 Right Binary Yes n %= 10

&= Bitwise AND assignment 2 Right Binary Yes s &= mask

^= Bitwise XOR assignment 2 Right Binary Yes s ^= mask

|= Bitwise OR assignment 2 Right Binary Yes s |= mask

<<= Bit shift left assignment 2 Right Binary Yes s <<= 1

>>= Bit shift right assignment 2 Right Binary Yes s >>= 1

, Comma 0 Left Binary Yes ++m,--n

353

Appendix D

Standard C++ Container Classes

This appendix summarizes the standard C++ container class templates and their most widely
used member functions. This is the part of standard C++ that used to be called the Standard
Template Library (STL).

D.1 THE vector CLASS TEMPLATE

A vector object acts like an array with index range checking (using its at() member
function). As an object, it has the additional advantages over an array of being able to be
assigned, passed by value, and returned by value. The vector class template is defined in the
<vector> header. See Example D.1 on page 355.

vector();
// default constructor: creates an empty vector;

vector(const vector& v);
// copy constructor: creates a copy of the vector v;
// postcondition: *this == v;

vector(unsigned n, const T& x=T());
// constructor: creates a vector containing n copies of the element x;
// precondition: n >= 0;
// postcondition: size() == n;

~vector();
// destructor: destroys this vector;

vector& operator=(const vector& v);
// assignment operator: assigns v to this vector, making it a duplicate;
// postcondition: *this == v;

unsigned size() const;
// returns the number of elements in this vector;

unsigned capacity() const;
// returns the maximum number of elements that this vector can have
// without being reallocated;

void reserve(unsigned n);
// reallocates this vector to a capacity of n elements;
// precondition: capacity() <= n;
// postcondition: capacity() == n;

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

354 STANDARD C++ CONTAINER CLASSES [APP. D

bool empty() const;

// returns true iff size() == 0;

void assign(unsigned n, const T& x=T());

// clears this vector and then inserts n copies of the element x;

// precondition: n >= 0;

// postcondition: size() == n;

T& operator[](unsigned i);

// returns element number i;

// precondition: 0 <= i < size();

// result is unpredictable if precondition is false;

T& at(unsigned i);

// returns element number i;

// precondition: 0 <= i < size();

// exception is thrown is precondition is false;

T& front();

// returns the first element of this vector;

T& back();

// returns the last element of this vector;

iterator begin();

// returns an iterator pointing to the first element of this vector;

iterator end();

// returns an iterator pointing to the dummy element that follows

// the last element of this vector;

reverse_iterator rbegin();

// returns a reverse iterator pointing to the last element of this vector;

reverse_iterator rend();

// returns a reverse iterator pointing to the dummy element that precedes

// the first element of this vector;

void push_back(const T& x);

// appends a copy of the element x to the back of this vector;

// postcondition: back() == x;

// postcondition: size() has been incremented;

void pop_back();

// removes the last element of this vector;

// precondition: size() > 0;

// postcondition: size() has been decremented;

APP. D] STANDARD C++ CONTAINER CLASSES 355

iterator insert(iterator p, const T& x);
// inserts a copy of the element x at position p; returns p;
// precondition: begin() <= p <= end();
// postcondition: size() has been incremented;

iterator erase(iterator p);
// removes the element at position p; returns p
// precondition: begin() <= p <= end();
// postcondition: size() has been decremented;

iterator erase(iterator p1, iterator p2);

// removes the elements from position p1 to the position before p2;
// returns p1;
// precondition: begin() <= p1 <= p2 <= end();
// postcondition: size() has been decreased by int(p2-p1);

void clear();
// removes all the elements from this vector;
// postcondition: size() == 0;

EXAMPLE D.1 Using an Iterator on a vector Object

#include <iostream>
#include <vector>
using namespace std;
typedef vector<int>::iterator It;

int main()
{ vector<int> v(4);

for (int i=0; i<4; i++)
v[i] = 222*i + 333;

cout << "Using the iterator it in a for loop:\n";
for (It it=v.begin(); it!=v.end(); it++)

cout << "\t*it=" << *it << "\n";
cout << "Using the iterator p in a while loop:\n";
It p=v.begin();
while(p!=v.end())

cout << "\t*p++=" << *p++ << "\n";
}

The vector v has 4 elements: 333, 555, 777, and 999. The second for loop uses the iterator it to
traverse the vector v from beginning to end, accessing each of its elements with *it. The while loop
has the same effect using *p.

Using the iterator it in a for loop:
*it=333
*it=555
*it=777
*it=999

Using the iterator p in a while loop:
*p++=333
*p++=555
*p++=777
*p++=999

356 STANDARD C++ CONTAINER CLASSES [APP. D

EXAMPLE D.2 Using a Reverse Iterator on a vector Object

#include <iostream>
#include <vector>
using namespace std;
typedef vector<int>::reverse_iterator RIt;

int main()
{ vector<int> v(4);

for (int i=0; i<4; i++)
v[i] = 222*i + 333;

cout << "Using the reverse iterator rit in a for loop:\n";
for (RIt rit=v.rbegin(); rit!=v.rend(); rit++)

cout << "\t*rit=" << *rit << "\n";
cout << "Using the reverse iterator rp in a while loop:\n";
RIt rp=v.rbegin();
while(rp!=v.rend())

cout << "\t*rp++=" << *rp++ << "\n";
}

The vector v has 4 elements: 333, 555, 777, and 999 (the same as in Example D.1). The second for
loop uses the reverse iterator rit to traverse the vector v backwards, accessing each of its elements with
*rit. The while loop has the same effect using *rp.

EXAMPLE D.3 Using the insert() Function on a vector Object

#include <iostream>
#include <vector>
using namespace std;
typedef vector<int> Vector;
typedef Vector::iterator It;
void print(const Vector&);

int main()
{ Vector v(4);

for (int i=0; i<4; i++)
v[i] = 222*i + 333;

print(v);
It it = v.insert(v.begin()+2,666);
print(v);
cout << "*it=" << *it << "\n";

}

Using the reverse iterator rit in a for loop:
*rit=999
*rit=777
*rit=555
*rit=333

Using the reverse iterator rp in a while loop:
*rp++=999
*rp++=777
*rp++=555
*rp++=333

APP. D] STANDARD C++ CONTAINER CLASSES 357

void print(const Vector& v)

{ cout << "size=" << v.size() << ": (" << v[0];

for (int i=1; i<v.size(); i++)

cout << "," << v[i];

cout << ")\n";

}

The vector v has 4 elements: 333, 555, 777, and 999 (the same as in Example D.1). The second for
loop uses the reverse iterator rit to traverse the vector v backwards, accessing each of its elements with
*rit. The while loop has the same effect using *rp.

EXAMPLE D.4 Using Some Generic Algorithms on a vector Object

#include <iostream>
#include <vector>
using namespace std;
typedef vector<int> Vector;
typedef Vector::iterator It;
void print(const Vector&);

int main()
{ Vector v(9);

for (int i=0; i<9; i++)
v[i] = 111*i + 111;

print(v);
It it=v.begin();
fill(it+2,it+5,400); // replaces v[2:5] with 400
print(v);
reverse(it+4,it+7); //
print(v);
iter_swap(it+6,it+8);
print(v);
sort(it+4,it+9);
print(v);

}

void print(const Vector& v)
{ cout << "size=" << v.size() << ": (" << v[0];

for (int i=1; i<v.size(); i++)
cout << "," << v[i];

cout << ")\n";
}

size=4: (333,555,777,999)
size=5: (333,555,666,777,999)
*it=666

size=9: (111,222,333,444,555,666,777,888,999)
size=9: (111,222,400,400,400,666,777,888,999)
size=9: (111,222,400,400,777,666,400,888,999)
size=9: (111,222,400,400,777,666,999,888,400)
size=9: (111,222,400,400,400,666,777,888,999)

358 STANDARD C++ CONTAINER CLASSES [APP. D

EXAMPLE D.5 Using Some More Generic Algorithms on a vector Object

#include <iostream>

#include <vector>

using namespace std;

typedef vector<int> Vector;

typedef Vector::iterator It;

void print(const Vector&);

int main()

{ Vector v1(9);

for (int i=0; i<9; i++)

v1[i] = 111*i + 111;

print(v1);

Vector v2(9);

print(v2);

It p1=v1.begin(), p2=v2.begin();

copy(p1+3,p1+8,p2+3);

print(v2);

It p = min_element(p1+4,p1+8);

cout << "*p=" << *p << "\n";

p = max_element(p1+4,p1+8);

cout << "*p=" << *p << "\n";

p = find(p1,p1+9,444);

if (p != p1+9) cout << "*p=" << *p << "\n";

}

void print(const Vector& v)

{ cout << "size=" << v.size() << ": (" << v[0];

for (int i=1; i<v.size(); i++)

cout << "," << v[i];

cout << ")\n";

}

D.2 THE deque CLASS TEMPLATE

A deque (pronounced “deck”) object is a double-ended queue, intended to provide efficient
insertion and deletion at both its beginning and its end. It has the following two member
functions in addition to all the member functions that a vector class has (except the
capacity() and reserve() functions). The deque class template is defined in the <deque>

header.

size=9: (111,222,333,444,555,666,777,888,999)
size=9: (0,0,0,0,0,0,0,0,0)
size=9: (0,0,0,444,555,666,777,888,0)
*p=555
*p=888
*p=444

APP. D] STANDARD C++ CONTAINER CLASSES 359

void push_front(const T& x);

// inserts a copy of the element x at the front of this deque;
// postcondition: front() == x;
// postcondition: size() has been incremented;

void pop_front();

// removes the first element of this vector;
// precondition: size() > 0;
// postcondition: size() has been decremented;

D.3 THE stack CLASS TEMPLATE

A stack object is a sequential container that allows insertions and deletions only at one end,
called its top. In the standard C++ library, the stack class template is adapted from the deque

class template. This means that stack member functions are implemented with deque member
functions, as shown below. The stack class template is defined in the <stack> header.

template <class T> class stack

{ public:
unsigned size() const { return _d.size(); }
bool empty() const { return _d.empty(); }
T& top() { return _d.back(); }
void push(const T& x) { _d.push_back(x); }
void pop() { _d.pop_back(); }

protected:
deque<T> _d;

};

D.4 THE queue CLASS TEMPLATE

A queue object is a sequential container that allows insertions only at one end and deletions
only at the other end. Like the stack class template, the queue class template is adapted from
the deque class template in the standard C++ library. This means that queue member functions
are implemented with deque member functions, as shown below. The queue class template is
defined in the <queue> header.

template <class T> class stack

{ public:
unsigned size() const { return _d.size(); }
bool empty() const { return _d.empty(); }
T& front() { return _d.front(); }
T& back() { return _d.back(); }
void push(const T& x) { _d.push_back(x); }
void pop() { _d.pop_front(); }

protected:
deque<T> _d;

};

360 STANDARD C++ CONTAINER CLASSES [APP. D

D.5 THE priority_queue CLASS TEMPLATE

A priority_queue object is a container that acts like a queue except that the order in which
the elements are popped is determined by their priorities. This means that the operator<()

function must be defined for the element type T. The priority_queue class template is defined
in the <queue> header. See Example D.6 on page 360.

vector();
// constructs an empty vector;

vector(const vector& v);
// constructs a copy of the vector v;
// postcondition: *this == v;

EXAMPLE D.6 Using a priority_queue Object

#include <iostream>
#include <queue>
using namespace std;
int main()
{ priority_queue<string> pq;

pq.push("Japan");
pq.push("Japan");
pq.push("Korea");
pq.push("China");
pq.push("India");
pq.push("Nepal");
pq.push("Qatar");
pq.push("Yemen");
pq.push("Egypt");
pq.push("Zaire");
pq.push("Libya");
pq.push("Italy");
pq.push("Spain");
pq.push("Chile");
while (!pq.empty())
{ cout << pq.top() << "\n";

pq.pop();
}

}
Zaire
Yemen
Spain
Qatar
Nepal
Libya
Korea
Japan
Japan
Italy
India

APP. D] STANDARD C++ CONTAINER CLASSES 361

The priority queue always maintains its highest priority element at the top (i.e., the front) of the
queue. Using the standard lexicographic ordering (i.e., the dictionary ordering) of strings, that results in
the names being accessed in reverse alphabetical order.

Note that priority_queue objects store duplicate elements.

D.6 THE list CLASS TEMPLATE

A list object is a sequential container that allows efficient insertion and deletion at any
position in the sequence. It has the following member functions in addition to all the member
functions that the deque class has (except the operator[]() and at() functions). The list

class template is defined in the <list> header.

void splice(iterator p, list& l, iterator p1);
// moves the element from l at position p1 to this list at position p;
// precondition: p is a valid iterator on this list;
// precondition: p1 is a valid iterator on list l;

void splice(iterator p, list& l, iterator p1, iterator p2);
// moves the elements from l at positions [p1:p2-1] to this list
// beginning at position p;
// precondition: p is a valid iterator on this list;
// precondition: p1 and p2 are valid iterators on list l;
// precondition p1 < p2;

void remove(const T& x);
// removes from this list all elements that are equal to x;
// invariant: the order of all elements that are not removed;
// invariant: all iterators pointing to elements that are not removed;

void unique();
// removes from this list all duplicate elements;
// invariant: the order of all elements that are not removed;
// invariant: all iterators pointing to elements that are not removed;

void merge(list& l);
// merges all elements of list l into this list;
// precondition: both list l and this list are sorted;
// postcondition: size() in increased by l.size();
// postcondition: l.size() == 0;
// complexity: O(n);

void reverse();
// reverses the order of the elements of this list;
// invariant: size();
// complexity: O(n);

India
Egypt
China
Chile

362 STANDARD C++ CONTAINER CLASSES [APP. D

void sort();
// sorts the elements of this list;
// postcondition: this list is sorted;
// invariant: size();
// complexity: O(n*log(n));

EXAMPLE D.7 Sorting and Reversing a list Object

#include <iostream>
#include <list>
using namespace std;
typedef list<string> List;
typedef List::iterator It;
void print(List&);

int main()
{ List l;

l.push_back("Kenya");
l.push_back("Sudan");
l.push_back("Egypt");
l.push_back("Zaire");
l.push_back("Libya");
l.push_back("Congo");
l.push_back("Ghana");
print(l);
l.sort();
print(l);
l.reverse();
print(l);

}

void print(List& l)
{ cout << "\n";

for (It it=l.begin(); it != l.end(); it++)
cout << *it << "\n";

}

Kenya
Sudan
Egypt
Zaire
Libya
Congo
Ghana

Congo
Egypt
Ghana
Kenya
Libya
Sudan
Zaire

APP. D] STANDARD C++ CONTAINER CLASSES 363

D.7 THE map CLASS TEMPLATE

A map object (also called a dictionary, a table, or an associative array) acts like an array
whose index can be any type that implements the < operator. A map is like a mathematical
function that gives a unique y-value for each x-value. The x-value, called the key value, is the
index. The y-value is the stored object that the key identifies.

An English language dictionary is an example of a map object. The key value is the word and
its associated object is the dictionary’s definition of the word.

Another standard example would be a database table of student records. The key value is the
student identification number (e.g., Social Security number), and its associated object is the data
record for that student.

The map class template is defined in the <map> header. It has the same member functions as
the vector class template.

EXAMPLE D.8 Using a map Object

#include <iostream>
#include <map.h>
using namespace std;
struct Country
{ friend ostream& operator<<(ostream&, const Country&);

Country();
Country(string, string, string, int, int);
string abbr, capital, language;
int population, area;

};
typedef map<string,Country> Map;
typedef Map::iterator It;
typedef pair<const string,Country> Pair;
void load(Map&);
void print(Map&);
void find(Map&, const string&);

int main()
{ Map map;

load(map);
print(map);
find(map,"Cuba");
find(map,"Iran");
find(map,"Oman");

}

Zaire
Sudan
Libya
Kenya
Ghana
Egypt
Congo

364 STANDARD C++ CONTAINER CLASSES [APP. D

ostream& operator<<(ostream& ostr, const Country& c)
{ return ostr << c.abbr << ", " << c.capital << ", " << c.language

<< ", pop=" << c.population << ", area=" << c.area;
}

Country::Country()
: abbr(""), capital(""), language(""), population(0), area(0) { }

Country::Country(string ab, string c, string l, int p, int ar)
: abbr(ab), capital(c), language(l), population(p), area(ar) { }

void load(Map& m)
{ m["Iran"] = Country("IR","Tehran","Persian",68959931,632457);

m["Iran"] = Country("IR","Tehran","Farsi",68959931,632457);
m["Peru"] = Country("PE","Lima","Spanish",26111110,496223);
m["Iraq"] = Country("IQ","Baghdad","Arabic",21722287,167975);
m.insert(Pair("Togo",Country("TG","Lome","French",4905824,21927)));
m.insert(Pair("Fiji",Country("FJ","Suva","English",802611,7054)));
m.insert(Pair("Fiji",Country("FJ","Suva","Fijian",802611,7054)));

}

void print(Map& m)
{ for (It it=m.begin(); it != m.end(); it++)

cout << it->first << ":\t" << it->second << "\n";
cout << "size=" << m.size() << "\n";

}

void find(Map& m, const string& s)
{ cout << s;

It it = m.find(s);
if (it == m.end()) cout << " was not found.\n";
else cout << ":\t" << it->second << "\n";

}

The program creates a map whose keys are four-letter names of countries and whose mapped values
are Country objects, where Country is a class defined to have five fields: abbr, capital,
language, population, and area. It uses a separate function to load the data into the map.

The load() function illustrates two different ways to insert a pair element into a map. The first
four lines use the subscript operator and the last three lines use the insert() function. The subscript
operator works the same way on a map container as with other container classes: just like an array, except
that with a map the index need not be an integer. In this example it is a string.

The insert() function takes a single pair argument, where the two component types must be the
same as for the map itself, except that the first component (the key field) must be const.

Fiji: FJ, Suva, English, pop=802611, area=7054
Iran: IR, Tehran, Farsi, pop=68959931, area=632457
Iraq: IQ, Baghdad, Arabic, pop=21722287, area=167975
Peru: PE, Lima, Spanish, pop=26111110, area=496223
Togo: TG, Lome, French, pop=4905824, area=21927
size=5
Cuba was not found.
Iran: IR, Tehran, Farsi, pop=68959931, area=632457
Oman was not found.

APP. D] STANDARD C++ CONTAINER CLASSES 365

The map class does not allow duplicate keys. Note that the subscript operator replaces existing
elements when a duplicate key is inserted, so that the last pair inserted is the one that remains. But the
insert() function does not replace existing elements when a duplicate key is inserted, so the first pair
inserted is the one that remains.

The print() function uses the iterator it to traverse the map. On each iteration of the for loop,
it points to a pair object whose first component is the key value and whose second component is the
data object. These two componenets are accessed by the expressions it->first and it->second.
The first component is a string, the four-letter name of the country. The second component is a
Country object which can be passed to the output operator since it is overloaded in the Country class
definition. Note that the pairs are sorted automatically by their key values.

The find() function uses the find member function of the map class. The call m.find(s)
returns an iterator that points to the map element whose first component equals s. If no such element is
found, then the returned pointer points to m.end(), which is the dummy element that follows the last
element of the map container.

D.8 THE set CLASS TEMPLATE

A set object acts like a map object with only the keys stored.
The set class template is defined in the <set> header.

EXAMPLE D.9 Using set Functions

The program defines overloaded operators +, *, and - to perform set-theoretic union, intersection,
and relative complement operations. These are implemented using the insert() and erase()
member functions and the the set_intersection() and set_difference() generic algorithms
(nonmember functions). This example illustrates the distinctions between the set generic algorithms
(set_union(), set_difference(), and set_difference()) and the corresponding
set-theoretic operations (union, intersection, and complement).

#include <iostream>
#include <set>
#include <string>
using namespace std;
typedef set<string> Set;
typedef set<string>::iterator It;
void print(Set);
Set operator+(Set&,Set&); // union
Set operator*(Set&,Set&); // intersection
Set operator-(Set&,Set&); // relative complement

int main()
{ string str1[] = { "A", "B", "C", "D", "E", "F", "G" };

string str2[] = { "A", "E", "I", "O", "U" };
Set s1(str1,str1+7);
Set s2(str2,str2+5);
print(s1);
print(s2);
print(s1+s2);
print(s1*s2);
print(s1-s2);

}

366 STANDARD C++ CONTAINER CLASSES [APP. D

Set operator+(Set& s1, Set& s2)
{ Set s(s1);

s.insert(s2.begin(),s2.end());
return s;

}

Set operator*(Set& s1, Set& s2)
{ Set s(s1);

It it = set_intersection(s1.begin(),s1.end(),
s2.begin(),s2.end(),s.begin());

s.erase(it,s.end());
return s;

}
Set operator-(Set& s1, Set& s2)
{ Set s(s1);

It it = set_difference(s1.begin(),s1.end(),
s2.begin(),s2.end(),s.begin());

s.erase(it,s.end());
return s;

}

void print(Set s)
{ cout << "size=" << s.size() << ": {";

for (It it=s.begin(); it != s.end(); it++)
if (it == s.begin()) cout << *it;
else cout << "," << *it;

cout << "}\n";
}

The set objects s1 and s2 are constructed from the string arrays str1 and str2 using the expres-
sions str1, str1+7, str2, and str2+7 as iterators.

The elements of a set object are always stored in sorted order. That allows the union function
(operator+()) to be implemented with the set::insert() function.

The main reason why the set generic algorithms do not produce directly the expected set-theoretic
operations is that they leave the size of the target set unchanged. Thus we use the erase() member
function together with the set_intersection() and set_difference() generic algorithms to
implement the operator*() and operator-() functions.

size=7: {A,B,C,D,E,F,G}
size=5: {A,E,I,O,U}
size=10: {A,B,C,D,E,F,G,I,O,U}
size=2: {A,E}
size=5: {B,C,D,F,G}

367

Appendix E

Standard C++ Generic Algorithms

The generic algorithms in standard C++ are the 70 nonmember function templates that apply
to container objects. There are 66 listed here alphabetically. We use the symbol [p,q[to
represents the segment of elements from *p to *(q-1)(i.e., including the element *p but
excluding the element *q). The parameters are

iterator p, q; // used to describe the segment [p,q[
iterator r; // p <= r <= q
unsigned n; // used as a counter
T& x, y; // values of the sequence’s element type
class p; // a predicate class, with boolean operator()()

The parameter list (p,q,pp) is used frequently; it means that the elements from the segment
[p,q[are to be copied into the segment [pp,pp+n[where n is the number of elements in
[p,q[, namely q-p.

For simplicity, we use arrays instead of general container objects. In that context, pointers
serve as iterators. Recall that if a is an array and k is an int then a+k represents the subarray
that starts with a[k], and *(a+k) = a[k]. Also, if l is the length of the array, then a+l

points to the (imaginary) element that follows the last element of the array.
The following print() function is used to display the n element a[0],...,a[n-1] of an

array a:
void print(int* a, int n)
{ cout << "n=" << n << ": {" << a[0];

for (int i=1; i<n; i++)
cout << "," << a[i];

cout << "}\n";
}

The 66 algorithms listed here naturally fall into 8 groups, summarized in the following
tables:

Searching and Sorting Algorithms in <algorithm>

binary_search() Determines whether a given value is an element in the segment.

inplace_merge() Merges two adjacent sorted segments into one sorted segment.

lower_bound() Finds the first element in the segment that has a given value.

merge() Merges two sorted segments into a third sorted segment.

nth_element() Finds the first occurrence of a given value.

partial_sort() Sorts the first n elements of the segment.

partial_sort_copy() Copies the smallest n elements of the segment into another sorted segment.

partition() Partitions the segment so that P(x) is true for the elements in the first part.

sort() Sorts the segment.

upper_bound() Finds the last element in the segment that has a given value.

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

368 STANDARD C++ GENERIC ALGORITHMS [APP. E

Nonmodifying Algorithms on Sequences in <algorithm>

adjacent_find() Finds the first adjacent pair in the segment.

count() Counts the number of elements that have a given value.

count_if() Counts the number of elements that satisfy a given predicate.

equal() Determines whether two segments have the same value in the same order.

find() Finds the first element that has a given value.

find_end() Finds the location of the last occurrence of a given substring.

find_first_of() Finds the location of the first occurrence of any element of a given segment.

find_if() Finds the first element that satisfies a given predicate.

for_each() Applies a given function to each element.

mismatch() Finds the first positions where two segments do not match.

search() Searches for a given subsequence.

search_n() Searches for a subsequence of n consecutive elements that have a given value.

Modifying Algorithms on Sequences in <algorithm>

copy() Copies the segment to a new location.

copy_backward() Copies the segment to a new location.

fill() Replaces each element in the segment to a given value.

fill_n() Replaces n elements in the segment to a given value.

generate() Assigns the output from successive calls to f(x) to elements of the segment.

generate_n() Assigns the output from n successive calls to f(x) to elements of the segment.

iter_swap() Swaps the elements at the positions of the given iterators.

random_shuffle() Shuffles the elements in the segment.

remove() Shifts to the left all elements that do not have a given value.

remove_copy() Copies all elements into another segment that do not have a given value.

remove_copy_if() Copies all elements into another segment for which P(x) is false.

remove_if() Shifts to the left all elements for which P(x) is false.

replace() Changes the value of each element in the segment from x to y.

replace_copy() Copies each element to another segment changing each x to y.

replace_copy_if() Copies each element to another segment changing x to y where P(x) is true.

replace_if() Changes those elements in the segment from x to y where P(x) is true.

reverse() Reverses the elements in the segment.

reverse_copy() Copies the elements to a new segment in reverse order.

rotate() Shifts the elements to the left, wrapping around the end of the segment.

rotate_copy() Copies elements to another segment, shifting to the left and wrapping.

swap() Swaps the two given elements.

transform() Applies f(x) to each element, storing the results in another segment.

unique() Shifts one of each occurring value to the left.

unique_copy() Copies the nonduplicate elements to another segment.

APP. E] STANDARD C++ GENERIC ALGORITHMS 369

Algorithms that search for an element always return an iterator that locates it or one that
locates the dummy end element that follows the last element of the sequence.

Algorithms that use predicates are illustrated with the following predicate class:
class Odd

{ public:

bool operator()(int n) { return n%2 ? true : false; }

};

This class is passed as a function, like this: Odd(). (See Example E.8 on page 372.)

Note that the modifying algorithms do not change the length of the segment [p,q[. Instead,
they return an iterator that points to the element that follows the modified part.

Comparison Algorithms in <algorithm>

lexicographical_compare() Returns true iff first segment is lexicographically less than second.

max() Returns the largest element in the segment.

max_element() Returns the position of largest element in the segment.

min() Returns the smallest element in the segment.

min_element() Returns the position of smallest element in the segment.

Algorithms on Sets in <algorithm>

includes() Returns true iff every element of the second segment is in the first.

set_difference() Copies to a third segment the relative complement of two sets.

set_intersection() Copies to a third segment the intersection of two sets.

set_symmetric_difference() Copies to a third segment the symmetric difference of two sets.

set_union() Copies to a third segment the union of two sets.

Algorithms on Heaps in <algorithm>

make_heap() Rearranges the elements of the segment into a heap.

pop_heap() Moves first element to end and then make_heap() on rest.

push_heap() Shifts last element to left to make segment a heap.

sort_heap() Applies pop_heap() n times to sort the segment.

Permutation Algorithms in <algorithm>

next_permutation() Permutes the segment; n! calls produce n! distinct permutations.

prev_permutation() Permutes the segment; n! calls produce n! distinct permutations.

Numeric Algorithms in <numeric>

accumulate() Adds the elements of the segment; returns x + sum.

adjacent_difference() Loads second segment with the differences of adjacent elements.

inner_product() Returns the inner product of two segments.

partial_sum() Loads second segment with the partial sums from first.

370 STANDARD C++ GENERIC ALGORITHMS [APP. E

accumulate(p,q,x);

// returns x plus the sum of the elements in the segment [p,q[;

// invariant: [p,q[is left unchanged;

EXAMPLE E.1 Testing the accumulate() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

int sum = accumulate(a,a+10,1000);
cout << "sum=" << sum << '\n';

}

adjacent_difference(p,q,pp);

// loads the segment a[pp,pp+p-q[with b[i] = a[i]-a[i-1];

// invariant: [p,q[is left unchanged;

EXAMPLE E.2 Testing the adjacent_difference() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

print(a,10);
int b[10];
adjacent_difference(a,a+10,b);
print(b,10);

}

The adjacent_difference() algorithm is the inverse of the partial_sum() algorithm
(Example E.36 on page 382).

adjacent_find(p,q);

// returns the location of the first element in the segment a[p,q[

// that has the same value as its successor;

// invariant: [p,q[is left unchanged;

EXAMPLE E.3 Testing the adjacent_find() Algorithm

int main()
{ int a[] = {0,1,0,1,1,1,0,1,1,0};

print(a,10);
int* r = adjacent_find(a,a+10);
cout << "*r=" << *r << '\n'; // this is the element a[i]
cout << "r-a=" << r-a << '\n'; // this is the index i

}

sum=1088

n=10: {0,1,1,2,3,5,8,13,21,34}
n=10: {0,1,0,1,1,2,3,5,8,13}

n=10: {0,1,0,1,1,1,0,1,1,0}
*r=1
r-a=3

APP. E] STANDARD C++ GENERIC ALGORITHMS 371

binary_search(p,q,x);
// returns true iff x is in the segment [p,q[;
// precondition: the segment [p,q) must be sorted;
// invariant: [p,q[is left unchanged;

EXAMPLE E.4 Testing the binary_search() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

print(a,10);
bool found = binary_search(a,a+10,21);
cout << "found=" << found << '\n';
found = binary_search(a+2,a+7,21);
cout << "found=" << found << '\n';

}

copy(p,q,pp);
// copies the segment [p,q[to [pp,pp+n[where n=q-p;
// invariant: [p,q[is left unchanged;

EXAMPLE E.5 Testing the copy() Algorithm

int main()
{ int a[] = {100,111,122,133,144,155,166,177,188,199};

print(a,10);
copy(a+7,a+10,a+2);
print(a,10);
int b[3];
copy(a+7,a+10,b);
print(b,3);

}

copy_backward(p,q,pp);
// copies the segment [p,q[to [qq-n,qq[where n=q-p;
// invariant: [p,q[is left unchanged;

EXAMPLE E.6 Testing the copy_backward() Algorithm

int main()
{ int a[] = {100,111,122,133,144,155,166,177,188,199};

print(a,10);
copy_backward(a+7,a+10,a+5);
print(a,10);
int b[3];
copy_backward(a+7,a+10,b+3);

n=10: {0,1,1,2,3,5,8,13,21,34}
found=1
found=0

n=10: {100,111,122,133,144,155,166,177,188,199}
n=10: {100,111,177,188,199,155,166,177,188,199}
n=3: {177,188,199}

372 STANDARD C++ GENERIC ALGORITHMS [APP. E

print(b,3);
}

count(p,q,x);

// returns the number of occurrences of x in the segment [p,q[;
// invariant: [p,q[is left unchanged;

EXAMPLE E.7 Testing the count() Algorithm

int main()
{ int a[] = {0,1,0,1,1,1,0,1,1,0};

print(a,10);
int n = count(a,a+10,1);
cout << "n=" << n << '\n';

}

count_if(p,q,P());
// returns the number of occurrences where P(x) in the segment [p,q[;
// invariant: [p,q[is left unchanged;

EXAMPLE E.8 Testing the count_if() Algorithm

int main()
{ int a[] = {0,1,0,1,1,1,0,1,1,0};

print(a,10);
int n = count_if(a,a+10,Odd());
cout << "n=" << n << '\n';

}

equal(p,q,pp);

// returns true iff the segment [p,q) matches [pp,pp+n[, where n = q-p;
// invariant: [p,q[and [pp,qq+n[are left unchanged;

EXAMPLE E.9 Testing the equal() Algorithm

int main()
{ int a[] = {0,1,0,1,1,1,0,1,1,0};

int b[] = {0,1,0,0,1,1,0,1,0,0};
print(a,10);
print(b,10);
cout << "equal(a,a+10,b)=" << equal(a,a+10,b) << '\n';
cout << "equal(a+1,a+4,a+5)=" << equal(a+1,a+4,a+5) << '\n';

n=10: {100,111,122,133,144,155,166,177,188,199}
n=10: {100,111,177,188,199,155,166,177,188,199}
n=3: {177,188,199}

n=10: {0,1,0,1,1,1,0,1,1,0}
n=6

n=10: {0,1,0,1,1,1,0,1,1,0}
n=6

APP. E] STANDARD C++ GENERIC ALGORITHMS 373

}

fill(p,q,x);
// replaces each element in the segment [p,q[with x;

EXAMPLE E.10 Testing the fill() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

print(a,10);
fill(a+6,a+9,0);
print(a,10);

}

fill_n(p,n,x);
// replaces each element in the segment [p,p+n[with x;

EXAMPLE E.11 Testing the fill_n() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

print(a,10);
fill_n(a+6,3,0);
print(a,10);

}

find(p,q,x);
// returns the first location of x in the segment [p,q[;
// invariant: [p,q[is left unchanged;

EXAMPLE E.12 Testing the find() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

print(a,10);
int* r = find(a,a+10,13);
cout << "*r=" << *r << '\n'; // this is the element a[i]
cout << "r-a=" << r-a << '\n'; // this is the index i
r = find(a,a+6,13);
cout << "*r=" << *r << '\n'; // this is the element a[i]
cout << "r-a=" << r-a << '\n'; // this is the index i

n=10: {0,1,0,1,1,1,0,1,1,0}
n=10: {0,1,0,0,1,1,0,1,0,0}
equal(a,a+10,b)=0
equal(a+1,a+4,a+5)=1

n=10: {0,1,1,2,3,5,8,13,21,34}
n=10: {0,1,1,2,3,5,0,0,0,34}

n=10: {0,1,1,2,3,5,8,13,21,34}
n=10: {0,1,1,2,3,5,0,0,0,34}

374 STANDARD C++ GENERIC ALGORITHMS [APP. E

}

find_end(p,q,pp,qq);

// returns the location of the last occurrence of the the segment [pp,qq[

// within the segment [p,q[;
// invariant: [p,q[and [pp,qq[are left unchanged;

EXAMPLE E.13 Testing the find_end() Algorithm

int main()
{ int a[] = {0,1,0,1,1,1,0,1,1,0};

int b[] = {1,0,1,1,1};
int* r = find_end(a,a+10,b,b+5); // search for 10111 in a
cout << "*r=" << *r << '\n'; // this is the element a[i]
cout << "r-a=" << r-a << '\n'; // this is the index i
r = find_end(a,a+10,b,b+4); // search for 1011 in a
cout << "*r=" << *r << '\n';
cout << "r-a=" << r-a << '\n';

}

find_first_of(p,q,pp,qq);

// returns the position in [p,q[of the first element found that is also in
// [pp,qq[;
// invariant: [p,q[and [pp,qq[are left unchanged;

EXAMPLE E.14 Testing the find_first_of() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

int b[] = {6,7,8,9,10,11,12,13,14,15};
int* r = find_first_of(a,a+10,b,b+10);
cout << "*r=" << *r << '\n'; // this is the element a[i]
cout << "r-a=" << r-a << '\n'; // this is the index i

}

find_if(p,q,P());

// returns the first location of where P(x) in the segment [p,q[;
// invariant: [p,q[is left unchanged;

n=10: {0,1,1,2,3,5,8,13,21,34}
*r=13
r-a=7
*r=8
r-a=6

*r=1
r-a=1
*r=1
r-a=5

*r=8
r-a=6

APP. E] STANDARD C++ GENERIC ALGORITHMS 375

EXAMPLE E.15 Testing the find_if() Algorithm

int main()
{ int a[] = {2,4,8,16,32,64,128,256,333,512};

int* r = find_if(a,a+10,Odd());
cout << "*r=" << *r << '\n'; // this is the element a[i]
cout << "r-a=" << r-a << '\n'; // this is the index i
r = find_if(a,a+5,Odd());
cout << "*r=" << *r << '\n'; // this is the element a[i]
cout << "r-a=" << r-a << '\n'; // this is the index i

}

for_each(p,q,f);
// applies the function f(x) to each x in the segment [p,q[;

EXAMPLE E.16 Testing the for_each() Algorithm

void print(int);

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

for_each(a,a+10,print);
}

void print(int x)
{ cout << x << " ";
}

generate(p,q,f);
// assigns to [p,q[the outputs of successive calls to f(x);

EXAMPLE E.17 Testing the generate() Algorithm

long fibonacci();

int main()
{ int a[10]={0};

generate(a,a+10,fibonacci);
print(a,10);

}

long fibonacci()
{ static int f1=0, f2=1;

int f0=f1;
f1 = f2;

*r=333
r-a=8
*r=64
r-a=5

0 1 1 2 3 5 8 13 21 34

376 STANDARD C++ GENERIC ALGORITHMS [APP. E

f2 += f0;
return f0;

}

generate_n(p,n,f);

// assigns the outputs of successive calls f(x) to each x in [p,p+n[;

EXAMPLE E.18 Testing the generate_n() Algorithm

long fibonacci();

int main()
{ int a[10]={0};

generate_n(a,10,fibonacci);
print(a,10);

}

long fibonacci()
{ static int f1=0, f2=1;

int f0=f1;
f1 = f2;
f2 += f0;
return f0;

}

includes(p,q,pp,qq);

// returns true iff every element of [pp,qq[is found in [p,q[;
// precondition: both segments must be sorted;
// invariant: [p,q[and [pp,qq[are left unchanged;

EXAMPLE E.19 Testing the includes() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

int b[] = {0,1,2,3,4};
bool found = includes(a,a+10,b,b+5);
cout << "found=" << found << '\n';
found = includes(a,a+10,b,b+4);
cout << "found=" << found << '\n';

}

inner_product(p,q,pp,x)

// returns the sum of x and the inner product of [p,q[with [pp,pp+n[,
// where n = q-p;
// invariant: [p,q[and [pp,qq[are left unchanged;

n=10: {0,1,1,2,3,5,8,13,21,34}

n=10: {0,1,1,2,3,5,8,13,21,34}

found=0
found=1

APP. E] STANDARD C++ GENERIC ALGORITHMS 377

EXAMPLE E.20 Testing the inner_product() Algorithm

int main()
{ int a[] = {1,3,5,7,9};

int b[] = {4,3,2,1,0};
int dot = inner_product(a,a+4,b,1000);
cout << "dot=" << dot << '\n';

}

inplace_merge(p,r,q);
// merges the segments [p,r[and [r,q[;
// precondition: the two segments must be contiguous and sorted;
// postcondition: the segment [p,r[is sorted;

EXAMPLE E.21 Testing the inplace_merge() Algorithm

int main()
{ int a[] = {22,55,66,88,11,33,44,77,99};

print(a,9);
inplace_merge(a,a+4,a+9);
print(a,9);

}

iter_swap(p,q);

// swaps the elements *p and *q;

EXAMPLE E.22 Testing the iter_swap() Algorithm

int main()
{ int a[] = {11,22,33,44,55,66,77,88,99};

int b[] = {10,20,30,40,50,60,70,80,90};
print(a,9);
print(b,9);
iter_swap(a+4,b+7);
print(a,9);
print(b,9);

}

lexicographical_compare(p,q,pp,qq);

// compares the two segments [pp,qq[and [p,q[lexicographically;
// returns true iff the first precedes the second;
// invariant: [p,q[and [pp,qq[are left unchanged;

sum=1030

n=9: {22,55,66,88,11,33,44,77,99}
n=9: {11,22,33,44,55,66,77,88,99}

n=9: {11,22,33,44,55,66,77,88,99}
n=9: {10,20,30,40,50,60,70,80,90}
n=9: {11,22,33,44,80,66,77,88,99}
n=9: {10,20,30,40,50,60,70,55,90}

378 STANDARD C++ GENERIC ALGORITHMS [APP. E

EXAMPLE E.23 Testing the lexicographical_compare() Algorithm

void test(char*,int,char*,int);

int main()
{ char* s1="COMPUTER";

char* s2="COMPUTABLE";
char* s3="COMPUTE";
test(s1,3,s2,3);
test(s1,8,s2,10);
test(s1,8,s3,7);
test(s2,10,s3,7);
test(s1,7,s3,7);

}

char* sub(char*,int);

void test(char* s1, int n1, char* s2, int n2)
{ bool lt=lexicographical_compare(s1,s1+n1,s2,s2+n2);

bool gt=lexicographical_compare(s2,s2+n2,s1,s1+n1);
if (lt) cout << sub(s1,n1) << " < " << sub(s2,n2) << "\n";
else if (gt) cout << sub(s1,n1) << " > " << sub(s2,n2) << "\n";
else cout << sub(s1,n1) << " == " << sub(s2,n2) << "\n";

}

char* sub(char* s, int n)
{ char* buffer = new char(n+1);

strncpy(buffer,s,n);
buffer[n] = 0;
return buffer;

}

lower_bound(p,q,x);

// returns the position of the first occurrence of x in [p,q[;
// precondition: the segment must be sorted;

// invariant: [p,q[is left unchanged;

EXAMPLE E.24 Testing the lower_bound() Algorithm

int main()
{ int a[] = {11,22,22,33,44,44,44,55,66};

int* p = lower_bound(a,a+9,44);
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

}

COM == COM
COMPUTER > COMPUTABLE
COMPUTER > COMPUTE
COMPUTABLE < COMPUTE
COMPUTE == COMPUTE

*p=44
p-a=4

APP. E] STANDARD C++ GENERIC ALGORITHMS 379

make_heap(p,q);
// rearranges the elements of [p,q[into a heap;
// postcondition: [p,q[is a heap;

EXAMPLE E.25 Testing the make_heap() Algorithm

int main()
{ int a[] = {44,88,33,77,11,99,66,22,55};

print(a,9);
make_heap(a,a+9);
print(a,9);

}

max(x,y);
// returns the maximum of x and y;

EXAMPLE E.26 Testing the max() Algorithm

int main()
{ cout << "max(48,84)=" << max(48,84) << '\n';
}

max_element(p,q);
// returns the position of the maximum element in the segment [pp,qq[;
// invariant: [p,q[is left unchanged;

EXAMPLE E.27 Testing the max_element() Algorithm

int main()
{ int a[] = {77,22,99,55,11,88,44,33,66};

const int* p = max_element(a,a+9);
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

}

merge(p,q,pp,qq,ppp);
// merges the segments [p,q[and [pp,qq[into [ppp,ppp+n[,
// where n = q - p + qq - pp;
// precondition: [p,q[and [pp,qq[must be sorted;
// postcondition: the segment [ppp,ppp+n[is sorted;
// invariant: [p,q[and [pp,qq[are left unchanged;

22 55

77 33

88 66

11 44

99
n=9: {44,88,33,77,11,99,66,22,55}
n=9: {99,88,66,77,11,33,44,22,55}

max(48,84)=84

*p=99
p-a=2

380 STANDARD C++ GENERIC ALGORITHMS [APP. E

EXAMPLE E.28 Testing the merge() Algorithm

int main()
{ int a[] = {22,55,66,88};

int b[] = {11,33,44,77,99};
int c[9];
merge(a,a+4,b,b+5,c);
print(c,9);

}

min(x,y);
// returns the minimum of x and y;

EXAMPLE E.29 Testing the min() Algorithm

int main()
{ cout << "min(48,84)=" << min(48,84) << '\n';
}

min_element(p,q);
// returns the position of the minimum element in the segment [p,q[;
// invariant: [p,q[is left unchanged;

EXAMPLE E.30 Testing the min_element() Algorithm

int main()
{ int a[] = {77,22,99,55,11,88,44,33,66};

const int* p = min_element(a,a+9);
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

}

mismatch(p,q,pp);
// returns a pair of iterators giving the positions in [p,q[and
// in [pp,qq[where the first mismatch of elements occurs;
// if the two segments match entirely, then their ends are returned;
// invariant: [p,q[and [pp,qq[are left unchanged;

EXAMPLE E.31 Testing the mismatch() Algorithm

int main()
{ char* s1="Aphrodite, Apollo, Ares, Artemis, Athena";

char* s2="Aphrodite, Apallo, Ares, Artimis, Athens";
int n=strlen(s1);
cout << "n=" << n << '\n';

n=9: {11,22,33,44,55,66,77,88,99}

min(48,84)=48

*p=11
p-a=4

APP. E] STANDARD C++ GENERIC ALGORITHMS 381

pair<char*,char*> x = mismatch(s1,s1+n,s2);
char* p1 = x.first;
char* p2 = x.second;
cout << "*p1=" << *p1 << ", *p2=" << *p2 << '\n';
cout << "p1-s1=" << p1-s1 << '\n';

}

next_permutation(p,q);
// permutes the elements of [p,q[; n! calls will cycle through all n!
// permutations of the n elements, where n = q-p;

EXAMPLE E.32 Testing the next_permutation() Algorithm

int main()
{ char* s="ABCD";

for (int i=0; i<24; i++)
{ next_permutation(s,s+4);

cout << (i%8?'\t':'\n') << s;
}

}

The next_permutation() algorithm is the inverse of the prev_permutation() algorithm
(Example E.39 on page 383).

nth_element(p,r,q);
// rearranges the elements of [p,q[so that *r partitions it into the two
// subsegments [p,r1[and [r1+2,q], where r1 is the new location of *r,
// all the elements of [p,r1] are <= to *r, and all the elements of
// [r1+2,q] are >= to *r; *r is called the pivot element;

EXAMPLE E.33 Testing the nth_element() Algorithm

int main()
{ int a[] = {77,22,99,55,44,88,11,33,66};

print(a,9);
nth_element(a,a+3,a+9);
print(a,9);

}

partial_sort(p,r,q);
// sorts the first r-p elements of [p,q[, placing them in [p,r[and
// shifting the remaining q-r elements down to [r,q[;

n=40
*p1=o, *p2=a
p1-s1=13

ABDC ACBD ACDB ADBC ADCB BACD BADC BCAD
BCDA BDAC BDCA CABD CADB CBAD CBDA CDAB
CDBA DABC DACB DBAC DBCA DCAB DCBA ABCD

n=9: {77,22,99,55,44,88,11,33,66}
n=9: {11,22,33,44,55,88,66,99,77}

382 STANDARD C++ GENERIC ALGORITHMS [APP. E

EXAMPLE E.34 Testing the partial_sort() Algorithm

int main()
{ int a[] = {77,22,99,55,44,88,11,33,66};

print(a,9);
partial_sort(a,a+3,a+9);
print(a,9);

}

partial_sort_copy(p,q,pp,qq);

// copies the qq-pp smallest elements of [p,q[into [pp,qq[in sorted

// order; then copies the remaining n elements into [qq,qq+n[,

// where n = q-p+pp-qq;

// invariant: [p,q[is left unchanged;

EXAMPLE E.35 Testing the partial_sort_copy() Algorithm

int main()
{ int a[] = {77,22,99,55,44,88,11,33,66};

print(a,9);
int b[3];
partial_sort_copy(a,a+9,b,b+3);
print(a,9);
print(b,3);

}

partial_sum(p,q,pp);

// invariant: a[p,q[is left unchanged;

// postcondition b[i] == a[0]+...+a[i] for each b[i] in [pp,pp+q-p[;

EXAMPLE E.36 Testing the partial_sum() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

int b[10];
partial_sum(a,a+10,b);
print(a,10);
print(b,10);

}

The partial_sum() algorithm is the inverse of the adjacent_difference() algorithm
(Example E.2 on page 370).

n=9: {77,22,99,55,44,88,11,33,66}
n=9: {11,22,33,99,77,88,55,44,66}

n=9: {77,22,99,55,44,88,11,33,66}
n=9: {77,22,99,55,44,88,11,33,66}
n=3: {11,22,33}

n=10: {0,1,1,2,3,5,8,13,21,34}
n=10: {0,1,2,4,7,12,20,33,54,88}

APP. E] STANDARD C++ GENERIC ALGORITHMS 383

partition(p,q,P());
// partitions [p,q[into [p,r[and [r,q[so that
// x is in [p,r[iff P(x) is true;

EXAMPLE E.37 Testing the partition() Algorithm

int main()
{ int a[] = {0,1,1,2,3,5,8,13,21,34};

print(a,10);
partition(a,a+10,Odd());
print(a,10);

}

pop_heap(p,q);
// moves *p into temp, then shifts elements to the left so that the
// remaining elements form a heap in [p,q-1[into a heap, then copies
// temp into *(q-1);
// precondition: [p,q[must be a heap;
// postcondition: [p,q-1[is a heap;

EXAMPLE E.38 Testing the pop_heap() Algorithm

int main()
{ int a[] = {44,88,33,77,11,99,66,22,55};

print(a,9);
make_heap(a,a+9);
print(a,9);
pop_heap(a,a+9);
print(a,9);
print(a,8);

}

See Example E.25 on page 379 and Example E.38 on page 383.

prev_permutation(p,q);
// permutes the elements of [p,q[; n! calls will cycle backward through
// all n! permutations of the n elements, where n = q-p;

EXAMPLE E.39 Testing the prev_permutation() Algorithm

int main()
{ char* s="ABCD";

for (int i=0; i<24; i++)
{ prev_permutation(s,s+4);

cout << (i%8?'\t':'\n') << s;

n=10: {0,1,1,2,3,5,8,13,21,34}
n=10: {21,1,1,13,3,5,8,2,0,34}

22

55 33

77 66

11 44

88

99

n=9: {44,88,33,77,11,99,66,22,55}
n=9: {99,88,66,77,11,33,44,22,55}
n=9: {88,77,66,55,11,33,44,22,99}
n=8: {88,77,66,55,11,33,44,22}

384 STANDARD C++ GENERIC ALGORITHMS [APP. E

}
}

The prev_permutation() algorithm is the inverse of the next_permutation() algorithm
(Example E.32 on page 381).

push_heap(p,q);
// adds the element at *(q-1) to those in [p,q-1[so that [p,q[is a heap;
// precondition: [p,q-1[must be a heap;
// postcondition: [p,q[is a heap;

EXAMPLE E.40 Testing the push_heap() Algorithm

int main()
{ int a[] = {66,44,88,33,55,11,99,22,77};

print(a,8);
make_heap(a,a+8);
print(a,8);
print(a,9);
push_heap(a,a+9);
print(a,9);

}

The push_heap() algorithm reverses the effect of
pop_heap(). (See Example E.38.)

random_shuffle(p,q);
// performs a random (but deterministic) shuffle on [pp,qq[

EXAMPLE E.41 Testing the random_shuffle() Algorithm

int main()
{ char* s="ABCDEFGHIJ";

cout << s << '\n';
for (int i=0; i<4; i++)
{ random_shuffle(s,s+10);

cout << s << '\n';
}

}

DCBA DCAB DBCA DBAC DACB DABC CDBA CDAB
CBDA CBAD CADB CABD BDCA BDAC BCDA BCAD
BADC BACD ADCB ADBC ACDB ACBD ABDC ABCD

22 33

55 11

77 88

44 66

99

n=8: {66,44,88,33,55,11,99,22}
n=8: {99,55,88,33,44,11,66,22}
n=9: {99,55,88,33,44,11,66,22,77}
n=9: {99,77,88,55,44,11,66,22,33}

ABCDEFGHIJ
CIJDBEAHGF
CFBDEIGAHJ
IDJABEFGHC
DBJIFEGACH

APP. E] STANDARD C++ GENERIC ALGORITHMS 385

remove(p,q,x);

// removes all occurrences of x from [p,q[, shifting (copying) the

// remaining elements to the left;

// invariant: the length of the segment remains unchanged;

EXAMPLE E.42 Testing the remove() Algorithm

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int l = strlen(s);
int n = count(s,s+l,' ');
cout << "l=" << l << '\n';
cout << "n=" << n << '\n';
remove(s,s+l,' ');
cout << s << '\n';
s[l-n] = 0; // truncate s
cout << s << '\n';

}

Since 5 blanks were removed, the last 5 letters remain after their copies were shifted left.

remove_copy(p,q,pp,x);

// copies all elements of [p,q[that do not match x to [pp,pp+n[,

// where n is the number of nonmatching elements;

// returns pp+n;

// invariant: [p,q[remains unchanged;

EXAMPLE E.43 Testing the remove_copy() Algorithm

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

char buffer[80];
int l = strlen(s);
int n = count(s,s+l,' ');
cout << "l=" << l << '\n';
cout << "n=" << n << '\n';
char* ss = remove_copy(s,s+l,buffer,' ');
*ss = 0; // truncate buffer
cout << s << '\n';
cout << buffer << '\n';
cout << ss-buffer << '\n';

}

l=35
n=5
Allisflux,nothingisstationaryonary.
Allisflux,nothingisstationary.

l=35
n=5
All is flux, nothing is stationary.
Allisflux,nothingisstationary.
30

386 STANDARD C++ GENERIC ALGORITHMS [APP. E

remove_copy_if(p,q,pp,P());
// copies all elements x of [p,q[for which !P(x) to [pp,pp+n[,
// where n is the number of nonmatching elements;
// returns pp+n;
// invariant: [p,q[remains unchanged;

EXAMPLE E.44 Testing the remove_copy_if() Algorithm

class Blank
{ public:

bool operator()(char c) { return c == ' '; }
};

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

char buffer[80];
int l = strlen(s);
int n = count(s,s+l,' ');
cout << "l=" << l << '\n';
cout << "n=" << n << '\n';
char* ss = remove_copy_if(s,s+l,buffer,Blank());
*ss = 0; // truncate buffer
cout << s << '\n';
cout << buffer << '\n';
cout << ss-buffer << '\n';

}

This is the same as Example E.43 except that a predicate is used.

remove_if(p,q,P());
// removes all x from [p,q[for which !P(x), shifting (copying) the
// remaining elements to the left;

EXAMPLE E.45 Testing the remove_if() Algorithm

class Blank
{ public:

bool operator()(char c) { return c == ' '; }
};

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int l = strlen(s);
int n = count(s,s+l,' ');
cout << "l=" << l << '\n';
cout << "n=" << n << '\n';
remove_if(s,s+l,Blank());
cout << s << '\n';
s[l-n] = 0;

l=35
n=5
All is flux, nothing is stationary.
Allisflux,nothingisstationary.
30

APP. E] STANDARD C++ GENERIC ALGORITHMS 387

cout << s << '\n';
}

This is the same as Example E.42 except that a predicate is used.

replace(p,q,x,y);
// replaces all occurrences of x with y in [p,q[;
// invariant: the length of the segment remains unchanged;

EXAMPLE E.46 Testing the replace() Algorithm

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int l = strlen(s);
cout << s << '\n';
replace(s,s+l,' ','!');
cout << s << '\n';

}

replace_copy(p,q,pp,x,y);

// copies all elements of [p,q[to [pp,pp+n[, replacing each occurrence
// of x with y, where n = q-p;
// returns pp+n;
// invariant: [p,q[remains unchanged;

EXAMPLE E.47 Testing the replace_copy() Algorithm

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

cout << s << '\n';
int l = strlen(s);
char buffer[80];
char* ss = replace_copy(s,s+l,buffer,'n','N');
*ss = 0; // truncate buffer for printing
cout << s << '\n';
cout << buffer << '\n';

}

replace_copy_if(p,q,pp,P(),y);

// copies all elements of [p,q[to [pp,pp+n[, replacing each x for
// which P(x) with y, where n = q-p;

l=35
n=5
Allisflux,nothingisstationaryonary.
Allisflux,nothingisstationary.

All is flux, nothing is stationary.
All!is!flux,!nothing!is!stationary.

All is flux, nothing is stationary.
All is flux, nothing is stationary.
All is flux, NothiNg is statioNary.

388 STANDARD C++ GENERIC ALGORITHMS [APP. E

// returns pp+n;

// invariant: [p,q[remains unchanged;

EXAMPLE E.48 Testing the replace_copy_if() Algorithm

class Blank
{ public:

bool operator()(char c) { return c == ' '; }
};

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int l = strlen(s);
char buffer[80];
cout << s << '\n';
char* ss = replace_copy_if(s,s+l,buffer,Blank(),'!');
*ss = 0; // truncate buffer
cout << s << '\n';
cout << buffer << '\n';

}

This is the same as Example E.47 except that a predicate is used.

replace_if(p,q,P(),y);

// replaces each x for which P(x) with y in [p,q[;

EXAMPLE E.49 Testing the replace_if() Algorithm

class Blank
{ public:

bool operator()(char c) { return c == ' '; }
};

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int l = strlen(s);
cout << s << '\n';
replace_if(s,s+l,Blank(),'!');
cout << s << '\n';

}

This is the same as Example E.46 except that a predicate is used.

reverse(p,q);

// reverses the segment [p,q[;

All is flux, nothing is stationary.
All is flux, nothing is stationary.
All!is!flux,!nothing!is!stationary.

All is flux, nothing is stationary.
All!is!flux,!nothing!is!stationary.

APP. E] STANDARD C++ GENERIC ALGORITHMS 389

EXAMPLE E.50 Testing the reverse() Algorithm

int main()
{ char* s="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

cout << s << '\n';
reverse(s,s+26);
cout << s << '\n';

}

reverse_copy(p,q,pp);

// copies the segment [p,q[into [pp,pp+n[in reverse order,

// where n = q-p;

// returns pp+n

// invariant: [p,q[remains unchanged;

EXAMPLE E.51 Testing the reverse_copy() Algorithm

int main()
{ char* s="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

cout << s << '\n';
char buffer[80];
char* ss = reverse_copy(s,s+26,buffer);
*ss = 0; // truncate buffer for printing
cout << s << '\n';
cout << buffer << '\n';

}

rotate(p,r,q);

// shifts [r,q[to the left by r positions into [p,p+q-r[,

// and wraps [p,r[around to the right end into [p+q-r,q[;

EXAMPLE E.52 Testing the rotate() Algorithm

int main()
{ char* s="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

cout << s << '\n';
rotate(s,s+4,s+26);
cout << s << '\n';

}

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQpONMLKJIHGFEDCBA

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQpONMLKJIHGFEDCBA

ABCDEFGHIJKLMNOPQRSTUVWXYZ
EFGHIJKLMNOPQRSTUVWXYZABCD

390 STANDARD C++ GENERIC ALGORITHMS [APP. E

rotate_copy(p,r,q,pp);
// copies the segment [r,q[into [pp,pp+m[, where m = q-r,
// and copies the segment [p,r[into [pp+m,pp+n[, where n = q-p;
// returns pp+m+n;
// invariant: [p,q[remains unchanged;

EXAMPLE E.53 Testing the rotate_copy() Algorithm

int main()
{ char* s="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

cout << s << '\n';
char buffer[80];
char* ss = rotate_copy(s,s+4,s+26,buffer);
*ss = 0; // truncate buffer for printing
cout << s << '\n';
cout << buffer << '\n';

}

search(p,q,pp,qq);
// searches for the subsequence [pp,qq[in [p,q[;
// if found, the position r of its first occurrence is returned;
// otherwise, q is returned;
// postcondition: either r = q or [r,r+n[= [pp,qq[, where n = qq-pp;
// invariant: [p,q[is left unchanged;

EXAMPLE E.54 Testing the search() Algorithm

int main()
{ char* p="ABCDEFGHIJKLABCDEFGHIJKL";

char* pp="HIJK";
char* r = search(p,p+24,pp,pp+4);
int n = r-p; // number of characters before pp in p
cout << "n=r-p=" << n << '\n';
cout << "*r=" << *r << '\n';
cout << p << '\n';
cout << string(n,'-') << pp << string(20-n,'-') << '\n';
pp = "LMNOp";
r = search(p,p+24,pp,pp+5);
n = r-p;
cout << "n=r-p=" << n << '\n';
cout << p << '\n';
cout << string(n,'-') << '\n';

}

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
EFGHIJKLMNOPQRSTUVWXYZABCD

n=r-p=7
*r=H
ABCDEFGHIJKLABCDEFGHIJKL
-------HIJK-------------
n=r-p=24
ABCDEFGHIJKLABCDEFGHIJKL

APP. E] STANDARD C++ GENERIC ALGORITHMS 391

search_n(p,q,n,x);

// searches for the subsequence of n consecutive copies of x in [p,q[;

// if found, the position r of its first occurrence is returned;

// otherwise, q is returned;

// postcondition: either r = q or [r,r+n[= [pp,qq[, where n = qq-pp;

// invariant: [p,q[is left unchanged;

EXAMPLE E.55 Testing the search_n() Algorithm

int main()
{ char* p="0010111001111110";

char* r = search_n(p,p+16,3,'1');
int m = r-p; // number of characters before the substring in p
cout << "m=r-p=" << m << '\n';
cout << p << '\n';
cout << string(m,'-') << string(3,'1') << string(13-m,'-') << '\n';
r = search_n(p,p+16,4,'1');
m = r-p; // number of characters before substring in p
cout << "m=r-p=" << m << '\n';
cout << p << '\n';
cout << string(m,'-') << string(4,'1') << string(12-m,'-') << '\n';

}

set_difference(p,q,pp,qq,ppp);

// copies into [ppp,ppp+n[the elements in [p,q[that are not in [pp,qq[;

// returns ppp+n, where n is the number of elements copied;

// invariant: [p,q[and [pp,qq[are left unchanged;

EXAMPLE E.56 Testing the set_difference() Algorithm

int main()
{ char* p="ABCDEFGHIJ";

char* pp="AEIOUXYZ";
char ppp[16];
char* qqq = set_difference(p,p+10,pp,pp+8,ppp);
cout << p << '\n';
cout << pp << '\n';
*qqq = 0; // terminates the ppp string
cout << ppp << '\n';

}

m=r-p=4
0010111001111110
----111---------
m=r-p=9
0010111001111110
---------1111---

ABCDEFGHIJ
AEIOUXYZ
BCDFGHJ

392 STANDARD C++ GENERIC ALGORITHMS [APP. E

set_intersection(p,q,pp,qq,ppp);

// copies into [ppp,ppp+n[the elements in [p,q[that are also in [pp,qq[;

// returns ppp+n, where n is the number of elements copied;

// invariant: [p,q[and [pp,qq[are left unchanged;

EXAMPLE E.57 Testing the set_intersection() Algorithm

int main()
{ char* p="ABCDEFGHIJ";

char* pp="AEIOUXYZ";
char ppp[16];
char* r = set_intersection(p,p+10,pp,pp+8,ppp);
cout << p << '\n';
cout << pp << '\n';
*r = 0; // terminates the ppp string
cout << ppp << '\n';

}

set_symmetric_difference(p,q,pp,qq,ppp);

// copies into [ppp,ppp+n[the elements in [p,q[that are not in [pp,qq[

// and those that are in [pp,qq[but not in [p,q[;

// returns ppp+n, where n is the number of elements copied;

// invariant: [p,q[and [pp,qq[are left unchanged;

EXAMPLE E.58 Testing the set_symmetric_difference() Algorithm

int main()
{ char* p="ABCDEFGHIJ";

char* pp="AEIOUXYZ";
char ppp[16];
char* qqq = set_symmetric_difference(p,p+10,pp,pp+8,ppp);
cout << p << '\n';
cout << pp << '\n';
*qqq = 0; // terminates the ppp string
cout << ppp << '\n';

}

set_union(p,q,pp,qq,ppp);

// copies into [ppp,ppp+n[all the elements in [p,q[and all the elements

// in [pp,qq[without duplicates;

// returns ppp+n, where n is the number of elements copied;

// invariant: [p,q[and [pp,qq[are left unchanged;

ABCDEFGHIJ
AEIOUXYZ
AEI

ABCDEFGHIJ
AEIOUXYZ
BCDFGHJOUXYZ

APP. E] STANDARD C++ GENERIC ALGORITHMS 393

EXAMPLE E.59 Testing the set_union() Algorithm

int main()
{ char* p="ABCDEFGHIJ";

char* pp="AEIOUXYZ";
char ppp[16];
char* r = set_union(p,p+10,pp,pp+8,ppp);
cout << p << '\n';
cout << pp << '\n';
*r = 0; // terminates the ppp string
cout << ppp << '\n';

}

sort(p,q);

// sorts [p,q[;

EXAMPLE E.60 Testing the sort() Algorithm

int main()
{ char* p="GAJBHCHDIEFAGDHC";

cout << p << '\n';
sort(p,p+16);
cout << p << '\n';

}

sort_heap(p,q);

// sorts [p,q[;

EXAMPLE E.61 Testing the sort_heap() Algorithm

int main()
{ int a[] = {66,88,44,77,33,55,11,99,22};

print(a,9);
make_heap(a,a+9);
print(a,9);
sort_heap(a,a+9);
print(a,9);

}

swap(x,y);

// swaps the two elements x and y;

ABCDEFGHIJ
AEIOUXYZ
ABCDEFGHIJOUXYZ

GAJBHCHDIEFAGDHC
AABCCDDEFGGHHHIJ

n=9: {66,88,44,77,33,55,11,99,22}
n=9: {99,88,55,77,33,44,11,66,22}
n=9: {11,22,33,44,55,66,77,88,99}

394 STANDARD C++ GENERIC ALGORITHMS [APP. E

EXAMPLE E.62 Testing the swap() Algorithm

int main()
{ char* p="ABCDEFGHIJ";

cout << p << '\n';
swap(p[2],p[8]);
cout << p << '\n';

}

transform(p,q,pp,f);
// applies the function f(x) to each x in [p,q[and copies the result
// into [pp,pp+n[, where n = q-p;
// invariant: [p,q[remains unchanged;

EXAMPLE E.63 Testing the transform() Algorithm

char capital(char);

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int len = strlen(s);
char buffer[80];
char* ss = transform(s,s+len,buffer,capital);
*ss = 0; // truncate buffer
cout << s << '\n';
cout << buffer << '\n';

}

char capital(char c)
{ return (isalpha(c) ? toupper(c) : c);
}

unique(p,q);
// removes all adjacent duplicates in [p,q[shifting their suffixes left;
// returns the position that follows the last shifted element;

EXAMPLE E.64 Testing the unique() Algorithm

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int len = strlen(s);
cout << s << '\n';
sort(s,s+len);
cout << s << '\n';
char* ss = unique(s,s+len);
cout << s << '\n';
*ss = 0; // truncate buffer

ABCDEFGHIJ
ABIDEFGHCJ

All is flux, nothing is stationary.
ALL IS FLUX, NOTHING IS STATIONARY.

APP. E] STANDARD C++ GENERIC ALGORITHMS 395

cout << s << '\n';
}

unique_copy(p,q,pp);
// copies the nonduplicate elements of [p,q[into [pp,pp+n[,
// where n is the number of unique elements in [p,q[;;
// returns pp+n;
// invariant: [p,q[is left unchanged;

EXAMPLE E.65 Testing the unique_copy() Algorithm

int main()
{ char* s="All is flux, nothing is stationary."; // Heraclitus

int len = strlen(s);
cout << s << '\n';
sort(s,s+len);
cout << s << '\n';
char buffer[80];
char* ss = unique_copy(s,s+len,buffer);
*ss = 0; // truncate buffer for printing
cout << s << '\n';
cout << buffer << '\n';

}

upper_bound(p,q,x);
// returns the position that immediately follows the last occurrence
// of x in [pp,qq[;
// precondition: [p,q[must be sorted;
// invariant: [p,q[is left unchanged;

EXAMPLE E.66 Testing the upper_bound() Algorithm

int main()
{ int a[] = {11,22,22,33,44,44,44,55,66};

int* p = upper_bound(a,a+9,44);
cout << "*p=" << *p << '\n';
cout << "p-a=" << p-a << '\n';

}

All is flux, nothing is stationary.
,.Aaafghiiiilllnnnoorssstttuxy

,.Aafghilnorstuxyllnnnoorssstttuxy
,.Aafghilnorstuxy

All is flux, nothing is stationary.
,.Aaafghiiiilllnnnoorssstttuxy
,.Aaafghiiiilllnnnoorssstttuxy

,.Aafghilnorstuxy

*p=55
p-a=7

396

Appendix F

The Standard C Library

This appendix describes the pre-defined functions provided in the Standard C Library. Each
entry lists the function name, its prototype, a brief description of what it does, and the header file
where it is declared.

Function Prototype and Description Header File

abort() void abort();
Aborts the program.

<cstdlib>

abs() int abs(int n);
Returns the absolute value of n.

<cstdlib>

acos() double acos(double x);
Returns the inverse cosine (arccosine) of x.

<cmath>

asin() double asin(double x);
Returns the inverse sine (arcsine) of x.

<cmath>

atan() double atan(double x);
Returns the inverse tangent (arctangent) of x.

<cmath>

atof() double atof(const char* s);
Returns the number represented literally in the string s.

<cstdlib>

atoi() int atoi(const char* s);
Returns the integer represented literally in the string s.

<cstdlib>

atol() long atol(const char* s);
Returns the integer represented literally in the string s.

<cstdlib>

bad() int ios::bad();
Returns nonzero if badbit is set; returns 0 otherwise.

<iostream>

bsearch() void* bsearch(const void* x, void* a,
size_t n, size_t s,
int (*cmp)(const void, *const void*));

Implements the Binary Search Algorithm to search for x in the
sorted array a of n elements each of size s using the function
*cmp to compare any two such elements. If found, a pointer to the
element is returned; otherwise, the NULL pointer is returned.

<cstdlib>

ceil() double ceil(double x);
Returns x rounded up to the next whole number.

<cmath>

clear() void ios::clear(int n=0);
Changes stream state to n.

<iostream>

clearerr() void clearerr(FILE* p);
Clears the end-of-file and error flags for the file *p.

<cstdio>

close() void fstreambase::close();
Closes the file attached to the owner object.

<fstream>

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

APP. F] THE STANDARD C LIBRARY 397

cos() double cos(double x);

Returns the inverse cosine of x.
<cmath>

cosh() double cosh(double x);

Returns the hyperbolic cosine of x: (ex + e-x)/2.
<cmath>

difftime() double difftime(time_t t1, time_t t0);

Returns time elapsed (in seconds) from time t0 to time t1.

<ctime>

eof() int ios::eof();

Returns nonzero if eofbit is set; returns 0 otherwise.

<iostream>

exit() void exit(int n);

Terminates the program and returns n to the invoking process.

<cstdlib>

exp() double exp(double x);

Returns the exponential of x: ex.
<cmath>

fabs() double fabs(double x);

Returns the absolute value of x .

<cmath>

fail() int ios::fail();

Returns nonzero if failbit is set; returns 0 otherwise.

<iostream>

fclose() int fclose(FILE* p);

Closes the file *p and flushes all buffers. Returns 0 if successful;

returns EOF otherwise.

<cstdio>

fgetc() int fgetc(FILE* p);

Reads and returns the next character from the file *p if possible;

returns EOF otherwise.

<cstdio>

fgets() char* fgets(char* s, int n, FILE* p);

Reads the next line from the file *p and stores it in *s. The “next

line” means either the next n-1 characters or all the characters up

to the next endline character, whichever comes first. The NUL

character is appended to the characters stored in s. Returns s if

successful; returns NULL otherwise.

<cstdio>

fill() char ios::fill();

Returns the current fill character.

char ios::fill(char c);

Changes the current fill character to c and returns the previous fill

character.

<iostream>

flags() long ios::flags();

Returns the current format flags.

long ios::flags(long n);

Changes the current format flags to n; returns previous flags.

<iostream>

floor() double floor(double x);

Returns x rounded down to the next whole number.

<cmath>

flush() ostream& ostream::flush();

Flushes the output buffer and returns the updates stream.

<iostream>

398 THE STANDARD C LIBRARY [APP. F

fopen() FILE* fopen(const char* p, const char* s);
Opens the file *p and returns the address of the structure that rep-
resents the file if successful; returns NULL otherwise. The string
s determines the file’s mode: "r" for read, "w" for write, "a"
for append, "r+" for reading and writing an existing file, "w+"
for reading and writing an existing file, and "a+" for reading and
appending an existing file.

<cstdio>

fprintf() int fprintf(FILE* p, const char* s, ...);
Writes formatted output to the file *p. Returns the number of char-
acters printed if successful; otherwise it returns a negative number.

<cstdio>

fputc() int fputc(int c, FILE* p);
Writes character c to the file *p. Returns the character written or
EOF if unsuccessful.

<cstdio>

fputs() int fputs(const char* s, FILE* p);
Writes string s to the file *p. Returns a nonnegative integer if
successful; otherwise it returns EOF.

<cstdio>

fread() size_t fread(void* s, size_t k, size_t n,
FILE* p);

Reads up to n items each of size k from the file *p and stores
them at location s in memory. Returns the number of items read.

<cstdio>

fscanf() int fscanf(FILE* p, const char* s, ...);
Reads formatted input from the file *p and stores them at location
s in memory. Returns EOF if end of file is reached; otherwise it
returns the number of items read into memory.

<cstdio>

fseek() int fseek(FILE* p, long k, int base);
Repositions the position marker of the file *p k bytes from its
base, where base should be SEEK_SET for the beginning of
the file, SEEK_CUR for the current position of the file marker, or
SEEK_END for the end of the file. Returns 0 if successful.

<cstdio>

ftell() long ftell(FILE* p);
Returns location of the position marker in file *p or returns -1.

<cstdio>

fwrite() size_t fwrite(void* s, size_t k, size_t n,
FILE* p);

Writes n items each of size k to the file *p and
returns the number written.

<cstdio>

gcount() int istream::gcount();
Returns the number of characters most recently read.

<iostream>

get() int istream::get();
istream& istream::get(signed char& c);
istream& istream::get(unsigned char& c);
istream& istream::get(signed char* b, int n,

char e='\n');
istream& istream::get(unsigned char* b, int n,

char e='\n');
Reads the next character c from the istream. The first version
returns c or EOF. The last two versions read up to n characters into
b, stopping when e is encountered.

<iostream>

APP. F] THE STANDARD C LIBRARY 399

getc() int getc(FILE* p);
Same as fgetc() except implemented as a macro.

<cstdio>

getchar() int getchar();
Returns the next character from standard input or returns EOF.

<cstdio>

gets() char* gets(char* s);
Reads next line from standard input and stores it in s. Returns s or
NULL if no characters are read.

<cstdio>

good() int ios::good();
Returns nonzero if stream state is zero; returns zero otherwise.

<iostream>

ignore() istream& ignore(int n=1, int e=EOF);
Extracts up to n characters from stream, or up to character e,
whichever comes first. Returns the stream.

<iostream>

isalnum() int isalnum(int c);
Returns nonzero if c is an alphabetic or numeric character; returns
0 otherwise.

<cctype>

isalpha() int isalpha(int c);
Returns nonzero if c is an alphabetic character; otherwise returns 0.

<cctype>

iscntrl() int iscntrl(int c);
Returns nonzero if c is a control character; otherwise returns 0.

<cctype>

isdigit() int isdigit(int c);
Returns nonzero if c is a digit character; otherwise returns 0.

<cctype>

isgraph() int isgraph(int c);
Returns nonzero if c is any non-blank printing character; otherwise
returns 0.

<cctype>

islower() int islower(int c);
Returns nonzero if c is a lowercase alphabetic character; otherwise
returns 0.

<cctype>

isprint() int isprint(int c);
Returns nonzero if c is any printing character; otherwise returns 0.

<cctype>

ispunct() int ispunct(int c);
Returns nonzero if c is any punctuation mark, except the alphabetic
characters, the numeric characters, and the blank character; other-
wise 0 is returned.

<cctype>

isspace() int isspace(int c);
Returns nonzero if c is any white-space character, including the
blank ' ', the form feed '\f', the newline '\n', the carriage
return '\r', the horizontal tab '\t', and the vertical tab '\v';
otherwise returns 0.

<cctype>

isupper() int isupper(int c);
Returns nonzero if c is an uppercase alphabetic character; other-
wise returns 0.

<cctype>

isxdigit() int isxdigit(int c);
Returns nonzero if c is one of the 10 digit characters or one of the
12 hexadecimal digit letters: 'a', 'b', 'c', 'd', 'e', 'f',
'A', 'B', 'C', 'D', 'E', or 'F'; otherwise returns 0.

<cctype>

400 THE STANDARD C LIBRARY [APP. F

labs() long labs(long n);
Returns absolute value of n.

<cstdlib>

log() double log(double x);
Returns the natural logarithm (base e) of x.

<cmath>

log10() double log10(double x);
Returns the common logarithm (base 10) of x.

<cmath>

memchr() void* memchr(const void* s, int c, size_t k);
Searches the k bytes of memory beginning at s for character c.
If found, the address of its first occurrence is returned. Returns
NULL otherwise.

<string>

memcmp() int memcmp(const void* s1, const void* s2,
size_t k);

Compares the k bytes of memory beginning at s1 with the k
bytes of memory beginning at s2 and returns a negative, zero, or
a positive integer according to whether the first string is lexico-
graphically less than, equal to, or greater than the second string.

<string>

memcpy() void* memcpy(const void* s1, const void* s2,
size_t k);

Copies the k bytes of memory beginning at s2 into memory
location s1 and returns s1.

<string>

memmove() int memmove(const void* s1, const void* s2,
size_t k);

Same as memcpy() except strings may overlap.

<string>

open() void fstream::open(const char* f, int m,
int p=filebuf::openprot);

void ifstream::open(const char* f,
int m=ios::in,
int p=filebuf::openprot);

void ofstream::open(const char* f,
int m=ios::out,
int p=filebuf::openprot);

Opens the file f in mode m with protection p.

<fstream>

peek() int istream:: peek();
Returns next character (or EOF) from stream without extracting it.

<iostream>

pow() double pow(double x, double y);
Returns x raised to the power y (x y).

<cmath>

precision() int ios::precision();
int ios::precision(int k);
Returns the current precision for the stream. The second version
changes the current precision to k and returns the old precision.

<iostream>

tolower() int tolower(int c);
Returns the lowercase version of c if c is an uppercase alpha-
betic character; otherwise returns c.

<cctype>

toupper() int toupper(int c);
Returns the uppercase version of c if c is a lowercase alphabetic
character; otherwise returns c.

<cctype>

401

Appendix G

Hexadecimal Numbers

Humans normally use the base 10 numbering system. This is called the decimal system for the
Greek word deka for “ten.” Our ancient ancestors learned it by counting with their 10 fingers.

Computers have only 2 fingers (i.e., there are only 2 possible values for each bit), so the
binary system works well for computers. But the trouble with binary numbers is that their
representations require long strings of bits. For example, 1996 is represented as 11111001100

in binary. Most humans find long strings like that difficult to process.
Binary numbers are easy to convert to other bases if the base is a power of 2. For example,

conversion between binary and octal (base 8 = 23) merely requires grouping the binary bits into
groups of 3 and interpreting each triplet as an octal digit. For example, to convert the binary
numeral 11111001100 write 11,111,001,100 = 3714. Here, 11 converts to 3, 111

converts to 7, 001 converts to 1, and 100 converts to 4. Conversion from octal back to
binary is just as simple. For example, 2650 converts to 10110101000, which is 1448 in
decimal. Note that octal numerals use only the first 8 decimal digits: 0, 1, 2, 3, 4, 5, 6, 7.

After 8, the next power of 2 is 16. Using that base makes the numerals even shorter. This is
called the hexadecimal system (from the Greek hex + deka for “six” + “ten”). Conversion
between binary and hexadecimal is just as simple as it is between binary and octal. For example,
to convert the binary numeral 10111010100 to hexadecimal, group the bits into groups of 4
(from right to left) and then translate each group into the corresponding hexadecimal digit:
101,1101,0100 = 5d4. Here, 101 converts to 5, 1101 converts to 11, and 0100 converts to
4. The hexadecimal digits 10, 11, 12, 13, 14, and 15 are denoted by the first six letters of the
alphabet: a, b, c, d, e, f.

Most operating systems provide
a calculator utility that converts
number representations between
hexadecimal, decimal, octal, and
binary. For example, the Calculator
utility in Microsoft Windows is
located in Start > Programs >
Accessories. In that application, to
convert from hexadecimal to
decimal, select Scientific from its
View menu, select the Hex radio
button, enter the hexadecimal
representation of the number, and
then select the Dec radio buttons.
The example here shows that
0x0064fdbc is hexadecimal
notation for 6,618,556.

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

402 HEXADECIMAL NUMBERS [APP. G

The output manipulators dec, hex, and oct are used for converting different bases, as the
next example illustrates.

EXAMPLE G.1 Using Output Manipulators

This shows how both the value and the address of a variable can be printed:
int main()
{ int n = 1492; // base 10

cout << "Base 8: n = " << oct << n << endl;
cout << "Base 10: n = " << n << endl;
cout << "Base 16: n = " << hex << n << endl;

}

Here the manipulator oct is used to convert the next output to octal form. Note that the output reverts
back to decimal until the hex manipulator is used.

The next example shows how to input integers in octal and hexadecimal. Octal numerals are denoted
with a 0 prefix, and hexadecimal numerals are denoted with a 0x prefix.

EXAMPLE G.2 Using Input Manipulators

This shows how both the value and the address of a variable can be printed:
int main()
{ int n;

cout << "Enter an octal numeral (use 0 prefix): ";
cin >> oct >> n;
cout << "Base 8: n = " << oct << n << endl;
cout << "Base 10: n = " << dec << n << endl;
cout << "Base 16: n = " << hex << n << endl;
cout << "Enter a decimal numeral: ";
cin >> dec >> n;
cout << "Base 8: n = " << oct << n << endl;
cout << "Base 10: n = " << dec << n << endl;
cout << "Base 16: n = " << hex << n << endl;
cout << "Enter a hexadecimal numeral (use 0x prefix): ";
cin >> hex >> n;
cout << "Base 8: n = " << oct << n << endl;
cout << "Base 10: n = " << dec << n << endl;
cout << "Base 16: n = " << hex << n << endl;

}

Base 8: n = 2724
Base 10: n = 1492
Base 16: n = 5d4

Enter an octal numeral (use 0 prefix): 0777
Base 8: n = 777
Base 10: n = 511
Base 16: n = 1ff
Enter a decimal numeral: 511
Base 8: n = 777
Base 10: n = 511

APP. G] HEXADECIMAL NUMBERS 403

Algorithm G.1 Decimal Integer to Hexadecimal
To convert the integer x into its equivalent hexadecimal numeral:

1. Assert x > 0.
2. Set k = 0.
3. Divide x by 16, setting x equal to the (integer) quotient.
4. Set hk equal to the remainder from the previous division. Use one of the 16 hexa-

decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, representing the numbers 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, for hk.

5. Add 1 to k.
6. If x > 0, repeat steps 3–6.
7. Return hk···h2h1h0 (i.e., the hexadecimal numeral whose jth hex symbol is hj)

EXAMPLE G.3 Converting the Decimal Numeral 100,000 to Hexadecimal

Applying Algorithm G.1 to the decimal number 100,000 yields 10000010 = h4h3h2h1h0 = 186a016 :

Algorithm G.2 Hexadecimal Integer to Decimal
To convert the hexadecimal integer hk···h2h1h0 into its equivalent decimal numeral:

1. Set x = 0.
2. Set j = k + 1 (the actual number of bits in the hexadecimal string).
3. Subtract 1 from j.
4. Multiply x by 16.
5. Add hj to x.
6. If j > 0, repeat steps 3–6.
7. Return x.

EXAMPLE G.4 Converting the Hexadecimal Numeral f4d9 to Decimal

Convert f4d9 to decimal:

k x hk

0 100000
1 6250 0
2 390 a
3 24 6
4 1 8
8 0 1

j hj x = 2x + hj

4 0
3 f 16·0 + f = 15
2 4 16·15 + 4 = 244
1 d 16·244 + 13 = 3917
0 9 16·3917 + 9 = 62,681

Base 16: n = 1ff
Enter a hexadecimal numeral (use 0x prefix): 0x1ff
Base 8: n = 777
Base 10: n = 511
Base 16: n = 1ff

404 HEXADECIMAL NUMBERS [APP. G

So f4d916 = 62,68110 .

EXAMPLE G.5 Converting the Hexadecimal Numeral 543ab to Decimal

Converting 543ab to decimal:

So 543ab16 = 345,00310 .

j hj x = 2x + hj

5 0
4 5 16·0 + 5 = 5
3 4 16·5 + 4 = 84
2 3 16·84 + 3 = 1347
1 a 16·1347 + a = 21,562
0 b 16·21,562 + b = 345,003

405

Appendix H

References

[Adams]
C++ An Introduction to Computing, by Joel Adams, Sanford Leestma, and Larry Nyhoff.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-369402-5.

[Barton]
Scientific and Engineering C++, by John J. Barton and Lee R. Nackman.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-53393-6.

[Bergin]
Data Abstraction, the Object-Oriented Approach Using C++, by Joseph Bergin.
McGraw-Hill, Inc., New York, NY (1994) 0-07-911691-4.

[Bronson]
A First Book of C++, by Gary J. Bronson.
West Publishing Company, St. Paul, MN (1995) 0-314-04236-9.

[Budd]
Classic Data Structures in C++, by Timothy A. Budd.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-50889-3.

[Capper]
Introducing C++ for Scientists, Engineers and Mathematicians, by D. M. Capper.
Springer-Verlag, London (1994) 3-540-19847-4.

[Cargill]
C++ Programming Style, by Tom Cargill.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-56365-7.

[Carrano]
Data Abstraction and Problem Solving with C++, by Frank M. Carrano.
Benjamin/Cummings Publishing Company, Redwood City, CA (1993) 0-8053-1226-9.

[Carroll]
Designing and Coding Reusable C++, by Martin D. Carroll and Margaret A. Ellis.
Addison-Wesley Publishing Company, Reading, MA (1995) 0-201-51284-X.

[Cline]
C++ FAQs, Second Edition, by Marshall Cline, Greg Lomow, and Mike Girou.
Addison-Wesley Publishing Company, Reading, MA (1999) 0-201-30983-1.

[Coplien]
Advanced C++, Programming Styles and Idioms, by James O. Coplien.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-54855-0.

[Deitel]
C++ How to Program, Second Edition by H. M. Deitel and P. J. Deitel.
Prentice Hall, Englewood Cliffs, NJ (1998) 0-13-528910-6.

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

406 REFERENCES [APP. H

[Dewhurst]
Programming in C++, Second Edition, by Stephen C. Dewhurst and Kathy T. Stark.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-13-182718-9.

[Ellis]
The Annotated C++ Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1992) 0-201-51459-1.

[Friedman]
Problem Solving, Abstraction, and Design Using C++, by F. L. Friedman and E. B. Koffman.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-52649-2.

[Hansen]
The C++ Answer Book, by Tony L. Hansen.
Addison-Wesley Publishing Company, Reading, MA (1990) 0-201-11497-6.

[Headington]
Data Abstraction and Structures Using C++, by Mark R. Headington and David D. Riley.
D. C. Heath and Company, Lexington, MA (1994) 0-669-29220-6.

[Horowitz]
Fundamentals of Data Structures in C++, by Ellis Horowitz, Sartaj Sahni, and Dinesh Mehta.
W. H. Freeman and Company, New York, NY (1995) 0-7167-8292-8.

[Hubbard1]
Fundamentals of Computing with C++, by John R. Hubbard.
McGraw-Hill, Inc, New York, NY (1998) 0-07-030868-3.

[Hubbard2]
Data Structures with C++, by John R. Hubbard.
McGraw-Hill, Inc, New York, NY (1999) 0-07-135345-3.

[Hughes]
Mastering the Standard C++ Classes, by Cameron Hughes and Tracey Hughes.
John Wiley & Sons, Inc, New York, NY (1999) 0-471-32893-6.

[Johnsonbaugh]
Object-Oriented Programming in C++, by Richard Johnsonbaugh and Martin Kalin.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-02-360682-7.

[Josuttis]
The C++ Standard Library, by Nicolai M. Josuttis.
Addison-Wesley Publishing Company, Reading, MA, 1999, 0-201-37926-0.

[Knuth1]
The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Third Edition, by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA, 1997, 0-201-89683-4.

[Knuth2]
The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Third Edition, by D. E. Knuth.
Addison-Wesley Publishing Company, Reading, MA, 1998, 0-201-89684-2.

[Knuth3]
The Art of Computer Programming, Vol. 3: Sorting and Searching, Second Edition, by Donald E. Knuth.
Addison-Wesley Publishing Company, Reading, MA, 1998, 0-201-89685-0.

APP. H] REFERENCES 407

[Ladd]
C++ Templates and Tools, by Scott Robert Ladd.
M&T Books, New York, NY (1995) 0-55851-437-6.

[Lippman]
The C++ Primer, Third Edition, by Stanley B. Lippman and Josee Lajoie.
Addison-Wesley Publishing Company, Reading, MA (1998) 0-201-82470-1.

[Meyers]
More Effective C++, by Scott Meyers.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-201-63371-X.

[Model]
Data Structures, Data Abstraction: A Contemporary Introduction Using C++, by M. L. Model.
Prentice Hall, Englewood Cliffs, NJ (1994) 0-13-088782-X.

[Murray]
C++ Strategies and Tactics, by Robert B. Murray.
Addison-Wesley Publishing Company, Reading, MA (1993) 0-201-56382-7.

[Nelson]
C++ Programmers Guide to the Standard Template Library, by Mark Nelson.
IDG Books Worldwide, Inc., Foster City, CA (1995) 0-56884-314-3.

[Oualline]
Practical C++ Programming, by Steve Oualline.
O’Reilly & Associates, Sebastopol, CA (1995) 1-56592-139-9.

[Perry]
An Introduction to Object-Oriented Design in C++, by Jo Ellen Perry and Harold D. Levin.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-201-76564-0.

[Plauger1]
The Standard C Library, by P. J. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1992) 0-13-131509-9.

[Plauger2]
The Draft Standard C++ Library, by P. J. Plauger.
Prentice Hall, Englewood Cliffs, NJ (1995) 0-13-117003-1.

[Pohl.1]
Object-Oriented Programming Using C++, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1993) 0-8053-5384-4.

[Pohl.2]
C++ for Pascal Programmers, Second Edition, by Ira Pohl.
The Benjamin/Cummings Publishing Company, Inc, Redwood City, CA (1994) 0-8053-3158-1.

[Prata]
C++ Primer Plus, by Stephen Prata.
The Waite Group, Corte Madera, CS (1998) 1-57169-131-6.

[Ranade & Zamir]
C++ Primer for C Programmers, by Jay Ranade and Saba Zamir.
McGraw-Hill, Inc., New York, NY (1994) 0-07-051487-9.

408 REFERENCES [APP. H

[Satir]
C++: The Core Language, by Gregory Satir and Doug Brown.
O’Reilly & Associates, Sebastopol, CA (1995) 0-56592-116-X.

[Savitch]
Problem Solving with C++, by Walter Savitch.
Addison-Wesley Publishing Company, Reading, MA (1996) 0-8053-7440-X.

[Sedgewick]
Algorithms in C++ Parts 1-4, Third Edition, by Robert Sedgewick.
Addison-Wesley Publishing Company, Reading, MA (1998) 0-201-35088-2.

[Sengupta]
C++ Object-Oriented Data Structures, by Saumyendra Sengupta and Carl Phillip Korobkin.
Springer-Verlag, New York, NY (1994) 0-387-94194-0

[Shammas]
Advanced C++, by Namir Clement Shammas.
SAMS Publishing, Carmel, IN (1992) 0-672-30158-X.

[Stepanov]
“The Standard Template Library,” Technical Report HPL-94-34, by A. A. Stepanov and M. Lee.
Hewlett-Packard Laboratories, April 1994.

[Stroustrup1]
The C++ Programming Language, Special Edition, by Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (2000) 0-201-70073-5.

[Stroustrup2]
The Design and Evolution of C++, by Bjarne Stroustrup.
Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-54330-3.

[Teale]
C++ IOStreams, by Steve Teale.
Addison-Wesley Publishing Company, Reading, MA (1993) 0-201-59641-5.

[Trudeau]
Mastering CodeWarrior for Windows 95/NT, The Official Guide, by Jim Trudeau.
SYBEX, Alameda, CA (http://www.sybex.com/), 1997, 1-7821-2057-1.

[Unicode]
The Unicode Standard, Version 2.0, by The Unicode Consortium.
Addison-Wesley, Reading, MA (http://www2.awl.com/corp/), 1996, 0-201-48345-9.

[Wang]
C++ with Object-Oriented Programming, by Paul S. Wang.
PWS Publishing Company, Boston, MA (1994) 0-534-19644-6.

[Weiss]
Data Structures and Algorithm Analysis in C++, by Mark Allen Weiss.
Benjamin/Cummings Publishing Company, Redwood City, CA (1994) 0-8053-5443-3.

[Winston]
On to C++, by Patrick Henry Winston.

Addison-Wesley Publishing Company, Reading, MA (1994) 0-201-58043-8.

409

ABC, 288
abort(), 397
abort() function, 110
abs(), 176, 397
Absolute value, 85
Abstract base class, 288, 314
Access function, 238, 266
Access specifier, 240

private, 240, 276
protected, 240, 276
public, 240

accumulate algorithm, 370, 371
acos(), 397
Actual parameter, 88
Addition operator, 353
Address, 7, 156
Address operator, 156, 352, 353
adjacent_difference algorithm, 370, 371
adjacent_find algorithm, 369, 371
Aggregation, 273
Alert character, 4
Algorithm:

accumulate, 370, 371
adjacent_difference, 370, 371
adjacent_find, 369, 371
Babylonian, 81
Binary Search, 46, 136
binary_search, 368, 372
Bubble Sort, 134, 144
copy, 369, 372
copy_backward, 369, 372
count, 369, 373
count_if, 369, 373
equal, 369, 373
fill, 369, 374
fill_n, 369, 374
find, 369, 374
find_end, 369, 375
find_first_of, 369, 375
find_if, 369, 376
for_each, 369, 376
generate, 369, 376
generate_n, 369, 377
generic, 368
Horner’s method, 111
includes, 370, 377

Algorithm (Cont.):
inner_product, 370, 378
inplace_merge, 368, 378
iter_swap, 369, 378
lexicographical_compare, 370, 379
Linear Search, 134, 136
lower_bound, 368, 379
make_heap, 374, 384
max, 370, 380
max_element, 370, 380
merge, 368, 381
min, 370, 381
min_element, 370, 381
mismatch, 369, 381
next_permutation, 370, 382
nth_element, 368, 382
partial_sort, 368, 383
partial_sort_copy, 368, 383
partial_sum, 370, 383
partition, 368, 384
pop_heap, 370, 384
prev_permutation, 370, 384
push_heap, 370, 385
random_shuffle, 369, 385
remove, 369, 386
remove_copy, 369, 386
remove_copy_if, 369, 387
remove_if, 369, 387
replace, 369, 388
replace_copy, 369, 388
replace_copy_if, 369, 389
replace_if, 369, 389
reverse, 369, 390
reverse_copy, 369, 390
rotate, 369, 390
rotate_copy, 369, 391
search, 369, 391
search_n, 369, 392
Selection Sort, 144
set_difference, 370, 392
set_intersection, 370, 393
set_symmetric_difference, 370, 393
set_union, 370 393
sort, 368, 394
sort_heap, 370, 394
swap, 369, 395

Index

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

410 INDEX

Algorithm (Cont.):
transform, 369, 395
unique, 369, 465
unique_copy, 369, 396
upper_bound, 368, 396

Alias, 157
Allocation operator, 352, 353
and keyword, 37, 349
and_eq keyword, 37, 349
Anonymous enumeration, 18
append(), 144
Arabic alphabet, 347
Argument, 88, 92

default, 111
Arithmetic operators, 21, 258
Arity, 352
Armenian alphabet, 347
Array, 126

declaration syntax, 127
multidimensional, 139

ASCII Code, 4, 19, 26, 33, 98, 343
asin(), 397
assert() function, 136
Assignment operator, 5, 22, 38, 256, 257, 328,

353
Associativity, 352
at() member function, 333
atan(), 397
atof(), 397
atoi(), 397
atol(), 397
auto keyword, 37, 349

Babylonian Algorithm, 81, 85
back() function, 328
Backslash character, 4, 343
bad(), 397
Base class, 275
begin() function, 327, 331
Bengali alphabet, 347
Binary code, 1, 402
Binary logarithm, 136

discrete, 70
Binary operator, 352
Binary Search algorithm, 46, 136, 397
binary_search algorithm, 368, 372
Bisection Method, 176
Bit shift left operator, 353

Bit shift right operator, 353
Bit string, 20
bitand keyword, 37, 349
bitaor keyword, 37, 349
Bitwise AND operator, 353
Bitwise NOT operator, 352
Bitwise OR operator, 353
Bitwise XOR operator, 353
Blank character, 5
Block statement, 40
Body of a function, 90, 92
bool keyword, 17, 37, 349
Boole, George, 98
Boolean expression, 42
Boolean function, 98
Boolean type, 17
Boolean values, 136
Bopomofo codes, 348
Boundary values, 96
break keyword, 37, 71, 73, 74, 349
bsearch(), 397
Bubble Sort algorithm, 134, 144, 302

C++ programming language, 1
C++ style comment, 11
Calling a function, 88
Carriage return character, 99
case keyword, 37, 47, 74, 349
Case-sensitive, 2
Cast, 26
cat(), 175
catch keyword, 37, 349
CDC, 288
ceil(), 397
char keyword, 37, 349
Character, 4

alert, 4
backslash, 4, 343
blank, 5
control, 343
endline, 4
end-of-file, 343
horizontal tab, 4
newline, 2, 4, 343
nul, 183
quote, 4

Character constant, 5
Character type, 19

INDEX 411

chr(), 176
cin, 24
CJK ideograph codes, 348
Class, 232, 243

Array, 310
Book, 288
CD, 289
Circle, 250
Cone, 297
Date, 274
deque, 359
Fish, 287
hierarchy, 287, 288
implementation, 234
interface, 234
iterator, 314
List, 310
list, 362
ListIterator, 314
ListNode, 310
Magazine, 289
map, 364
Matrix, 249, 309, 310
Media, 288
Name, 297
Node, 244
Person, 249, 273, 277, 282, 299
Point, 249, 267
predicate, 370
priority_queue, 361
Queue, 320
queue, 360
Random, 249
Ratio, 232, 235, 243, 259
set, 366
Stack, 249, 304
stack, 360
String, 249, 273
string, 325
Student, 276, 277
Time, 249
VCR, 290
Vector, 267, 306, 310
vector, 325, 354
Vertebrate, 287

class keyword, 37, 349
clear(), 397
clearerr(), 397

close(), 398
cmath header, 70
cmp(), 175
Code

ASCII, 4, 19, 33, 98
Unicode, 347

Comma operator, 353
Comment, 3, 9

C style, 11
C++ style, 11

Compiler, 1
Compile-time error, 29, 39
compl keyword, 37, 349
Composite assignment operators, 22
Composition, 2742 293, 310
Compound condition, 41
Concatenate, 4
Concrete derived class, 288
Conditional expression operator, 49, 353
const keyword, 37, 349
const_cast keyword, 37, 349
Constant, 8, 162, 167

INT_MAX, 20
INT_MIN, 20
LONG_MAX, 20
LONG_MIN, 20
SHRT_MAX, 19
SHRT_MIN, 19
UINT_MAX, 20
ULONG_MAX, 20
USHRT_MAX, 20

Constant function, 243
Constant objects, 243
Constructor, 235, 240

copy, 240
default, 240

Container object, 368
Containment, 273
continue keyword, 37, 73, 74, 349
Control character, 343
Control sequence, 343
Control-D, 192
Control-Z, 192
Conversion operator, 263, 352, 353
copy algorithm, 369, 372
copy, 240, 241, 256
copy(), 179
copy_backward algorithm, 369, 372

412 INDEX

cos(), 176, 398
cosh(), 398
count algorithm, 369, 373
count_if algorithm, 369, 373
cout, 24
cout object, 3
cpy(), 175
cstdlib, 76
C-string, 183
C-String Library, 193
C-style comment, 3
ctime, 78
cube(), 180
Cursor, 319
Cyrillic alphabet, 347

Dangling pointer, 167, 173
Date class, 274
Deallocating memory, 168
Deallocation operator, 352, 353
dec, 403
Decimal, 402
Declaration, 9
Decrement, 10
Decrement operator, 352
Default arguments, 111
Default constructor, 237, 240, 256, 270
Default copy constructor, 241
default keyword, 37, 47, 349
Default parameter values, 237
delete, 167, 169
delete keyword, 37, 349
deque class, 359
Dereference operator, 159, 165, 352, 353
Derivation, 275
derivative(), 175, 176, 181
Derived class, 275
Derived type, 161
Destructor, 242, 256
Deterministic computers, 75
Devanagari alphabet, 347
Deviation, 146
difftime(), 398
Direct access, 126
Direct member selection operator, 352, 353
Discrete binary logarithm, 70
Division operator, 21, 352, 353
DJGPP, 2

do keyword, 37, 349
do...while statement, 60, 64
Dominating member data, 279
DOS, 2
Dot product, 145
double, 23, 24, 25
double keyword, 37, 349
Dummy argument, 265, 268
Dynamic array, 168
Dynamic binding, 168, 173, 177, 284, 285, 287
Dynamic storage, 310
dynamic_cast keyword, 37, 349

else keyword, 37, 349
Emacs, 2
Empty parameter list, 102
end() function, 327, 331
endl, 4
Endline character, 4
End-of-file character, 343
enum keyword, 37, 349
Enumeration types, 17, 137, 138

anonymous, 18
Enumerator, 17, 33
eof(), 398
Equal algorithm, 369, 373
Equality operator, 38, 269
erase() function, 329
Error

compile-time, 29, 39
logical, 39, 43
round-off, 28
run-time, 29, 39

Escape sequence, 10, 343
Euclidean Algorithm, 81, 113
Exception, 110
exit(), 398
exit() function, 110
exp(), 176, 398
Expanding an inline function, 107
explicit keyword, 37, 349
Exponent, 23, 25, 83
export keyword, 37, 349
Extensibility, 291
extern keyword, 37, 349
Extraction operator, 8
extremes(), 143

INDEX 413

fabs(), 85, 398
Factorial function, 95
fail(), 398
Fall through, 48, 50, 54
false keyword, 17, 37, 350
fclose(), 398
fgetc(), 398
fgets(), 398
Fibonacci numbers, 62
File scope, 108
fill(), 398
fill algorithm, 369, 374
fill_n algorithm, 369, 374
find algorithm, 369, 374
find() function, 330
find_end algorithm, 369, 375
find_first_of algorithm, 369, 375
find_if algorithm, 369, 376
Fixed-point format, 30
Flag, 75
flags(), 368
float, 23, 25
float keyword, 37, 350
float.h, 24
Floating-point types, 16, 24, 25
Floating-point value, 25
Floor function, 71
floor(), 398
FLT_DIG, 25
FLT_MANT_DIG, 25
FLT_MAX, 25
FLT_MIN, 25
flush(), 398
fopen(), 399
for keyword, 37, 350
for statement, 60
for_each algorithm, 369, 376
Forever loop, 72
Form feed character, 99
fprintf(), 399
fputc(), 399
fputs(), 399
fread(), 399
Free Software Foundation, 1
frequency(), 144
friend functions, 258, 268
friend keyword, 37, 350
front() function, 328

fscanf(), 399
fseek(), 399
ftell(), 399
Function:

abort(), 110, 397
abs(), 176, 397
access, 238, 266
acos(), 397
append(), 144
asin(), 397
assert(), 136
atan(), 397
atof(), 397
atoi(), 397
atol(), 397
back(), 328
bad(), 397
begin(), 327, 331
body, 90
boolean, 98
bsearch(), 397
cat(), 175
ceil(), 397
chr(), 176
clear(), 397
clearerr(), 397
close(), 398
cmp(), 175
combination, 113
copy(), 179
cos(), 398
cosh(), 398
cpy(), 175
cube(), 180
declaration, 92, 114
definition, 92, 114
derivative(), 175, 176, 181
difftime(), 398
end(), 327, 331
eof(), 398
erase(), 329
exit(), 110, 398
exp(), 398
extremes(), 143
fabs(), 85, 398
fail(), 398
fclose(), 398
fgetc(), 398

414 INDEX

Function (Cont.):
fgets(), 398
fill(), 398
find(), 330
flags(), 398
floor, 71
floor(), 398
flush(), 398
fopen(), 399
fprintf(), 399
fputc(), 399
fputs(), 399
fread(), 399
frequency(), 144
front(), 338
fscanf(), 399
fseek(), 399
ftell(), 399
fwrite(), 399
gcount(), 399
get(), 168, 189, 399
getc(), 400
getchar(), 400
getline(), 192, 202
gets(), 400
good(), 400
head, 90
ignore(), 189, 400
insert(), 144, 330
isalnum(), 190, 400
isalpha(), 190, 400
iscntrl(), 190, 400
isdigit(), 190, 400
isgraph(), 190, 400
islower(), 190, 400
isPalindrome(), 145, 146
isprint(), 190, 400
ispunct(), 190, 201, 405
isspace(), 191, 400
isupper(), 191, 201, 400
isvowel(), 205
isxdigit(), 191, 400
labs(), 401
largest(), 143
len(), 175
log(), 70, 405
log10(), 401
main(), 109

Function (Cont.):
memchr(), 401
memcmp(), 401
memcpy(), 401
memmove(), 401
mirror(), 175
open(), 401
peek(), 189, 401
pop_back(), 328
pow(), 71, 401
precision(), 401
print(), 182
product(), 176
prototype, 114
push_back(), 326
putback(), 189
rand(), 76
read-only, 238
reduce(), 239, 259
remove(), 143, 144
reverse(), 202
riemann(), 176, 180
root(), 176
rotate(), 144, 146
setw(), 70
size(), 326
sizeof(), 128
sort(), 176
sqrt(), 176
square root, 29
srand(), 77
strcat(), 185, 196, 199, 201
strchr(), 199, 201
strcmp(), 185, 199, 202
strcpy(), 185, 195, 199, 201, 202, 205
strcspn(), 199
strlen(), 185, 193, 194, 199, 201
strncat(), 185, 197, 199, 201, 202
strncmp(), 185, 200
strncpy(), 185, 195, 200, 201, 205
strpbrk(), 199, 200, 201
strrchr(), 200
strspn(), 200
strstr(), 200
strtok(), 185, 197, 200
sum(), 171, 176, 180
time(), 78
tokenize(), 207

INDEX 415

Function (Cont.):
tolower(), 191, 401
toupper(), 190, 191, 401
trap(), 176
utility, 238
void, 96

Function call operator, 352
Function object, 370
Function signature, 285
Fundamental types, 16, 23
fwrite(), 399

GCC, 2
gcd(), 238
gcount(), 399
generate algorithm, 369, 376
generate_n algorithm, 369, 377
Generating pseudorandom numbers, 75
Generic algorithm, 368
Georgian alphabet, 347
Get operator, 8
get(), 168, 189, 399
getc(), 400
getchar(), 400
getline(), 192, 202
gets(), 400
Getty methods, 238
GNU software, 1
good(), 400
goto keyword, 37, 350
goto statement, 74
Greater than operator, 353
Greatest common divisor, 113
Greek alphabet, 347
Gujarati alphabet, 347
Gurmukhi alphabet, 347

Has-a relationship, 275
Head of a function, 90
Header, 19, 92

cmath, 70
iomanip, 70

Header file, 87
Hebrew alphabet, 347
Heterogeneous container, 305
hex, 403
Hexadecimal, 402
Hiragana codes, 348

Homogeneous container, 305
Horizontal tab character, 4, 99
Horner’s Algorithm, 111

IDE, 1
if keyword, 36, 37, 350
ignore(), 189, 400
Immutable lvalues, 162
Implementation, 114, 290, 291
Inaccuracy, 28
includes algorithm, 370, 377
Increment operator, 11, 352
Index range checking, 354, 364
Index value, 126
Indirect access, 182
Indirect member selection operator, 352, 353
Indirect print, 207
Indirect Selection Sort, 176
Indirect sort, 144, 206, 207
inf, 27
Infinite loop, 72, 80
Infinity symbol, 27
Information hiding, 93, 234, 282
Inheritance, 273, 293, 310
Initialization list, 237, 271
Initializer, 6, 8
Initializer list

array, 127
inline functions, 107
inline keyword, 37, 350
Inner product, 145
inner_product algorithm, 370, 378
inplace_merge algorithm, 368, 378
Input operator, 8
insert(), 144
insert() function, 330
Insertion Sort, 144
Instance, 234, 303
Instantiate, 234, 303
int keyword, 2, 24, 25, 37, 350
INT_MAX constant, 20
INT_MIN constant, 20
integer, 26
integral type, 16
Integrated development environment, 1
Interface, 114, 290, 291
Invariant:

loop, 70

416 INDEX

Invoking a function, 88
iomanip header, 70
iostream, 2
iostream.h, 24
Is-a relationship, 275
isalnum(), 190, 400
isalpha(), 190, 400
iscntrl(), 190, 400
isdigit(), 98, 99, 190, 400
isgraph(), 190, 400
islower(), 98, 99, 190, 400
isPalindrome(), 145
isprint(), 190, 400
ispunct(), 98, 99, 190, 201, 400
isspace(), 98, 99, 191, 400
isupper(), 98, 99, 191, 201, 400
isvowel(), 205
isxdigit(), 191, 400
iter_swap algorithm, 369, 378
Iteration, 60
Iterator, 313, 368

Jamo codes, 348
Jump statement, 74

Kannada alphabet, 347
Katakana codes, 348
Keyword, 6, 33, 37, 52

case, 47
default, 47
false, 17
true, 17

Knuth, Donald E., 407

Label, 74
labs(), 401
Lao alphabet, 347
largest(), 143
Latin alphabet, 347
Leap year, 100
Least common multiple, 113
Left associative, 351
Lehmer, D., 252
len(), 175
Less than operator, 353
lexicographical_compare algorithm, 370,

379
Linear Congruential Algorithm, 252

Linear Search algorithm, 134, 136
Linked list, 310
List:

parameter, 102
list class, 362
Literals, 4, 162
Local declaration, 40
Local scope, 108
Local variables, 95
log(), 176, 401
log() function, 70
log10(), 401
Logarithm

binary, 136
discrete binary, 70

Logarithmic time, 136
Logical AND operator, 353
Logical error, 39, 43
Logical NOT operator, 352
Logical operator, 41
long, 24
long double, 23, 24
long keyword, 37, 350
LONG_MAX constant, 20
LONG_MIN constant, 20
Loop, 60
Loop invariant, 70
lower_bound algorithm, 368, 379
Lvalue, 162, 268, 307

Macro, 303
main(), 109
main() function, 2, 109
main() function, 109
make_heap algorithm, 370, 380
Malayam alphabet, 347
Mantissa, 23, 25, 83
map class, 364
map template, 340
Mask, 333
Matrix, 309
max algorithm, 374, 380
max_element algorithm, 370, 380
Member data, 232
Member function, 232
Member selection operator, 352, 353
memchr(), 401
memcmp(), 401

INDEX 417

memcpy(), 401
memmove(), 401
Memory leak, 287, 292
merge algorithm, 368, 381
Method, 232, 291
Metrowerks CodeWarrior, 1
Microsoft Visual C++, 1, 3
min algorithm, 370, 381
min_element algorithm, 370, 381
mismatch algorithm, 369, 381
Modulus operator, 21
Multidimensional array, 139
multimap template, 340
Multiplication operator, 352, 353
multiset template, 340
mutable keyword, 37, 350
Mutable lvalues, 162

Name, 156
Namespace, 3
namespace keyword, 37, 350
nan, 30
Natural logarithm function, 70
Negation operator, 269
Negative, 11
Nesting statements, 43
new, 167, 179
new keyword, 37, 350
newline, 207
newline character, 2, 4, 99, 343
next_permutation algorithm, 370, 382
Node, 244
Nondecreasing array, 136
Nonprinting characters, 343
Normal distribution, 146
Not a number symbol, 30
Not equal to operator, 353
not_eq keyword, 37, 350
not keyword, 37, 350, 352
Notepad, 1
nth_element algorithm, 368, 382
NUL, 172
NULL, 167, 172, 183
Null statement, 86
Numeric literals, 5
Numeric overflow, 26
Numerical derivative, 175

Object, 7, 162
container, 368
function, 370

Object-oriented programming, 1, 232, 234, 290
oct, 403
open(), 401
Operation, 291
Operator, 4, 352

addition, 353
address, 156, 352, 353
allocation, 352, 353
arithmetic, 21
assignment, 5, 22, 38, 328, 353
binary, 352
bit shift, 353
bitwise, 353
comma, 353
composite assignment, 22
conditional expression, 49, 353
conversion, 352, 353
deallocation, 352, 353
decrement, 352
delete, 169
dereference, 159, 352, 353
direct member selection, 352, 353
division, 21, 352, 353
equal to, 353
equality, 38
extraction, 8
function call, 352
get, 8
greater than, 353
increment, 352
indirect member selection, 352, 353
input, 8
insertion, 4
less than, 353
logical, 41, 353
logical not, 352
member selection, 352, 353
modulus, 21
multiplication, 352, 353
not equal to, 353
output, 2, 4
overloadable, 352
post-decrement, 352
post-increment, 21, 352
pre-decrement, 352

418 INDEX

Operator (Cont.):
pre-increment, 21, 352
put to, 4
reference, 156
remainder, 21, 352, 353
scope resolution, 108, 352
sizeof, 352
stream insertion, 4
subscript, 169, 326, 352
subtraction, 353
ternary, 352
type cast, 19
type construction, 352
type conversion, 352, 353
unary, 352

operator keyword, 37, 350
or keyword, 37, 350
or_eq keyword, 37, 350
Oriya alphabet, 347
Outer product, 145
Output manipulator, 403
Output operator, 2, 4
Output stream, 4
Overflow, 83

numeric, 26
Overload, 269
Overloadable operators, 352
Overloading functions, 109
Overloading relational operators, 260
Overriding a function, 279

Parameter, 92
Parameter list, 90

empty, 102
Parametrized types, 307
partial_sort algorithm, 368, 383
partial_sort_copy algorithm, 368, 383
partial_sum algorithm, 368, 383
partition algorithm, 370, 383
Pascal, 138
Pascal’s Triangle, 146
Pass by constant reference, 106
Pass by reference, 102, 207
Pass by value, 93
Passed by value, 88
peek(), 189, 400
Perfect shuffle, 145
Permutation function, 95

Person class, 277
Plural, 202
Pointer, 158, 163
Pointers to objects, 244
Polymorphism, 282, 284, 285, 293
Polynomial, 111
pop_back() function, 328
pop_heap algorithm, 370, 384
Post-decrement operator, 352
Postfix operator, 265
Post-increment operator, 21, 352
pow(), 401
pow() function, 71
Precedence, 352
precision, 83
precision(), 401
Precondition, 136
Pre-decrement operator, 352
Predicate class, 370
Prefix operator, 265
Pre-increment operator, 21, 352
Preprocessor directive, 2
prev_permutation algorithm, 370, 384
Prime number, 67
print(), 182
priority_queue class, 361
priority_queue template, 340
private access, 240, 276
private keyword, 37, 350
Procedure, 96
Product

dot, 145
inner product, 145
outer product, 145
scalar, 145

product(), 176
Program, 1
Program body, 2
Programming language, 1

C++, 1
Promotion, 26, 89
protected access, 240, 276
protected keyword, 37, 350
Pseudorandom numbers, 76
public access, 240
public inheritance, 275
public keyword, 37, 350
Pure virtual function, 287

INDEX 419

push_back() function, 326
push_heap algorithm, 370, 385
put operator, 4
putback(), 189
Quadratic equation, 51
Quadratic formula, 58
queue class, 360
Quote character, 4
Quotient operator, 81, 84

rand() function, 76
random_shuffle algorithm, 369, 385
Range checking, 333
Ratio, 232
Read-only parameter, 102, 106
Real number types, 23. 26
reduce(), 229, 259
Reference, 157
Reference operator, 103, 156
register keyword, 37, 350
reinterpret_cast keyword, 37, 350
Relational operators, 260
Remainder operator, 21, 81, 84, 352, 353
Remove algorithm, 369, 386
remove(), 143, 144
remove_copy algorithm, 369, 387
remove_copy_if algorithm, 369, 387
remove_if algorithm, 369, 387
replace algorithm, 369, 388
replace_copy algorithm, 369, 388
replace_copy_if algorithm, 369, 389
replace_if algorithm, 369, 389
Reserved word, 32, 33, 38, 50, 52
return keyword, 37, 350
return statement, 90, 92
Return type, 2, 90
reverse(), 202
reverse algorithm, 369, 390
reverse_copy algorithm, 369, 390
Riemann sums, 175
riemann(), 176, 180
Right associative, 352
root(), 176
rotate(), 144, 146
rotate algorithm, 369, 391
rotate_copy algorithm, 369, 391
Rounding, 25
Round-off error, 28

Run-time binding, 168
Run-time error, 29, 39
Rvalue, 162

Scalar product, 145
Scientific, 30
Scientific format, 30
Scope, 6, 40, 108, 242

file, 108
local, 108

Scope resolution operator, 108, 234, 352
Search

binary, 46
search algorithm, 369, 391
search_n algorithm, 369, 392
Seed, 76, 77
Selection Sort, 144
Self-documenting code, 18, 138
Sentinel, 71, 207
Separately compiled function, 114
Sequential execution, 36
Service, 232
set class, 366
set_difference algorithm, 370, 392
set_intersection algorithm, 370, 393
set_symmetric_difference algorithm,

370, 393
set template, 344
set_union algorithm, 370, 393
Setty methods, 238
setw() function, 69, 70
Short circuiting, 53
short keyword, 37, 350
Short-circuiting, 42
SHRT_MAX constant, 19
SHRT_MIN constant, 19
Shuffle, 145
Sieve of Eratosthenes, 144
Signature, 279
signed keyword, 37, 350
Significant digits, 25, 83
Simulation, 75
sin(), 176
Singular, 202
Size, 7
size() function, 326
size_t, 199
sizeof keyword, 37, 350

420 INDEX

sizeof operator, 23, 352
sizeof() function, 128
Sort:

indirect, 144
sort(), 176
sort algorithm, 368, 394
sort() algorithm, 327
sort_heap algorithm, 370, 394
Space character, 99
Specialization, 275
Specifier, 6
sqrt(), 29, 176
Square root, 81
Square root function, 29, 87
srand() function, 77
stack class, 360
Standard C++ Library, 2, 87, 325
Standard container classes, 354
Standard deviation, 146
Standard header, 2
Standard identifier, 32, 33, 38, 50, 52
Standard output device, 2
Standard output stream, 2
Standard output stream object, 2
Standard Template Library, 354
Statement:

block, 40
break, 71
continue, 73
do..while, 64
for, 60
goto, 74
if, 36
nesting, 43
switch, 47
while, 60

Statement list, 39
Static binding, 168, 173, 177
static data member, 245
static keyword, 37, 351
static variable, 247
static_cast keyword, 37, 351
std, 3
stdlib.h, 76
STL, 354
strcat() function, 185, 196, 199, 201
strchr() function, 194, 199, 201
strcmp(), 185, 199, 202

strcpy() function, 185, 195, 196, 199, 201,
202, 205

strcspn(), 199
Stream, 4

output, 4
standard output, 2

Stream extraction operator, 4, 270
Stream insertion operator, 270
Stream manipulator, 4, 69
String:

bit, 20
string class, 325
String length function, 193
String literal, 4
strlen(), 185, 193, 199, 201
strncat(), 185, 196, 199, 201, 202
strncat() function, 197
strncmp(), 185, 200
strncpy(), 185, 196, 200, 201, 205
strncpy() function, 195
Stroustrup, Bjarne, 409
strpbrk, 199
strpbrk(), 200, 201
strpbrk() function, 199
strrchr(), 200, 201
strspn(), 200
strstr(), 194, 200
strstr() function, 194
strtok(), 185, 200
strtok() function, 197
struct, 243
struct keyword, 37, 351
Student class, 277
Subclass template, 307
Subroutine, 96
Subscript, 126, 169
Subscript operator, 165, 266, 326, 352
Subtraction operator, 268, 353
sum(), 171, 176, 180
Sun Solaris, 1
Superclass, 275
swap algorithm, 369, 395
swap() function, 102
switch keyword, 37, 351
switch statement, 47, 54, 71, 74
Symbol:

infinity, 27
not at number, 30

INDEX 421

Syntax:
array declaration, 127

System beep, 101
System clock, 78

Tamil alphabet, 347
Teluga alphabet, 347
Template

map, 340
multimap, 340
multiset, 340
priority_queue, 340
set, 340

template keyword, 37, 351
Ternary operator, 352
Test driver, 90
Text editor, 1
Thai alphabet, 347
this keyword, 37, 351
this pointer, 247
throw keyword, 37, 351
time() function, 37, 78, 351
Tibetan alphabet, 347
Time

logarithmic, 136
Token, 6
tokenize(), 207
Tolerance, 85
tolower(), 191, 401
toupper(), 191, 401
toupper() function, 190
Transform algorithm, 369, 395
trap(), 176
Trapezoidal Rule, 176
Traversal, 313
Tree diagram, 287
true keyword, 17
true keyword, 37, 351
Truncating, 25
Truth tables, 41
try keyword, 37, 351
Type, 156

bool, 17
character, 19
enumeration, 137
floating-point, 16
fundamental, 16
integral, 16

Type (Cont.):
wchar_t, 347

Type cast operator, 19
Type casting, 25
Type construction operator, 352
Type conversion operator, 352, 353
Type definition, 138
Type parameter, 302
typedef keyword, 37, 326, 351
typeid keyword, 37, 351
typename keyword, 37, 351

UINT_MAX constant, 20
ULONG_MAX constant, 20
Unallocated memory, 164
Unary negation, 269
Unary operator, 352
Underflow, 83
Unicode, 347
Uninitialized pointer, 166
union keyword, 37, 351
unique algorithm, 369, 395
unique_copy algorithm, 369, 396
UNIX, 1
UNIX workstation, 24
unsigned int, 24
unsigned keyword, 37, 351
unsigned long, 24
upper_bound algorithm, 368, 496
User prompt, 270
USHRT_MAX constant, 20
using keyword, 37, 351
using namespace statement, 3
Utility function, 238

Value, 5, 7
Variable, 5, 8

local, 95
Vector, 320
vector class, 325, 354
Vertical tab character, 99
Virtual destructor, 287, 292
Virtual function, 282, 283
virtual keyword, 37, 351
void, 172
void function, 96
void keyword, 37, 351
volatile keyword, 37, 351

422 INDEX

wchar_t keyword, 37, 351
wchar_t type, 347
while keyword, 37, 351
while statement, 60, 64
White space characters, 99
Windows 98, 1
WordPad, 1

xor keyword, 37, 351
xor_eq keyword, 37, 351

Zero-based indexing, 126, 307
Z-score, 146

	1 Elementary C++ Programming
	3 1.1 Getting Started
	3 1.2 Somesimpleprograms
	3 Example 1.1 The Fhello, Worldf Program
	3 Example 1.2 Another Fhello, Worldf Program
	3 1.3 The Output Operator
	3 Example 1.3 Yet Another Fhello, Worldf Program
	3 1.4 Characters And Literals
	3 Example 1.4 A Fourth Version Of The Fhello, Worldf Program
	3 Example 1.5 Inserting Numeric Literals Into The Standard Output Stream
	3 1.5 Variables And Their Declarations
	3 Example 1.6 Using Integer Variables
	3 1.6 Program Tokens
	3 Example 1.7 A Program’stokens
	3 Example 1.8 An Erroneous Program
	3 1.7 Initializing Variables
	3 Example 1.9 Initializing Variables
	3 1.8 Objects, Variables, And Constants
	3 Specifier
	3 Example 1.10 The
	3 1.9 The Input Operator
	3 Example 1.11 Using The Input Operator
	3 Review Questions
	3 Problems
	3 Answers To Review Questions
	3 Solutions To Problems

	2 Fundamental Types
	4 2.1 Numeric Data Types
	4 2.2 The Boolean Type
	4 Example 2.1 Boolean Variables
	4 2.3 Enumeration Types
	4 2.4 Character Types
	4 Example 2.2 Character Variables
	4 2.5 Integer Types
	4 Example 2.3 Integer Type Ranges
	4 2.6 Arithmetic Operators
	4 Example 2.4 Integer Arithmetic
	4 2.7 The Increment And Decrement Operators
	4 Example 2.5 Applying The Pre-increment And Post-increment Operators
	4 2.8 Composite Assignment Operators
	4 Example 2.6 Applying Composite Arithmetic Assignment Operators
	4 2.9 Floating-point Types
	4 Example 2.7 Floating-point Arithmetic
	4 Operator
	4 Example 2.8 Using The
	4 Example 2.9 Reading From The
	4 Header File
	4 2.10 Type Conversions
	4 Example2.10 Simpletypecasting
	4 Example 2.11 Promotion Of Types
	4 2.11 Numeric Overflow
	4 Example 2.12 Integer Overflow
	4 Example 2.13 Floating-point Overflow
	4 2.12 Round-off Error
	4 Example 2.14 Round-off Error
	4 Example 2.15 Hidden Round-off Error
	4 Example 2.16 Other Kinds Of Run-time Errors
	4 2.13 The E-format For Floating-point Values
	4 Example 2.17 Scientific Format
	4 2.14 Scope
	4 Example 2.18 Scope Of Variables
	4 Example 2.19 Nested And Parallel Scopes
	4 Review Questions
	4 Problems
	4 Answers To Review Questions
	4 Solutions To Problems

	3 Selection
	5 3.1 The
	5 Statement
	5 Example 3.1 Testing For Divisibility
	5 Statement
	5 3.2 The
	5 Example 3.2 Testing For Divisibility Again
	5 3.3 Keywords
	5 3.4 Comparison Operators
	5 Example 3.3 The Minimum Of Two Integers
	5 Example 3.4 A Common Programming Error
	5 Example 3.5 The Minimum Of Three Integers
	5 3.5 Statement Blocks
	5 Statement
	5 Example 3.6 A Statement Block Within An
	5 Example 3.7 Using Blocks To Limit Scope
	5 3.6 Compound Conditions
	5 Example 3.8 Using Compound Conditions
	5 Example 3.9 User-friendly Input
	5 3.7 Short-circuiting
	5 Example 3.10 Short-circuiting
	5 3.8 Boolean Expressions
	5 Example 3.11 Another Logical Error
	5 3.9 Nested Selection Statements
	5 Example 3.12 Nesting Selection Statements
	5 Example 3.13 Using Nested Selection Statements
	5 Example 3.14 A Guessing Game
	5 3.10 The
	5 Construct
	5 Construct For Parallel Alternatives
	5 Example 3.15 Using The
	5 Example 3.16 Using The
	5 Construct To Select A Range Of Scores
	5 3.11 The
	5 Statement
	5 Statement To Select A Range Of Scores
	5 Example 3.17 Using A
	5 Statement
	5 Example3.18 Anerroneousfall-throughina
	5 3.12 The Conditional Expression Operator
	5 Example 3.19 Finding The Minimum Again
	5 Review Questions
	5 Problems
	5 Answers To Review Questions
	5 Solutions To Problems

	4 Iteration
	6 4.1 The
	6 Statement
	6 Loop To Compute A Sum Of Consecutive Integers
	6 Example 4.1 Using A
	6 Example 4.2 Using A
	6 Loop To Compute A Sum Of Reciprocals
	6 Example 4.3 Using A
	6 Loop To Repeat A Computation
	6 4.2 Terminating A Loop
	6 Statement To Terminate A Loop
	6 Example 4.4 Using A
	6 Example 4.5 The Fibonacci Numbers
	6 Example 4.6 Using The
	6 Function
	6 Example 4.7 Aborting Infinite Loop
	6 Statement
	6 4.3 The
	6 Loop To Compute A Sum Of Consecutive Integers
	6 Example 4.8 Using A
	6 Example 4.9 The Factorial Numbers
	6 4.4 The
	6 Statement
	6 Example 4.10 Using A
	6 Loop To Compute A Sum Of Consecutive Integers
	6 Loop Control Variable Names
	6 Example 4.11 Reusing
	6 Warning:
	6 Example 4.12 The Factorial Numbers Again
	6 Loop
	6 Example4.13 Usingadescending
	6 Loop With A Step Greater Than One
	6 Example 4.14 Using A
	6 Example4.15 Usingasentineltocontrola
	6 Loop
	6 Loop Is Correct
	6 Example 4.16 Using A Loop Invariant To Prove That A
	6 Example 4.17 More Than One Control Variable In A
	6 Loop
	6 Example 4.18 Nesting
	6 Loops
	6 Example 4.19 Testing A Loop Invariant
	6 Statement
	6 4.5 The
	6 Statement To Terminate A Loop
	6 Example 4.20 Using A
	6 Example 4.21 Controlling Input With A Sentinel
	6 Example 4.22 Using A
	6 Statement With Nested Loops
	6 Statement
	6 4.6 The
	6 Statements
	6 And
	6 Example 4.23 Using
	6 Statement
	6 4.7 The
	6 Break
	6 Goto
	6 Statement To Break Out Of A Nest Of Loops
	6 Example 4.24 Using A
	6 Example4.25 Usingaflagtobreakoutofanestofloops
	6 4.8 Generating Pseudo-random Numbers
	6 Example 4.26 Generating Pseudo-random Numbers
	6 Example 4.27 Setting The Seed Interactively
	6 Example 4.28 Setting The Seed From The System Clock
	6 Example 4.29 Generating Pseudo-random Numbers In Given Range
	6 Review Questions
	6 Problems
	6 Answers To Review Questions
	6 Solutions To Problems

	5 Functions
	7 5.1 Introduction
	7 5.2 Standard C++ Library Functions
	7 Example 5.1 The Square Root Function
	7 Example 5.2 Testing A Trigonometry Identity
	7 Function Description Example
	7 Header File Description
	7 5.3 User-defined Functions
	7 Function
	7 Example 5.3 A
	7 5.4 Test Drivers
	7 Example 5.4 A Test Driver For The
	7 Function
	7 Example 5.5 A Test Driver For The
	7 5.5 Function Declarations And Definitions
	7 Example 5.6 The
	7 Function With Declaration Separate From Definition
	7 Example 5.7 Separate Compilation
	7 Example 5.8 The
	7 Function Compiled Separately
	7 5.6 Local Variables And Functions
	7 Example 5.9 The Factorial Function
	7 Example 5.10 The Permutation Function
	7 Functions
	7 5.7
	7 Example 5.11 A Function That Prints Dates
	7 5.8 Boolean Functions
	7 Example 5.12 Classifying Characters
	7 Example 5.13 A Function That Tests Primality
	7 Example 5.14 A Leap Year Function
	7 5.9 I/o Functions
	7 Example 5.15 A Function For Reading The User’sage
	7 5.10 Passing By Reference
	7 Function
	7 Example 5.16 The
	7 Example 5.17 Passing By Value And Passing By Reference
	7 Passing By Value Passing By Reference
	7 Example 5.18 Returning More Than One Value
	7 5.11 Passing By Constant Reference
	7 Example 5.19 Passing By Constant Reference
	7 5.12 Inline Functions
	7 Example 5.20 Inlining The Cube Function
	7 Warning:
	7 5.13 Scope
	7 Example 5.21 Nested And Parallel Scopes
	7 5.14 Overloading
	7 Example 5.22 Overloading The
	7 Function
	7 Function
	7 5.15 The
	7 Statement To Terminate A Program
	7 Example 5.23 Using The
	7 Example 5.24 Using The
	7 Function To Terminate A Program
	7 5.16 Default Arguments
	7 Example 5.25 Default Parameters
	7 Review Questions
	7 Problems
	7 Answers To Review Questions
	7 Solutions To Problems

	6 Arrays
	8 6.1 Introduction
	8 6.2 Processing Arrays
	8 Example 6.1 Using Direct Access On Arrays
	8 Example 6.2 Printing A Sequence In Order
	8 6.3 Initializing An Array
	8 Example 6.3 Initializing An Array
	8 Example 6.4 Initializing An Array With Trailing Zeros
	8 Example 6.5 An Uninitialized Array
	8 6.4 Array Index Out Of Bounds
	8 Example 6.6 Allowing An Array Index To Exceed Its Bounds
	8 Example 6.7 Causing Side Effects
	8 Example 6.8 Causing Unhandled Exceptions
	8 6.5 Passing An Array To A Function
	8 Example 6.9 Passing An Array To A Function That Returns Its Sum
	8 Example 6.10 Input And Output Functions For An Array
	8 Example 6.11 Printing The Memory Location Of An Array
	8 6.6 The Linear Search Algorithm
	8 Example 6.12 The Linear Search
	8 6.7 The Bubble Sort Algorithm
	8 Example 6.13 The Bubble Sort
	8 6.8 The Binary Search Algorithm
	8 Example 6.14 The Binary Search Algorithm
	8 Example 6.15 Determining Whether An Array Is Sorted
	8 Example 6.16 Using The
	8 Function To Enforce A Precondition
	8 6.9 Using Arrays With Enumeration Types
	8 Example 6.17 Enumerating The Days Of The Week
	8 6.10 Type Definitions
	8 Example 6.18 The Bubble Sort Again
	8 6.11 Multidimensional Arrays
	8 Example 6.19 Reading And Printing A Two-dimensional Array
	8 Example 6.20 Processing A Two-dimensional Array Of Quiz Scores
	8 Example 6.21 Processing A Three-dimensional Array
	8 Review Questions
	8 Solved Programming Problems
	8 Answers To Review Questions
	8 Solutions To Problems

	7 Pointers And References
	9 7.1 The Reference Operator
	9 Example 7.1 Printing Pointer Values
	9 7.2 References
	9 Example 7.2 Using References
	9 Example 7.3 References Are Not Separate Variables
	9 7.3 Pointers
	9 Example 7.4 Using Pointer Variables
	9 7.4 The Dereference Operator
	9 Example 7.5 Dereferencing A Pointer
	9 Example 7.6 Pointers To Pointers
	9 Example 7.7 Referencing Is The Opposite Of Dereferencing
	9 7.5 Derived Types
	9 7.6 Objects And Lvalues
	9 [ellis]
	9 7.7 Returning A Reference
	9 Example 7.8 Returning A Reference
	9 Example 7.9 Using A Function As An Array Subscript
	9 7.8 Arrays And Pointers
	9 Example 7.10 Traversing An Array With A Pointer
	9 Warning:
	9 Example 7.11 Examining The Addresses Of Array Elements
	9 Example 7.12 Pattern Matching
	9 Example 7.13 The
	9 Operator
	9 Example 7.14 The
	9 7.9 Dynamic Arrays
	9 Example 7.15 Using Dynamic Arrays
	9 With Pointers
	9 7.10 Using
	9 Example 7.16 Constant Pointers And Pointers To Constants
	9 7.11 Arrays Of Pointers And Pointers To Arrays
	9 Example 7.17 Indirect Bubble Sort
	9 7.12 Pointers To Pointers
	9 7.13 Pointers To Functions
	9 Example 7.18 The Sum Of A Function
	9 7.14
	9 ,
	9 ,and
	9 Review Questions
	9 Problems
	9 Answers To Review Questions
	9 Solutions To Problems
	9 Solutions To Problems 7.7-7.24 Are Available On-line At
	9 .

	8 C-strings
	10 8.1 Introduction
	10 8.2 Review Of Pointers
	10 Example 8.1 Tracing Pointers
	10 8.3 C-strings
	10 Character
	10 Example 8.2 C-strings Are Terminated With The
	10 8.4 String I/o
	10 Example 8.3 Ordinary Input And Output Of C-strings
	10 8.5 Some
	10 Member Functions
	10 Function With Two Parameters
	10 Example 8.4 The
	10 Example 8.5 The
	10 Function With Three Parameters
	10 Function
	10 Example 8.6 The
	10 Example 8.7 The
	10 Function
	10 And
	10 Functions
	10 Example 8.8 The
	10 Example 8.9 The
	10 Function
	10 8.6 Standard C Character Functions
	10 8.7 Arrays Of Strings
	10 Example 8.10 An Array Of Strings
	10 Example 8.11 A String Array
	10 Example 8.12 Initializing A String Array
	10 8.8 Standard C String Functions
	10 Function
	10 Example 8.13 The
	10 Functions
	10 ,
	10 ,and
	10 Example 8.14 The
	10 Example 8.15 The
	10 Function
	10 Example 8.16 The Function
	10 Example 8.17 The String Concatenation Function
	10 Example 8.18 The Second String Concatenation Function
	10 Example 8.19 The String Tokenize Function
	10 Function
	10 Example 8.20 The
	10 Review Questions
	10 Problems
	10 Answers To Review Questions
	10 Solutions To Problems

	9 Standard C++ Strings
	11 9.1 Introduction
	11 9.2 Formatted Input
	11 Performs Formatted Input
	11 Example 9.1 The Extraction Operator
	11 Example 9.2 Using The Extraction Operation To Control A Loop
	11 9.3 Unformatted Input
	11 Function
	11 Example 9.3 Inputting Characters With The
	11 Function
	11 Example 9.4 Inputting C-strings With The
	11 9.4 The Standard C++
	11 Type
	11 Example 9.5 Using The Standard C++
	11 Type
	11 9.5 Files
	11 Example 9.6 Capitalizing All The Words In A Text File
	11 Example 9.7 Merging Two Sorted Data Files
	11 9.6 String Streams
	11 Example 9.8 Using An Output String Stream
	11 Example 9.9 Using An Input String Stream
	11 Review Questions
	11 Problems
	11 Answers To Review Questions
	11 Solutions To Problems

	10 Classes
	12 10.1 Introduction
	12 10.2 Class Declarations
	12 Class
	12 Example 10.1 Implementing The
	12 Example 10.2 A Self-contained Implementation Of The
	12 Class
	12 10.3 Constructors
	12 Class
	12 Example 10.3 A Constructor Function For The
	12 Class
	12 Example 10.4 Adding More Constructors To The
	12 10.4 Constructor Initialization Lists
	12 Class
	12 Example 10.5 Using Initializer Lists In The
	12 Class Constructor
	12 Example 10.6 Using Default Parameter Values In The
	12 10.5 Access Functions
	12 Example 10.7 Access Functions In The
	12 Class
	12 10.6 Private Member Functions
	12 Member Functions
	12 Example 10.8 Using
	12 10.7 The Copy Constructor
	12 Class
	12 Example 10.9 Adding A Copy Constructor To The
	12 Example 10.10 Tracing Calls To The Copy Constructor
	12 10.8 The Class Destructor
	12 Class
	12 Example 10.11 Including A Destructor In The
	12 10.9 Constant Objects
	12 10.10 Structures
	12 10.11 Pointers To Objects
	12 Example 10.12 Using Pointers To Objects
	12 Class For Linked Lists
	12 Example 10.13 A
	12 10.12 Static Data Members
	12 Data Member
	12 Example 10.14 A
	12 Example 10.15 A
	12 Data Member That Is
	12 Function Members
	12 10.13
	12 Function Member
	12 Example 10.16 A
	12 Review Questions
	12 Problems
	12 Answers To Review Questions
	12 Solutions To Problems

	11 Overloading Operators
	13 11.1 Introduction
	13 11.2 Overloading The Assignment Operator
	13 Example 11.1 Adding An Assignment Operator To The
	13 Class
	13 Pointer
	13 11.3 The
	13 Example 11.2 The Preferred Prototype For An Overloaded Assignment Operator
	13 Example 11.3 Implementation Of The Assignment Operator For The
	13 Class
	13 11.4 Overloading Arithmetic Operators
	13 Function
	13 Example 11.4 Declaring The Multiplication Operator As A
	13 Class With Assignment And Multiplication Operators
	13 Example 11.5 The
	13 11.5 Overloading The Arithmetic Assignment Operators
	13 Class With An Overloaded
	13 Operator
	13 Example 11.6 The
	13 11.6 Overloading The Relational Operators
	13 Example 11.7 Overloading The Equality Operator
	13 In The
	13 Class
	13 11.7 Overloading The Stream Operators
	13 For The
	13 Class
	13 Example 11.8 Overloading The Output Operator
	13 Example 11.9 Overloading The Input Operator
	13 In The
	13 Class
	13 11.8 Conversion Operators
	13 Example 11.10 Adding A Conversion Operator To The
	13 Class
	13 11.9 Overloading The Increment And Decrement Operators
	13 Example 11.11 Adding A Pre-increment Operator To The
	13 Class
	13 Example 11.12 Adding A Post-increment Operator To The
	13 11.10 Overloading The Subscript Operator
	13 Example 11.13 Adding A Subscript Operator To The
	13 Class
	13 Review Questions
	13 Problems
	13 Answers To Review Questions
	13 Solutions To Problems

	12 Composition And Inheritance
	14 12.1 Introduction
	14 12.2 Composition
	14 Class
	14 Example 12.1 A
	14 Example 12.2 A
	14 Class
	14 Class With The
	14 Example 12.3 Composing The
	14 12.3 Inheritance
	14 Example 12.4 Deriving A
	14 Class
	14 Class From The
	14 12.4
	14 Class Members
	14 Class With
	14 Data Members
	14 Example 12.5 The
	14 12.5 Overriding And Dominating Inherited Members
	14 Example 12.6 Dominating A Data Member And Overriding A Member Function
	14 Example 12.7 Parent Constructors And Destructors
	14 Example 12.8 Parent Constructors And Destructors
	14 Access Versus
	14 Access
	14 12.6
	14 Example 12.9 The
	14 Class With
	14 And
	14 Data Members
	14 Functions And Polymorphism
	14 12.7
	14 Functions
	14 Example 12.10 Using
	14 Example 12.11 Polymorphism Through
	14 Functions
	14 12.8 Virtual Destructors
	14 Example 12.12 Memory Leaks
	14 12.9 Abstract Base Classes
	14 Example 12.13 A Hierarchy Of
	14 Classes
	14 12.10 Object-oriented Programming
	14 [perry]
	14 [wang]
	14 [bergin]
	14 The Two Views In An Object-oriented Program
	14 Review Questions
	14 Problems
	14 Answers To Review Questions
	14 Solutions To Problems

	13 Templates And Iterators
	15 13.1 Introduction
	15 13.2 Function Templates
	15 Example 13.1 The
	15 Function Template
	15 Example 13.2 The Bubble Sort Template
	15 13.3 Class Templates
	15 Class Template
	15 Example 13.3 A
	15 13.4 Container Classes
	15 X
	15 Class Template
	15 Example 13.4 A
	15 13.5 Subclass Templates
	15 Example 13.5 A Subclass Template For Vectors
	15 13.6 Passing Template Classes To Template Parameters
	15 Example 13.6 A
	15 Class Template
	15 13.7 A Class Template For Linked Lists
	15 Class Template
	15 Example 13.7 A
	15 13.8 Iterator Classes
	15 Example 13.8 An Iterator Class Template For The
	15 Class Template
	15 Review Questions
	15 Problems
	15 Answers To Review Questions
	15 Solutions To Problems

	14 Standard C++ Vectors
	16 14.1 Introduction
	16 Of
	16 Example 14.1 Using A
	16 Example 14.2 Using The
	16 And
	16 Functions
	16 14.2 Iterators On Vectors Example 14.3 Using
	16 Iterators
	16 Algorithm
	16 Example 14.4 Using The Generic
	16 14.3 Assigning Vectors Example 14.5 Using The Assignment Operator To Duplicate A
	16 Example 14.6 Using The
	16 ,
	16 ,and
	16 Functions
	16 And
	16 Functions Example 14.7 Using The
	16 14.4 The
	16 Function
	16 Example 14.8 Using The
	16 Function
	16 Function
	16 14.5 The
	16 Function
	16 Example 14.9 Using The
	16 14.6 The C++ Standard
	16 Class Template
	16 Class Template
	16 Example 14.10 Using The Standard
	16 14.7 Range Checking
	16 Review Questions
	16 Problems
	16 Answers To Review Questions
	16 Solutions To Problems

	15 Container Classes
	17 15.1 Ansi/iso Standard C++
	17 15.2 The Standard Template Library
	17 15.3 Standard C++ Container Class Templates
	17 15.4 Standard C++ Generic Algorithms
	17 15.5 Header Files
	17 [hubbard2]
	17 [hubbard1]

	A Character Codes
	18 A.1 The Ascii Code
	18 A.2 Unicode
	18 [unicode]

	B Standard C++ Keywords
	C Standard C++ Operators
	D Standard C++ Container Classes
	21 D.1 The
	21 Class Template
	21 Object
	21 Exampled.1 Using Aniteratorona
	21 Object
	21 Example D.2 Using A Reverse Iterator On A
	21 Example D.3 Using The
	21 Function On A
	21 Object
	21 Example D.4 Using Some Generic Algorithms On A
	21 Object
	21 Example D.5 Using Some More Generic Algorithms On A
	21 D.2 The
	21 Class Template
	21 D.3 The
	21 Class Template
	21 D.4 The
	21 D.5 The
	21 Class Template
	21 Object
	21 Example D.6 Using A
	21 Class Template
	21 D.6 The
	21 Example D.7 Sorting And Reversing A
	21 Object
	21 Class Template
	21 D.7 The
	21 Object
	21 Example D.8 Using A
	21 D.8 The
	21 Class Template
	21 Functions
	21 Example D.9 Using

	E Standard C++ Generic Algorithms
	22 Searching And Sorting Algorithms In
	22 Nonmodifying Algorithms On Sequences In
	22 Modifying Algorithms On Sequences In
	22 Comparison Algorithms In
	22 Algorithms On Sets In
	22 Algorithms On Heaps In
	22 Permutation Algorithms In
	22 Numeric Algorithms In
	22 Example E.1 Testing The
	22 Algorithm
	22 Example E.2 Testing The
	22 Algorithm
	22 Example E.3 Testing The
	22 Example E.4 Testing The
	22 Algorithm
	22 Example E.5 Testing The
	22 Algorithm
	22 Example E.6 Testing The
	22 Example E.7 Testing The
	22 Algorithm
	22 Example E.8 Testing The
	22 Algorithm
	22 Example E.9 Testing The
	22 Example E.10 Testing The
	22 Algorithm
	22 Example E.11 Testing The
	22 Algorithm
	22 Example E.12 Testing The
	22 Algorithm
	22 Example E.13 Testing The
	22 Example E.14 Testing The
	22 Algorithm
	22 Example E.15 Testing The
	22 Algorithm
	22 Example E.16 Testing The
	22 Example E.17 Testing The
	22 Algorithm
	22 Example E.18 Testing The
	22 Algorithm
	22 Example E.19 Testing The
	22 Example E.20 Testing The
	22 Algorithm
	22 Example E.21 Testing The
	22 Algorithm
	22 Example E.22 Testing The
	22 Example E.23 Testing The
	22 Algorithm
	22 Example E.24 Testing The
	22 Algorithm
	22 Example E.25 Testing The
	22 Algorithm
	22 Example E.26 Testing The
	22 Example E.27 Testing The
	22 Algorithm
	22 Example E.28 Testing The
	22 Algorithm
	22 Example E.29 Testing The
	22 Example E.30 Testing The
	22 Algorithm
	22 Example E.31 Testing The
	22 Algorithm
	22 Example E.32 Testing The
	22 Example E.33 Testing The
	22 Algorithm
	22 Example E.34 Testing The
	22 Algorithm
	22 Example E.35 Testing The
	22 Example E.36 Testing The
	22 Algorithm
	22 Example E.37 Testing The
	22 Algorithm
	22 Example E.38 Testing The
	22 Example E.39 Testing The
	22 Algorithm
	22 Example E.40 Testing The
	22 Algorithm
	22 Example E.41 Testing The
	22 Example E.42 Testing The
	22 Algorithm
	22 Example E.43 Testing The
	22 Algorithm
	22 Example E.44 Testing The
	22 Example E.45 Testing The
	22 Algorithm
	22 Example E.46 Testing The
	22 Algorithm
	22 Example E.47 Testing The
	22 Example E.48 Testing The
	22 Algorithm
	22 Example E.49 Testing The
	22 Algorithm
	22 Example E.50 Testing The
	22 Algorithm
	22 Example E.51 Testing The
	22 Example E.52 Testing The
	22 Algorithm
	22 Example E.53 Testing The
	22 Algorithm
	22 Example E.54 Testing The
	22 Example E.55 Testing The
	22 Algorithm
	22 Example E.56 Testing The
	22 Algorithm
	22 Example E.57 Testing The
	22 Example E.58 Testing The
	22 Algorithm
	22 Example E.59 Testing The
	22 Algorithm
	22 Example E.60 Testing The
	22 Example E.61 Testing The
	22 Algorithm
	22 Example E.62 Testing The
	22 Algorithm
	22 Example E.63 Testing The
	22 Example E.64 Testing The
	22 Algorithm
	22 Example E.65 Testing The
	22 Algorithm
	22 Example E.66 Testing The

	F The Standard C Library
	G Hexadecimal Numbers
	24 Example G.1 Using Output Manipulators
	24 Example G.2 Using Input Manipulators
	24 Algorithm G.1 Decimal Integer To Hexadecimal
	24 Example G.3 Converting The Decimal Numeral 100,000 To Hexadecimal
	24 Algorithm G.2 Hexadecimal Integer To Decimal
	24 Example G.4 Converting The Hexadecimal Numeral
	24 To Decimal
	24 Example G.5 Converting The Hexadecimal Numeral

	H References
	Index

